-
Notifications
You must be signed in to change notification settings - Fork 0
/
params.yaml
173 lines (157 loc) · 4.98 KB
/
params.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
#out_dir: /nfs/data/gloves
#- docker_cmd: docker run -v $(pwd)/outputs:/outputs
# TODO fix this absolute path
#out_dir: /nfs/data/gloves/outputs
out_dir: artifacts
docker_out_dir: /app/gloves/artifacts
docker_work_dir: /app/gloves
#docker_cmd: docker run -v /nfs/data/gloves/outputs:/outputs
docker_cmd: docker run -v ${PWD}:/app/gloves --user 1000:1000
mlflow_env_vars: '
-e MLFLOW_TRACKING_URI=${MLFLOW_TRACKING_URI}
-e MLFLOW_TRACKING_USERNAME=${MLFLOW_TRACKING_USERNAME}
-e MLFLOW_TRACKING_PASSWORD=${MLFLOW_TRACKING_PASSWORD}
-e MLFLOW_S3_ENDPOINT_URL=${MLFLOW_S3_ENDPOINT_URL}
-e AWS_ACCESS_KEY_ID=${AWS_ACCESS_KEY_ID}
-e AWS_SECRET_ACCESS_KEY=${AWS_SECRET_ACCESS_KEY}
'
wandb_env_vars: -e WANDB_API_KEY=${WANDB_API_KEY}
gloves_train_image: etheredgeb/gloves:custom-tensorflow-2.7.0
wget:
img: etheredgeb/wget_url:latest
data_url: https://www.robots.ox.ac.uk/~vgg/data/pets/data/images.tar.gz
out_dir: wget
untar:
img: etheredgeb/untar_data:latest
tar_args: xzvf
data_dir: untar
tar_file_name: images.tar.gz
clean:
img: etheredgeb/clean_oxford_pet_data:latest
out_dir: clean
split:
img: etheredgeb/split_oxford_pet_data:latest
train_dir: train
test_dir: test
ratio: 0.1
siamese_types:
l1_distance:
out_model_path: artifacts/models/siamese_l1/model
out_encoder_path: artifacts/models/siamese_l1/encoder
out_metrics_path: artifacts/logs/l1
out_summaries_path: artifacts/logs/l1
distance: l1
l2_distance:
out_model_path: artifacts/models/siamese_l2/model
out_encoder_path: artifacts/models/siamese_l2/encoder
out_metrics_path: artifacts/logs/l2
out_summaries_path: artifacts/logs/l2_summaries
distance: l2
cosine_distance:
out_model_path: artifacts/models/cosine/model
out_encoder_path: artifacts/models/cosine/encoder
out_metrics_path: artifacts/logs/cosine
out_summaries_path: artifacts/logs/cosine_summaries
distance: cosine
sigmoid:
out_model_path: artifacts/models/sigmoid/model
out_encoder_path: artifacts/models/sigmoid/encoder
out_metrics_path: artifacts/logs/sigmoid
out_summaries_path: artifacts/logs/sigmoid_summaries
distance: sigmoid
main:
out_model_path: artifacts/models/siamese/model
out_encoder_path: artifacts/models/siamese/encoder
out_metrics_path: artifacts/logs/siamese
out_summaries_path: artifacts/logs/siamese_summaries
distance: l2
siamese_src: gloves/train_siamese.py
siamese_model_src: gloves/models/custom_model.py
siamese:
# Image
height: 224
width: 224
depth: 3
# hypers
mutate_anchor: true
mutate_other: true
dense_layers: 0
dense_nodes: 1024
dense_reg_rate: 0.001
conv_reg_rate: 0.0001
activation: sigmoid
latent_nodes: 32
dropout_rate: 0.0
final_activation: linear
lr: 0.0001
optimizer: adam
epochs: 100
batch_size: 32
verbose: 0
eval_freq: 1
reduce_lr_factor: 0.1
reduce_lr_patience: 20
early_stop_patience: 50
mixed_precision: false
nway_freq: 20
nways: 32
use_batch_norm: true
use_sigmoid: false
conv_layers: 3
pooling: None
distance: l2
# out_model_path: artifacts/models/siamese/model
# out_encoder_path: artifacts/models/siamese/encoder
# out_metrics_path: logs/siamese_logs
# out_summaries_path: logs/siamese_summaries
monitor_metric: val_loss
classifier_src: gloves/classifier.py
classifier_types:
imagenet_frozen:
out_model_path: artifacts/models/gloves_imagenet_frozen
out_label_encoder: artifacts/models/gloves_imagenet_frozen_label_encoder.joblib
out_metrics_path: logs/imagenet_frozen
out_summaries_path: logs/imagenet_frozen_summaries
use_imagenet: true
is_frozen: true
model_src: gloves/models/imagenet.py
imagenet_unfrozen:
out_model_path: artifacts/models/gloves_imagenet_unfrozen
out_label_encoder: artifacts/models/gloves_imagenet_unfrozen_label_encoder.joblib
out_metrics_path: logs/imagenet_unfrozen
out_summaries_path: logs/imagenet_unfrozen_summaries
model_src: gloves/models/imagenet.py
use_imagenet: true
is_frozen: false
gloves_frozen:
out_model_path: artifacts/models/gloves_encoder_frozen
out_label_encoder: artifacts/models/gloves_encoder_frozen_label_encoder.joblib
out_metrics_path: logs/gloves_frozen
out_summaries_path: logs/gloves_frozen_summaries
model_src: gloves/models/custom_model.py
use_imagenet: false
is_frozen: true
gloves_unfrozen:
out_model_path: artifacts/models/gloves_encoder_unfrozen
out_label_encoder: artifacts/models/gloves_encoder_unfrozen_label_encoder.joblib
out_metrics_path: logs/gloves_unfrozen
out_summaries_path: logs/gloves_unfrozen_summaries
model_src: gloves/models/custom_model.py
use_imagenet: false
is_frozen: false
classifier:
# hypers
batch_size: 32
epochs: 10
verbose: 1
dropout_rate: 0.0
get_my_pets:
img: amazon/aws-cli:2.4.10
out_dir: get_my_pets
bucket: s3://data/my-pets
rename_my_pets:
img: alpine:3.15.0
out_dir: rename_my_pets
combine:
img: alpine:3.15.0
out_dir: combined