forked from XPixelGroup/BasicSR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstylegan2_model.py
283 lines (242 loc) · 11.4 KB
/
stylegan2_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import cv2
import math
import numpy as np
import random
import torch
from collections import OrderedDict
from os import path as osp
from basicsr.archs import build_network
from basicsr.losses import build_loss
from basicsr.losses.losses import g_path_regularize, r1_penalty
from basicsr.utils import imwrite, tensor2img
from basicsr.utils.registry import MODEL_REGISTRY
from .base_model import BaseModel
@MODEL_REGISTRY.register()
class StyleGAN2Model(BaseModel):
"""StyleGAN2 model."""
def __init__(self, opt):
super(StyleGAN2Model, self).__init__(opt)
# define network net_g
self.net_g = build_network(opt['network_g'])
self.net_g = self.model_to_device(self.net_g)
self.print_network(self.net_g)
# load pretrained model
load_path = self.opt['path'].get('pretrain_network_g', None)
if load_path is not None:
param_key = self.opt['path'].get('param_key_g', 'params')
self.load_network(self.net_g, load_path, self.opt['path'].get('strict_load_g', True), param_key)
# latent dimension: self.num_style_feat
self.num_style_feat = opt['network_g']['num_style_feat']
num_val_samples = self.opt['val'].get('num_val_samples', 16)
self.fixed_sample = torch.randn(num_val_samples, self.num_style_feat, device=self.device)
if self.is_train:
self.init_training_settings()
def init_training_settings(self):
train_opt = self.opt['train']
# define network net_d
self.net_d = build_network(self.opt['network_d'])
self.net_d = self.model_to_device(self.net_d)
self.print_network(self.net_d)
# load pretrained model
load_path = self.opt['path'].get('pretrain_network_d', None)
if load_path is not None:
param_key = self.opt['path'].get('param_key_d', 'params')
self.load_network(self.net_d, load_path, self.opt['path'].get('strict_load_d', True), param_key)
# define network net_g with Exponential Moving Average (EMA)
# net_g_ema only used for testing on one GPU and saving, do not need to
# wrap with DistributedDataParallel
self.net_g_ema = build_network(self.opt['network_g']).to(self.device)
# load pretrained model
load_path = self.opt['path'].get('pretrain_network_g', None)
if load_path is not None:
self.load_network(self.net_g_ema, load_path, self.opt['path'].get('strict_load_g', True), 'params_ema')
else:
self.model_ema(0) # copy net_g weight
self.net_g.train()
self.net_d.train()
self.net_g_ema.eval()
# define losses
# gan loss (wgan)
self.cri_gan = build_loss(train_opt['gan_opt']).to(self.device)
# regularization weights
self.r1_reg_weight = train_opt['r1_reg_weight'] # for discriminator
self.path_reg_weight = train_opt['path_reg_weight'] # for generator
self.net_g_reg_every = train_opt['net_g_reg_every']
self.net_d_reg_every = train_opt['net_d_reg_every']
self.mixing_prob = train_opt['mixing_prob']
self.mean_path_length = 0
# set up optimizers and schedulers
self.setup_optimizers()
self.setup_schedulers()
def setup_optimizers(self):
train_opt = self.opt['train']
# optimizer g
net_g_reg_ratio = self.net_g_reg_every / (self.net_g_reg_every + 1)
if self.opt['network_g']['type'] == 'StyleGAN2GeneratorC':
normal_params = []
style_mlp_params = []
modulation_conv_params = []
for name, param in self.net_g.named_parameters():
if 'modulation' in name:
normal_params.append(param)
elif 'style_mlp' in name:
style_mlp_params.append(param)
elif 'modulated_conv' in name:
modulation_conv_params.append(param)
else:
normal_params.append(param)
optim_params_g = [
{ # add normal params first
'params': normal_params,
'lr': train_opt['optim_g']['lr']
},
{
'params': style_mlp_params,
'lr': train_opt['optim_g']['lr'] * 0.01
},
{
'params': modulation_conv_params,
'lr': train_opt['optim_g']['lr'] / 3
}
]
else:
normal_params = []
for name, param in self.net_g.named_parameters():
normal_params.append(param)
optim_params_g = [{ # add normal params first
'params': normal_params,
'lr': train_opt['optim_g']['lr']
}]
optim_type = train_opt['optim_g'].pop('type')
lr = train_opt['optim_g']['lr'] * net_g_reg_ratio
betas = (0**net_g_reg_ratio, 0.99**net_g_reg_ratio)
self.optimizer_g = self.get_optimizer(optim_type, optim_params_g, lr, betas=betas)
self.optimizers.append(self.optimizer_g)
# optimizer d
net_d_reg_ratio = self.net_d_reg_every / (self.net_d_reg_every + 1)
if self.opt['network_d']['type'] == 'StyleGAN2DiscriminatorC':
normal_params = []
linear_params = []
for name, param in self.net_d.named_parameters():
if 'final_linear' in name:
linear_params.append(param)
else:
normal_params.append(param)
optim_params_d = [
{ # add normal params first
'params': normal_params,
'lr': train_opt['optim_d']['lr']
},
{
'params': linear_params,
'lr': train_opt['optim_d']['lr'] * (1 / math.sqrt(512))
}
]
else:
normal_params = []
for name, param in self.net_d.named_parameters():
normal_params.append(param)
optim_params_d = [{ # add normal params first
'params': normal_params,
'lr': train_opt['optim_d']['lr']
}]
optim_type = train_opt['optim_d'].pop('type')
lr = train_opt['optim_d']['lr'] * net_d_reg_ratio
betas = (0**net_d_reg_ratio, 0.99**net_d_reg_ratio)
self.optimizer_d = self.get_optimizer(optim_type, optim_params_d, lr, betas=betas)
self.optimizers.append(self.optimizer_d)
def feed_data(self, data):
self.real_img = data['gt'].to(self.device)
def make_noise(self, batch, num_noise):
if num_noise == 1:
noises = torch.randn(batch, self.num_style_feat, device=self.device)
else:
noises = torch.randn(num_noise, batch, self.num_style_feat, device=self.device).unbind(0)
return noises
def mixing_noise(self, batch, prob):
if random.random() < prob:
return self.make_noise(batch, 2)
else:
return [self.make_noise(batch, 1)]
def optimize_parameters(self, current_iter):
loss_dict = OrderedDict()
# optimize net_d
for p in self.net_d.parameters():
p.requires_grad = True
self.optimizer_d.zero_grad()
batch = self.real_img.size(0)
noise = self.mixing_noise(batch, self.mixing_prob)
fake_img, _ = self.net_g(noise)
fake_pred = self.net_d(fake_img.detach())
real_pred = self.net_d(self.real_img)
# wgan loss with softplus (logistic loss) for discriminator
l_d = self.cri_gan(real_pred, True, is_disc=True) + self.cri_gan(fake_pred, False, is_disc=True)
loss_dict['l_d'] = l_d
# In wgan, real_score should be positive and fake_score should be
# negative
loss_dict['real_score'] = real_pred.detach().mean()
loss_dict['fake_score'] = fake_pred.detach().mean()
l_d.backward()
if current_iter % self.net_d_reg_every == 0:
self.real_img.requires_grad = True
real_pred = self.net_d(self.real_img)
l_d_r1 = r1_penalty(real_pred, self.real_img)
l_d_r1 = (self.r1_reg_weight / 2 * l_d_r1 * self.net_d_reg_every + 0 * real_pred[0])
# TODO: why do we need to add 0 * real_pred, otherwise, a runtime
# error will arise: RuntimeError: Expected to have finished
# reduction in the prior iteration before starting a new one.
# This error indicates that your module has parameters that were
# not used in producing loss.
loss_dict['l_d_r1'] = l_d_r1.detach().mean()
l_d_r1.backward()
self.optimizer_d.step()
# optimize net_g
for p in self.net_d.parameters():
p.requires_grad = False
self.optimizer_g.zero_grad()
noise = self.mixing_noise(batch, self.mixing_prob)
fake_img, _ = self.net_g(noise)
fake_pred = self.net_d(fake_img)
# wgan loss with softplus (non-saturating loss) for generator
l_g = self.cri_gan(fake_pred, True, is_disc=False)
loss_dict['l_g'] = l_g
l_g.backward()
if current_iter % self.net_g_reg_every == 0:
path_batch_size = max(1, batch // self.opt['train']['path_batch_shrink'])
noise = self.mixing_noise(path_batch_size, self.mixing_prob)
fake_img, latents = self.net_g(noise, return_latents=True)
l_g_path, path_lengths, self.mean_path_length = g_path_regularize(fake_img, latents, self.mean_path_length)
l_g_path = (self.path_reg_weight * self.net_g_reg_every * l_g_path + 0 * fake_img[0, 0, 0, 0])
# TODO: why do we need to add 0 * fake_img[0, 0, 0, 0]
l_g_path.backward()
loss_dict['l_g_path'] = l_g_path.detach().mean()
loss_dict['path_length'] = path_lengths
self.optimizer_g.step()
self.log_dict = self.reduce_loss_dict(loss_dict)
# EMA
self.model_ema(decay=0.5**(32 / (10 * 1000)))
def test(self):
with torch.no_grad():
self.net_g_ema.eval()
self.output, _ = self.net_g_ema([self.fixed_sample])
def dist_validation(self, dataloader, current_iter, tb_logger, save_img):
if self.opt['rank'] == 0:
self.nondist_validation(dataloader, current_iter, tb_logger, save_img)
def nondist_validation(self, dataloader, current_iter, tb_logger, save_img):
assert dataloader is None, 'Validation dataloader should be None.'
self.test()
result = tensor2img(self.output, min_max=(-1, 1))
if self.opt['is_train']:
save_img_path = osp.join(self.opt['path']['visualization'], 'train', f'train_{current_iter}.png')
else:
save_img_path = osp.join(self.opt['path']['visualization'], 'test', f'test_{self.opt["name"]}.png')
imwrite(result, save_img_path)
# add sample images to tb_logger
result = (result / 255.).astype(np.float32)
result = cv2.cvtColor(result, cv2.COLOR_BGR2RGB)
if tb_logger is not None:
tb_logger.add_image('samples', result, global_step=current_iter, dataformats='HWC')
def save(self, epoch, current_iter):
self.save_network([self.net_g, self.net_g_ema], 'net_g', current_iter, param_key=['params', 'params_ema'])
self.save_network(self.net_d, 'net_d', current_iter)
self.save_training_state(epoch, current_iter)