-
Notifications
You must be signed in to change notification settings - Fork 0
/
Model.py
329 lines (280 loc) · 15.3 KB
/
Model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
from __future__ import division
from __future__ import print_function
import codecs
import sys
# import tensorflow as tf
import tensorflow as tf
from DataLoader import FilePaths
class DecoderType:
BestPath = 0
WordBeamSearch = 1
BeamSearch = 2
class Model:
# Model Constants
batchSize = 10 # 50
imgSize = (800, 64)
maxTextLen = 100 # maximum text length can be reccognized
def __init__(self, charList, decoderType=DecoderType.BestPath, mustRestore=False):
self.charList = charList
self.decoderType = decoderType
self.mustRestore = mustRestore
self.snapID = 0
# tf.disable_v2_behavior()
# input image batch
self.inputImgs = tf.placeholder(tf.float32, shape=(None, Model.imgSize[0], Model.imgSize[1]))
# tf.Variable(tf.ones(tf.float32, shape=(None, Model.imgSize[0], Model.imgSize[1])))
# tf.Variable(tf.onessetupCNN
# tf.placeholder(tf.float32, shape=(None, Model.imgSize[0], Model.imgSize[1]))
# setup CNN, RNN and CTC
self.setupCNN()
self.setupRNN()
self.setupCTC()
# setup optimizer to train NN
self.batchesTrained = 0
self.learningRate = tf.placeholder(tf.float32, shape=[])
self.optimizer = tf.train.RMSPropOptimizer(self.learningRate).minimize(self.loss)
# Initialize TensorFlow
(self.sess, self.saver) = self.setupTF()
self.training_loss_summary = tf.summary.scalar('loss', self.loss)
self.writer = tf.summary.FileWriter(
'./logs', self.sess.graph) # Tensorboard: Create writer
self.merge = tf.summary.merge([self.training_loss_summary]) # Tensorboard: Merge
def setupCNN(self):
""" Create CNN layers and return output of these layers """
cnnIn4d = tf.expand_dims(input=self.inputImgs, axis=3)
# First Layer: Conv (5x5) + Pool (2x2) - Output size: 400 x 32 x 64
with tf.name_scope('Conv_Pool_1'):
kernel = tf.Variable(
tf.truncated_normal([5, 5, 1, 64], stddev=0.1))
conv = tf.nn.conv2d(
cnnIn4d, kernel, padding='SAME', strides=(1, 1, 1, 1))
learelu = tf.nn.leaky_relu(conv, alpha=0.01)
pool = tf.nn.max_pool(learelu, (1, 2, 2, 1), (1, 2, 2, 1), 'VALID')
# Second Layer: Conv (5x5) + Pool (1x2) - Output size: 400 x 16 x 128
with tf.name_scope('Conv_Pool_2'):
kernel = tf.Variable(tf.truncated_normal(
[5, 5, 64, 128], stddev=0.1))
conv = tf.nn.conv2d(
pool, kernel, padding='SAME', strides=(1, 1, 1, 1))
learelu = tf.nn.leaky_relu(conv, alpha=0.01)
pool = tf.nn.max_pool(learelu, (1, 1, 2, 1), (1, 1, 2, 1), 'VALID')
# Third Layer: Conv (3x3) + Pool (2x2) + Simple Batch Norm - Output size: 200 x 8 x 128
with tf.name_scope('Conv_Pool_BN_3'):
kernel = tf.Variable(tf.truncated_normal(
[3, 3, 128, 128], stddev=0.1))
conv = tf.nn.conv2d(
pool, kernel, padding='SAME', strides=(1, 1, 1, 1))
mean, variance = tf.nn.moments(conv, axes=[0])
batch_norm = tf.nn.batch_normalization(
conv, mean, variance, offset=None, scale=None, variance_epsilon=0.001)
learelu = tf.nn.leaky_relu(batch_norm, alpha=0.01)
pool = tf.nn.max_pool(learelu, (1, 2, 2, 1), (1, 2, 2, 1), 'VALID')
# Fourth Layer: Conv (3x3) - Output size: 200 x 8 x 256
with tf.name_scope('Conv_4'):
kernel = tf.Variable(tf.truncated_normal(
[3, 3, 128, 256], stddev=0.1))
conv = tf.nn.conv2d(
pool, kernel, padding='SAME', strides=(1, 1, 1, 1))
learelu = tf.nn.leaky_relu(conv, alpha=0.01)
# Fifth Layer: Conv (3x3) + Pool(2x2) - Output size: 100 x 4 x 256
with tf.name_scope('Conv_Pool_5'):
kernel = tf.Variable(tf.truncated_normal(
[3, 3, 256, 256], stddev=0.1))
conv = tf.nn.conv2d(
learelu, kernel, padding='SAME', strides=(1, 1, 1, 1))
learelu = tf.nn.leaky_relu(conv, alpha=0.01)
pool = tf.nn.max_pool(learelu, (1, 2, 2, 1), (1, 2, 2, 1), 'VALID')
# Sixth Layer: Conv (3x3) + Pool(1x2) + Simple Batch Norm - Output size: 100 x 2 x 512
with tf.name_scope('Conv_Pool_BN_6'):
kernel = tf.Variable(tf.truncated_normal(
[3, 3, 256, 512], stddev=0.1))
conv = tf.nn.conv2d(
pool, kernel, padding='SAME', strides=(1, 1, 1, 1))
mean, variance = tf.nn.moments(conv, axes=[0])
batch_norm = tf.nn.batch_normalization(
conv, mean, variance, offset=None, scale=None, variance_epsilon=0.001)
learelu = tf.nn.leaky_relu(batch_norm, alpha=0.01)
pool = tf.nn.max_pool(learelu, (1, 1, 2, 1), (1, 1, 2, 1), 'VALID')
# Seventh Layer: Conv (3x3) + Pool (1x2) - Output size: 100 x 1 x 512
with tf.name_scope('Conv_Pool_7'):
kernel = tf.Variable(tf.truncated_normal(
[3, 3, 512, 512], stddev=0.1))
conv = tf.nn.conv2d(
pool, kernel, padding='SAME', strides=(1, 1, 1, 1))
learelu = tf.nn.leaky_relu(conv, alpha=0.01)
pool = tf.nn.max_pool(learelu, (1, 1, 2, 1), (1, 1, 2, 1), 'VALID')
self.cnnOut4d = pool
def setupRNN(self):
""" Create RNN layers and return output of these layers """
# Collapse layer to remove dimension 100 x 1 x 512 --> 100 x 512 on axis=2
rnnIn3d = tf.squeeze(self.cnnOut4d, axis=[2])
# 2 layers of LSTM cell used to build RNN
numHidden = 512
cells = [tf.contrib.rnn.LSTMCell(
num_units=numHidden, state_is_tuple=True, name='basic_lstm_cell') for _ in range(2)]
stacked = tf.contrib.rnn.MultiRNNCell(cells, state_is_tuple=True)
# Bi-directional RNN
# BxTxF -> BxTx2H
((forward, backward), _) = tf.nn.bidirectional_dynamic_rnn(
cell_fw=stacked, cell_bw=stacked, inputs=rnnIn3d, dtype=rnnIn3d.dtype)
# BxTxH + BxTxH -> BxTx2H -> BxTx1X2H
concat = tf.expand_dims(tf.concat([forward, backward], 2), 2)
# Project output to chars (including blank): BxTx1x2H -> BxTx1xC -> BxTxC
kernel = tf.Variable(tf.truncated_normal(
[1, 1, numHidden * 2, len(self.charList) + 1], stddev=0.1))
self.rnnOut3d = tf.squeeze(tf.nn.atrous_conv2d(value=concat, filters=kernel, rate=1, padding='SAME'), axis=[2])
def setupCTC(self):
""" Create CTC loss and decoder and return them """
# BxTxC -> TxBxC
self.ctcIn3dTBC = tf.transpose(self.rnnOut3d, [1, 0, 2])
# Ground truth text as sparse tensor
with tf.name_scope('CTC_Loss'):
self.gtTexts = tf.SparseTensor(tf.placeholder(tf.int64, shape=[
None, 2]), tf.placeholder(tf.int32, [None]), tf.placeholder(tf.int64, [2]))
# Calculate loss for batch
self.seqLen = tf.placeholder(tf.int32, [None])
self.loss = tf.reduce_mean(tf.nn.ctc_loss(labels=self.gtTexts, inputs=self.ctcIn3dTBC, sequence_length=self.seqLen,
ctc_merge_repeated=True, ignore_longer_outputs_than_inputs=True))
with tf.name_scope('CTC_Decoder'):
# Decoder: Best path decoding or Word beam search decoding
if self.decoderType == DecoderType.BestPath:
self.decoder = tf.nn.ctc_greedy_decoder(
inputs=self.ctcIn3dTBC, sequence_length=self.seqLen)
elif self.decoderType == DecoderType.BeamSearch:
self.decoder = tf.nn.ctc_beam_search_decoder(inputs=self.ctcIn3dTBC, sequence_length=self.seqLen, beam_width=50, merge_repeated=True)
elif self.decoderType == DecoderType.WordBeamSearch:
# Import compiled word beam search operation (see https://github.com/githubharald/CTCWordBeamSearch)
word_beam_search_module = tf.load_op_library(
'./TFWordBeamSearch.so')
# Prepare: dictionary, characters in dataset, characters forming words
chars = codecs.open(FilePaths.wordCharList.txt, 'r').read()
wordChars = codecs.open(
FilePaths.fnWordCharList, 'r').read()
corpus = codecs.open(FilePaths.corpus.txt, 'r').read()
# # Decoder using the "NGramsForecastAndSample": restrict number of (possible) next words to at most 20 words: O(W) mode of word beam search
# decoder = word_beam_search_module.word_beam_search(tf.nn.softmax(ctcIn3dTBC, dim=2), 25, 'NGramsForecastAndSample', 0.0, corpus.encode('utf8'), chars.encode('utf8'), wordChars.encode('utf8'))
# Decoder using the "Words": only use dictionary, no scoring: O(1) mode of word beam search
self.decoder = word_beam_search_module.word_beam_search(tf.nn.softmax(
self.ctcIn3dTBC, dim=2), 25, 'Words', 0.0, corpus.encode('utf8'), chars.encode('utf8'), wordChars.encode('utf8'))
# Return a CTC operation to compute the loss and CTC operation to decode the RNN output
return self.loss, self.decoder
def setupTF(self):
""" Initialize TensorFlow """
print('Python: ' + sys.version)
print('Tensorflow: ' + tf.__version__)
sess = tf.Session() # Tensorflow session
saver = tf.train.Saver(max_to_keep=3) # Saver saves model to file
modelDir = '../model/'
latestSnapshot = tf.train.latest_checkpoint(modelDir) # Is there a saved model?
# If model must be restored (for inference), there must be a snapshot
if self.mustRestore and not latestSnapshot:
raise Exception('No saved model found in: ' + modelDir)
# Load saved model if available
if latestSnapshot:
print('Init with stored values from ' + latestSnapshot)
saver.restore(sess, latestSnapshot)
else:
print('Init with new values')
sess.run(tf.global_variables_initializer())
return (sess, saver)
def toSpare(self, texts):
""" Convert ground truth texts into sparse tensor for ctc_loss """
indices = []
values = []
shape = [len(texts), 0] # Last entry must be max(labelList[i])
# Go over all texts
for (batchElement, texts) in enumerate(texts):
# Convert to string of label (i.e. class-ids)
print(texts)
labelStr = []
for c in texts:
print(c, '|', end='')
labelStr.append(self.charList.index(c))
print(' ')
labelStr = [self.charList.index(c) for c in texts]
# Sparse tensor must have size of max. label-string
if len(labelStr) > shape[1]:
shape[1] = len(labelStr)
# Put each label into sparse tensor
for (i, label) in enumerate(labelStr):
indices.append([batchElement, i])
values.append(label)
return (indices, values, shape)
def decoderOutputToText(self, ctcOutput):
""" Extract texts from output of CTC decoder """
# Contains string of labels for each batch element
encodedLabelStrs = [[] for i in range(Model.batchSize)]
# Word beam search: label strings terminated by blank
if self.decoderType == DecoderType.WordBeamSearch:
blank = len(self.charList)
for b in range(Model.batchSize):
for label in ctcOutput[b]:
if label == blank:
break
encodedLabelStrs[b].append(label)
# TF decoders: label strings are contained in sparse tensor
else:
# Ctc returns tuple, first element is SparseTensor
decoded = ctcOutput[0][0]
# Go over all indices and save mapping: batch -> values
idxDict = {b : [] for b in range(Model.batchSize)}
for (idx, idx2d) in enumerate(decoded.indices):
label = decoded.values[idx]
batchElement = idx2d[0] # index according to [b,t]
encodedLabelStrs[batchElement].append(label)
# Map labels to chars for all batch elements
return [str().join([self.charList[c] for c in labelStr]) for labelStr in encodedLabelStrs]
def trainBatch(self, batch, batchNum):
""" Feed a batch into the NN to train it """
sparse = self.toSpare(batch.gtTexts)
rate = 0.001 # if you use the pretrained model to continue train
#rate = 0.01 if self.batchesTrained < 10 else (
# 0.001 if self.batchesTrained < 2750 else 0.001) # variable learning_rate is used from trained from scratch
evalList = [self.merge, self.optimizer, self.loss]
feedDict = {self.inputImgs: batch.imgs, self.gtTexts: sparse, self.seqLen: [Model.maxTextLen] * Model.batchSize, self.learningRate: rate}
(loss_summary, _, lossVal) = self.sess.run(evalList, feedDict)
# Tensorboard: Add loss_summary to writer
self.writer.add_summary(loss_summary, batchNum)
self.batchesTrained += 1
return lossVal
def return_rnn_out(self, batch, write_on_csv=False):
"""Only return rnn_out prediction value without decoded"""
numBatchElements = len(batch.imgs)
decoded, rnnOutput = self.sess.run([self.decoder, self.ctcIn3dTBC],
{self.inputImgs: batch.imgs, self.seqLen: [Model.maxTextLen] * numBatchElements})
decoded = rnnOutput
print(decoded.shape)
if write_on_csv:
s = rnnOutput.shape
b = 0
csv = ''
for t in range(s[0]):
for c in range(s[2]):
csv += str(rnnOutput[t, b, c]) + ';'
csv += '\n'
open('mat_0.csv', 'w').write(csv)
return decoded[:,0,:].reshape(100,80)
def inferBatch(self, batch):
""" Feed a batch into the NN to recognize texts """
numBatchElements = len(batch.imgs)
feedDict = {self.inputImgs: batch.imgs, self.seqLen: [Model.maxTextLen] * numBatchElements}
evalRes = self.sess.run([self.decoder, self.ctcIn3dTBC], feedDict)
decoded = evalRes[0]
# # Dump RNN output to .csv file
# decoded, rnnOutput = self.sess.run([self.decoder, self.rnnOutput], {
# self.inputImgs: batch.imgs, self.seqLen: [Model.maxTextLen] * Model.batchSize})
# s = rnnOutput.shape
# b = 0
# csv = ''
# for t in range(s[0]):
# for c in range(s[2]):
# csv += str(rnnOutput[t, b, c]) + ';'
# csv += '\n'
# open('mat_0.csv', 'w').write(csv)
texts = self.decoderOutputToText(decoded)
return texts
def save(self):
""" Save model to file """
self.snapID += 1
self.saver.save(self.sess, '../model/snapshot',
global_step=self.snapID)