forked from giulia-berto/app-classifyber
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfeatures_mni.py
155 lines (128 loc) · 5.4 KB
/
features_mni.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
"""Code to compute the feature matrix.
"""
from __future__ import print_function, division
import numpy as np
import nibabel as nib
import pickle
from dipy.tracking.distances import bundles_distances_mam, bundles_distances_mdf
from dipy.tracking.streamline import set_number_of_points
from distances import parallel_distance_computation
from functools import partial
from endpoints_distance import bundles_distances_endpoints_fastest
from waypoints_distance import wrapper_bundle2roi_distance, bundle2roi_distance
from utils import compute_kdtree_and_dr_tractogram, compute_superset
try:
from joblib import Parallel, delayed, cpu_count
joblib_available = True
except ImportError:
joblib_available = False
## features settings
dm = True
local_prototypes = True
endpoints = True
rois = True
## global configuration parameters
distance_func = bundles_distances_mdf
num_local_prototypes = 100
nb_points = 20
def compute_X_dm(superset, prototypes, distance_func=bundles_distances_mam, nb_points=20):
"""Compute the global dissimilarity matrix.
"""
if distance_func==bundles_distances_mdf:
print("Resampling the superset with %s points" %nb_points)
superset = set_number_of_points(superset, nb_points)
distance = partial(parallel_distance_computation, distance=distance_func)
print("Computing dissimilarity matrix (%s x %s)..." %(len(superset), len(prototypes)))
dm_superset = distance(superset, prototypes)
return dm_superset
def compute_X_dm_local(superset, tract_name, distance_func=bundles_distances_mam, nb_points=20):
"""Compute the local dissimilarity matrix.
"""
if distance_func==bundles_distances_mdf:
print("Resampling the superset with %s points" %nb_points)
superset = set_number_of_points(superset, nb_points)
distance = partial(parallel_distance_computation, distance=distance_func)
local_prot_fname = 'common_local_prototypes/%s_common_prototypes.npy' %tract_name
local_prototypes = np.load(local_prot_fname)
print("Computing dissimilarity matrix (%s x %s)..." %(len(superset), len(local_prototypes)))
dm_local_superset = distance(superset, local_prototypes)
return dm_local_superset
def compute_X_end(superset, prototypes):
"""Compute the endpoint matrix.
"""
endpoint_matrix = bundles_distances_endpoints_fastest(superset, prototypes)
endpoint_matrix = endpoint_matrix * 0.5
return endpoint_matrix
def compute_X_roi(superset, tract_name):
"""Compute a matrix with dimension (len(superset), 2) that contains
the distances of each streamline of the superset with the 2 ROIs.
"""
superset = set_number_of_points(superset, nb_points) #to speed up the computational time
print("Loading the two-waypoint ROIs of the target...")
table_filename = 'ROIs_labels_dictionary.pickle'
table = pickle.load(open(table_filename)) #python2
roi1_lab = table[tract_name].items()[0][1] #python2
roi2_lab = table[tract_name].items()[1][1] #python2
#with open(table_filename, 'rb') as f: #python3
# u = pickle._Unpickler(f)
# u.encoding = 'latin1'
# table = u.load()
#roi1_lab = table[tract_name]['label_ROI1'] #python3
#roi2_lab = table[tract_name]['label_ROI2'] #python3
d = pickle.load(open('IDs_tracts_dictionary.pickle')) #python2
for i, n in d.items():
if n == {tract_name}:
tractID=eval(i)
if tractID < 30:
roi_dir = 'templates_mni125'
roi1_filename = '%s/sub-MNI_var-AFQ_lab-%s_roi.nii.gz' %(roi_dir, roi1_lab)
roi2_filename = '%s/sub-MNI_var-AFQ_lab-%s_roi.nii.gz' %(roi_dir, roi2_lab)
else:
roi_dir = 'templates_mni125_ICBM2009c'
roi1_filename = '%s/%s.nii.gz' %(roi_dir, roi1_lab)
roi2_filename = '%s/%s.nii.gz' %(roi_dir, roi2_lab)
roi1 = nib.load(roi1_filename)
roi2 = nib.load(roi2_filename)
print("Computing superset to ROIs distances...")
if joblib_available:
roi1_dist = wrapper_bundle2roi_distance(superset, roi1)
roi2_dist = wrapper_bundle2roi_distance(superset, roi2)
else:
roi1_dist = bundle2roi_distance(superset, roi1)
roi2_dist = bundle2roi_distance(superset, roi2)
X_roi = np.vstack((roi1_dist, roi2_dist))
return X_roi.T
def compute_endpoints(bundle):
endpoints = np.zeros((len(bundle),3))
for i, st in enumerate(bundle):
endpoints[i] = endpoint(st)
return endpoints
def compute_feature_matrix(superset, tract_name, distance_func=distance_func, nb_points=nb_points):
"""Compute the feature matrix.
"""
np.random.seed(0)
feature_list = []
if dm:
common_prototypes = np.load('common_prototypes.npy')
X_dm = compute_X_dm(superset, common_prototypes, distance_func=distance_func, nb_points=nb_points)
feature_list.append(X_dm)
print("----> Added dissimilarity matrix of size (%s, %s)" %(X_dm.shape))
if local_prototypes:
X_dm_local = compute_X_dm_local(superset, tract_name, distance_func=distance_func, nb_points=nb_points)
feature_list.append(X_dm_local)
print("----> Added local dissimilarity matrix of size (%s, %s)" %(X_dm_local.shape))
if endpoints:
common_prototypes = np.load('common_prototypes.npy')
X_end = compute_X_end(superset, common_prototypes)
feature_list.append(X_end)
print("----> Added endpoint matrix of size (%s, %s)" %(X_end.shape))
if rois:
X_roi = compute_X_roi(superset, tract_name)
feature_list.append(X_roi)
print("----> Added ROI distance matrix of size (%s, %s)" %(X_roi.shape))
#concatenation
X_tmp = np.array([])
for matrix in feature_list:
X_tmp = np.hstack([X_tmp, matrix]) if X_tmp.size else matrix
print("----> Size of final feature matrix: (%s, %s)" %(X_tmp.shape))
return np.array(X_tmp, dtype=np.float32)