-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathencoder.py
56 lines (40 loc) · 1.88 KB
/
encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import torch
from torch import nn
from torch.nn import functional as F
from decoder import VAE_AttentionBlock, VAE_ResidualBlock
class VAE_Encoder(nn.Sequential):
def __init__(self):
super().__init__(
nn.Conv2d(3, 128, kernel_size=3, padding=1),
VAE_ResidualBlock(128, 128),
VAE_ResidualBlock(128, 128),
nn.Conv2d(128, 128, kernel_size=3, stride=2, padding=0),
VAE_ResidualBlock(128, 256),
VAE_ResidualBlock(256, 256),
nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=0),
VAE_ResidualBlock(256, 512),
VAE_ResidualBlock(512, 512),
nn.Conv2d(512, 512, kernel_size=3, stride=2, padding=0),
VAE_ResidualBlock(512, 512),
VAE_ResidualBlock(512, 512),
VAE_ResidualBlock(512, 512),
VAE_AttentionBlock(512),
VAE_ResidualBlock(512, 512),
nn.GroupNorm(32, 512),
nn.SiLU(),
nn.Conv2d(512, 8, kernel_size=3, padding=1),
nn.Conv2d(8, 8, kernel_size=1, padding=0),
)
def forward(self, x, noise):
for module in self:
if getattr(module, 'stride', None) == (2, 2):
x = F.pad(x, (0, 1, 0, 1))
x = module(x)
mean, log_variance = torch.chunk(x, 2, dim=1)
log_variance = torch.clamp(log_variance, -30, 20)
variance = log_variance.exp()
stdev = variance.sqrt()
x = mean + stdev * noise
# Constant taken from: https://github.com/CompVis/stable-diffusion/blob/21f890f9da3cfbeaba8e2ac3c425ee9e998d5229/configs/stable-diffusion/v1-inference.yaml#L17C1-L17C1
x *= 0.18215
return x