Skip to content

Latest commit

 

History

History
61 lines (45 loc) · 1.68 KB

README.md

File metadata and controls

61 lines (45 loc) · 1.68 KB

Pytorch-VAE

This is an implementation of the VAE (Variational Autoencoder) for Cifar10

You can read about dataset here -- CIFAR10

Example

All images are taken from the test set. Left row is the original image. Right row is the reconstruction.

Original Reconstruction
frog
bird

Setup

conda env create
python setup.py develop

To train on new dataset:

To initialize training, simply go ahead

./main.py --train
 [--dataset {mnist,cifar10,cifar100}]
 [--kernel-num KERNEL_NUM] [--z-size Z_SIZE]
 [--epochs EPOCHS] [--batch-size BATCH_SIZE]
 [--sample-size SAMPLE_SIZE] [--lr LR]
 [--weight-decay WEIGHT_DECAY]
 [--loss-log-interval LOSS_LOG_INTERVAL]
 [--image-log-interval IMAGE_LOG_INTERVAL]
 [--resume] [--checkpoint-dir CHECKPOINT_DIR]
 [--sample-dir SAMPLE_DIR] [--no-gpus]

dataset == 'mnist', 'cifar10', 'cifar100'

It will convert imgs from срщщыут dataset

To test

./main.py --test
 [--dataset {mnist,cifar10,cifar100}]
 [--kernel-num KERNEL_NUM] [--z-size Z_SIZE]
 [--epochs EPOCHS] [--batch-size BATCH_SIZE]
 [--sample-size SAMPLE_SIZE] [--lr LR]
 [--weight-decay WEIGHT_DECAY]
 [--loss-log-interval LOSS_LOG_INTERVAL]
 [--image-log-interval IMAGE_LOG_INTERVAL]
 [--resume] [--checkpoint-dir CHECKPOINT_DIR]
 [--sample-dir SAMPLE_DIR] [--no-gpus]

VAE

PyTorch implementation of Auto-Encoding Variational Bayes, arxiv:1312.6114