This library is depricated in favor of the new Python4Delphi Data Sciences libraries. That is where we are focusing all future development.
Keras4Delphi is a high-level neural networks API, written in Delphi 11's Object Pacal with Python Binding and capable of running on top of TensorFlow, CNTK, or Theano. Based on Keras.NET and Keras
Use Keras if you need a deep learning library that:
Allows for easy and fast prototyping (through user friendliness, modularity, and extensibility). Supports both convolutional networks and recurrent networks, as well as combinations of the two. Runs seamlessly on CPU and GPU.
- python4delphi (thanks @pyscripter to the great work)
- NumPy4Delphi (Partial conversion)
- Python 2.7 - 3.7, Link: https://www.python.org/downloads/
- Install keras, numpy and one of the backend (Tensorflow/CNTK/Theano). Please see on how to configure: https://keras.io/backend/
//Load train data
var x : TNDarray := TNumPy.npArray<Double>( [ [ 0, 0 ], [ 0, 1 ], [ 1, 0 ], [ 1, 1 ] ] );
var y : TNDarray := TNumPy.npArray<Double>( [ 0, 1, 1, 0 ] );
//Build functional model
var input : TKInput := TKInput.Create(tnp_shape.Create([2]));
var hidden1: TBaseLayer := TDense.Create(32, 'relu').&Set([input]);
var hidden2: TBaseLayer := TDense.Create(64, 'relu').&Set([hidden1]);
var output : TBaseLayer := TDense.Create(1, 'sigmoid').&Set([hidden2]);
var model : TModel := TModel.Create ( [ input ] , [ output ]);
//Compile and train
model.Compile(TStringOrInstance.Create( TAdam.Create ), 'binary_crossentropy',['accuracy']);
var batch_size : Integer := 2;
var history: THistory := model.Fit(x, y, @batch_size, 10,1);
model.Summary;
var logs := history.HistoryLogs;
//Save model and weights
var json : string := model.ToJson;
TFile.WriteAllText('model.json', json);
model.SaveWeight('model.h5');
//Load model and weight
var loaded_model : TBaseModel := TSequential.ModelFromJson(TFile.ReadAllText('model.json'));
loaded_model.LoadWeight('model.h5');
Output:
Python example taken from: https://keras.io/examples/mnist_cnn/
var
res : TArray<TNDArray>;
begin
var batch_size : Integer := 128; //Training batch size
var num_classes: Integer := 10; //No. of classes
var epochs : Integer := 12; //No. of epoches we will train
// input image dimensions
var img_rows: Integer := 28;
var img_cols: Integer := 28;
// Declare the input shape for the network
var input_shape : Tnp_shape := default(Tnp_shape);
// Load the MNIST dataset into Numpy array
res := TMNIST.load_data;
var x_train, y_train ,x_test, y_test : TNDArray;
x_train := res[0];
y_train := res[1];
x_test := res[2];
y_test := res[3];
//Check if its channel fist or last and rearrange the dataset accordingly
var K: TBackend := TBackend.Create;
if(K.ImageDataFormat = 'channels_first') then
begin
x_train := x_train.reshape([x_train.shape[0], 1, img_rows, img_cols]);
x_test := x_test.reshape ([x_test.shape[0] , 1, img_rows, img_cols]);
input_shape := Tnp_shape.Create([1, img_rows, img_cols]);
end else
begin
x_train := x_train.reshape([x_train.shape[0], img_rows, img_cols, 1]);
x_test := x_test.reshape ([x_test.shape[0] , img_rows, img_cols, 1]);
input_shape := Tnp_shape.Create([img_rows, img_cols, 1]);
end;
//Normalize the input data
x_train := x_train.astype(vNumpy.float32_);
x_test := x_test.astype(vNumpy.float32_);
x_train := TNDArray.opDiv(x_train, 255);
x_test := TNDArray.opDiv(x_test, 255);
redtOutput.Lines.Add('x_train shape: ' + x_train.shape.ToString);
redtOutput.Lines.Add( IntToStr(x_train.shape[0]) + ' train samples');
redtOutput.Lines.Add( IntToStr(x_test.shape[0]) + ' test samples');
// Convert class vectors to binary class matrices
var Util : TUtil := TUtil.Create;
y_train := Util.ToCategorical(y_train, @num_classes);
y_test := Util.ToCategorical(y_test, @num_classes);
// Build CNN model
var model : TSequential := TSequential.Create;
model.Add( TConv2D.Create(32, [3, 3],'relu', @input_shape) );
model.Add( TConv2D.Create(64, [3, 3],'relu'));
model.Add( TMaxPooling2D.Create([2, 2]));
model.Add( TDropout.Create(0.25));
model.Add( TFlatten.Create);
model.Add( TDense.Create(128, 'relu'));
model.Add( TDropout.Create(0.5));
model.Add( TDense.Create(num_classes, 'softmax'));
//Compile with loss, metrics and optimizer
model.Compile(TStringOrInstance.Create(TAdadelta.Create), 'categorical_crossentropy', [ 'accuracy' ]);
//Train the model
model.Fit(x_train, y_train, @batch_size, epochs, 1,nil,0,[ x_test, y_test ]);
//Score the model for performance
var score : TArray<Double> := model.Evaluate(x_test, y_test, nil, 0);
redtOutput.Lines.Add('Test loss: ' + FloatToStr(score[0]));
redtOutput.Lines.Add('Test accuracy:'+ FloatToStr(score[1]));
// Save the model to HDF5 format which can be loaded later or ported to other application
model.Save('model.h5');
// Save it to Tensorflow JS format and we will test it in browser.
model.SaveTensorflowJSFormat('./');
Output
Reached 98% accuracy within 3 epoches.
Python example taken from: //https://keras.io/examples/imdb_lstm/
var
res : TArray<TNDArray>;
begin
var max_features: Integer := 20000;
// cut texts after this number of words (among top max_features most common words)
var maxlen : Integer := 80;
var batch_size : Integer := 32;
redtOutput.Lines.Add('Loading data...');
res := TIMDB.load_data(@max_features);
var x_train, y_train ,x_test, y_test,X,Y,tmp : TNDArray;
x_train := res[0];
y_train := res[1];
x_test := res[2];
y_test := res[3];
redtOutput.Lines.Add('train sequences: ' + x_train.shape.ToString);
redtOutput.Lines.Add('test sequences: ' + x_test.shape.ToString);
redtOutput.Lines.Add('Pad sequences (samples x time)');
var tseq : TSequenceUtil := TSequenceUtil.Create;
x_train := tseq.PadSequences(x_train, @maxlen);
x_test := tseq.PadSequences(x_test, @maxlen);
redtOutput.Lines.Add('x_train shape: ' + x_train.shape.ToString);
redtOutput.Lines.Add('x_test shape: ' + x_test.shape.ToString);
redtOutput.Lines.Add('Build model...');
var model : TSequential := TSequential.Create;
model.Add( TEmbedding.Create(max_features, 128));
model.Add( TLSTM.Create(128, 0.2, 0.2));
model.Add( TDense.Create(1, 'sigmoid'));
//try using different optimizers and different optimizer configs
model.Compile(TStringOrInstance.Create('adam'), 'binary_crossentropy', [ 'accuracy' ]);
model.Summary;
redtOutput.Lines.Add('Train...');
model.Fit(x_train, y_train, @batch_size, 15, 1,[ x_test, y_test ]);
//Score the model for performance
var score : TArray<Double> := model.Evaluate(x_test, y_test, @batch_size);
redtOutput.Lines.Add('Test score: ' + FloatToStr(score[0]));
redtOutput.Lines.Add('Test accuracy:'+ FloatToStr(score[1]));
// Save the model to HDF5 format which can be loaded later or ported to other application
model.Save('model.h5');
welcome collaborative testing and improvement of source code. I have little free time
- Test code
- and Much more