-
Notifications
You must be signed in to change notification settings - Fork 0
/
lib.rs
640 lines (594 loc) · 24.7 KB
/
lib.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
//! Welcome to the `fractal-analysis` crate! Here you will find necessary tools
//! for the analysis of fractal sets, based on the “Z-box merging” algorithm.
//!
//! # How to use
//! I have tried to create ergonomic functions for the following data-sets:
//! * [Images, colour or gray-scale](mod@img_funs)
//! * [Sounds](mod@snd_funs) (to be added later)
//! * [Electro-encephalograms](mod@eeg_19c_funs) (to be added later)
//! * [MRI images](mod@mri_funs) (to be added later)
//!
//! For each of those, you will find ready-made functions that can give you
//! useful results; just eg say `example_code_here` and you will get the result.
//!
//! # Caveat
//! Currently (March 2021) the documentation and testing are still unfinished.
//! They are both provided on a best-effort basis; the user's understanding is
//! appreciated.
//!
//! # How to extend to other uses
//! Oh, how I _wish_ there was a way for me to design an API that said “Oh, just
//! do `zbox_merge(input)` for whatever input and it'll work!”.
//!
//! Sadly, it is no-where nearly as simple as that. The
//! basic library will get you a long way
//! along, but there is serious work you'll need to do before-hand. The simplest
//! way would be to just
//! [send the crate maintainer an e-mail](mailto:[email protected])
//! and ask directly, but in case s/he is unreachable, here is what you'll
//! need to do:
//!
//! ### Choose your dependent and independent dimensions
//! First, decide what counts as an “separate dimension” for your use-case.
//! Is each channel of your EEG a separate dimension that depends on the
//! time-stamp, or are they a sampling
//! of a two-dimensional scalp? What about the colour channels of your image?
//! That will give you a first idea of what to do, and denote the limits of the
//! result you will end up with.
//!
//! Of particular note: You will want the number of dimensions to be independent
//! of the measurement method. For instance: For the colour channels, we chose
//! each to be a separate dimension in part because all colour images have those
//! exact same 3 channels. But for the EEGs we chose to consider them as a 2-D
//! grid, or else the result would depend on the number of electrodes and
//! measurements between different setups would have no immediate way to be
//! compared. As a result, about half the mental effort was spent in deciding
//! exactly how to subdivide the electrode placement into quadrants!
//!
//! ### Count the number of bits you have available
//! For each coordinate, count the amount of values it can take. Take the
//! smallest of those amounts, find its base-2 logarithm,
//! and throw away all the decimal digits. The result
//! is the number of bits to which each of your coordinates will need to be
//! normalised.
//!
//! ### Choose your data-types
//! This is only important if you _really_ care about efficiency. The default
//! choices ought to be optimal for most cases, but under special circumstances
//! they _might_ not be.
//!
//! **Example 1:** If you have 5 keys of 12 bits each, each `Coor` will be an
//! `u16`, and as a result the default `Key` will be an `u128`. But they can
//! actually fit within an `u64`; the compiler just doesn't know that. In that
//! case, you might prefer to explicitly cast all keys to `u64`s.
//!
//! **Example 2:** If you need 48 bits for your key, and you're running the
//! code on a 16-bit architecture CPU, you might prefer to implement
//! custom-made 48 bit data-types (3*16) instead of letting the code use `u64`s
//! by default. The [`lindel`](lindel) crate permits that.
//!
//! ### Create a “key-extraction” function
//! The key-extraction is comprised of two parts: Normalisation and
//! linearisation.
//!
//! The normalisation is already provided for you, and only
//! requires you to provide, for each co-ordinate, the min/max values and the
//! amount of bits to which they will be normalised. However, please bear in
//! mind that you will need to extract the independent coordinates together
//! with the dependent ones!
//!
//! As for the linearisation, two separate methods are already provided, thanks
//! to the [`lindel`](lindel) crate. Those are Morton encoding (“z-index”) and Hilbert
//! encoding (“Hilbert index”). If you care about speed and/or have
//! at least one independent coordinate, the z-index will serve you better.
//! If you have no independent coordinates, and you can afford the small
//! performance hit, a Hilbert index will easily allow you to examine almost
//! every possible subdivision of your data-set independently. Still, please
//! note the following:
//! 1. You will need to do that manually, as the program can't perform this
//! operation automatically.
//! 2. You could theoretically use a Hilbert index everywhere, but in
//! subdividing it you might end up omitting parts of the independent
//! coordinates whose values are too large.
//! 3. While a z-index is much quicker to compute than a Hilbert index, for
//! large data-sets the most expensive operation is the sorting, so perhaps the
//! difference won't be important for the `O(N)` part of the program.
//!
//! ### Choose a sorting algorithm
//! If you don't have a great concern for speed, you could choose the default
//! methods defined in `std` or `rayon`. If you need to squeeze every last bit
//! of performance, on the other hand, you might prefer to implement a radix
//! sort or something to that extent.
//!
//! ### And you're finished!
//! …finished with the preliminary work, that is. Now all that's left
//! is to write the actual code: extract the keys, sort, extract the
//! amounts of common leading bits between each consecutive pair,
//! get the results from them, drain the useless bits, and use a
//! regression function to get the result. Here is some example code,
//! copied from the `img_funs` module:
//! ```should_not_compile
//!let width = input.width() as usize;
//!let height = input.height() as usize;
//!
//!let get_key_from_sample = |(x, y, rgb): (u32, u32, &image::Rgb<u8>)| -> u64 {
//! let norm_x = create_normaliser::<u32, u8>(0, input.width()).unwrap();
//! // The provided normaliser simplifies things slightly.
//! let norm_y = create_normaliser::<u32, u8>(0, input.height()).unwrap();
//! let arr = [norm_x(x), norm_y(y), rgb[0], rgb[1], rgb[2]];
//! // Extract both independent and dependent coordinates
//! morton_encoding::morton_encode(arr)
//! // Linearise using `morton_encoding`
//!};
//!
//!let clzs = get_clzs(input.enumerate_pixels(), get_key_from_sample);
//!let (tmp, lacun) = get_results_from_clzs(clzs);
//!let tmp = drain_useless_bits::<_, 64, 40>(tmp);
//!let lacun = drain_useless_bits::<_, 64, 40>(lacun);
//!finalise_results(tmp, lacun, width*height, 8)
//! ```
//!
//! Unless of course you need more than 256 bits for each key, in which case
//! you'll need to change the rest of the functions so that they operate on
//! `u16`s instead.
//!
//! # Interpreting the results
//! ## Fractal dimension
//! _The first_ and most important _thing to understand_ with regards to the
//! fractal dimension is the limits inside which its
//! log-log plot will fall. Those create a quadrilateral, whose four edges
//! are defined as follows:
//! 1. Edge 1 is vertical, for `x` equal to the amount of bits you have
//! available. You can't subdivide your data-set more then the resolution that
//! each coordinate has.
//! 2. Edge 2 is horizontal, for `y` equal to the amount of samples you have
//! available. Subdivide all you might, you will never get more populated
//! boxes than the amount of samples (eg pixels) that exist in the data-set.
//! 3. Edge 3 is diagonal, and has a slope equal to the amount of independent
//! coordinates, if any.
//! 4. Edge 4 is diagonal as well; its slope is equal to the total amount
//! of coordinates available, independent as well as dependent. A data-set
//! constrained within `N` dimensions can never have a fractal dimension
//! above `N`.
//!
//! The most immediate result of these four constraints is that, especially if
//! the log-log plot rises abruptly at first, it will encounter a plateau as
//! soon as it reaches the total amount of samples, past which it will be
//! horizontal. As such, the horizontal part of the plot _must_ be excised
//! before calculating the fractal dimension, else it will be artificially low.
//!
//! _The second thing to understand_ is that, although an ideally fractal
//! shape's log-log plot will be linear, in practice data-sets will be
//! scale-dependent, leading to non-linearities in the log-log plot. In every
//! such instance we've found, the log-log plot is concave downward. Therefore,
//! the user has two choices:
//! 1. To take the simple linear regression of the log-log plot, and interpret
//! its slope as the fractal dimension. The scale-dependence, if any, may be
//! found from the mean square error between the line and the actual plot.
//! 2. To take a parabolic regression of the log-log plot, interpret the linear
//! parametre as the fractal dimension, and the second-order parametre as the
//! scale-dependence.
//!
//! Neither has been tried with any real rigour; the user is cordially invited
//! to share the results, if any.
//!
//! ## Lacunarity
//! The way the lacunarity was defined in the available literature, it appears
//! to be a measure that's different for each scale. It's measured here for the
//! user's convenience, but the interpretation of the results must necessarily
//! be left up to the user.
//!
//!
#![cfg_attr(not(feature = "std"), no_std)]
use core::ops::{Add, BitXor, Div, Sub};
use num_traits::{CheckedShl, CheckedSub, PrimInt, Zero};
use arrayvec::ArrayVec;
pub mod img_funs;
//pub mod snd_funs;
//pub mod eeg_19c_funs;
pub use img_funs::*;
//pub use snd_funs::*;
//pub use eeg_19c_funs::*;
#[cfg(feature = "time_things")]
macro_rules! time {
($x: expr) => {{
eprintln!("Measuring expression: {}", stringify!($x));
let begin = std::time::Instant::now();
let result = $x;
eprintln!("Time elapsed: {:#?}\n", begin.elapsed());
result
}};
}
#[cfg(not(feature = "time_things"))]
macro_rules! time {
($x: expr) => {{
$x
}};
}
/// A convenience function that takes an arbitrary value, along with its minimum and maximum value, and normalises it to the limits of the coordinate data-type it's given.
/// ```rust
/// # use fractal_analysis::normalise;
/// let x = 1024u32;
/// let norm_x: u8 = normalise(x, 0, 65536);
/// assert_eq!(norm_x, 4);
/// ```
/// Please bear in mind:
/// 1. This function assumes that the minimum will be inclusive and the maximum exclusive.
/// 2. This function will silently return a zero if `maximum * (Coordinate::MAX + 1)` overflows, or if the value provided is outside `minimum..maximum`.
pub fn normalise<Input, Coordinate>(x: Input, minimum: Input, maximum: Input) -> Coordinate
where
Input: Add<Output = Input>
+ Sub<Output = Input>
+ Div<Output = Input>
+ core::convert::TryInto<Coordinate>
+ CheckedShl
+ CheckedSub
+ Copy,
Coordinate: Zero,
{
let spread: Input = maximum - minimum;
let coor_bits = core::mem::size_of::<Coordinate>() * 8;
x.checked_sub(&minimum)
.and_then(|x| x.checked_shl(coor_bits as u32))
.map(|x| x / spread)
.and_then(|x| x.try_into().ok())
.unwrap_or(Coordinate::zero())
}
/// A convenience function that takes a minimum and maximum value, inclusive and exclusive respectively, and returns a function to normalise values to the limits of the coordinate data-type it's given.
/// ```rust
/// # use fractal_analysis::create_normaliser;
/// let norm_fn = create_normaliser::<u32, u8>(0u32, 8192).unwrap();
/// assert_eq!(norm_fn(31), 0);
/// assert_eq!(norm_fn(32), 1);
/// assert_eq!(norm_fn(250), 7);
/// ```
/// Please note:
/// 1. This function returns `None` if `maximum * (Coordinate::MAX + 1)` overflows.
/// 2. The output function will return a zero if given a value that's outside bounds.
pub fn create_normaliser<Input, Coordinate>(
minimum: Input,
maximum: Input,
) -> Option<impl Fn(Input) -> Coordinate>
where
Input: Add<Output = Input>
+ Sub<Output = Input>
+ Div<Output = Input>
+ core::convert::TryInto<Coordinate>
+ CheckedShl
+ CheckedSub
+ Copy,
Coordinate: Zero,
{
let coor_bits = core::mem::size_of::<Coordinate>() * 8;
let _ = maximum.checked_shl(coor_bits as u32)?;
Some(move |x| normalise(x, minimum, maximum))
}
pub fn map_sampler<'a, H: 'a, Smp, Key: 'a, Set>(
set: Set,
get_key_from_sample: H,
) -> impl Iterator<Item = Key> + 'a
where
H: Fn(Smp) -> Key,
Key: PrimInt,
Set: IntoIterator<Item = Smp> + 'a,
{
set.into_iter().map(get_key_from_sample)
}
#[cfg(feature = "std")]
pub fn iterate_sorted_pairs<Key: Ord + Copy>(
input: impl Iterator<Item = Key>,
) -> impl Iterator<Item = (Key, Key)> {
let mut imp = input.collect::<Vec<_>>();
imp.sort_unstable();
(0..imp.len().saturating_sub(1)).map(move |i| (imp[i], imp[i + 1]))
}
#[cfg(not(feature = "std"))]
pub fn iterate_sorted_pairs<'a, Key: Ord + Copy>(
input: impl Iterator<Item = Key>,
buffer: &'a mut [Key],
) -> impl Iterator<Item = (Key, Key)> + 'a
{
buffer.iter_mut()
.zip(input)
.for_each(|(a, b)| *a = b);
buffer.sort_unstable();
(0..buffer.len().saturating_sub(1)).map(move |i| (buffer[i], buffer[i + 1]))
}
// TODO: Do this as a method to allow chaining
#[cfg(feature = "std")]
pub fn get_clzs<'a, H: 'a, Smp: 'a, Key: 'a, Set: 'a>(
set: Set,
get_key_from_sample: H,
) -> impl Iterator<Item = u8> + 'a
where
H: Fn(Smp) -> Key,
Key: PrimInt + BitXor<Output = Key>,
Set: IntoIterator<Item = Smp>,
{
let keys = time!(map_sampler(set, get_key_from_sample));
let sorted_pairs_of_keys = time!(iterate_sorted_pairs(keys));
time!(sorted_pairs_of_keys
.map(|(a, b)| a ^ b)
.map(|x| x.leading_zeros() as u8))
}
#[cfg(not(feature = "std"))]
pub fn get_clzs<'a, H: 'a, Smp: 'a, Key: 'a, Set: 'a>(
set: Set,
get_key_from_sample: H,
buffer: &'a mut [Key]
) -> impl Iterator<Item = u8> + 'a
where
H: Fn(Smp) -> Key,
Key: PrimInt + BitXor<Output = Key>,
Set: IntoIterator<Item = Smp>,
{
let keys = time!(map_sampler(set, get_key_from_sample));
let sorted_pairs_of_keys = time!(iterate_sorted_pairs(keys, buffer));
time!(sorted_pairs_of_keys
.map(|(a, b)| a ^ b)
.map(|x| x.leading_zeros() as u8))
}
pub fn get_results_from_clzs<const KEY_BIT_AMT: usize>(
input: impl Iterator<Item = u8>,
) -> (ArrayVec<u32, KEY_BIT_AMT>, ArrayVec<u64, KEY_BIT_AMT>) {
let mut s = ArrayVec::from([0u32; KEY_BIT_AMT]);
let mut prevs = ArrayVec::from([0usize; KEY_BIT_AMT]);
let mut squares = ArrayVec::from([0u64; KEY_BIT_AMT]);
for (i, x) in input.into_iter().chain(Some(0).into_iter()).enumerate() {
for b_i in (x as usize)..(KEY_BIT_AMT) {
s[b_i] += 1;
squares[b_i] += (i - prevs[b_i]) as u64 * (i - prevs[b_i]) as u64;
prevs[b_i] = i;
}
}
(s, squares)
}
pub fn get_results_from_clzs_functional<const KEY_BIT_AMT: usize>(
input: impl Iterator<Item = u8> + Clone,
) -> (ArrayVec<u32, KEY_BIT_AMT>, ArrayVec<usize, KEY_BIT_AMT>)
{
let mut s = ArrayVec::from([0u32; KEY_BIT_AMT]);
let mut squares = ArrayVec::from([0usize; KEY_BIT_AMT]);
let smaller_clz_positions = |x| input.clone().enumerate().filter(move |(_, a)| *a <= x).map(|x| x.0);
s.iter_mut().enumerate().for_each(|(i, x)| {
*x = (smaller_clz_positions(i as u8)).count() as u32
});
squares.iter_mut().enumerate().for_each(|(i, a)| {
let poss_1 = smaller_clz_positions(i as u8);
let poss_2 = smaller_clz_positions(i as u8).chain(Some(0).into_iter()).skip(1);
*a = poss_2.zip(poss_1).map(|x| x.0 - x.1).map(|x| x*x).sum();
});
(s, squares)
}
//const fn get_results_from_clzs = get_results_from_clzs_imperative;
pub fn get_inclination(input: &[f64]) -> f64 {
let length = input.iter().count() as f64;
let avy: f64 = input.iter().sum::<f64>() / length;
let avx: f64 = length * (length - 1.0) / (2.0 * length);
let num_inc = |(i, x): (usize, f64)| -> f64 { (x - avy) * (i as f64 - avx) };
let denom_inc = |(i, _): (usize, f64)| -> f64 { (i as f64 - avx) * (i as f64 - avx) };
let num: f64 = input
.iter()
.enumerate()
.map(|(a, b): (usize, &f64)| num_inc((a, *b)))
.sum();
let denom: f64 = input
.iter()
.enumerate()
.map(|(a, b): (usize, &f64)| denom_inc((a, *b)))
.sum();
num / denom
}
pub fn finalise_results<const KEY_BIT_AMT: usize>(
s: ArrayVec<u32, KEY_BIT_AMT>,
squares: ArrayVec<u64, KEY_BIT_AMT>,
sample_size: usize,
coor_bit_amt: u8,
) -> (f64, ArrayVec<f64, KEY_BIT_AMT>, ArrayVec<f64, KEY_BIT_AMT>) {
let step = KEY_BIT_AMT / (coor_bit_amt as usize);
let result_2 = s
.iter()
.skip(step - 1)
.step_by(step)
.map(|&x| f64::from(x).log2())
.collect::<ArrayVec<_, KEY_BIT_AMT>>();
let result_3 = squares
.iter()
.zip(s.iter())
.skip(step - 1)
.step_by(step)
.map(|(&a, &b)| (a as f64) * (b as f64) / (sample_size as f64 * sample_size as f64) - 1.0)
.collect::<ArrayVec<_, KEY_BIT_AMT>>();
let cap = (sample_size as f64).log2();
let result_1_lim = result_2
.iter()
.position(|x| *x > (0.9) * cap)
.unwrap_or(coor_bit_amt as usize);
let result_1 = get_inclination(&result_2[0..result_1_lim]);
(result_1, result_2, result_3)
}
#[cfg(feature = "std")]
pub fn zbox_merge<H, Smp, Key, Set, const KEY_BIT_AMT: usize>(set: Set, get_key_from_sample: H, sample_size: usize, coor_bits: u8) -> (f64, ArrayVec<f64, KEY_BIT_AMT>, ArrayVec<f64, KEY_BIT_AMT>)
where
H: Fn(Smp) -> Key,
Key: PrimInt,
Set: IntoIterator<Item = Smp>,
{
let clzs = get_clzs(set, get_key_from_sample);
let (s, squares) = get_results_from_clzs(clzs);
finalise_results(s, squares, sample_size, coor_bits)
}
pub fn drain_useless_bits<T, const TOTAL_BITS: usize, const USEFUL_BITS: usize>(mut input: ArrayVec<T, TOTAL_BITS>) -> ArrayVec<T, USEFUL_BITS> {
let useless_bits = TOTAL_BITS - USEFUL_BITS;
input.drain(..useless_bits);
input.into_iter().collect()
}
#[cfg(feature = "parallel")]
use rayon::prelude::*;
#[cfg(feature = "parallel")]
pub fn get_clzs_par<'a, H:'a, Smp:'a, Key:'a, Set:'a>(set: Set, get_key_from_sample: H) -> impl rayon::iter::ParallelIterator<Item = u8>
where
H: Fn(Smp) -> Key + std::marker::Sync + std::marker::Send + Copy,
Key: num_traits::int::PrimInt + std::marker::Sync + std::marker::Send,
[Key] : rayon::prelude::ParallelSliceMut<Key>,
Set : rayon::iter::IntoParallelIterator<Item = Smp>,
Smp: std::marker::Sync + std::marker::Send
{
let mut buffer = time! (set
.into_par_iter()
.map(get_key_from_sample)
.collect::<Vec<_>>());
time!(
buffer.par_sort_unstable()
);
time!(
(0..buffer.len().saturating_sub(1))
.into_par_iter()
.map(move |i| (buffer[i], buffer[i + 1]))
.map(|x| x.0 ^ x.1)
.map(|x| x.leading_zeros() as u8)
)
}
#[cfg(feature = "parallel")]
pub fn get_results_from_clzs_parallel<const KEY_BIT_AMT: usize>(
input: impl Iterator<Item = u8> + Clone + Sync,
) -> ([u32; KEY_BIT_AMT], [usize; KEY_BIT_AMT])
{
let mut s = [0u32; KEY_BIT_AMT];
let mut squares = [0usize; KEY_BIT_AMT];
let smaller_clz_positions = |x| input.clone().enumerate().filter(move |(_, a)| *a <= x).map(|x| x.0);
s.par_iter_mut().enumerate().for_each(|(i, x)| {
*x = (smaller_clz_positions(i as u8)).count() as u32
});
squares.par_iter_mut().enumerate().for_each(|(i, a)| {
let poss_1 = smaller_clz_positions(i as u8);
let poss_2 = smaller_clz_positions(i as u8).chain(Some(0).into_iter()).skip(1);
*a = poss_2.zip(poss_1).map(|x| x.0 - x.1).map(|x| x*x).sum();
});
(s, squares)
}
#[cfg(feature = "parallel")]
pub fn zbox_merge_par<H, Smp, Key, Set, const KEY_BIT_AMT: usize>(set: Set, get_key_from_sample: H, sample_size: usize, coor_bits: u8) -> (f64, ArrayVec<f64, KEY_BIT_AMT>, ArrayVec<f64, KEY_BIT_AMT>)
where
H: Fn(Smp) -> Key + std::marker::Sync + std::marker::Send + Copy,
Key: num_traits::int::PrimInt + std::marker::Sync + std::marker::Send,
[Key] : rayon::prelude::ParallelSliceMut<Key>,
Set : rayon::iter::IntoParallelIterator<Item = Smp>,
Smp: std::marker::Sync + std::marker::Send
{
let fnoo = get_results_from_clzs;
let clzs = get_clzs_par(set, get_key_from_sample).collect::<Vec<_>>();
let (s, squares) = fnoo(clzs.into_iter());
finalise_results(s, squares, sample_size, coor_bits)
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn wtf() {
assert!(true);
}
#[test]
fn img_sorta() {
use itertools::Itertools;
use noise::utils::*;
use noise::Fbm;
use noise::MultiFractal;
let mut dur = std::time::Duration::from_millis(0);
for x in 0..10 {
let clamp = |x, lower, upper| {
if x < lower {
lower
} else if x > upper {
upper
} else {
x
}
};
let size_x = 1024;
let size_y = size_x;
let fbm = Fbm::new().set_octaves(32).set_persistence(x as f64 / 10.);
let pmb = PlaneMapBuilder::new(&fbm)
.set_size(size_x as usize, size_y as usize)
.build();
let pix_span = (0..size_x as usize).cartesian_product(0..size_y as usize);
let mut result = image::GrayImage::new(size_x as u32, size_y as u32);
pix_span
.clone()
.map(|(xx, yy)| pmb.get_value(xx, yy))
.map(|val| (val + 1.0) * 128.0)
.map(|val| (clamp(val, 0.0, 255.99)) as u8)
.zip(pix_span)
.for_each(|(val, (xx, yy))| {
result.put_pixel(xx as u32, yy as u32, image::Luma([val]))
});
drop((pmb, fbm));
let begin = std::time::Instant::now();
let (hrm, _, _) = measure_lum_2d_u8_image(result);
dur += begin.elapsed();
dbg!(hrm);
}
println!("Time elapsed: {:?}", dur);
use noise::Seedable;
let mut dur = std::time::Duration::from_millis(0);
for x in 0..10 {
let clamp = |x, lower, upper| {
if x < lower {
lower
} else if x > upper {
upper
} else {
x
}
};
let size_x = 1 << 10;
let size_y = size_x;
let fbm_1 = Fbm::new()
.set_octaves(32)
.set_persistence(x as f64 / 10.)
.set_seed(0);
let fbm_2 = Fbm::new()
.set_octaves(32)
.set_persistence(x as f64 / 10.)
.set_seed(1);
let fbm_3 = Fbm::new()
.set_octaves(32)
.set_persistence(x as f64 / 10.)
.set_seed(2);
let pmb_1 = PlaneMapBuilder::new(&fbm_1)
.set_size(size_x as usize, size_y as usize)
.build();
let pmb_2 = PlaneMapBuilder::new(&fbm_2)
.set_size(size_x as usize, size_y as usize)
.build();
let pmb_3 = PlaneMapBuilder::new(&fbm_3)
.set_size(size_x as usize, size_y as usize)
.build();
let pix_span = (0..size_x as usize).cartesian_product(0..size_y as usize);
let mut result = image::RgbImage::new(size_x as u32, size_y as u32);
let map_fn = |val: f64| (val + 1.0) * 128.0;
let map_fn = |val: f64| clamp(map_fn(val), 0.0, 255.99) as u8;
let map_fn = |x: [f64; 3]| [map_fn(x[0]), map_fn(x[1]), map_fn(x[2])];
pix_span
.clone()
.map(|(xx, yy)| {
[
pmb_1.get_value(xx, yy),
pmb_2.get_value(xx, yy),
pmb_3.get_value(xx, yy),
]
})
.map(map_fn)
.zip(pix_span)
.for_each(|(val, (xx, yy))| {
result.put_pixel(xx as u32, yy as u32, image::Rgb(val))
});
drop((pmb_1, fbm_1, pmb_2, fbm_2, pmb_3, fbm_3));
let begin = std::time::Instant::now();
let (hrm, _, _) = measure_rgb_2d_u8_image(result);
dur += begin.elapsed();
dbg!(hrm);
}
println!("Time elapsed: {:?}", dur);
}
}