[Time: 2000MS] [Memory: 65536K] [难度: 初级] [分类: 最短路径算法]
无。
利用虫洞的时光旅行,很有趣的一道题。涉及到图论的知识,关键是构造图,用Bellman-Ford算法找出负权环
Bellman-Ford算法核心在于松弛,具体算法可以百度。
需要注意的就是输入说明Input这部分,很多人读不懂这段题意:
正权(双向)边部分:
Line 1 of each farm: Three space-separated integers respectively: N, M, and W
Lines 2~M+1 of each farm: Three space-separated numbers (S, E, T) that describe, respectively: a bidirectional path between S and E that requires T seconds to traverse.
Two fields might be connected by more than one path.
负权(单向)边部分:
Lines M+2~M+W+1 of each farm: Three space-separated numbers (S,E, T) that describe, respectively: A one way path from S toE that also moves the traveler back T seconds.
//Memory Time
//308K 204MS
#include<iostream>
using namespace std;
int dis[1001]; //源点到各点权值
const int max_w=10001; //无穷远
class weight
{
public:
int s;
int e;
int t;
}edge[5200];
int N,M,W_h; //N (1≤N≤500)fields 顶点数
//M (1≤M≤2500)paths 正权双向边
//W_h (1≤W≤200) wormholes 虫洞(回溯),负权单向边
int all_e; //边集(边总数)
bool bellman(void)
{
bool flag;
/*relax*/
for(int i=0;i<N-1;i++)
{
flag=false;
for(int j=0;j<all_e;j++)
if(dis[edge[j].e] > dis[edge[j].s] + edge[j].t)
{
dis[edge[j].e] = dis[edge[j].s] + edge[j].t;
flag=true; //relax对路径有更新
}
if(!flag)
break; //只要某一次relax没有更新,说明最短路径已经查找完毕,或者部分点不可达,可以跳出relax
}
/*Search Negative Circle*/
for(int k=0;k<all_e;k++)
if( dis[edge[k].e] > dis[edge[k].s] + edge[k].t)
return true;
return false;
}
int main(void)
{
int u,v,w;
int F;
cin>>F;
while(F--)
{
memset(dis,max_w,sizeof(dis)); //源点到各点的初始值为无穷,即默认不连通
cin>>N>>M>>W_h;
all_e=0; //初始化指针
/*read in Positive Paths*/
for(int i=1;i<=M;i++)
{
cin>>u>>v>>w;
edge[all_e].s=edge[all_e+1].e=u;
edge[all_e].e=edge[all_e+1].s=v;
edge[all_e++].t=w;
edge[all_e++].t=w; //由于paths的双向性,两个方向权值相等,注意指针的移动
}
/*read in Negative Wormholds*/
for(int j=1;j<=W_h;j++)
{
cin>>u>>v>>w;
edge[all_e].s=u;
edge[all_e].e=v;
edge[all_e++].t=-w; //注意权值为负
}
/*Bellman-Ford Algorithm*/
if(bellman())
cout<<"YES"<<endl;
else
cout<<"NO"<<endl;
}
return 0;
}
- Site: http://exp-blog.com
- Mail: [email protected]