-
Notifications
You must be signed in to change notification settings - Fork 0
/
Roadmap.html
177 lines (152 loc) · 50.4 KB
/
Roadmap.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css" integrity="sha384-xOolHFLEh07PJGoPkLv1IbcEPTNtaed2xpHsD9ESMhqIYd0nLMwNLD69Npy4HI+N" crossorigin="anonymous">
<link rel="stylesheet" href="Roadmap.css">
<title>Roadmap</title>
</head>
<body>
<nav>
<div class="main-nav container flex">
<a id="aa" href="web.html" >Back To Home
</a>
</div>
</nav>
<h3> Roadmap to Master ML </h3>
<div >
<img id="roadmap" src="Roadmap-ml2.jpg" alt="..">
</div>
<h3> Here the free Resources To Master ML...</h3>
<br>
<br>
<div id="resources">
<div class="card" style="width: 18rem;">
<img src="https://i.ytimg.com/vi/ADzhz1Wely8/hqdefault.jpg" class="card-img-top" alt="...">
<div class="card-body">
<h5 class="card-title">Essential Mathematics for Machine Learning</h5>
<p class="card-text">YouTube series like "Essential Mathematics for Machine Learning" teach the core math (linear algebra, calculus, probability, statistics) needed to grasp machine learning algorithms.
This builds a strong foundation for understanding and implementing them effectively.</p>
<a href="https://www.youtube.com/playlist?list=PLLy_2iUCG87D1CXFxE-SxCFZUiJzQ3IvE" class="btn btn-primary">Visit</a>
</div>
</div>
<div class="card" style="width: 18rem;">
<img src="https://digialpsltd.b-cdn.net/wp-content/uploads/2024/04/Feature2.png" class="card-img-top" height="215px" alt="...">
<div class="card-body">
<h5 class="card-title">ML Crash Course with TensorFlow APIs</h5>
<p class="card-text">This free online course teaches machine learning basics and building neural networks with TensorFlow.
Through video lectures, real-world examples, and hands-on exercises, you'll gain practical skills in building and evaluating machine learning models in Python.
</p>
<a href="https://developers.google.com/machine-learning/crash-course" class="btn btn-primary">visit</a>
</div>
</div>
<div class="card" style="width: 18rem;">
<img src="https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRKaSMxsLMT_22utoFXu7ZckTQKgeI7BHOBZg&s" class="card-img-top" height="230px" alt="...">
<div class="card-body">
<h5 class="card-title">Master Python </h5>
<p class="card-text">Duration: Approximately 4 hours.
Content:
Learn Python basics, including variables, lists, and functions.<br>
Explore Python packages like NumPy for data science.<br>
Start your Python journey on DataCamp and gain valuable skills!</p>
<a href="https://www.datacamp.com/courses/intro-to-python-for-data-science" class="btn btn-primary">Visit</a>
</div>
</div>
<div class="card" style="width: 18rem;">
<img src="https://pyimagesearch.com/wp-content/uploads/2019/01/python_ml_header.png" class="card-img-top" height="255px" alt="...">
<div class="card-body">
<h5 class="card-title">Machine Learning Specialization</h5>
<p class="card-text">This webpage is about supervised machine learning. It discusses what supervised machine learning is and gives details of two common algorithms: linear regression and logistic regression.
Some of the important points from this website are the different applications of machine learning and the fact that this course is for beginners with no prior coding experience required.</p>
<a href="https://www.coursera.org/learn/machine-learning" class="btn btn-primary">Visit</a>
</div>
</div>
<div class="card" style="width: 18rem;">
<img src="https://madewithml.com/static/images/logos.png" class="card-img-top" alt="...">
<div class="card-body">
<h5 class="card-title">Learn ML Applications</h5>
<p class="card-text">This a course is about information that teaches people how to build and deploy machine learning applications. It discusses what the course covers, who it is for, and the benefits of taking the course. Some of the important points are that the course covers the entire machine learning process, from design to production,
and that it is designed for people with a variety of backgrounds.
</p>
<a href="https://madewithml.com/ " class="btn btn-primary">Visit</a>
</div>
</div>
<div class="card" style="width: 18rem;">
<img src="https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRrF-Kgbq0e_Wpxp3XtDT7Z8BtPrwPezGmdyA&s" class="card-img-top" height="255px" alt="...">
<div class="card-body">
<h5 class="card-title">Data Preprocessing in Machine learning</h5>
<p class="card-text">This webpage is about data preprocessing in machine learning.<br>
Data preprocessing is the first step in creating a machine learning model.<br>
It involves cleaning and formatting the data.
Data preprocessing is necessary to improve the accuracy of the machine learning model.
you will gain detailed information from this about Data Processing From this page</p>
<a href="https://www.javatpoint.com/data-preprocessing-machine-learning" class="btn btn-primary">Visit</a>
</div>
</div>
<div class="card" style="width: 18rem;">
<img src="https://miro.medium.com/v2/resize:fit:693/1*1ouD8HMkmJffNSAMfvBSkw.png" class="card-img-top" height="200px" alt="...">
<div class="card-body">
<h5 class="card-title">scikit-learn</h5>
<p class="card-text">scikit-learn is an open source machine learning library for Python.
It is built on top of the NumPy and SciPy libraries, and provides a range of algorithms for tasks including classification,
regression, clustering and dimensionality reduction.</p>
<a href="https://scikit-learn.org/stable/" class="btn btn-primary">Visit</a>
</div>
</div>
<div class="card" style="width: 18rem;">
<img src="https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcSl1-EEGS-0qKj9Z4kmf6ZXeHg3pvGw594qjQ&s" class="card-img-top" height="200px" alt="...">
<div class="card-body">
<h5 class="card-title">TensorFlow</h5>
<p class="card-text">TensorFlow is an end-to-end platform for machine learning. It can be used to create machine learning models that can run in any environment.
TensorFlow.js is a library that can be used to train and run machine learning models directly in the browser using JavaScript or Node.js.</p>
<a href="https://www.tensorflow.org/" class="btn btn-primary">Visit</a>
</div>
</div>
<div class="card" style="width: 18rem;">
<img src="https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRFyvMzhxmNsDp4FmsQ4guL2Plb8pGEexggiQ&s" class="card-img-top" height="200px" alt="...">
<div class="card-body">
<h5 class="card-title">kaggle</h5>
<p class="card-text">Kaggle is a valuable platform for machine learning enthusiasts. competitions, and discussions to hone your ML skills.
A vast library of public datasets and pre-trained models for project inspiration.A community to share knowledge, learn from others, and participate in competitions.</p>
<a href="https://www.kaggle.com/" class="btn btn-primary">Visit</a>
</div>
</div>
<div class="card" style="width: 18rem;">
<img src="" class="card-img-top" height="200px" alt="...">
<div class="card-body">
<h5 class="card-title">Machine Learning for everybody</h5>
<p class="card-text"> The “Machine Learning for Everybody – Full Course” by Kylie Ying is a beginner-friendly video course lasting approximately 3 hours and 53 minutes.
It covers fundamental machine learning concepts, practical implementations using TensorFlow, and various algorithms such as k-nearest neighbors, Naive Bayes, and neural networks.
Learners work with real-world datasets and receive a certificate upon completion.
You can watch the full course on YouTube . </p>
<a href="https://www.youtube.com/watch?v=i_LwzRVP7bg" class="btn btn-primary">Visit</a>
</div>
</div>
<div class="card" style="width: 18rem;">
<img src="https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRAf30fEtCnZQcROerynxMN1jOjmyyh7i1kOvL6AWeG1NFXl2qNCTEToGupZDuafNa98kI&usqp=CAU" class="card-img-top" height="200px" alt="...">
<div class="card-body">
<h5 class="card-title">ML for begginers:GreatLearning</h5>
<p class="card-text">This free course starts by providing a brief introduction to Machine Learning.
This webpage offers a machine learning tutorial. It covers the basics of machine learning, including different types and common algorithms.
you will learn about the mathematical space where Machine Learning occurs. It also explains the steps involved in a typical machine learning process.complete the quiz at the end to earn a free certificate.
</p>
<a href="https://www.mygreatlearning.com/blog/machine-learning-tutorial/" class="btn btn-primary">Visit</a>
</div>
</div>
<div class="card" style="width: 18rem;">
<img src="" class="card-img-top" height="200px" alt="...">
<div class="card-body">
<h5 class="card-title">ML course with practical</h5>
<p class="card-text">The “Machine Learning Full Course with Practical” on YouTube is a beginner-friendly tutorial lasting approximately
6 hours and 45 minutes. Presented by WsCube Tech, it covers Python basics, data preprocessing, regression, classification, clustering, NLP,
deep learning, model evaluation, and real-world applications.
You can explore the course on YouTube to enhance your machine learning skills!</p>
<a href="https://www.youtube.com/watch?v=O0Ka_nBRtN0" class="btn btn-primary">Visit</a>
</div>
</div>
</div>
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/jquery.slim.min.js" integrity="sha384-DfXdz2htPH0lsSSs5nCTpuj/zy4C+OGpamoFVy38MVBnE+IbbVYUew+OrCXaRkfj" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/js/bootstrap.bundle.min.js" integrity="sha384-Fy6S3B9q64WdZWQUiU+q4/2Lc9npb8tCaSX9FK7E8HnRr0Jz8D6OP9dO5Vg3Q9ct" crossorigin="anonymous"></script>
</body>
</html>