diff --git a/ci/.travis_install.sh b/ci/.travis_install.sh index edf2fee1..4586bceb 100755 --- a/ci/.travis_install.sh +++ b/ci/.travis_install.sh @@ -38,7 +38,7 @@ conda create -n testenv --yes python=$PYTHON_VERSION pip nose \ source activate testenv pip install deap tqdm update_checker stopit \ - dask[delayed] xgboost cloudpickle==0.5.6 + dask[delayed] xgboost tensorflow cloudpickle==0.5.6 pip install dask_ml==$DASK_ML_VERSION if [[ "$COVERAGE" == "true" ]]; then diff --git a/optional-requirements.txt b/optional-requirements.txt index 3fa01ca5..bdd6e873 100644 --- a/optional-requirements.txt +++ b/optional-requirements.txt @@ -1,3 +1,4 @@ xgboost==0.6a2 scikit-mdr==0.4.4 skrebate==0.3.4 +tensorflow>=1.12.0 \ No newline at end of file diff --git a/setup.py b/setup.py index a6c0980e..84b270ac 100644 --- a/setup.py +++ b/setup.py @@ -46,6 +46,7 @@ def calculate_version(): 'joblib>=0.10.3'], extras_require={ 'xgboost': ['xgboost==0.6a2'], + 'tensorflow': ['tensorflow>=1.12.0'], 'skrebate': ['skrebate>=0.3.4'], 'mdr': ['scikit-mdr>=0.4.4'], 'dask': ['dask>=0.18.2', diff --git a/tests/embedding_estimator_tests.py b/tests/embedding_estimator_tests.py new file mode 100644 index 00000000..b59fcf72 --- /dev/null +++ b/tests/embedding_estimator_tests.py @@ -0,0 +1,93 @@ +from sklearn.datasets import make_classification, make_regression +from tpot.builtins import EmbeddingEstimator +from sklearn.neural_network import MLPClassifier, MLPRegressor + + +def test_EmbeddingClassifier_1(): + """Assert that Embedding for classification works as expected.""" + X, y = make_classification(random_state=1) + cs = EmbeddingEstimator(MLPClassifier(random_state=1, tol=0.9)) + X_transformed = cs.fit_transform(X, y) + + # 20 features + 100 embedding size + assert X_transformed.shape[1] == 120 + + +def test_EmbeddingClassifier_2(): + """Assert that correct embedding layer is selected (classifier).""" + X, y = make_classification(random_state=1) + cs = EmbeddingEstimator( + MLPClassifier(hidden_layer_sizes=[20, 10], random_state=1, tol=0.9) + ) + cs_2 = EmbeddingEstimator( + MLPClassifier(hidden_layer_sizes=[20, 10], random_state=1, tol=0.9), + embedding_layer=1, + ) + X_transformed = cs.fit_transform(X, y) + X_transformed_2 = cs_2.fit_transform(X, y) + + assert X_transformed.shape[1] == 30 # 20 features + 20 embedding size + assert X_transformed_2.shape[1] == 40 # 20 features + 20 embedding size + + +def test_EmbeddingRegressor_1(): + """Assert that Embedding for regressor works as expected.""" + X, y = make_regression(n_features=20, random_state=1) + cs = EmbeddingEstimator(MLPRegressor(random_state=1, tol=1000)) + X_transformed = cs.fit_transform(X, y) + + # 20 features + 100 embedding size + assert X_transformed.shape[1] == 120 + + +def test_EmbeddingRegressor_2(): + """Assert that correct embedding layer is selected (regressor).""" + X, y = make_regression(n_features=20, random_state=1) + cs = EmbeddingEstimator( + MLPRegressor(hidden_layer_sizes=[20, 10], random_state=1, tol=1000) + ) + cs_2 = EmbeddingEstimator( + MLPRegressor(hidden_layer_sizes=[20, 10], random_state=1, tol=1000), + embedding_layer=1, + ) + X_transformed = cs.fit_transform(X, y) + X_transformed_2 = cs_2.fit_transform(X, y) + + assert X_transformed.shape[1] == 30 # 20 features + 20 embedding size + assert X_transformed_2.shape[1] == 40 # 20 features + 20 embedding size + + +def test_EmbeddingKeras(): + """Check that this works also for keras models""" + try: + import tensorflow as tf + except ImportError: + tf = None + if tf is None: + return + from tensorflow.keras import backend as K + import tensorflow.keras as keras + from tensorflow.keras.wrappers.scikit_learn import KerasClassifier + from tensorflow.keras.models import Sequential + from tensorflow.keras.layers import Dense, Activation + + def make_model(input_shape): + model = Sequential() + model.add(Dense(20, activation="relu", input_dim=input_shape)) + model.add(Dense(15, activation="relu")) + model.add(Dense(2, activation="softmax")) + model.compile( + optimizer="rmsprop", loss="categorical_crossentropy", metrics=["accuracy"] + ) + return model + + X, y = make_classification(random_state=1) + cs = EmbeddingEstimator(KerasClassifier(make_model), backend=K) + cs_2 = EmbeddingEstimator( + KerasClassifier(make_model), embedding_layer=-3, backend=K + ) + X_transformed = cs.fit_transform(X, y, verbose=0) + X_transformed_2 = cs_2.fit_transform(X, y, verbose=0) + + assert X_transformed.shape[1] == 35 # 20 features + 15 embedding size + assert X_transformed_2.shape[1] == 40 # 20 features + 20 embedding size diff --git a/tpot/builtins/__init__.py b/tpot/builtins/__init__.py index fe6c7f50..941f570e 100644 --- a/tpot/builtins/__init__.py +++ b/tpot/builtins/__init__.py @@ -29,3 +29,4 @@ from .one_hot_encoder import OneHotEncoder, auto_select_categorical_features, _transform_selected from .feature_transformers import CategoricalSelector, ContinuousSelector from .feature_set_selector import FeatureSetSelector +from .embedding_estimator import EmbeddingEstimator diff --git a/tpot/builtins/embedding_estimator.py b/tpot/builtins/embedding_estimator.py new file mode 100644 index 00000000..ef0b8d38 --- /dev/null +++ b/tpot/builtins/embedding_estimator.py @@ -0,0 +1,143 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- + +"""This file is part of the TPOT library. + +TPOT was primarily developed at the University of Pennsylvania by: + - Randal S. Olson (rso@randalolson.com) + - Weixuan Fu (weixuanf@upenn.edu) + - Daniel Angell (dpa34@drexel.edu) + - and many more generous open source contributors + +TPOT is free software: you can redistribute it and/or modify +it under the terms of the GNU Lesser General Public License as +published by the Free Software Foundation, either version 3 of +the License, or (at your option) any later version. + +TPOT is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU Lesser General Public License for more details. + +You should have received a copy of the GNU Lesser General Public +License along with TPOT. If not, see . + +""" + +import numpy as np +from sklearn.base import BaseEstimator, TransformerMixin +from sklearn.utils import check_array +from sklearn.neural_network import MLPClassifier, MLPRegressor + + +class EmbeddingEstimator(TransformerMixin, BaseEstimator): + """Meta-transformer for creating neural network embeddings as features. + """ + + def __init__(self, estimator, embedding_layer=None, backend=None): + """Create a StackingEstimator object. + + Parameters + ---------- + estimator: neural network model; either from sklearn or Keras-like. + The estimator to generate embeddings. + embedding_layer: the particular layer used as the embedding. + By default we use the second last layer. Layers are counted with + input layer being `0th` layer; negative indices are allowed. + backend: (optional), the backend we use to query the neural network. + Not required if using scikit-learn interface. + Currently only supports keras-like interface (incl. tensorflow) + """ + second_last_layer = -2 + self.estimator = estimator + self.embedding_layer = ( + second_last_layer if embedding_layer is None else embedding_layer + ) + self.backend = backend + + def fit(self, X, y=None, **fit_params): + """Fit the StackingEstimator meta-transformer. + + Parameters + ---------- + X: array-like of shape (n_samples, n_features) + The training input samples. + y: array-like, shape (n_samples,) + The target values (integers that correspond to classes in classification, real numbers in regression). + fit_params: + Other estimator-specific parameters. + + Returns + ------- + self: object + Returns a copy of the estimator + """ + if not issubclass(self.estimator.__class__, MLPClassifier) and not issubclass( + self.estimator.__class__, MLPRegressor + ): + input_shape = X.shape[1] + self.estimator.sk_params["input_shape"] = input_shape + self.estimator.check_params(self.estimator.sk_params) + self.estimator.fit(X, y, **fit_params) + return self + + def transform(self, X): + """Transform data by adding embedding as features. + + Parameters + ---------- + X: numpy ndarray, {n_samples, n_components} + New data, where n_samples is the number of samples and n_components is the number of components. + + Returns + ------- + X_transformed: array-like, shape (n_samples, n_features + embedding) where embedding is the size of the embedding layer + The transformed feature set. + """ + X = check_array(X) + X_transformed = np.copy(X) + # add class probabilities as a synthetic feature + if issubclass(self.estimator.__class__, MLPClassifier) or issubclass( + self.estimator.__class__, MLPRegressor + ): + X_transformed = np.hstack( + (self._embedding_mlp(self.estimator, X), X_transformed) + ) + else: + X_transformed = np.hstack( + (self._embedding_keras(self.estimator, X), X_transformed) + ) + + return X_transformed + + def _embedding_mlp(self, estimator, X): + # see also BaseMultilayerPerceptron._predict from + # https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/neural_network/multilayer_perceptron.py + X = check_array(X, accept_sparse=["csr", "csc", "coo"]) + + # Make sure self.hidden_layer_sizes is a list + hidden_layer_sizes = estimator.hidden_layer_sizes + if not hasattr(hidden_layer_sizes, "__iter__"): + hidden_layer_sizes = [hidden_layer_sizes] + hidden_layer_sizes = list(hidden_layer_sizes) + + layer_units = [X.shape[1]] + hidden_layer_sizes + [estimator.n_outputs_] + + # Initialize layers + activations = [X] + + for i in range(estimator.n_layers_ - 1): + activations.append(np.empty((X.shape[0], layer_units[i + 1]))) + # forward propagate + estimator._forward_pass(activations) + y_embedding = activations[self.embedding_layer] + + return y_embedding + + def _embedding_keras(self, estimator, X): + X = check_array(X, accept_sparse=["csr", "csc", "coo"]) + get_embedding = self.backend.function( + [estimator.model.layers[0].input], + [estimator.model.layers[self.embedding_layer].output], + ) + return get_embedding([X])[0]