-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcompute.py
830 lines (728 loc) · 32.2 KB
/
compute.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
from argparse import ArgumentParser, Namespace
from sys import argv
from joblib import cpu_count
import numpy as np
from os import system
if "self_test" in argv:
script_name = argv[0]
# compiles pykeops
for _pipeline in ("multismk", "multismi", "multisurface", "mmaimg"):
# n_jobs = cpu_count() // 2
n_jobs = 1
## GRAPHS
easy_graph="graphs/COX2"
assert system(f"python {script_name} --dataset {easy_graph} "
f"--filtrations degree --filtrations cc --pipeline {_pipeline} "
f"--train_k 2 --test_k .2 --degrees 0 --degrees -1 --in_strategy exact "
f"--num_rescales 2 --out_strategy regular_closest --out_resolution 5 "
f"--n_jobs {n_jobs} --test 1") == 0
## More number of parameters
assert system(f"python {script_name} --dataset {easy_graph} --filtrations degree "
f" --filtrations cc --filtrations hks_10 --filtrations hks_5 --pipeline {_pipeline} "
f"--train_k 2 --test_k .2 --degrees 0 --in_strategy exact --num_rescales 1 "
f"--out_strategy regular_closest --out_resolution 5 --n_jobs {n_jobs} --test 1") == 0
## point clouds
n_jobs = 1
easypoint_cloud="orbit"
for _complex in ("rips", "alpha"):
for _kernel in ["gaussian"]:
assert system(f"python {script_name} --dataset {easypoint_cloud} "
f"--pipeline {_pipeline} --train_k 2 --test_k .2 --degrees 1 --in_strategy exact "
f" --out_strategy regular --out_resolution 5 --complex {_complex} "
f"--rips_threshold -1 --kernel {_kernel} --kde_bandwidths -.1 "
f"--dtm_masses .1 --n_jobs {n_jobs} --num_pts 50 --num_samples 5 --test 1") == 0
print("\n\n\n -------------- All tests passed. ")
exit()
if "--test" not in argv:
## This tests the scripts, and also precompiles pykeops, without entering the gridsearch (test=1)
print("----------------------------------------------")
print("----------------------------------------------")
print("Testing script")
exit_status = system(" ".join(["python ",*argv," --test 1 --n_jobs 1"]))
assert exit_status == 0, f"Testing script failed. error {exit_status}"
print("----------------------------------------------")
print("----------------------------------------------")
print("Script launched with arguments:\npython", *argv)
print("----------------------------------------------")
print("----------------------------------------------", flush=True)
else:
print("----------------------------------------------")
print("----------------------------------------------")
print("Testing...")
print("----------------------------------------------")
print("----------------------------------------------", flush=True)
############################################ARGS PARSER
p = ArgumentParser()
p.add_argument("-d","--dataset", type=str, required=True, help="The dataset on which to do the computation. Either UCR, e.g., UCR/Coffee, graphs : graphs/BZR, orbit, 3dshapes, e.g., 3dshapes/Airplane ") #Threshold infinite values to compute diagram distance
p.add_argument("-p", "--pipeline", required=True,type=str, help="The pipeline to apply to the dataset. Available : dummy, filvec, pervec, sw, {rd,dr,multi}_{smi, smk, hilbert}, sw, smk, smh, smi, pl,pl_p, pi, pi_p. Where sm -> signed measure, sm{i,k,h} -> image, kernel, hilbert, rd -> rips+density bifiltration, dr-> degree+rips bifiltration, multi -> custom 1critical multi filtration (eg. graphs, molecules), sw -> sliced wasserstein, pl -> persistence landscape, pi -> persistance image.") # pipeline
p.add_argument("-fc","--final_classifier", default="rf", type=str, help="When the final input is a vector, this defines the final classifier")
p.add_argument("-f","--filtration", default="", type=str, help="For 1 parameter filtration, the custom filtration. for example for graphs : ricciCurvature") # filtration on the graph (1-parameter)
p.add_argument("-fs","--filtrations", default=[], type=str, action="append", help = "For multifiltration, the filtrations to consider. e.g. --filtrations ricciCurvature --filtrations cc --filtrations geodesic. Depending on the dataset, available ones for graphs are cc,degree,fiedler,ricciCurvature,geodesic.") # filtrations on the graph (multi-parameter)
p.add_argument("-tk", "--train_k", default=10, type=int, help="Number of cross validations to choose the parameters during the training") # number of kfold for cross validation
p.add_argument("-k", "--test_k", default=10, type=float, help="Number of n-folds for testing. If 0<x<1, will do a train-test-split with a proportion of x for the test.") # number of kfold for test
p.add_argument("-t","--diagram_threshold", default=np.inf, type=float, help="For 1 parameter, thresholds persistence values to this threshold.") #Threshold infinite values to compute diagram distance
p.add_argument("-ns", "--num_samples", default=-1, type=int, help="number of data for orbit5k, and 3dshapes") # number of data (e.g. graph, or orbit data) samples
p.add_argument("-npts", "--num_pts", default=0, type=int, help="number of points / nodes in each data for 3dshapes / orbit") # number of pts per sample, if (synthetic)
p.add_argument("-res", "--in_resolution", type=int, default=100, help="For multiparameter pipelines, the resolution to compute the signed measure. e.g. 100 will do the computation on a [100]*num_parameter grid.")
p.add_argument("-is", "--in_strategy", default="exact", help="Infers the grid on which to compute the topological invariant.")
p.add_argument("--in_individual_grid", default=True, type=int, help="Whether or not to compute signed meaasure on individual grids. Significantly faster if true.")
p.add_argument("-os", "--out_strategy", nargs='+', action='extend', help="Infers the grid on which to compute the topological invariant. Available : regular, quantile, exact.")
p.add_argument("-ores", "--out_resolution", type=int, action='append', help="For multiparameter, vectorized pipelines, e.g. *_{smi, hilbert} the resolution of these vectors.")
p.add_argument("-numdir", "--num_directions", type=int, default=100, help="For multiparameter, vectorized pipelines, e.g. *_{smi, hilbert} the resolution of these vectors.")
p.add_argument("-cplx", "--complex", default="rips", help="Simplicial complex used on the point cloud.")
p.add_argument("-krnl", "--kernel", default="gaussian", help="Codensity-like kernel to use, e.g., gaussian, exponential.")
p.add_argument("--kde_bandwidths", type=float, action='append',default=[], help="For point cloud dataset, the bandwidths of the Kernel Density Estimation to cross validate.")
p.add_argument("--dtm_masses", type=float, action='append',default=[], help="For point cloud dataset, the selected masses of the DistanceToMeasure to cross validate to compute a codensity filtration.")
p.add_argument("--drop_quantile", default=0, help="When inferring the filtrations, drop filtration values lower than this q and greater than 1-q.", type=float)
p.add_argument("--num_rescales", default=1, help="Number of rescales per filtration for Kernel.", type=int)
p.add_argument("--rips_threshold", type=float, default=np.inf, help="Maximum radius value for rips, when using a pipeline using rips.")
# p.add_argument("-rb", "--rips_bandwidth", type=float, default=0., help="")
p.add_argument("--sparse_rips", type=float, default=None, help="Value of the sparse rips, if using it.")
p.add_argument('--extended', action='append', type=int, default=[], help="Extended persistence for 1 parameter filtrations. if -1 : will use [0,2,5,7]. (Order given by gudhi)") #TODO remove
p.add_argument("--geodesic_backend", default="torch_geometric")
p.add_argument("-s", "--seed", default=None, type=int, help="Some pipeline have randomized fit, this controls their seed.") # node selection seed
p.add_argument("--test", default=False, type=bool, help="Reduces the number of input, to ensure the pipelines are working. DO NOT USE WHEN NOT TESTING.")
p.add_argument('--degrees', action='append', type=int, help="The homological degrees to consider. Note : `None` represent the euler characteristic.")
p.add_argument('--rank_degrees', action='append', type=int, help="The homological degrees, for the rank invariant, to consider. ")
p.add_argument("--n_jobs", default=cpu_count(), type=int, help="The number of threads to use.")
p.add_argument("--self_test",default=False, type=bool, help="Computes small tests to ensure the script works.")
args = p.parse_args()
np.random.seed(args.seed)
args.degrees = [] if args.degrees is None else [None if d <0 else d for d in args.degrees]
args.rank_degrees = [] if args.rank_degrees is None else args.rank_degrees
assert len(args.degrees) >0 or len(args.rank_degrees) >0, "Provide homological degree to compute."
print("Loading core dependencies...", end="", flush=True)
import multipers as mp
mp.simplex_tree_multi.SAFE_CONVERSION=True
from sklearn.base import BaseEstimator, TransformerMixin
import multipers.ml.signed_measures as mms
import multipers.ml.mma as mma
from sklearn.model_selection import GridSearchCV
from multipers.ml.tools import get_filtration_weights_grid
import multipers.ml.one as mmo ## only for 1param
from sklearn.svm import SVC
from sklearn.dummy import DummyClassifier
from sklearn.pipeline import Pipeline
from sklearn.base import clone
from random import choice
from copy import deepcopy
from multipers.ml.accuracies import accuracy_to_csv
from joblib import parallel_backend
print("Done.", flush=True)
## FROM https://stackoverflow.com/questions/71845452/convert-argparse-namespace-to-dict-recursively
def namespace_to_dict(namespace):
return {
k: namespace_to_dict(v) if isinstance(v, Namespace) else v
for k, v in vars(namespace).items()
}
results_kwargs = namespace_to_dict(args) ## To be written in the end in the csv
dataset = results_kwargs.pop("dataset")
## ARGS magic
num_parameters = len(args.filtrations) if "graphs/" in args.dataset else 2
args.grid_shape= [args.in_resolution]*num_parameters
shuffle = True if args.filtration != "dijkstra" else False
extended = args.extended
if len(extended) == 1 and extended[0] == -1:
extended = [0,2,5,7] # ord0, ext+0, rel1, Ext-1
degrees = list(range((max(extended) // 4)+1))
elif len(extended) > 0:
extended = extended[1:]
degrees = list(range((max(extended) // 4)+1))
else:
degrees = args.degrees
extended = False
args.extended = extended
args.degrees = degrees
### Final classifiers
match args.final_classifier:
case "rf":
from sklearn.ensemble import RandomForestClassifier
final_classifier = RandomForestClassifier()
final_classifier_parameters={}
case "xgboost":
from xgboost import XGBClassifier
final_classifier = XGBClassifier()
final_classifier_parameters={}
case "mlp":
from sklearn.neural_network import MLPClassifier
final_classifier = MLPClassifier(hidden_layer_sizes=(100,), max_iter=1000)
final_classifier_parameters={}
case "svm":
final_classifier = SVC(kernel="rbf")
final_classifier_parameters={}
case "adaboost":
from sklearn.ensemble import AdaBoostClassifier
final_classifier = AdaBoostClassifier()
final_classifier_parameters={}
case "knn":
from sklearn.neighbors import KNeighborsClassifier
final_classifier = KNeighborsClassifier()
final_classifier_parameters={}
case "lda":
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
final_classifier = LinearDiscriminantAnalysis()
final_classifier_parameters={}
case "qda":
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
final_classifier = QuadraticDiscriminantAnalysis()
final_classifier_parameters={}
case "naivebayes":
from sklearn.naive_bayes import GaussianNB
final_classifier = GaussianNB()
final_classifier_parameters={}
case "lgbm":
from lightgbm import LGBMClassifier
final_classifier = LGBMClassifier(verbose=-1, n_jobs=1)
final_classifier_parameters={}
case _:
raise Exception(f"Classifier {args.final_classifier} not implemented.")
###########################################DATASET / FILTRATIONS
SM_parameters = {
"degrees":args.degrees,
"rank_degrees":args.rank_degrees,
"progress":True,
"n_jobs":args.n_jobs,
"filtration_quantile":args.drop_quantile,
"resolution":args.grid_shape,
"_möbius_inversion": True,
"normalize_filtrations":False, ## Will be done in SMF
"fit_fraction":1, ## Why not
"expand":args.complex == "rips" and not "graphs" in args.dataset,
# "out_resolution": args.out_resolution, ## not needed, integration is done afterward
"grid_strategy":args.in_strategy,
"enforce_null_mass": False, ## DEFINED AT THE DATASET LEVEL
"individual_grid": args.in_individual_grid,
}
print("Getting dataset", flush=True)
if args.dataset == "orbit":
from multipers.data import get_orbit5k
X,Y = get_orbit5k(num_data=args.num_samples, num_pts=args.num_pts)
SM_parameters["enforce_null_mass"] = "smk" in args.pipeline and not args.rips_threshold in [np.inf, -1]
elif args.dataset.startswith("UCR/"):
from multipers.data import UCR
xtrain, ytrain = UCR.get_train(dataset=args.dataset)
xtest, ytest = UCR.get_test(dataset = args.dataset)
## FOR ACCURACY 2 CSV
args.test_k = len(xtest) / (len(xtrain) + len(xtest))
shuffle = False
X = xtrain + xtest
Y = np.concatenate([ytrain, ytest])
## TESTS THAT ACCURACY TO CSV RETRIEVES THE SAME
from sklearn.model_selection import train_test_split
_xtrain, _xtest, _ytrain, _ytest = train_test_split(X, Y, shuffle=shuffle, test_size=args.test_k)
assert np.array_equal(xtrain, _xtrain)
assert np.array_equal(ytrain,_ytrain)
assert np.array_equal(xtest, _xtest)
assert np.array_equal(ytest,_ytest)
SM_parameters["enforce_null_mass"] = "smk" in args.pipeline and not args.rips_threshold in [np.inf, -1]
elif args.dataset == "immuno":
from multipers.data import immuno_regions
X,Y = immuno_regions.get()
SM_parameters["enforce_null_mass"] = "smk" in args.pipeline and not args.rips_threshold in [np.inf, -1]
elif args.dataset.startswith("3dshapes/"):
from multipers.data import shape3d
X,Y = shape3d.get(dataset = args.dataset, num_graph=args.num_samples, node_per_graph = args.num_pts)
args.kde_bandwidths=[];args.masses = []
elif args.dataset.startswith("graphs/"):
from multipers.data import graphs
args.kde_bandwidths=[];args.masses = []
print("Checking graphs filtrations ...", flush=True)
filtrations = args.filtrations
if args.filtrations == ["reset"]:
print("Computing all filtrations and leaving...", end="\n")
graphs.compute_filtration(args.dataset, "ALL")
print("Done")
exit()
if len(filtrations) == 0:
assert args.filtration != "", "Provide a filtration for graph data!"
filtrations = [args.filtration]
for f in filtrations:
graphs.get(dataset = args.dataset, filtration=f) # Ensures that the filtration f is computed on this dataset
X,Y = graphs.get(dataset = args.dataset, filtration=filtrations[0]) # Fills X and Y
SM_parameters["enforce_null_mass"] = "smk" in args.pipeline
SM_parameters["expand"]=False
# elif args.datasets == "ModelNet10":
# import os
# if not os.path.exists()
# train, test = shape3d.load_modelnet('10')
# train_graphs, train_labels = shape3d.torch_geometric_2nx(train)
else:
raise Exception(f"Dataset {args.dataset} not yet supported.")
if args.test:
indices = range(min(10, len(X)))
X=[X[i] for i in indices]
Y=[i%2 for i in indices]
# args.test_k = .2 ## UCR overwrites this
shuffle=False
print(indices, Y)
print("Classes :", np.unique(Y))
############################# SIGNED MEASURES MULTI PIPELINES
print("------------- SimplexTree 2 Signed Measure parameters")
print(SM_parameters)
print("------------- ")
STM2SM = mms.SimplexTree2SignedMeasure(
**SM_parameters
)
STMs2SMs = mms.SimplexTrees2SignedMeasures(
**SM_parameters
)
# DR2SM = p2.DegreeRips2SignedMeasure(
# degrees=args.degrees,
# min_rips_value=0,
# max_rips_value=args.rips_threshold,
# min_normalized_degree=0,
# max_normalized_degree=0.3, # TODO, make a threshold for that
# grid_granularity=args.in_resolution,
# n_jobs=args.n_jobs,
# progress=True,
# _möbius_inversion= True,
# )
SMD1 = mms.SignedMeasure2SlicedWassersteinDistance(num_directions=args.num_directions, n_jobs=args.n_jobs, progress=True)
SMDs = mms.SignedMeasures2SlicedWassersteinDistances(
num_directions=args.num_directions, n_jobs=args.n_jobs,
progress=True,
scales = None if args.num_rescales <= 1 else get_filtration_weights_grid(
num_parameters=num_parameters,
weights=np.unique([1.]+list(np.linspace(.1,10.,args.num_rescales -1))),
remove_homothetie=False,
)
)
#### NUMBER of axis ?
num_bandwidth=len(args.kde_bandwidths)
num_masses=len(args.dtm_masses)
num_bandwidth += num_masses
num_bandwidth = max(num_bandwidth,1)
num_kernel_rescale = 1 if SMDs.scales is None else len(SMDs.scales)
num_axes = (num_bandwidth)*num_kernel_rescale
print(f"Number of axis : bandwidths ({num_bandwidth}) x num_scales ({num_kernel_rescale}) = {num_axes}", flush=1)
############################# MMA Pipelines
int_degrees = [d for d in args.degrees if d is not None]
ST2MMA = mma.SimplexTree2MMA(
nlines=args.num_directions,
n_jobs=args.n_jobs,
prune_degrees_above=np.max(int_degrees)+1 if len(int_degrees)>0 else None,
progress=True,
)
ST2MMA_parameters={
"nlines":[args.num_directions],
}
MMAF = mma.MMAFormatter()
MMAF_parameters={
"MMAF__normalize": [False], # Done at the preprosess stage
"MMAF__degrees": [int_degrees],
"MMAF__weights": [None] if args.num_rescales <= 1 else get_filtration_weights_grid(
num_parameters=num_parameters,
weights=np.unique([1.]+list(np.linspace(.5,10.,args.num_rescales-1))),
remove_homothetie=False,
),
"MMAF__axis": list(range(num_bandwidth)),
"MMAF__quantiles": [[args.drop_quantile]*2],
}
MMA2IMG = mma.MMA2IMG(n_jobs=1,progress=False,flatten=True,degrees=int_degrees)
MMA2IMG_parameters = {
"MMA2IMG__degrees": [int_degrees],
"MMA2IMG__bandwidth": [
0.0001,0.001,0.01,0.1,0.2,
# -0.001,-0.01,-0.1,-0.2
], ## Normalized filtrations, negative is rectangle
"MMA2IMG__power": [0,1],
"MMA2IMG__resolution": args.out_resolution,
"MMA2IMG__grid_strategy": args.out_strategy, # should be fine in every cases
"MMA2IMG__normalize": [False,True],
}
############################ VERSION WITH DISCRETE CONVOLUTION : Faster but smaller precision
# SMF = p2.SignedMeasureFormatter(unsparse=True)
# SMF_parameters = {
# # "SMF__filtrations_weights": [None] if "hilbert" in args.pipeline else p2.get_filtration_weights_grid(num_parameters=num_parameters, weights=[1,.1,10]),
# "SMF__axis": list(range(num_bandwidth)) if args.pipeline.startswith("rd_") else [None],
# "SMF__resolution": [20, 50, 100] if num_parameters == 2 else [20],
# }
# SMM2CV = p2.SignedMeasure2Convolution(flatten=True, n_jobs=-1)
# print("Num parameters", num_parameters)
# SMM2CV_parameters = {
# "SMM2CV__bandwidth": p2.get_filtration_weights_grid(num_parameters=num_parameters, weights=[1.]+list(np.linspace(.1,10.,args.num_rescales-1)), remove_homothetie=False),
# # "SMM2CV__resolution": [args.out_resolution],
# # "SMM2CV__infer_grid_strategy": ["exact"], # should be fine in every cases
# }
########## VERSION WITH SPARSE CONVOLUTION : Slower but better precision (With pykeops speed is fine)
print("Num parameters", num_parameters)
print("Num bandwidths", num_bandwidth)
class Identity(BaseEstimator, TransformerMixin):
def __init__(self):
pass
def fit(self, x, y=None):
return self
def transform(self, X, y=None):
# X= np.asarray(X).squeeze()
# return np.asarray(X).reshape((len(X),-1))
print([x[0].shape for x in X])
return [np.asarray([np.asarray(stuff).flatten() for stuff in x]).flatten() for x in X]
# return X
SMF = mms.SignedMeasureFormatter(verbose=False)
SMF_parameters = {
"SMF__axis": list(range(num_bandwidth)),
# "SMF__resolution": [20, 50, 100] if num_parameters == 2 else [5],
}
if "surface" in args.pipeline:
SMF_parameters["SMF__integrate"] = [True]
SMF.flatten = True
SMF_parameters["SMF__grid_strategy"] = args.out_strategy
SMF_parameters["SMF__filtrations_weights"] = [None]
SMF_parameters["SMF__resolution"] = args.out_resolution
else:
SMF_parameters["SMF__normalize"] = [True]
SMF_parameters["SMF__filtrations_weights"] = get_filtration_weights_grid(
num_parameters=num_parameters,
weights=np.unique([1.]+list(np.linspace(.01,1.,args.num_rescales-1))),
remove_homothetie=False,
)
if "smi" in args.pipeline:
SMM2CV = mms.SignedMeasure2Convolution(flatten=True, n_jobs=1)
SMM2CV_parameters = {
"SMM2CV__bandwidth": [0.001,0.01,0.1,0.2], ## Normalized filtrations
"SMM2CV__resolution": args.out_resolution,
"SMM2CV__grid_strategy": args.out_strategy, # should be fine in every cases
}
############################## DISTANCE MATRIX MAGIC
if "smk" in args.pipeline:
import multipers.ml.kernels as mmk
D2DL = mmk.DistanceMatrices2DistancesList()
DL2D = mmk.DistancesLists2DistanceMatrices()
DM2K = mmk.DistanceMatrix2Kernel()
DM2K_parameters= {
"DM2K__sigma":[0.001, 0.01,1, 10, 100, 1000], # TODO : With measures between 0,1 distances should also be very small ...
"DM2K__axis":list(range(num_axes)), # if args.pipeline == "rd_smk" else [None], # Only for rips+density
"DM2K__weights":get_filtration_weights_grid(num_parameters=len(SM_parameters["degrees"]) + len(SM_parameters["rank_degrees"]), weights=[1,.1,10]),
}
SVMP = SVC(kernel = "precomputed")
SVMP_parameters = {
"SVMP__kernel" : ["precomputed"],
"SVMP__C" : [0.001, 0.01,1, 10, 100, 1000],
}
########################################### SimplexTree and Diagram Transformers
if args.dataset.startswith("3dshapes/"):
true_geodesic = args.geodesic_backend == "torch_geometric"
ToSimplexTree = mmo.TorchData2DijkstraSimplexTree(true_geodesic=true_geodesic, progress=True) # dtype=None delays the computation for multithread with simplextrees
ToSimplexTreeMulti = None # TODO ?
ToSignedMeasure = None
SMD=None
elif args.dataset in ["orbit", "immuno"] or args.dataset.startswith("UCR/"): # point clouds
import multipers.ml.point_clouds as mmp
RDs2STs = mmp.PointCloud2SimplexTree(
bandwidths=args.kde_bandwidths,
masses=args.dtm_masses,
num_collapses='full' if args.complex == "rips" else 0,
progress=True,
sparse=args.sparse_rips,
threshold=args.rips_threshold,
n_jobs=args.n_jobs,
complex=args.complex,
kernel=args.kernel,
)
ToSimplexTree = mmo.PointCloud2SimplexTree(threshold=args.diagram_threshold)
ToSimplexTreeMulti = RDs2STs
ToSignedMeasure = STMs2SMs
SMD = SMDs
assert num_bandwidth>0 or "one" in args.pipeline, "Need a bandwidth/mass parameter to compute a codensity axis."
# TODO pop filtrations, ... from args
elif args.dataset.startswith("graphs/") or args.dataset.startswith("ModelNet"):
ToSimplexTree = mmo.Graph2SimplexTree(f=args.filtration)
import multipers.data.graphs as mdg
ToSimplexTreeMulti = mdg.Graph2SimplexTrees(filtrations=args.filtrations)
# STM2SM.infer_filtration_strategy = "exact"
STMs2SMs.num_collapses = 0
STMs2SMs.expand = False
# STM2SM.sparse = True
ToSignedMeasure = STMs2SMs
SMD=SMDs
else:
raise Exception(f"Dataset {args.dataset} not yet supported.")
print("Transformers : ", ToSimplexTree, ToSimplexTreeMulti, ToSignedMeasure, SMD,sep="\n ")
print("Initializing diagrams pipeline", flush=True)
# The other pipelines are taking diagrams as an input, so we can factorize the pipeline from here. This allows for multithread computation of the dgms
compute_diagram_pipe = Pipeline([
("st", ToSimplexTree),
("dgm", mmo.SimplexTree2Dgm(n_jobs=args.n_jobs, threshold=args.diagram_threshold, extended=extended, degrees=degrees, progress=True))
])
# ## Final args
print("Arguments", args)
###########################################PIPELINES PARAMETERS
print("Initializing pipeline", flush=True)
to_switch = args.pipeline.lower()
match to_switch:
case "dummy": # Dummy
pipeline = DummyClassifier()
parameters = {}
case "mmaimg":
assert len(int_degrees)>0, "Provide degrees to compute."
ModuleTransformer = Pipeline([
('st',ToSimplexTreeMulti),
('mma',ST2MMA),
('normalize_step',mma.MMAFormatter(dump=True,normalize=True,verbose=True,degrees=int_degrees,quantiles=[args.drop_quantile]*2))
])
X = ModuleTransformer.fit_transform(X)
pipeline = Pipeline([
("MMAF",MMAF),
("MMA2IMG",MMA2IMG),
("final_classifier", final_classifier),
])
parameters = {}
parameters.update(MMAF_parameters)
parameters.update(MMA2IMG_parameters)
parameters.update(final_classifier_parameters)
case "filvec":
print("------------filvec pipeline")
svm = SVC(kernel="rbf")
parameters = {
"hist__quantile":[0.],
"hist__bins":[100,200,300],
"svm__kernel" : ["rbf"],
"svm__gamma" : [0.01, 0.1, 1, 10, 100],
"svm__C" : [0.001,0.01,1, 10, 100, 1000],
}
pipeline = Pipeline([
("st",ToSimplexTree),
("hist", mmo.SimplexTree2Histogram()),
("svm",svm)
])
case "msmi"|"multismi":
print("------------smi pipeline")
### PREPROCESSING : transform to signed measure
SignedMeasureTransformer = Pipeline([('st', ToSimplexTreeMulti), ("sm",ToSignedMeasure)])
X = SignedMeasureTransformer.fit_transform(X=X)
SMF.verbose=False
pipeline = Pipeline([
("SMF", SMF),
("SMM2CV", SMM2CV),
("final_classifier", final_classifier),
],
# memory=memory
)
# SMF_parameters["SMF__filtrations_weights"] = [[1,1]]
parameters = {}
parameters.update(SMF_parameters)
parameters.update(SMM2CV_parameters)
parameters.update(final_classifier_parameters)
case "msurface"|"multisurface":
print("------------surface pipeline")
# ToSignedMeasure._möbius_inversion = False ## integrates in the SMF
# ToSignedMeasure.flatten=True
SignedMeasureTransformer = Pipeline([('st', ToSimplexTreeMulti), ("sm",ToSignedMeasure)])
X = SignedMeasureTransformer.fit_transform(X=X)
pipeline = Pipeline([
("SMF", SMF),
("final_classifier", final_classifier),
])
parameters = {}
parameters.update(SMF_parameters)
parameters.update(final_classifier_parameters)
case "msmk"|"multismk":
print("------------smk pipeline")
# ToSignedMeasure.sparse = True
SMD = SMDs
SMF.verbose=True
SMF.axis = -1
SMF.normalize=True
SignedMeasureDistancesTransformer = Pipeline([
('st', ToSimplexTreeMulti),
("sm",ToSignedMeasure),
('smf',SMF),
("smd", SMD),
("smdl",D2DL),
])
X = SignedMeasureDistancesTransformer.fit_transform(X=X)
print(f"Num axes of computed measure : {len(X[0])}")
pipeline = Pipeline([
("DL2D",DL2D),
("DM2K",DM2K),
("SVMP",SVMP),
])
parameters = {}
parameters.update(DM2K_parameters)
parameters.update(SVMP_parameters)
case "dr"|"degreerips":
### Preprocessing: compute the signed measure
raise Exception("TODO reimplement")
# X = DR2SM.fit_transform(X)
### CLASSIFICATION PIPELINE
pipeline = Pipeline([
("SMM2CV", SMM2CV),
("final_classifier", final_classifier)
])
parameters = {}
parameters.update(SMM2CV_parameters)
parameters.update(final_classifier_parameters)
case "sw"|"slicedwasserstein":
svm = SVC(kernel = "precomputed")
print("Computing Sliced Wassertstein Distances", flush=True)
diagrams = compute_diagram_pipe.fit_transform(X)
swds = mmo.Dgms2SlicedWassersteinDistanceMatrices(num_directions=10, n_jobs=args.n_jobs).fit_transform(diagrams)
print("Formatting Distance Matrix", flush=True)
X = mmo.DistanceMatrices2DistancesList().fit_transform(swds)
pipeline = Pipeline([
("dms",DL2D),
("DM2K", DM2K),
("SVMP",SVMP)
])
parameters = {}
DM2K_parameters.pop("DM2K__axis")
DM2K_parameters.pop("DM2K__weights")
parameters.update(DM2K_parameters)
parameters.update(SVMP_parameters)
# elif args.pipeline == "sw_p": # Graph -> SimplexTree -> Diagram -> Shuffled Diagram -> SW -> SVM
# svm = SVC(kernel = "precomputed")
# params={
# "sw__bandwidth":[0.01, 0.1, 1, 10, 100],
# "sw__num_directions":[10],
# "svm__kernel" : ["precomputed"],
# "svm__C" : [0.01,1, 10, 100, 1000],
# }
# pipe = Pipeline([
# ("shuffle", DiagramShuffle()),
# ("sw", Dgms2SWK()),
# ("svm",svm)
# ])
case "pervec":
X = compute_diagram_pipe.fit_transform(X)
svm = SVC(kernel="rbf")
parameters = {
"hist__quantile":[0.],
"hist__bins":[100,200,300],
"svm__kernel" : ["rbf"],
"svm__gamma" : [0.01, 0.1, 1, 10, 100],
"svm__C" : [0.001,0.01,1, 10, 100, 1000],
}
pipeline = Pipeline([
("hist", mmo.Dgm2Histogram()),
("svm",svm)
])
case "onesmk":
diagrams = compute_diagram_pipe.fit_transform(X)
# print(diagrams)
smds = mmo.Dgms2SignedMeasureDistance(n_jobs=args.n_jobs, progress=True).fit_transform(diagrams)
# print(smds)
X = mmo.DistanceMatrices2DistancesList().fit_transform(smds)
pipeline = Pipeline([
("dms",DL2D),
("DM2K", DM2K),
("SVMP",SVMP)
])
parameters = {}
DM2K_parameters.pop("DM2K__axis")
DM2K_parameters.pop("DM2K__weights")
parameters.update(DM2K_parameters)
parameters.update(SVMP_parameters)
case "onesmh":
X = compute_diagram_pipe.fit_transform(X)
hist = mmo.Dgms2SignedMeasureHistogram()
svm = SVC(kernel="rbf")
pipeline = Pipeline([
("hist", hist),
("svm",svm),
])
parameters = {
"hist__quantile" : [0,0.01,0.1],
"hist__bins":[50,100,200,300],
"svm__kernel" : ["rbf"],
"svm__gamma" : [0.01, 0.1, 1, 10, 100],
"svm__C" : [0.001,0.01,1, 10, 100, 1000],
}
case "onesmi":
X = compute_diagram_pipe.fit_transform(X)
img = mmo.Dgms2SignedMeasureImage()
svm = SVC(kernel="rbf")
pipeline = Pipeline([
("img", img),
("svm",svm),
])
parameters = {
"img__quantile" : [0,0.01,0.1],
"img__bandwidth" : [0.01, 0.1, 1., 10., 100.],
"img__resolution":[50,100,200,300],
"svm__kernel" : ["rbf"],
"svm__gamma" : [0.01, 0.1, 1, 10, 100],
"svm__C" : [0.001,0.01,1, 10, 100, 1000],
}
case "onepl":
X = compute_diagram_pipe.fit_transform(X)
pipeline = Pipeline([("pl", mmo.Dgms2Landscapes()), ("svm", SVC(kernel="rbf"))])
parameters = {
"svm__kernel" : ["rbf"],
"svm__gamma" : [0.01, 0.1, 1, 10, 100],
"svm__C" : [0.001,0.01,1, 10, 100, 1000],
"pl__num": [3,4,5,6,7,8], #num landscapes
"pl__resolution": [50,100,200,300],
}
# elif args.pipeline == "pl_p": # Shuffled Landscapes
# X = compute_diagram_pipe.fit_transform(X)
# pipeline = Pipeline([("shuffle", mmo.DiagramShuffle()),("pl", mmo.Dgms2Landscapes()), ("svm", SVC(kernel="rbf"))])
# parameters = {
# "svm__kernel" : ["rbf"],
# "svm__gamma" : [0.01, 0.1, 1, 10, 100],
# "svm__C" : [0.001,0.01,1, 10, 100, 1000],
# "pl__num": [3,4,5,6,7,8], #num landscapes
# "pl__resolution": [50,100,200,300],
# }
case "onepi":
X = compute_diagram_pipe.fit_transform(X)
pipeline = Pipeline([("pi", mmo.Dgms2Image()), ("svm", SVC(kernel="rbf"))])
parameters = {
"svm__kernel" : ["rbf"],
"svm__gamma" : [0.01, 0.1, 1, 10, 100],
"svm__C" : [0.001,0.01,1, 10, 100, 1000],
"pi__bandwidth": [0.01,0.1,1,10,100],
"pi__resolution": [[20,20], [30,30]],
}
# elif args.pipeline == "pi_p": # Shuffled Immages
# X = compute_diagram_pipe.fit_transform(X)
# pipeline = Pipeline([("shuffle", mmo.DiagramShuffle()),("pi", mmo.Dgms2Image()), ("svm", SVC(kernel="rbf"))])
# parameters = {
# "svm__kernel" : ["rbf"],
# "svm__gamma" : [0.01, 0.1, 1, 10, 100],
# "svm__C" : [0.001,0.01,1, 10, 100, 1000],
# "pi__bandwidth": [0.01,0.1,1,10,100],
# "pi__resolution": [[20,20], [30,30]],
# }
case unimplemented:
raise Exception(f"Pipeline {unimplemented} not supported.")
print("Initializing classification pipeline", flush=True)
classifier = GridSearchCV(
estimator=pipeline, param_grid=parameters,
n_jobs = args.n_jobs, cv=args.train_k, verbose=10)
######################################SCORE
print("Computing classification, with pipeline", flush=True)
print(pipeline, flush=True)
print("Final parameters : ", parameters)
# try:
# filtration_grid = ToSignedMeasure.filtration_grid
# print("Signed Measure Filtration grid : ", filtration_grid)
# except:
# None
# PRECOMPILES PYKEOPS if necessary
k=3
print(f"------------ Running {k} times small fit... ")
for _ in range(k):
example_parameter = {a:choice(b) for a,b in parameters.items()}
pipeline_ = clone(pipeline).set_params(**example_parameter)
SMF.verbose=True
print("Parameters", example_parameter)
_X = deepcopy(X[:3])
assert len(_X) == 3, len(_X)
_Y = [0,1,0] ## svm needs at least 2 classes
pipeline_.fit(_X, _Y).score(_X, _Y)
SMF.verbose = False
print("------------ Done.", flush=True)
if args.test:
print("------------ Done testing.")
exit()
## mma modules are hard to pickle. Signed measures are trivial to pickle.
## internal pipelines are threading hardcoded.
#backend = "loky" if "mma" not in args.pipeline else "threading"
# backend="loky" # loky seems to be faster anyway...
# with parallel_backend(backend, n_jobs=args.n_jobs):
accuracy_to_csv(
X=X, Y=Y, dataset = dataset, cl=classifier, k=args.test_k,
shuffle = shuffle,
**results_kwargs
)
# os.system(f"rm -rf {memory}") # removes cache