-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathBigSpatialDataR_examples.R
279 lines (251 loc) · 12.9 KB
/
BigSpatialDataR_examples.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
## ----setup, include=FALSE------------------------------------------------
knitr::opts_chunk$set(echo = TRUE)
## ------------------------------------------------------------------------
list.of.packages <- c("plyr", "parallel", "GSIF", "ranger", "raster",
"rgdal", "rgrass7", "snowfall", "lidR", "knitr", "tmap")
new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"])]
if(length(new.packages)) install.packages(new.packages, dependencies = TRUE)
## ------------------------------------------------------------------------
library(rgdal)
library(raster)
GDALinfo("./data/Indonesia_ESA_lcc_300m_2000.tif")
## ------------------------------------------------------------------------
make_LC_tiles <- function(i, tile.tbl,
out.path="./tiled",
lc1="./data/Indonesia_ESA_lcc_300m_2000.tif",
lc2="./data/Indonesia_ESA_lcc_300m_2015.tif",
leg.lcc){
out.tif = paste0(out.path, "/T_", tile.tbl[i,"ID"], ".tif")
if(!file.exists(out.tif)){
m <- readGDAL(lc1, offset=unlist(tile.tbl[i,c("offset.y","offset.x")]),
region.dim=unlist(tile.tbl[i,c("region.dim.y","region.dim.x")]),
output.dim=unlist(tile.tbl[i,c("region.dim.y","region.dim.x")]),
silent = TRUE)
m@data[,2] <- readGDAL(lc2, offset=unlist(tile.tbl[i,c("offset.y","offset.x")]),
region.dim=unlist(tile.tbl[i,c("region.dim.y","region.dim.x")]),
output.dim=unlist(tile.tbl[i,c("region.dim.y","region.dim.x")]),
silent = TRUE)$band1
names(m) <- c("LC2000","LC2015")
m <- as(m, "SpatialPixelsDataFrame")
## Focus only on pixels that show land cover change
sel <- !m$LC2000==m$LC2015
if(sum(sel)>0){
m <- m[sel,]
m$v <- paste(m$LC2000, m$LC2015, sep="_")
m$i <- plyr::join(data.frame(NAME=m$v), leg.lcc, type="left")$Value
writeGDAL(m["i"], out.tif, type="Int16",
options="COMPRESS=DEFLATE", mvFlag=-32768)
}
}
}
## ------------------------------------------------------------------------
leg <- read.csv("./data/ESA_landcover_legend.csv")
str(leg)
comb.leg <- expand.grid(leg$Value, leg$Value)
comb.leg$lcc <- paste(comb.leg$Var1, comb.leg$Var2, sep="_")
## ------------------------------------------------------------------------
leg.lcc <- data.frame(Value=1:nrow(comb.leg), NAME=comb.leg$lcc)
head(leg.lcc)
## ------------------------------------------------------------------------
library(raster)
library(GSIF)
## check whether the maps match perfectly to the same grid:
x <- raster::stack(paste0("./data/Indonesia_ESA_lcc_300m_", c(2000, 2015), ".tif"))
## OK!
obj <- GDALinfo("./data/Indonesia_ESA_lcc_300m_2000.tif")
## tile to 50km blocks:
tile.lst <- getSpatialTiles(obj, block.x=.5, return.SpatialPolygons=TRUE)
tile.tbl <- getSpatialTiles(obj, block.x=.5, return.SpatialPolygons=FALSE)
tile.tbl$ID <- as.character(1:nrow(tile.tbl))
head(tile.tbl)
## ----plot-tiles, echo=TRUE, fig.width=5, fig.cap="Tiling system based on the 50 km by 50 km tiles."----
te <- as.vector(extent(x))
library(tmap)
data("World")
tm_shape(World, xlim=te[c(1,2)], ylim=te[c(3,4)], projection="longlat") +
tm_polygons() +
tm_shape(as(tile.lst, "SpatialLines")) + tm_lines()
## ----plot-tile-lcc, echo=TRUE, fig.width=5, fig.cap="Single tile loaded into memory and plotted."----
## plot tile number 124:
i = 124
m <- readGDAL("./data/Indonesia_ESA_lcc_300m_2000.tif",
offset=unlist(tile.tbl[i,c("offset.y","offset.x")]),
region.dim=unlist(tile.tbl[i,c("region.dim.y","region.dim.x")]),
output.dim=unlist(tile.tbl[i,c("region.dim.y","region.dim.x")]))
plot(raster(m), legend=FALSE, col=rgb(leg$R/255, leg$G/255, leg$B/255))
## ------------------------------------------------------------------------
library(snowfall)
sfInit(parallel=TRUE, cpus=parallel::detectCores())
sfExport("make_LC_tiles", "tile.tbl", "leg.lcc")
sfLibrary(rgdal)
sfLibrary(plyr)
out.lst <- sfClusterApplyLB(1:nrow(tile.tbl),
function(x){ make_LC_tiles(x, tile.tbl, leg.lcc=leg.lcc) })
sfStop()
## takes few seconds depending on the number of cores
## ----htop-8-cores, echo=FALSE, fig.cap="Fully parallelized computing using 8 cores. Displayed using htop software.", out.width="100%"----
knitr::include_graphics("./tex/htop_8_cores.png")
## ------------------------------------------------------------------------
t.lst <- list.files("./tiled", pattern=".tif", full.names=TRUE)
str(t.lst)
## ------------------------------------------------------------------------
out.tmp <- "./data/t_list.txt"
vrt.tmp <- "./data/indonesia.vrt"
cat(t.lst, sep="\n", file=out.tmp)
system(paste0('gdalbuildvrt -input_file_list ', out.tmp, ' ', vrt.tmp))
system(paste0('gdalwarp ', vrt.tmp,
' \"./data/Indonesia_ESA_lcc_300m_change.tif\" ',
'-ot \"Int16\" -dstnodata \"-32767\" -co \"BIGTIFF=YES\" ',
'-multi -wm 2000 -co \"COMPRESS=DEFLATE\" -overwrite ',
'-r \"near\" -wo \"NUM_THREADS=ALL_CPUS\"'))
## ------------------------------------------------------------------------
raster("./data/Indonesia_ESA_lcc_300m_change.tif")
## ----qgis-indonesia, echo=FALSE, fig.cap="Land cover class changes (2000 to 2015) for Kalimantan.", out.width="100%"----
knitr::include_graphics("./tex/Indonesia_ESA_lcc_300m_change_preview.jpg")
## ---- eval=FALSE---------------------------------------------------------
## laz2grid <- function(file, res=30, out.dir, prj){
## out.file = paste0(out.dir, gsub(".laz", ".tif", basename(file)))
## if(!file.exists(out.file)){
## require(lidR); require(raster); require(sp)
## lidar = lidR::readLAS(file)
## dtm = lidR::grid_terrain(lidar, res=res, method = "knnidw")
## dtm.r = as.raster(dtm)
## raster::projection(dtm.r) <- paste(lidar@crs)
## dtm.s = raster::projectRaster(dtm.r, crs=prj, res=30)
## raster::writeRaster(dtm.s, filename=out.file, options="COMPRESS=DEFLATE", overwrite=TRUE)
## }
## }
## ------------------------------------------------------------------------
pnt.ices <- read.csv("./data/icesat_1533635398523.csv")
pnt.ices <- pnt.ices[,1:3]
names(pnt.ices) <- c("x","y","mDLSM")
pnt.ices$type <- "ICESAT"
coordinates(pnt.ices) <- ~ x+y
proj4string(pnt.ices) <- "+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs"
pnt.lid <- sampleRandom(raster("./data/Boulder_LiDAR_30m.tif"), size=4e4, sp=TRUE)
names(pnt.lid) <- "mDLSM"
pnt.lid$type <- "LiDAR"
pnt.ices <- spTransform(pnt.ices, pnt.lid@proj4string)
pnt.all <- rbind(pnt.ices, pnt.lid)
## filter out values outside the range:
pnt.all <- pnt.all[pnt.all$mDLSM<5000&pnt.all$mDLSM>1000,]
## 48,649 points
## ------------------------------------------------------------------------
library(parallel)
library(raster)
cov.lst = c("Boulder_AW3D30s_30m_v1802.tif",
"Boulder_NED_30m.tif", "Boulder_Landsat_red_30m_2014.tif",
"Boulder_Landsat_NIR_30m_2014.tif",
"Boulder_HH_30m.tif", "Boulder_HV_30m.tif")
xB <- raster::stack(paste0("./data/", cov.lst))
## all covariates can be stacked!
ov.cov <- parallel::mclapply(cov.lst, function(i){
raster::extract(raster(paste0("./data/", i)), pnt.all) },
mc.cores = detectCores())
ov.cov <- data.frame(ov.cov)
names(ov.cov) = cov.lst
## ------------------------------------------------------------------------
rm.DLSM <- cbind(as.data.frame(pnt.all), ov.cov)
rm.DLSM$NDVI <- (rm.DLSM[,8] - rm.DLSM[,7]) / (rm.DLSM[,8] + rm.DLSM[,7]) * 100
str(rm.DLSM)
## ------------------------------------------------------------------------
library(ranger)
fm.DLSM <- mDLSM ~ Boulder_AW3D30s_30m_v1802.tif + Boulder_NED_30m.tif +
Boulder_HH_30m.tif + Boulder_HV_30m.tif + NDVI
sel.na <- complete.cases(rm.DLSM[,all.vars(fm.DLSM)])
summary(sel.na)
m.DLSM <- ranger(fm.DLSM, rm.DLSM[sel.na,], num.trees=85, importance="impurity")
m.DLSM
## ------------------------------------------------------------------------
xl1.P <- as.list(ranger::importance(m.DLSM))
print(t(data.frame(xl1.P[order(unlist(xl1.P), decreasing=TRUE)])))
## ------------------------------------------------------------------------
objB <- GDALinfo("./data/Boulder_AW3D30s_30m_v1802.tif")
library(GSIF)
## tile to 10km blocks:
tileB.lst <- getSpatialTiles(objB, block.x=1e4, return.SpatialPolygons=TRUE)
tileB.tbl <- getSpatialTiles(objB, block.x=1e4, return.SpatialPolygons=FALSE)
tileB.tbl$ID <- as.character(1:nrow(tileB.tbl))
## ------------------------------------------------------------------------
predict_mDLSM <- function(m.DLSM, i, tileB.tbl, cov.lst, in.path="./data/", out.path="./tiledB/"){
out.tif = paste0(out.path, "T_", tileB.tbl[i,"ID"], ".tif")
if(!file.exists(out.tif)){
covs.files <- paste0(in.path, cov.lst)
newdata <- readGDAL(covs.files[1], offset=unlist(tileB.tbl[i,c("offset.y","offset.x")]),
region.dim=unlist(tileB.tbl[i,c("region.dim.y","region.dim.x")]),
output.dim=unlist(tileB.tbl[i,c("region.dim.y","region.dim.x")]),
silent = TRUE)
for(j in 2:length(cov.lst)){
newdata@data[,j] <- readGDAL(covs.files[j],
offset=unlist(tileB.tbl[i,c("offset.y","offset.x")]),
region.dim=unlist(tileB.tbl[i,c("region.dim.y","region.dim.x")]),
output.dim=unlist(tileB.tbl[i,c("region.dim.y","region.dim.x")]),
silent = TRUE)$band1
}
names(newdata) <- basename(covs.files)
newdata$NDVI <- (newdata@data[,4] - newdata@data[,3]) /
(newdata@data[,4] + newdata@data[,3]) * 100
newdata$NDVI <- ifelse(is.na(newdata$NDVI), 0, newdata$NDVI)
sel.pr <- complete.cases(newdata@data)
out <- predict(m.DLSM, newdata@data[sel.pr,])
g <- as(newdata[1], "SpatialPixelsDataFrame")
g[sel.pr,"m"] = out$predictions
writeGDAL(g["m"], out.tif, type="Int16",
options="COMPRESS=DEFLATE", mvFlag=-32768)
}
}
## ------------------------------------------------------------------------
library(snowfall)
sfInit(parallel=TRUE, cpus=parallel::detectCores())
sfExport("predict_mDLSM", "m.DLSM", "tileB.tbl", "cov.lst")
sfLibrary(rgdal)
sfLibrary(ranger)
outB.lst <- sfClusterApplyLB(1:nrow(tileB.tbl),
function(x){ predict_mDLSM(m.DLSM, x, tileB.tbl, cov.lst) })
sfStop()
## takes few minutes
## ------------------------------------------------------------------------
tB.lst <- list.files("./tiledB", pattern=".tif", full.names=TRUE)
outB.tmp <- "./data/b_list.txt"
vrtB.tmp <- "./data/boulder.vrt"
cat(tB.lst, sep="\n", file=outB.tmp)
system(paste0('gdalbuildvrt -input_file_list ', outB.tmp, ' ', vrtB.tmp))
system(paste0('gdalwarp ', vrtB.tmp,
' \"./data/Boulder_mDLSM_30m.tif\" ',
'-ot \"Int16\" -dstnodata \"-32767\" -co \"BIGTIFF=YES\" ',
'-multi -wm 2000 -co \"COMPRESS=DEFLATE\" -overwrite ',
'-r \"near\" -wo \"NUM_THREADS=ALL_CPUS\"'))
## ----comparison-shading, echo=FALSE, fig.cap="Comparison of the original AW3D30 vs the predicted Land Surface Model (mDLSM). Fitting a model to predict land surface model seems to solve the problem of artifacts / striping effects, but then it can introduce local artifacts in areas of higher vegetation and under-represented by training points.", out.width="100%"----
knitr::include_graphics("./tex/comprison_shading.png")
## ---- eval=FALSE---------------------------------------------------------
## tmp = tempfile(fileext = ".sdat")
## system(paste0('gdal_translate ./data/Boulder_mDLSM_30m.tif -of \"SAGA\" ', tmp))
## #system(paste0('saga_cmd ta_hydrology 15 -DEM=\"',
## # gsub(".sdat", ".sgrd", tmp), '\" -TWI=\"',
## # gsub(".sdat", "_twi.sgrd", tmp), '\"') )
## system(paste0('saga_cmd ta_morphometry 0 -ELEVATION=\"',
## gsub(".sdat", ".sgrd", tmp), '\" -SLOPE=\"',
## gsub(".sdat", "_slope.sgrd", tmp),
## '\" -C_PROF=\"',
## gsub(".sdat", "_cprof.sgrd", tmp), '\"') )
## system(paste0('gdal_translate ', gsub(".sdat", "_slope.sdat", tmp),
## ' ./data/Boulder_mDLSM_slope_30m.tif -scale ',
## ' -ot "Byte" -co \"COMPRESS=DEFLATE\"'))
## ---- eval=FALSE---------------------------------------------------------
## library(rgrass7)
## rname <- "./data/Boulder_mDLSM_30m.tif"
## # Set GRASS environment and database location
## loc <- initGRASS("/usr/lib/grass74", home="/data/tmp/",
## gisDbase="GRASS_TEMP", override=TRUE)
## execGRASS("r.in.gdal", flags="o", parameters=list(input=rname, output="mDLSM"))
## execGRASS("g.region", parameters=list(raster="mDLSM"))
## execGRASS("r.geomorphon", parameters=list(elevation="mDLSM", forms="mDLSMg"))
## #plot(readRAST("mDLSMg"))
## execGRASS("r.out.gdal", parameters=list(input="mDLSMg",
## output="./data/Boulder_mDLSMg_30m.tif",
## type="Byte", createopt="COMPRESS=DEFLATE"))
## ## clean-up
## unlink("./GRASS_TEMP", recursive = TRUE)
## unset.GIS_LOCK()
## unlink_.gislock()
## remove_GISRC()