forked from giulia-berto/app-classifyber
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathendpoints_distance.py
99 lines (82 loc) · 3.58 KB
/
endpoints_distance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
"""Streamline and bundle distances based on the Euclidean (flip)
distance between endpoints.
"""
from __future__ import division, print_function, absolute_import
from numpy.linalg import norm
from dipy.tracking.distances import bundles_distances_mdf
from dipy.align.bundlemin import distance_matrix_mdf
import numpy as np
def streamline_distance_endpoints(s_A, s_B):
"""Streamline distance based on Euclidean (flip) distance between
endpoints.
Reference implementation just for testing purpose.
"""
e_A_1 = s_A[0]
e_A_2 = s_A[-1]
e_B_1 = s_B[0]
e_B_2 = s_B[-1]
d = norm(e_A_1 - e_B_1) + norm(e_A_2 - e_B_2)
d_flip = norm(e_A_1 - e_B_2) + norm(e_A_2 - e_B_1)
return min(d, d_flip)
def bundles_distances_endpoints(S_A, S_B):
"""Distance between lists/arrays or streamlines, based on
endpoints. Returns the distance matrix between the related
groups streamlines.
Reference implementation just for testing purpose.
"""
dm = np.empty((len(S_A), len(S_B)), dtype=np.float)
for i, s_A in enumerate(S_A):
for j, s_B in enumerate(S_B):
dm[i, j] = streamline_distance_endpoints(s_A, s_B)
return dm
def bundles_distances_endpoints_fast(S_A, S_B):
"""Distance between lists/arrays or streamlines, based on
endpoints. Returns the distance matrix between the related groups
streamlines.
Fast implementation based on bundles_distances_mdf().
"""
tmp_S_A = [[s_A[0], s_A[-1]] for s_A in S_A]
tmp_S_B = [[s_B[0], s_B[-1]] for s_B in S_B]
return 2.0 * bundles_distances_mdf(tmp_S_A, tmp_S_B)
def bundles_distances_endpoints_fastest(S_A, S_B):
"""Distance between lists/arrays or streamlines, based on
endpoints. Returns the distance matrix between the related
groups streamlines.
Fastest implementation based on distance_matrix_mdf().
"""
tmp_S_A = np.array([[s_A[0], s_A[-1]] for s_A in S_A])
tmp_S_B = np.array([[s_B[0], s_B[-1]] for s_B in S_B])
return 2.0 * distance_matrix_mdf(tmp_S_A, tmp_S_B)
def compute_terminal_points_matrix(S_A, S_B):
from dipy.tracking.streamline import set_number_of_points
S_A_res = np.array([set_number_of_points(s, nb_points=2) for s in S_A])
S_B_res = np.array([set_number_of_points(s, nb_points=2) for s in S_B])
return 2.0 * bundles_distances_mdf(S_A_res, S_B_res)
if __name__ == '__main__':
import numpy as np
from time import time
np.random.seed(0)
s_A = np.random.uniform(size=[10, 3])
s_B = np.random.uniform(size=[5, 3])
print("Example of streamline_distance_endpoints: %s" % streamline_distance_endpoints(s_A, s_B))
n_A = 1000
n_B = 3000
low = 5
high = 200
S_A = [np.random.uniform(size=[n, 3]) for n in np.random.randint(low, high, size=n_A)]
S_B = [np.random.uniform(size=[n, 3]) for n in np.random.randint(low, high, size=n_B)]
t0 = time()
dm = bundles_distances_endpoints(S_A, S_B)
print("bundles_distances_endpoints() : %s sec" % (time() - t0))
t0 = time()
dm_fast = bundles_distances_endpoints_fast(S_A, S_B)
print("bundles_distances_endpoints_fast() : %s sec" % (time() - t0))
print("max difference = %s" % np.abs(dm - dm_fast).max())
t0 = time()
dm_fastest = bundles_distances_endpoints_fastest(S_A, S_B)
print("bundles_distances_endpoints_fastest() : %s sec" % (time() - t0))
print("max difference = %s" % np.abs(dm - dm_fastest).max())
t0 = time()
dm_terminal = compute_terminal_points_matrix(S_A, S_B)
print("compute_terminal_points_matrix() : %s sec" % (time() - t0))
print("max difference = %s" % np.abs(dm - dm_terminal).max())