-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathalcohol_data_2023.R
201 lines (153 loc) · 12.2 KB
/
alcohol_data_2023.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
###################################################################################################################################
#### ESTIMATING ALCOHOL OUTLET RAW COUNTS PER DATAZONE - CLEANING POLICE OF SCOTLAND INN KEEPERS ALCOHOL OUTLET DATA FROM 2023 ####
###################################################################################################################################
# 1. SCRIPT SET UP ####
# 1.1. Libraries ####
library(tidyverse)
library(stringi)
library(splitstackshape)
library(readxl)
# 1.2. Directory ####
#setwd("Your Path") # Customise your path
dir.create("Scotland/Outputs") #Create sub-folder to store outputs -Customise your path.
dir.create("Scotland/Cleaning_outputs") #Create sub-folder to store outputs from cleaning -Customise your path.
# 1.3. Data loading ####
aod_scot_2023 <- read.csv("Scotland/aod_23_policescotland.csv")
postcode_small <- read.csv("C:/Users/rvalient/Desktop/SPECTRUM/GEODATABASE/Spatial_Units/Scotland/Postcodes/SmallUser.csv")
#----
# 2. DATA CLEANING AND DATA VERIFICATION/VALIDATION ####
# 2.1. Postcode cleaning ####
#b <- postcode_small[is.na(postcode_small$DateOfDeletion) |
# postcode_small$DateOfDeletion == "", ] #Filter active postcodes only - I Comment this because We probably won't need this step as we assume that only active postcode were considered in aod_scot_2023 and only these ones will be matched.
b <- select(postcode_small, Postcode, DataZone2011Code) #Keeping needed columns
b$dupli <- duplicated(b$Postcode) #Cleaning some rows duplicated.
b <- b[b$dupli == FALSE, ] #Remove duplicates
b <- select(b, -dupli) #Remove column -no longer needed
# 2.2. AOD data ####
# a) Creating outlet id ####
aod_scot_2023 <- select(aod_scot_2023, -X, -X.1, -X.2, -X.3, -X.4)
aod_scot_2023$ID <- row.names(aod_scot_2023) #Creating an ID
# b) Cleaning postcode ####
#Checking that postcodes had the correct format: e.g. EH8 9XP - [2-3-4 characters + " " + 3 characters].
aod_postcodes <- data.frame(unique(aod_scot_2023$POSTCODE)) #Create DF with unique postcodes
names(aod_postcodes) = c("Postcode")
pc_parts <- cSplit(aod_postcodes, "Postcode", " ", direction = "wide") #Split postcodes by parts - sep = " ".
pc_parts$nchar_postcode1 <- nchar(pc_parts$Postcode_1) #Create variable counting characters for pc past 1.
pc_parts$nchar_postcode2 <- nchar(pc_parts$Postcode_2) #Create variable counting characters for pc past 2.
pc_parts$nchar_postcode3 <- nchar(pc_parts$Postcode_3) #Create variable counting characters for pc past 3.
#Looking at the number of characters in each part, we will be able to repair the postcodes in wrong format:
#Identify unique 'structure combinations':
pc_parts$struct_combo <- paste(pc_parts$nchar_postcode1, pc_parts$nchar_postcode2, pc_parts$nchar_postcode3, sep = "") #Defining the structure combination of each postcode: e.g. 33NA -> Postcode1 = 3 characters, Postcode2 = 3 characters, and Postcode3 = NA; and so on...
struct_combo <- data.frame(table(pc_parts$struct_combo)) #Check Frequency table of unique options. Use this table to determine potentially wrong combinations.
pc_parts$problem_format <- ifelse(
(pc_parts$struct_combo == "33NA" | pc_parts$struct_combo == "43NA" | pc_parts$struct_combo == "23NA"), 0, 1
) #Flagging postcodes with format problems in origin (n=280) == 1
#Creating new variables to store correct postcode parts - only 2 parts should be allowed:
pc_parts$Postcode_1_r <- pc_parts$Postcode_1 #Temporally filing this with the Postcode_1 column. For those postcodes with correct structure, no changes will be needed here.
pc_parts$Postcode_2_r <- pc_parts$Postcode_2 #Temporally filing this with the Postcode_2 column. For those postcodes with correct structure, no changes will be needed here.
#Split pc_parts on 2 DBs:
pc_parts1 <- pc_parts[pc_parts$problem_format == 0, ] #Storing correct structure postcodes - reserve for future steps.
pc_parts2 <- pc_parts[pc_parts$problem_format == 1, ] #Storing wrong structure postcodes - requires data wrangling and manually inspection.
#Data wrangling pc_parts2:
pc_parts2$Postcode_1_r <- NA #Reset variable
pc_parts2$Postcode_2_r <- NA #Reset variable
# - Postcodes with 7NANA structure should be split into a 43NA structure
pc_parts2$Postcode_1_r <- ifelse(
pc_parts2$struct_combo == "7NANA", substr(pc_parts2$Postcode_1, 1, 4), pc_parts2$Postcode_1_r
) #First 4 characters to be assigned to postcode_1_r
pc_parts2$Postcode_2_r <- ifelse(
pc_parts2$struct_combo == "7NANA", substr(pc_parts2$Postcode_1, nchar(pc_parts2$Postcode_1) -2, nchar(pc_parts2$Postcode_1)), pc_parts2$Postcode_2_r
) #Last 3 characters to be assigned to postcode_2_r
# - Postcodes with 6NANA structure should be split into a 33NA structure
pc_parts2$Postcode_1_r <- ifelse(
pc_parts2$struct_combo == "6NANA", substr(pc_parts2$Postcode_1, 1, 3), pc_parts2$Postcode_1_r
) #First 4 characters to be assigned to postcode_1_r
pc_parts2$Postcode_2_r <- ifelse(
pc_parts2$struct_combo == "6NANA", substr(pc_parts2$Postcode_1, nchar(pc_parts2$Postcode_1) -2, nchar(pc_parts2$Postcode_1)), pc_parts2$Postcode_2_r
) #Last 3 characters to be assigned to postcode_2_r
# - Postcodes with 5NANA structure should be split into a 23NA structure
pc_parts2$Postcode_1_r <- ifelse(
pc_parts2$struct_combo == "5NANA", substr(pc_parts2$Postcode_1, 1, 2), pc_parts2$Postcode_1_r
) #First 4 characters to be assigned to postcode_1_r
pc_parts2$Postcode_2_r <- ifelse(
pc_parts2$struct_combo == "5NANA", substr(pc_parts2$Postcode_1, nchar(pc_parts2$Postcode_1) -2, nchar(pc_parts2$Postcode_1)), pc_parts2$Postcode_2_r
) #Last 3 characters to be assigned to postcode_2_r
#The rest of unique structures need to be checked manually
write.csv(pc_parts2, "Scotland/Cleaning_outputs/pc_parts2.csv") #Saving for manually checks.
pc_parts2 <- read.csv("Scotland/Cleaning_outputs/pc_parts2.csv") #Import again with manual corrections. - Only n=28 still unpaired (poor postcode info)
pc_parts2 <- select(pc_parts2, -X)
pc_parts <- rbind(pc_parts1, pc_parts2) #Rbind both parts
remove(pc_parts1, pc_parts2) #clean environment
#Recalculate postcodes in correct format:
pc_parts$full_postcode <-paste(pc_parts$Postcode_1_r, pc_parts$Postcode_2_r, sep = " ")
#Recalculate original postcodes - trying to amend my fault in not creating a postcode id code earlier.
pc_parts$Postcode_2[is.na(pc_parts$Postcode_2)] <- "" #Replacing NA with no data
pc_parts$Postcode_3[is.na(pc_parts$Postcode_3)] <- "" #Replacing NA with no data
pc_parts$original_postcode <- paste(pc_parts$Postcode_1, pc_parts$Postcode_2, pc_parts$Postcode_3, sep = " ")
#Remove NANANA observation from both pc_parts and aod_postcodes
pc_parts <- pc_parts[pc_parts$struct_combo != "NANANA", ]
aod_postcodes <- aod_postcodes[-1, ]
aod_postcodes <- data.frame(aod_postcodes)
names(aod_postcodes) = c("Postcode")
pc_parts$ID <- match(pc_parts$original_postcode, sort(pc_parts$original_postcode)) #Create ID based on alphabetical order of original postcodes
aod_postcodes$ID <- match(aod_postcodes$Postcode, sort(aod_postcodes$Postcode)) #Create ID based on alphabetical order of original postcodes
aod_postcodes <- merge(aod_postcodes, pc_parts, by="ID")
write.csv(aod_postcodes, "Scotland/Cleaning_outputs/aod_postcodes.csv")
aod_postcodes_r <- select(aod_postcodes, Postcode, full_postcode) #Extract full postcode only
aod_scot_2023 <- merge(aod_scot_2023, aod_postcodes_r, by.x="POSTCODE", by.y = "Postcode", all.x = TRUE) #Merge full_postcode to aod_scot_2023
remove(aod_postcodes, aod_postcodes_r, pc_parts) #Clean environment
#Adding DZ to aod_scot_2023
aod_scot_2023 <- merge(aod_scot_2023, b, by.x = "POSTCODE", by.y = "Postcode", all.x = TRUE)
#table(is.na(aod_scot_2023$DataZone2011Code)) -> TRUE= 1584 outlets had wrong postcodes/NA: unable to link with DZ (7.25%).
x1 <- x[is.na(x$DataZone2011Code.x), ] #Checking those unable to geocode.
#n=358 of these come from missing data on postcodes. The rest come from poor postcodes or postcodes not found
table(x$SALES_TYPE_DESCRIPTION) #n=454 missing data. - No missing when using the 'Sales_type_description_r'
remove(x)
remove(struct_combo, postcode_small, b) #Clean environment
# c) Cleaning sales type ####
#We got 2 columns describing the business types:
table(aod_scot_2023$SALES_TYPE_DESCRIPTION) # n = 1800 without data and n = 607 N/A.
table(aod_scot_2023$PREMISES.TYPE) #No NAs in this column
premises_type <- data.frame(unique(aod_scot_2023$PREMISES.TYPE)) #Creating DF with options from 'premises.type'
names(premises_type) = c("premises_types")
#Look into premises_type categories. Reclassify theoretically premise types into On/Off-premises. Those categories potentially operating as on and off simultaneously will be classified as 'ON'.
premises_type$theoretical_type <-
ifelse(premises_type$premises_types %in% c("ADULT ENTERTAINMENT", "BEER TENT/MARQUEE OR SIMILAR", "BINGO HALL", "CAFE", "CASINO",
"CONFERENCE CENTRE", "DISTILLERY / BREWERY", "EDUCATIONAL ESTABLISHMENT", "FERRY / BOAT / MOTOR VESSEL", "HOTEL",
"LEISURE FACILITY", "MEMBERS CLUB", "NIGHT CLUB", "NO BRC MAPPING", "PRIVATE HOUSE/GARDEN/BUSINESS", "PUBLIC HOUSE OR BAR",
"PUBLIC STREET, PARK OR OPEN SPACE", "RELIGIOUS / PLACE OF WORSHIP", "RESTAURANT / FOOD ESTABLISHMENT", "SHORT TERM LET",
"SHOWGROUND", "SNOOKER/POOL HALL", "SPORTS GROUND", "STUDENT VENUE", "VILLAGE/TOWN HALL OR SIMILAR"), "On", #This categories might be theoretically considered as On-premise
ifelse(premises_type$premises_types %in% c("CASH & CARRY", "HOT FOOD TAKEAWAY", "MARKET STALL OFFSALE",
"OFF SALE / SHOP / SUPERMARKET", "ONLINE SALES", "PETROL / SERVICE STATION"), "Off", #This categories might be theoretically considered as Off-premise
NA))
#Merge the theoretical types to the main DF and compare them with 'sales_type_description':
aod_scot_2023 <- merge(aod_scot_2023, premises_type, by.x="PREMISES.TYPE", by.y = "premises_types", all.x = TRUE) #Merge
remove(premises_type) #Clean Environment
#Reclass 'sales_type_description' to same categories as 'theoretical_types'. Preserving missings and N/As
aod_scot_2023$SALES_TYPE_DESCRIPTION[aod_scot_2023$SALES_TYPE_DESCRIPTION == "ON" | aod_scot_2023$SALES_TYPE_DESCRIPTION == "ON AND OFF"] <- "On" #On and On and off categories will be ON
aod_scot_2023$SALES_TYPE_DESCRIPTION[aod_scot_2023$SALES_TYPE_DESCRIPTION == "OFF"] <- "Off" #Off, remain as Off.
aod_scot_2023$SALES_TYPE_DESCRIPTION[aod_scot_2023$SALES_TYPE_DESCRIPTION == "" | aod_scot_2023$SALES_TYPE_DESCRIPTION == "N/A"] <- NA #Setting missings and NA format.
#Fill missing data in 'Sales_type_Description' with 'theoretical_type' data when appropriate:
aod_scot_2023$SALES_TYPE_DESCRIPTION_r <- ifelse(
is.na(aod_scot_2023$SALES_TYPE_DESCRIPTION), aod_scot_2023$theoretical_type, aod_scot_2023$SALES_TYPE_DESCRIPTION
) #Filling missing data in 'Sales_type_description with 'theorical_type' data.
#----
# 3. CALCULATING COUNTS PER DZ ####
#Preparing DF without missing data neither on DZ or sales type
aod_scot_2023_c <- aod_scot_2023[! is.na(aod_scot_2023$DataZone2011Code), ] #Remove outlets with no DZ - n= 1,584.
aod_scot_2023_c <- aod_scot_2023_c[! is.na(aod_scot_2023_c$SALES_TYPE_DESCRIPTION_r), ] #Remove outlets with still missing data by sales type - n=297
#Total missing: 1584+297 = 1881 (8.62%).
#Estimating outlet raw counts per alcohol category:
aod_counts_dz_scot_2023 <- aod_scot_2023_c %>%
group_by(DataZone2011Code, SALES_TYPE_DESCRIPTION_r) %>%
summarise(count = n()) %>%
pivot_wider(names_from = SALES_TYPE_DESCRIPTION_r, values_from = count, values_fill = 0) %>%
mutate(All = On + Off)
#Join aod_counts_dz_scot_2023 to the whole datazone list in Scotland:
dz <- read_xlsx("C:/Users/rvalient/Desktop/SPECTRUM/GEODATABASE/Spatial_Units/Scotland/DZ2011_Scotland.xlsx")
dz_aod_counts_2023 <- merge(dz, aod_counts_dz_scot_2023, by.x = "DataZone11_ID", by.y = "DataZone2011Code", all.x = TRUE)
dz_aod_counts_2023[is.na(dz_aod_counts_2023)] <- 0 #Convert NA in 0 - Apply to all NAs within the DF
remove(aod_counts_dz_scot_2023, dz) #Clean environment
#Save outputs:
write.csv(dz_aod_counts_2023, "Scotland/Outputs/dz_aod_counts_2023.csv") #DZ Outlet raw counts table - Customise your path.
#----