-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathRandomSearch.py
748 lines (586 loc) · 26.7 KB
/
RandomSearch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
import torch.backends.cudnn as cudnn
import torch, random,time,os,logging
import numpy as np
import matplotlib.pyplot as plt
from utils.config import get_common_search_config
from utils.utils import get_dataset,write_txt
from utils.Evaluation_Model import solution_evaluation
from Tree.Genetic_Operator import Generate,Generate_crossover_mutation, Generate_from_existing
from genotypes import Genotype_mapping
from EMO_public import F_distance,NDsort,F_mating,F_EnvironmentSelect
from Tree.Node import Tree
from Tree.Node import Node as TreeNode
import sys,gc,pickle
from copy import deepcopy
from threading import Thread
os.environ['CUDA_VISIBLE_DEVICES']= '1'
def get_latest_folder(directory):
# 获取指定目录下所有条目的绝对路径
absolute_paths = [os.path.join(directory, f) for f in os.listdir(directory)]
# 筛选出是文件夹的条目,并获取其最后修改时间
folder_paths = [(path, os.path.getmtime(path)) for path in absolute_paths if os.path.isdir(path)]
if not folder_paths:
return None
# 按最后修改时间排序,并返回最新的文件夹
latest_folder = max(folder_paths, key=lambda x: x[1])[0]
return latest_folder
class MyThread(Thread):
def __init__(self, func, args):
super(MyThread, self).__init__()
self.func = func
self.args = args
def run(self):
self.result = self.func(*self.args)
def get_result(self):
try:
return self.result
except Exception:
return None
class Individual():
def __init__(self, Dec=None, num_Nodes=5,mapping=None,config=None, gen=0,id=0):
self.config = config
self.id = id
self.gen = gen
self.pre_inputs=['Stu','Exer','Conc']
self.mapping =mapping
self.Reverse_mapping = dict([val, key] for key, val in self.mapping.items())
if Dec is None:
self.Dec = Dec
self.numNodes = num_Nodes
self.RandomBuildTree()
else:
self.numNodes = len(Dec)//3
self.build_treeFromDec(Dec)
self.UpdateShape(self.tree.root)
self.RepairConstraint(self.tree.root)
self.getNumNode()
self.Get_DecArrary()
a=1
def Deletion(self,index): # the index is not same as No. (index is based on level travel, No. based on Post-Order travel)
subtree = self.get_subTree(index)
if subtree.right is not None and subtree.right.item not in self.pre_inputs: # select the left or right
if np.random.rand()<0.5:
used_tree = subtree.left
else:
used_tree = subtree.right
else:
used_tree = subtree.left
self.set_subTree(subtree.No,used_tree)
self.After_Genetic()
def Insertion(self,index): # Insert a node as the parent pf the Node(index)
subtree = self.get_subTree(index)
#------- -------------generate the Insert_node --------------
if index ==1 and np.random.rand()<0.7: # big probability for binary operator
randi = np.random.randint(0,2)
if randi ==0:
op ='add'
elif randi==1:
op = 'mul'
else:
op = 'concat'
else:
op = np.random.randint(0,len(self.mapping))
op = self.mapping[op]
Insert_node = TreeNode(item=op)
#-----------------Set the Insert_node ---------------------
# here we donot consider the feasiability in terms of "shape", will be done by Repairing -------
if Insert_node.item in ['add','mul','concat']:
Insert_node.left = subtree
#--------- set the right
candidate = np.random.randint(0,len(self.pre_inputs))
Insert_node.right = TreeNode(item=self.pre_inputs[candidate],shape='same')
else:
Insert_node.left = subtree
#-----------
self.set_subTree(subtree.No,Insert_node)
self.After_Genetic()
def Replacement(self,index):
subtree = self.get_subTree(index)
#-------------generate the Replace_node --------------
op = subtree.item
while op == subtree.item:
op = np.random.randint(0,len(self.mapping))
op = self.mapping[op]
Replace_node = TreeNode(item=op)
#---------------Set the Replace_node, here we donot consider the feasiability in terms of "shape", will be done by Repairing --------------
if subtree.item in ['add','mul','concat'] and Replace_node.item in ['add','mul','concat']:
Replace_node.left = subtree.left
Replace_node.right = subtree.right
elif subtree.item in ['add','mul','concat'] and Replace_node.item not in ['add','mul','concat']:
if np.random.rand()<0.5:
Replace_node.left = subtree.left
else:
Replace_node.left = subtree.right
elif subtree.item not in ['add','mul','concat'] and Replace_node.item in ['add','mul','concat']:
Replace_node.left = subtree.left
# randomly adding a input as child node
candidate = np.random.randint(0,len(self.pre_inputs))
Replace_node.right = TreeNode(item=self.pre_inputs[candidate],shape='same')
else:
Replace_node.left = subtree.left
#---------------------
self.set_subTree(subtree.No,Replace_node)
self.After_Genetic()
def After_Genetic(self):
self.UpdateShape(self.tree.root)
self.RepairConstraint(self.tree.root)
self.getNumNode()
self.Get_DecArrary()
def Get_DecArrary(self): # return int arrary for building NASCDNet, Post-Order travel
s1 = []
s2 = []
s1.append(self.tree.root) # post order travel by two stacks
while len(s1)>0:
cur = s1.pop()
s2.append(cur)
if cur.left is not None and cur.left.item not in self.pre_inputs:
s1.append(cur.left)
if cur.right is not None and cur.right.item not in self.pre_inputs:
s1.append(cur.right)
Dec = []
candidate_inputs = deepcopy(self.pre_inputs)
for idx,node_i in enumerate(s2[::-1]):
node_i.No = idx+3
# x1 = candidate_inputs.index(node_i.left.item)
if node_i.left.item == 'Stu':
x1=0
elif node_i.left.item == 'Exer':
x1=1
elif node_i.left.item == 'Conc':
x1=2
else:
x1 = node_i.left.No
# x1 = candidate_inputs.index(node_i.left.item)
# if x1>2:
# candidate_inputs[x1]='used'
if node_i.item in ['add','mul','concat']:
if node_i.right.item == 'Stu':
x2=0
x1,x2 = x2,x1 # 0, [0,1,2]
elif node_i.right.item == 'Exer': # exchange for unique encoding
x2=1
if x1>x2:
x1,x2 = x2,x1 # 1,2
# else:[0,1],1
elif node_i.right.item == 'Conc':
x2=2 # [0,1,2],2
else:
x2 = node_i.right.No
# x2 = candidate_inputs.index(node_i.right.item)
# if x2>2:
# candidate_inputs[x2]='used'
else:
x2 = 0
# candidate_inputs.append(node_i.item)
candidate_inputs.append(node_i.No)
op_num = self.Reverse_mapping[node_i.item]
Dec.extend([x1,x2,op_num])
self.Dec = Dec
def set_subTree(self,Tree_No,another_subTree): # set tree according to the No., which is based on Post-Order
if self.tree.root.No ==Tree_No:
self.tree.root = another_subTree
return
Queue = [self.tree.root]
while len(Queue)>0:
cur = Queue.pop(0)
if cur.left!=None:
if cur.left.No ==Tree_No:
cur.left = another_subTree
return
else:
Queue.append(cur.left)
if cur.right!=None:
if cur.right.No ==Tree_No:
cur.right= another_subTree
return
else:
Queue.append(cur.right)
def get_subTree(self, index): # counting from root node to maxi: level travel
subtree = []
Queue = [self.tree.root]
while index>0:
cur = Queue.pop(0)
if cur.item in self.mapping.values():
index -=1
subtree = cur
if cur.left!=None:
Queue.append(cur.left)
if cur.right!=None:
Queue.append(cur.right)
return subtree
def getNumNode(self):
num = 0
Queue = [self.tree.root]
while len(Queue)!=0:
cur = Queue.pop(0)
if cur.item in self.mapping.values():
num +=1
if cur.left!=None:
Queue.append(cur.left)
if cur.right!=None:
Queue.append(cur.right)
self.numNodes = num
return self.numNodes
def getLeafNum(self):
num = 0
Queue = [self.tree.root]
while len(Queue)!=0:
cur = Queue.pop(0)
if cur.item in self.pre_inputs:
num +=1
if cur.left!=None:
Queue.append(cur.left)
if cur.right!=None:
Queue.append(cur.right)
self.leafNum = num
return self.leafNum
def tree_deep(self,node): # include root node and leaf node
if node is None:
return 0
left, right = 0,0
if node.left is not None:
left = self.tree_deep(node.left)
if node.right is not None:
right = self.tree_deep(node.right)
return max(left,right)+1
def Compute_Complexity(self):
deep_number = self.tree_deep(self.tree.root)-2 # do not statistics root and leaf node
self.deep_number = deep_number
leaf_number = self.getLeafNum()
node_number = self.getNumNode()
# return deep_number,leaf_number,node_number
fit_complexity = 0
fit_complexity = self.deep_number/10 + (0.1-leaf_number/100)+ node_number/1000
def Compute_Complexity_nodes(self):
deep_number = self.tree_deep(self.tree.root)-2 # do not statistics root and leaf node
self.deep_number = deep_number
leaf_number = self.getLeafNum()
node_number = self.getNumNode()
# return deep_number,leaf_number,node_number
fit_complexity = 0
fit_complexity = (leaf_number+node_number)/30
return 1-fit_complexity
def RandomBuildTree(self):
tree = Tree()
tree.sample(self.mapping,self.numNodes)
self.tree = tree
self.AddLeafNode(self.tree.root)
# basic steps after a solution is generated
self.UpdateShape(self.tree.root)
self.RepairConstraint(self.tree.root)
self.getNumNode()
#------------------
# abc = self.get_subTree(2)
a = 1
def RepairConstraint(self,node):
if node is None:
return
elif node.item in self.pre_inputs:
return
self.RepairConstraint(node.left)
self.RepairConstraint(node.right)
if node.left.shape =='single' and node.item in ['mean','sum','ffn','concat']: # 修复 mean 后续不能再直接 follow mean等操作
op = node.item
while op in ['mean','sum','ffn','concat']:
op = np.random.randint(0,len(self.mapping))
op = self.mapping[op]
if node.item =='concat' and op in ['add','mul']: # for concat, directly used binary operator for replacement
node.item = op
elif op in ['add','mul']: #for ['mean','sum','ffn'], binary operator
node.item = op
# adding right child
candidate = np.random.randint(0,len(self.pre_inputs))
node.right = TreeNode(item=self.pre_inputs[candidate],shape='same')
node.shape = 'same'
else: # unary operator
node.item = op
node.right = None # used for 'concat'
#------------------------- 修复concat-----------
if node.item=='concat' and node.left.shape!=node.right.shape:
if np.random.rand()<0.5:
node.item = 'add'
else:
node.item = 'mul'
#----------------------------------------------
if node.item not in ['add','mul','concat']: # 修复 连续相同的 (unary)操作
if node.item == node.left.item:
node.left = node.left.left
#------------------ update shape information ----------------------------------
if node.item in ['add','mul','concat']:
if node.left.shape==node.right.shape:
node.shape = node.left.shape
else:
node.shape ='same'
elif node.item in ['sum','mean','ffn']:
node.shape = 'single'
else:
node.shape = node.left.shape
def AddLeafNode(self,node):
if node is None:
return
elif node.item in self.pre_inputs:
return
if node.right is None and node.left is not None and node.item in ['add','mul','concat']:
candidate = np.random.randint(0,len(self.pre_inputs))
node.right = TreeNode(item=self.pre_inputs[candidate],shape='same')
if node.left ==None and node.right==None:
if node.item not in ['add','mul','concat']:
candidate = np.random.randint(0,len(self.pre_inputs)-1) # only select from stu and Exer to avoid mistakes
# only select from stu and Exer to avoid mistakes
node.left = TreeNode(item=self.pre_inputs[candidate],shape='same')
else:
# candidate = np.random.randint(0,len(self.pre_inputs)-1,2) # only select from stu and Exer to avoid mistakes
candidate = np.random.choice(range(len(self.pre_inputs)),2,replace=False) # avoid same inputs
node.left = TreeNode(item=self.pre_inputs[candidate[0]],shape='same')
node.right = TreeNode(item=self.pre_inputs[candidate[1]],shape='same')
self.AddLeafNode(node.left)
self.AddLeafNode(node.right)
def UpdateShape(self,node):
if node is None:
return
elif node.item in self.pre_inputs:
return
self.UpdateShape(node.left)
self.UpdateShape(node.right)
if node.item in ['add','mul','concat']:
if node.left.shape==node.right.shape:
node.shape = node.left.shape
else:
node.shape ='same'
elif node.item in ['sum','mean','ffn']:
node.shape = 'single'
else:
node.shape = node.left.shape
def build_treeFromDec(self,Dec):
self.Dec = Dec
nodes = [TreeNode('Stu',shape='same'),TreeNode('Exer',shape='same'),TreeNode('Conc',shape='same')]
self.numNodes = len(Dec)//3
for i in range(self.numNodes):
temp = Dec[3*i:3*(i+1)]
x1,x2,op = temp[0],temp[1],temp[2]
if self.mapping[op] in ['add','mul','concat']:
node_i = TreeNode(item=self.mapping[op], left=nodes[x1], right=nodes[x2])
else:
node_i = TreeNode(item=self.mapping[op], left=nodes[x1], right=None)
nodes.append(node_i)
self.tree = Tree(root=nodes[-1])
def visualization(self,path=None):
self.tree.visualization(path)
def mkdir(self):
self.save_dir = "{}/Gen_{}/[{}]/".format(self.config.exp_name,self.gen,self.id)
self.training_log = self.save_dir+'training_log.txt'
if not os.path.exists(self.save_dir):
os.makedirs(self.save_dir)
def save(self):
# saving basic information
self.dec_dir = self.save_dir+'dec.txt'
self.fitness_dit = self.save_dir+'fitness.txt'
information = 'Deep num:{}, LeafNode num:{}, Node num:{}'.format(self.deep_number,self.leafNum,self.numNodes)
self.info_dir = self.save_dir+'infomation.txt'
write_txt(self.info_dir,information)
write_txt(self.dec_dir,self.Dec)
self.visualization(self.save_dir)
def evaluation(self,device):
self.mkdir()
f = open(self.training_log, "w+")
print('Evaluating {}-th solution'.format(self.id), file=f,flush=True)
print('Evaluating {}-th solution'.format(self.id), file=sys.stdout)
logging.info('Evaluating {}-th solution'.format(self.id))
#
# fit_complexity = self.Compute_Complexity()
self.Compute_Complexity()
self.save()
Settings = [device,self.config,self.Dec ,self.save_dir,f]
best_acc,best_auc = solution_evaluation(Settings)
# best_acc,best_auc = np.random.rand(),np.random.rand()
self.fitness = [0.5, best_auc]
print('{}-th solution: Best valid acc:{}, auc:{} '.format(self.id,best_acc, self.fitness[1]),file=sys.stdout)
logging.info('{}-th solution: Best valid acc:{}, auc:{} '.format(self.id,best_acc, self.fitness[1]))
np.savetxt( self.fitness_dit, np.array(self.fitness), delimiter=' ')
gc.collect()
f.close()
class RandomSearch():
def __init__(self,config):
self.config = config
self.Maxi_Gen = 100
self.gen =0
self.Popsize = 100
#--------Population and offspring information-------------
self.Population = []
self.Pop_fitness = []
self.offspring = []
self.off_fitness=[]
#-------other information--------------------
self.tour_index = []
self.FrontValue = []
self.CrowdDistance =[]
self.select_index = []
self.Archive = []
# self.LoadDataset()
self.get_Boundary_Mapping()
def LoadDataset(self):
print('Loading Dataset....')
self.config.student_n,self.config.exer_n,self.config.knowledge_n, \
self.train_loader, self.val_loader = get_dataset(self.config)
print('Loading Finish!')
def get_Boundary_Mapping(self):
self.mapping = Genotype_mapping
logging.info('Genotype_mapping: '+str(self.mapping))
print('Genotype_mapping: '+str(self.mapping))
def Initialization(self):
if config.Continue_path is None:
self.set_dir(path='initial')
self.Population=[]
for idx in range(0,self.Popsize):
num_nodes = np.random.randint(config.Num_Nodes[0],config.Num_Nodes[1]+1) # +1
self.Population.append(Individual(num_Nodes=num_nodes,mapping=self.mapping,config=self.config,gen='initial',id=idx))
self.Pop_fitness = self.Evaluation(self.Population)
self.set_dir(path='initial')
self.Save()
else:
pathdir = os.path.expandvars(config.Continue_path)[-4]
curdir = os.path.expandvars(config.Continue_path)[-3]
latest_file_or_folder = get_latest_folder(config.Continue_path)
self.gen = int(latest_file_or_folder[-2:])+1
self.Population = pickle.load(open(latest_file_or_folder+'/Population.pkl','rb'))
self.Pop_fitness = np.loadtxt(latest_file_or_folder+'/fitness.txt')
self.set_dir()
for x_individual in self.Population:
self.Archive.append(x_individual.Dec)
def Evaluation(self,Population):
if self.config.parallel_evaluation and self.config.n_gpu>1:
fitness =[]
for i in range(0,len(Population),self.config.n_gpu):
# one GPU for one solution executed in one thread
logging.info('solution:{0:>2d} --- {1:>2d}(Parallel evaluation)'.format(i,i+self.config.n_gpu-1))
solution_set = Population[i:i+self.config.n_gpu]
self.Para_Evaluation(solution_set)
fitness = [x.fitness for x in Population]
fitness = np.array(fitness)
else:
# evaluation in Serial model
fitness = np.zeros((len(Population),2))
for i,solution in enumerate(Population):
# solution = Population[66]
solution.evaluation(self.config.device_ids)
fitness[i] = solution.fitness
return 1.0-fitness
def Para_Evaluation(self,solution_set):
thread = [MyThread(solution.evaluation, args=(id,)) for id, solution in enumerate(solution_set)]
#---------------------------------------
# (1):execute each thread, but some error(block) may appear due to same dataloader sub-thread are called
# A = [x.start() for x in thread]
#---------------------------------
# (2):wait several seconds after starting each thread
# to avoid same dataloader sub-thread are used
for x in thread:
x.start()
time.sleep(3)
# ---------------------------------------
# synchronize all threads for (returning outputs)/get final outputs
A = [print(x.is_alive()) for x in thread]
B = [x.join() for x in thread]
# C = [x._stop() for x in thread]
# del A,B,C,thread
del A,B,thread
gc.collect()
def Genetic_operation(self):
self.offspring = []
for idx in range(0,self.Popsize):
num_nodes = np.random.randint(config.Num_Nodes[0],config.Num_Nodes[1]+1) # +1
self.offspring.append(Individual(num_Nodes=num_nodes,mapping=self.mapping,config=self.config,gen=self.gen,id=idx))
self.off_fitness = self.Evaluation(self.offspring)
def First_Selection(self):
Population = []
Population.extend(self.Population)
Population.extend(self.offspring)
FunctionValue = np.vstack((self.Pop_fitness, self.off_fitness))
self.select_index = np.argsort(FunctionValue.T,1)[0,:100]
self.Population = [Population[i] for i in self.select_index]
self.Pop_fitness = FunctionValue[self.select_index]
def EvironmentSelection(self):
Population = []
Population.extend(self.Population)
Population.extend(self.offspring)
FunctionValue = np.vstack((self.Pop_fitness, self.off_fitness))
Population, FunctionValue, FrontValue, CrowdDistance, select_index = F_EnvironmentSelect. \
F_EnvironmentSelect(Population, FunctionValue, self.Popsize)
self.Population = Population
self.Pop_fitness = FunctionValue
self.FrontValue = FrontValue
self.CrowdDistance = CrowdDistance
self.select_index = select_index
def print_logs(self,since_time=None,initial=False):
if initial:
logging.info('********************************************************************Initializing**********************************************')
print('********************************************************************Initializing**********************************************')
else:
used_time = (time.time()-since_time)/60
logging.info('*******************************************************{0:>2d}/{1:>2d} processing, time spent so far:{2:.2f} min******'
'*****************************************'.format(self.gen+1,self.Maxi_Gen,used_time))
print('*******************************************************{0:>2d}/{1:>2d} processing, time spent so far:{2:.2f} min******'
'*****************************************'.format(self.gen+1,self.Maxi_Gen,used_time))
def set_dir(self,path=None):
if path is None:
path = self.gen
self.whole_path = "{}/Gen_{}/".format(self.config.exp_name, path)
if not os.path.exists(self.whole_path):
os.makedirs(self.whole_path)
def Save(self):
# return
fitness_file = self.whole_path + 'fitness.txt'
np.savetxt(fitness_file, self.Pop_fitness, delimiter=' ')
Pop_file = self.whole_path +'Population.txt'
with open(Pop_file, "w") as file:
for j,solution in enumerate(self.Population):
file.write('solution {}: {} \n'.format(j, solution.Dec))
# for i,solution in enumerate(self.Population):
# solution.visualization(self.whole_path+str(i)+'_')
#------------save as pkl for re-loading------------
name = self.whole_path +'Population.pkl'
f = open(name,'wb')
pickle.dump(self.Population,f)
f.close()
def Plot(self):
if self.config.parallel_evaluation:
return
plt.clf()
plt.plot(1-self.Pop_fitness[:,0],1-self.Pop_fitness[:,1],'o')
# plt.xlabel('ACC')
plt.xlabel('Complexity')
plt.ylabel('AUC')
plt.title('Generation {0}/{1} \n best ACC: {2:.4f}, best AUC: {3:.4f}'.format(self.gen+1,self.Maxi_Gen,max(1-self.Pop_fitness[:,0]), max(1-self.Pop_fitness[:,1])) )
# plt.show()
plt.pause(0.2)
plt.savefig(self.whole_path+'figure.jpg')
def Main_Loop(self):
since_time = time.time()
self.print_logs(initial=True)
self.Initialization()
self.Plot()
self.FrontValue = NDsort.NDSort(self.Pop_fitness, self.Popsize)[0]
self.CrowdDistance = F_distance.F_distance(self.Pop_fitness, self.FrontValue)
while self.gen<self.Maxi_Gen:
self.set_dir()
self.print_logs(since_time=since_time)
self.Genetic_operation()
self.EvironmentSelection()
self.Save()
self.Plot()
self.gen += 1
# plt.ioff()
if __name__ == '__main__':
config = get_common_search_config()
#
# fix random seed
random.seed(config.seed)
np.random.seed(config.seed)
torch.manual_seed(config.seed)
torch.cuda.manual_seed(config.seed)
torch.cuda.manual_seed_all(config.seed)
cudnn.enabled = True
cudnn.benchmark = True
cudnn.deterministic = True
#--------------------------------
EA = RandomSearch(config)
EA.Main_Loop()