-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodeltrainer.py
30 lines (22 loc) · 1.22 KB
/
modeltrainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
def train():
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
import joblib
data = pd.read_csv("static/survey.csv")
cleaned_data = data.drop(columns=['Timestamp']) # Remove the timestamp from the data
# Converts genders to numbers
cleaned_data['Gender'].replace('Female', 0,inplace=True)
cleaned_data['Gender'].replace('Male', 1,inplace=True)
cleaned_data['Gender'].replace('Other', 3,inplace=True)
cleaned_data['Gender'].replace('Prefer not to say', 4,inplace=True)
# ^^^
cleaned_data.loc[:,~cleaned_data.columns.duplicated()] # Removed duplicated data to remove bias
# Splits the category list into seperate categories
cleaned_data[['Category1', 'Category2', 'Category3']] = cleaned_data['What categories would you buy from? (Top 3)'].str.split(',', 3, expand=True)
# Removes the category list with everything
cleaned_data = cleaned_data.drop(columns=['What categories would you buy from? (Top 3)'])
X = cleaned_data.drop(columns=['Category1', 'Category2', 'Category3'])
y = cleaned_data.drop(columns=['Gender', 'Age (Leave in a number) Ex: 17'])
model = DecisionTreeClassifier()
model.fit(X,y)
joblib.dump(model, 'trained_model.joblib')