diff --git a/docker/dbmongo/files/projects.json b/docker/dbmongo/files/projects.json index 17b0424d9..89e436aa6 100644 --- a/docker/dbmongo/files/projects.json +++ b/docker/dbmongo/files/projects.json @@ -37,7 +37,15 @@ }, "category": "classification" }, - + { + "name": "GaussianNB", + "path": "sklearn.naive_bayes", + "categorical_encoding_strategy": "OneHotEncoder", + "description": "Gaussian Naive Bayes", + "url": "http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html", + "schema": {}, + "category": "classification" + }, { "name": "MultinomialNB", "path": "sklearn.naive_bayes", @@ -281,7 +289,62 @@ }, "category": "classification" }, - + { + "name": "XGBClassifier", + "path": "xgboost", + "categorical_encoding_strategy": "OrdinalEncoder", + "description": "eXtreme Gradient Boosting classification", + "url": "https://xgboost.readthedocs.io/en/latest/tutorials/model.html", + "schema": { + "n_estimators": { + "description": "The number of boosting stages to perform. Gradient boosting is fairly robust to over-fitting so a large number usually results in better performance.", + "type": "int", + "default": 100, + "ui": { + "style": "radio", + "choices": [100, 500], + "grid_search": [100] + } + }, + "learning_rate": { + "description": "Learning rate shrinks the contribution of each tree by learning_rate. There is a trade-off between learning_rate and n_estimators.", + "type": "float", + "default": 0.1, + "ui": { + "style": "radio", + "choices": [0.01, 0.1, 1] + } + }, + "max_depth": { + "description": "Maximum tree depth for base learners.", + "type": "int", + "default": 3, + "ui": { + "style": "radio", + "choices": [1, 3, 5, 10] + } + }, + "min_child_weight": { + "description": "Minimum sum of instance weight(hessian) needed in a child.", + "type": "int", + "default": 3, + "ui": { + "style": "radio", + "choices": [1, 3, 5, 10, 20] + } + }, + "subsample": { + "description": "The fraction of samples to be used for fitting the individual base learners. If smaller than 1.0 this results in Stochastic Gradient Boosting. subsample interacts with the parameter n_estimators. Choosing subsample \u003c 1.0 leads to a reduction of variance and an increase in bias.", + "type": "float", + "default": 1, + "ui": { + "style": "radio", + "choices": [0.5, 1] + } + } + }, + "category": "classification" + }, { "name": "KNeighborsClassifier", "path": "sklearn.neighbors", @@ -585,7 +648,6 @@ }, "category": "classification" }, - { "name": "DecisionTreeRegressor", "path": "sklearn.tree",