forked from conor10/gc-analyser
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgraph.py
242 lines (190 loc) · 7.4 KB
/
graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import abc
from datastore_model import GraphModel
from parsegc import FullGCEntry, YoungGenGCEntry
RAW_CSV_DATA = 0
YG_GC_MEMORY = 1
GC_DURATION = 2
MEMORY_RECLAIMED = 3
FULL_GC_MEMORY = 4
MEMORY_UTIL_POST = 5
def generate_cached_graph(log_key, graph_type, gc_data, blob_writer):
return generate_graph(log_key, graph_type, gc_data, blob_writer, True)
def generate_graph(log_key, graph_type, gc_data, blob_writer,
cache, filename=None):
try:
blob_key = _graphs[graph_type](log_key, gc_data, blob_writer, filename)
if cache:
GraphModel(parent=log_key,
graph_type=graph_type,
blob_key=blob_key).put()
return blob_key
except KeyError:
return "Invalid graph graph_type"
def _raw_csv_data(log_key, gc_data, blob_writer, filename):
results = []
for entry in gc_data:
results.append(GCTSEntry(entry))
return blob_writer.generate_csv(results, filename)
def _yg_memory(log_key, gc_data, blob_writer, filename):
results = []
for entry in gc_data:
if isinstance(entry, YoungGenGCEntry):
results.append(YGMemoryUtil(entry))
return blob_writer.generate_csv(results, filename)
def _full_memory(log_key, gc_data, blob_writer, filename):
results = []
for entry in gc_data:
if isinstance(entry, FullGCEntry):
results.append(FullMemoryUtil(entry))
# If we don't have any full GC entries
if results == []:
results.append(FullMemoryUtil(None))
return blob_writer.generate_csv(results, filename)
def _memory_util_post(log_key, gc_data, blob_writer, filename):
results = []
for entry in gc_data:
results.append(MemoryUtilPost(entry))
return blob_writer.generate_csv(results, filename)
def _duration(log_key, gc_data, blob_writer, filename):
results = []
for entry in gc_data:
results.append(PauseTime(entry))
return blob_writer.generate_csv(results, filename)
def _memory_reclaimed(log_key, gc_data, blob_writer, filename):
results = []
for entry in gc_data:
#if isinstance(entry, YoungGenGCEntry):
results.append(Reclaimed(entry))
return blob_writer.generate_csv(results, filename)
_graphs = {
RAW_CSV_DATA: _raw_csv_data,
YG_GC_MEMORY: _yg_memory,
FULL_GC_MEMORY: _full_memory,
GC_DURATION: _duration,
MEMORY_RECLAIMED: _memory_reclaimed,
MEMORY_UTIL_POST: _memory_util_post
}
class TimeSeriesEntry(object):
"""Base class used for calculating GC time series result sets.
Child classes contain logic for determining GC data relevent to
generate a particular result set, this may simple be fields, or
could include derived results.
"""
__metaclass__ = abc.ABCMeta
def __init__(self, time_series_key, result_attr, gc_entry):
self.time_series_value = 0
self.time_series_key = time_series_key
self.result_attr = result_attr
if gc_entry:
self._calc_results(gc_entry)
def _calc_results(self, gc_entry):
self.time_series_value = gc_entry.get_attr_value(self.time_series_key)
self._get_custom_attr(gc_entry)
@abc.abstractmethod
def _get_custom_attr(self, gc_entry):
"""Get/calculate custom attribute values for result set"""
return
class PauseTime(TimeSeriesEntry):
"""Duration of GC pauses"""
def __init__(self, gc_entry):
self.pause_attr = {
'yg_pause_time': None,
'pause_time': None,
'tenured_pause_time': None,
}
super(PauseTime, self).__init__('timestamp', self.pause_attr, gc_entry)
def _get_custom_attr(self, gc_entry):
gc_entry.get_attr_values(self.pause_attr)
class Reclaimed(TimeSeriesEntry):
"""Space reclaimed following partial GC"""
def __init__(self, gc_entry):
self.result_attr = {
'yg_reclaimed': None,
'heap_reclaimed': None,
'tenured_reclaimed': None,
'perm_reclaimed': None
}
super(Reclaimed, self).__init__('timestamp', self.result_attr, gc_entry)
def _get_custom_attr(self, gc_entry):
self.result_attr['heap_reclaimed'] = \
gc_entry.heap_util_pre - gc_entry.heap_util_post
if isinstance(gc_entry, YoungGenGCEntry):
self.result_attr['yg_reclaimed'] = \
gc_entry.yg_util_pre - gc_entry.yg_util_post
elif isinstance(gc_entry, FullGCEntry):
self.result_attr['tenured_reclaimed'] = \
gc_entry.tenured_util_pre - gc_entry.tenured_util_post
self.result_attr['perm_reclaimed'] = \
gc_entry.perm_util_pre - gc_entry.perm_util_post
class YGMemoryUtil(TimeSeriesEntry):
"""Memory utilisation following partial GC"""
def __init__(self, gc_entry):
self.mem_attr = {
'yg_util_pre': None,
'yg_util_post': None,
'yg_size_post': None,
'heap_util_pre': None,
'heap_util_post': None,
'heap_size_post': None
}
super(YGMemoryUtil, self).__init__('timestamp', self.mem_attr, gc_entry)
def _get_custom_attr(self, gc_entry):
gc_entry.get_attr_values(self.mem_attr)
class FullMemoryUtil(TimeSeriesEntry):
"""Memory utilisation following full GC"""
def __init__(self, gc_entry):
self.mem_attr = {
'tenured_util_pre': None,
'tenured_util_post': None,
'tenured_size_post': None,
'heap_util_pre': None,
'heap_util_post': None,
'heap_size_post': None,
'perm_util_pre': None,
'perm_util_post': None,
'perm_size_post': None
}
super(FullMemoryUtil, self).__init__('timestamp', self.mem_attr, gc_entry)
def _get_custom_attr(self, gc_entry):
gc_entry.get_attr_values(self.mem_attr)
class MemoryUtilPost(TimeSeriesEntry):
"""Memory utilisation breakdown post GC"""
def __init__(self, gc_entry):
self.mem_attr = {
'yg_size_post': None,
'tenured_size_post': None,
'perm_size_post': None,
'heap_size_post': None
}
super(MemoryUtilPost, self).__init__('timestamp', self.mem_attr, gc_entry)
def _get_custom_attr(self, gc_entry):
gc_entry.get_attr_values(self.mem_attr)
class GCTSEntry(TimeSeriesEntry):
"""Universal GC entry with time series index"""
def __init__(self, gc_entry):
self.gc_attr = {
'gc_timestamp': None,
'collector': None,
'yg_util_pre': None,
'yg_util_post': None,
'yg_size_post': None,
'tenured_util_pre': None,
'tenured_util_post': None,
'tenured_size_post': None,
'tenured_pause_time': None,
'heap_util_pre': None,
'heap_util_post': None,
'heap_size_post': None,
'perm_util_pre': None,
'perm_util_post': None,
'perm_size_post': None,
'pause_time': None,
'pause_time': None,
'user_time': None,
'sys_time': None,
'real_time': None,
'system': None
}
super(GCTSEntry, self).__init__('timestamp', self.gc_attr, gc_entry)
def _get_custom_attr(self, gc_entry):
gc_entry.get_attr_values(self.gc_attr)