diff --git a/.github/workflows/ci.yml b/.github/workflows/ci.yml index d844f78e..26d67a52 100644 --- a/.github/workflows/ci.yml +++ b/.github/workflows/ci.yml @@ -14,7 +14,7 @@ jobs: strategy: fail-fast: false matrix: - python: [3.8, 3.9] + python: [3.8, 3.9, "3.10", 3.11, 3.12] os: [ubuntu-latest, macos-13] uses: ./.github/workflows/build-virny.yml @@ -27,7 +27,7 @@ jobs: strategy: fail-fast: false matrix: - python: [3.8, 3.9] + python: [3.8, 3.9, "3.10", 3.11, 3.12] os: [ubuntu-latest, macos-13] uses: ./.github/workflows/unit-tests.yml @@ -41,7 +41,7 @@ jobs: - uses: actions/checkout@v3 - uses: actions/setup-python@v4 with: - python-version: 3.8 + python-version: 3.9 - uses: actions/cache@v2 with: key: ${{ github.ref }} diff --git a/.gitignore b/.gitignore index 53a72458..fb0d19da 100644 --- a/.gitignore +++ b/.gitignore @@ -1,5 +1,8 @@ *_venv virny_env +virny_env10 +virny_env11 +virny_env12 notebooks *.env .DS_Store diff --git a/README.md b/README.md index 4f2e628c..f0205150 100644 --- a/README.md +++ b/README.md @@ -1,6 +1,6 @@ # Virny Software Library -
+
@@ -13,10 +13,8 @@ - - - - + + @@ -25,6 +23,10 @@ + + + +
@@ -51,7 +53,7 @@ For quickstart, look at [use case examples](https://dataresponsibly.github.io/Vi ## 🛠 Installation -Virny supports **Python 3.8 and 3.9** and can be installed with `pip`: +Virny supports **Python 3.8-3.12** and can be installed with `pip`: ```bash pip install virny diff --git a/docs/examples/Multiple_Models_Interface_Use_Case.ipynb b/docs/examples/Multiple_Models_Interface_Use_Case.ipynb index 4b5f7da3..59fff6aa 100644 --- a/docs/examples/Multiple_Models_Interface_Use_Case.ipynb +++ b/docs/examples/Multiple_Models_Interface_Use_Case.ipynb @@ -2,15 +2,24 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": 27, "id": "248cbed8", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:28:20.194046Z", - "start_time": "2024-06-01T21:28:19.904829Z" + "end_time": "2024-09-02T20:13:40.509987Z", + "start_time": "2024-09-02T20:13:40.347251Z" } }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The autoreload extension is already loaded. To reload it, use:\n", + " %reload_ext autoreload\n" + ] + } + ], "source": [ "%matplotlib inline\n", "%load_ext autoreload\n", @@ -19,12 +28,12 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 28, "id": "7ec6cd08", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:28:20.202757Z", - "start_time": "2024-06-01T21:28:20.194432Z" + "end_time": "2024-09-02T20:13:40.510359Z", + "start_time": "2024-09-02T20:13:40.399717Z" } }, "outputs": [], @@ -37,12 +46,12 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 29, "id": "b8cb69f2", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:28:20.212602Z", - "start_time": "2024-06-01T21:28:20.203488Z" + "end_time": "2024-09-02T20:13:40.510464Z", + "start_time": "2024-09-02T20:13:40.422800Z" } }, "outputs": [ @@ -96,24 +105,15 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 30, "id": "7a9241de", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:28:22.129627Z", - "start_time": "2024-06-01T21:28:20.213909Z" + "end_time": "2024-09-02T20:13:40.510494Z", + "start_time": "2024-09-02T20:13:40.451919Z" } }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "WARNING:root:No module named 'tempeh': LawSchoolGPADataset will be unavailable. To install, run:\n", - "pip install 'aif360[LawSchoolGPA]'\n" - ] - } - ], + "outputs": [], "source": [ "import os\n", "import pandas as pd\n", @@ -162,7 +162,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 31, "outputs": [], "source": [ "DATASET_SPLIT_SEED = 42\n", @@ -172,15 +172,15 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-06-01T21:28:22.155157Z", - "start_time": "2024-06-01T21:28:22.132190Z" + "end_time": "2024-09-02T20:13:40.510545Z", + "start_time": "2024-09-02T20:13:40.479139Z" } }, "id": "ce359a052925eb3a" }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 32, "outputs": [], "source": [ "models_params_for_tuning = {\n", @@ -225,8 +225,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-06-01T21:28:22.179692Z", - "start_time": "2024-06-01T21:28:22.156292Z" + "end_time": "2024-09-02T20:13:40.529093Z", + "start_time": "2024-09-02T20:13:40.503440Z" } }, "id": "2ece07ab7e3a9acc" @@ -265,7 +265,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 33, "outputs": [], "source": [ "ROOT_DIR = os.path.join('docs', 'examples')\n", @@ -284,15 +284,15 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-06-01T21:28:22.202465Z", - "start_time": "2024-06-01T21:28:22.179915Z" + "end_time": "2024-09-02T20:13:40.559392Z", + "start_time": "2024-09-02T20:13:40.529699Z" } }, "id": "af22ee06f1e3eb1a" }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 34, "outputs": [], "source": [ "config = create_config_obj(config_yaml_path=config_yaml_path)\n", @@ -301,8 +301,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-06-01T21:28:22.223293Z", - "start_time": "2024-06-01T21:28:22.201612Z" + "end_time": "2024-09-02T20:13:40.589345Z", + "start_time": "2024-09-02T20:13:40.558690Z" } }, "id": "65181f72484bb92b" @@ -331,12 +331,12 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 35, "id": "9e3d7bf3", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:28:22.246298Z", - "start_time": "2024-06-01T21:28:22.224449Z" + "end_time": "2024-09-02T20:13:40.616653Z", + "start_time": "2024-09-02T20:13:40.591042Z" } }, "outputs": [], @@ -379,12 +379,12 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 36, "id": "6c55c6a0", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:28:22.279902Z", - "start_time": "2024-06-01T21:28:22.246569Z" + "end_time": "2024-09-02T20:13:40.680709Z", + "start_time": "2024-09-02T20:13:40.616444Z" } }, "outputs": [ @@ -393,7 +393,7 @@ "text/plain": " juv_fel_count juv_misd_count juv_other_count priors_count \\\n0 0.0 -2.340451 1.0 -15.010999 \n1 0.0 0.000000 0.0 0.000000 \n2 0.0 0.000000 0.0 0.000000 \n3 0.0 0.000000 0.0 6.000000 \n4 0.0 0.000000 0.0 7.513697 \n\n age_cat_25 - 45 \n0 1 \n1 1 \n2 0 \n3 1 \n4 1 ", "text/html": "\n | juv_fel_count | \njuv_misd_count | \njuv_other_count | \npriors_count | \nage_cat_25 - 45 | \n
---|---|---|---|---|---|
0 | \n0.0 | \n-2.340451 | \n1.0 | \n-15.010999 | \n1 | \n
1 | \n0.0 | \n0.000000 | \n0.0 | \n0.000000 | \n1 | \n
2 | \n0.0 | \n0.000000 | \n0.0 | \n0.000000 | \n0 | \n
3 | \n0.0 | \n0.000000 | \n0.0 | \n6.000000 | \n1 | \n
4 | \n0.0 | \n0.000000 | \n0.0 | \n7.513697 | \n1 | \n
\n | Dataset_Name | \nModel_Name | \nF1_Score | \nAccuracy_Score | \nModel_Best_Params | \n
---|---|---|---|---|---|
0 | \nCOMPAS_Without_Sensitive_Attributes | \nDecisionTreeClassifier | \n0.655485 | \n0.657505 | \n{'criterion': 'gini', 'max_depth': 20, 'max_fe... | \n
1 | \nCOMPAS_Without_Sensitive_Attributes | \nLogisticRegression | \n0.648382 | \n0.652061 | \n{'C': 1, 'max_iter': 250, 'penalty': 'l2', 'so... | \n
2 | \nCOMPAS_Without_Sensitive_Attributes | \nRandomForestClassifier | \n0.656927 | \n0.658690 | \n{'max_depth': 10, 'max_features': 0.6, 'min_sa... | \n
3 | \nCOMPAS_Without_Sensitive_Attributes | \nXGBClassifier | \n0.662362 | \n0.664611 | \n{'lambda': 100, 'learning_rate': 0.1, 'max_dep... | \n
\n | Dataset_Name | \nModel_Name | \nF1_Score | \nAccuracy_Score | \nModel_Best_Params | \n
---|---|---|---|---|---|
0 | \nCOMPAS_Without_Sensitive_Attributes | \nDecisionTreeClassifier | \n0.655485 | \n0.657505 | \n{'criterion': 'gini', 'max_depth': 20, 'max_fe... | \n
1 | \nCOMPAS_Without_Sensitive_Attributes | \nLogisticRegression | \n0.648382 | \n0.652061 | \n{'C': 1, 'max_iter': 250, 'penalty': 'l2', 'so... | \n
2 | \nCOMPAS_Without_Sensitive_Attributes | \nRandomForestClassifier | \n0.656927 | \n0.658690 | \n{'max_depth': 10, 'max_features': 0.6, 'min_sa... | \n
3 | \nCOMPAS_Without_Sensitive_Attributes | \nXGBClassifier | \n0.664902 | \n0.666979 | \n{'lambda': 100, 'learning_rate': 0.1, 'max_dep... | \n
\n | Metric | \noverall | \nsex_priv | \nsex_dis | \nrace_priv | \nrace_dis | \n
---|---|---|---|---|---|---|
0 | \nIQR | \n0.093218 | \n0.092883 | \n0.093302 | \n0.095182 | \n0.091952 | \n
1 | \nOverall_Uncertainty | \n0.899836 | \n0.909407 | \n0.897446 | \n0.896719 | \n0.901847 | \n
2 | \nStd | \n0.076228 | \n0.077296 | \n0.075962 | \n0.075141 | \n0.076929 | \n
3 | \nMean_Prediction | \n0.520117 | \n0.572049 | \n0.507149 | \n0.581026 | \n0.480839 | \n
4 | \nAleatoric_Uncertainty | \n0.869944 | \n0.875791 | \n0.868484 | \n0.866015 | \n0.872477 | \n
5 | \nStatistical_Bias | \n0.422194 | \n0.416842 | \n0.423530 | \n0.418523 | \n0.424561 | \n
6 | \nEpistemic_Uncertainty | \n0.029893 | \n0.033616 | \n0.028963 | \n0.030704 | \n0.029369 | \n
7 | \nJitter | \n0.148098 | \n0.159899 | \n0.145152 | \n0.138860 | \n0.154056 | \n
8 | \nLabel_Stability | \n0.786591 | \n0.766825 | \n0.791527 | \n0.801256 | \n0.777134 | \n
9 | \nTPR | \n0.687898 | \n0.573333 | \n0.709596 | \n0.578231 | \n0.737654 | \n
10 | \nTNR | \n0.687179 | \n0.808824 | \n0.650334 | \n0.756554 | \n0.628931 | \n
11 | \nPPV | \n0.639053 | \n0.623188 | \n0.641553 | \n0.566667 | \n0.669468 | \n
12 | \nFNR | \n0.312102 | \n0.426667 | \n0.290404 | \n0.421769 | \n0.262346 | \n
13 | \nFPR | \n0.312821 | \n0.191176 | \n0.349666 | \n0.243446 | \n0.371069 | \n
14 | \nAccuracy | \n0.687500 | \n0.725118 | \n0.678107 | \n0.693237 | \n0.683801 | \n
15 | \nF1 | \n0.662577 | \n0.597222 | \n0.673861 | \n0.572391 | \n0.701909 | \n
16 | \nSelection-Rate | \n0.480114 | \n0.327014 | \n0.518343 | \n0.362319 | \n0.556075 | \n
17 | \nSample_Size | \n1056.000000 | \n211.000000 | \n845.000000 | \n414.000000 | \n642.000000 | \n
\n | Metric | \noverall | \nsex_priv | \nsex_dis | \nrace_priv | \nrace_dis | \n
---|---|---|---|---|---|---|
0 | \nStd | \n0.076228 | \n0.077296 | \n0.075962 | \n0.075141 | \n0.076929 | \n
1 | \nMean_Prediction | \n0.520117 | \n0.572049 | \n0.507149 | \n0.581026 | \n0.480839 | \n
2 | \nIQR | \n0.093218 | \n0.092883 | \n0.093302 | \n0.095182 | \n0.091952 | \n
3 | \nOverall_Uncertainty | \n0.899836 | \n0.909407 | \n0.897446 | \n0.896719 | \n0.901847 | \n
4 | \nStatistical_Bias | \n0.422194 | \n0.416842 | \n0.423530 | \n0.418523 | \n0.424561 | \n
5 | \nAleatoric_Uncertainty | \n0.869944 | \n0.875791 | \n0.868484 | \n0.866015 | \n0.872477 | \n
6 | \nEpistemic_Uncertainty | \n0.029893 | \n0.033616 | \n0.028963 | \n0.030704 | \n0.029369 | \n
7 | \nJitter | \n0.148098 | \n0.159899 | \n0.145152 | \n0.138860 | \n0.154056 | \n
8 | \nLabel_Stability | \n0.786591 | \n0.766825 | \n0.791527 | \n0.801256 | \n0.777134 | \n
9 | \nTPR | \n0.687898 | \n0.573333 | \n0.709596 | \n0.578231 | \n0.737654 | \n
10 | \nTNR | \n0.687179 | \n0.808824 | \n0.650334 | \n0.756554 | \n0.628931 | \n
11 | \nPPV | \n0.639053 | \n0.623188 | \n0.641553 | \n0.566667 | \n0.669468 | \n
12 | \nFNR | \n0.312102 | \n0.426667 | \n0.290404 | \n0.421769 | \n0.262346 | \n
13 | \nFPR | \n0.312821 | \n0.191176 | \n0.349666 | \n0.243446 | \n0.371069 | \n
14 | \nAccuracy | \n0.687500 | \n0.725118 | \n0.678107 | \n0.693237 | \n0.683801 | \n
15 | \nF1 | \n0.662577 | \n0.597222 | \n0.673861 | \n0.572391 | \n0.701909 | \n
16 | \nSelection-Rate | \n0.480114 | \n0.327014 | \n0.518343 | \n0.362319 | \n0.556075 | \n
17 | \nSample_Size | \n1056.000000 | \n211.000000 | \n845.000000 | \n414.000000 | \n642.000000 | \n
\n | Metric | \nsex | \nrace | \nsex&race | \nModel_Name | \n
---|---|---|---|---|---|
0 | \nAccuracy_Difference | \n-0.047012 | \n-0.009436 | \n-0.039300 | \nDecisionTreeClassifier | \n
1 | \nAleatoric_Uncertainty_Difference | \n-0.007307 | \n0.006463 | \n0.000802 | \nDecisionTreeClassifier | \n
2 | \nAleatoric_Uncertainty_Ratio | \n0.991656 | \n1.007463 | \n1.000922 | \nDecisionTreeClassifier | \n
3 | \nEpistemic_Uncertainty_Difference | \n-0.004654 | \n-0.001335 | \n-0.003381 | \nDecisionTreeClassifier | \n
4 | \nEpistemic_Uncertainty_Ratio | \n0.861563 | \n0.956510 | \n0.892966 | \nDecisionTreeClassifier | \n
... | \n... | \n... | \n... | \n... | \n... | \n
71 | \nDisparate_Impact | \n1.465176 | \n1.537383 | \n1.596796 | \nXGBClassifier | \n
72 | \nStd_Difference | \n0.000151 | \n0.002984 | \n0.002995 | \nXGBClassifier | \n
73 | \nStd_Ratio | \n1.003178 | \n1.065098 | \n1.064903 | \nXGBClassifier | \n
74 | \nEqualized_Odds_TNR | \n-0.076968 | \n-0.101583 | \n-0.123015 | \nXGBClassifier | \n
75 | \nEqualized_Odds_TPR | \n0.153535 | \n0.152053 | \n0.155233 | \nXGBClassifier | \n
76 rows × 5 columns
\n\n | Metric | \nsex | \nrace | \nsex&race | \nModel_Name | \n
---|---|---|---|---|---|
0 | \nAccuracy_Difference | \n-0.047012 | \n-0.009436 | \n-0.039300 | \nDecisionTreeClassifier | \n
1 | \nAleatoric_Uncertainty_Difference | \n-0.007307 | \n0.006463 | \n0.000802 | \nDecisionTreeClassifier | \n
2 | \nAleatoric_Uncertainty_Ratio | \n0.991656 | \n1.007463 | \n1.000922 | \nDecisionTreeClassifier | \n
3 | \nEpistemic_Uncertainty_Difference | \n-0.004654 | \n-0.001335 | \n-0.003381 | \nDecisionTreeClassifier | \n
4 | \nEpistemic_Uncertainty_Ratio | \n0.861563 | \n0.956510 | \n0.892966 | \nDecisionTreeClassifier | \n
... | \n... | \n... | \n... | \n... | \n... | \n
71 | \nDisparate_Impact | \n1.483317 | \n1.576324 | \n1.629653 | \nXGBClassifier | \n
72 | \nStd_Difference | \n0.000168 | \n0.002792 | \n0.002732 | \nXGBClassifier | \n
73 | \nStd_Ratio | \n1.003582 | \n1.061568 | \n1.059806 | \nXGBClassifier | \n
74 | \nEqualized_Odds_TNR | \n-0.082094 | \n-0.102184 | \n-0.128932 | \nXGBClassifier | \n
75 | \nEqualized_Odds_TPR | \n0.153535 | \n0.171832 | \n0.164085 | \nXGBClassifier | \n
76 rows × 5 columns
\n\n | juv_fel_count | \njuv_misd_count | \njuv_other_count | \npriors_count | \nage_cat_25 - 45 | \n
---|---|---|---|---|---|
0 | \n0.0 | \n-2.340451 | \n1.0 | \n-15.010999 | \n1 | \n
1 | \n0.0 | \n0.000000 | \n0.0 | \n0.000000 | \n1 | \n
2 | \n0.0 | \n0.000000 | \n0.0 | \n0.000000 | \n0 | \n
3 | \n0.0 | \n0.000000 | \n0.0 | \n6.000000 | \n1 | \n
4 | \n0.0 | \n0.000000 | \n0.0 | \n7.513697 | \n1 | \n
\n | Metric | \noverall | \nsex_priv | \nsex_dis | \nrace_priv | \nrace_dis | \n
---|---|---|---|---|---|---|
0 | \nStatistical_Bias | \n0.415777 | \n0.411280 | \n0.416900 | \n0.411460 | \n0.418561 | \n
1 | \nStd | \n0.070086 | \n0.072965 | \n0.069367 | \n0.069672 | \n0.070352 | \n
2 | \nMean_Prediction | \n0.519189 | \n0.574330 | \n0.505420 | \n0.583615 | \n0.477643 | \n
3 | \nOverall_Uncertainty | \n0.885080 | \n0.894485 | \n0.882731 | \n0.879480 | \n0.888691 | \n
4 | \nAleatoric_Uncertainty | \n0.859123 | \n0.866579 | \n0.857261 | \n0.853366 | \n0.862836 | \n
5 | \nIQR | \n0.084150 | \n0.081478 | \n0.084817 | \n0.085661 | \n0.083176 | \n
6 | \nEpistemic_Uncertainty | \n0.025957 | \n0.027907 | \n0.025470 | \n0.026114 | \n0.025856 | \n
7 | \nLabel_Stability | \n0.854811 | \n0.842275 | \n0.857941 | \n0.865700 | \n0.847788 | \n
8 | \nJitter | \n0.111783 | \n0.119586 | \n0.109835 | \n0.103488 | \n0.117133 | \n
9 | \nTPR | \n0.656051 | \n0.480000 | \n0.689394 | \n0.517007 | \n0.719136 | \n
10 | \nTNR | \n0.735043 | \n0.808824 | \n0.712695 | \n0.790262 | \n0.688679 | \n
11 | \nPPV | \n0.665948 | \n0.580645 | \n0.679104 | \n0.575758 | \n0.701807 | \n
12 | \nFNR | \n0.343949 | \n0.520000 | \n0.310606 | \n0.482993 | \n0.280864 | \n
13 | \nFPR | \n0.264957 | \n0.191176 | \n0.287305 | \n0.209738 | \n0.311321 | \n
14 | \nAccuracy | \n0.699811 | \n0.691943 | \n0.701775 | \n0.693237 | \n0.704050 | \n
15 | \nF1 | \n0.660963 | \n0.525547 | \n0.684211 | \n0.544803 | \n0.710366 | \n
16 | \nSelection-Rate | \n0.439394 | \n0.293839 | \n0.475740 | \n0.318841 | \n0.517134 | \n
17 | \nPositive-Rate | \n0.985138 | \n0.826667 | \n1.015152 | \n0.897959 | \n1.024691 | \n
18 | \nSample_Size | \n1056.000000 | \n211.000000 | \n845.000000 | \n414.000000 | \n642.000000 | \n
\n | Metric | \noverall | \nsex_priv | \nsex_dis | \nrace_priv | \nrace_dis | \n
---|---|---|---|---|---|---|
0 | \nStd | \n0.073404 | \n0.076654 | \n0.072593 | \n0.073483 | \n0.073353 | \n
1 | \nMean_Prediction | \n0.519733 | \n0.575657 | \n0.505768 | \n0.585374 | \n0.477403 | \n
2 | \nStatistical_Bias | \n0.416691 | \n0.413261 | \n0.417548 | \n0.412091 | \n0.419658 | \n
3 | \nIQR | \n0.087474 | \n0.088773 | \n0.087150 | \n0.089656 | \n0.086067 | \n
4 | \nOverall_Uncertainty | \n0.887649 | \n0.898580 | \n0.884919 | \n0.882318 | \n0.891086 | \n
5 | \nAleatoric_Uncertainty | \n0.859615 | \n0.866990 | \n0.857773 | \n0.853026 | \n0.863864 | \n
6 | \nEpistemic_Uncertainty | \n0.028034 | \n0.031589 | \n0.027146 | \n0.029292 | \n0.027223 | \n
7 | \nLabel_Stability | \n0.862917 | \n0.827488 | \n0.871763 | \n0.859614 | \n0.865047 | \n
8 | \nJitter | \n0.108416 | \n0.130465 | \n0.102910 | \n0.107781 | \n0.108826 | \n
9 | \nTPR | \n0.656051 | \n0.493333 | \n0.686869 | \n0.517007 | \n0.719136 | \n
10 | \nTNR | \n0.733333 | \n0.808824 | \n0.710468 | \n0.790262 | \n0.685535 | \n
11 | \nPPV | \n0.664516 | \n0.587302 | \n0.676617 | \n0.575758 | \n0.699700 | \n
12 | \nFNR | \n0.343949 | \n0.506667 | \n0.313131 | \n0.482993 | \n0.280864 | \n
13 | \nFPR | \n0.266667 | \n0.191176 | \n0.289532 | \n0.209738 | \n0.314465 | \n
14 | \nAccuracy | \n0.698864 | \n0.696682 | \n0.699408 | \n0.693237 | \n0.702492 | \n
15 | \nF1 | \n0.660256 | \n0.536232 | \n0.681704 | \n0.544803 | \n0.709285 | \n
16 | \nSelection-Rate | \n0.440341 | \n0.298578 | \n0.475740 | \n0.318841 | \n0.518692 | \n
17 | \nSample_Size | \n1056.000000 | \n211.000000 | \n845.000000 | \n414.000000 | \n642.000000 | \n
\n | juv_fel_count | \njuv_misd_count | \njuv_other_count | \npriors_count | \nage_cat_25 - 45 | \n
---|---|---|---|---|---|
0 | \n0.0 | \n-2.340451 | \n1.0 | \n-15.010999 | \n1 | \n
1 | \n0.0 | \n0.000000 | \n0.0 | \n0.000000 | \n1 | \n
2 | \n0.0 | \n0.000000 | \n0.0 | \n0.000000 | \n0 | \n
3 | \n0.0 | \n0.000000 | \n0.0 | \n6.000000 | \n1 | \n
4 | \n0.0 | \n0.000000 | \n0.0 | \n7.513697 | \n1 | \n
\n | Metric | \noverall | \nsex_priv | \nsex_priv_correct | \nsex_priv_incorrect | \n
---|---|---|---|---|---|
0 | \nStatistical_Bias | \n0.416691 | \n0.413261 | \n0.324033 | \n0.618208 | \n
1 | \nOverall_Uncertainty | \n0.887649 | \n0.898580 | \n0.880975 | \n0.939015 | \n
2 | \nAleatoric_Uncertainty | \n0.859615 | \n0.866990 | \n0.852746 | \n0.899708 | \n
3 | \nIQR | \n0.087474 | \n0.088773 | \n0.081936 | \n0.104479 | \n
4 | \nStd | \n0.073404 | \n0.076654 | \n0.071201 | \n0.089178 | \n
5 | \nMean_Prediction | \n0.519733 | \n0.575657 | \n0.597694 | \n0.525040 | \n
6 | \nEpistemic_Uncertainty | \n0.028034 | \n0.031589 | \n0.028229 | \n0.039308 | \n
7 | \nJitter | \n0.108416 | \n0.130465 | \n0.102774 | \n0.194069 | \n
8 | \nLabel_Stability | \n0.862917 | \n0.827488 | \n0.866939 | \n0.736875 | \n
9 | \nTPR | \n0.656051 | \n0.493333 | \n1.000000 | \n0.000000 | \n
10 | \nTNR | \n0.733333 | \n0.808824 | \n1.000000 | \n0.000000 | \n
11 | \nPPV | \n0.664516 | \n0.587302 | \n1.000000 | \n0.000000 | \n
12 | \nFNR | \n0.343949 | \n0.506667 | \n0.000000 | \n1.000000 | \n
13 | \nFPR | \n0.266667 | \n0.191176 | \n0.000000 | \n1.000000 | \n
14 | \nAccuracy | \n0.698864 | \n0.696682 | \n1.000000 | \n0.000000 | \n
15 | \nF1 | \n0.660256 | \n0.536232 | \n1.000000 | \n0.000000 | \n
16 | \nSelection-Rate | \n0.440341 | \n0.298578 | \n0.251701 | \n0.406250 | \n
17 | \nSample_Size | \n1056.000000 | \n211.000000 | \n147.000000 | \n64.000000 | \n
\n | Metric | \noverall | \nsex_priv | \nsex_priv_correct | \nsex_priv_incorrect | \n
---|---|---|---|---|---|
0 | \nAleatoric_Uncertainty | \n0.859615 | \n0.866990 | \n0.852746 | \n0.899708 | \n
1 | \nMean_Prediction | \n0.519733 | \n0.575657 | \n0.597694 | \n0.525040 | \n
2 | \nIQR | \n0.087474 | \n0.088773 | \n0.081936 | \n0.104479 | \n
3 | \nStd | \n0.073404 | \n0.076654 | \n0.071201 | \n0.089178 | \n
4 | \nStatistical_Bias | \n0.416691 | \n0.413261 | \n0.324033 | \n0.618208 | \n
5 | \nOverall_Uncertainty | \n0.887649 | \n0.898580 | \n0.880975 | \n0.939015 | \n
6 | \nEpistemic_Uncertainty | \n0.028034 | \n0.031589 | \n0.028229 | \n0.039308 | \n
7 | \nJitter | \n0.108416 | \n0.130465 | \n0.102774 | \n0.194069 | \n
8 | \nLabel_Stability | \n0.862917 | \n0.827488 | \n0.866939 | \n0.736875 | \n
9 | \nTPR | \n0.656051 | \n0.493333 | \n1.000000 | \n0.000000 | \n
10 | \nTNR | \n0.733333 | \n0.808824 | \n1.000000 | \n0.000000 | \n
11 | \nPPV | \n0.664516 | \n0.587302 | \n1.000000 | \n0.000000 | \n
12 | \nFNR | \n0.343949 | \n0.506667 | \n0.000000 | \n1.000000 | \n
13 | \nFPR | \n0.266667 | \n0.191176 | \n0.000000 | \n1.000000 | \n
14 | \nAccuracy | \n0.698864 | \n0.696682 | \n1.000000 | \n0.000000 | \n
15 | \nF1 | \n0.660256 | \n0.536232 | \n1.000000 | \n0.000000 | \n
16 | \nSelection-Rate | \n0.440341 | \n0.298578 | \n0.251701 | \n0.406250 | \n
17 | \nSample_Size | \n1056.000000 | \n211.000000 | \n147.000000 | \n64.000000 | \n
\n | decile1b | \ndecile3 | \nlsat | \nugpa | \nzfygpa | \n
---|---|---|---|---|---|
0 | \n10.0 | \n10.0 | \n44.0 | \n3.5 | \n1.33 | \n
1 | \n5.0 | \n4.0 | \n29.0 | \n3.5 | \n-0.11 | \n
2 | \n8.0 | \n7.0 | \n37.0 | \n3.4 | \n0.63 | \n
3 | \n8.0 | \n7.0 | \n43.0 | \n3.3 | \n0.67 | \n
4 | \n3.0 | \n2.0 | \n41.0 | \n3.3 | \n-0.67 | \n
\n | Metric | \noverall | \nmale_priv | \nmale_priv_correct | \nmale_priv_incorrect | \nmale_dis | \n
---|---|---|---|---|---|---|
0 | \nAleatoric_Uncertainty | \n0.005905 | \n0.004883 | \n0.003296 | \n0.021364 | \n0.007256 | \n
1 | \nIQR | \n0.010355 | \n0.009922 | \n0.008073 | \n0.029115 | \n0.010926 | \n
2 | \nMean_Prediction | \n0.024633 | \n0.021842 | \n0.015440 | \n0.088320 | \n0.028322 | \n
3 | \nOverall_Uncertainty | \n0.020169 | \n0.018285 | \n0.012946 | \n0.073729 | \n0.022659 | \n
4 | \nStatistical_Bias | \n0.098458 | \n0.089847 | \n0.004210 | \n0.979146 | \n0.109838 | \n
5 | \nStd | \n0.009615 | \n0.008868 | \n0.006229 | \n0.036276 | \n0.010603 | \n
6 | \nEpistemic_Uncertainty | \n0.014264 | \n0.013402 | \n0.009650 | \n0.052365 | \n0.015403 | \n
7 | \nLabel_Stability | \n0.989087 | \n0.989696 | \n0.992222 | \n0.963462 | \n0.988281 | \n
8 | \nJitter | \n0.008198 | \n0.007553 | \n0.005556 | \n0.028294 | \n0.009050 | \n
9 | \nTPR | \n0.990612 | \n0.991163 | \n1.000000 | \n0.000000 | \n0.989861 | \n
10 | \nTNR | \n0.141204 | \n0.133028 | \n1.000000 | \n0.000000 | \n0.149533 | \n
11 | \nPPV | \n0.908711 | \n0.918534 | \n1.000000 | \n0.000000 | \n0.895642 | \n
12 | \nFNR | \n0.009388 | \n0.008837 | \n0.000000 | \n1.000000 | \n0.010139 | \n
13 | \nFPR | \n0.858796 | \n0.866972 | \n0.000000 | \n1.000000 | \n0.850467 | \n
14 | \nAccuracy | \n0.902404 | \n0.912162 | \n1.000000 | \n0.000000 | \n0.889509 | \n
15 | \nF1 | \n0.947895 | \n0.953468 | \n1.000000 | \n0.000000 | \n0.940397 | \n
16 | \nSelection-Rate | \n0.976923 | \n0.979730 | \n0.986574 | \n0.908654 | \n0.973214 | \n
17 | \nSample_Size | \n4160.000000 | \n2368.000000 | \n2160.000000 | \n208.000000 | \n1792.000000 | \n
\n | Metric | \noverall | \nmale_priv | \nmale_priv_correct | \nmale_priv_incorrect | \nmale_dis | \n
---|---|---|---|---|---|---|
0 | \nOverall_Uncertainty | \n0.020169 | \n0.018285 | \n0.012946 | \n0.073729 | \n0.022659 | \n
1 | \nAleatoric_Uncertainty | \n0.005905 | \n0.004883 | \n0.003296 | \n0.021364 | \n0.007256 | \n
2 | \nStd | \n0.009615 | \n0.008868 | \n0.006229 | \n0.036276 | \n0.010603 | \n
3 | \nStatistical_Bias | \n0.098458 | \n0.089847 | \n0.004210 | \n0.979146 | \n0.109838 | \n
4 | \nIQR | \n0.010355 | \n0.009922 | \n0.008073 | \n0.029115 | \n0.010926 | \n
5 | \nMean_Prediction | \n0.024633 | \n0.021842 | \n0.015440 | \n0.088320 | \n0.028322 | \n
6 | \nEpistemic_Uncertainty | \n0.014264 | \n0.013402 | \n0.009650 | \n0.052365 | \n0.015403 | \n
7 | \nJitter | \n0.008198 | \n0.007553 | \n0.005556 | \n0.028294 | \n0.009050 | \n
8 | \nLabel_Stability | \n0.989087 | \n0.989696 | \n0.992222 | \n0.963462 | \n0.988281 | \n
9 | \nTPR | \n0.990612 | \n0.991163 | \n1.000000 | \n0.000000 | \n0.989861 | \n
10 | \nTNR | \n0.141204 | \n0.133028 | \n1.000000 | \n0.000000 | \n0.149533 | \n
11 | \nPPV | \n0.908711 | \n0.918534 | \n1.000000 | \n0.000000 | \n0.895642 | \n
12 | \nFNR | \n0.009388 | \n0.008837 | \n0.000000 | \n1.000000 | \n0.010139 | \n
13 | \nFPR | \n0.858796 | \n0.866972 | \n0.000000 | \n1.000000 | \n0.850467 | \n
14 | \nAccuracy | \n0.902404 | \n0.912162 | \n1.000000 | \n0.000000 | \n0.889509 | \n
15 | \nF1 | \n0.947895 | \n0.953468 | \n1.000000 | \n0.000000 | \n0.940397 | \n
16 | \nSelection-Rate | \n0.976923 | \n0.979730 | \n0.986574 | \n0.908654 | \n0.973214 | \n
17 | \nSample_Size | \n4160.000000 | \n2368.000000 | \n2160.000000 | \n208.000000 | \n1792.000000 | \n
\n | Metric | \nmale | \nrace | \nmale&race | \nModel_Name | \n
---|---|---|---|---|---|
0 | \nAccuracy_Difference | \n-0.022653 | \n-0.178877 | \n-0.157307 | \nExponentiatedGradientReduction | \n
1 | \nAleatoric_Uncertainty_Difference | \n0.002373 | \n0.018372 | \n0.021097 | \nExponentiatedGradientReduction | \n
2 | \nAleatoric_Uncertainty_Ratio | \n1.485922 | \n6.916304 | \n5.985519 | \nExponentiatedGradientReduction | \n
3 | \nEpistemic_Uncertainty_Difference | \n0.002001 | \n0.009870 | \n0.014769 | \nExponentiatedGradientReduction | \n
4 | \nEpistemic_Uncertainty_Ratio | \n1.149317 | \n1.773535 | \n2.128039 | \nExponentiatedGradientReduction | \n
5 | \nEqualized_Odds_FNR | \n0.001302 | \n0.001559 | \n0.003110 | \nExponentiatedGradientReduction | \n
6 | \nEqualized_Odds_FPR | \n-0.016505 | \n0.076428 | \n0.045638 | \nExponentiatedGradientReduction | \n
7 | \nIQR_Difference | \n0.001005 | \n0.010219 | \n0.012572 | \nExponentiatedGradientReduction | \n
8 | \nJitter_Difference | \n0.001498 | \n0.009698 | \n0.013220 | \nExponentiatedGradientReduction | \n
9 | \nLabel_Stability_Ratio | \n0.998571 | \n0.988954 | \n0.984495 | \nExponentiatedGradientReduction | \n
10 | \nLabel_Stability_Difference | \n-0.001415 | \n-0.010944 | \n-0.015355 | \nExponentiatedGradientReduction | \n
11 | \nOverall_Uncertainty_Difference | \n0.004374 | \n0.028242 | \n0.035866 | \nExponentiatedGradientReduction | \n
12 | \nOverall_Uncertainty_Ratio | \n1.239210 | \n2.780147 | \n3.070293 | \nExponentiatedGradientReduction | \n
13 | \nStatistical_Parity_Difference | \n-0.006515 | \n-0.011852 | \n-0.014432 | \nExponentiatedGradientReduction | \n
14 | \nDisparate_Impact | \n0.993350 | \n0.987890 | \n0.985245 | \nExponentiatedGradientReduction | \n
15 | \nStd_Difference | \n0.001734 | \n0.009583 | \n0.013289 | \nExponentiatedGradientReduction | \n
16 | \nStd_Ratio | \n1.195550 | \n2.175074 | \n2.552202 | \nExponentiatedGradientReduction | \n
17 | \nEqualized_Odds_TNR | \n0.016505 | \n-0.076428 | \n-0.045638 | \nExponentiatedGradientReduction | \n
18 | \nEqualized_Odds_TPR | \n-0.001302 | \n-0.001559 | \n-0.003110 | \nExponentiatedGradientReduction | \n
\n | juv_fel_count | \njuv_misd_count | \njuv_other_count | \npriors_count | \nage_cat_25 - 45 | \n
---|---|---|---|---|---|
0 | \n0.0 | \n-2.340451 | \n1.0 | \n-15.010999 | \n1 | \n
1 | \n0.0 | \n0.000000 | \n0.0 | \n0.000000 | \n1 | \n
2 | \n0.0 | \n0.000000 | \n0.0 | \n0.000000 | \n0 | \n
3 | \n0.0 | \n0.000000 | \n0.0 | \n6.000000 | \n1 | \n
4 | \n0.0 | \n0.000000 | \n0.0 | \n7.513697 | \n1 | \n
\n | Metric | \nModel_Name | \nModel_Params | \nDataset_Name | \nNum_Estimators | \nTest_Set_Index | \nTag | \nRecord_Create_Date_Time | \nSession_Uuid | \nPreprocessing_Techniques | \n... | \nsex&race_dis_incorrect | \nsex&race_priv | \nsex&race_priv_correct | \nsex&race_priv_incorrect | \nsex_dis | \nsex_dis_correct | \nsex_dis_incorrect | \nsex_priv | \nsex_priv_correct | \nsex_priv_incorrect | \n
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | \nAccuracy | \nRandomForestClassifier | \n{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \nCOMPAS_Without_Sensitive_Attributes | \n50 | \n0 | \nOK | \n2024-01-29 12:53:00.724 | \n8d31eaab-5d6d-4830-9b23-c29355efa90b | \none hot encoder and scaler | \n... | \n0.000000 | \n0.701521 | \n1.000000 | \n0.000000 | \n0.704142 | \n1.000000 | \n0.000000 | \n0.677725 | \n1.000000 | \n0.000000 | \n
3 | \nAccuracy | \nRandomForestClassifier | \n{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \nCOMPAS_Without_Sensitive_Attributes | \n50 | \n1 | \nOK | \n2024-01-29 12:53:00.728 | \n8d31eaab-5d6d-4830-9b23-c29355efa90b | \none hot encoder and scaler | \n... | \n0.000000 | \n0.701521 | \n1.000000 | \n0.000000 | \n0.704142 | \n1.000000 | \n0.000000 | \n0.677725 | \n1.000000 | \n0.000000 | \n
6 | \nAleatoric_Uncertainty | \nRandomForestClassifier | \n{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \nCOMPAS_Without_Sensitive_Attributes | \n50 | \n0 | \nOK | \n2024-01-29 12:53:00.724 | \n8d31eaab-5d6d-4830-9b23-c29355efa90b | \none hot encoder and scaler | \n... | \n0.927344 | \n0.907714 | \n0.897444 | \n0.931851 | \n0.905728 | \n0.897731 | \n0.924762 | \n0.914713 | \n0.899245 | \n0.947244 | \n
7 | \nAleatoric_Uncertainty | \nRandomForestClassifier | \n{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \nCOMPAS_Without_Sensitive_Attributes | \n50 | \n1 | \nOK | \n2024-01-29 12:53:00.728 | \n8d31eaab-5d6d-4830-9b23-c29355efa90b | \none hot encoder and scaler | \n... | \n0.927344 | \n0.907714 | \n0.897444 | \n0.931851 | \n0.905728 | \n0.897731 | \n0.924762 | \n0.914713 | \n0.899245 | \n0.947244 | \n
10 | \nEpistemic_Uncertainty | \nRandomForestClassifier | \n{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \nCOMPAS_Without_Sensitive_Attributes | \n50 | \n0 | \nOK | \n2024-01-29 12:53:00.724 | \n8d31eaab-5d6d-4830-9b23-c29355efa90b | \none hot encoder and scaler | \n... | \n0.005648 | \n0.005803 | \n0.005455 | \n0.006622 | \n0.006179 | \n0.006217 | \n0.006088 | \n0.005261 | \n0.004777 | \n0.006279 | \n
11 | \nEpistemic_Uncertainty | \nRandomForestClassifier | \n{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \nCOMPAS_Without_Sensitive_Attributes | \n50 | \n1 | \nOK | \n2024-01-29 12:53:00.728 | \n8d31eaab-5d6d-4830-9b23-c29355efa90b | \none hot encoder and scaler | \n... | \n0.005648 | \n0.005803 | \n0.005455 | \n0.006622 | \n0.006179 | \n0.006217 | \n0.006088 | \n0.005261 | \n0.004777 | \n0.006279 | \n
14 | \nF1 | \nRandomForestClassifier | \n{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \nCOMPAS_Without_Sensitive_Attributes | \n50 | \n0 | \nOK | \n2024-01-29 12:53:00.724 | \n8d31eaab-5d6d-4830-9b23-c29355efa90b | \none hot encoder and scaler | \n... | \n0.000000 | \n0.560224 | \n1.000000 | \n0.000000 | \n0.685930 | \n1.000000 | \n0.000000 | \n0.492537 | \n1.000000 | \n0.000000 | \n
15 | \nF1 | \nRandomForestClassifier | \n{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \nCOMPAS_Without_Sensitive_Attributes | \n50 | \n1 | \nOK | \n2024-01-29 12:53:00.728 | \n8d31eaab-5d6d-4830-9b23-c29355efa90b | \none hot encoder and scaler | \n... | \n0.000000 | \n0.560224 | \n1.000000 | \n0.000000 | \n0.685930 | \n1.000000 | \n0.000000 | \n0.492537 | \n1.000000 | \n0.000000 | \n
18 | \nFNR | \nRandomForestClassifier | \n{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \nCOMPAS_Without_Sensitive_Attributes | \n50 | \n0 | \nOK | \n2024-01-29 12:53:00.724 | \n8d31eaab-5d6d-4830-9b23-c29355efa90b | \none hot encoder and scaler | \n... | \n1.000000 | \n0.468085 | \n0.000000 | \n1.000000 | \n0.310606 | \n0.000000 | \n1.000000 | \n0.560000 | \n0.000000 | \n1.000000 | \n
19 | \nFNR | \nRandomForestClassifier | \n{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \nCOMPAS_Without_Sensitive_Attributes | \n50 | \n1 | \nOK | \n2024-01-29 12:53:00.728 | \n8d31eaab-5d6d-4830-9b23-c29355efa90b | \none hot encoder and scaler | \n... | \n1.000000 | \n0.468085 | \n0.000000 | \n1.000000 | \n0.310606 | \n0.000000 | \n1.000000 | \n0.560000 | \n0.000000 | \n1.000000 | \n
22 | \nFPR | \nRandomForestClassifier | \n{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \nCOMPAS_Without_Sensitive_Attributes | \n50 | \n0 | \nOK | \n2024-01-29 12:53:00.724 | \n8d31eaab-5d6d-4830-9b23-c29355efa90b | \none hot encoder and scaler | \n... | \n1.000000 | \n0.204142 | \n0.000000 | \n1.000000 | \n0.282851 | \n0.000000 | \n1.000000 | \n0.191176 | \n0.000000 | \n1.000000 | \n
23 | \nFPR | \nRandomForestClassifier | \n{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \nCOMPAS_Without_Sensitive_Attributes | \n50 | \n1 | \nOK | \n2024-01-29 12:53:00.728 | \n8d31eaab-5d6d-4830-9b23-c29355efa90b | \none hot encoder and scaler | \n... | \n1.000000 | \n0.204142 | \n0.000000 | \n1.000000 | \n0.282851 | \n0.000000 | \n1.000000 | \n0.191176 | \n0.000000 | \n1.000000 | \n
26 | \nIQR | \nRandomForestClassifier | \n{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \nCOMPAS_Without_Sensitive_Attributes | \n50 | \n0 | \nOK | \n2024-01-29 12:53:00.724 | \n8d31eaab-5d6d-4830-9b23-c29355efa90b | \none hot encoder and scaler | \n... | \n0.054553 | \n0.052841 | \n0.050180 | \n0.059094 | \n0.055071 | \n0.054580 | \n0.056240 | \n0.050716 | \n0.046855 | \n0.058835 | \n
27 | \nIQR | \nRandomForestClassifier | \n{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \nCOMPAS_Without_Sensitive_Attributes | \n50 | \n1 | \nOK | \n2024-01-29 12:53:00.728 | \n8d31eaab-5d6d-4830-9b23-c29355efa90b | \none hot encoder and scaler | \n... | \n0.054553 | \n0.052841 | \n0.050180 | \n0.059094 | \n0.055071 | \n0.054580 | \n0.056240 | \n0.050716 | \n0.046855 | \n0.058835 | \n
30 | \nJitter | \nRandomForestClassifier | \n{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \nCOMPAS_Without_Sensitive_Attributes | \n50 | \n0 | \nOK | \n2024-01-29 12:53:00.724 | \n8d31eaab-5d6d-4830-9b23-c29355efa90b | \none hot encoder and scaler | \n... | \n0.096073 | \n0.079947 | \n0.063406 | \n0.118825 | \n0.076779 | \n0.068873 | \n0.095595 | \n0.095305 | \n0.069125 | \n0.150360 | \n
31 | \nJitter | \nRandomForestClassifier | \n{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \nCOMPAS_Without_Sensitive_Attributes | \n50 | \n1 | \nOK | \n2024-01-29 12:53:00.728 | \n8d31eaab-5d6d-4830-9b23-c29355efa90b | \none hot encoder and scaler | \n... | \n0.096073 | \n0.079947 | \n0.063406 | \n0.118825 | \n0.076779 | \n0.068873 | \n0.095595 | \n0.095305 | \n0.069125 | \n0.150360 | \n
34 | \nLabel_Stability | \nRandomForestClassifier | \n{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \nCOMPAS_Without_Sensitive_Attributes | \n50 | \n0 | \nOK | \n2024-01-29 12:53:00.724 | \n8d31eaab-5d6d-4830-9b23-c29355efa90b | \none hot encoder and scaler | \n... | \n0.868323 | \n0.893536 | \n0.917724 | \n0.836688 | \n0.896710 | \n0.908706 | \n0.868160 | \n0.872986 | \n0.909650 | \n0.795882 | \n
35 | \nLabel_Stability | \nRandomForestClassifier | \n{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \nCOMPAS_Without_Sensitive_Attributes | \n50 | \n1 | \nOK | \n2024-01-29 12:53:00.728 | \n8d31eaab-5d6d-4830-9b23-c29355efa90b | \none hot encoder and scaler | \n... | \n0.868323 | \n0.893536 | \n0.917724 | \n0.836688 | \n0.896710 | \n0.908706 | \n0.868160 | \n0.872986 | \n0.909650 | \n0.795882 | \n
38 | \nMean_Prediction | \nRandomForestClassifier | \n{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \nCOMPAS_Without_Sensitive_Attributes | \n50 | \n0 | \nOK | \n2024-01-29 12:53:00.724 | \n8d31eaab-5d6d-4830-9b23-c29355efa90b | \none hot encoder and scaler | \n... | \n0.494237 | \n0.573680 | \n0.590608 | \n0.533895 | \n0.510769 | \n0.512022 | \n0.507785 | \n0.575480 | \n0.594258 | \n0.535992 | \n
39 | \nMean_Prediction | \nRandomForestClassifier | \n{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \nCOMPAS_Without_Sensitive_Attributes | \n50 | \n1 | \nOK | \n2024-01-29 12:53:00.728 | \n8d31eaab-5d6d-4830-9b23-c29355efa90b | \none hot encoder and scaler | \n... | \n0.494237 | \n0.573680 | \n0.590608 | \n0.533895 | \n0.510769 | \n0.512022 | \n0.507785 | \n0.575480 | \n0.594258 | \n0.535992 | \n
20 rows × 29 columns
\n\n | Metric | \nModel_Name | \nModel_Params | \nVirny_Random_State | \nRuntime_In_Mins | \nDataset_Name | \nNum_Estimators | \nTest_Set_Index | \nTag | \nRecord_Create_Date_Time | \n... | \nsex&race_dis_incorrect | \nsex&race_priv | \nsex&race_priv_correct | \nsex&race_priv_incorrect | \nsex_dis | \nsex_dis_correct | \nsex_dis_incorrect | \nsex_priv | \nsex_priv_correct | \nsex_priv_incorrect | \n
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | \nAccuracy | \nRandomForestClassifier | \n{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n42 | \n0.229215 | \nCOMPAS_Without_Sensitive_Attributes | \n50 | \n0 | \nOK | \n2024-09-02 20:26:47.054 | \n... | \n0.000000 | \n0.701521 | \n1.000000 | \n0.000000 | \n0.704142 | \n1.000000 | \n0.000000 | \n0.677725 | \n1.000000 | \n0.000000 | \n
3 | \nAccuracy | \nRandomForestClassifier | \n{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n42 | \n0.229215 | \nCOMPAS_Without_Sensitive_Attributes | \n50 | \n1 | \nOK | \n2024-09-02 20:26:47.059 | \n... | \n0.000000 | \n0.701521 | \n1.000000 | \n0.000000 | \n0.704142 | \n1.000000 | \n0.000000 | \n0.677725 | \n1.000000 | \n0.000000 | \n
6 | \nAleatoric_Uncertainty | \nRandomForestClassifier | \n{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n42 | \n0.229215 | \nCOMPAS_Without_Sensitive_Attributes | \n50 | \n0 | \nOK | \n2024-09-02 20:26:47.054 | \n... | \n0.927137 | \n0.907297 | \n0.896741 | \n0.932106 | \n0.906422 | \n0.898581 | \n0.925083 | \n0.913934 | \n0.898608 | \n0.946163 | \n
7 | \nAleatoric_Uncertainty | \nRandomForestClassifier | \n{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n42 | \n0.229215 | \nCOMPAS_Without_Sensitive_Attributes | \n50 | \n1 | \nOK | \n2024-09-02 20:26:47.059 | \n... | \n0.927137 | \n0.907297 | \n0.896741 | \n0.932106 | \n0.906422 | \n0.898581 | \n0.925083 | \n0.913934 | \n0.898608 | \n0.946163 | \n
10 | \nEpistemic_Uncertainty | \nRandomForestClassifier | \n{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n42 | \n0.229215 | \nCOMPAS_Without_Sensitive_Attributes | \n50 | \n0 | \nOK | \n2024-09-02 20:26:47.054 | \n... | \n0.005608 | \n0.005486 | \n0.005082 | \n0.006436 | \n0.005881 | \n0.005852 | \n0.005950 | \n0.005107 | \n0.004558 | \n0.006262 | \n
11 | \nEpistemic_Uncertainty | \nRandomForestClassifier | \n{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n42 | \n0.229215 | \nCOMPAS_Without_Sensitive_Attributes | \n50 | \n1 | \nOK | \n2024-09-02 20:26:47.059 | \n... | \n0.005608 | \n0.005486 | \n0.005082 | \n0.006436 | \n0.005881 | \n0.005852 | \n0.005950 | \n0.005107 | \n0.004558 | \n0.006262 | \n
14 | \nF1 | \nRandomForestClassifier | \n{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n42 | \n0.229215 | \nCOMPAS_Without_Sensitive_Attributes | \n50 | \n0 | \nOK | \n2024-09-02 20:26:47.054 | \n... | \n0.000000 | \n0.560224 | \n1.000000 | \n0.000000 | \n0.685930 | \n1.000000 | \n0.000000 | \n0.492537 | \n1.000000 | \n0.000000 | \n
15 | \nF1 | \nRandomForestClassifier | \n{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n42 | \n0.229215 | \nCOMPAS_Without_Sensitive_Attributes | \n50 | \n1 | \nOK | \n2024-09-02 20:26:47.059 | \n... | \n0.000000 | \n0.560224 | \n1.000000 | \n0.000000 | \n0.685930 | \n1.000000 | \n0.000000 | \n0.492537 | \n1.000000 | \n0.000000 | \n
18 | \nFNR | \nRandomForestClassifier | \n{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n42 | \n0.229215 | \nCOMPAS_Without_Sensitive_Attributes | \n50 | \n0 | \nOK | \n2024-09-02 20:26:47.054 | \n... | \n1.000000 | \n0.468085 | \n0.000000 | \n1.000000 | \n0.310606 | \n0.000000 | \n1.000000 | \n0.560000 | \n0.000000 | \n1.000000 | \n
19 | \nFNR | \nRandomForestClassifier | \n{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n42 | \n0.229215 | \nCOMPAS_Without_Sensitive_Attributes | \n50 | \n1 | \nOK | \n2024-09-02 20:26:47.059 | \n... | \n1.000000 | \n0.468085 | \n0.000000 | \n1.000000 | \n0.310606 | \n0.000000 | \n1.000000 | \n0.560000 | \n0.000000 | \n1.000000 | \n
22 | \nFPR | \nRandomForestClassifier | \n{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n42 | \n0.229215 | \nCOMPAS_Without_Sensitive_Attributes | \n50 | \n0 | \nOK | \n2024-09-02 20:26:47.054 | \n... | \n1.000000 | \n0.204142 | \n0.000000 | \n1.000000 | \n0.282851 | \n0.000000 | \n1.000000 | \n0.191176 | \n0.000000 | \n1.000000 | \n
23 | \nFPR | \nRandomForestClassifier | \n{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n42 | \n0.229215 | \nCOMPAS_Without_Sensitive_Attributes | \n50 | \n1 | \nOK | \n2024-09-02 20:26:47.059 | \n... | \n1.000000 | \n0.204142 | \n0.000000 | \n1.000000 | \n0.282851 | \n0.000000 | \n1.000000 | \n0.191176 | \n0.000000 | \n1.000000 | \n
26 | \nIQR | \nRandomForestClassifier | \n{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n42 | \n0.229215 | \nCOMPAS_Without_Sensitive_Attributes | \n50 | \n0 | \nOK | \n2024-09-02 20:26:47.054 | \n... | \n0.055292 | \n0.051873 | \n0.049507 | \n0.057436 | \n0.054702 | \n0.054079 | \n0.056184 | \n0.050123 | \n0.046871 | \n0.056962 | \n
27 | \nIQR | \nRandomForestClassifier | \n{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n42 | \n0.229215 | \nCOMPAS_Without_Sensitive_Attributes | \n50 | \n1 | \nOK | \n2024-09-02 20:26:47.059 | \n... | \n0.055292 | \n0.051873 | \n0.049507 | \n0.057436 | \n0.054702 | \n0.054079 | \n0.056184 | \n0.050123 | \n0.046871 | \n0.056962 | \n
30 | \nJitter | \nRandomForestClassifier | \n{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n42 | \n0.229215 | \nCOMPAS_Without_Sensitive_Attributes | \n50 | \n0 | \nOK | \n2024-09-02 20:26:47.054 | \n... | \n0.095809 | \n0.079235 | \n0.062503 | \n0.118560 | \n0.074361 | \n0.065388 | \n0.095716 | \n0.093305 | \n0.066973 | \n0.148679 | \n
31 | \nJitter | \nRandomForestClassifier | \n{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n42 | \n0.229215 | \nCOMPAS_Without_Sensitive_Attributes | \n50 | \n1 | \nOK | \n2024-09-02 20:26:47.059 | \n... | \n0.095809 | \n0.079235 | \n0.062503 | \n0.118560 | \n0.074361 | \n0.065388 | \n0.095716 | \n0.093305 | \n0.066973 | \n0.148679 | \n
34 | \nLabel_Stability | \nRandomForestClassifier | \n{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n42 | \n0.229215 | \nCOMPAS_Without_Sensitive_Attributes | \n50 | \n0 | \nOK | \n2024-09-02 20:26:47.054 | \n... | \n0.877267 | \n0.897567 | \n0.920542 | \n0.843567 | \n0.905373 | \n0.917983 | \n0.875360 | \n0.879242 | \n0.913846 | \n0.806471 | \n
35 | \nLabel_Stability | \nRandomForestClassifier | \n{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n42 | \n0.229215 | \nCOMPAS_Without_Sensitive_Attributes | \n50 | \n1 | \nOK | \n2024-09-02 20:26:47.059 | \n... | \n0.877267 | \n0.897567 | \n0.920542 | \n0.843567 | \n0.905373 | \n0.917983 | \n0.875360 | \n0.879242 | \n0.913846 | \n0.806471 | \n
38 | \nMean_Prediction | \nRandomForestClassifier | \n{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n42 | \n0.229215 | \nCOMPAS_Without_Sensitive_Attributes | \n50 | \n0 | \nOK | \n2024-09-02 20:26:47.054 | \n... | \n0.493096 | \n0.574780 | \n0.591516 | \n0.535443 | \n0.511084 | \n0.512497 | \n0.507721 | \n0.576223 | \n0.594827 | \n0.537099 | \n
39 | \nMean_Prediction | \nRandomForestClassifier | \n{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n42 | \n0.229215 | \nCOMPAS_Without_Sensitive_Attributes | \n50 | \n1 | \nOK | \n2024-09-02 20:26:47.059 | \n... | \n0.493096 | \n0.574780 | \n0.591516 | \n0.535443 | \n0.511084 | \n0.512497 | \n0.507721 | \n0.576223 | \n0.594827 | \n0.537099 | \n
20 rows × 31 columns
\n\n | decile1b | \ndecile3 | \nlsat | \nugpa | \nzfygpa | \n
---|---|---|---|---|---|
0 | \n10.0 | \n10.0 | \n44.0 | \n3.5 | \n1.33 | \n
1 | \n5.0 | \n4.0 | \n29.0 | \n3.5 | \n-0.11 | \n
2 | \n8.0 | \n7.0 | \n37.0 | \n3.4 | \n0.63 | \n
3 | \n8.0 | \n7.0 | \n43.0 | \n3.3 | \n0.67 | \n
4 | \n3.0 | \n2.0 | \n41.0 | \n3.3 | \n-0.67 | \n
\n | Dataset_Name | \nModel_Name | \nF1_Score | \nAccuracy_Score | \nModel_Best_Params | \n
---|---|---|---|---|---|
0 | \nLaw_School | \nLogisticRegression | \n0.656362 | \n0.898726 | \n{'C': 100, 'max_iter': 250, 'penalty': 'l2', '... | \n
1 | \nLaw_School | \nRandomForestClassifier | \n0.653855 | \n0.898065 | \n{'max_depth': 10, 'max_features': 0.6, 'min_sa... | \n
\n | Metric | \noverall | \nmale_priv | \nmale_priv_correct | \nmale_priv_incorrect | \nmale_dis | \n
---|---|---|---|---|---|---|
0 | \nJitter | \n0.044141 | \n0.040939 | \n0.035644 | \n0.094502 | \n0.048374 | \n
1 | \nLabel_Stability | \n0.949913 | \n0.953970 | \n0.961893 | \n0.873803 | \n0.944554 | \n
2 | \nTPR | \n0.994903 | \n0.994884 | \n1.000000 | \n0.000000 | \n0.994930 | \n
3 | \nTNR | \n0.078704 | \n0.073394 | \n1.000000 | \n0.000000 | \n0.084112 | \n
4 | \nPPV | \n0.903092 | \n0.913712 | \n1.000000 | \n0.000000 | \n0.889015 | \n
5 | \nFNR | \n0.005097 | \n0.005116 | \n0.000000 | \n1.000000 | \n0.005070 | \n
6 | \nFPR | \n0.921296 | \n0.926606 | \n0.000000 | \n1.000000 | \n0.915888 | \n
7 | \nAccuracy | \n0.899760 | \n0.910051 | \n1.000000 | \n0.000000 | \n0.886161 | \n
8 | \nF1 | \n0.946777 | \n0.952572 | \n1.000000 | \n0.000000 | \n0.938995 | \n
9 | \nSelection-Rate | \n0.987260 | \n0.988598 | \n0.992575 | \n0.948357 | \n0.985491 | \n
10 | \nSample_Size | \n4160.000000 | \n2368.000000 | \n2155.000000 | \n213.000000 | \n1792.000000 | \n
\n | Metric | \noverall | \nmale_priv | \nmale_priv_correct | \nmale_priv_incorrect | \nmale_dis | \n
---|---|---|---|---|---|---|
0 | \nJitter | \n0.044116 | \n0.040637 | \n0.034723 | \n0.100160 | \n0.048714 | \n
1 | \nLabel_Stability | \n0.949933 | \n0.954493 | \n0.963175 | \n0.867103 | \n0.943906 | \n
2 | \nTPR | \n0.994903 | \n0.994884 | \n1.000000 | \n0.000000 | \n0.994930 | \n
3 | \nTNR | \n0.076389 | \n0.068807 | \n1.000000 | \n0.000000 | \n0.084112 | \n
4 | \nPPV | \n0.902872 | \n0.913322 | \n1.000000 | \n0.000000 | \n0.889015 | \n
5 | \nFNR | \n0.005097 | \n0.005116 | \n0.000000 | \n1.000000 | \n0.005070 | \n
6 | \nFPR | \n0.923611 | \n0.931193 | \n0.000000 | \n1.000000 | \n0.915888 | \n
7 | \nAccuracy | \n0.899519 | \n0.909628 | \n1.000000 | \n0.000000 | \n0.886161 | \n
8 | \nF1 | \n0.946656 | \n0.952360 | \n1.000000 | \n0.000000 | \n0.938995 | \n
9 | \nSelection-Rate | \n0.987500 | \n0.989020 | \n0.993036 | \n0.948598 | \n0.985491 | \n
10 | \nSample_Size | \n4160.000000 | \n2368.000000 | \n2154.000000 | \n214.000000 | \n1792.000000 | \n
\n | Metric | \nmale | \nrace | \nmale&race | \nModel_Name | \n
---|---|---|---|---|---|
0 | \nAccuracy_Difference | \n-0.023890 | \n-0.196227 | \n-0.174183 | \nLogisticRegression | \n
1 | \nEqualized_Odds_FNR | \n-0.000047 | \n-0.005823 | \n-0.005454 | \nLogisticRegression | \n
2 | \nEqualized_Odds_FPR | \n-0.010718 | \n0.129278 | \n0.098266 | \nLogisticRegression | \n
3 | \nJitter_Difference | \n0.007435 | \n0.034351 | \n0.049795 | \nLogisticRegression | \n
4 | \nLabel_Stability_Ratio | \n0.990130 | \n0.943974 | \n0.924259 | \nLogisticRegression | \n
5 | \nLabel_Stability_Difference | \n-0.009416 | \n-0.053678 | \n-0.072383 | \nLogisticRegression | \n
6 | \nStatistical_Parity_Difference | \n-0.003107 | \n0.015031 | \n0.013838 | \nLogisticRegression | \n
7 | \nDisparate_Impact | \n0.996857 | \n1.015261 | \n1.014032 | \nLogisticRegression | \n
8 | \nEqualized_Odds_TNR | \n0.010718 | \n-0.129278 | \n-0.098266 | \nLogisticRegression | \n
9 | \nEqualized_Odds_TPR | \n0.000047 | \n0.005823 | \n0.005454 | \nLogisticRegression | \n
10 | \nAccuracy_Difference | \n-0.020693 | \n-0.158407 | \n-0.134267 | \nRandomForestClassifier | \n
11 | \nEqualized_Odds_FNR | \n0.004134 | \n0.020908 | \n0.029136 | \nRandomForestClassifier | \n
12 | \nEqualized_Odds_FPR | \n-0.058218 | \n-0.104439 | \n-0.140207 | \nRandomForestClassifier | \n
13 | \nJitter_Difference | \n0.009800 | \n0.093877 | \n0.101423 | \nRandomForestClassifier | \n
14 | \nLabel_Stability_Ratio | \n0.981678 | \n0.844858 | \n0.825698 | \nRandomForestClassifier | \n
15 | \nLabel_Stability_Difference | \n-0.017405 | \n-0.149755 | \n-0.166575 | \nRandomForestClassifier | \n
16 | \nStatistical_Parity_Difference | \n-0.013514 | \n-0.061529 | \n-0.076446 | \nRandomForestClassifier | \n
17 | \nDisparate_Impact | \n0.986242 | \n0.937586 | \n0.922193 | \nRandomForestClassifier | \n
18 | \nEqualized_Odds_TNR | \n0.058218 | \n0.104439 | \n0.140207 | \nRandomForestClassifier | \n
19 | \nEqualized_Odds_TPR | \n-0.004134 | \n-0.020908 | \n-0.029136 | \nRandomForestClassifier | \n
\n | Metric | \nmale | \nrace | \nmale&race | \nModel_Name | \n
---|---|---|---|---|---|
0 | \nAccuracy_Difference | \n-0.023468 | \n-0.195943 | \n-0.173922 | \nLogisticRegression | \n
1 | \nEqualized_Odds_FNR | \n-0.000047 | \n-0.005823 | \n-0.005454 | \nLogisticRegression | \n
2 | \nEqualized_Odds_FPR | \n-0.015305 | \n0.125475 | \n0.095376 | \nLogisticRegression | \n
3 | \nJitter_Difference | \n0.008077 | \n0.034356 | \n0.050940 | \nLogisticRegression | \n
4 | \nLabel_Stability_Ratio | \n0.988908 | \n0.943952 | \n0.921227 | \nLogisticRegression | \n
5 | \nLabel_Stability_Difference | \n-0.010587 | \n-0.053700 | \n-0.075300 | \nLogisticRegression | \n
6 | \nStatistical_Parity_Difference | \n-0.003529 | \n0.014748 | \n0.013577 | \nLogisticRegression | \n
7 | \nDisparate_Impact | \n0.996432 | \n1.014968 | \n1.013764 | \nLogisticRegression | \n
8 | \nEqualized_Odds_TNR | \n0.015305 | \n-0.125475 | \n-0.095376 | \nLogisticRegression | \n
9 | \nEqualized_Odds_TPR | \n0.000047 | \n0.005823 | \n0.005454 | \nLogisticRegression | \n
10 | \nAccuracy_Difference | \n-0.019018 | \n-0.155536 | \n-0.128467 | \nRandomForestClassifier | \n
11 | \nEqualized_Odds_FNR | \n0.004134 | \n0.020908 | \n0.029136 | \nRandomForestClassifier | \n
12 | \nEqualized_Odds_FPR | \n-0.072237 | \n-0.112471 | \n-0.160573 | \nRandomForestClassifier | \n
13 | \nJitter_Difference | \n0.010737 | \n0.094719 | \n0.103242 | \nRandomForestClassifier | \n
14 | \nLabel_Stability_Ratio | \n0.980755 | \n0.841570 | \n0.822054 | \nRandomForestClassifier | \n
15 | \nLabel_Stability_Difference | \n-0.018280 | \n-0.152932 | \n-0.170023 | \nRandomForestClassifier | \n
16 | \nStatistical_Parity_Difference | \n-0.015188 | \n-0.064400 | \n-0.082245 | \nRandomForestClassifier | \n
17 | \nDisparate_Impact | \n0.984538 | \n0.934654 | \n0.916268 | \nRandomForestClassifier | \n
18 | \nEqualized_Odds_TNR | \n0.072237 | \n0.112471 | \n0.160573 | \nRandomForestClassifier | \n
19 | \nEqualized_Odds_TPR | \n-0.004134 | \n-0.020908 | \n-0.029136 | \nRandomForestClassifier | \n