forked from je-suis-tm/quant-trading
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathParabolic SAR backtest.py
169 lines (118 loc) · 4.62 KB
/
Parabolic SAR backtest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# coding: utf-8
# In[1]:
#parabolic stop and reverse is very useful for trend following
#sar is an indicator below the price when its an uptrend
#and above the price when its a downtrend
#it is very painful to calculate sar, though
#and many explanations online including wiki cannot clearly explain the process
#hence, the good idea would be to read info on wikipedia
#and download an excel spreadsheet made by joeu2004
#formulas are always more straight forward than descriptions
#links are shown below
# https://en.wikipedia.org/wiki/Parabolic_SAR
# https://www.box.com/s/gbtrjuoktgyag56j6lv0
import matplotlib.pyplot as plt
import numpy as np
import fix_yahoo_finance as yf
import pandas as pd
# In[2]:
#the calculation of sar
#as rules are very complicated
#plz check the links above to understand more about it
def parabolic_sar(new):
#this is common accelerating factors for forex and commodity
#for equity, af for each step could be set to 0.01
initial_af=0.02
step_af=0.02
end_af=0.2
new['trend']=0
new['sar']=0.0
new['real sar']=0.0
new['ep']=0.0
new['af']=0.0
#initial values for recursive calculation
new['trend'][1]=1 if new['Close'][1]>new['Close'][0] else -1
new['sar'][1]=new['High'][0] if new['trend'][1]>0 else new['Low'][0]
new.at[1,'real sar']=new['sar'][1]
new['ep'][1]=new['High'][1] if new['trend'][1]>0 else new['Low'][1]
new['af'][1]=initial_af
#calculation
for i in range(2,len(new)):
temp=new['sar'][i-1]+new['af'][i-1]*(new['ep'][i-1]-new['sar'][i-1])
if new['trend'][i-1]<0:
new.at[i,'sar']=max(temp,new['High'][i-1],new['High'][i-2])
temp=1 if new['sar'][i]<new['High'][i] else new['trend'][i-1]-1
else:
new.at[i,'sar']=min(temp,new['Low'][i-1],new['Low'][i-2])
temp=-1 if new['sar'][i]>new['Low'][i] else new['trend'][i-1]+1
new.at[i,'trend']=temp
if new['trend'][i]<0:
temp=min(new['Low'][i],new['ep'][i-1]) if new['trend'][i]!=-1 else new['Low'][i]
else:
temp=max(new['High'][i],new['ep'][i-1]) if new['trend'][i]!=1 else new['High'][i]
new.at[i,'ep']=temp
if np.abs(new['trend'][i])==1:
temp=new['ep'][i-1]
new.at[i,'af']=initial_af
else:
temp=new['sar'][i]
if new['ep'][i]==new['ep'][i-1]:
new.at[i,'af']=new['af'][i-1]
else:
new.at[i,'af']=min(end_af,new['af'][i-1]+step_af)
new.at[i,'real sar']=temp
return new
# In[3]:
#generating signals
#idea is the same as macd oscillator
#check the website below to learn more
# https://github.com/je-suis-tm/quant-trading/blob/master/MACD%20oscillator%20backtest.py
def signal_generation(df,method):
new=method(df)
new['positions'],new['signals']=0,0
new['positions']=np.where(new['real sar']<new['Close'],1,0)
new['signals']=new['positions'].diff()
return new
# In[4]:
#plotting of sar and trading positions
#still similar to macd
def plot(new,ticker):
fig=plt.figure()
ax=fig.add_subplot(111)
new['Close'].plot(lw=3,label='%s'%ticker)
new['real sar'].plot(linestyle=':',label='Parabolic SAR',color='k')
ax.plot(new.loc[new['signals']==1].index,new['Close'][new['signals']==1],marker='^',color='g',label='LONG',lw=0,markersize=10)
ax.plot(new.loc[new['signals']==-1].index,new['Close'][new['signals']==-1],marker='v',color='r',label='SHORT',lw=0,markersize=10)
plt.legend()
plt.grid(True)
plt.title('Parabolic SAR')
plt.ylabel('price')
plt.show()
# In[5]:
def main():
#download data via fix yahoo finance library
stdate=('2016-01-01')
eddate=('2018-01-01')
ticker=('EA')
#slice is used for plotting
#a two year dataset with 500 variables would be too much for a figure
slicer=450
df=yf.download(ticker,start=stdate,end=eddate)
#delete adj close and volume
#as we dont need them
del df['Adj Close']
del df['Volume']
#no need to iterate over timestamp index
df.reset_index(inplace=True)
new=signal_generation(df,parabolic_sar)
#convert back to time series for plotting
#so that we get a date x axis
new.set_index(new['date'],inplace=True)
#shorten our plotting horizon and plot
new=new[slicer:]
plot(new,ticker)
#how to calculate stats could be found from my other code called Heikin-Ashi
# https://github.com/je-suis-tm/quant-trading/blob/master/heikin%20ashi%20backtest.py
# In[6]:
if __name__ == '__main__':
main()