forked from je-suis-tm/quant-trading
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathShooting Star backtest.py
269 lines (199 loc) · 7.32 KB
/
Shooting Star backtest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
# coding: utf-8
# In[1]:
#shooting star is my friend's fav indicator
#the name is poetic and romantic
#it is merely a vertical flipped hammer
#hammer and shooting star could be confusing
#since both of them can be inverted
#i memorize them via a simple tune
#if u see thor (with hammer),price shall soar
#if u see star (shooting star),price shall fall
#details of shooting star can be found in investopedia
# https://www.investopedia.com/terms/s/shootingstar.asp
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import yfinance
# In[2]:
#criteria of shooting star
def shooting_star(data,lower_bound,body_size):
df=data.copy()
#open>close,red color
df['condition1']=np.where(df['Open']>=df['Close'],1,0)
#a candle with little or no lower wick
df['condition2']=np.where(
(df['Close']-df['Low'])<lower_bound*abs(
df['Close']-df['Open']),1,0)
#a candle with a small lower body
df['condition3']=np.where(abs(
df['Open']-df['Close'])<abs(
np.mean(df['Open']-df['Close']))*body_size,1,0)
#a long upper wick that is at least two times the size of the lower body
df['condition4']=np.where(
(df['High']-df['Open'])>=2*(
df['Open']-df['Close']),1,0)
#price uptrend
df['condition5']=np.where(
df['Close']>=df['Close'].shift(1),1,0)
df['condition6']=np.where(
df['Close'].shift(1)>=df['Close'].shift(2),1,0)
#the next candle's high must stay
#below the high of the shooting star
df['condition7']=np.where(
df['High'].shift(-1)<=df['High'],1,0)
#the next candle's close below
#the close of the shooting star
df['condition8']=np.where(
df['Close'].shift(-1)<=df['Close'],1,0)
return df
# In[3]:
#signal generation
#there are eight criteria according to investopedia
def signal_generation(df,method,
lower_bound=0.2,body_size=0.5,
stop_threshold=0.05,
holding_period=7):
#get shooting star conditions
data=method(df,lower_bound,body_size)
#shooting star should suffice all conditions
#in practise,you may find the definition too rigid
#its important to relax a bit on the body size
data['signals']=data['condition1']*data[
'condition2']*data['condition3']*data[
'condition4']*data['condition5']*data[
'condition6']*data['condition7']*data[
'condition8']
#shooting star is a short signal
data['signals']=-data['signals']
#find exit position
idxlist=data[data['signals']==-1].index
for ind in idxlist:
#entry point
entry_pos=data['Close'].loc[ind]
stop=False
counter=0
while not stop:
ind+=1
counter+=1
#set stop loss/profit at +-5%
if abs(data['Close'].loc[
ind]/entry_pos-1)>stop_threshold:
stop=True
data['signals'].loc[ind]=1
#set maximum holding period at 7 workdays
if counter>=holding_period:
stop=True
data['signals'].loc[ind]=1
#create positions
data['positions']=data['signals'].cumsum()
return data
# In[4]:
#since matplotlib remove the candlestick
#plus we dont wanna install mpl_finance
#we implement our own version
#simply use fill_between to construct the bar
#use line plot to construct high and low
def candlestick(df,ax=None,highlight=None,titlename='',
highcol='High',lowcol='Low',
opencol='Open',closecol='Close',xcol='Date',
colorup='r',colordown='g',highlightcolor='y',
**kwargs):
#bar width
#use 0.6 by default
dif=[(-3+i)/10 for i in range(7)]
if not ax:
ax=plt.figure(figsize=(10,5)).add_subplot(111)
#construct the bars one by one
for i in range(len(df)):
#width is 0.6 by default
#so 7 data points required for each bar
x=[i+j for j in dif]
y1=[df[opencol].iloc[i]]*7
y2=[df[closecol].iloc[i]]*7
barcolor=colorup if y1[0]>y2[0] else colordown
#no high line plot if open/close is high
if df[highcol].iloc[i]!=max(df[opencol].iloc[i],df[closecol].iloc[i]):
#use generic plot to viz high and low
#use 1.001 as a scaling factor
#to prevent high line from crossing into the bar
plt.plot([i,i],
[df[highcol].iloc[i],
max(df[opencol].iloc[i],
df[closecol].iloc[i])*1.001],c='k',**kwargs)
#same as high
if df[lowcol].iloc[i]!=min(df[opencol].iloc[i],df[closecol].iloc[i]):
plt.plot([i,i],
[df[lowcol].iloc[i],
min(df[opencol].iloc[i],
df[closecol].iloc[i])*0.999],c='k',**kwargs)
#treat the bar as fill between
plt.fill_between(x,y1,y2,
edgecolor='k',
facecolor=barcolor,**kwargs)
if highlight:
if df[highlight].iloc[i]==-1:
plt.fill_between(x,y1,y2,
edgecolor='k',
facecolor=highlightcolor,**kwargs)
#only show 5 xticks
plt.xticks([])
plt.grid(True)
plt.title(titlename)
# In[5]:
#plotting the backtesting result
def plot(data,name):
#first plot is candlestick to showcase
ax1=plt.subplot2grid((250,1),(0,0),
rowspan=120,
ylabel='Candlestick')
candlestick(data,ax1,
highlight='signals',
highlightcolor='#FFFF00')
#the second plot is the actual price
#with long/short positions as up/down arrows
ax2=plt.subplot2grid((250,1),(130,0),
rowspan=120,
ylabel='£ per share',
xlabel='Date')
ax2.plot(data.index,
data['Close'],
label=name)
#long/short positions are attached to
#the real close price of the stock
#set the line width to zero
#thats why we only observe markers
ax2.plot(data.loc[data['signals']==-1].index,
data['Close'].loc[data['signals']==-1],
marker='v',lw=0,c='r',label='short',
markersize=10)
ax2.plot(data.loc[data['signals']==1].index,
data['Close'].loc[data['signals']==1],
marker='^',lw=0,c='g',label='long',
markersize=10)
#only show five tickers
plt.xticks(range(0,len(data),len(data)//5),
data['Date'][0::len(data)//5].dt.date)
plt.grid(True)
plt.legend(loc='lower left')
plt.tight_layout(pad=0.1)
plt.show()
# In[6]:
def main():
#initializing
stdate='2000-01-01'
eddate='2021-11-04'
name='Vodafone'
ticker='VOD.L'
df=yfinance.download(ticker,start=stdate,end=eddate)
df.reset_index(inplace=True)
df['Date']=pd.to_datetime(df['Date'])
#signal generation
new=signal_generation(df,shooting_star)
#get subset for better viz to highlight shooting star
subset=new.loc[5268:5283].copy()
subset.reset_index(inplace=True,drop=True)
#viz
plot(subset,name)
# In[7]:
if __name__ == '__main__':
main()