-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathSonar_case_study.py
42 lines (36 loc) · 1.37 KB
/
Sonar_case_study.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#Import and Conversion, Normalization of Data
from Open_Conversion_Data import load_csv
from Open_Conversion_Data import str_column_to_float
from Open_Conversion_Data import str_column_to_int
#Algorithm evaluation with different steps
from Algorithm_test_harness import evaluate_algorithm_cv
#
from Performance_assessment import getAccuracy
#Import math/random functions
from math import sqrt
from random import seed
#Import random forest tree model
from Tree_model_RF import random_forest
def main():
# Test the random forest algorithm on sonar dataset
seed(2)
# load and prepare data
filename = 'sonar-all-data.csv'
dataset = load_csv(filename)
# convert string attributes to integers
for i in range(0, len(dataset[0])-1):
str_column_to_float(dataset, i)
# convert class column to integers
str_column_to_int(dataset, len(dataset[0])-1)
# evaluate algorithm
n_folds = 5
max_depth = 10
min_size = 1.0
sample_size = 1.0
n_features = int(sqrt(len(dataset[0])-1))
for n_trees in [1, 5, 10]:
scores = evaluate_algorithm_cv(dataset, random_forest, n_folds, getAccuracy,max_depth, min_size, sample_size, n_trees, n_features)
print('Trees: %d' % n_trees)
print('Scores: %s' % scores)
print('Mean Accuracy: %.3f%%' % (sum(scores)/float(len(scores))))
main()