-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmultiobjective_optimizer.py
154 lines (109 loc) · 5.44 KB
/
multiobjective_optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
#!/usr/bin/env python3
import pandas as pd
import numpy as np
import datetime as dt
import json
import os
import argparse
import multiprocessing
import matplotlib.pyplot as plt
from pymoo.model.problem import Problem
from pymoo.model.callback import Callback
from pymoo.factory import get_sampling, get_crossover, get_mutation
from pymoo.operators.mixed_variable_operator import MixedVariableSampling, MixedVariableMutation, MixedVariableCrossover
from pymoo.algorithms.so_genetic_algorithm import GA
from pymoo.algorithms.nsga2 import NSGA2
from pymoo.factory import get_crossover, get_mutation, get_sampling
from pymoo.optimize import minimize
from util.crop_model_en import Optimization
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Parser_of_input_data')
parser.add_argument('--path_to_data_dir', type=str, default="./",help='Path to data with soil, crop and other parameter files', required=True)
parser.add_argument('--path_to_user_file', type=str, default="input_agro_calendar.json",help='JSON file with user input parameters', required=True)
parser.add_argument('--path_to_CSV_weather', type=str, default="./",help='Path to dir with CSV weather database', required=True)
parser.add_argument('--plot_name', type=str, default='first_plot.png', help='Resulted plot name')
parser.add_argument('--num_generation', type=int, default=10, help='Num of generation in genetic evolution')
parser.add_argument('--population_size', type=int, default=20, help='Size of population in generation')
parser.add_argument('--path_to_npy_files', type=str, default='./npy_files/', help='path to save files with data')
args = parser.parse_args()
WOFOST = Optimization()
path_to_user_file = args.path_to_user_file
with open(path_to_user_file, 'r') as f:
WOFOST.user_parameters = json.load(f)
def round_geoposition(x, prec=1, base=.5):
return round(base * round(float(x)/base),prec)
latitude = round_geoposition(WOFOST.user_parameters['latitude'])
longitude = round_geoposition(WOFOST.user_parameters['longitude'])
crop_name = WOFOST.user_parameters['crop_name']
#load historical weather data
path_CSV_dir = args.path_to_CSV_weather
WOFOST.weather_loader(path_CSV_dir, latitude, longitude)
WOFOST.data_dir = args.path_to_data_dir
crop_results=[]
mask = ['int']*len(WOFOST.user_parameters['irrigation_events']) + ['real']*len(WOFOST.user_parameters['irrigation_ammounts'])
sampling = MixedVariableSampling(mask, {
"real": get_sampling("real_random"),
"int": get_sampling("int_random")
})
crossover = MixedVariableCrossover(mask, {
"real": get_crossover("real_sbx", prob=1.0, eta=3.0),
"int": get_crossover("int_sbx", prob=1.0, eta=3.0)
})
mutation = MixedVariableMutation(mask, {
"real": get_mutation("real_pm", eta=3.0),
"int": get_mutation("int_pm", eta=3.0)
})
max_number_of_days = len(pd.date_range(start=WOFOST.user_parameters['crop_start'],end=WOFOST.user_parameters['crop_end']))
x_lower = ([1]*len(WOFOST.user_parameters['irrigation_events'])+[1]*len(WOFOST.user_parameters['irrigation_ammounts']))
x_upper = ([max_number_of_days-5]*len(WOFOST.user_parameters['irrigation_events'])+[15]*len(WOFOST.user_parameters['irrigation_ammounts']))
num_of_var = len(x_lower)
class MyProblem(Problem):
def __init__(self):
super().__init__(n_var=num_of_var, n_obj=2,
xl=x_lower,
xu=x_upper,
elementwise_evaluation=True)
def _evaluate(self, x, out, *args, **kwargs):
f1, f2 = WOFOST.multiobjective(x)
out['F'] = [f1,f2]
class MyCallback(Callback):
def __init__(self) -> None:
super().__init__()
self.data["best"] = []
def notify(self, algorithm):
self.data["best"].append(algorithm.pop.get("F").min())
problem = MyProblem()
algorithm = NSGA2(
pop_size=args.population_size,
sampling=sampling,
crossover=crossover,
mutation=mutation,
eliminate_duplicates=True,
)
num_generation = args.num_generation
print('Start search for optimal solution!')
res = minimize(
problem,
algorithm,
('n_gen', num_generation),
seed=1,
callback=MyCallback(),
verbose=True,
save_history=True
)
# Save data for plots
import copy
mdt = copy.deepcopy(res.F)
mdt[:,0]=mdt[:,0]*-1
# Save data for plots
path_to_folder = args.path_to_npy_files
if os.path.isdir(path_to_folder)==False:
os.mkdir(path_to_folder)
np.save(path_to_folder + WOFOST.user_parameters['crop_name']+'_irrigation_ammount', WOFOST.container_of_irrigation_amount)
np.save(path_to_folder + WOFOST.user_parameters['crop_name']+'_water_loss', WOFOST.container_of_mean_water_loss)
np.save(path_to_folder + WOFOST.user_parameters['crop_name']+'_crop_yields', WOFOST.container_of_mean_yields)
np.save(path_to_folder + WOFOST.user_parameters['crop_name']+'_function_values_for_paretto', mdt)
np.save(path_to_folder + WOFOST.user_parameters['crop_name']+'_optimal_solutions', res.X)
print("Best solution found: %s" % res.X)
print("Function value: %s" % res.F)
print("Constraint violation: %s" % res.CV)