forked from je-suis-tm/quant-trading
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBollinger Bands Pattern Recognition backtest.py
237 lines (183 loc) · 8.23 KB
/
Bollinger Bands Pattern Recognition backtest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
# coding: utf-8
# In[1]:
#bollinger bands is a simple indicator
#just moving average plus moving standard deviation
#but pattern recognition is a differenct case
#visualization is easy for human to identify the pattern
#but for the machines, we gotta find a different approach
#when we talk about pattern recognition these days
#people always respond with machine learning
#why machine learning when u can use arithmetic approach
#which is much faster and simpler?
#there are many patterns for recognition
#top m, bottom w, head-shoulder top, head-shoulder bottom, elliott waves
#in this content, we only discuss bottom w
#top m is just the reverse of bottom w
#rules of bollinger bands and bottom w can be found in the following link:
# https://www.tradingview.com/wiki/Bollinger_Bands_(BB)
import os
import pandas as pd
import matplotlib.pyplot as plt
import copy
import numpy as np
# In[2]:
os.chdir('d:/')
# In[3]:
#first step is to calculate moving average and moving standard deviation
#we plus/minus two standard deviations on moving average
#we get our upper, mid, lower bands
def bollinger_bands(df):
data=copy.deepcopy(df)
data['std']=data['price'].rolling(window=20,min_periods=20).std()
data['mid band']=data['price'].rolling(window=20,min_periods=20).mean()
data['upper band']=data['mid band']+2*data['std']
data['lower band']=data['mid band']-2*data['std']
return data
# In[4]:
#the signal generation is a bit tricky
#there are four conditions to satisfy
#for the shape of w, there are five nodes
#from left to right, top to bottom, l,k,j,m,i
#when we generate signals
#the iteration node is the top right node i, condition 4
#first, we find the middle node j, condition 2
#next, we identify the first bottom node k, condition 1
#after that, we point out the first top node l
#l is not any of those four conditions
#we just use it for pattern visualization
#finally, we locate the second bottom node m, condition 3
#plz refer to the following link for my poor visualization
# https://github.com/je-suis-tm/quant-trading/blob/master/preview/bollinger%20bands%20bottom%20w%20pattern.png
def signal_generation(data,method):
#according to investopedia
#for a double bottom pattern
#we should use 3-month horizon which is 75
period=75
#alpha denotes the difference between price and bollinger bands
#if alpha is too small, its unlikely to trigger a signal
#if alpha is too large, its too easy to trigger a signal
#which gives us a higher probability to lose money
#beta denotes the scale of bandwidth
#when bandwidth is larger than beta, it is expansion period
#when bandwidth is smaller than beta, it is contraction period
alpha=0.0001
beta=0.0001
df=method(data)
df['signals']=0
#as usual, cumsum denotes the holding position
#coordinates store five nodes of w shape
#later we would use these coordinates to draw a w shape
df['cumsum']=0
df['coordinates']=''
for i in range(period,len(df)):
#moveon is a process control
#if moveon==true, we move on to verify the next condition
#if false, we move on to the next iteration
#threshold denotes the value of node k
#we would use it for the comparison with node m
#plz refer to condition 3
moveon=False
threshold=0.0
#bottom w pattern recognition
#there is another signal generation method called walking the bands
#i personally think its too late for following the trend
#after confirmation of several breakthroughs
#maybe its good for stop and reverse
#condition 4
if (df['price'][i]>df['upper band'][i]) and \
(df['cumsum'][i]==0):
for j in range(i,i-period,-1):
#condition 2
if (np.abs(df['mid band'][j]-df['price'][j])<alpha) and \
(np.abs(df['mid band'][j]-df['upper band'][i])<alpha):
moveon=True
break
if moveon==True:
moveon=False
for k in range(j,i-period,-1):
#condition 1
if (np.abs(df['lower band'][k]-df['price'][k])<alpha):
threshold=df['price'][k]
moveon=True
break
if moveon==True:
moveon=False
for l in range(k,i-period,-1):
#this one is for plotting w shape
if (df['mid band'][l]<df['price'][l]):
moveon=True
break
if moveon==True:
moveon=False
for m in range(i,j,-1):
#condition 3
if (df['price'][m]-df['lower band'][m]<alpha) and \
(df['price'][m]>df['lower band'][m]) and \
(df['price'][m]<threshold):
df.at[i,'signals']=1
df.at[i,'coordinates']='%s,%s,%s,%s,%s'%(l,k,j,m,i)
df['cumsum']=df['signals'].cumsum()
moveon=True
break
#clear our positions when there is contraction on bollinger bands
#contraction on the bandwidth is easy to understand
#when price momentum exists, the price would move dramatically for either direction
#which greatly increases the standard deviation
#when the momentum vanishes, we clear our positions
#note that we put moveon in the condition
#just in case our signal generation time is contraction period
#but we dont wanna clear positions right now
if (df['cumsum'][i]!=0) and \
(df['std'][i]<beta) and \
(moveon==False):
df.at[i,'signals']=-1
df['cumsum']=df['signals'].cumsum()
return df
# In[5]:
#visualization
def plot(new):
#as usual we could cut the dataframe into a small slice
#for a tight and neat figure
#a and b denotes entry and exit of a trade
a,b=list(new[new['signals']!=0].iloc[:2].index)
newbie=new[a-85:b+30]
newbie.set_index(pd.to_datetime(newbie['date'],format='%Y-%m-%d %H:%M:%S'),inplace=True)
fig=plt.figure(figsize=(10,5))
ax=fig.add_subplot(111)
#plotting positions on price series and bollinger bands
ax.plot(newbie['price'],label='price')
ax.fill_between(newbie.index,newbie['lower band'],newbie['upper band'],alpha=0.2,color='#45ADA8')
ax.plot(newbie['mid band'],linestyle='--',label='moving average',c='#132226')
ax.plot(newbie['price'][newbie['signals']==1],marker='^',markersize=12, \
lw=0,c='g',label='LONG')
ax.plot(newbie['price'][newbie['signals']==-1],marker='v',markersize=12, \
lw=0,c='r',label='SHORT')
#plotting w shape
#we locate the coordinates then find the exact date as index
temp=newbie['coordinates'][newbie['signals']==1]
indexlist=list(map(int,temp[temp.index[0]].split(',')))
ax.plot(newbie['price'][pd.to_datetime(new['date'].iloc[indexlist])], \
lw=5,alpha=0.7,c='#FE4365',label='double bottom pattern')
#add some captions
plt.text((newbie.loc[newbie['signals']==1].index[0]), \
newbie['lower band'][newbie['signals']==1],'Expansion',fontsize=15,color='#563838')
plt.text((newbie.loc[newbie['signals']==-1].index[0]), \
newbie['lower band'][newbie['signals']==-1],'Contraction',fontsize=15,color='#563838')
plt.legend(loc='best')
plt.title('Bollinger Bands Pattern Recognition')
plt.ylabel('price')
plt.grid(True)
plt.show()
# In[6]:
#ta-da
def main():
#again, i download data from histdata.com
#and i take the average of bid and ask price
df=pd.read_csv('gbpusd.csv')
signals=signal_generation(df,bollinger_bands)
new=copy.deepcopy(signals)
plot(new)
#how to calculate stats could be found from my other code called Heikin-Ashi
# https://github.com/je-suis-tm/quant-trading/blob/master/heikin%20ashi%20backtest.py
if __name__ == '__main__':
main()