-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdemo_efficientdet.py
74 lines (67 loc) · 3.08 KB
/
demo_efficientdet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
"""efficientdet Demo script."""
import os
import argparse
import mxnet as mx
import gluoncv as gcv
gcv.utils.check_version('0.6.0')
from matplotlib import pyplot as plt
from model.efficientdet import get_efficientdet
def load_img(img_path, img_shape=512, mean=(0.485, 0.456, 0.406),
std=(0.229, 0.224, 0.225)):
img = mx.nd.imread(img_path)
img = mx.nd.image.resize(img, (img_shape, img_shape))
orig_img = img.asnumpy().astype('uint8')
img = mx.nd.image.to_tensor(img)
img = mx.nd.image.normalize(img, mean=mean, std=std)
img = img.expand_dims(0)
return img, orig_img
def parse_args():
parser = argparse.ArgumentParser(description='Test with efficientdet networks.')
parser.add_argument('--network', type=str, default='efficientdet-b1',
help="Base network name")
parser.add_argument('--data-shape', type=int, default=640,
help="Input data shape, use 300, 512.")
parser.add_argument('--dataset', type=str, default='coco',
help='Testing dataset. Now support voc.')
parser.add_argument('--images', type=str, default='',
help='Test images, use comma to split multiple.')
parser.add_argument('--gpus', type=str, default='',
help='Training with GPUs, you can specify 1,3 for example.')
parser.add_argument('--pretrained_path', type=str,
help='Load weights from previously saved parameters.')
parser.add_argument('--thresh', type=float, default=0.5,
help='Threshold of object score when visualize the bboxes.')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
# context list
ctx = [mx.gpu(int(i)) for i in args.gpus.split(',') if i.strip()]
ctx = [mx.cpu()] if not ctx else ctx
# grab some image if not specified
if not args.images.strip():
gcv.utils.download("https://cloud.githubusercontent.com/assets/3307514/" +
"20012568/cbc2d6f6-a27d-11e6-94c3-d35a9cb47609.jpg", 'street.jpg')
image_list = ['street.jpg']
else:
image_list = [x.strip() for x in args.images.split(',') if x.strip()]
if args.dataset.lower() == 'coco':
from gluoncv.data import COCODetection
classes = COCODetection.CLASSES
elif args.dataset.lower() == 'voc':
from gluoncv.data import VOCDetection
classes = VOCDetection.CLASSES
else:
raise NotImplementedError('Dataset: {} not implemented.'.format(args.dataset))
net = get_efficientdet(args.network, classes, pretrained_base=False)
net.load_parameters(args.pretrained_path)
net.set_nms(0.45, 200)
net.collect_params().reset_ctx(ctx = ctx)
for image in image_list:
ax = None
x, img = load_img(image, short=args.data_shape)
x = x.as_in_context(ctx[0])
ids, scores, bboxes = [xx[0].asnumpy() for xx in net(x)]
ax = gcv.utils.viz.plot_bbox(img, bboxes, scores, ids, thresh=args.thresh,
class_names=net.classes, ax=ax)
plt.show()