forked from NVIDIA/cutlass
-
Notifications
You must be signed in to change notification settings - Fork 0
/
testbed_rank_k_universal.h
509 lines (399 loc) · 15.2 KB
/
testbed_rank_k_universal.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
/***************************************************************************************************
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Tests for device-wide Rank 2k update interface
*/
#pragma once
#include <iostream>
#include <fstream>
#include <sstream>
#include "../../common/cutlass_unit_test.h"
#include "cutlass/blas3.h"
#include "cutlass/util/host_tensor.h"
#include "cutlass/util/tensor_view_io.h"
#include "cutlass/util/distribution.h"
#include "cutlass/util/reference/host/tensor_fill.h"
#include "cutlass/util/reference/host/tensor_copy.h"
#include "cutlass/util/reference/host/tensor_compare.h"
#include "cutlass/util/reference/host/tensor_norm.h"
#include "cutlass/util/reference/host/error_metrics.h"
#include "cutlass/util/reference/host/rank_k_complex.h"
#include "testbed_utils.h"
namespace test {
namespace gemm {
namespace device {
/////////////////////////////////////////////////////////////////////////////////////////////////
template <typename RankK>
struct TestbedRank2KUniversal {
using ElementAccumulator = typename RankK::ElementAccumulator;
using ElementCompute = typename RankK::RankKkernel::Epilogue::OutputOp::ElementCompute;
/// Initialization
cutlass::Distribution::Kind init_A;
cutlass::Distribution::Kind init_C;
uint64_t seed;
cutlass::HostTensor<typename RankK::ElementA, typename RankK::LayoutA> tensor_A;
cutlass::HostTensor<typename RankK::ElementC, typename RankK::LayoutC> tensor_C;
cutlass::HostTensor<typename RankK::ElementC, typename RankK::LayoutC> tensor_D;
cutlass::HostTensor<typename RankK::ElementC, typename RankK::LayoutC> reference_D;
//
// Methods
//
TestbedRank2KUniversal(
cutlass::Distribution::Kind init_A_ = cutlass::Distribution::Uniform,
cutlass::Distribution::Kind init_C_ = cutlass::Distribution::Uniform,
uint64_t seed_ = 2080
):
init_A(init_A_), init_C(init_C_), seed(seed_) { }
/// Helper to initialize a tensor view
template <typename Element, typename Layout>
bool initialize_tensor(
cutlass::TensorView<Element, Layout> view,
cutlass::Distribution::Kind dist_kind,
uint64_t seed,
int mantissa_in_bits) {
if (dist_kind == cutlass::Distribution::Uniform) {
double scope_max, scope_min;
int bits_input = cutlass::sizeof_bits<Element>::value;
int bits_output = cutlass::sizeof_bits<typename RankK::ElementC>::value;
if (bits_input == 1) {
scope_max = 2;
scope_min = 0;
} else if (bits_input <= 8) {
scope_max = 2;
scope_min = -2;
} else if (bits_output == 16) {
scope_max = 5;
scope_min = -5;
} else {
scope_max = 8;
scope_min = -8;
}
cutlass::reference::host::TensorFillRandomUniform(
view, seed, scope_max, scope_min, mantissa_in_bits);
}
else if (dist_kind == cutlass::Distribution::Identity) {
cutlass::reference::host::TensorFillIdentity(view);
}
else if (dist_kind == cutlass::Distribution::Gaussian) {
cutlass::reference::host::TensorFillRandomGaussian(view, seed, 0, 0.5, mantissa_in_bits);
}
else if (dist_kind == cutlass::Distribution::Sequential) {
cutlass::reference::host::BlockFillSequential(
view.data(), view.capacity());
}
else {
EXPECT_TRUE(false) << "Input distribution not implemented";
return false;
}
return true;
}
/// Helper to initialize a tensor view
template <typename Element, typename Layout>
bool initialize_symmetric_tensor(
cutlass::TensorView<Element, Layout> view,
cutlass::Distribution::Kind dist_kind,
uint64_t seed,
int mantissa_in_bits) {
if (dist_kind == cutlass::Distribution::Uniform) {
double scope_max, scope_min;
int bits_input = cutlass::sizeof_bits<Element>::value;
int bits_output = cutlass::sizeof_bits<typename RankK::ElementC>::value;
if (bits_input == 1) {
scope_max = 2;
scope_min = 0;
} else if (bits_input <= 8) {
scope_max = 2;
scope_min = -2;
} else if (bits_output == 16) {
scope_max = 5;
scope_min = -5;
} else {
scope_max = 8;
scope_min = -8;
}
cutlass::reference::host::TensorFillSymmetricRandomUniform(
view, seed, RankK::kFillModeC, scope_max, scope_min, mantissa_in_bits);
}
else if (dist_kind == cutlass::Distribution::Gaussian) {
cutlass::reference::host::TensorFillSymmetricRandomGaussian(
view, seed, RankK::kFillModeC, 0, 0.5, mantissa_in_bits);
}
else {
EXPECT_TRUE(false) << "Input distribution (symmetric tensor) not implemented";
return false;
}
return true;
}
/// Initializes data structures
void initialize(cutlass::gemm::GemmCoord problem_size) {
//
// Allocate the RankK workspace
//
tensor_A.resize(problem_size.mk());
tensor_C.resize(problem_size.mn());
tensor_D.resize(problem_size.mn());
reference_D.resize(problem_size.mn(), false);
EXPECT_TRUE(initialize_tensor(tensor_A.host_view(), init_A, seed + 2019, cutlass::MantissaInBits<typename RankK::ElementA>::bits));
EXPECT_TRUE(initialize_symmetric_tensor(tensor_C.host_view(), init_C, seed + 2017, cutlass::MantissaInBits<typename RankK::ElementC>::bits));
// It is possible to randomly initialize to all zeros, so override this with non-zeros
// in the upper left corner of each operand.
tensor_A.host_view().at({0, 0}) = typename RankK::ElementA(1);
tensor_C.host_view().at({0, 0}) = typename RankK::ElementC(1);
cutlass::reference::host::TensorCopy(reference_D.host_view(), tensor_C.host_view());
tensor_A.sync_device();
tensor_C.sync_device();
tensor_D.sync_device();
}
/// Compares computed reference with device reference and outputs to a file if incorrect
bool compare_reference(
cutlass::gemm::GemmCoord problem_size,
ElementCompute alpha,
ElementCompute beta) {
tensor_D.sync_host();
EXPECT_GT(cutlass::reference::host::TensorNorm(tensor_A.host_view()), 0);
EXPECT_GT(cutlass::reference::host::TensorNorm(tensor_C.host_view()), 0);
if (tensor_D.size() > 1)
EXPECT_GT(cutlass::reference::host::TensorNorm(tensor_D.host_view()), 0);
if (reference_D.size() > 1)
EXPECT_GT(cutlass::reference::host::TensorNorm(reference_D.host_view()), 0);
double l2_norm = cutlass::reference::host::TensorRelativeErrorMetric(reference_D.host_view(), tensor_D.host_view());
bool passed = l2_norm < cutlass::MantissaInBits<typename RankK::ElementA>::error;
return passed;
}
/// Verifies the result is a RankK
bool verify(
cutlass::gemm::GemmCoord problem_size,
ElementCompute alpha,
ElementCompute beta) {
//
// Verify
//
cutlass::reference::host::Rank2KComplex<
typename RankK::ElementA, typename RankK::LayoutA,
typename RankK::ElementC, typename RankK::LayoutC,
ElementCompute, ElementAccumulator
>(
problem_size,
alpha,
tensor_A.host_ref(),
RankK::kTransformA,
beta,
tensor_C.host_ref(),
reference_D.host_ref(),
ElementAccumulator(0),
RankK::kFillModeC,
RankK::kBlasMode
);
return compare_reference(problem_size, alpha, beta);
}
/// Returns true if the CUDA device is sufficient to execute the kernel.
bool sufficient() const {
//
// Determine SMEM requirements and waive if not satisfied
//
int smem_size = int(sizeof(typename RankK::RankKkernel::SharedStorage));
cudaDeviceProp properties;
int device_idx;
cudaError_t result = cudaGetDevice(&device_idx);
if (result != cudaSuccess) {
throw std::runtime_error("cudaGetDevice() API call failed.");
}
result = cudaGetDeviceProperties(&properties, device_idx);
if (result != cudaSuccess) {
throw std::runtime_error("cudaGetDeviceProperties() failed");
}
if (properties.sharedMemPerMultiprocessor < smem_size) {
return false;
}
return true;
}
/// Executes one test
bool run(
cutlass::gemm::GemmUniversalMode mode,
cutlass::gemm::GemmCoord problem_size,
int batch_count = 1,
ElementCompute alpha = ElementCompute(1),
ElementCompute beta = ElementCompute(0)) {
// Waive test if insufficient CUDA device
if (!sufficient()) {
if (CUTLASS_TEST_UNIT_ENABLE_WARNINGS) {
std::cerr << "Test waived due to insufficient CUDA device." << std::endl;
}
return true;
}
#if 0
std::cout << "[TestbedRankKUniversal::run()] problem(m, n, k): " << problem_size
<< " alpha: " << ElementCompute(alpha)
<< " beta: " << ElementCompute(beta) << std::endl;
#endif
this->initialize(problem_size);
//
// Initialize the RankK operator
//
typename RankK::Arguments arguments{
mode,
problem_size,
batch_count,
{alpha, beta},
tensor_A.device_data(),
tensor_C.device_data(),
tensor_D.device_data(),
problem_size.n() * problem_size.k(),
problem_size.m() * problem_size.n(),
problem_size.m() * problem_size.n(),
tensor_A.layout().stride(0),
tensor_C.layout().stride(0),
tensor_D.layout().stride(0)
};
RankK rank2k_op;
size_t workspace_size = RankK::get_workspace_size(arguments);
cutlass::device_memory::allocation<uint8_t> workspace(workspace_size);
cutlass::Status status = rank2k_op.initialize(arguments, workspace.get());
EXPECT_TRUE(status == cutlass::Status::kSuccess) << to_string(status);
//
// Run the RankK
//
status = rank2k_op();
EXPECT_TRUE(status == cutlass::Status::kSuccess) << to_string(status);
//
// Verify
//
bool passed = this->verify(problem_size, alpha, beta);
//if (true) {
if (!passed) {
std::stringstream fname;
fname << "error_RankK_device_"
<< "fill_mode_c_"
<< (RankK::kFillModeC == cutlass::FillMode::kLower ? "lower_" :
(RankK::kFillModeC == cutlass::FillMode::kUpper ? "upper_" : "invalid_"))
<< "mnk_"
<< problem_size.m() << "x"
<< problem_size.n() << "x"
<< problem_size.k() << "_"
<< RankK::ThreadblockShape::kM << "x"
<< RankK::ThreadblockShape::kN << "x"
<< RankK::ThreadblockShape::kK << "_"
<< RankK::WarpShape::kM << "x"
<< RankK::WarpShape::kN << "x"
<< RankK::WarpShape::kK << ".txt";
std::cout << fname.str() << std::endl;
std::ofstream results(fname.str());
results << problem_size << std::endl;
results
<< "\nA:\n" << tensor_A.host_view() << "\n"
<< "\nC:\n" << tensor_C.host_view() << "\n"
<< "\nD reference:\n" << reference_D.host_view() << "\n"
<< "\nD computed:\n" << tensor_D.host_view() << "\n";
}
return passed;
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
template <typename RankK>
bool TestRank2kUniversal(
cutlass::gemm::GemmCoord const & problem_size,
cutlass::gemm::GemmUniversalMode mode,
int batch_count,
double alpha = 1.0,
double beta = 2.0) {
bool passed = true;
TestbedRank2KUniversal<RankK> testbed;
using ElementCompute = typename RankK::EpilogueOutputOp::ElementCompute;
passed = testbed.run(
mode,
problem_size,
batch_count,
cutlass::from_real<ElementCompute>(alpha),
cutlass::from_real<ElementCompute>(beta)
);
return passed;
}
template <typename RankK>
bool TestAllRankKUniversal() {
bool passed = true;
int const kMinimumOperandElementSize = int(cutlass::sizeof_bits<typename RankK::ElementA>::value);
int const kAlignmentN = 128 / kMinimumOperandElementSize;
int const kAlignmentK = 128 / kMinimumOperandElementSize;
cutlass::gemm::GemmUniversalMode modes[] = {
cutlass::gemm::GemmUniversalMode::kGemm,
};
int problem_size_n[] = {
kAlignmentN, 512 - 2*kAlignmentN
};
int problem_size_k[] = {
kAlignmentK,
RankK::ThreadblockShape::kK * RankK::kStages - kAlignmentK,
RankK::ThreadblockShape::kK * RankK::kStages * 3 - kAlignmentK
};
int batch_counts[] = { // may be interpretted as batch count or split-K slices
1 // Just running one batch for now (removing 2, 3, 5, 7)
};
double problem_alpha[] = {
1.0
};
double problem_beta[] = {
2.0
};
using ElementCompute = typename RankK::EpilogueOutputOp::ElementCompute;
for (cutlass::gemm::GemmUniversalMode mode : modes) {
for (int n : problem_size_n) {
for (int k : problem_size_k) {
for (int batch_count : batch_counts) {
for (auto alpha : problem_alpha) {
for (auto beta : problem_beta) {
if (mode == cutlass::gemm::GemmUniversalMode::kGemm ||
mode == cutlass::gemm::GemmUniversalMode::kGemmSplitKParallel) {
}
cutlass::gemm::GemmCoord problem_size(n, n, k);
TestbedRank2KUniversal<RankK> testbed;
passed = testbed.run(
mode,
problem_size,
batch_count,
cutlass::from_real<ElementCompute>(alpha),
cutlass::from_real<ElementCompute>(beta)
);
if (!passed) {
return false;
}
}
}
}
}
}
}
return passed;
}
/////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace device
} // namespace gemm
} // namespace test
/////////////////////////////////////////////////////////////////////////////////////////////////