forked from sczhou/STFAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
runner.py
71 lines (55 loc) · 2.42 KB
/
runner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
#!/usr/bin/python
# -*- coding: utf-8 -*-
#
# Developed by Shangchen Zhou <[email protected]>
import matplotlib
import os
# Fix problem: no $DISPLAY environment variable
matplotlib.use('Agg')
# Fix problem: possible deadlock in dataloader
# import cv2
# cv2.setNumThreads(0)
from argparse import ArgumentParser
from pprint import pprint
from config import cfg
from core.build import bulid_net
import torch
def get_args_from_command_line():
parser = ArgumentParser(description='Parser of Runner of Network')
parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [cuda]', default=cfg.CONST.DEVICE, type=str)
parser.add_argument('--phase', dest='phase', help='phase of CNN', default=cfg.NETWORK.PHASE, type=str)
parser.add_argument('--weights', dest='weights', help='Initialize network from the weights file', default=cfg.CONST.WEIGHTS, type=str)
parser.add_argument('--data', dest='data_path', help='Set dataset root_path', default=cfg.DIR.DATASET_ROOT, type=str)
parser.add_argument('--out', dest='out_path', help='Set output path', default=cfg.DIR.OUT_PATH)
args = parser.parse_args()
return args
def main():
# Get args from command line
args = get_args_from_command_line()
if args.gpu_id is not None:
cfg.CONST.DEVICE = args.gpu_id
if args.phase is not None:
cfg.NETWORK.PHASE = args.phase
if args.weights is not None:
cfg.CONST.WEIGHTS = args.weights
if args.data_path is not None:
cfg.DIR.DATASET_ROOT = args.data_path
if cfg.DATASET.DATASET_NAME == 'VideoDeblur':
cfg.DIR.IMAGE_BLUR_PATH = os.path.join(args.data_path,'%s/%s/input/%s.jpg')
cfg.DIR.IMAGE_CLEAR_PATH = os.path.join(args.data_path,'%s/%s/GT/%s.jpg')
if cfg.DATASET.DATASET_NAME == 'VideoDeblurReal':
cfg.DIR.IMAGE_BLUR_PATH = os.path.join(args.data_path,'%s/%s/input/%s.jpg')
cfg.DIR.IMAGE_CLEAR_PATH = os.path.join(args.data_path,'%s/%s/input/%s.jpg')
if args.out_path is not None:
cfg.DIR.OUT_PATH = args.out_path
# Print config
print('Use config:')
pprint(cfg)
# Set GPU to use
if type(cfg.CONST.DEVICE) == str and not cfg.CONST.DEVICE == 'all':
os.environ["CUDA_VISIBLE_DEVICES"] = cfg.CONST.DEVICE
print('CUDA DEVICES NUMBER: '+ str(torch.cuda.device_count()))
# Setup Network & Start train/test process
bulid_net(cfg)
if __name__ == '__main__':
main()