-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
207 lines (157 loc) · 7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import os
import tensorflow as tf
from tensorflow.contrib import learn
import mjsynth
import model
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string('output','../data/model',
"""Directory for event logs and checkpoints""")
tf.app.flags.DEFINE_string('tune_from','',
"""Path to pre-trained model checkpoint""")
tf.app.flags.DEFINE_string('tune_scope','',
"""Variable scope for training""")
tf.app.flags.DEFINE_integer('batch_size',2**5,
"""Mini-batch size""")
tf.app.flags.DEFINE_float('learning_rate',1e-4,
"""Initial learning rate""")
tf.app.flags.DEFINE_float('momentum',0.9,
"""Optimizer gradient first-order momentum""")
tf.app.flags.DEFINE_float('decay_rate',0.9,
"""Learning rate decay base""")
tf.app.flags.DEFINE_float('decay_steps',2**16,
"""Learning rate decay exponent scale""")
tf.app.flags.DEFINE_float('decay_staircase',False,
"""Staircase learning rate decay by integer division""")
tf.app.flags.DEFINE_integer('max_num_steps', 2**21,
"""Number of optimization steps to run""")
tf.app.flags.DEFINE_string('train_device','/gpu:1',
"""Device for training graph placement""")
tf.app.flags.DEFINE_string('input_device','/gpu:0',
"""Device for preprocess/batching graph placement""")
tf.app.flags.DEFINE_string('train_path','../data/train/',
"""Base directory for training data""")
tf.app.flags.DEFINE_string('filename_pattern','words-*',
"""File pattern for input data""")
tf.app.flags.DEFINE_integer('num_input_threads',4,
"""Number of readers for input data""")
tf.app.flags.DEFINE_integer('width_threshold',None,
"""Limit of input image width""")
tf.app.flags.DEFINE_integer('length_threshold',None,
"""Limit of input string length width""")
tf.logging.set_verbosity(tf.logging.INFO)
# Non-configurable parameters
optimizer='Adam'
mode = learn.ModeKeys.TRAIN # 'Configure' training mode for dropout layers
def _get_input():
"""Set up and return image, label, and image width tensors"""
image,width,label,_,_,_= mjsynth.bucketed_input_pipeline(
FLAGS.train_path,
str.split(FLAGS.filename_pattern,','),
batch_size=FLAGS.batch_size,
num_threads=FLAGS.num_input_threads,
input_device=FLAGS.input_device,
width_threshold=FLAGS.width_threshold,
length_threshold=FLAGS.length_threshold )
#tf.summary.text('label',label)
return image,width,label
def _get_single_input():
"""Set up and return image, label, and width tensors"""
image,width,label,length,text,filename=mjsynth.threaded_input_pipeline(
deps.get('records'),
str.split(FLAGS.filename_pattern,','),
batch_size=1,
num_threads=FLAGS.num_input_threads,
num_epochs=1,
batch_device=FLAGS.input_device,
preprocess_device=FLAGS.input_device )
return image,width,label,length,text,filename
def _get_training(rnn_logits,label,sequence_length):
"""Set up training ops"""
with tf.name_scope("train"):
if FLAGS.tune_scope:
scope=FLAGS.tune_scope
else:
scope="convnet|rnn"
print(label)
input('label')
rnn_vars = tf.get_collection( tf.GraphKeys.TRAINABLE_VARIABLES,
scope=scope)
print(rnn_logits)
print(label)
print(sequence_length)
input('_get_training0')
#NEW
#loss = crwl_loss_layer(rnn_logits,label)
#OLD
loss = model.ctc_loss_layer(rnn_logits,label,sequence_length)
# Update batch norm stats [http://stackoverflow.com/questions/43234667]
extra_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(extra_update_ops):
learning_rate = tf.train.exponential_decay(
FLAGS.learning_rate,
tf.train.get_global_step(),
FLAGS.decay_steps,
FLAGS.decay_rate,
staircase=FLAGS.decay_staircase,
name='learning_rate')
optimizer = tf.train.AdamOptimizer(
learning_rate=learning_rate,
beta1=FLAGS.momentum)
train_op = tf.contrib.layers.optimize_loss(
loss=loss,
global_step=tf.train.get_global_step(),
learning_rate=learning_rate,
optimizer=optimizer,
variables=rnn_vars)
tf.summary.scalar( 'learning_rate', learning_rate )
return train_op
def _get_session_config():
"""Setup session config to soften device placement"""
config=tf.ConfigProto(
allow_soft_placement=True,
log_device_placement=False)
return config
def _get_init_pretrained():
"""Return lambda for reading pretrained initial model"""
if not FLAGS.tune_from:
return None
saver_reader = tf.train.Saver(
tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES))
ckpt_path=FLAGS.tune_from
init_fn = lambda sess: saver_reader.restore(sess, ckpt_path)
return init_fn
def main(argv=None):
with tf.Graph().as_default():
global_step = tf.contrib.framework.get_or_create_global_step()
image,width,label = _get_input()
with tf.device(FLAGS.train_device):
features,sequence_length = model.convnet_layers( image, width, mode)
logits = model.rnn_layers( features, sequence_length,
mjsynth.num_classes() )
#tf.summary.scalar('sequence_length',sequence_length)
train_op = _get_training(logits,label,sequence_length)
session_config = _get_session_config()
summary_op = tf.summary.merge_all()
init_op = tf.group( tf.global_variables_initializer(),
tf.local_variables_initializer())
sv = tf.train.Supervisor(
logdir=FLAGS.output,
init_op=init_op,
summary_op=summary_op,
save_summaries_secs=30,
init_fn=_get_init_pretrained(),
save_model_secs=150)
with sv.managed_session(config=session_config) as sess:
step = sess.run(global_step)
while step < FLAGS.max_num_steps:
if sv.should_stop():
break
[step_loss,step]=sess.run([train_op,global_step])
[step_loss,image_] = sess.run([train_op,image])
print('features: ',image_)
print('features_s: ',image_.shape)
input('dd')
sv.saver.save( sess, os.path.join(FLAGS.output,'model.ckpt'),
global_step=global_step)
if __name__ == '__main__':
tf.app.run()