forked from priba/nmp_qc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ReadoutFunction.py
279 lines (198 loc) · 8.08 KB
/
ReadoutFunction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
#!/usr/bin/python
# -*- coding: utf-8 -*-
"""
MessageFunction.py: Propagates a message depending on two nodes and their common edge.
Usage:
"""
from __future__ import print_function
# Own modules
import datasets
from MessageFunction import MessageFunction
from UpdateFunction import UpdateFunction
from models.nnet import NNet
import time
import torch
import torch.nn as nn
import os
import argparse
import numpy as np
from torch.autograd.variable import Variable
#dtype = torch.cuda.FloatTensor
dtype = torch.FloatTensor
__author__ = "Pau Riba, Anjan Dutta"
__email__ = "[email protected], [email protected]"
class ReadoutFunction(nn.Module):
# Constructor
def __init__(self, readout_def='nn', args={}):
super(ReadoutFunction, self).__init__()
self.r_definition = ''
self.r_function = None
self.args = {}
self.__set_readout(readout_def, args)
# Readout graph given node values at las layer
def forward(self, h_v):
return self.r_function(h_v)
# Set a readout function
def __set_readout(self, readout_def, args):
self.r_definition = readout_def.lower()
self.r_function = {
'duvenaud': self.r_duvenaud,
'ggnn': self.r_ggnn,
'intnet': self.r_intnet,
'mpnn': self.r_mpnn
}.get(self.r_definition, None)
if self.r_function is None:
print('WARNING!: Readout Function has not been set correctly\n\tIncorrect definition ' + readout_def)
quit()
init_parameters = {
'duvenaud': self.init_duvenaud,
'ggnn': self.init_ggnn,
'intnet': self.init_intnet,
'mpnn': self.init_mpnn
}.get(self.r_definition, lambda x: (nn.ParameterList([]), nn.ModuleList([]), {}))
self.learn_args, self.learn_modules, self.args = init_parameters(args)
# Get the name of the used readout function
def get_definition(self):
return self.r_definition
## Definition of various state of the art update functions
# Duvenaud
def r_duvenaud(self, h):
# layers
aux = []
for l in range(len(h)):
param_sz = self.learn_args[l].size()
parameter_mat = torch.t(self.learn_args[l])[None, ...].expand(h[l].size(0), param_sz[1],
param_sz[0])
aux.append(torch.transpose(torch.bmm(parameter_mat, torch.transpose(h[l], 1, 2)), 1, 2))
for j in range(0, aux[l].size(1)):
# Mask whole 0 vectors
aux[l][:, j, :] = nn.Softmax()(aux[l][:, j, :].clone())*(torch.sum(aux[l][:, j, :] != 0, 1) > 0).expand_as(aux[l][:, j, :]).type_as(aux[l])
aux = torch.sum(torch.sum(torch.stack(aux, 3), 3), 1)
return self.learn_modules[0](torch.squeeze(aux))
def init_duvenaud(self, params):
learn_args = []
learn_modules = []
args = {}
args['out'] = params['out']
# Define a parameter matrix W for each layer.
for l in range(params['layers']):
learn_args.append(nn.Parameter(torch.randn(params['in'][l], params['out'])))
# learn_modules.append(nn.Linear(params['out'], params['target']))
learn_modules.append(NNet(n_in=params['out'], n_out=params['target']))
return nn.ParameterList(learn_args), nn.ModuleList(learn_modules), args
# GG-NN, Li et al.
def r_ggnn(self, h):
aux = Variable( torch.Tensor(h[0].size(0), self.args['out']).type_as(h[0].data).zero_() )
# For each graph
for i in range(h[0].size(0)):
nn_res = nn.Sigmoid()(self.learn_modules[0](torch.cat([h[0][i,:,:], h[-1][i,:,:]], 1)))*self.learn_modules[1](h[-1][i,:,:])
# Delete virtual nodes
nn_res = (torch.sum(h[0][i,:,:],1).expand_as(nn_res)>0).type_as(nn_res)* nn_res
aux[i,:] = torch.sum(nn_res,0)
return aux
def init_ggnn(self, params):
learn_args = []
learn_modules = []
args = {}
# i
learn_modules.append(NNet(n_in=2*params['in'], n_out=params['target']))
# j
learn_modules.append(NNet(n_in=params['in'], n_out=params['target']))
args['out'] = params['target']
return nn.ParameterList(learn_args), nn.ModuleList(learn_modules), args
# Battaglia et al. (2016), Interaction Networks
def r_intnet(self, h):
aux = torch.sum(h[-1],1)
return self.learn_modules[0](aux)
def init_intnet(self, params):
learn_args = []
learn_modules = []
args = {}
learn_modules.append(NNet(n_in=params['in'], n_out=params['target']))
return nn.ParameterList(learn_args), nn.ModuleList(learn_modules), args
def r_mpnn(self, h):
aux = Variable( torch.Tensor(h[0].size(0), self.args['out']).type_as(h[0].data).zero_() )
# For each graph
for i in range(h[0].size(0)):
nn_res = nn.Sigmoid()(self.learn_modules[0](torch.cat([h[0][i,:,:], h[-1][i,:,:]], 1)))*self.learn_modules[1](h[-1][i,:,:])
# Delete virtual nodes
nn_res = (torch.sum(h[0][i,:,:],1).expand_as(nn_res)>0).type_as(nn_res)* nn_res
aux[i,:] = torch.sum(nn_res,0)
return aux
def init_mpnn(self, params):
learn_args = []
learn_modules = []
args = {}
# i
learn_modules.append(NNet(n_in=2*params['in'], n_out=params['target']))
# j
learn_modules.append(NNet(n_in=params['in'], n_out=params['target']))
args['out'] = params['target']
return nn.ParameterList(learn_args), nn.ModuleList(learn_modules), args
if __name__ == '__main__':
# Parse optios for downloading
parser = argparse.ArgumentParser(description='QM9 Object.')
# Optional argument
parser.add_argument('--root', nargs=1, help='Specify the data directory.', default=['./data/qm9/dsgdb9nsd/'])
args = parser.parse_args()
root = args.root[0]
files = [f for f in os.listdir(root) if os.path.isfile(os.path.join(root, f))]
idx = np.random.permutation(len(files))
idx = idx.tolist()
valid_ids = [files[i] for i in idx[0:10000]]
test_ids = [files[i] for i in idx[10000:20000]]
train_ids = [files[i] for i in idx[20000:]]
data_train = datasets.Qm9(root, train_ids)
data_valid = datasets.Qm9(root, valid_ids)
data_test = datasets.Qm9(root, test_ids)
# d = datasets.utils.get_graph_stats(data_train, 'degrees')
d = [1, 2, 3, 4]
## Define message
m = MessageFunction('duvenaud')
## Parameters for the update function
# Select one graph
g_tuple, l = data_train[0]
g, h_t, e = g_tuple
m_v = m.forward(h_t[0], h_t[1], e[list(e.keys())[0]])
in_n = len(m_v)
out_n = 30
## Define Update
u = UpdateFunction('duvenaud', args={'deg': d, 'in': in_n, 'out': out_n})
in_n = len(h_t[0])
## Define Readout
r = ReadoutFunction('duvenaud', args={'layers': 2, 'in': [in_n, out_n], 'out': 50, 'target': len(l)})
print(m.get_definition())
print(u.get_definition())
print(r.get_definition())
start = time.time()
# Layers
h = []
# Select one graph
g_tuple, l = data_train[0]
g, h_in, e = g_tuple
h.append(h_in)
# Layer
t = 1
h.append({})
for v in g.nodes_iter():
neigh = g.neighbors(v)
m_neigh = dtype()
for w in neigh:
if (v, w) in e:
e_vw = e[(v, w)]
else:
e_vw = e[(w, v)]
m_v = m.forward(h[t-1][v], h[t-1][w], e_vw)
if len(m_neigh):
m_neigh += m_v
else:
m_neigh = m_v
# Duvenaud
opt = {'deg': len(neigh)}
h[t][v] = u.forward(h[t-1][v], m_neigh, opt)
# Readout
res = r.forward(h)
end = time.time()
print(res)
print('Time')
print(end - start)