-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdecoder.py
100 lines (77 loc) · 3.25 KB
/
decoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import torch
from torch import nn
from torch.nn import functional as F
from attention import SelfAttention
class VAE_AttentionBlock(nn.Module):
def __init__(self, channels):
super().__init__()
self.groupnorm = nn.GroupNorm(32, channels)
self.attention = SelfAttention(1, channels)
def forward(self, x):
residue = x
x = self.groupnorm(x)
n, c, h, w = x.shape
x = x.view((n, c, h * w))
x = x.transpose(-1, -2)
x = self.attention(x)
x = x.transpose(-1, -2)
x = x.view((n, c, h, w))
x += residue
return x
class VAE_ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.groupnorm_1 = nn.GroupNorm(32, in_channels)
self.conv_1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)
self.groupnorm_2 = nn.GroupNorm(32, out_channels)
self.conv_2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1)
if in_channels == out_channels:
self.residual_layer = nn.Identity()
else:
self.residual_layer = nn.Conv2d(in_channels, out_channels, kernel_size=1, padding=0)
def forward(self, x):
residue = x
x = self.groupnorm_1(x)
x = F.silu(x)
x = self.conv_1(x)
x = self.groupnorm_2(x)
x = F.silu(x)
x = self.conv_2(x)
return x + self.residual_layer(residue)
class VAE_Decoder(nn.Sequential):
def __init__(self):
super().__init__(
nn.Conv2d(4, 4, kernel_size=1, padding=0),
nn.Conv2d(4, 512, kernel_size=3, padding=1),
VAE_ResidualBlock(512, 512),
VAE_AttentionBlock(512),
VAE_ResidualBlock(512, 512),
VAE_ResidualBlock(512, 512),
VAE_ResidualBlock(512, 512),
VAE_ResidualBlock(512, 512),
# (Batch_Size, 512, Height / 8, Width / 8) -> (Batch_Size, 512, Height / 4, Width / 4)
nn.Upsample(scale_factor=2),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
VAE_ResidualBlock(512, 512),
VAE_ResidualBlock(512, 512),
VAE_ResidualBlock(512, 512),
# (Batch_Size, 512, Height / 4, Width / 4) -> (Batch_Size, 512, Height / 2, Width / 2)
nn.Upsample(scale_factor=2),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
VAE_ResidualBlock(512, 256),
VAE_ResidualBlock(256, 256),
VAE_ResidualBlock(256, 256),
nn.Upsample(scale_factor=2),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
VAE_ResidualBlock(256, 128),
VAE_ResidualBlock(128, 128),
VAE_ResidualBlock(128, 128),
nn.GroupNorm(32, 128),
nn.SiLU(),
nn.Conv2d(128, 3, kernel_size=3, padding=1),
)
def forward(self, x):
x /= 0.18215
for module in self:
x = module(x)
return x