-
Notifications
You must be signed in to change notification settings - Fork 0
/
Checkpoint.cpp
725 lines (623 loc) · 27.3 KB
/
Checkpoint.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "Checkpoint"
#include "Checkpoint.h"
#include "VoldUtil.h"
#include "VolumeManager.h"
#include <fstream>
#include <list>
#include <memory>
#include <string>
#include <thread>
#include <vector>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/parseint.h>
#include <android-base/properties.h>
#include <android-base/unique_fd.h>
#include <android/hardware/boot/1.0/IBootControl.h>
#include <cutils/android_reboot.h>
#include <fcntl.h>
#include <fs_mgr.h>
#include <linux/fs.h>
#include <mntent.h>
#include <sys/mount.h>
#include <sys/stat.h>
#include <sys/statvfs.h>
#include <unistd.h>
using android::base::GetBoolProperty;
using android::base::GetUintProperty;
using android::base::SetProperty;
using android::binder::Status;
using android::fs_mgr::Fstab;
using android::fs_mgr::ReadDefaultFstab;
using android::fs_mgr::ReadFstabFromFile;
using android::hardware::hidl_string;
using android::hardware::boot::V1_0::BoolResult;
using android::hardware::boot::V1_0::CommandResult;
using android::hardware::boot::V1_0::IBootControl;
using android::hardware::boot::V1_0::Slot;
namespace android {
namespace vold {
namespace {
const std::string kMetadataCPFile = "/metadata/vold/checkpoint";
bool setBowState(std::string const& block_device, std::string const& state) {
std::string bow_device = fs_mgr_find_bow_device(block_device);
if (bow_device.empty()) return false;
if (!android::base::WriteStringToFile(state, bow_device + "/bow/state")) {
PLOG(ERROR) << "Failed to write to file " << bow_device + "/bow/state";
return false;
}
return true;
}
} // namespace
Status cp_supportsCheckpoint(bool& result) {
result = false;
for (const auto& entry : fstab_default) {
if (entry.fs_mgr_flags.checkpoint_blk || entry.fs_mgr_flags.checkpoint_fs) {
result = true;
return Status::ok();
}
}
return Status::ok();
}
Status cp_supportsBlockCheckpoint(bool& result) {
result = false;
for (const auto& entry : fstab_default) {
if (entry.fs_mgr_flags.checkpoint_blk) {
result = true;
return Status::ok();
}
}
return Status::ok();
}
Status cp_supportsFileCheckpoint(bool& result) {
result = false;
for (const auto& entry : fstab_default) {
if (entry.fs_mgr_flags.checkpoint_fs) {
result = true;
return Status::ok();
}
}
return Status::ok();
}
Status cp_startCheckpoint(int retry) {
if (retry < -1) return Status::fromExceptionCode(EINVAL, "Retry count must be more than -1");
std::string content = std::to_string(retry + 1);
if (retry == -1) {
sp<IBootControl> module = IBootControl::getService();
if (module) {
std::string suffix;
auto cb = [&suffix](hidl_string s) { suffix = s; };
if (module->getSuffix(module->getCurrentSlot(), cb).isOk()) content += " " + suffix;
}
}
if (!android::base::WriteStringToFile(content, kMetadataCPFile))
return Status::fromExceptionCode(errno, "Failed to write checkpoint file");
return Status::ok();
}
namespace {
volatile bool isCheckpointing = false;
}
Status cp_commitChanges() {
if (!isCheckpointing) {
return Status::ok();
}
if (android::base::GetProperty("persist.vold.dont_commit_checkpoint", "0") == "1") {
LOG(WARNING)
<< "NOT COMMITTING CHECKPOINT BECAUSE persist.vold.dont_commit_checkpoint IS 1";
return Status::ok();
}
sp<IBootControl> module = IBootControl::getService();
if (module) {
CommandResult cr;
module->markBootSuccessful([&cr](CommandResult result) { cr = result; });
if (!cr.success) {
std::string msg = "Error marking booted successfully: " + std::string(cr.errMsg);
return Status::fromExceptionCode(EINVAL, String8(msg.c_str()));
}
LOG(INFO) << "Marked slot as booted successfully.";
}
// Must take action for list of mounted checkpointed things here
// To do this, we walk the list of mounted file systems.
// But we also need to get the matching fstab entries to see
// the original flags
std::string err_str;
Fstab mounts;
if (!ReadFstabFromFile("/proc/mounts", &mounts)) {
return Status::fromExceptionCode(EINVAL, "Failed to get /proc/mounts");
}
// Walk mounted file systems
for (const auto& mount_rec : mounts) {
const auto fstab_rec = GetEntryForMountPoint(&fstab_default, mount_rec.mount_point);
if (!fstab_rec) continue;
if (fstab_rec->fs_mgr_flags.checkpoint_fs) {
if (fstab_rec->fs_type == "f2fs") {
std::string options = mount_rec.fs_options + ",checkpoint=enable";
if (mount(mount_rec.blk_device.c_str(), mount_rec.mount_point.c_str(), "none",
MS_REMOUNT | fstab_rec->flags, options.c_str())) {
return Status::fromExceptionCode(EINVAL, "Failed to remount");
}
}
} else if (fstab_rec->fs_mgr_flags.checkpoint_blk) {
if (!setBowState(mount_rec.blk_device, "2"))
return Status::fromExceptionCode(EINVAL, "Failed to set bow state");
}
}
SetProperty("vold.checkpoint_committed", "1");
LOG(INFO) << "Checkpoint has been committed.";
isCheckpointing = false;
if (!android::base::RemoveFileIfExists(kMetadataCPFile, &err_str))
return Status::fromExceptionCode(errno, err_str.c_str());
return Status::ok();
}
namespace {
void abort_metadata_file() {
std::string oldContent, newContent;
int retry = 0;
struct stat st;
int result = stat(kMetadataCPFile.c_str(), &st);
// If the file doesn't exist, we aren't managing a checkpoint retry counter
if (result != 0) return;
if (!android::base::ReadFileToString(kMetadataCPFile, &oldContent)) {
PLOG(ERROR) << "Failed to read checkpoint file";
return;
}
std::string retryContent = oldContent.substr(0, oldContent.find_first_of(" "));
if (!android::base::ParseInt(retryContent, &retry)) {
PLOG(ERROR) << "Could not parse retry count";
return;
}
if (retry > 0) {
newContent = "0";
if (!android::base::WriteStringToFile(newContent, kMetadataCPFile))
PLOG(ERROR) << "Could not write checkpoint file";
}
}
} // namespace
void cp_abortChanges(const std::string& message, bool retry) {
if (!cp_needsCheckpoint()) return;
if (!retry) abort_metadata_file();
android_reboot(ANDROID_RB_RESTART2, 0, message.c_str());
}
bool cp_needsRollback() {
std::string content;
bool ret;
ret = android::base::ReadFileToString(kMetadataCPFile, &content);
if (ret) {
if (content == "0") return true;
if (content.substr(0, 3) == "-1 ") {
std::string oldSuffix = content.substr(3);
sp<IBootControl> module = IBootControl::getService();
std::string newSuffix;
if (module) {
auto cb = [&newSuffix](hidl_string s) { newSuffix = s; };
module->getSuffix(module->getCurrentSlot(), cb);
if (oldSuffix == newSuffix) return true;
}
}
}
return false;
}
bool cp_needsCheckpoint() {
// Make sure we only return true during boot. See b/138952436 for discussion
static bool called_once = false;
if (called_once) return isCheckpointing;
called_once = true;
bool ret;
std::string content;
sp<IBootControl> module = IBootControl::getService();
if (isCheckpointing) return isCheckpointing;
if (module && module->isSlotMarkedSuccessful(module->getCurrentSlot()) == BoolResult::FALSE) {
isCheckpointing = true;
return true;
}
ret = android::base::ReadFileToString(kMetadataCPFile, &content);
if (ret) {
ret = content != "0";
isCheckpointing = ret;
return ret;
}
return false;
}
namespace {
const std::string kSleepTimeProp = "ro.sys.cp_msleeptime";
const uint32_t msleeptime_default = 1000; // 1 s
const uint32_t max_msleeptime = 3600000; // 1 h
const std::string kMinFreeBytesProp = "ro.sys.cp_min_free_bytes";
const uint64_t min_free_bytes_default = 100 * (1 << 20); // 100 MiB
const std::string kCommitOnFullProp = "ro.sys.cp_commit_on_full";
const bool commit_on_full_default = true;
static void cp_healthDaemon(std::string mnt_pnt, std::string blk_device, bool is_fs_cp) {
struct statvfs data;
uint32_t msleeptime = GetUintProperty(kSleepTimeProp, msleeptime_default, max_msleeptime);
uint64_t min_free_bytes =
GetUintProperty(kMinFreeBytesProp, min_free_bytes_default, (uint64_t)-1);
bool commit_on_full = GetBoolProperty(kCommitOnFullProp, commit_on_full_default);
struct timespec req;
req.tv_sec = msleeptime / 1000;
msleeptime %= 1000;
req.tv_nsec = msleeptime * 1000000;
while (isCheckpointing) {
uint64_t free_bytes = 0;
if (is_fs_cp) {
statvfs(mnt_pnt.c_str(), &data);
free_bytes = data.f_bavail * data.f_frsize;
} else {
std::string bow_device = fs_mgr_find_bow_device(blk_device);
if (!bow_device.empty()) {
std::string content;
if (android::base::ReadFileToString(bow_device + "/bow/free", &content)) {
free_bytes = std::strtoul(content.c_str(), NULL, 10);
}
}
}
if (free_bytes < min_free_bytes) {
if (commit_on_full) {
LOG(INFO) << "Low space for checkpointing. Commiting changes";
cp_commitChanges();
break;
} else {
LOG(INFO) << "Low space for checkpointing. Rebooting";
cp_abortChanges("checkpoint,low_space", false);
break;
}
}
nanosleep(&req, NULL);
}
}
} // namespace
Status cp_prepareCheckpoint() {
// Log to notify CTS - see b/137924328 for context
LOG(INFO) << "cp_prepareCheckpoint called";
if (!isCheckpointing) {
return Status::ok();
}
Fstab mounts;
if (!ReadFstabFromFile("/proc/mounts", &mounts)) {
return Status::fromExceptionCode(EINVAL, "Failed to get /proc/mounts");
}
for (const auto& mount_rec : mounts) {
const auto fstab_rec = GetEntryForMountPoint(&fstab_default, mount_rec.mount_point);
if (!fstab_rec) continue;
if (fstab_rec->fs_mgr_flags.checkpoint_blk) {
android::base::unique_fd fd(
TEMP_FAILURE_RETRY(open(mount_rec.mount_point.c_str(), O_RDONLY | O_CLOEXEC)));
if (fd == -1) {
PLOG(ERROR) << "Failed to open mount point" << mount_rec.mount_point;
continue;
}
struct fstrim_range range = {};
range.len = ULLONG_MAX;
nsecs_t start = systemTime(SYSTEM_TIME_BOOTTIME);
if (ioctl(fd, FITRIM, &range)) {
PLOG(ERROR) << "Failed to trim " << mount_rec.mount_point;
continue;
}
nsecs_t time = systemTime(SYSTEM_TIME_BOOTTIME) - start;
LOG(INFO) << "Trimmed " << range.len << " bytes on " << mount_rec.mount_point << " in "
<< nanoseconds_to_milliseconds(time) << "ms for checkpoint";
setBowState(mount_rec.blk_device, "1");
}
if (fstab_rec->fs_mgr_flags.checkpoint_blk || fstab_rec->fs_mgr_flags.checkpoint_fs) {
std::thread(cp_healthDaemon, std::string(mount_rec.mount_point),
std::string(mount_rec.blk_device),
fstab_rec->fs_mgr_flags.checkpoint_fs == 1)
.detach();
}
}
return Status::ok();
}
namespace {
const int kSectorSize = 512;
typedef uint64_t sector_t;
struct log_entry {
sector_t source; // in sectors of size kSectorSize
sector_t dest; // in sectors of size kSectorSize
uint32_t size; // in bytes
uint32_t checksum;
} __attribute__((packed));
struct log_sector_v1_0 {
uint32_t magic;
uint16_t header_version;
uint16_t header_size;
uint32_t block_size;
uint32_t count;
uint32_t sequence;
uint64_t sector0;
} __attribute__((packed));
// MAGIC is BOW in ascii
const int kMagic = 0x00574f42;
// Partially restored MAGIC is WOB in ascii
const int kPartialRestoreMagic = 0x00424f57;
void crc32(const void* data, size_t n_bytes, uint32_t* crc) {
static uint32_t table[0x100] = {
0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA, 0x076DC419, 0x706AF48F, 0xE963A535,
0x9E6495A3, 0x0EDB8832, 0x79DCB8A4, 0xE0D5E91E, 0x97D2D988, 0x09B64C2B, 0x7EB17CBD,
0xE7B82D07, 0x90BF1D91, 0x1DB71064, 0x6AB020F2, 0xF3B97148, 0x84BE41DE, 0x1ADAD47D,
0x6DDDE4EB, 0xF4D4B551, 0x83D385C7, 0x136C9856, 0x646BA8C0, 0xFD62F97A, 0x8A65C9EC,
0x14015C4F, 0x63066CD9, 0xFA0F3D63, 0x8D080DF5, 0x3B6E20C8, 0x4C69105E, 0xD56041E4,
0xA2677172, 0x3C03E4D1, 0x4B04D447, 0xD20D85FD, 0xA50AB56B, 0x35B5A8FA, 0x42B2986C,
0xDBBBC9D6, 0xACBCF940, 0x32D86CE3, 0x45DF5C75, 0xDCD60DCF, 0xABD13D59, 0x26D930AC,
0x51DE003A, 0xC8D75180, 0xBFD06116, 0x21B4F4B5, 0x56B3C423, 0xCFBA9599, 0xB8BDA50F,
0x2802B89E, 0x5F058808, 0xC60CD9B2, 0xB10BE924, 0x2F6F7C87, 0x58684C11, 0xC1611DAB,
0xB6662D3D,
0x76DC4190, 0x01DB7106, 0x98D220BC, 0xEFD5102A, 0x71B18589, 0x06B6B51F, 0x9FBFE4A5,
0xE8B8D433, 0x7807C9A2, 0x0F00F934, 0x9609A88E, 0xE10E9818, 0x7F6A0DBB, 0x086D3D2D,
0x91646C97, 0xE6635C01, 0x6B6B51F4, 0x1C6C6162, 0x856530D8, 0xF262004E, 0x6C0695ED,
0x1B01A57B, 0x8208F4C1, 0xF50FC457, 0x65B0D9C6, 0x12B7E950, 0x8BBEB8EA, 0xFCB9887C,
0x62DD1DDF, 0x15DA2D49, 0x8CD37CF3, 0xFBD44C65, 0x4DB26158, 0x3AB551CE, 0xA3BC0074,
0xD4BB30E2, 0x4ADFA541, 0x3DD895D7, 0xA4D1C46D, 0xD3D6F4FB, 0x4369E96A, 0x346ED9FC,
0xAD678846, 0xDA60B8D0, 0x44042D73, 0x33031DE5, 0xAA0A4C5F, 0xDD0D7CC9, 0x5005713C,
0x270241AA, 0xBE0B1010, 0xC90C2086, 0x5768B525, 0x206F85B3, 0xB966D409, 0xCE61E49F,
0x5EDEF90E, 0x29D9C998, 0xB0D09822, 0xC7D7A8B4, 0x59B33D17, 0x2EB40D81, 0xB7BD5C3B,
0xC0BA6CAD,
0xEDB88320, 0x9ABFB3B6, 0x03B6E20C, 0x74B1D29A, 0xEAD54739, 0x9DD277AF, 0x04DB2615,
0x73DC1683, 0xE3630B12, 0x94643B84, 0x0D6D6A3E, 0x7A6A5AA8, 0xE40ECF0B, 0x9309FF9D,
0x0A00AE27, 0x7D079EB1, 0xF00F9344, 0x8708A3D2, 0x1E01F268, 0x6906C2FE, 0xF762575D,
0x806567CB, 0x196C3671, 0x6E6B06E7, 0xFED41B76, 0x89D32BE0, 0x10DA7A5A, 0x67DD4ACC,
0xF9B9DF6F, 0x8EBEEFF9, 0x17B7BE43, 0x60B08ED5, 0xD6D6A3E8, 0xA1D1937E, 0x38D8C2C4,
0x4FDFF252, 0xD1BB67F1, 0xA6BC5767, 0x3FB506DD, 0x48B2364B, 0xD80D2BDA, 0xAF0A1B4C,
0x36034AF6, 0x41047A60, 0xDF60EFC3, 0xA867DF55, 0x316E8EEF, 0x4669BE79, 0xCB61B38C,
0xBC66831A, 0x256FD2A0, 0x5268E236, 0xCC0C7795, 0xBB0B4703, 0x220216B9, 0x5505262F,
0xC5BA3BBE, 0xB2BD0B28, 0x2BB45A92, 0x5CB36A04, 0xC2D7FFA7, 0xB5D0CF31, 0x2CD99E8B,
0x5BDEAE1D,
0x9B64C2B0, 0xEC63F226, 0x756AA39C, 0x026D930A, 0x9C0906A9, 0xEB0E363F, 0x72076785,
0x05005713, 0x95BF4A82, 0xE2B87A14, 0x7BB12BAE, 0x0CB61B38, 0x92D28E9B, 0xE5D5BE0D,
0x7CDCEFB7, 0x0BDBDF21, 0x86D3D2D4, 0xF1D4E242, 0x68DDB3F8, 0x1FDA836E, 0x81BE16CD,
0xF6B9265B, 0x6FB077E1, 0x18B74777, 0x88085AE6, 0xFF0F6A70, 0x66063BCA, 0x11010B5C,
0x8F659EFF, 0xF862AE69, 0x616BFFD3, 0x166CCF45, 0xA00AE278, 0xD70DD2EE, 0x4E048354,
0x3903B3C2, 0xA7672661, 0xD06016F7, 0x4969474D, 0x3E6E77DB, 0xAED16A4A, 0xD9D65ADC,
0x40DF0B66, 0x37D83BF0, 0xA9BCAE53, 0xDEBB9EC5, 0x47B2CF7F, 0x30B5FFE9, 0xBDBDF21C,
0xCABAC28A, 0x53B39330, 0x24B4A3A6, 0xBAD03605, 0xCDD70693, 0x54DE5729, 0x23D967BF,
0xB3667A2E, 0xC4614AB8, 0x5D681B02, 0x2A6F2B94, 0xB40BBE37, 0xC30C8EA1, 0x5A05DF1B,
0x2D02EF8D};
for (size_t i = 0; i < n_bytes; ++i) {
*crc ^= ((uint8_t*)data)[i];
*crc = table[(uint8_t)*crc] ^ *crc >> 8;
}
}
// A map of relocations.
// The map must be initialized so that relocations[0] = 0
// During restore, we replay the log records in reverse, copying from dest to
// source
// To validate, we must be able to read the 'dest' sectors as though they had
// been copied but without actually copying. This map represents how the sectors
// would have been moved. To read a sector s, find the index <= s and read
// relocations[index] + s - index
typedef std::map<sector_t, sector_t> Relocations;
void relocate(Relocations& relocations, sector_t dest, sector_t source, int count) {
// Find first one we're equal to or greater than
auto s = --relocations.upper_bound(source);
// Take slice
Relocations slice;
slice[dest] = source - s->first + s->second;
++s;
// Add rest of elements
for (; s != relocations.end() && s->first < source + count; ++s)
slice[dest - source + s->first] = s->second;
// Split range at end of dest
auto dest_end = --relocations.upper_bound(dest + count);
relocations[dest + count] = dest + count - dest_end->first + dest_end->second;
// Remove all elements in [dest, dest + count)
relocations.erase(relocations.lower_bound(dest), relocations.lower_bound(dest + count));
// Add new elements
relocations.insert(slice.begin(), slice.end());
}
// A map of sectors that have been written to.
// The final entry must always be False.
// When we restart the restore after an interruption, we must take care that
// when we copy from dest to source, that the block we copy to was not
// previously copied from.
// i e. A->B C->A; If we replay this sequence, we end up copying C->B
// We must save our partial result whenever we finish a page, or when we copy
// to a location that was copied from earlier (our source is an earlier dest)
typedef std::map<sector_t, bool> Used_Sectors;
bool checkCollision(Used_Sectors& used_sectors, sector_t start, sector_t end) {
auto second_overlap = used_sectors.upper_bound(start);
auto first_overlap = --second_overlap;
if (first_overlap->second) {
return true;
} else if (second_overlap != used_sectors.end() && second_overlap->first < end) {
return true;
}
return false;
}
void markUsed(Used_Sectors& used_sectors, sector_t start, sector_t end) {
auto start_pos = used_sectors.insert_or_assign(start, true).first;
auto end_pos = used_sectors.insert_or_assign(end, false).first;
if (start_pos == used_sectors.begin() || !std::prev(start_pos)->second) {
start_pos++;
}
if (std::next(end_pos) != used_sectors.end() && !std::next(end_pos)->second) {
end_pos++;
}
if (start_pos->first < end_pos->first) {
used_sectors.erase(start_pos, end_pos);
}
}
// Restores the given log_entry's data from dest -> source
// If that entry is a log sector, set the magic to kPartialRestoreMagic and flush.
void restoreSector(int device_fd, Used_Sectors& used_sectors, std::vector<char>& ls_buffer,
log_entry* le, std::vector<char>& buffer) {
log_sector_v1_0& ls = *reinterpret_cast<log_sector_v1_0*>(&ls_buffer[0]);
uint32_t index = le - ((log_entry*)&ls_buffer[ls.header_size]);
int count = (le->size - 1) / kSectorSize + 1;
if (checkCollision(used_sectors, le->source, le->source + count)) {
fsync(device_fd);
lseek64(device_fd, 0, SEEK_SET);
ls.count = index + 1;
ls.magic = kPartialRestoreMagic;
write(device_fd, &ls_buffer[0], ls.block_size);
fsync(device_fd);
used_sectors.clear();
used_sectors[0] = false;
}
markUsed(used_sectors, le->dest, le->dest + count);
if (index == 0 && ls.sequence != 0) {
log_sector_v1_0* next = reinterpret_cast<log_sector_v1_0*>(&buffer[0]);
if (next->magic == kMagic) {
next->magic = kPartialRestoreMagic;
}
}
lseek64(device_fd, le->source * kSectorSize, SEEK_SET);
write(device_fd, &buffer[0], le->size);
if (index == 0) {
fsync(device_fd);
}
}
// Read from the device
// If we are validating, the read occurs as though the relocations had happened
std::vector<char> relocatedRead(int device_fd, Relocations const& relocations, bool validating,
sector_t sector, uint32_t size, uint32_t block_size) {
if (!validating) {
std::vector<char> buffer(size);
lseek64(device_fd, sector * kSectorSize, SEEK_SET);
read(device_fd, &buffer[0], size);
return buffer;
}
std::vector<char> buffer(size);
for (uint32_t i = 0; i < size; i += block_size, sector += block_size / kSectorSize) {
auto relocation = --relocations.upper_bound(sector);
lseek64(device_fd, (sector + relocation->second - relocation->first) * kSectorSize,
SEEK_SET);
read(device_fd, &buffer[i], block_size);
}
return buffer;
}
} // namespace
Status cp_restoreCheckpoint(const std::string& blockDevice, int restore_limit) {
bool validating = true;
std::string action = "Validating";
int restore_count = 0;
for (;;) {
Relocations relocations;
relocations[0] = 0;
Status status = Status::ok();
LOG(INFO) << action << " checkpoint on " << blockDevice;
base::unique_fd device_fd(open(blockDevice.c_str(), O_RDWR | O_CLOEXEC));
if (device_fd < 0) {
PLOG(ERROR) << "Cannot open " << blockDevice;
return Status::fromExceptionCode(errno, ("Cannot open " + blockDevice).c_str());
}
log_sector_v1_0 original_ls;
read(device_fd, reinterpret_cast<char*>(&original_ls), sizeof(original_ls));
if (original_ls.magic == kPartialRestoreMagic) {
validating = false;
action = "Restoring";
} else if (original_ls.magic != kMagic) {
LOG(ERROR) << "No magic";
return Status::fromExceptionCode(EINVAL, "No magic");
}
LOG(INFO) << action << " " << original_ls.sequence << " log sectors";
for (int sequence = original_ls.sequence; sequence >= 0 && status.isOk(); sequence--) {
auto ls_buffer = relocatedRead(device_fd, relocations, validating, 0,
original_ls.block_size, original_ls.block_size);
log_sector_v1_0& ls = *reinterpret_cast<log_sector_v1_0*>(&ls_buffer[0]);
Used_Sectors used_sectors;
used_sectors[0] = false;
if (ls.magic != kMagic && (ls.magic != kPartialRestoreMagic || validating)) {
LOG(ERROR) << "No magic!";
status = Status::fromExceptionCode(EINVAL, "No magic");
break;
}
if (ls.block_size != original_ls.block_size) {
LOG(ERROR) << "Block size mismatch!";
status = Status::fromExceptionCode(EINVAL, "Block size mismatch");
break;
}
if ((int)ls.sequence != sequence) {
LOG(ERROR) << "Expecting log sector " << sequence << " but got " << ls.sequence;
status = Status::fromExceptionCode(
EINVAL, ("Expecting log sector " + std::to_string(sequence) + " but got " +
std::to_string(ls.sequence))
.c_str());
break;
}
LOG(INFO) << action << " from log sector " << ls.sequence;
for (log_entry* le =
reinterpret_cast<log_entry*>(&ls_buffer[ls.header_size]) + ls.count - 1;
le >= reinterpret_cast<log_entry*>(&ls_buffer[ls.header_size]); --le) {
// This is very noisy - limit to DEBUG only
LOG(VERBOSE) << action << " " << le->size << " bytes from sector " << le->dest
<< " to " << le->source << " with checksum " << std::hex
<< le->checksum;
auto buffer = relocatedRead(device_fd, relocations, validating, le->dest, le->size,
ls.block_size);
uint32_t checksum = le->source / (ls.block_size / kSectorSize);
for (size_t i = 0; i < le->size; i += ls.block_size) {
crc32(&buffer[i], ls.block_size, &checksum);
}
if (le->checksum && checksum != le->checksum) {
LOG(ERROR) << "Checksums don't match " << std::hex << checksum;
status = Status::fromExceptionCode(EINVAL, "Checksums don't match");
break;
}
if (validating) {
relocate(relocations, le->source, le->dest, (le->size - 1) / kSectorSize + 1);
} else {
restoreSector(device_fd, used_sectors, ls_buffer, le, buffer);
restore_count++;
if (restore_limit && restore_count >= restore_limit) {
LOG(WARNING) << "Hit the test limit";
status = Status::fromExceptionCode(EAGAIN, "Hit the test limit");
break;
}
}
}
}
if (!status.isOk()) {
if (!validating) {
LOG(ERROR) << "Checkpoint restore failed even though checkpoint validation passed";
return status;
}
LOG(WARNING) << "Checkpoint validation failed - attempting to roll forward";
auto buffer = relocatedRead(device_fd, relocations, false, original_ls.sector0,
original_ls.block_size, original_ls.block_size);
lseek64(device_fd, 0, SEEK_SET);
write(device_fd, &buffer[0], original_ls.block_size);
return Status::ok();
}
if (!validating) break;
validating = false;
action = "Restoring";
}
return Status::ok();
}
Status cp_markBootAttempt() {
std::string oldContent, newContent;
int retry = 0;
struct stat st;
int result = stat(kMetadataCPFile.c_str(), &st);
// If the file doesn't exist, we aren't managing a checkpoint retry counter
if (result != 0) return Status::ok();
if (!android::base::ReadFileToString(kMetadataCPFile, &oldContent)) {
PLOG(ERROR) << "Failed to read checkpoint file";
return Status::fromExceptionCode(errno, "Failed to read checkpoint file");
}
std::string retryContent = oldContent.substr(0, oldContent.find_first_of(" "));
if (!android::base::ParseInt(retryContent, &retry))
return Status::fromExceptionCode(EINVAL, "Could not parse retry count");
if (retry > 0) {
retry--;
newContent = std::to_string(retry);
if (!android::base::WriteStringToFile(newContent, kMetadataCPFile))
return Status::fromExceptionCode(errno, "Could not write checkpoint file");
}
return Status::ok();
}
} // namespace vold
} // namespace android