-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathtrain_word2vec_model.py
78 lines (63 loc) · 3.03 KB
/
train_word2vec_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import time
from gensim.models.word2vec import Word2Vec
from Utils.string_utils import clean_str
from Utils.file_utils import find_files
from analysis_pipeline import analyze, debug_analyze
from analysis_pipeline import build_synonym_filter, fact_case_sensitive_stop_word_filter, fact_stop_word_filter
from analysis_pipeline import fact_is_synonym_filter, white_space_tokenize, remove_punct_at_end_filter, lower_case_filter, remove_empty_tokens_filter
from Config.train_word2vec_model_config import TrainWord2VecModelConfig
import sys
""" TRAIN Word 2 Vec Model"""
if len(sys.argv) != 2:
raise Exception("Incorrect number of arguments passed - one expected, the config file name")
config = TrainWord2VecModelConfig(sys.argv[1])
""" Load analysis chain """
syn_mapper = build_synonym_filter(config.keywords_files, config.case_sensitive)
if config.case_sensitive:
stop_filter = fact_case_sensitive_stop_word_filter(config.stop_words_file)
else:
stop_filter = fact_stop_word_filter(config.stop_words_file)
# Simon Hughes: This is quite inefficient, as each function is applied in turn
# resulting in multiple passes over the token stream. While not currently a
# big performance bottleneck, could be much faster.
# - TODO: use functional composition to speed up
is_a_synonym_filter = fact_is_synonym_filter(syn_mapper)
analysis_chain = [clean_str,
white_space_tokenize,
remove_punct_at_end_filter,
lower_case_filter,
stop_filter,
syn_mapper.map_synonyms,
remove_empty_tokens_filter]
# is_a_synonym_filter] - Un-comment to just train on keywords.
#Test
#rslt = debug_analyze("$150k as400 Sr.\ Java/j2ee and the C#.! developer. FIT \"HOT\" dev. -IBM's business, sql server management", analysis_chain)
""" Load Documents """
start = time.time()
sentences = []
files = find_files(config.processed_documents_folder, config.file_mask, True)
print("%s files found in %s" % (len(files), config.processed_documents_folder))
documents = []
for i, fname in enumerate(files):
with open(fname) as f:
contents = f.read()
sentences.extend(contents.split("\n"))
end = time.time()
print("Loading %i sentences took %s seconds" % (len(sentences), str(end - start)))
""" Analyze - clean, tokenize, extract phrases """
print("%i sentences to process" % len(sentences))
tokenized = []
print("Tokenizing sentences")
for i, sent in enumerate(sentences):
tokens = analyze(sent, analysis_chain)
if len(tokens) >= config.min_sentence_length_words:
tokenized.append(tokens)
if i % 100000 == 0:
print(i)
""" Train Model """
start = time.time()
print("Training Model. This could take a while (10-60 mins for moderate collections). Get a coffee")
model = Word2Vec(tokenized, iter=config.training_iterations, size=config.vector_size, window=config.window_size, min_count=config.min_word_count, workers=config.workers, sample=1e-5, hs=0, negative=20)
model.save(config.model_file)
end = time.time()
print "Took %s seconds" % (end - start)