Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

cell type specific gene regulatory network #34

Open
leonardHerault opened this issue May 30, 2024 · 2 comments
Open

cell type specific gene regulatory network #34

leonardHerault opened this issue May 30, 2024 · 2 comments

Comments

@leonardHerault
Copy link

Dear all,

Thank you for developing LINGER.

I am trying LINGER with different metacells inputs and I could successfully infer different cell population gene regulatory networks for each of them.

But then, when I try to infer cell type specific GRN from these different inputs I always get the same results...

When reading the code I see that LL_net cell type specific functions load "Primary_TF_TG_chrN.txt" and "Primary_RE_TG_chrN.txt" for the regulatory strengths used in cell type specific GRN inference.

These strength come from the initial provided training on bulk data if I understand correctly.

I thought cell type specific GRN inference use strength inferred from the single-cell training.

Could you please clarify this point?

Best,

LH

@Lau-Jonathan
Copy link

Yes, I also encountered this issue. Primary_RE_TG_chrN.txt is used as an input for cell type-specific network inference. It appears that the code for constructing cell type-specific networks using LINGER with cis-reg potential has not been provided

@yojetsharma
Copy link

Dear all,

Thank you for developing LINGER.

I am trying LINGER with different metacells inputs and I could successfully infer different cell population gene regulatory networks for each of them.

But then, when I try to infer cell type specific GRN from these different inputs I always get the same results...

When reading the code I see that LL_net cell type specific functions load "Primary_TF_TG_chrN.txt" and "Primary_RE_TG_chrN.txt" for the regulatory strengths used in cell type specific GRN inference.

These strength come from the initial provided training on bulk data if I understand correctly.

I thought cell type specific GRN inference use strength inferred from the single-cell training.

Could you please clarify this point?

Best,

LH

where you able to run the whole tutorial? I am facing an error at this step:

import LingerGRN.LL_net as LL_net
LL_net.cell_type_specific_TF_RE_binding(GRNdir,adata_RNA,adata_ATAC,genome,celltype,outdir,method)
Generate cell type specitic TF binding potential for cell type Radial-glia-3...

  0%|                                                                                                                                                                                                                           | 0/22 [00:00<?, ?it/s]

---------------------------------------------------------------------------
FileNotFoundError                         Traceback (most recent call last)
Cell In[14], line 2
      1 import LingerGRN.LL_net as LL_net
----> 2 LL_net.cell_type_specific_TF_RE_binding(GRNdir,adata_RNA,adata_ATAC,genome,celltype,outdir,method)

File ~/miniconda3/envs/LINGER/lib/python3.10/site-packages/LingerGRN/LL_net.py:501, in cell_type_specific_TF_RE_binding(GRNdir, adata_RNA, adata_ATAC, genome, celltype, outdir, method)
    499     for i in tqdm(range(22)):
    500         chrN='chr'+str(i+1)
--> 501         mat=pd.read_csv(outdir+chrN+'_cell_population_TF_RE_binding.txt',sep='\t',index_col=0,header=0)
    502         out=cell_type_specific_TF_RE_binding_chr(adata_RNA,adata_ATAC,GRNdir,chrN,genome,label0,outdir,method,mat)
    503 #result=pd.concat([result,out],axis=1).fillna(0)

File ~/miniconda3/envs/LINGER/lib/python3.10/site-packages/pandas/io/parsers/readers.py:912, in read_csv(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, date_format, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, encoding_errors, dialect, on_bad_lines, delim_whitespace, low_memory, memory_map, float_precision, storage_options, dtype_backend)
    899 kwds_defaults = _refine_defaults_read(
    900     dialect,
    901     delimiter,
   (...)
    908     dtype_backend=dtype_backend,
    909 )
    910 kwds.update(kwds_defaults)
--> 912 return _read(filepath_or_buffer, kwds)

File ~/miniconda3/envs/LINGER/lib/python3.10/site-packages/pandas/io/parsers/readers.py:577, in _read(filepath_or_buffer, kwds)
    574 _validate_names(kwds.get("names", None))
    576 # Create the parser.
--> 577 parser = TextFileReader(filepath_or_buffer, **kwds)
    579 if chunksize or iterator:
    580     return parser

File ~/miniconda3/envs/LINGER/lib/python3.10/site-packages/pandas/io/parsers/readers.py:1407, in TextFileReader.__init__(self, f, engine, **kwds)
   1404     self.options["has_index_names"] = kwds["has_index_names"]
   1406 self.handles: IOHandles | None = None
-> 1407 self._engine = self._make_engine(f, self.engine)

File ~/miniconda3/envs/LINGER/lib/python3.10/site-packages/pandas/io/parsers/readers.py:1661, in TextFileReader._make_engine(self, f, engine)
   1659     if "b" not in mode:
   1660         mode += "b"
-> 1661 self.handles = get_handle(
   1662     f,
   1663     mode,
   1664     encoding=self.options.get("encoding", None),
   1665     compression=self.options.get("compression", None),
   1666     memory_map=self.options.get("memory_map", False),
   1667     is_text=is_text,
   1668     errors=self.options.get("encoding_errors", "strict"),
   1669     storage_options=self.options.get("storage_options", None),
   1670 )
   1671 assert self.handles is not None
   1672 f = self.handles.handle

File ~/miniconda3/envs/LINGER/lib/python3.10/site-packages/pandas/io/common.py:859, in get_handle(path_or_buf, mode, encoding, compression, memory_map, is_text, errors, storage_options)
    854 elif isinstance(handle, str):
    855     # Check whether the filename is to be opened in binary mode.
    856     # Binary mode does not support 'encoding' and 'newline'.
    857     if ioargs.encoding and "b" not in ioargs.mode:
    858         # Encoding
--> 859         handle = open(
    860             handle,
    861             ioargs.mode,
    862             encoding=ioargs.encoding,
    863             errors=errors,
    864             newline="",
    865         )
    866     else:
    867         # Binary mode
    868         handle = open(handle, ioargs.mode)

FileNotFoundError: [Errno 2] No such file or directory: '/home/user/Desktop/linger/chr1_cell_population_TF_RE_binding.txt'

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants