forked from wesbz/SoundStream
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnet.py
375 lines (315 loc) · 13.2 KB
/
net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.utils import weight_norm
import os
from vector_quantize_pytorch import ResidualVQ
class CausalConv1d(nn.Conv1d):
def __init__(self, custom_name=None, *args, **kwargs):
super().__init__(*args, **kwargs)
self.custom_name = custom_name
self.causal_padding = self.dilation[0] * (self.kernel_size[0] - 1)
def forward(self, x):
return self._conv_forward(F.pad(x,
[self.causal_padding, 0]),
self.weight,
self.bias)
class CausalConvTranspose1d(nn.ConvTranspose1d):
def __init__(self, custom_name=None, *args, **kwargs):
super().__init__(*args, **kwargs)
self.custom_name = custom_name
self.causal_padding = self.dilation[0] * (self.kernel_size[0] - 1) + self.output_padding[0] + 1 - self.stride[0]
def forward(self, x, output_size=None):
if self.padding_mode != 'zeros':
raise ValueError('Only `zeros` padding mode is supported for ConvTranspose1d')
assert isinstance(self.padding, tuple)
output_padding = self._output_padding(
x, output_size, self.stride, self.padding, self.kernel_size, self.dilation)
return F.conv_transpose1d(
x, self.weight, self.bias, self.stride, self.padding,
output_padding, self.groups, self.dilation)[..., :-self.causal_padding]
class ResidualUnit(nn.Module):
def __init__(self, in_channels, out_channels, dilation):
super().__init__()
self.dilation = dilation
self.layers = nn.Sequential(
weight_norm(CausalConv1d(in_channels=in_channels, out_channels=out_channels,
kernel_size=7, dilation=dilation)),
nn.ELU(),
weight_norm(nn.Conv1d(in_channels=in_channels, out_channels=out_channels,
kernel_size=1))
)
def forward(self, x):
return x + self.layers(x)
class EncoderBlock(nn.Module):
def __init__(self, out_channels, stride, custom_name=None):
super().__init__()
self.custom_name = custom_name
self.layers = nn.Sequential(
ResidualUnit(in_channels=out_channels // 2,
out_channels=out_channels // 2, dilation=1),
nn.ELU(),
ResidualUnit(in_channels=out_channels // 2,
out_channels=out_channels // 2, dilation=3),
nn.ELU(),
ResidualUnit(in_channels=out_channels // 2,
out_channels=out_channels // 2, dilation=9),
nn.ELU(),
weight_norm(CausalConv1d(in_channels=out_channels // 2, out_channels=out_channels,
kernel_size=2 * stride, stride=stride))
)
def forward(self, x):
return self.layers(x)
class DecoderBlock(nn.Module):
def __init__(self, out_channels, stride, custom_name=None):
super().__init__()
self.custom_name = custom_name
self.layers = nn.Sequential(
weight_norm(CausalConvTranspose1d(in_channels=2 * out_channels,
out_channels=out_channels,
kernel_size=2 * stride, stride=stride)),
nn.ELU(),
ResidualUnit(in_channels=out_channels, out_channels=out_channels,
dilation=1),
nn.ELU(),
ResidualUnit(in_channels=out_channels, out_channels=out_channels,
dilation=3),
nn.ELU(),
ResidualUnit(in_channels=out_channels, out_channels=out_channels,
dilation=9),
)
def forward(self, x):
return self.layers(x)
class Encoder(nn.Module):
def __init__(self, C, D):
super().__init__()
self.layers = nn.Sequential(
weight_norm(CausalConv1d(in_channels=1, out_channels=C, kernel_size=7)),
nn.ELU(),
EncoderBlock(out_channels=2 * C, stride=2, custom_name="encodec.layer.1"),
nn.ELU(),
EncoderBlock(out_channels=4 * C, stride=4, custom_name="encodec.layer.2"),
nn.ELU(),
EncoderBlock(out_channels=8 * C, stride=5, custom_name="encodec.layer.3"),
nn.ELU(),
EncoderBlock(out_channels=16 * C, stride=8, custom_name="encodec.layer.4"),
nn.ELU(),
weight_norm(CausalConv1d(in_channels=16 * C, out_channels=D, kernel_size=3, custom_name="encodec.layer.5"))
)
def forward(self, x):
return self.layers(x)
class Decoder(nn.Module):
def __init__(self, C, D):
super().__init__()
self.layers = nn.Sequential(
weight_norm(CausalConv1d(in_channels=D, out_channels=16 * C, kernel_size=7)),
nn.ELU(),
DecoderBlock(out_channels=8 * C, stride=8, custom_name="decodec.layer.1"),
nn.ELU(),
DecoderBlock(out_channels=4 * C, stride=5, custom_name="decodec.layer.2"),
nn.ELU(),
DecoderBlock(out_channels=2 * C, stride=4, custom_name="decodec.layer.3"),
nn.ELU(),
DecoderBlock(out_channels=C, stride=2, custom_name="decodec.layer.4"),
nn.ELU(),
weight_norm(CausalConv1d(in_channels=C, out_channels=1, kernel_size=7, custom_name="decodec.layer.5"))
)
def forward(self, x):
for layer in self.layers:
x = layer(x)
return x
class SoundStream(nn.Module):
def __init__(self, channels, dim, n_q, codebook_size):
super().__init__()
# D in Encoder stands for Output_channel
self.encoder = Encoder(C=channels, D=dim)
# dim is the dim of output of encode (input of decoder)
# inside ResidualVQ also codebook_dim which is the dim of codes
# if not set (like here), then dim is the codes dim too
self.quantizer = ResidualVQ(
num_quantizers=n_q, dim=dim, codebook_size=codebook_size,
shared_codebook=True, quantize_dropout=True,
kmeans_init=True, kmeans_iters=100, threshold_ema_dead_code=2
)
self.decoder = Decoder(C=channels, D=dim)
def forward(self, x):
e = self.encoder(x)
# Very important: output of encoder is [B, C, T], where C is channels, which meant to be dim in the args
# dim should be also equal to the code length in codebook
e = e.permute(0, 2, 1)
# quantizer waits for the input like [B, T, dim]
quantized, _, _ = self.quantizer(e)
# Need to swap back because decoder waits for [B, C, T]
quantized = quantized.permute(0, 2, 1)
o = self.decoder(quantized)
return o
def load_pretrained(self, checkpoint_name: str, repository: str):
"""
Should be used for inference purpose
"""
file = os.path.join(repository, checkpoint_name)
state_dict = torch.load(file, map_location='cpu')
self.load_state_dict(state_dict['model_state_dict'])
def WNConv1d(*args, **kwargs):
return weight_norm(nn.Conv1d(*args, **kwargs))
# Wave-based Discriminator
class WaveDiscriminatorBlock(nn.Module):
def __init__(self):
super().__init__()
self.layers = nn.ModuleList([
nn.Sequential(
nn.ReflectionPad1d(7),
WNConv1d(in_channels=1, out_channels=16, kernel_size=15),
nn.LeakyReLU(negative_slope=0.2)
),
nn.Sequential(
WNConv1d(in_channels=16, out_channels=64, kernel_size=41,
stride=4, padding=20, groups=4),
nn.LeakyReLU(negative_slope=0.2)
),
nn.Sequential(
WNConv1d(in_channels=64, out_channels=256, kernel_size=41,
stride=4, padding=20, groups=16),
nn.LeakyReLU(negative_slope=0.2)
),
nn.Sequential(
WNConv1d(in_channels=256, out_channels=1024, kernel_size=41,
stride=4, padding=20, groups=64),
nn.LeakyReLU(negative_slope=0.2)
),
nn.Sequential(
WNConv1d(in_channels=1024, out_channels=1024, kernel_size=41,
stride=4, padding=20, groups=256),
nn.LeakyReLU(negative_slope=0.2)
),
nn.Sequential(
WNConv1d(in_channels=1024, out_channels=1024, kernel_size=5,
stride=1, padding=2),
nn.LeakyReLU(negative_slope=0.2)
),
WNConv1d(in_channels=1024, out_channels=1, kernel_size=3, stride=1,
padding=1)
])
def features_lengths(self, lengths):
return [
lengths,
torch.div(lengths + 3, 4, rounding_mode="floor"),
torch.div(lengths + 15, 16, rounding_mode="floor"),
torch.div(lengths + 63, 64, rounding_mode="floor"),
torch.div(lengths + 255, 256, rounding_mode="floor"),
torch.div(lengths + 255, 256, rounding_mode="floor"),
torch.div(lengths + 255, 256, rounding_mode="floor")
]
def forward(self, x):
feature_map = []
for layer in self.layers:
x = layer(x)
feature_map.append(x)
return feature_map
class WaveDiscriminator(nn.Module):
def __init__(self, num_D, downsampling_factor):
super().__init__()
self.num_D = num_D
self.downsampling_factor = downsampling_factor
self.model = nn.ModuleDict({
f"disc_{downsampling_factor ** i}": WaveDiscriminatorBlock()
for i in range(num_D)
})
self.downsampler = nn.AvgPool1d(kernel_size=4, stride=2, padding=1,
count_include_pad=False)
def features_lengths(self, lengths):
return {
f"disc_{self.downsampling_factor ** i}": self.model[
f"disc_{self.downsampling_factor ** i}"].features_lengths(
torch.div(lengths, 2 ** i, rounding_mode="floor")) for i in range(self.num_D)
}
def forward(self, x):
results = {}
for i in range(self.num_D):
disc = self.model[f"disc_{self.downsampling_factor ** i}"]
results[f"disc_{self.downsampling_factor ** i}"] = disc(x)
x = self.downsampler(x)
return results
# STFT-based Discriminator
class ResidualUnit2d(nn.Module):
def __init__(self, in_channels, N, m, s_t, s_f):
super().__init__()
self.s_t = s_t
self.s_f = s_f
self.layers = nn.Sequential(
nn.Conv2d(
in_channels=in_channels,
out_channels=N,
kernel_size=(3, 3),
padding="same"
),
nn.ELU(),
nn.Conv2d(
in_channels=N,
out_channels=m * N,
kernel_size=(s_f + 2, s_t + 2),
stride=(s_f, s_t)
)
)
self.skip_connection = nn.Conv2d(
in_channels=in_channels,
out_channels=m * N,
kernel_size=(1, 1), stride=(s_f, s_t)
)
def forward(self, x):
return self.layers(F.pad(x, [self.s_t + 1, 0, self.s_f + 1, 0])) + self.skip_connection(x)
class STFTDiscriminator(nn.Module):
"""
Forward method returns feature maps
"""
def __init__(self, C, F_bins):
super().__init__()
self.layers = nn.ModuleList([
nn.Sequential(
nn.Conv2d(in_channels=2, out_channels=32, kernel_size=(7, 7)),
nn.ELU()
),
nn.Sequential(
ResidualUnit2d(in_channels=32, N=C, m=2, s_t=1, s_f=2),
nn.ELU()
),
nn.Sequential(
ResidualUnit2d(in_channels=2 * C, N=2 * C, m=2, s_t=2, s_f=2),
nn.ELU()
),
nn.Sequential(
ResidualUnit2d(in_channels=4 * C, N=4 * C, m=1, s_t=1, s_f=2),
nn.ELU()
),
nn.Sequential(
ResidualUnit2d(in_channels=4 * C, N=4 * C, m=2, s_t=2, s_f=2),
nn.ELU()
),
nn.Sequential(
ResidualUnit2d(in_channels=8 * C, N=8 * C, m=1, s_t=1, s_f=2),
nn.ELU()
),
nn.Sequential(
ResidualUnit2d(in_channels=8 * C, N=8 * C, m=2, s_t=2, s_f=2),
nn.ELU()
),
nn.Conv2d(in_channels=16 * C, out_channels=1,
kernel_size=(F_bins // 2 ** 6, 1))
])
def features_lengths(self, lengths):
return [
lengths - 6,
lengths - 6,
torch.div(lengths - 5, 2, rounding_mode="floor"),
torch.div(lengths - 5, 2, rounding_mode="floor"),
torch.div(lengths - 3, 4, rounding_mode="floor"),
torch.div(lengths - 3, 4, rounding_mode="floor"),
torch.div(lengths + 1, 8, rounding_mode="floor"),
torch.div(lengths + 1, 8, rounding_mode="floor")
]
def forward(self, x):
feature_map = []
for layer in self.layers:
x = layer(x)
feature_map.append(x)
return feature_map