-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgru.py
187 lines (131 loc) · 6.1 KB
/
gru.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# -*- coding: utf-8 -*-
"""
Created on Tue Mar 26 09:56:11 2019
@author: durgesh singh
"""
import math
import torch
from torch.nn import Parameter
import torch.nn as nn
import torch.nn.init as init
class GRUCell(nn.Module):
def __init__(self, input_size, hidden_size,batch_size):
super().__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.weight_ih = Parameter(torch.Tensor(3 * hidden_size, input_size))
self.weight_hh =Parameter(torch.Tensor(3 * hidden_size, hidden_size))
self.bias = Parameter(torch.Tensor(batch_size,3 * hidden_size))
self.reset_parameters()
def reset_parameters(self):
init.kaiming_uniform_(self.weight_ih, a=math.sqrt(5))
fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight_ih)
bound = 1 / math.sqrt(fan_in)
init.uniform_(self.bias, -bound, bound)
init.kaiming_uniform_(self.weight_hh, a=math.sqrt(5))
def forward(self, x, hx):
dim_h = self.hidden_size
wxr = self.weight_ih[:dim_h]
wxz = self.weight_ih[dim_h:2 * dim_h]
wxh = self.weight_ih[2 * dim_h:]
whr =self.weight_hh[:dim_h]
whz = self.weight_hh[dim_h:2 * dim_h]
whh=self.weight_hh[2 * dim_h:]
br = self.bias[:,:dim_h]
bz = self.bias[:,dim_h:2 * dim_h]
bh = self.bias[:,2 * dim_h:]
qr = torch.sigmoid([email protected]()[email protected]()+br)
qz = torch.sigmoid([email protected]()[email protected]()+bz)
htil = torch.tanh([email protected]()+(qr*hx)@whh.t()+bh)
ht = qz*hx +(1-qz)*htil
return ht
class GRUCellM1(nn.Module):
def __init__(self, input_size, hidden_size,batch_size):
super().__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.weight_ih = Parameter(torch.Tensor(3 * hidden_size, input_size))
self.weight_hh =Parameter(torch.Tensor(3 * hidden_size, hidden_size))
self.bias = Parameter(torch.Tensor(batch_size,3 * hidden_size))
self.reset_parameters()
def reset_parameters(self):
init.kaiming_uniform_(self.weight_ih, a=math.sqrt(5))
fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight_ih)
bound = 1 / math.sqrt(fan_in)
init.uniform_(self.bias, -bound, bound)
init.kaiming_uniform_(self.weight_hh, a=math.sqrt(5))
def forward(self, x, hx):
dim_h = self.hidden_size
wxr = self.weight_ih[:dim_h]
wxz = self.weight_ih[dim_h:2 * dim_h]
wxh = self.weight_ih[2 * dim_h:]
whr =self.weight_hh[:dim_h]
whz = self.weight_hh[dim_h:2 * dim_h]
whh=self.weight_hh[2 * dim_h:]
br = self.bias[:,:dim_h]
bz = self.bias[:,dim_h:2 * dim_h]
bh = self.bias[:,2 * dim_h:]
qr = torch.sigmoid([email protected]()+bz)
qz = torch.sigmoid([email protected]()[email protected]()+br)
ht = torch.tanh((qr*hx)@whh.t()+torch.tanh(x)+bh)*qz + hx*(1-qz)
return ht
class GRUCellM2(nn.Module):
def __init__(self, input_size, hidden_size,batch_size):
super().__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.weight_ih = Parameter(torch.Tensor(3 * hidden_size, input_size))
self.weight_hh =Parameter(torch.Tensor(3 * hidden_size, hidden_size))
self.bias = Parameter(torch.Tensor(batch_size,3 * hidden_size))
self.reset_parameters()
def reset_parameters(self):
init.kaiming_uniform_(self.weight_ih, a=math.sqrt(5))
fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight_ih)
bound = 1 / math.sqrt(fan_in)
init.uniform_(self.bias, -bound, bound)
init.kaiming_uniform_(self.weight_hh, a=math.sqrt(5))
def forward(self, x, hx):
dim_h = self.hidden_size
wxr = self.weight_ih[:dim_h]
wxz = self.weight_ih[dim_h:2 * dim_h]
wxh = self.weight_ih[2 * dim_h:]
whr =self.weight_hh[:dim_h]
whz = self.weight_hh[dim_h:2 * dim_h]
whh=self.weight_hh[2 * dim_h:]
br = self.bias[:,:dim_h]
bz = self.bias[:,dim_h:2 * dim_h]
bh = self.bias[:,2 * dim_h:]
qz = torch.sigmoid([email protected]()[email protected]()+bz)
qr = torch.sigmoid([email protected]()+br)
ht = torch.tanh((qr*hx)@whh.t()[email protected]()+bh)*qz + hx*(1-qz)
return ht
class GRUCellM3(nn.Module):
def __init__(self, input_size, hidden_size,batch_size):
super().__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.weight_ih = Parameter(torch.Tensor(3 * hidden_size, input_size))
self.weight_hh =Parameter(torch.Tensor(3 * hidden_size, hidden_size))
self.bias = Parameter(torch.Tensor(batch_size,3 * hidden_size))
self.reset_parameters()
def reset_parameters(self):
init.kaiming_uniform_(self.weight_ih, a=math.sqrt(5))
fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight_ih)
bound = 1 / math.sqrt(fan_in)
init.uniform_(self.bias, -bound, bound)
init.kaiming_uniform_(self.weight_hh, a=math.sqrt(5))
def forward(self, x, hx):
dim_h = self.hidden_size
wxr = self.weight_ih[:dim_h]
wxz = self.weight_ih[dim_h:2 * dim_h]
wxh = self.weight_ih[2 * dim_h:]
whr =self.weight_hh[:dim_h]
whz = self.weight_hh[dim_h:2 * dim_h]
whh=self.weight_hh[2 * dim_h:]
br = self.bias[:,:dim_h]
bz = self.bias[:,dim_h:2 * dim_h]
bh = self.bias[:,2 * dim_h:]
qz = torch.sigmoid([email protected]()+torch.tanh(hx)@whz.t()+bz)
qr = torch.sigmoid([email protected]()[email protected]()+br)
ht = torch.tanh((qr*hx)@whh.t()[email protected]()+bh)*qz + hx*(1-qz)
return ht