forked from stanford-oval/WikiChat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
database.py
91 lines (77 loc) · 3.68 KB
/
database.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
"""
The backend API that runs dialog agents, returns agent utterance to the front-end, and stores user data in a MongoDB database
The API has the following three functions that can be used by any front-end.
All inputs/outputs are string, except for `log_object` which is a json object and `turn_id` and `user_naturalness_rating` which are integers.
- `/chat`
Inputs: (experiment_id, new_user_utterance, dialog_id, turn_id, system_name)
Outputs: (agent_utterance, log_object)
Each time a user types something and clicks send, the front-end should make one call per system to /chat. So e.g. it should make two separate calls for two systems.
- `/user_rating`
Inputs: (experiment_id, dialog_id, turn_id, system_name, user_naturalness_rating, user_factuality_rating, user_factuality_confidence)
Outputs: None
When the user submits their ratings, the front-end should make one call per system to /user_rating. So e.g. it should make two separate calls for two systems.
- `/user_preference`
Inputs: (experiment_id, dialog_id, turn_id, winner_system, loser_systems)
Outputs: None
Each time the user selects one of the agent utterances over the other, you make one call to /user_preference.
`turn_id` starts from 0 and is incremented by 1 after a user and agent turn
"""
import os
import warnings
from pipelines.dialogue_state import DialogueState
warnings.filterwarnings(
"ignore", "You appear to be connected to a CosmosDB cluster", category=UserWarning
)
import pymongo
from pipelines.utils import get_logger
logger = get_logger(__name__)
# set up the MongoDB connection
CONNECTION_STRING = os.environ.get("COSMOS_CONNECTION_STRING")
client = pymongo.MongoClient(CONNECTION_STRING)
db = client["wikichat"] # the database name is wikichat
dialogue_db_collection = db[
"dialog_turns"
] # the collection that stores dialog turns and their user ratings
dialogue_db_collection.create_index(
"$**"
) # necessary to build an index before we can call sort()
preference_db_collection = db[
"preferences"
] # the collection that stores information about what utterance users preferred
preference_db_collection.create_index(
"$**"
) # necessary to build an index before we can call sort()
# The "schema" of dialogue_db_collection is: {_id=(dialog_id, turn_id, system_name), experiment_id, dialog_id, turn_id, system_name, user_utterance, agent_utterance, agent_log_object, user_naturalness_rating}
# The "schema" of preference_db_collection is: {_id=(dialog_id, turn_id), experiment_id, dialog_id, turn_id, winner_system, loser_systems}
def save_dialogue_to_db(
dialogue_state: DialogueState,
dialogue_id: str,
system_name: str,
experiment_id: str = "default-experiment",
):
entries_to_write = []
for turn_id, dialogue_turn in enumerate(dialogue_state["dialogue_history"]):
entries_to_write.append(
{
"_id": str((dialogue_id, turn_id, system_name)),
"experiment_id": experiment_id,
"dialog_id": dialogue_id,
"turn_id": turn_id,
"system_name": system_name,
"user_utterance": dialogue_turn.user_utterance,
"agent_utterance": dialogue_turn.agent_utterance,
"agent_log_object": dialogue_turn.turn_log,
"user_naturalness_rating": -1,
"user_factuality_rating": False,
"user_factuality_confidence": -1,
}
)
try:
logger.info(
"Inserting new dialogue with dialogue_id '%s' to database",
str(dialogue_id),
)
dialogue_db_collection.insert_many(entries_to_write)
except Exception as e:
logger.error("Could not save to database")
logger.exception(e)