-
Notifications
You must be signed in to change notification settings - Fork 312
/
Copy pathDropout.lua
93 lines (87 loc) · 2.72 KB
/
Dropout.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
------------------------------------------------------------------------
--[[ Dropout ]]--
-- Implementation of Lazy Dropout.
-- `lazy` option is used to to only resample after backward is called.
-- This mechanism is used by Bayesian GRUs to use the same dropout mask
-- for each sequence, not for each word.
-- See GRU part in README.md (Ref. E & F)
------------------------------------------------------------------------
local Dropout, Parent = nn.Dropout, nn.Module
function Dropout:__init(p,v1,inplace,lazy,mono)
Parent.__init(self)
self.p = p or 0.5
self.train = true
self.inplace = inplace
self.lazy = lazy or false
self.mono = mono or false -- used by trimZero, single sample for a batch
self.flag = true -- used by lazy noise
-- version 2 scales output during training instead of evaluation
self.v2 = not v1
if self.p >= 1 or self.p < 0 then
error('<Dropout> illegal percentage, must be 0 <= p < 1')
end
self.noise = torch.Tensor()
end
function Dropout:updateOutput(input)
if self.inplace then
self.output = input
else
self.output:resizeAs(input):copy(input)
end
if self.p > 0 then
if self.train then
if not self.lazy or self.flag then
local noiseSize = input:size()
if self.mono then noiseSize[1] = 1 end
self.noise:resize(noiseSize)
self.noise:bernoulli(1-self.p)
if self.v2 then
self.noise:div(1-self.p)
end
self.flag = false
end
if self.mono and self.noise:size(1) ~= input:size(1) then
self.noise = self.noise:narrow(1,1,1):expandAs(input)
end
self.output:cmul(self.noise)
elseif not self.v2 then
self.output:mul(1-self.p)
end
end
return self.output
end
function Dropout:updateGradInput(input, gradOutput)
if self.lazy then
self.flag = true
end
if self.train then
if self.inplace then
self.gradInput = gradOutput
else
self.gradInput:resizeAs(gradOutput):copy(gradOutput)
end
if self.p > 0 then
self.gradInput:cmul(self.noise) -- simply mask the gradients with the noise vector
end
else
if self.inplace then
self.gradInput = gradOutput
else
self.gradInput:resizeAs(gradOutput):copy(gradOutput)
end
if not self.v2 and self.p > 0 then
self.gradInput:cdiv(1-self.p)
end
end
return self.gradInput
end
function Dropout:__tostring__()
return string.format('%s(%.1f, %s)', torch.type(self), self.p, self.lazy and 'lazy' or 'busy')
end
function Dropout:clearState()
if self.noise then
self.noise:set()
end
self.flag = true
return Parent.clearState(self)
end