Skip to content

Latest commit

 

History

History
228 lines (178 loc) · 5.33 KB

200.number-of-islands.md

File metadata and controls

228 lines (178 loc) · 5.33 KB

题目地址(200. 岛屿数量)

https://leetcode-cn.com/problems/number-of-islands/

题目描述

给你一个由 '1'(陆地)和 '0'(水)组成的的二维网格,请你计算网格中岛屿的数量。

岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。

此外,你可以假设该网格的四条边均被水包围。

 

示例 1:

输入:grid = [
  ["1","1","1","1","0"],
  ["1","1","0","1","0"],
  ["1","1","0","0","0"],
  ["0","0","0","0","0"]
]
输出:1
示例 2:

输入:grid = [
  ["1","1","0","0","0"],
  ["1","1","0","0","0"],
  ["0","0","1","0","0"],
  ["0","0","0","1","1"]
]
输出:3
 

提示:

m == grid.length
n == grid[i].length
1 <= m, n <= 300
grid[i][j] 的值为 '0' 或 '1'

前置知识

  • DFS

公司

  • 阿里
  • 腾讯
  • 百度
  • 字节

思路

如图,我们其实就是要求红色区域的个数,换句话说就是求连续区域的个数。

200.number-of-islands

符合直觉的做法是用 DFS 来解:

  • 我们需要建立一个 visited 数组用来记录某个位置是否被访问过。
  • 对于一个为 1 且未被访问过的位置,我们递归进入其上下左右位置上为 1 的数,将其 visited 变成 true。
  • 重复上述过程
  • 找完相邻区域后,我们将结果 res 自增 1,然后我们在继续找下一个为 1 且未被访问过的位置,直至遍历完.

但是这道题目只是让我们求连通区域的个数,因此我们其实不需要额外的空间去存储 visited 信息。 注意到上面的过程,我们对于数字为 0 的其实不会进行操作的,也就是对我们“没用”。 因此对于已经访问的元素, 我们可以将其置为 0 即可。

关键点解析

  • 二维数组 DFS 解题模板
  • 将已经访问的元素置为 0,省去 visited 的空间开销

代码

  • 语言支持:C++, Java, JS, python3

C++ Code:

class Solution {
public:
    int numIslands(vector<vector<char>>& grid) {
        int res = 0;
        for(int i=0;i<grid.size();i++)
        {
            for(int j=0;j<grid[0].size();j++)
            {
                if(grid[i][j] == '1')
                {
                    dfs(grid, i, j);
                    res += 1;
                }
            }
        }
        return res;

    }
    void dfs(vector<vector<char>>& grid, int i, int j)
    {
        // edge
        if(i<0 || i>= grid.size() || j<0 || j>= grid[0].size() || grid[i][j] != '1')
        {
            return;
        }
        grid[i][j] = '0';
        dfs(grid, i+1, j);
        dfs(grid, i-1, j);
        dfs(grid, i, j+1);
        dfs(grid, i, j-1);
    }
};

Java Code:

   public int numIslands(char[][] grid) {
        if (grid == null || grid.length == 0 || grid[0].length == 0) return 0;

        int count = 0;
        for (int row = 0; row < grid.length; row++) {
            for (int col = 0; col < grid[0].length; col++) {
                if (grid[row][col] == '1') {
                    dfs(grid, row, col);
                    count++;
                }
            }
        }
        return count;
    }

    private void dfs(char[][] grid,int row,int col) {
        if (row<0||row== grid.length||col<0||col==grid[0].length||grid[row][col]!='1') {
            return;
        }
        grid[row][col] = '0';
        dfs(grid, row-1, col);
        dfs(grid, row+1, col);
        dfs(grid, row, col+1);
        dfs(grid, row, col-1);
    }

Javascript Code:

/*
 * @lc app=leetcode id=200 lang=javascript
 *
 * [200] Number of Islands
 */
function helper(grid, i, j, rows, cols) {
  if (i < 0 || j < 0 || i > rows - 1 || j > cols - 1 || grid[i][j] === "0")
    return;

  grid[i][j] = "0";

  helper(grid, i + 1, j, rows, cols);
  helper(grid, i, j + 1, rows, cols);
  helper(grid, i - 1, j, rows, cols);
  helper(grid, i, j - 1, rows, cols);
}
/**
 * @param {character[][]} grid
 * @return {number}
 */
var numIslands = function (grid) {
  let res = 0;
  const rows = grid.length;
  if (rows === 0) return 0;
  const cols = grid[0].length;
  for (let i = 0; i < rows; i++) {
    for (let j = 0; j < cols; j++) {
      if (grid[i][j] === "1") {
        helper(grid, i, j, rows, cols);
        res++;
      }
    }
  }
  return res;
};

python code:

class Solution:
    def numIslands(self, grid: List[List[str]]) -> int:
        if not grid: return 0

        count = 0
        for i in range(len(grid)):
            for j in range(len(grid[0])):
                if grid[i][j] == '1':
                    self.dfs(grid, i, j)
                    count += 1

        return count

    def dfs(self, grid, i, j):
        if i < 0 or j < 0 or i >= len(grid) or j >= len(grid[0]) or grid[i][j] != '1':
            return
        grid[i][j] = '0'
        self.dfs(grid, i + 1, j)
        self.dfs(grid, i - 1, j)
        self.dfs(grid, i, j + 1)
        self.dfs(grid, i, j - 1)

复杂度分析

  • 时间复杂度:$O(m * n)$
  • 空间复杂度:$O(m * n)$

欢迎关注我的公众号《脑洞前端》获取更多更新鲜的 LeetCode 题解

相关题目