diff --git a/.github/workflows/ci.yml b/.github/workflows/ci.yml index d844f78e..26d67a52 100644 --- a/.github/workflows/ci.yml +++ b/.github/workflows/ci.yml @@ -14,7 +14,7 @@ jobs: strategy: fail-fast: false matrix: - python: [3.8, 3.9] + python: [3.8, 3.9, "3.10", 3.11, 3.12] os: [ubuntu-latest, macos-13] uses: ./.github/workflows/build-virny.yml @@ -27,7 +27,7 @@ jobs: strategy: fail-fast: false matrix: - python: [3.8, 3.9] + python: [3.8, 3.9, "3.10", 3.11, 3.12] os: [ubuntu-latest, macos-13] uses: ./.github/workflows/unit-tests.yml @@ -41,7 +41,7 @@ jobs: - uses: actions/checkout@v3 - uses: actions/setup-python@v4 with: - python-version: 3.8 + python-version: 3.9 - uses: actions/cache@v2 with: key: ${{ github.ref }} diff --git a/.gitignore b/.gitignore index 53a72458..fb0d19da 100644 --- a/.gitignore +++ b/.gitignore @@ -1,5 +1,8 @@ *_venv virny_env +virny_env10 +virny_env11 +virny_env12 notebooks *.env .DS_Store diff --git a/README.md b/README.md index 4f2e628c..f0205150 100644 --- a/README.md +++ b/README.md @@ -1,6 +1,6 @@ # Virny Software Library -

+

CI Pipeline @@ -13,10 +13,8 @@ pypi - - - bsd_3_license - + + Python Versions code_size @@ -25,6 +23,10 @@ last_commit + + + bsd_3_license +

@@ -51,7 +53,7 @@ For quickstart, look at [use case examples](https://dataresponsibly.github.io/Vi ## 🛠 Installation -Virny supports **Python 3.8 and 3.9** and can be installed with `pip`: +Virny supports **Python 3.8-3.12** and can be installed with `pip`: ```bash pip install virny diff --git a/docs/examples/Multiple_Models_Interface_Use_Case.ipynb b/docs/examples/Multiple_Models_Interface_Use_Case.ipynb index 4b5f7da3..59fff6aa 100644 --- a/docs/examples/Multiple_Models_Interface_Use_Case.ipynb +++ b/docs/examples/Multiple_Models_Interface_Use_Case.ipynb @@ -2,15 +2,24 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": 27, "id": "248cbed8", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:28:20.194046Z", - "start_time": "2024-06-01T21:28:19.904829Z" + "end_time": "2024-09-02T20:13:40.509987Z", + "start_time": "2024-09-02T20:13:40.347251Z" } }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The autoreload extension is already loaded. To reload it, use:\n", + " %reload_ext autoreload\n" + ] + } + ], "source": [ "%matplotlib inline\n", "%load_ext autoreload\n", @@ -19,12 +28,12 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 28, "id": "7ec6cd08", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:28:20.202757Z", - "start_time": "2024-06-01T21:28:20.194432Z" + "end_time": "2024-09-02T20:13:40.510359Z", + "start_time": "2024-09-02T20:13:40.399717Z" } }, "outputs": [], @@ -37,12 +46,12 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 29, "id": "b8cb69f2", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:28:20.212602Z", - "start_time": "2024-06-01T21:28:20.203488Z" + "end_time": "2024-09-02T20:13:40.510464Z", + "start_time": "2024-09-02T20:13:40.422800Z" } }, "outputs": [ @@ -96,24 +105,15 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 30, "id": "7a9241de", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:28:22.129627Z", - "start_time": "2024-06-01T21:28:20.213909Z" + "end_time": "2024-09-02T20:13:40.510494Z", + "start_time": "2024-09-02T20:13:40.451919Z" } }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "WARNING:root:No module named 'tempeh': LawSchoolGPADataset will be unavailable. To install, run:\n", - "pip install 'aif360[LawSchoolGPA]'\n" - ] - } - ], + "outputs": [], "source": [ "import os\n", "import pandas as pd\n", @@ -162,7 +162,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 31, "outputs": [], "source": [ "DATASET_SPLIT_SEED = 42\n", @@ -172,15 +172,15 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-06-01T21:28:22.155157Z", - "start_time": "2024-06-01T21:28:22.132190Z" + "end_time": "2024-09-02T20:13:40.510545Z", + "start_time": "2024-09-02T20:13:40.479139Z" } }, "id": "ce359a052925eb3a" }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 32, "outputs": [], "source": [ "models_params_for_tuning = {\n", @@ -225,8 +225,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-06-01T21:28:22.179692Z", - "start_time": "2024-06-01T21:28:22.156292Z" + "end_time": "2024-09-02T20:13:40.529093Z", + "start_time": "2024-09-02T20:13:40.503440Z" } }, "id": "2ece07ab7e3a9acc" @@ -265,7 +265,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 33, "outputs": [], "source": [ "ROOT_DIR = os.path.join('docs', 'examples')\n", @@ -284,15 +284,15 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-06-01T21:28:22.202465Z", - "start_time": "2024-06-01T21:28:22.179915Z" + "end_time": "2024-09-02T20:13:40.559392Z", + "start_time": "2024-09-02T20:13:40.529699Z" } }, "id": "af22ee06f1e3eb1a" }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 34, "outputs": [], "source": [ "config = create_config_obj(config_yaml_path=config_yaml_path)\n", @@ -301,8 +301,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-06-01T21:28:22.223293Z", - "start_time": "2024-06-01T21:28:22.201612Z" + "end_time": "2024-09-02T20:13:40.589345Z", + "start_time": "2024-09-02T20:13:40.558690Z" } }, "id": "65181f72484bb92b" @@ -331,12 +331,12 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 35, "id": "9e3d7bf3", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:28:22.246298Z", - "start_time": "2024-06-01T21:28:22.224449Z" + "end_time": "2024-09-02T20:13:40.616653Z", + "start_time": "2024-09-02T20:13:40.591042Z" } }, "outputs": [], @@ -379,12 +379,12 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 36, "id": "6c55c6a0", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:28:22.279902Z", - "start_time": "2024-06-01T21:28:22.246569Z" + "end_time": "2024-09-02T20:13:40.680709Z", + "start_time": "2024-09-02T20:13:40.616444Z" } }, "outputs": [ @@ -393,7 +393,7 @@ "text/plain": " juv_fel_count juv_misd_count juv_other_count priors_count \\\n0 0.0 -2.340451 1.0 -15.010999 \n1 0.0 0.000000 0.0 0.000000 \n2 0.0 0.000000 0.0 0.000000 \n3 0.0 0.000000 0.0 6.000000 \n4 0.0 0.000000 0.0 7.513697 \n\n age_cat_25 - 45 \n0 1 \n1 1 \n2 0 \n3 1 \n4 1 ", "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
juv_fel_countjuv_misd_countjuv_other_countpriors_countage_cat_25 - 45
00.0-2.3404511.0-15.0109991
10.00.0000000.00.0000001
20.00.0000000.00.0000000
30.00.0000000.06.0000001
40.00.0000000.07.5136971
\n
" }, - "execution_count": 10, + "execution_count": 36, "metadata": {}, "output_type": "execute_result" } @@ -405,7 +405,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 37, "outputs": [], "source": [ "column_transformer = ColumnTransformer(transformers=[\n", @@ -416,15 +416,15 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-06-01T21:28:22.318013Z", - "start_time": "2024-06-01T21:28:22.279503Z" + "end_time": "2024-09-02T20:13:40.720240Z", + "start_time": "2024-09-02T20:13:40.678425Z" } }, "id": "ebbef5eaf9dc0943" }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 38, "outputs": [], "source": [ "base_flow_dataset = preprocess_dataset(data_loader=data_loader, \n", @@ -436,8 +436,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-06-01T21:28:22.338421Z", - "start_time": "2024-06-01T21:28:22.302891Z" + "end_time": "2024-09-02T20:13:40.741839Z", + "start_time": "2024-09-02T20:13:40.701617Z" } }, "id": "97ed4609effbf53f" @@ -454,31 +454,31 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 39, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "2024/06/02, 00:28:22: Tuning DecisionTreeClassifier...\n", - "2024/06/02, 00:28:23: Tuning for DecisionTreeClassifier is finished [F1 score = 0.6554846983071246, Accuracy = 0.6575048862828714]\n", + "2024/09/02, 23:13:40: Tuning DecisionTreeClassifier...\n", + "2024/09/02, 23:13:42: Tuning for DecisionTreeClassifier is finished [F1 score = 0.6554846983071246, Accuracy = 0.6575048862828714]\n", "\n", - "2024/06/02, 00:28:23: Tuning LogisticRegression...\n", - "2024/06/02, 00:28:23: Tuning for LogisticRegression is finished [F1 score = 0.6483823116804865, Accuracy = 0.6520611566087312]\n", + "2024/09/02, 23:13:42: Tuning LogisticRegression...\n", + "2024/09/02, 23:13:42: Tuning for LogisticRegression is finished [F1 score = 0.6483823116804865, Accuracy = 0.6520611566087312]\n", "\n", - "2024/06/02, 00:28:23: Tuning RandomForestClassifier...\n", - "2024/06/02, 00:28:24: Tuning for RandomForestClassifier is finished [F1 score = 0.6569271025126497, Accuracy = 0.6586904492688075]\n", + "2024/09/02, 23:13:42: Tuning RandomForestClassifier...\n", + "2024/09/02, 23:13:43: Tuning for RandomForestClassifier is finished [F1 score = 0.6569271025126497, Accuracy = 0.6586904492688075]\n", "\n", - "2024/06/02, 00:28:24: Tuning XGBClassifier...\n", - "2024/06/02, 00:28:24: Tuning for XGBClassifier is finished [F1 score = 0.6623616224585352, Accuracy = 0.6646105242187331]\n" + "2024/09/02, 23:13:43: Tuning XGBClassifier...\n", + "2024/09/02, 23:13:44: Tuning for XGBClassifier is finished [F1 score = 0.6649018515640065, Accuracy = 0.6669791262841636]\n" ] }, { "data": { - "text/plain": " Dataset_Name Model_Name F1_Score \\\n0 COMPAS_Without_Sensitive_Attributes DecisionTreeClassifier 0.655485 \n1 COMPAS_Without_Sensitive_Attributes LogisticRegression 0.648382 \n2 COMPAS_Without_Sensitive_Attributes RandomForestClassifier 0.656927 \n3 COMPAS_Without_Sensitive_Attributes XGBClassifier 0.662362 \n\n Accuracy_Score Model_Best_Params \n0 0.657505 {'criterion': 'gini', 'max_depth': 20, 'max_fe... \n1 0.652061 {'C': 1, 'max_iter': 250, 'penalty': 'l2', 'so... \n2 0.658690 {'max_depth': 10, 'max_features': 0.6, 'min_sa... \n3 0.664611 {'lambda': 100, 'learning_rate': 0.1, 'max_dep... ", - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Dataset_NameModel_NameF1_ScoreAccuracy_ScoreModel_Best_Params
0COMPAS_Without_Sensitive_AttributesDecisionTreeClassifier0.6554850.657505{'criterion': 'gini', 'max_depth': 20, 'max_fe...
1COMPAS_Without_Sensitive_AttributesLogisticRegression0.6483820.652061{'C': 1, 'max_iter': 250, 'penalty': 'l2', 'so...
2COMPAS_Without_Sensitive_AttributesRandomForestClassifier0.6569270.658690{'max_depth': 10, 'max_features': 0.6, 'min_sa...
3COMPAS_Without_Sensitive_AttributesXGBClassifier0.6623620.664611{'lambda': 100, 'learning_rate': 0.1, 'max_dep...
\n
" + "text/plain": " Dataset_Name Model_Name F1_Score \\\n0 COMPAS_Without_Sensitive_Attributes DecisionTreeClassifier 0.655485 \n1 COMPAS_Without_Sensitive_Attributes LogisticRegression 0.648382 \n2 COMPAS_Without_Sensitive_Attributes RandomForestClassifier 0.656927 \n3 COMPAS_Without_Sensitive_Attributes XGBClassifier 0.664902 \n\n Accuracy_Score Model_Best_Params \n0 0.657505 {'criterion': 'gini', 'max_depth': 20, 'max_fe... \n1 0.652061 {'C': 1, 'max_iter': 250, 'penalty': 'l2', 'so... \n2 0.658690 {'max_depth': 10, 'max_features': 0.6, 'min_sa... \n3 0.666979 {'lambda': 100, 'learning_rate': 0.1, 'max_dep... ", + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Dataset_NameModel_NameF1_ScoreAccuracy_ScoreModel_Best_Params
0COMPAS_Without_Sensitive_AttributesDecisionTreeClassifier0.6554850.657505{'criterion': 'gini', 'max_depth': 20, 'max_fe...
1COMPAS_Without_Sensitive_AttributesLogisticRegression0.6483820.652061{'C': 1, 'max_iter': 250, 'penalty': 'l2', 'so...
2COMPAS_Without_Sensitive_AttributesRandomForestClassifier0.6569270.658690{'max_depth': 10, 'max_features': 0.6, 'min_sa...
3COMPAS_Without_Sensitive_AttributesXGBClassifier0.6649020.666979{'lambda': 100, 'learning_rate': 0.1, 'max_dep...
\n
" }, - "execution_count": 13, + "execution_count": 39, "metadata": {}, "output_type": "execute_result" } @@ -490,15 +490,15 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-06-01T21:28:24.773655Z", - "start_time": "2024-06-01T21:28:22.332650Z" + "end_time": "2024-09-02T20:13:44.080397Z", + "start_time": "2024-09-02T20:13:40.740572Z" } }, "id": "782741c190a4690b" }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 40, "outputs": [], "source": [ "now = datetime.now(timezone.utc)\n", @@ -509,8 +509,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-06-01T21:28:24.815424Z", - "start_time": "2024-06-01T21:28:24.777875Z" + "end_time": "2024-09-02T20:13:44.166108Z", + "start_time": "2024-09-02T20:13:44.083510Z" } }, "id": "21ccc879c5c3e215" @@ -527,7 +527,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 41, "outputs": [ { "name": "stdout", @@ -539,15 +539,15 @@ " 'RandomForestClassifier': RandomForestClassifier(max_depth=10, max_features=0.6, random_state=42),\n", " 'XGBClassifier': XGBClassifier(base_score=None, booster=None, callbacks=None,\n", " colsample_bylevel=None, colsample_bynode=None,\n", - " colsample_bytree=None, early_stopping_rounds=None,\n", + " colsample_bytree=None, device=None, early_stopping_rounds=None,\n", " enable_categorical=False, eval_metric=None, feature_types=None,\n", - " gamma=None, gpu_id=None, grow_policy=None, importance_type=None,\n", + " gamma=None, grow_policy=None, importance_type=None,\n", " interaction_constraints=None, lambda=100, learning_rate=0.1,\n", " max_bin=None, max_cat_threshold=None, max_cat_to_onehot=None,\n", " max_delta_step=None, max_depth=5, max_leaves=None,\n", " min_child_weight=None, missing=nan, monotone_constraints=None,\n", - " n_estimators=200, n_jobs=None, num_parallel_tree=None,\n", - " predictor=None, ...)}\n" + " multi_strategy=None, n_estimators=200, n_jobs=None,\n", + " num_parallel_tree=None, ...)}\n" ] } ], @@ -558,8 +558,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-06-01T21:28:24.840430Z", - "start_time": "2024-06-01T21:28:24.809995Z" + "end_time": "2024-09-02T20:13:44.166798Z", + "start_time": "2024-09-02T20:13:44.128373Z" } }, "id": "3b15f202741fa2ae" @@ -582,12 +582,12 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 42, "id": "197eadaa", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:28:49.846374Z", - "start_time": "2024-06-01T21:28:24.839220Z" + "end_time": "2024-09-02T20:15:13.990194Z", + "start_time": "2024-09-02T20:13:44.159659Z" } }, "outputs": [ @@ -597,7 +597,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "c5df85718510494b86a44fec1648d243" + "model_id": "adda710893a34b979f198656125beeff" } }, "metadata": {}, @@ -609,7 +609,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "f2ad8926d39142cca0855d89158f5bc1" + "model_id": "f13cf910cedd4009bebbf360ac8cd049" } }, "metadata": {}, @@ -621,7 +621,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "88521ccb14384c879ae36e8cb3c60ffb" + "model_id": "6e67cda451c94d018ce12c8bfed6bc44" } }, "metadata": {}, @@ -633,7 +633,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "66f015e934fd49d7b6192687414acb45" + "model_id": "b609015067344f69bb519e53be86a841" } }, "metadata": {}, @@ -645,7 +645,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "4fc2e410757a4754906314e108dd774a" + "model_id": "3ebb587dfbc342eabc355d9567dd7f1c" } }, "metadata": {}, @@ -667,21 +667,21 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 43, "id": "bea94683", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:28:49.875190Z", - "start_time": "2024-06-01T21:28:49.846627Z" + "end_time": "2024-09-02T20:15:14.019546Z", + "start_time": "2024-09-02T20:15:13.989804Z" } }, "outputs": [ { "data": { - "text/plain": " Metric overall sex_priv sex_dis race_priv \\\n0 IQR 0.093218 0.092883 0.093302 0.095182 \n1 Overall_Uncertainty 0.899836 0.909407 0.897446 0.896719 \n2 Std 0.076228 0.077296 0.075962 0.075141 \n3 Mean_Prediction 0.520117 0.572049 0.507149 0.581026 \n4 Aleatoric_Uncertainty 0.869944 0.875791 0.868484 0.866015 \n5 Statistical_Bias 0.422194 0.416842 0.423530 0.418523 \n6 Epistemic_Uncertainty 0.029893 0.033616 0.028963 0.030704 \n7 Jitter 0.148098 0.159899 0.145152 0.138860 \n8 Label_Stability 0.786591 0.766825 0.791527 0.801256 \n9 TPR 0.687898 0.573333 0.709596 0.578231 \n10 TNR 0.687179 0.808824 0.650334 0.756554 \n11 PPV 0.639053 0.623188 0.641553 0.566667 \n12 FNR 0.312102 0.426667 0.290404 0.421769 \n13 FPR 0.312821 0.191176 0.349666 0.243446 \n14 Accuracy 0.687500 0.725118 0.678107 0.693237 \n15 F1 0.662577 0.597222 0.673861 0.572391 \n16 Selection-Rate 0.480114 0.327014 0.518343 0.362319 \n17 Sample_Size 1056.000000 211.000000 845.000000 414.000000 \n\n race_dis \n0 0.091952 \n1 0.901847 \n2 0.076929 \n3 0.480839 \n4 0.872477 \n5 0.424561 \n6 0.029369 \n7 0.154056 \n8 0.777134 \n9 0.737654 \n10 0.628931 \n11 0.669468 \n12 0.262346 \n13 0.371069 \n14 0.683801 \n15 0.701909 \n16 0.556075 \n17 642.000000 ", - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Metricoverallsex_privsex_disrace_privrace_dis
0IQR0.0932180.0928830.0933020.0951820.091952
1Overall_Uncertainty0.8998360.9094070.8974460.8967190.901847
2Std0.0762280.0772960.0759620.0751410.076929
3Mean_Prediction0.5201170.5720490.5071490.5810260.480839
4Aleatoric_Uncertainty0.8699440.8757910.8684840.8660150.872477
5Statistical_Bias0.4221940.4168420.4235300.4185230.424561
6Epistemic_Uncertainty0.0298930.0336160.0289630.0307040.029369
7Jitter0.1480980.1598990.1451520.1388600.154056
8Label_Stability0.7865910.7668250.7915270.8012560.777134
9TPR0.6878980.5733330.7095960.5782310.737654
10TNR0.6871790.8088240.6503340.7565540.628931
11PPV0.6390530.6231880.6415530.5666670.669468
12FNR0.3121020.4266670.2904040.4217690.262346
13FPR0.3128210.1911760.3496660.2434460.371069
14Accuracy0.6875000.7251180.6781070.6932370.683801
15F10.6625770.5972220.6738610.5723910.701909
16Selection-Rate0.4801140.3270140.5183430.3623190.556075
17Sample_Size1056.000000211.000000845.000000414.000000642.000000
\n
" + "text/plain": " Metric overall sex_priv sex_dis race_priv \\\n0 Std 0.076228 0.077296 0.075962 0.075141 \n1 Mean_Prediction 0.520117 0.572049 0.507149 0.581026 \n2 IQR 0.093218 0.092883 0.093302 0.095182 \n3 Overall_Uncertainty 0.899836 0.909407 0.897446 0.896719 \n4 Statistical_Bias 0.422194 0.416842 0.423530 0.418523 \n5 Aleatoric_Uncertainty 0.869944 0.875791 0.868484 0.866015 \n6 Epistemic_Uncertainty 0.029893 0.033616 0.028963 0.030704 \n7 Jitter 0.148098 0.159899 0.145152 0.138860 \n8 Label_Stability 0.786591 0.766825 0.791527 0.801256 \n9 TPR 0.687898 0.573333 0.709596 0.578231 \n10 TNR 0.687179 0.808824 0.650334 0.756554 \n11 PPV 0.639053 0.623188 0.641553 0.566667 \n12 FNR 0.312102 0.426667 0.290404 0.421769 \n13 FPR 0.312821 0.191176 0.349666 0.243446 \n14 Accuracy 0.687500 0.725118 0.678107 0.693237 \n15 F1 0.662577 0.597222 0.673861 0.572391 \n16 Selection-Rate 0.480114 0.327014 0.518343 0.362319 \n17 Sample_Size 1056.000000 211.000000 845.000000 414.000000 \n\n race_dis \n0 0.076929 \n1 0.480839 \n2 0.091952 \n3 0.901847 \n4 0.424561 \n5 0.872477 \n6 0.029369 \n7 0.154056 \n8 0.777134 \n9 0.737654 \n10 0.628931 \n11 0.669468 \n12 0.262346 \n13 0.371069 \n14 0.683801 \n15 0.701909 \n16 0.556075 \n17 642.000000 ", + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Metricoverallsex_privsex_disrace_privrace_dis
0Std0.0762280.0772960.0759620.0751410.076929
1Mean_Prediction0.5201170.5720490.5071490.5810260.480839
2IQR0.0932180.0928830.0933020.0951820.091952
3Overall_Uncertainty0.8998360.9094070.8974460.8967190.901847
4Statistical_Bias0.4221940.4168420.4235300.4185230.424561
5Aleatoric_Uncertainty0.8699440.8757910.8684840.8660150.872477
6Epistemic_Uncertainty0.0298930.0336160.0289630.0307040.029369
7Jitter0.1480980.1598990.1451520.1388600.154056
8Label_Stability0.7865910.7668250.7915270.8012560.777134
9TPR0.6878980.5733330.7095960.5782310.737654
10TNR0.6871790.8088240.6503340.7565540.628931
11PPV0.6390530.6231880.6415530.5666670.669468
12FNR0.3121020.4266670.2904040.4217690.262346
13FPR0.3128210.1911760.3496660.2434460.371069
14Accuracy0.6875000.7251180.6781070.6932370.683801
15F10.6625770.5972220.6738610.5723910.701909
16Selection-Rate0.4801140.3270140.5183430.3623190.556075
17Sample_Size1056.000000211.000000845.000000414.000000642.000000
\n
" }, - "execution_count": 17, + "execution_count": 43, "metadata": {}, "output_type": "execute_result" } @@ -709,12 +709,12 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 44, "id": "f94a20dc", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:28:49.916799Z", - "start_time": "2024-06-01T21:28:49.875032Z" + "end_time": "2024-09-02T20:15:14.045800Z", + "start_time": "2024-09-02T20:15:14.017806Z" } }, "outputs": [], @@ -724,12 +724,12 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 45, "id": "b04d06cf", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:28:49.943701Z", - "start_time": "2024-06-01T21:28:49.900460Z" + "end_time": "2024-09-02T20:15:14.112595Z", + "start_time": "2024-09-02T20:15:14.043118Z" } }, "outputs": [], @@ -747,12 +747,12 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 46, "id": "be6ace22", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:28:49.959380Z", - "start_time": "2024-06-01T21:28:49.923586Z" + "end_time": "2024-09-02T20:15:14.121381Z", + "start_time": "2024-09-02T20:15:14.063510Z" } }, "outputs": [], @@ -762,14 +762,14 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 47, "outputs": [ { "data": { - "text/plain": " Metric sex race sex&race \\\n0 Accuracy_Difference -0.047012 -0.009436 -0.039300 \n1 Aleatoric_Uncertainty_Difference -0.007307 0.006463 0.000802 \n2 Aleatoric_Uncertainty_Ratio 0.991656 1.007463 1.000922 \n3 Epistemic_Uncertainty_Difference -0.004654 -0.001335 -0.003381 \n4 Epistemic_Uncertainty_Ratio 0.861563 0.956510 0.892966 \n.. ... ... ... ... \n71 Disparate_Impact 1.465176 1.537383 1.596796 \n72 Std_Difference 0.000151 0.002984 0.002995 \n73 Std_Ratio 1.003178 1.065098 1.064903 \n74 Equalized_Odds_TNR -0.076968 -0.101583 -0.123015 \n75 Equalized_Odds_TPR 0.153535 0.152053 0.155233 \n\n Model_Name \n0 DecisionTreeClassifier \n1 DecisionTreeClassifier \n2 DecisionTreeClassifier \n3 DecisionTreeClassifier \n4 DecisionTreeClassifier \n.. ... \n71 XGBClassifier \n72 XGBClassifier \n73 XGBClassifier \n74 XGBClassifier \n75 XGBClassifier \n\n[76 rows x 5 columns]", - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Metricsexracesex&raceModel_Name
0Accuracy_Difference-0.047012-0.009436-0.039300DecisionTreeClassifier
1Aleatoric_Uncertainty_Difference-0.0073070.0064630.000802DecisionTreeClassifier
2Aleatoric_Uncertainty_Ratio0.9916561.0074631.000922DecisionTreeClassifier
3Epistemic_Uncertainty_Difference-0.004654-0.001335-0.003381DecisionTreeClassifier
4Epistemic_Uncertainty_Ratio0.8615630.9565100.892966DecisionTreeClassifier
..................
71Disparate_Impact1.4651761.5373831.596796XGBClassifier
72Std_Difference0.0001510.0029840.002995XGBClassifier
73Std_Ratio1.0031781.0650981.064903XGBClassifier
74Equalized_Odds_TNR-0.076968-0.101583-0.123015XGBClassifier
75Equalized_Odds_TPR0.1535350.1520530.155233XGBClassifier
\n

76 rows × 5 columns

\n
" + "text/plain": " Metric sex race sex&race \\\n0 Accuracy_Difference -0.047012 -0.009436 -0.039300 \n1 Aleatoric_Uncertainty_Difference -0.007307 0.006463 0.000802 \n2 Aleatoric_Uncertainty_Ratio 0.991656 1.007463 1.000922 \n3 Epistemic_Uncertainty_Difference -0.004654 -0.001335 -0.003381 \n4 Epistemic_Uncertainty_Ratio 0.861563 0.956510 0.892966 \n.. ... ... ... ... \n71 Disparate_Impact 1.483317 1.576324 1.629653 \n72 Std_Difference 0.000168 0.002792 0.002732 \n73 Std_Ratio 1.003582 1.061568 1.059806 \n74 Equalized_Odds_TNR -0.082094 -0.102184 -0.128932 \n75 Equalized_Odds_TPR 0.153535 0.171832 0.164085 \n\n Model_Name \n0 DecisionTreeClassifier \n1 DecisionTreeClassifier \n2 DecisionTreeClassifier \n3 DecisionTreeClassifier \n4 DecisionTreeClassifier \n.. ... \n71 XGBClassifier \n72 XGBClassifier \n73 XGBClassifier \n74 XGBClassifier \n75 XGBClassifier \n\n[76 rows x 5 columns]", + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Metricsexracesex&raceModel_Name
0Accuracy_Difference-0.047012-0.009436-0.039300DecisionTreeClassifier
1Aleatoric_Uncertainty_Difference-0.0073070.0064630.000802DecisionTreeClassifier
2Aleatoric_Uncertainty_Ratio0.9916561.0074631.000922DecisionTreeClassifier
3Epistemic_Uncertainty_Difference-0.004654-0.001335-0.003381DecisionTreeClassifier
4Epistemic_Uncertainty_Ratio0.8615630.9565100.892966DecisionTreeClassifier
..................
71Disparate_Impact1.4833171.5763241.629653XGBClassifier
72Std_Difference0.0001680.0027920.002732XGBClassifier
73Std_Ratio1.0035821.0615681.059806XGBClassifier
74Equalized_Odds_TNR-0.082094-0.102184-0.128932XGBClassifier
75Equalized_Odds_TPR0.1535350.1718320.164085XGBClassifier
\n

76 rows × 5 columns

\n
" }, - "execution_count": 21, + "execution_count": 47, "metadata": {}, "output_type": "execute_result" } @@ -780,8 +780,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-06-01T21:28:49.983151Z", - "start_time": "2024-06-01T21:28:49.956902Z" + "end_time": "2024-09-02T20:15:14.172610Z", + "start_time": "2024-09-02T20:15:14.105667Z" } }, "id": "a286da0406c6401d" @@ -804,12 +804,12 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 48, "id": "435b9d98", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:28:50.040594Z", - "start_time": "2024-06-01T21:28:49.982914Z" + "end_time": "2024-09-02T20:15:14.176462Z", + "start_time": "2024-09-02T20:15:14.129137Z" } }, "outputs": [], @@ -821,21 +821,21 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 49, "id": "5efb1bf2", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:28:50.070303Z", - "start_time": "2024-06-01T21:28:50.015744Z" + "end_time": "2024-09-02T20:15:14.220434Z", + "start_time": "2024-09-02T20:15:14.162068Z" } }, "outputs": [ { "data": { - "text/html": "\n
\n", + "text/html": "\n
\n", "text/plain": "alt.Chart(...)" }, - "execution_count": 23, + "execution_count": 49, "metadata": {}, "output_type": "execute_result" } @@ -849,21 +849,21 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 50, "id": "0eb8528e", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:28:50.128106Z", - "start_time": "2024-06-01T21:28:50.069642Z" + "end_time": "2024-09-02T20:15:14.257587Z", + "start_time": "2024-09-02T20:15:14.210632Z" } }, "outputs": [ { "data": { - "text/html": "\n
\n", + "text/html": "\n
\n", "text/plain": "alt.Chart(...)" }, - "execution_count": 24, + "execution_count": 50, "metadata": {}, "output_type": "execute_result" } @@ -877,19 +877,19 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 51, "id": "df024aed", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:28:50.362860Z", - "start_time": "2024-06-01T21:28:50.123627Z" + "end_time": "2024-09-02T20:15:14.497203Z", + "start_time": "2024-09-02T20:15:14.258256Z" } }, "outputs": [ { "data": { "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAABQoAAAIYCAYAAAAl5NFGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3QU5dfA8W/appdN75UQIJUWCL13RJo0KYoKCiKKoqg/QJAuKCICKoI0BSX0DtJCBwmhBUggFUiBJKSXzb5/xB0TEhV97dzPOR5hd+bZ2WVnZ+bOfe7V02q1WoQQQgghhBBCCCGEEI81/b97A4QQQgghhBBCCCGEEH8/CRQKIYQQQgghhBBCCCEkUCiEEEIIIYQQQgghhJBAoRBCCCGEEEIIIYQQAgkUCiGEEEIIIYQQQgghkEChEEIIIYQQQgghhBACCRQKIYQQQgghhBBCCCGQQKEQQgghhBBCCCGEEAIJFAohhBBCCCGEEEIIIZBAoRBCCCGEEEIIIYQQAgkUCiGEEEIIIYQQQgghkEChEEIIIYQQQvxltFrtb16nvLwcAI1G87vWF0IIIR6VnlaONEIIIYQQQgjxhyovLyc2NpZz586hp6eHsbEx8+bN45tvvsHX1/dn19HT00NPT+8Xxy4pKUGlUv0Zmy2EEOIxJxmFQggh/jAajYaysrK/ezOEEEKIv1RaWhrbt2+npKREeWzv3r0MHjyY5cuXc+vWLWrXrs0rr7yCra1tlXUr523o6+tXCxIWFxezd+9e4uPjWbhwIY0aNeKNN94gPT39z31TQgghHkuSUSiEEI+5tLQ08vPziY2NZePGjSxfvvzv3iQhhBDiX2XZsmV8+eWXfPfdd3h4eADQuXNn8vPz+fDDD/H398fCwgI9PT0MDAyU9crLy9HXr8jdSE9PJz4+HoDGjRtjaGgIwPXr1xk8eDDm5ub4+/vj6elJo0aNaNWqFRYWFn/xOxVCCPFfZ/h3b4AQQoi/Rn5+Pubm5srfT5w4wYwZM4iLi+OZZ57BxsYGAwMDsrOzsbGxUZbTarXKVCjdxczDCgsLKSoq4sqVK3zzzTcEBgYyZMgQLC0t/+y3JYQQQvzt+vbtS5s2bXB0dESj0WBgYICJiQlubm40bty4yrK6acNarRZ9fX1u3brF7NmzOX78OEZGRpiamlKnTh1Gjx5N48aNsbS0pGXLluzatYshQ4bwwgsvoNVqf3V6shBCCPF7SKBQCCEeA++99x6RkZFs3boVLy8vtFotn332GRkZGUyePJk2bdpgYWFB//79sbKyqrLuw9kPDx48qLLM2bNnmTRpEk5OTpiZmZGUlISvr68ECYUQQvwnabVaJcinY29vj729fZXlvL29uXjxIh9++CF+fn40bNiQmTNnkp2dzbJly7CwsCAtLY0333yTzMxMpkyZgru7OxcvXmTDhg1Mnz6dZcuWYWdnh1qtxtTUlPr16wNIkFAIIcSfRgKFQgjxH6ab0tSrVy+aNWumZApmZGRw7949wsLCGDBgQJVA4MNycnL48ssv2bVrF1lZWfj7+9OtWze6deuGra0ttra2ODg48MMPP9CvXz/ef/99ZbqUEEII8V9TU7MRjUZDdHQ0WVlZhIWF8f7777Nnzx6MjIxYtmwZTz31FA0bNsTc3JzY2Fjy8/OxsLDg2LFjXLt2jZUrVypBwKZNm9KyZUuefPJJNm7cyNixY/Hw8KCkpEQChEIIIf50ciUnhBD/Ybpsh9DQ0CoXF46Ojnh7e3P37l3u3LmDRqPBzc2NBQsWkJeXx7Rp09BoNJSUlPDBBx+wb98+unfvjpOTE6dOnWLGjBlER0fzwQcf4OjoiJWVFSqViueeew5HR8e/6+0K8VjQZTM9SmdUIcSj0ZXZ0Gq1GBgYVNm3Kk/zzc/P58aNG6Snp+Pj44O/vz8A2dnZzJkzh6SkJPbt20eXLl2wt7dnzZo1vPLKKwwbNgwjIyNq1arF7t27yc7Oxt7enjNnzmBlZUX9+vVJTk7m2rVrXLx4kRs3bgAQFRXF6NGj8fT0pLy8XBqYCCGE+NNJoFAIIf4jNBoNQJXswIeDCRkZGajVaj788EPOnj3LgwcP6NChA3Xr1mXTpk1ERUWRnJzMtGnTMDAw4MyZM3z77bfMmDGDjh07YmVlxQsvvMCKFSuYM2cOvXr1omXLlri5uVFUVKRkEkrtJCGqy8vLIyMjAx8fnyoNDH6NRqOpUiNUAoRCVHf48GHWrVvHiBEjiIiI+Nl97OeOTw+X2Xh4+ZKSEubOncuOHTsoKCjA0tISExMT+vfvz6hRo7C0tKR+/frEx8dTWlpK586dqVOnDmvWrAFQagS7u7tTUlJCcnIyAQEBZGZmkpGRQf369SksLMTMzAwXFxc8PT2ZOHEitWvXxtDQEEdHRywsLLh58+Zv+v0QQgghfisJFAohxL+ELosIqPECofIFTk5ODgYGBko3xLy8PAYNGkRJSQl79uwhIyMDd3d3Ll26xCuvvELz5s0BqF+/PtevX6eoqAgTExM2bNiAn58fffv2BSoyKZKTk5XX2bJlC82bN8fHxweA1NRUXF1dJVAoxEPu3bvH4MGDcXBwYM2aNdX2YV02E1AtWPHw3+Pj47l16xbm5uZERET8uRsuxN+o8rEkPT2dy5cvk5CQgFqtpkWLFtjb2yvLZGZmcvjwYZo2bVplv9DtW/r6+lWC7A8fp27cuMHhw4c5e/YsGo2GJk2a8NRTT2FlZYVWq2XdunVs3LiRF154gQYNGpCXl8fSpUtZvXo1Tz31FGq1GhcXF/Lz80lJScHW1hYnJydsbGy4desWubm5WFpa4ujoiKmpKfHx8XTo0AE7OztUKhXDhw+nY8eOmJmZYW1tja2tLcnJyWRkZKDRaLCzs8PR0ZG4uDjKyspQqVR/7T+GEEKIx4YECoUQ4i9w+/ZtTp48SaNGjfD09PxdgbRfyyLasGEDW7Zs4dq1a1haWtKgQQOeffZZAgMDsbCwwMXFhStXrpCfn8/06dM5ePAgEyZMwMXFhZCQEABcXV0BuHbtGqGhoaSnp5ORkcHw4cNJTk4mPT1duWCJiIigSZMm6Ovr4+LiAsDly5dp3LixEtAUQlSws7NjxowZmJqa1vj8z2UzARw9epTjx4/TpUsXvv76a3bu3IlGo8HCwoIRI0YwZMiQak2IhPgv0NPTIzc3l48//phdu3ZRWlqKqakpBQUFWFtbM3z4cJ5++mkAAgMDMTU1rXIzSzeGbt/Ky8sjLS0NU1NT5XgHFTe53nrrLQoKCvDy8qK8vJwFCxZw/PhxFi1ahLm5OZGRkTRp0oQRI0Yo+3HDhg1JTU1VsgXd3NzQ19fnxo0bhISEYGpqipeXF0lJSTx48ABLS0vUajWOjo7K1OKQkBA2b96Mvb09gYGBVbb9q6++4tSpUyxatAgHBwd8fHxISkqioKBAAoVCCCH+NBIoFEKIP0h5eTnJyclotVq8vb2BnzIWoqKimDx5MnPmzMHT07PKehqNRlnul5qK3Lp1i5iYGB48eEBgYCANGjRQntu5cycff/wx9evXZ9y4cdy5c4fVq1eTmprKwoULcXJywsPDg5MnT3Lz5k2Cg4Px9PTEysqK+Ph4SkpKUKlUuLu7A3DlyhVCQ0Px8PAgJiYGIyMjnnrqKby8vPDw8MDe3h49PT2Ki4sBcHFxQa1WExMTo7xvIURVjRo1qvHxsrIyrl27xpkzZ0hPTycsLIzmzZsrwYcLFy4QGRnJli1bqFWrFosWLUJPT4/ly5ezePFiPD096d69u0xHFP9qGo2m2jEwPT2dsWPHcuvWLZ555hmaNm2KmZkZycnJLFu2jHnz5lFUVMRzzz2Hh4cH5ubmJCUlAT9l3icmJrJq1SoOHDhARkYGRkZG1KtXjzFjxtCkSRMMDQ2ZM2cOWVlZzJgxgzp16mBmZsYXX3zB+fPnyczMxNzcHCcnJ6KioliwYAEtW7ZEq9UqN+V0HBwcUKvVXL16VXnM39+fo0ePcv/+fdzc3LCyssLd3Z1bt26h0Who2rQpdevWZe3atQQHB1O3bl0KCwvZv38/a9asoW3btnh7e1NQUICDgwP79+/n3r17SnMyIYQQ4o8mgUIhhPh/0Gg0REZG8u233xIbG4uRkRG2trZEREQwbNgwatWqBUBwcDD6+vpkZWUBVMkMfPjC6OGLpby8PKZMmcLRo0dRqVRotVo0Gg2jR4+mf//+mJubs2LFCgICAnj33Xext7fHwMCA8PBwbt26pbyWri5aXFwcwcHBSpZhXFwcpaWlqFQqXFxcsLCw4OLFiwwaNIjatWuzc+dOevfuTffu3SkrK1PqEH7xxRfExMSwYMEC7O3tcXFxUTIkZNqxeBzpygP8UrDu5s2bmJmZ4ezsrEyJXLp0KatWrcLCwgI9PT1WrVpF48aNGT9+PKGhoQQHBwMVWYkzZ85UAvq2trYMHjyYY8eO0b1797/kPQrxZzh58iSrVq3i008/rRLw/vTTT7l8+TJr1qxROgID1KlTh4YNG9KzZ0+2bt3K4MGDlWDe3bt3ycrKQq1Wk5OTw9y5c0lISKBXr174+Phw/fp11qxZw7x58/jwww/x8fHhzp07ODo64uTkhFqtBmDMmDFVtvG1115j7ty5rF69mtWrVwMVdQft7e3p06cPo0aNws7ODicnJ65fv66sV7duXTZv3kxGRgYAZmZmeHt7s3v3btLT0/H19eX111/npZdeYsSIEbRs2ZLy8nIuX75MkyZN+N///qes16VLF7y9vXFycvrz/jGEEEI89iRQKIQQv1NeXh6ffPIJmzZtokWLFvTt2xcjIyN++OEHNmzYwKlTp/j000/x8/PDxcUFY2NjEhMTlew93RhRUVF8//33yoVFu3bt6N+/vzKdd+HChRw6dIjx48fTtGlTCgsLmTt3Llu2bKFly5b4+flhYmJCYmIily5dokWLFpSUlNC4cWPatm2rbK+Pjw8qlYpr164BYGFhgZeXF7GxsRQUFCgXWbopygAtWrTg448/Ztu2bXTv3l0JEl65coXFixfj4+ODoaEhNjY2uLm5sW/fPqB68FOI/4LKdQR19c4qq1weIC0tjby8PNzd3TE2NgZg//79jB07lhEjRvDWW2+hp6fHN998wyeffMLAgQMZNGgQJiYmHDt2jGnTplFQUMD69evx9fXFwMAAIyMjpRGCSqXC2dkZDw8P4uLilNcX4t9Gq9Vy7Ngxvv/+e/Lz85VM2rS0NLZt28YTTzxBUFCQsqyenh5lZWXY2tqydu1aJYMfwNfXl6ioKFJSUlCr1axdu5YDBw4wdepUBg4cqNyIMzMzY8mSJdy4cQMfHx86duzIggULGDZsGHXq1MHAwABfX18aNmxIcHAwTk5O1K1bl08++YT79+9z8eJFUlJSyMrK4ujRo3z55ZeEhobSoEED3N3diY6OVvbT2rVrU1ZWRlpaGgCmpqb4+Phw7949bt++jYuLC82bNycyMpLvvvuO8+fPY2JiwqBBg+jUqVOVKdJNmjShSZMmf90/jhBCiMeSBAqFEOJ32rhxIytXrmTixIn069dPqRHWp08fmjVrxmuvvcbkyZNZuHChknGXlJREXl4etra2lJeX88UXX7Bz505cXV2pV68eN2/e5NNPPyU5OZkpU6agUqm4ePEizZs3Z+jQocprf/nll2RnZ+Po6AjA008/zdtvv82YMWOwsrLC0NAQHx8fgoKCaNWqFc2bN8fFxQVra2vi4+OBn7IaDh8+zIMHD3BwcMDOzg53d3dOnToFQEBAAC+++CKffPIJgwcPplOnTujr67Np0ybs7e15++23AVCpVAQEBJCamkpOTg7W1tZ/5T+FEH+JXysPkJyczEcffcSxY8eUaYKtWrVi6NCh+Pr64u7urmQ8QcW0ylWrVlGvXj2mTp2qjOPl5UVeXh4LFy5k7969tG3bFldXV3JycgCUGw329vY4Oztz/fp1iouLlYCkEP9ENTXs0WUP2tvbA5CVlaUECqOiosjPz6dNmzYYGRlVyTTU3bTSBQlLS0sxMjLC39+fPXv2kJCQQHBwMM7OzowaNYrevXsDKPUDY2Nj0dfX5+bNmwAMHDgQtVrNnj17yMrK4u7duxw+fJgVK1YQFhbGl19+iYmJCYWFhVhbW9OtWzflfbVq1YpnnnmG9PR0VCoVPj4+HDp0iHv37indiwGuX7+uZOU7OTlhbW1NUVGR8tn4+fkxceJECfiLx4JGo6GwsFBpuvdb1tPX1//V7H0hxP+PBAqFEOJ3yM7OZtmyZbRq1Ypnn31WeVx3IdStWzcl40d3AVSrVi2uXbtGRkYGtra2REZGsnTpUp555hlGjBiBubk5paWlfPTRR+zdu5cbN25Qv3596tWrx7p163jllVdo1qwZWq0WJycnQkNDldft0KEDTk5OXL58mZs3b5KQkEBqaipr1qzhwIEDbNy4ETc3N+zt7ZVC7yYmJnh5eVFQUEBaWpqSmejt7c3Bgwe5f/8+tra2jB07FisrK7Zt28ann35KaWkpISEhvPLKK1Vqro0dO5axY8f+Rf8CQvxxfqnjcGXJycmcO3eOa9euYWVlRdu2balTpw5QkR08b948YmJiGDVqFA4ODpw5c4avv/4aAwMD3n33XVxdXVGr1UpwwsDAgMTERIYPH65sB1QEJDt06MCiRYuIjo6mU6dOuLu7k5SURGZmJvb29kpmlJubG+fOnSMpKQl/f/8/82MS4v+lpkC7vr4+d+/e5dy5cwD07NkTR0dHvvjiCwoKCoCKwMCv0QUMAgIClHrBUHHjDioabUVGRnL27FlSUlJwcHBAX1+fxMREACwtLenfvz/9+/cnNTUVjUaDSqVixYoVrFq1iqioKBo2bMhTTz1Fx44defnllykvLycjI4NNmzYBKFmP9vb2lJSUcP36dVxcXLC1taV58+Z4e3srvzPt2rVTbsjpPpvK/xfivyYmJoaDBw+SkJDAsGHDGDp0KBMnTmTo0KHVvve6Mh5AtWCg7jdEt869e/cwMTFRbjAIIf4YEigUQogaVJ5eWJlu2tO+ffu4f/8+Xbt2BVCyBCpfCHXo0KHKunXq1FEKmkNFJ+SwsDBeeeUVTExMlOVsbW0pKCggKSmJ+vXrM3LkSG7fvs3hw4c5ePAgJSUlADg5OdGjRw/eeOMNDAwMCAkJISwsrEpm0WeffcaCBQu4cuUKERERuLm5ceLECTIyMnBwcMDJyQkTExPi4+Np0qQJBgYGSmbktWvXiIiIoLy8nGHDhtGtWzc0Go3URhL/Wj8XEHw4gKGbMli5O7muIZFWq8XKyor09HTWrVvHe++9R7t27UhLS2Pfvn3MnDmTJ598Ej09PXr06EF4eDgODg4AWFlZ4ezszIULF8jNzUVPTw9TU1P09fWrlCSAimCDvb29Ml3Rx8eH/fv3c+vWrSqBQh8fH8rKyoiLi8Pf3/93dVQX4v+jvLxc+d79XIaPRqNRGvYkJibi6elJu3bt8PT05NKlS9y6dQtDQ0M8PDyYOHEiLi4uynExPz//V7dBt//6+vqiUqmUhiYA27ZtY9GiRZiZmdG0aVPatGlDREQEzZo14/bt2wAUFRWxc+dO6tatS7169ZR1GzduzFdffYVKpcLOzo6goCC++uorYmJicHV1JTU1lZSUFKZMmaJkDuqaivn6+gJgZGTE8uXLa9xeIf5rsrKy2LhxIw0aNFAa/Vy/fp0JEyZQXFxMaGgoNjY2fPTRR9SqVavG41XlMh6VabVa9u/fT35+PhqNhhkzZmBjY8OUKVNo3bq1HP+E+ANJoFAI8a+n0WiIjY3Fy8vrkacw/FrTAd3j5eXl3LlzBysrKywtLSkrK8PIyEi5cDE1Na2y/C+pU6cOhYWFyoX/yy+/zLhx40hLS2PXrl0cP36cqKgosrOz0dfX586dOwC4ubmxePFi8vLyuHTpEmlpaZSUlPDdd9+xfPly+vbti4WFBXPnzuWJJ56gVatWQEWwIz8/H319fYyMjABwd3cnJyeH2NhYHBwcsLKywsTEhNu3byuBh969e9O+fXulEYvuvekyI4X4N6ipg+rPTR1OSUnh66+/5siRIxQUFBAaGkr//v2JiIgAIDc3lzfffJN69eoxduxYbG1tycrKYvz48Zw+fZrWrVsrgcVdu3bh5ORE7dq1yc3NpU2bNlUyHTw9PYmKiiIxMZHatWvj6OhIYmKiUpJAd9OhqKhIyTIG8PDwACouuBo3bqyM5+vri4mJCdeuXaNr165yoST+NLpGWvr6+lWOeZX/rNVqleNk5e/i2rVrWbJkCdbW1piYmLBlyxY2b97MjBkz6NChAw4ODrz11lsYGhrSokULAKVpjy6Y93Pfa41GQ2ZmJmq1Gg8PD9RqNSkpKWg0GsrLy1m0aBEWFhbMmzcPPz8/ZT2VSkVKSgqZmZkYGhoye/Zs7O3tGTVqFN7e3ty+fZtPPvkEb29v5Xg4e/ZsOnTowN69e0lLS6N27dqMHj2aZs2aKdOhg4KClOxCIR43ycnJbNmyBXt7e0JCQjA0NOTbb78lOTmZ6dOn0717d4yMjPDx8amyXuXfi/j4eC5evEhBQQFNmjRR9tvS0lL27dvH1q1bCQ4OZsCAAQQHBytBeTn2CfHHkUChEOJfJSUlhfj4eC5fvsyZM2e4fv06OTk5lJWVsWTJEtq2bVvlZOPnLpor362saZn9+/ezdOlSrl27hrm5OXXr1uWpp56qciFuaGioXBj8XKCwck0l3UlRamqqsg23bt3igw8+ICkpCRcXF5599lm6dOlCv379SE5OpqioCBMTE2JjY/H09KR58+bK2CYmJrz11lukpqYSFhZGdHQ0+/bt46mnnqJ27dpcv36dXbt20a9fPwICAoCK6c/16tVT3q+/vz8HDhyoEshwdnbG2dn5N/7LCPH3qSkD+OGA4M2bN7GwsGDXrl3s2rULZ2dnPvroI7Kyspg5cybXr1+nSZMmWFlZsW/fPnbu3Mn8+fPp1q0bCQkJZGdn07t3b2XKv4eHB9u2bVP2HQ8PD55//nk+//xzjhw5AoC1tTUeHh6EhoYyYMAAateujaenJ1qtluvXrxMUFERwcDBHjx5VMnh1vykpKSnExcXRtGlToCLAaGVlpXQW13F2dqawsJDLly//CZ+s+LdLTU3l8uXLREdHc/XqVc6fP8/ixYtp3rx5lePTo9Ad9x4WExPD6tWrOXfuHIaGhjRr1oy+ffsq3bovXLjArFmzGDJkCIMGDcLU1JQrV64wffp0oqOjCQwMpF69enh7e3P69Gll3Lp16wIQGxurvH5NdLV+586dS0BAAK6urty5c4fMzEzKysq4f/8+3bt3V4INZWVlfPnll2RkZGBpacnNmzcJDw/n3Xff5YsvvuCDDz6grKyMgoICgoODefvtt3F3d0ej0WBmZsYTTzzBE0888cifmxCPkzp16rBs2TIsLS2Vx2xsbDA0NCQkJAQzMzPl8czMTMzNzTE1NUVPT4/8/Hxmz57Nzp07UalUGBoasnDhQp566ikmTJiAgYEBjRs3ZuvWrTg4OPDmm2/+HW9RiMeCBAqFEP9oRUVFLFu2jA0bNpCXl0dxcbHyXGBgIEOHDsXFxQUHBwelVlh5eXm1GiaVL4jy8/O5evUqqampeHl5ERYWVuU1jx49ytSpUwkICODdd98lNzeXHTt28Nprr6Gvr0/nzp2xsLBAo9GQm5v7i9tf+SLM2dkZGxsbpaGJhYUFEyZM4O7du0pHY2dnZ/Ly8rCysiIlJYWCggISEhIYPXo0HTp04LnnnsPIyIjMzEw2btyIvb29ku340UcfsXbtWr7//nsiIyOxtrbmySefZMSIEcoJ25NPPsmTTz6pbJNKpaoy3VGIv0JKSgpXrlzh5s2blJWV0bhx41/s5KnLAK5pOtLDmcHZ2dnY2Njw2Wef4ezsTM+ePcnOzqZbt260bduWlJQUfHx8qF27NuXl5axevZoTJ04wbdo02rVrh0ql4s033+S5555j/vz51KlTB29vb3x9fZk0aRL79+/H09MTAwMDAgMDCQ0NRa1Wo6+vz4svvkinTp1ISEggNjaW5ORkUlJSWLt2LQ8ePFAymoyNjbly5Qp9+vShR48e7Nixg48++ghra2usrKxITk5m7ty52NraKgEJV1dXiouLuXDhAvBTMwc/Pz82btyoZF9JcffH2+XLl1m/fj2nT58mNTWV0tJSzM3NcXV1xdfXl0GDBik3gipnzlf+O1S9gVZaWkp8fDzm5uasW7eOqKgoWrZsycSJE7l8+TJTpkyhvLyczp07U1RUxK5du9i2bRufffYZDRs2JD4+Hn19ffr166cE61xdXWnevLmSlW9kZISbmxv5+flKfVwbGxvCwsKIiooiNTUVNze3Ktulm65/+fJlrl27pmT6+/j4cOXKFe7cuUNQUBC+vr6sXbsWIyMjatWqxalTpzh8+DD169fn3LlzbNiwgfDwcHr16kXTpk354YcfMDY2xt/fX8nk1Wq1Ml1YiIfoyg7o6+sr+6VKparSqRsqbnSVlZXx0Ucf4ebmRq9evbh48SLTpk1jxYoVREREUFpayuzZs9m6dSvjx48nPDycBw8esGfPHj7//HM8PDx46qmnlLFr1679l79fIR4nEigUQvyj6enpYW1tTdu2balXrx5BQUEcO3aMhQsX0qlTJ0aNGlVtimHlbopxcXEUFBQowcBNmzaxaNEi7t27h4WFBaWlpbRq1YqZM2eiUqkoKSlh8eLFuLu7M3PmTKUe33PPPUffvn1ZvHgxrVq1wtfXFyMjI+Li4n6x2+g333zD2bNnGTduHJ6enri5uZGYmEhJSQkxMTHcunWLF198kaeeekpZ54cffuD27dtYWlqSnp5OnTp16NGjBytWrODUqVO4uLiQkJCAoaEhb7/9NqGhoWg0GoKCgnjvvffIzMzEwcFBmW4sxN+psLCQyMhIoqOjOX/+PHfv3qWsrAwLCwusra3JyMhg7dq1DBw4kFdeeaXGMX4pA1hPT4+YmBiWLl3KqVOnsLKy4oUXXmDBggW0b9+eVq1aoVarCQwM5ODBg7zxxhsMHjwYqAiM7Nmzhy5dutCzZ0+gIviQnZ2Nq6srUVFRfP/99zz//PO88cYbLF++nLNnz3LkyBHy8vKAioDHmDFj6Nu3L4aGhvj7+xMcHKyMp9VqeeGFFzhz5gxarRZ3d3fUarXSRKFZs2bMmTOHyZMn8/TTT+Pp6Ul6ejo2NjbMnj2bkJAQ5XWWL1+uXCRV7v6qu0kiHl+6m2EJCQls2LABLy8v5syZg7m5OU5OTqjVaszNzTE2Nq52bNB9lzQaDSkpKejr6ysBMoBz584xYsQIOnfuzM2bNwkNDcXHxwetVsvixYvJycnho48+wt/fHxMTE9544w2efPJJPvjgA1auXEm9evUwNTXl2WefpU2bNtjY2GBubk79+vUJDg7G3Ny8ymtev35dyaTt378/ly5dYvXq1YwdO7ZKeRGVSsWlS5c4efIkHTp0UIKQgYGBbNmyhWvXrhEWFsbYsWNZtmwZy5YtAypu2g0dOpRu3boRFxeHi4uLMqaTk5NSe7gymdIoRHU/d2PqypUr7Nu3jz59+rB//37mzJmDgYEBJ0+epGnTphgZGeHi4oKBgQFZWVkA3L17l+3btzNhwgSGDRumjBUREaE0BuvWrRseHh6Ympqi0Wiq1fYVQvxxJFAohPhHMzY2ZvDgwWi1WgwNDTEwMMDc3JyFCxcqNfwqn6ikp6fz/vvv07NnT5YtW8bVq1dp2bIlS5cuZf/+/UyZMoWOHTvSt29fDAwMOHv2LIsWLcLc3JxJkyaRk5NDdHQ0CxYswMnJicLCQm7cuEFKSgpFRUXEx8cTGxtLcHAw7u7unDx5kgEDBijTCStnYBgZGXH58mV2795N37598fT0pHbt2kRFRfHgwQPMzc2xtrbm+++/p2nTppiamnLq1ClWrlyJmZkZ169fZ/v27dSpU4exY8fSsmVLduzYQVlZGc2aNaN58+ZKl1NdcLSmO7lC/J3KysqYPn06AM888wxeXl64u7srXUfv37/P//73P5YsWUKXLl2UafK6wIcu4H/9+nWMjY1p06ZNlUBHcnIyM2bMIDMzk1GjRlFYWMi6desAKC4uJicnBxsbGzw8PLh8+TL169dXsphu3ryJVqslNjaWCRMmKFlIRUVF2NnZERYWptTmbNWqFa1atSI7O5tr165RXl7O3bt3mT17Np9//jl9+/Zlz549fPvtt0yfPh0vLy+Ki4uJi4vj7t27qNVq9PT0cHJywsLCgpiYGKBin33iiSdo0KABO3bs4P79+wQEBBAeHq5kCeo8nP0shI7u2FOnTh1sbGxQq9V069btkdY9f/48n3zyCadPn8bIyAgHBwc6derEmDFjMDExwcfHBzMzM/bs2cOyZcsIDw/HyMiIrKwsDh06xHvvvacEtPPy8rh//z5OTk6cOXOGy5cv06BBA9566y02bNjA8ePHycnJobCwEKjICnr77bdp2rSpcuy6ePGiEijs0aMHFy9eZOXKlejp6fHss88qzX9iYmJYuHAhGo2GXr16YW1tDVRkLxUXFytlPlq1akVQUBBpaWm4uLhgY2OjvHddoyEhRIWfa/r1sPT0dC5evEhSUhIODg506dJFyXQ/ffo0S5YsITw8nJYtW+Ll5cW4ceNo3Lgx7733Ho6OjkDFjS7dTbNLly5RWFhIQEAA8fHxnDt3jpiYGJKTk4mPj8fIyIiUlBS8vLxwcnJSyvNIoFCIP4cECoUQ/xgajUaZwlA5+PfwSYDu4vnWrVtA1Tv9+vr67N27l1OnTtG4cWNeeuklbG1tAVi+fDlhYWHMmDFD6abYpEkTMjMz2bx5M4MGDVKmBH/88cd88MEHpKenU15ejpWVFUFBQTRt2hQzMzMMDQ3p3LkzS5YsISoqisGDB1eZ8mxkZMTdu3fZv38/gYGB1K9fH6gocr5r1y5SUlJo0aIFzzzzDB999BHPPvsslpaWlJSU0KFDB5555hm++OILpUCzubk5zZo1o1mzZn/GRy/EI0tOTqa8vBwvL69HWt7S0pKQkBASExMZMWJEjV2zx44dyzvvvMPOnTvx8fFBpVKhr6/PlStXmD17NtHR0Zibm6PRaHB3d+ett94iPDwcgM2bN3P58mXmzJlD9+7dgYrgwltvvcXNmze5f/8+Xl5e+Pr6YmxsrGQCQsVFkLW1NRcuXMDV1ZXWrVtTp04dPD09cXBwoLy8XKmnlJmZyaVLl2jTpk2VadKHDx/mxIkTaLVanJycOH36NCNGjKB79+7o6+tz7tw5CgsLlWCpSqWiZcuW5ObmUlhYqAQt3d3dGTVq1O/4FxGPI92UP6j4HuuOg05OTjg4OHDz5k3gp2n7umUf7kwcGxvL1KlTKSwsZMKECdjY2HDgwAE+//xzMjMzeeutt5QxdY1+dN/ZK1euYGZmxu7du9m7dy83btwgIyOD8vJyPD09adq0qXJM7NevH/369SMtLY1bt25hZGTE+fPn+eCDD9iwYQNNmzbFxcUFe3t7pd6mrkbvK6+8grGxMStWrGDTpk0EBQWRl5dHXFwcrq6ufPDBB7Rt21ZpBNSoUSMOHz5c5bfG1tZWORcQ4r9Id7M6MTGRSZMmERAQwJQpU5T94mHl5eU1lvN4uOmX7sZ3ZStWrGDVqlXk5+djY2PD/fv3WbVqFcuWLUOtVlOrVi1MTEy4c+cOjRo1olatWnh5eXHv3j1lW9RqNfb29spvVXZ2NsbGxgwfPhwDAwPlBp+Pjw9Tp07Fzc0NNzc3DAwM8Pb2Vsr4WFlZSRMvIf4EEigUQvy/FRcX8/XXX3Pu3DkWLVr0u8epfGLycwd9rVaLsbExTk5OpKamcu/ePezs7JTl1Wo1wcHBXLx4kRdffJHAwEAAMjIySExM5KmnnqKoqIjz589z8eJFbt26xdGjRyksLOTKlSvUq1cPc3NzysrKGDZsGM7Oznh4eGBvb49KpeL+/fvK1KcePXpw4sQJ5s2bh7OzM+3atUOr1VJSUsKdO3f48MMPycrK4o033lACk97e3hQVFXHjxg1atGjBsGHDqF27NjExMdjZ2REaGoqfnx/6+vq8//77v/uzFOKPUrm+5/379+nWrRvDhg3j1VdfrXbxoQte6IIRurIAHh4exMTEkJaWhpOTk9I5VRdcr1OnDk5OTqSkpCiZDElJSbz99tsUFRUxe/Zs3N3diY2NZfXq1bz33ntK/cDLly/j6+urBAmhom7fkCFDmDRpEhkZGQAEBARQXFxMdna2spydnR1qtRpLS0tmz56tTMvU/fbMnj0blUrFa6+9xvbt25k9ezZTpkyhcePG6Onpce7cOQ4ePEj37t0pLS0lPDycFStWsH79evbt20dJSQnBwcG88MILSgdlgNdff73Gz7pyJkflmk/i8aa7iVY5IPhzU/4sLCxwd3fnxo0bSq2/X/oeffXVV8THx/PFF18oWXxPPvkkkydPZsOGDbRt25ZOnTrh7u6uHHMrZ+TZ2NgQExND+/btCQ0NJSAgADc3N2xsbCgtLVWWjY+PJz09nYiICCWA5+/vz5YtW0hLSwPA0dERX19fjh07xtKlS/Hx8aFz586o1WplOvPevXtJSEjAw8ODAQMGEB4ertQu1P0eGRkZ1XhDQoh/q8rnxImJiZw/f57Lly9jZGRE8+bNadasmfK8iYkJycnJVW4k6MaoXNNX9/+Hz7cTExPZsWMHR44cIScnB39/f4YMGUKjRo0wMDDg9OnTLF68mG7dutGvXz9MTEzYvXs3a9eu5fjx43Tv3h17e3ssLCy4ceOGckyrXbs2J0+eJCUlBVtbW8zNzfHy8iIhIYGioiKcnJzQ19enU6dOvP3228rvh6WlJVlZWZw7d46cnBzc3d3x9fXlwoULSpkQOVYK8ceTQKEQ4mc96h063QW/Wq2uVi9EFzj4pSBgWloajo6OnDx5ktWrVxMfH4+7uzvPPfccjRs3rhKM0Gg0GBoaKiccqampVQKFBgYGuLm5kZCQgEajUda7ffs2arWapUuX8vnnn2NgYICjoyOenp707dsXLy8vIiIiKC8vx8bGBlNTU0aMGFFlW2/fvs2kSZNo3bo1Y8aMwc/Pj+nTp/P666/z0ksvER4eTnh4OEVFRZw6dYpbt27xxhtvKLXKoCKj8H//+x9t2rQBKu7cRkREVAkiCPFPkZaWxokTJ5S6Ymq1mhUrVuDk5FTjlKSfC14EBASwY8cOYmNjlSmKD/+23L9/H0AJqh89epSUlBS+/PJLZZ2QkBDq1avHwIED2bFjB/7+/mRkZChjVa5X2rhxY7RarVKiQFe/7Pbt28prWlhY0KpVK77//ns2b97M0KFDlefOnj3LypUrGTJkCOXl5Tz11FMcPnyYmTNn4u3trQQd27Zty+uvv45KpaK8vJyIiAhCQ0MxNjb+xWlbZWVlVQI/us9EGib8d+Tn5/P5558TEBBA165df1PWS+Vla/pOXL9+nT179pCcnExYWBhPPPGEchPL29sbgBs3bhAYGMiZM2e4cuUKsbGxREVFMXPmTLp27UpOTg5Xr14lPDycBg0aAD9lDz3xxBPs3r2bgwcP0qlTJ2rXrs2lS5eqBNpdXV0xMTHB0dGR2bNnU1JSgqGhIfr6+mRmZrJgwQIaNGjA4MGD+fzzz9m2bRsffvghtWrVUpqexMfH88YbbwAV04BffPFF3nnnHZYtW0aXLl3o3LkzUDFFsW7dukon5IdJoED8V9T0O6H7+2effca3335LSUkJarWavLw8vvrqK8LDw5k/fz62trY4OTnh5+dHYmKickx8uBnYnTt3SEhIQF9fX8mQ193oXrBgAVeuXKF+/fqo1Wr27dvHyJEjWbJkCS1btuTYsWNYWFjQp08f5dhcu3ZtBgwYgJ2dHVBxA8HV1ZUbN25QUlKCsbExISEh7Nq1i7t37xISEoJKpcLPz49du3aRkZGBv78/tra2pKenKw2XdM6cOcOrr77K1KlT6d+/P7Vr16agoEC5ESiE+ONJoFAIUU1MTAxxcXH06dPnkZY3MjJi4MCBaDSaKkHCh7uR5uXlUVhYWKUm0MGDB3nxxRcZPnw4qampFBcX06BBA44ePcqYMWOYP38+bdu2rZLVBBUBt6NHj5KcnExISIhy5xSgVq1aHD58WOmACGBtbY2xsTEuLi58+OGHmJmZKXc09fX1uXjxIg8ePCAgIICOHTvyySefsH79egYMGIBGoyEnJ4eVK1cSExPD+PHjlXH9/f1ZvHgxO3bsICoqiq1bt1JWVkadOnV49tlnad++fZUpG9bW1gwZMuTR/iGE+IP9UuOdynT727Jlyzhw4AC+vr5KZlCjRo1qXCc/P5/z589z7tw5ioqKaNWqlTI9WBeku379OvBTQNHAwID8/Hy+++47CgoKlIymoqIirly5gomJCYGBgVy4cIHY2FguX77M1atXKSsr48SJE0yYMAELCwuSkpKU8aDit8fZ2VnJrCgpKcHV1RVLS0uSkpKqTPnt3bs3O3bsYObMmVy9epWIiAhyc3OVqf/Dhg1DX18fMzMzPv30Uw4dOsSVK1dQq9WEhYVRr149TExMqvze6aYr/1Ktp5qmgon/FiMjI5YuXUqXLl3o2rVrlYv/8vJyZT97OMCuu6gvKSmhpKSEI0eOcODAAUpKShg8eDBubm4sWrRI+S5v3bqV1NRUXnzxRSWj0NDQkJEjR6LRaDAxMcHJyQl/f3/69++vlA24d+8eRUVFmJmZKYFu3ffS1dUVHx8fZZ8NCAggJyeH9PR0ZTtdXFxo0aIFq1at4uDBg7Rt2xaoCNjv2rWL7du306JFC6CivEBMTAxvvvkmXl5eZGZmotVqefbZZ3nmmWeAn26cRUZGVslaFOK/LDs7W6mF7eTk9LMlZiZMmMDOnTsZMmQI3bp1w9HREY1Gw/bt21myZAkvvPACixcvxsnJCRcXFy5cuEBycjLe3t7o6enx4MEDvvrqKzZu3Eh6ejp6enpKwG/YsGG4uLiwceNGjh8/zsSJE+nVqxcqlYru3buzfv16SktLgYqu4tnZ2UydOpVu3bphYWGBqakpISEhSiavmZkZnp6exMTEUFBQgKWlJcHBwQBK7VADAwNq1apFdnY2qampNGnShL59+/Lxxx/z4YcfKufKsbGxzJ49G7VarcwccHFxobi4mJs3b9KqVSu5USDEn0DOUoUQ1Xz66adkZmbSo0ePaoG/n5sWp7swrkxPT4+EhAQ+//xzDh48SHFxMT4+PnTt2pWePXvi6OiIpaUlgYGBfPXVVwwcOJCXXnoJR0dHjh49ytixY9m+fTtt27atNt0qKCgI+KlOYWUBAQEUFhZWuaBxdHTEx8eHlJQUnJ2dq9ytzM3NZfz48TRp0oT58+fz9NNPc/DgQaZMmcLRo0cJCgri5s2b7Nu3j2eeeYbGjRtXeT1dbbFBgwZhbm4uGUHiH+fUqVOMHj2a8ePHM3z48BqXqVyvSBd4d3R0JCMjQ/kd0Gq1lJaWcuXKFVxcXJSLgtzcXObNm8fOnTuVDqJff/013bt3Z8aMGfj5+WFgYEBCQgJQ0d3w5s2bxMfHc/bsWc6cOcPzzz9P//79gYomRjk5OWRmZhIaGqpkLOsaAg0cOBA3NzcAfH19OX36NImJiUoARE9Pj6SkJKVGUm5uLnZ2dnh6epKamkpubi6mpqaUlZVhbGzM5MmTWbduHVFRUWzfvh0DAwMaNmzIK6+8UqUWo6mpKV27dn3krqiSIfj40t04c3V1JSsri5ycHKytratMzdcdz3RBQ0NDQ+X5V199lTt37hAeHs7x48cxNTUlLi6O6OhotFotjRo1YuHChRgYGDB//nw2bdpEixYtiIiIwNPTEyMjI2rVqsXs2bOBimn2uvq6uu+qhYUFlpaWSo2wyhlH1tbWmJiYKM/VqlULqJqRa2pqyrBhw9izZw8TJkxgwIABBAYGcvPmTVauXEn79u2VjEB3d3e++eYb9uzZw507d3B1daV+/fpKHd7KJEgo/ksezhD84Ycf2L17N2fPniUhIYGCggJMTExQq9UUFRXRqFEjZs2aVaXD93fffceOHTuYPHkygwcPrjL+mDFjuHfvHvv27ePu3bs4OTnh7e1NaWkp8fHxyp+/+OILvvvuO5588knCw8PJzc1l06ZNrFixAk9PTwYNGkRBQQF5eXlVbhoEBwcrmYMAnTt3Jjc3l0WLFrF06VIKCgqAiuN23bp1Wbx4MWq1Gm9vbw4cOEBOTo5yowIgJSUFqAgUenl5odVquX37Nnp6eowcOZLo6Gg+//xzDhw4gI2NDbdv38bc3JwFCxYo1xoBAQEsXLiQhg0bSpBQiD+JBAqFENW8++67VRpz6PzSRW9aWhoffPABfn5+jB49GqiY2jB16lTi4uLo168fNjY2HDx4kHnz5nHjxg1mzZqFu7s7ZmZmODo6Mnz4cKUTWr169WjUqBFXrlypcpKl+7+uM6ou8FA5I0N34aGbcggVgcx+/fqxY8cO3n//ff73v/9hYmLCvXv3WLp0KZmZmfTr1w+ouEhZsGABkZGRHD58mFOnTuHu7s6LL77I4MGDqxV11rGysnr0D1mIv4Bu3/H29ua9996rNm2v8r5V07RhExMTysvLefvtt3F3d2fy5MmcPXuW8ePHM336dPr3709JSQmff/45GzZsYNy4cXTr1g2NRsO6detYt24dvXv3pn79+jg4OHD69GkaN25Mbm4uKpWKkpISAEaMGMHLL78M/JTNaG1tjaGhIZMmTVK6gltaWmJpacn169e5d+8eAJ06dVIudiZNmoSxsTFlZWV88803ZGdn8+DBA6WWqZubG1FRUUq5A92ULH9/fyZPnkx8fDx6enp4eXn9YsafrqzBw40hhNB9f3XHSh8fH27dukVmZibW1tbK/nb27FnWrVvH+fPnUalUtGnThl69elGvXj2g4hinm5L3wgsv0L17d06dOsW0adMAGDVqlDLFuE+fPuzevZv4+HgiIiLw9vbG3NycgoICJZu3Jmq1Gn9/f3bs2MGdO3eUID9UNNC6ffs2Tk5OlJSU4Onpibm5OXfu3FFKjGi1WlxdXZk3bx7r1q1j586drF69GgsLC7p06cIrr7yiZO5CxTFSdzNAiP+yu3fv8uDBAzw9PZVyGrrj7fbt21m3bh1NmzZl3LhxuLu7o1arMTQ0ZO/evaxcuZIvv/ySUaNGKTMAduzYgY+PD61atQJ+KrOha1TyyiuvMHnyZOX1fXx8MDAwIDY2lvbt2xMdHc1nn31Gz549mThxorJcSEgIPXv2JDo6mkGDBtGiRQsiIyOZMmWK0mncw8NDOSdv3rw5pqamDB06lMGDB3P16lWSk5PJz8/n+vXrrFq1iqVLl/LOO+/g5eVFYWEhd+7cwd/fH2tra6ytrUlNTaWgoEA599fX1+fq1atK86JPPvmEQ4cOcfDgQUpKSujcuTPNmjWr8ltmY2Oj3IQQQvw5JFAoxGOuphqCuq7ClWm1Wm7evElUVBQXL17EyMhIOXirVCry8vI4f/48t2/fVgKF27Zt4+TJk8yePZuePXtiYGDAiBEjmDNnDl999RXNmzene/fuODo6EhcXh52dnXKRZWlpiY+PD2fPniUrK0vpVqi7yNJNrUpOTq7Wkc3JyQkrKyuSkpKUEw+tVktERATPPfccX331FZcuXSIgIICsrCwSExN54403lExBXUfXcePGMXLkSAkAin8t3YWJk5MTPXv2/Nm6R6mpqdy6dQsTExOlYPnZs2eZPXs2BgYGpKenExYWhp6eHv7+/hgYGFSpVfbNN9/Qvn17XnrpJeWx119/nV69elG7dm0MDAxwd3cnLS2Nl156icaNG2NtbU1CQgJfffUVu3fvxsDAgJEjRyr7emBgIBs3blTqGFW2YsUKzp07x+LFi4mIiGDYsGF89tlnXLt2jfbt2xMfH8+1a9eoV68et27d4sGDBwC0bdsWGxsb7O3tq7x/3Z91WVO6z+7h8gk6kiX4+NIdM3+u2Uzlxj+2traEhoZy6tQp7t69q3yPz549q3Qj7datGxkZGaxbt47t27fz/vvv07ZtW8LCwgCoW7cuAwYMAFDqX547dw5nZ2clSKC7AaDL1HFycsLV1ZUrV6784nvRHccjIyOZP38+s2bNwsjIiNzcXLZs2UJycjIjR45EpVKhUqmwsrIiOjqa7OxsHB0d0dPTo7y8nEaNGhEYGEhKSgoWFhZVAo5CPA4KCwvZvn07O3fu5MKFC0BFVq6Pjw+9evWiS5cuStAvMDAQAwMDWrVqxYgRI6qMExISwo0bN9i/fz89evTA19eX2NhY4uLiCA8Px93dvcqNfN0NLWtrawDlN8HT0xMLCwuldICzszOvv/46nTp1AipKhcTGxhIZGUl5ebkyOycgIIBFixaxadMm7ty5Q3JyMjExMZw4cYIlS5bwxRdf0Lx5c9LT08nNzSUoKEiZ4QOwc+dO7t+/T1lZGa6urpibm5OYmEhZWRlGRkY4Ojpy4cIF0tPT8fb2xtramvDwcBwcHJTfTpVKRadOnZRtFUL8PSRQKMS/UOUpgv9fNV0EFxQUcPDgQczNzZWmGxcuXOCdd96htLQUZ2dncnJy2Lp1KwMHDuR///sftra2BAUFERMTg1arJTc3l++//x5fX1+efPLJKq83ZswY1q5dy759++jZsydeXl7s2LGD7OxsJSinUqnw8PCguLhY6ZBW+f3r6+vj5eVFamoq6enpStdDXc0Vb29vUlJSyMnJUbKiDAwMePXVV2nVqhU7duwgKSmJoKAgxowZQ5MmTZQTrsr10yRIKP4tfq4zauUi5rm5uUpdToD9+/fz8ccfc/PmTWXafKNGjZg3bx7BwcGsX7+ep59+mqCgIF555RWl1qeZmRkJCQkUFxeTlpZGSUkJ4eHhym+TVqtVahbp+Pr6cvbsWYKCgmjYsCEajYZatWrRoEED3n77bZYvX05+fj7jxo3D1taWJk2aEBYWxpIlS3BwcCA8PJz8/Hx27drFpk2bePLJJ5WpTC+88AKOjo5s3LiRxYsX4+DgwEsvvYSZmRmvvfaakrnYu3dvevfu/YufY+XPS6Y0/TeUlZVx7949Jbj1W1Qut1H5/zXRarV8/fXXLF++nLS0NDp27Kg0+EhISKB58+ZKk4+srCy+/PJLvLy8MDU15fnnn2fQoEHMmTOHtm3bKkFr3fRDrVaLiYkJvr6+7Nu3j4KCAtRqNVDRBMTU1JTk5GTl5piu03hqaqoyTb8mrVu3ZsCAAaxfv564uDiaN29OTk4O+/bto3v37lWydnr37q3s/zq63xhTU1NlfxTivyopKYkvvviC8PBwevToAcCDBw9YtGgRu3fvJiQkhNdeew1bW1sSEhLYsWMHb7/9NllZWUpQ0MXFBZVKpUzrh4rjty5D3c/Pj7i4OCWwWFpaSlZWllISpHJN7ofpfp9cXV2xtbUlOTkZAA8PD5577jnS0tKYM2cOp0+f5u7du7i7u+Pm5sadO3eU3w4/Pz9ef/118vLyKCkpwdbWlrNnzzJmzBg2b95MixYtmDJlCtevX2f27NnUqlWLnJwcdu7cSWZmJuHh4RgaGmJhYUFZWRnnz5+nX79+GBkZ0adPH+7fv6+cW9vZ2bF8+fI/9h9JCPGHkEChEP9wKSkpXLp0iQsXLnDlyhXS09OxtramRYsWdOnSpUoGjI6u3tGv1ce6d+8e0dHRJCQk4OnpSevWrVGpVKSmpjJx4kRCQkJo06YN9+/fZ/78+ejr67Nw4ULs7OzIy8vjs88+U4oSW1lZ4ebmxr59+0hPT8fJyYm0tLRqmQVarRYrKyvc3d2Vixrd9Klbt27h6empXKi7uLigr69PXFxclYCDLlBYr149du3apVwIVb7Lamdnx7lz58jKylI6tOqCKLruxEL8nSp36H1Uv9Q19eGxcnJyOHLkiNJ1e/ny5cybN49t27bh7+9PUlISM2bMoFatWrz88stYWlqyd+9e1q1bR/v27enWrRuhoaH4+PiQnp6uFDLXNUtITEykqKiIgoICVCoVubm5ykWKLlioC05aWloqUypv3LhBixYtlHqHtra2TJs2jblz5/LNN9+g0WiYPn06fn5+jBs3jokTJzJ+/HhCQ0MBiI+Pp23btlWmT1lYWPD000/TvXt3rKyslM9i8+bNlJWVVbnRUFO34cokOPjvVvmYeenSJW7dukVJSQnW1ta0b9+eQYMG4eXlVaVBli7IXtMx8+GGXKdOneLq1atYWVnRrl073N3dlXV37tzJ/PnzadiwIWPGjOH69ets3LiRsrIypbZfTk4OP/zwA6NHj6ZOnTrK2P7+/owYMYJPPvmE6OhowsLCMDU1JTs7W2lCpKenp9wUS0hIwM3NTfkd8fLyIiUlhczMTNzd3ZXamteuXVOOjz/XNGXChAmEhYWxfft2tmzZglqtZsiQIQwaNEgJRgKMGzeuxs9c9hnxX5KSkoKNjQ0WFhbKPqLbf7777js2bNigNOmBimPrN998w0svvcTAgQOrHIOGDRvGa6+9xpw5c/D19aVVq1Y4OTnh6OjItWvXlDF0yyclJXHixAl8fHyUAL+joyNlZWUUFhZWWbYmun3cysoKV1dXLl26RF5eHhYWFpw/f56pU6fy4MED2rVrR9OmTenYsSOTJ08mMjKS5ORk/P392bx5M7m5uTz99NPKjQonJyeMjIyUmwRPPPEECxYsYNy4cdSqVYv8/Hxu377Ns88+q5xzuLq6Mn/+fLy8vJT1dI2LhBD/fBIoFOIfKiEhgeeff57k5GSsra2VZhy1a9cmOTmZTz75hG+++YapU6fSoUOHKhcBNXVRfNjx48eZNm0aWVlZqNVq0tPTCQ0NZdGiRXh4eBAUFEReXh5QMaXhwoUL9OnTB19fX4yNjXF0dFSKpEPFiYuHhwcajYabN2/i5OSEiYkJhYWFpKWlKU0PNBoNhoaGuLq6kpSURG5uLm5ubhgbG3Pt2jVat25dZbqkra1tlZOpynx8fCgrK+PatWvVAn/vvvsuhoaGyuuCXMyIf4bS0lJeeuklEhMT2bVr168GCyvv27rvcE0Bw/3797Nx40aSk5Np2bIlUDFFNygoCB8fH6VBQGJiIv7+/hw5coT8/HxefvllJRDftGlTevXqhbu7uzJ+7dq1iYqK4vbt28qUXX9/f86cOUNWVhbW1tZV9lOtVqvs52fOnGH58uVMmTJFCYropkLp6ekpWbyOjo689tpr3L59m2+//ZaioiJmzZpFs2bN+Pbbb4mMjCQ6OhpLS0t69OhBq1atqgT/YmJiWLNmDS+//DJqtZqSkhIyMjL45ptvcHZ2rtJpXboN/zfVdMz09fWlcePG6Ovrc+bMGVauXElqamq1RgG/tA8mJyczbtw4RowYwfnz5/n+++8xNDTkzp07rF+/nuXLl+Ps7ExRURFLly7F3d2dBQsWKOO3atWKkSNHkpqaikajISUlBX19fYKCgpT9WPf/oKAgVCoVly9fJiwsDB8fH1JTU7l//75y083Z2Vk5XjZv3ly5QVa3bl2+//570tPTcXd3V2r1Xrx4kXbt2tUYKNS9tpWVFb1796Zz5841NiYT4nHx4YcfsmzZMrp06cLkyZOxtbVVgvHJycns3LmTNm3aKNNir1y5wqpVq2jdujUvvvhilbE0Gg0WFhZMnTqVI0eO0LRpU+Cn0gCxsbEUFRVRWFjIzZs3iYmJ4fDhwyQnJ/P+++8r4zg5OWFpaVmlPmhNSktLSU5OxsjICA8PDzw9PTlx4gQ3b94kJCSEb775hpSUFJYsWVLlnLm0tJSysjJu3LiBv78/R48eZceOHVy9epUOHTpQXFzMhg0bKCsro2PHjgB069aNevXqsW3bNhITE3FzcyM8PJz69esrvyGWlpZ06NDhj/vHEUL8peRsWYh/KF13xLp16/LBBx9gYWGBmZkZKpUKY2NjLl26xOjRo5k+fTre3t5KZqFGo+HkyZPs27dPydDr378/wcHByoV/fHw8Y8eOxdvbm0mTJuHu7k50dDTvvPMOc+fOZdq0aTg7O3PixAkyMjKUaX/ffPMNsbGxeHh4KFOgdB0WzczMlDuO165dIyIigqCgIPbt20dycjJOTk5K8ABQMjzMzc2xsbHByclJCSDo2NraYmVlxenTp6s8rrvY6dmzJ87OzrRu3RqoerH3S1OthPg7GRoaoq+vT1paGtnZ2djZ2f3i8rrve3Z2Nnfv3sXOzq5K4Atg3759TJ06FVdXV5o1a0ZUVJSS7ZuUlISPjw/Ozs6YmZlx5coVOnTogEqlorS0lI8//pj+/fujVqspLy+nbt26WFtbK1MuQ0JC2L59O3fu3FECinXr1mXXrl3cuXOHRo0aUb9+fY4ePcq1a9cICAhQ9vPo6GhOnz6Nvr4+7u7uWFpakpiYWOV96bi6uvLxxx8zatQoHjx4QHZ2Nvb29ri4uDBmzJhf/IzMzMzYunUrUVFRPPXUU5iZmSl14d54441f/YzFv19Nx0xzc3Olvl5RURHTpk1j+/btHDx4UMl6ycnJ4fTp0xw9epT4+HjMzc3p0qULPXr0QKVS4eDgwNWrV1m8eDFGRkZMnz4dLy8vjh07xvTp01m+fDlvvPEGBQUF3Lp1i9GjRytBwtLSUpo1a0bdunVJTU0lLy8PlUql7P8PB/utrKxQqVSkp6cDFfXC9u/fXyU738HBAXt7eyUwrxsjNDSUTZs2kZSURIMGDZSbZD/88APw81OmK2+DBAnF42748OGUlZWxfPlyTExMmDZtmhKYi4qKIiUlhXfeeUdZ/sqVKxQWFioldioH5HUzWVxcXOjbt69SS1uXlX/y5Elat27NgwcPMDAwwM7ODicnJwwNDRk5ciSvv/46PXv2xMTEhLp16xIdHU1ycjJ+fn413iw8ffo006ZNo1+/fjz//PN4enoqN+9DQkK4f/8+zs7OeHp6AhVlhg4dOsSRI0eAihtu3bp1Y/z48ajVag4ePMi+ffsoLCykVq1aTJs2TbkJCeDt7a00IRNC/PdIoFCIfyhLS0scHBy4c+cOPj4+1U7yg4KCmDdvHs888wyrVq1SOiFu376djz76CLVajaurK8eOHePbb7/l7bffZvDgwRgaGrJ+/XpKSkpYuHAhHh4eAPj5+eHo6KicQLi7u1NQUEBCQgIODg5MmzaNzz//nAsXLnDu3DkyMzOVul/PP/88EyZMwMXFBbVazdWrV4GKxgG7d+9m48aNSoMEgC1btvDDDz8oF/QWFhY4ODhw7tw54KcLF7VaTdu2bSkrK6uWMQkVNVd02y/Ev4Uuc+jw4cOkpKT8ahBr8+bNfPbZZyQkJGBiYkLt2rXp378/Xbt2xczMjPv37/PRRx/h5OTE/PnzcXZ2BuCjjz7iyy+/5MKFC7Ru3Ro7O7sq0506d+5Mamoqy5YtIyoqCqioDaqrD/jaa6/h5OSkTBnW1TqCigBGaWkpKSkpREREMGjQIDZt2sScOXN47bXXsLCwICYmhs8//5ymTZtWyew9f/68UgvpYfb29mzcuLHGz6FySYXKjSTKy8upVasWX331FRs3bmTHjh0UFhbi7+/PxIkT6dKly6P+04h/sV87ZhobGzNw4EAiIyO5cuUKPXv2pKSkhPnz53Py5ElsbW2xtbXl0qVLHDlyhNzcXAYNGoSJiYmSAb9z504lU8/b25tvvvmGc+fOkZeXR3p6OiqVCktLS+U1dd/RkJAQjhw5QmZmJi4uLtjZ2XHp0iVlSrHuJlppaalSFwwqmh7omgrompvY2tri5ubGxYsXq7xGQEAA8FNH7uDgYDZt2qQcI6U7txC/ztbWltGjR5Oens7mzZtRqVRMmzZNKbcTEhJC27ZtleVjYmIwNDRUmuHVlLULFY2DSkpK0NPTw8jISCmt065dO3r06IGjo6MyZTknJ4f//e9/Sv3v9u3b065dO06fPs2RI0fw8/OrMh1al2V4+/ZtEhMTKS4uBsDT0xOVSqXchG/atCnz5s3j3XffpV27diQmJnLs2DHq1KlDYWEhGzdu5IUXXsDDw4N3332X3r17K839pF63EI8fCRQK8Q9laGiIh4cH0dHRpKamVguI6br41q5dm7179/LKK6+Qm5vL5MmT6dChAy+99BJqtRpzc3Peffdd5s6di5+fH82bNyc2NhZfX18l60c3raJly5bKRYaubuCNGzdo3LgxTk5OSpfG+Ph4tFot+fn5LF68mE2bNtGxY0e8vLxwdXUlPj4egBYtWvD000+zYsUKEhMT6dSpE5mZmezcuZOGDRsqtUpsbGxo1KgRKSkpVaZVWFhY8MYbb/wVH7cQfyldl9K4uDil9l5Ntm3bxpQpU2jQoAFjxowhOzubjRs38s4773Dv3j1eeOEFzp49S3x8PFOmTKlS47NXr17s2LGD8+fPAxWBd3d3d27duoVWq8Xa2pqXX36ZQYMGcePGDW7cuMG9e/dITExky5YtWFpa8u677yoBCF2WE4CXl5cy/bK8vJyQkBDeeecdli5dyqhRozA3Nyc/P58GDRpUmUL1wQcfYGNjoxRpr4lu6vLDdQR/rqSC7rEmTZoQGhqKRqPB3Nz8Uf4ZxH9ITcfMylk3enp6WFlZYWJiohznFi9ezIYNG3jzzTfp1KkTpqamlJaW8uyzz7J161batWuHh4cHPj4+ZGVlKQE8XaC7bt26HDp0iHv37mFubo6lpWWVzHhd0wFfX1/Wr19PSkoKrVu3pmnTpuzevZsuXbrQunVr5Vh87NgxAKX+WeW6nDqWlpZ4eHiQk5NTJeBev359YmNjleV02yeE+G0sLS2ZNWsWubm5bNiwAQcHB7y8vEhPT2fChAnAT+U/7t69i56eHgUFBUrnYaj4jYiOjubcuXPExsaSmJjI7du3mT9/Pq1bt8bd3R2NRoObmxvNmzev8vr29vY899xzjB07lkOHDtG+fXvatGnDvn37WLduHcHBwTRq1KhKl+C8vDw2b96Ms7Oz0oDIx8cHtVqtdD/v06eP0tH8/PnzODo60qlTJwYNGqQ0JdKV9NBqtQQGBv7pn7UQ4p9LAoVC/IPVq1ePrVu3kpycXC1QqKtL1Lx5c1asWEFaWhp79uzB3NycKVOmVLn717VrV3bu3MmuXbto3rw5arWa7Oxs5WKp8pRd3Z/9/PwwMTFRLnru3bvH+fPnCQoKUgIHUFF/6dy5c5ibm2NsbIyvry+HDh0iPz8fKysrxo8fj5OTE9u2bVOmbrVu3ZoRI0YoxdaNjY159dVX/5wPUYh/IG9vb4yMjKpc2D8sMzOTL774Ak9PTxYvXoypqSl6enp07tyZsWPHsnbtWnr27KkE1nXTkXW/DW5ubjRo0ECZum9tbY2Xlxdnz54lOztbqeVnaGhIy5Ytq0wpatmyJfHx8RQXF2NpaYlarebIkSOEh4dTp04d7OzsUKlUXLhwgby8PKysrBg6dCgREREcOnSIoqIigoODqV+/vvJbpNVqlTIBv6Ry7cLfqqYsRfH40B0zk5KSlEChjp6envLd1AXQTp06RceOHasV2Pfw8ODy5cvcuXMHDw8PateuzenTp7l//z7wU3A6JCSErVu3Kpm1tWrV4tKlS0pdXt1UQ61Wi1ar5ebNm7Ru3Zphw4Zx6NAhXn/9dYYPH06tWrU4c+YM69evZ8CAAUr9sFq1amFlZVVlSrCpqSnvv/++1NwV4k9kaGjI7NmzGTt2LMuXL8fQ0JCAgACaNWsGVDTFMjIywsLCgvLyclJTU3FxcaGsrAxDQ0POnTvHnDlzyM3NJSwsDBcXF65fv05cXBytW7fG1dUVGxsb5Rxb9xuh0WgwMjLCy8tL6ZwMFecMY8eOZdSoUUyePJk333wTd3d3DAwMSEhI4KuvvuL8+fO8+OKLSvdxXW1DXRMUtVrN+PHjGTRoEPb29r9Ym1V+X4QQEigU4h9MF5C7fv26cnLyMN0JwbFjx5RsvG+++Ybk5GQuX75Mamoq+fn5GBoaYmFhQW5uLt7e3spFj+6upoGBAVlZWXz22WfUrVuXNm3aYG1trWQypKam8sorr9CuXTuef/55TExMuHLlCp9//jn16tXD19cXPT09bGxsuH//PhkZGUrwcMSIEfTs2RNjY+MqBeSFeFzZ29tjZ2dXrS4nVM1UuHbtGqNGjcLMzEyZdmtra8szzzzDK6+8wvHjx3F1dQUqMhjgp2C/hYUFbm5u3Lt3j5KSEkxMTHB3d6eoqIiUlBTUajXTp09X6q85ODiQlZXF+fPnycjI4Omnn1YCIkOGDGHlypWMHTuWgQMH8sYbbzBgwIAqwRCoCGzU1IkdqDJVWKZBij+D7piZkJBA8+bNle9ZXl4eJ06c4Ouvv6ZRo0ZKxt5XX32FsbExqampnDlzhuPHj3P8+HEyMzOxtbVV6nwGBwdTWlqq/F33XdZl3CQkJNC2bVt69erFxIkTWb16Na+//jplZWXExcXx9ddfY2FhoawfGBjIokWLWLlyJWvXriU3Nxdra2tGjBjB2LFjlX3K1NS0Wo3eyq8vhPhzaDQabGxsmDdvHu+99x6HDh2iRYsWVW58AdSpU4edO3dy48YNGjVqpDzeoEEDPvvsM4yMjLCzs+P8+fNcuHBBOeY7OTnh5OREfHx8lQx63W+WhYUFmZmZNGnSRNmmiIgIvvjiC9566y3GjBmDt7c3enp6yvF80qRJDB06VFne2NiY9evXV7uBVrkUiBBC/BwJFArxD+bu7o6ZmVmNXX91Fwq6ph2XL18mMDCQu3fvsnr1ajw8PAgODqZv3774+vpia2uLpaUlFhYWNGrUiGXLlvHDDz8QEhJS5a7iunXreOGFF7CyssLNzY20tDS0Wi3169dn9OjRbNiwgQkTJlBSUkJBQQENGzaskt0wYsQIhg8fXu1ERJoJCPETCwsLnJ2dSUhIUOqU6ej2pcodgYEqNTpr166tTP0NDg5GpVIRHx+v3CzQXXg8ePAAgJs3b1KnTh2cnJwwMDDgxo0bBAcH06BBA/bu3cuAAQNo2rQpJSUlnDt3jk6dOvHkk08qAYsRI0YoHRsDAwMxNTXlzTffrPG9abXaKrUEHyZBQvFn0TXM2b9/PwUFBURHRxMfH09mZiZ5eXmEh4czc+ZMHBwcKC8vx9jYmMuXL7No0SJu376Ng4MDL7/8Mu7u7owcOZK0tDQApU5nSkoK8NO+qbtRl5SUBECPHj04fPgwX3zxBZcuXSIkJITz58/j5+dHSkoK169fp6CgADMzM8LDw6lXrx4pKSnY2NgotUWFEH8/3XmxnZ0dNjY2AERGRmJpacnzzz+vHKcbNmyInp4ex44dY9CgQcrjpqammJqaKuP5+/vj4ODArVu3lHHd3Nw4ceKEcqNAd15969YtFi9eDMBTTz1VZbvCw8PZsWMHx48fJyYmBlNTU2rXrk1ISAj29vbV3odk2Qshfi8JFArxD2Zra4ujo2ONWUe6kxHdxYWBgQHm5ubo6ekxZcoUIiIiMDIywsjISJlytXfvXl588UWaNWuGl5cXn3/+OfXr18fZ2Zm8vDw+/fRTiouLleL/lpaWnD59mqSkJLy8vBg/fjxt27bl0qVLWFhYULduXfz9/atkN+iCGkKIn2doaIinpycXLlwgIyMDd3f3GpcxNTUlIyNDCQDqsg1NTEywtrYmNzeX2rVrU7duXbZu3UqfPn3w8PDAwMCAvLw85bcjNjaWOnXq4OjoiKmpKdHR0fTp04f+/fvj5+fH5s2buXr1Kmq1mpEjR9KlS5cqwX7dDYaH6aZZVaanp/eLU5qE+LOo1Wq8vLw4ceIEd+/excfHhxYtWnD16lWuXLlCYGCgkvGjr69PZmYmI0eOxNLSkjFjxhASEoKnpyd37twBfgoMent7Y2BgQEpKihKE12q1WFhYKNMD8/LysLCwUGqKbt26lcjISOrWrcvUqVNJTk7G0dGxyjRiCwsL6tSp89d/UEKIX6Q71sbGxrJ//34iIiLIycnhww8/xMbGhv79+wMVWczt27fn0KFDnD17lkaNGim/EZXdvXuXrKwsHjx4QElJCWZmZnh6enLw4EG2bt2KSqUiLi6OmzdvkpSUhEajYfr06UoZgspMTU1p37497du3/0s+CyHE40kChUL8g5mamuLq6srly5eVixAdXXCurKwMqJjyV69ePfT19Tlx4gQdOnSoMtbMmTPJyclRapPMmTOHiRMn8vTTTxMQEEBJSQlZWVnMmzcPHx8fAPr160erVq2U4sZQUVz9l5ovCCEeTeV6ajUFCp2dnXF2diY6Opr79+9XyThKTEzk3r17SvH04cOH89577/Hiiy8yePBgHB0d+frrr0lJScHAwIDz58/z5JNPolarCQoKqtLso0GDBjRo0OBXt1cXYKl8Y+D31hIU4s9gZmaGtbU1FhYWfPbZZzg6OmJoaEhRURGbN29m+vTp7Nmzh4ULFxIcHMwPP/xAdnY28+bNq1Kj8+DBg+jr6ysX92q1Gg8PD5KSksjKysLe3p7S0lJUKhWOjo7cu3dPOUZbWVkxZMgQ+vfvr9QPhZ9qiAoh/vl0x7nvvvuOvLw8Jk+eTHl5OcOHD2fatGnY2NjQsWNHLCwsGD16NOfOnePtt99m5syZyk21srIycnJyOHXqFMuWLSMzM5NJkyYpr2FpaYlWq2XmzJkYGRnh6upKQEAAw4cPp0mTJtSqVUvKDAgh/jZyhi/EP5i+vj4+Pj4cP36cO3fu4O/vX6WLI8D3338PVFzsh4WF0bJlS9auXYuRkRGtWrVCpVKxdu1akpKSmDVrFvb29mi1WsLCwli7di179+7lwoULuLu707x5c0JDQ5WpgW3btv1b3rcQj4OHa5BqNJpqNYratWvH8uXL2bdvH0OHDqWkpIS8vDxWr16NiYmJEuDr1q0bRkZGLFmyhFmzZlFaWkqzZs149913+fLLL5WpkV5eXqxcubLG7dEVUtdtw8MXKHLBIv7p9PX18fb25tixY5SWlipT+s3NzRkyZAilpaXMmzePl19+mTVr1mBkZIShoSGnTp3CxcVFyb7/7LPPMDAwIDo6mvPnz9OuXTscHR2Jj48nJycHe3t7JUi+Zs2aGmvvVg4SCiH+fe7cucOOHTvo2LEjrq6uGBsbM2fOHN566y0mTpzI0qVLady4MUFBQfzvf//jo48+YvTo0dStW5f69etjbGzMtWvX+OGHH3BxcWHZsmW0bt2a8vJyoKLRYHh4OO7u7ri4uPzN71YIIaqSQKEQ/3BBQUFARQZR5Wm+5eXl3L17l6+//pqQkBClgcDUqVP59NNP2bx5M5GRkZSVlWFqasrEiRPp0aMH8NMFv4ODA0OGDGHIkCF/wzsT4vGmq0F648YNoGr38aKiIvT09OjVqxdxcXHMmDGDAwcOEBYWxvnz57l+/TqvvvoqTZs2VW4edOzYkVatWnHx4kXc3NxwcXGhvLycDz/8UJnuqAtu1DQ16v/TbViIfwrdMfPGjRv4+voCP2XDjhgxgsLCQhYuXMjrr7/O22+/Ta9evfjiiy/YuXMnxsbGPHjwgJEjR+Lj48N3332nHC8XLlyItbV1lVqhgDToEuI/RndMXbNmDfn5+fTr1w9jY2NKS0tp3rw5kyZNYsqUKYwbN46PP/6YJk2a0K1bNwICAjhw4AAXLlzg+++/Jy8vD1dXV4YPH07btm2V83Tdb4evr6/yGyWEEP80ckUgxD+cn58f+vr6XLx4kSZNmpCenk56ejqxsbFs3LgRjUbDq6++ip2dHVqtFmdnZ9577z369etHUlISLi4u1KlTp8pUQyHE309Xg/Tq1avEx8dz9+5dbt++ze3bt7l58yZ5eXmMGDGCuXPnsnHjRnbs2EFkZCS+vr68+eabdO3aFfgp8L9161bMzc2VukVarZarV6+SmJhYrSC61BAU/1W6Y2ZcXBydO3cGKvYRXbBw5MiRlJSUsGTJEubNm8cbb7xB8+bNOXfuHF5eXjRo0ICAgACMjIzo2LEjULEvqdXqv+09CSH+Onp6emRkZLBnzx5CQkJo2LAhgNLcq1u3bpSVlTFx4kRee+01PvjgAyIiIvDz88PPz4+8vDwMDQ2lkYgQ4l9NT6s7cxJC/COlp6fTp08fioqKqFWrFomJiWRnZytdE0eOHFljkwEhxD9beXk5L7zwAlFRUbi6upKZmUlJSQkAxsbGeHt78+abb9KsWTMApaHJw3TZD4MGDeL8+fM8//zzhIWFkZ6ezsqVK1GpVHz66ad4eHj8pe9PiL9Deno63bp1IzQ0lOXLl1d5Trev5OXlceXKFXx8fKR2oBCimhUrVjBnzhzeffddnn76acrLy5VMQKg4HickJGBtbV2l8ZcQQvxXSEahEP9wVlZWBAUFkZOTQ+3atenXrx/BwcH4+/tXOWkRQvy76Ovr4+npibe3N97e3vTp04fg4GDq1q1bY/dwXddjXX2jh7MCp0+fzooVK9izZw9r1qwBoHHjxrz22msSJBSPDWtrawIDA3FwcKhW01f3ZwsLixq7iQohRElJCceOHaNjx460a9cOoNr5tkqlonbt2n/H5gkhxF9CMgqFEEKIf6CHm5v8El1ApKSkhPj4eCUjUW4mCCGEEEIIIX4LCRQKIYQQf6Py8nIlS1BfX1+Ce0IIIYQQQoi/jQQKhRBCCCGEEEIIIYQQSNqCEEIIIYQQQgghhBBCAoVCCCGEEEIIIYQQQggJFAohhBBCCCGEEEIIIZBAoRBCCCGEEEIIIYQQAgkUCiGEEEIIIYQQQgghkEChEEIIIYQQQgghhBACCRQKIR5T7du3p3379n/3ZgghfoHsp0L8O8i+KsQ/n+ynQohHJYFCIYQQQgghhBBCCCEEhn/3BgghhBBCCCGEEEII8W/x1ltvsWnTpiqPGRkZ4ejoSNu2bRk3bhzW1tZ/ymuXlJSQlZWFk5PTnzK+BAqFEEIIIYQQQgghhPiNJk2ahFqtBqC4uJi4uDjWr1/PxYsX+frrrzEwMPhDXy81NZVnn32WUaNG0adPnz90bB0JFAohhBBCCCGEEEII8Rt16NABd3f3Ko95e3vz3nvvceTIEdq2bfuHvl5KSgoJCQl/6JgPkxqFQgghhBBCCCGEEEL8AZo0aQLAjRs3/uYt+X0kUCiEEEIIIYQQQgghxB/g7t27AHh6eiqPxcXFMWbMGBo1akRoaCgDBw7k6NGjVdYrKSlhxowZtG/fnqCgIFq3bs17771HTk4OAJGRkQwbNgyomPIcEBDwp2y/TD0WQgghhBBCCCGEEI+V9u3b/+LzBw4c+NUxHjx4wP379wEoLS0lPj6e999/n8DAQNq1awfAtWvXGDx4MPb29owaNQojIyO2b9/OCy+8wPz58+nWrRsA06ZNY/v27QwbNgwPDw9u3LjB2rVrSUxM5Msvv6Rx48aMHj2apUuXMmDAABo2bPj//ARqpqfVarV/yshC/Mc8iIn5uzdBCPErNIcP/t2bIIT4FS8GFf/dmyCEeATP+XX4uzdBCPErOng2+Ls34S8x8ODcP2XcjPf3/OLzvxQorKnrsY6JiQmrVq0iNDQUgKFDh3L37l22bNmCmZkZAGVlZQwfPpyEhAQOHjyISqUiNDSUvn37MnnyZGWsjz76iKNHj7Jq1SrMzc05deoUw4YNY9asWdLMRAghhBBCCCGEEEKIP8KjZAz+mnnz5mFvbw9UZBSmpqaydu1ahgwZwmeffUbdunU5ffo0Q4cOpaioiKKiImXdjh07MmvWLC5evEjDhg1xdnZm586dBAUF0aFDB6ysrBg/fjzjx4//f2/nbyGBQiGEEEIIIYQQQgghfqMGDRpU63rctWtXOnXqxPTp05kzZw4Aq1evZvXq1TWOcefOHQCmTp3K+PHjmTRpEv/73/8ICwujY8eO9O3bF0tLyz/3jVQigUIhhBBCCCGEEEIIIf4AarWaJk2asG/fPjQaDQBDhgyhQ4eaSzrUqlULgIiICA4ePKj8d+zYMWbNmsXKlSuJjIzE1tb2L9l+CRQKIYQQQgghhBBCCPEHKS8vB8DR0REAAwMDmjVrVmWZuLg4UlJSMDU1paSkhKtXr+Ls7Ez37t3p3r075eXlrFixgrlz57Jjxw6GDh36l2y7/l/yKkIIIYQQQgghhBBC/MdlZmZy8uRJ6tati5ubG0FBQWzatIm0tDRlmdLSUt5++23GjRtHWVkZWVlZDBgwgGXLlinL6OvrExwcrPwZKgKO8FMg8s8gGYVCCCGEEEIIIYQQQvxG+/fvR61WA6DVarl79y4bNmygsLCQV199FYB3332X4cOH07dvXwYNGoSNjQ07duzgwoULTJgwQVm/Z8+erFu3jsLCQurXr092djZr1qzB3t6erl27AijLbt26Fa1WS+/evTE0/GNDexIoFEIIIYQQQgghhBDiN5o1a5byZwMDA6ytrQkODmbGjBlEREQAUL9+fb7++msWLVrEihUrKCsrw8fHh9mzZ9O7d29l/enTp+Ph4cGOHTvYsWMHpqamRERE8Oqrryr1Cf38/Bg6dCiRkZFcvHiRJk2a4Onp+Ye+Jz2tVqv9Q0cU4j/qQUzM370JQohfoTl88O/eBCHEr3gxqPjv3gQhxCN4zq/movtCiH+ODp4N/u5N+EsMPDj3Txn3m7YT/5Rx/+2kRqEQQgghhBBCCCGEEEIChUIIIYQQQgghhBBCCAkUCiGEEEIIIYQQQgghkGYmNSopKWHlypVs376dpKQk9PX18fb2pkuXLgwfPhxjY2Nl2by8PEpKSpTCkr/1dbKysnBycgIgMjKSSZMmsWrVKpo0afKbxkpOTsbDw0P5e0BAAL1792b27Nm/ebt+ze8d+6233mLTpk1VHjMyMsLR0ZG2bdsybtw4rK2tqy1/7dq1P2S7xb9f+r17rNq0iSs3bgDQIDCQob17Y21p+chjJKam8va8eTzZqRP9u3Wr8lz01atE7t7NzeRk9PX18ff2ZmCPHvh7e/+u5YR4XKU/yGXNyZNcuX0bgPqengyNaIqVqekjj5F07x7vbNpMr7Aw+jVqWOW5y6m32XD2LIn37mGmUtHE15cBjRthYmRUZbl3IjdxMyOz2tjhPt682qnj73hnQvx3FN3P5eauM+TcvAuAbR13fLo2RmXx6Ptp/t37nF+8HY82wXi1r/+7xi/JKyRh7w/cj02mvLQMC1c7vDs3wsrT4f/5DoX498vKuMeu9Vu4dS0OgICQenQd0Atzq0c/972bfJul0+fTqlsH2j3Z9WeX27xyPffS0hn55st/yHhCiH8vCRQ+pKysjJEjRxIdHc2TTz7JgAED0Gg0nD17lgULFvD999+zatUqVCoVly5d4sUXX+SDDz74zYG91NRUnn32WUaNGkWfPn0AaNy4MXPnzsXPz+83jTV58mRu3brF6tWrlcfmzp37h3e++aNMmjRJaeldXFxMXFwc69ev5+LFi3z99dcYGBgAMGDAAKVLkBC5+fm89/HHaDQanujQgfLycrYdOEDS7dvMfP31R2oJr9Fo+HTNGso0mmrPXblxg9lLluDu7Mygnj3RaDTsOXqUqR99xHvjx1PrxyDgoy4nxOMqt6iI6du3oykvp2doKOVaLdtjYki+f5/3ez+J4Y+/8b9EU17Op4cOU6Ypr/bc5dTbzNixAx97ewY3CedeXj67Ll3iZkYGU5/oiZ6eHgBarZbU7GwaeXsR7uNTZQx7S4s/5s0K8S9VWlBMzPLdaDXluLcKQqvVknL0Evl3swh7qQf6j7CflmvKufZdFNoa9tNHHb+suJSYz3dTkluAW/N6GJoYc/vkVS4u303Yiz0wd1b/4e9diH+Lgrx8vpy7GI2mjJZd2qHVlhO1+yBpKbcZ/b/XMHjEc9+Ny9eiKat+7lvZuaMnOXfkBN4Bv3wd+qjjCSH+3SRQ+JBdu3Zx+vRpFi1aRKdOnZTHhw0bxhdffMG8efP47rvvGDx4MNevXyc9Pf13vU5KSgoJCQlVHvPw8KiSFfiooqKicHNzq/JYr169ftd2/RU6dOiAu7t7lce8vb157733OHLkCG3btgUqWojXr1+/piHEY2jH999zPzubeZMm4e7sDEAtLy9mLF7MoVOn6NC8+a+OsWnvXlLu3Knxua8iI7GzsWHG669jrFIB0Co8nNdmzOCb7dt5d+zY37ScEI+rnTEXuZ+Xz5z+fXH/8aZQLUcHZu7YxeHr12lft+6vjrH5fDSpWVk1Prfm5EnsLCyY8kRPVD9eJNlbWPBl1DEuJKcQ5llxHM3IzaO4tIxG3t60rO3/B707If4bUqMuU5xTQMNxvTBztAHA0t2BS1/uJe2HOFwaB/zqGCmHYyhIy/5/jZ9y+CKFmTkEP9cFG5+KY7tDiDdnPthIytGLBPRv9f9+r0L8Wx3be4icrGzGTpuIo2vF/uHm48VX85fww7HTNG7d7FfHOLJjPxm37/7s8+Xl5Rzevo/vt+x+pG36tfGEEP8NUqPwIefPnwegeQ1Bh8GDB2NkZER0dPRfvFX/fbqMzBs/TikV4mHHfviBev7+SpAQIKROHVwcHTn+ww+/un5iaiqb9uyhT5cu1Z7LKyggMTWVpvXrK8E/ABsrK+rWqsW1W7d+03JCPM6Ox8dTz9VFCRICBLu742JjzYn4m7+6ftK9e2w+f57eDarfKCopK8PK1JR2deooQUKAui4uACTeu6c8lvJjoNHVxhohRFUZMTex8XFWgngA6lqumDpYkRHz68ey/Lv3SToYg2e70N89vlarJe18HLYB7kqQEEBlaYZP18ZYeTv9vjcnxH/ExVM/4BNQSwkSAtQKDMDO2ZGLp87/6vp3k29zePte2vTsXOPzpSWlfDr1A77fvIuwiEZYqn/5ePlr4wkh/jskUPgQc3NzANavX1/tOTMzM3744Qfmzp3LokWLmDRpElCRbdiuXTtluRMnTvDcc8/RpEkTAgMDadmyJZMnT+bBgwdARS3CYcOGARXTcAMCApTHAwICOHXqlDLWnj176Nu3L/Xr16dhw4Y888wznDt3Tnk+ICCA1NRUTp8+TUBAAJGRkcrjb731VpXtP3z4ME8//TT169enefPmvPrqq6SkpCjPl5aWsmzZMp544glCQ0MJCQnhiSee4Lvvvvv9H+gjunu34s5U5enSb731lvLZ6PzaZwsVJ56ffPIJnTt3Jjg4mGbNmvHGG29w52cyycQ/X15BAemZmfjWkHHr4+HBreTkX1xfo9GwdN06QurUoVXjxtWeNzMx4cN336V7pf1YJzcvDwN9/d+0nBCPq7ziYtIf5OLjYF/tOW97e25lVq8XWJmmvJylh48Q7OZGS//qWYAqQ0MmdetaLYiYcK9iXIdK9UqT798HwO3HgGVRaelvezNC/EeVFhZTdD8PCze7as9ZuNiRd/teDWv9pFxTzvWNx1D7u+IYVn2a4qOOX5yVR0lOATa1XIGK8zdNScV+6tq0ziNlNQrxX1WYX0BWxj1cvd2rPefq6c6dpJQa1vqJRqNh04qv8QsMIDSiUY3LlJWVUVxYxIAXh9P3uSEY6P98yYFHGU8I8d8hU48f8sQTT7BixQrmzJlDZGQkHTp0ICIigvr166NSqVD9mEXUsWNHMjIyWL9+PaNHjyY4OBiomAb8/PPP06BBA8aNG4eenh7Hjh1j/fr15OTksHDhQho3bszo0aNZunQpAwYMoGHDhjVuy+nTp3n11Vdp1aoV/fv3p7CwkDVr1vDMM8+wY8cOPDw8mDt3LrNmzUKtVjN69GgaNGhQ41g7duxgwoQJ+Pv78/LLL1NaWsqXX37JxYsXiYyMxMrKikmTJrFr1y4GDRrE0KFDycrKYsOGDbzzzjs4ODjQunXrP+QzfvDgAfd/vIArLS0lPj6e999/n8DAwCoB14c9ymcLsHTpUhYvXsyQIUMICAggJSWFVatWcenSJbZv367UQBT/HvezswGwta5+p1NtZUVBYSH5BQWYm5nVuP6W/fu5k57O6889R3l59VpK+vr6uDg6Vns8MTWV67duEfrjVMlHXU6Ix1VWfj4Atmbm1Z5Tm5lRUFxCfnEx5pWaglW2NfoCd3NymNCpI+Va7a++XkZuLldu32HNyZN42Kpp5O2lPJeSlYWJkRGrT5zgRPxNikvLcLSyZEDjxjSr9dtqAQvxX1KSUwCAyqr6MVNlZYqmsJSywhIMTVXVngdIOXqRwnsPqPd0O7Tl1ffTRx2/8F7FTV4jcxNu7jrD3TPX0RSVYmJniW+3cOzq/vZyPEL8VzzIygHASm1T7TlLGyuKCgopLCjE1Kzm5kNRuw5wLy2DwWOfpbyG/RTAxNSE8bPfeaRro0cZTwjx3yGBwof4+/vzySef8Pbbb3Pjxg1u3LjBkiVLMDMzo127dowdOxYfHx/q1KlDWFgY69evp1mzZsrU2ZUrV+Li4sKKFSuUoOLgwYMZMGAAR48eBSpqETZr1oylS5cSFhb2s/UEd+7ciYmJCUuWLFGKszdr1oxx48Zx+fJlPDw86NWrFwsXLsTe3v5nxykvL2fWrFnUrl2bDRs2YGJiAkBwcDDPPPMM27Zto1OnTmzfvp3nn3+eCRMmKOt26NCBrl27cvTo0T8sUNi7d+9qj5mYmChNYn7Oo3y2ANu2baNVq1a8++67ymMuLi58/fXXpKam/mObvIifV1RcDFDj90P1Y5fT4tJSqocmIPnOHTbu2sUz/ftjp1aTce+XMyUqv+biHxsE9erQ4f+9nBCPg8Ifs/ZUNRRYV/14IVJSVlZjoDDlfhaRP/zAiObNsLOwICM39xdfK7eoiHHrvlFeb0TzZlVeNzkri6LSUgqKS3ipbRsKSkrYffESiw58j6a8XOoWiseWLmvPwKj6fqr/4z6kKS2rMVCYn5ZF0oEL+D3RBGNrc4qy8n73+GVFJQAk7j+PnoE+fj2agJ4eKUcvcWXNAYKe6YT6x2xDIR43xUVFABipjKo9Z/jjY6UlJTUGCtNT73Bw6x66D+mLta2arMz7Nb6Gnp7eIwUJH3U8IcR/hwQKa9CmTRsOHjzIgQMHOHToEMePHycjI4Pt27ezb98+vvjiC8LDw2tcd9myZTx48KBKQCMrKwsLCwsKCgp+03Y4OzuTn5/P+++/z+DBg/Hz8yMgIIA9e/b8pnEuXbpERkYGo0ePVoKEUBF0/Pbbb/H19cXCwoJz586hX2nqpFarpaysDID8H7NE/gjz5s3D3r5iWlppaSmpqamsXbuWIUOG8Nlnn9GsWc2FeR/1s3V2dubUqVN89dVXdO/eHXt7ewYOHMjAgQP/sPcg/lraHzOLdAHzR1VeXs6SNWsI8PN7pGYnOsUlJcz97DMSU1N5slMn6tUwBfK3LCfE4+L/ta8eOkSAs/MjNTvRvca4Du0o05Sz+9IlZmzfybgO7WniW9HhuH3dOmi1WjoFBirrNPPz441vv2PtyVM0r+VX5ZgnxGNDl63723ZTtOXlXN8YhZW34y9PC37E8cvLKjL8y4pKaPRaH4xMK24g2NXx4Mz8jSTsPSeBQvHYUnaj33E8jVz+NZ61fB+p2clfPZ4Q4t9BAoU/w9jYmG7dutGtWzcALl++zJdffsn27duZMmUKu3btqnE9AwMDkpOTWbhwIXFxcSQlJZGWlva7tuHpp58mKiqKNWvWsGbNGtzd3Wnbti39+vWjTp06jzxOamoqAF5eXtWeCwkJUf6sUqnYunUrUVFRJCQkkJiYqAQItY8wBexRNWjQoFrX465du9KpUyemT5/+//5sJ06cyIsvvsjMmTOZNWuWMqX5qaeewsHB4Q97H+KvY/Jj9lFJSUm150p+zGAyqxQE19l64ACJqalMe/VVHuRVZD3kFRYCFUG+B3l5WJqbVzkJyy8oYPayZVy/eZO2TZsysEePGrfpUZcT4nFi+mOGb8mPN5kqK9FoKpapITN424UYku7fZ+oTT/CgsCKLIv/HTOLisjIeFBZhaWJcZV+1MDYmwq9iCnETXx/e+PY7Vp04oQQKO9arV+11VIaGtPT3Z+O5H0jJysLTrnoNNSH+6wyMK/bT8lJNtefKf9x3DU2qZzGlHL1E/p0sQkd1ozS/Yj8tK6zYTzUlZZTmF2FoZvzI4xsYVWQy2Qd6KUFCAENTFbZ13Ek/H4+mpBSDGjKqhPivMzap2CdKazj3Lfsxa9ekhnPfqF3fczcllecmvUJ+bsW5b9GPCRUlJaXk5+ZhZmH+yAHIP3o8IcS/gwQKKykoKGDZsmUEBgbSqVOnKs8FBgYyf/58Hjx4wJEjR8j6sZviw5YvX87cuXPx8fGhUaNGdOrUidDQUFavXs22bdt+0/ZYWFiwZs0aoqOj2b9/P0eOHGH16tWsXbuWuXPn0rNnz0caR1eT7Zd+wIuLixk8eDBXr16lSZMmREREMGLECMLDw2nTps1v2u7fQ61W06RJE/bt20dOTg7WNdSie9TPtk6dOuzZs4ejR49y8OBBjh49yscff8yKFStYv349fn5Sm+rfxv7HZgTZlZrW6GQ9eICZqakSTKws+soVyjQa3v7gg2rPbTtwgG0HDvDJ1Kk4/BgsyMnNZeann5KQkkKH5s15bsCAGvebR11OiMeNnYUFANk1ZNBnFRRgZqzCxKj6Rf+F5GTKNOW8u2lztee2X4hh+4UYPh48sEqzkspUhobU9/Rkz6XLPCgswsq0+sWTjrVpxTStohqCmUI8DoytK/bTktzCas+VPCjEwNSoxuBc1vVUtJpyoj/dXu251KOXST16mcZv9Hvk8VVWFQVDjMyr768qC1PQgqZYAoXi8WRtV3Hum5tTvQxHbvYDTMxMUZlUP/e9cekqmjINy6YvqPbcsd3fc2z397w2dzJqe9tH2o4/ejwhxL+DBAorMTY2Zvny5dSvX79aoFCnVq1aHD16tMY7OMXFxSxatIgmTZrw5ZdfYlipVpKu0cZvcevWLXJzcwkLCyMsLIzXX3+duLg4hgwZwooVKx45UOji4gJAUlJStecmTZpEgwYNMDIy4tKlS8yYMYN+/fopz//ebMjfQxfQrGkq2KN+thqNhtjYWCwsLGjfvj3t27cHKuo9vvrqq3z77bfVukGLfz5zMzMc7Oy4lVK9w9ut5GT8fqbu5NDevcl/KGCRk5vLJ6tW0bJxY1qFh2NtZQVAYVGREvzr1rYtw/v0qXHMR11OiMeRubExDpaWNXY3TsjMxPdnsrqfjmiqZBDq5BQWsvj7Q7Twr0Wr2v5Ym5qSmpXN7F27eCI0lI6BVTMGi0pL0dMDIwN97ufnM3PHTiL8/OjbsGqTr9QfmyM5/kzQUYj/OkNTFca2FjV2N867cw9Lt+pdywF8ujWmrLBqdlNpXiHXNhzFsb4vjvVrYWRhgoGR4SONb+5sg56hPgXp2dWWK8rKQ9/IoMYgohCPA1MzU2zsbbmTWP3c93ZSCm7eNTf76TLgSQrzq5775j/I5bvP1xAa0YiwZo2xsHr0498fPZ4Q4t9BAoWVGBgY0K1bN7Zs2cKWLVuqNQfJzs5mz549NGvWDFNTUyWgpQtwFRUVUVhYiLe3d5VA1tWrVzl9+jRQ0Ybe0NBQKRxbUwdWnffff59r166xZ88ezM0r7rr6+vpiZWVVJZimr6//i+MEBQVha2tLZGQk/fr1U2r8nTt3jsjISOrUqaNMLa5Vq1aVdVetWqVs958pMzOTkydPUrduXSxruHh71M+2vLycYcOG0ahRI5YtW6YsFxoaCtQchBT/Dk1CQ9l1+DCpaWm4OTkBEBMby530dJ74mSYiNQUQdc1MnOztCak0hX/5hg0kpKTQtU2bXwz+PepyQjyuwn282X3pEqlZ2bj92K3xYkoKd7Jz6Pnjb/HDagog6pqZOFlZEfxjuQpnaysKSkrYf/UqbesEYPjjsTQjN5dTN29R18UFU5UKU5WKgpISvo+NpWtwEGY/Hvcyc/M4fO06gW6u2PxMl3QhHgf2gV7cPn6FgoxszBxsAMiKu01hxgPcWwbVuE5NAURdMxMTW8sq9QQfZXwDlRF2dT25dyWJ/LQszJ0qMqiK7udy72oSdvU80ZPzNvEYC2wYyon9h8m4k4aDS8W5b9zla9y7m07Lru1qXKemAKKu+Yitgx21An+hvuhfMJ4Q4t9BAoUPeeutt4iJiWHixIls3bqVli1bYmFhQVJSEpGRkZSWljJ58mQAbG0rUqy//vprMjMz6dmzJ6GhoURGRmJhYYGPjw83btzg22+/VQJU+fn5WFtbo/5xKuXWrVvRarU1dgJ+5plneP755xkyZAhPPvkkxsbG7N+/n6SkJObMmaMsZ2trS2xsLOvWrSM8PLxasE+lUvHWW2/x5ptvMmjQIJ544gny8/NZtWoVfn5+9O/fn5SUFAwNDZk4cSJDhgzB0NCQgwcPEhUVhZGR0R/azGT//v3K+9dqtdy9e5cNGzZQWFjIq6++WuM61tbWj/zZDh06lCVLljBmzBhatmxJUVER69evx9TUlL59+/5h70P8tZ7o0IEjp08zfdEierRrR0lpKdsOHMDX05OWjRoBkJaZybWbNwnw9cXJvuaMiJqk3L3L0TNnMDM1xdvdnSM/Bp8raxUe/sjLCfE4eyIslKM3bjBjxw66hwRTUqZhe0wMPg72tPCvOD6lPXjA9btp1HZ2wunHrN5HYaCvz4hmzfj04CHe27adlv61yC0qZu/ly+jr6zGi+U+F1p9p3pwFe/cxZfNW2tWtQ2FpCXsvXcHgoeWEeBy5twwi/Xw8F5fvwa1FEOVlZaQcvYSFmx2OYRUlWgrv5/IgMR0rL0dMbX9bxtCjjA/g06URObfucnH5Hlyb1UVf34DUE1fQNzLAu1PDP/Q9C/Fv07JrO6KPn2HFvMU079yWstJSonYfxNXbg9CmFfvH/fRMkuJu4VnLB1vHRz/3FUKIXyKBwofoMu9WrlzJgQMHWLx4MYWFhTg6OtKpUydGjx6No6MjABEREXTt2pWDBw9y8uRJOnXqxMKFC5k1axYbN26kpKQENzc3XnjhBfz8/Hj55Zc5efIknTt3xs/Pj6FDhxIZGcnFixdp0qRJtW1p0aIFS5YsYdmyZXz66acUFxfj7+/PggUL6N69u7Lcyy+/zJQpU5g5cyZjxoypFigE6NWrF5aWlixdupT58+djZWVF27ZtmTBhAmZmZtSuXZuPP/6YTz75hAULFmBubo6/vz8rVqxg3bp1nD59mtLSUoxqqC31W82aNUv5s4GBAdbW1gQHBzNjxgwiIiJ+dr1H/WzHjRuHjY0NGzduZM6cORgYGNCgQQPmzZsn9Qn/xawtLXlv/Hi+ioxkw86dGBsZ0TgkhCG9einfy6vx8SxZs4YXn376NwUKr8bFAVBQWMiSNWtqXKZVePgjLyfE48zK1JQpT/Rk1fETfHv2HMaGhjTy8mJI0yYY/ZgBGHvnLksPHWZ0m9a/KVAI0LK2P0YGBmyJjmb1iZMYGxoS5ObGU40b4WpjoyzX2MebCZ07svl8NF+fOo2RoQH1XFwYGB6uZDoK8bhSWZgS8nxXbu44TeL+8xioDLGr64lPl0boG1bspw8S0rj+XRS1+7X4zYHCRxkfwERtQejo7iTsPkvK0UugBWtvJ3y6NPrNrynEf425lSXPTRrH/7F35/FRV/ce/1+zJpN9B5KQhbAT9rAqooAisokXqtelVmv7s2r9+bPWaq/eUtrae7W21vXWVq1Lq7iBsoogSBBkR/Z9z072ZCaZJfP7Y8JAnGFTINv7+Xj4KHy/55w535ST73c+33M+Z+G7c1g2dxFWq5VeA/syfsZkzI3Pvof3HmTO6/9m2t23KlAoIheNwXsxt7MVacOqtm5t7i6IyDl4vlze3F0QkXP4WXb9uQuJSLO7Jyt4ahcRaTnGpQ06d6E24JblT1+Sdt+75tFL0m5rp8QfIiIiIiIiIiIioqXH8t3V1dVR3Zhs/lzi4uL8G7iIiIiIiIiIiEjLo0ChfGcLFy7k8ccfP6+yy5YtI7Vx10oREREREREREWl5FCiU7+zKK6/kjTfeOK+yiYmJl7g3IiIiIiIiIiLyfShQKN9ZUlKSfwdoERERERERERFp3bSZiYiIiIiIiIiIiChQKCIiIiIiIiIiIgoUioiIiIiIiIiICAoUioiIiIiIiIiICAoUioiIiIiIiIiICAoUioiIiIiIiIiICAoUioiIiIiIiIiICAoUioiIiIiIiIiICGBu7g6ItBY/LV3c3F0QkXN4hZDm7oKInMM9WeOauwsich6GVuirokiLl9bcHZC2SDMKRURERERERERERIFCERERERERERERUaBQREREREREREREUKBQREREREREREREUKBQREREREREREREUKBQREREREREREREUKBQREREREREREREUKBQREREREREREREUKBQREREREREREREUKBQREREREREREREUKBQREREREREREREAHNzd0Dah8cee4w5c+acs9y0adMAAsoajUZsNhtZWVnceuut/nJna9tqtZKQkMCIESN4+OGHSUhI+J5XIc2trqyag4vWU3mwEIC4nqlkThiCNcJ21nrOGgeHl2yibPcxGlxuIpLjyRifQ1RaYpNy1XknOPzZRqqOFmMwGIjO7EjmhCGEJUZ/p3Ii7VVxVTXvfP01O/PzARiYlsYdI4YTZTv7WK1yOHhv3Xo2HjmC0+0hMyGe/xw2lG4dOjQp982xY8zZtJmDJ05gNBjolpTED4bkBJQ73/ZE2qPyklIWzf6EQ3v2A9CjX28m3DyV8KjIs9arrarm848WsHvLdlwuF8npqVw3fTKdszJ87Z4o48+PzjprG3c/ej+ZPbvx5N0PnbXctLtvZdCVQ8/7mkTamuLSUt6aM4ed+/YBMKhPH+6YNo3oyLOP08rqat6bN48N27bhdLvJTE3ltqlT6ZaR8Z3Kbdm1i48XL+bgsWMYjUa6ZWRwy6RJAeVEpG0weL1eb3N3Qtq+zZs3c/ToUf/fN27cyOzZs7n55psZPHiw/3haWhqzZ89mzpw5PP7448TGxgLg9Xqpqanh008/5ZtvvuFXv/oVd999N3AqUHh6eYCamhrWrFnD559/To8ePfjwww+xWq3f+RpuWf70d64r35/LXs/mlz7F62kgeUQvvF4vx3O3ExoTwYD7JmE0mYLWc9e72PLyfJzVdlKu6I05NIT8r3fhrLIz4GeTCO/o+zdjL6lk80vzMFnNpFzRG4C8r3bi9XoZ9POphESFXVA5aR6vbA9p7i60e9V1dfz64zl4GhoY36cPDV4v87duJTEigt9PuxHzGcaqw+nkiTlzKbfbuaFvX8JDQvhsxw7Kamv5w7Qb6RwXB8DO/AJ+P38+qbGxXN2jBx5vA0t27KTCbuc3UybTNSnpgtqTy2/j1FHN3YV2z15Tyyu/fRaPx83wsVfh9TawavFyYuJjuffJhzGZg88lqK+r4/9+92eqK6oYee1oQsPDWLssl6rySu598mE6pHbCWVfPzk1bA+q6XC4W/OtjwqMieOC3j2ILD2PL6vVBP2fRe3PxeDzcP/OXxCbGX9Rrl/M3tEJzSppTdW0tjz39NB6Ph+tHj6ahoYF5y5aRGBfHU488gvkM49RRV8ev//QnyisrmXjNNYSHhbF45UrKKip46pFHSEtOvqByO/ftY9YLL5DasSPXjBiBx+Phs9xcKior+e1DD9FVwcJmFdWvX3N34bK4VN/F37vm0UvSbmun3/5yWQwcOJCBAwf6/+7xeJg9ezYDBgxg6tSpTcrOnj0bgHHjxpGamtrk3PTp07nhhht46aWXuP3225sE/oKVv+2225g5cybvvvsuS5cu5YYbbrjYlyaXSd6qHdRX2hn84FTCkmIAiExNZPvrSyjatJ9OQ3oErXf8y204TlTS957ricnsCEBivwzW/+kjjuduo8eMq3ztr95Jg9NN/59OICLZ96UkJiuZLS/PJ++rHXSZMOSCyom0Vwu3bqOsppb/nfEfpDa+vOmalMhTCxbx5d69jO3VK2i9T7d8Q0FlJU9MmkTv5E4AjMjqwoPvvsenW77h/jHXAPDWmjXEhYfzuxtvJMTie4y5qls3fvH+B8xev4H/mnjDBbUn0h59tWQFleUVPDDrUZKSfffGlMx03nz2FTZ9tY4ho0cGrbdy4TJOFJb4ZgT26ApA36ED+fOjvyN30TKm/+R2rKEhDBgZeC9c+O7HeDweZvz0DmzhvpdqwcqtXrICe00t0396h4KE0q4t+OILyioqeObxx0nt6BunXdPT+cNLL7Fi7VrGXXFF0HqffP45BcXF/PfPf07vbt0AGDFoED+fOZNPly7lgR/+8ILKvfnxx8THxPCHRx4hpPG711VDh/LwH/7Ae/Pn88QDD1zSn4OIXH7KUSitSmhoKGPGjKGmpoZ9jVPwz+XkMuVvvvnmUnZNLrGSrQeJyezoDxICxHZNxpYYRcnWQ0HreL1eijbvJ65Hqj9ICGCNDCNzwhCiMk4tP6wrq8YcHuIP/gFEpiZgDgvBXlR+weVE2qvVBw7QO7mTP0gI0Dc1lU4x0aw5cDBoHa/Xy8q9exnQubM/qAcQExbGHcOH07OTb/zW1NdztLSU4V26+IOEANFhYfTq1Im9hUUX1J5Ie7Vt7SYye3T1BwkBuvbpQXzHJLat3Ry0jtfrZfNX6+jer5c/SAgQGR3F9TdPJb17lzN+XuGxfNYszWXQlUPJ6J51xnI1ldUsnbOQLr2603/44DOWE2kPvtq0id7duvmDhAD9evakU1ISqzdtClrH6/Xy5bp1DOzd2x/8A4iNiuKH06bRMyvrgsrV2O0cyctj+MCB/iAhQExUFL26dmXPoeDP4CLSumlGobQ6BoMB8M1KPB+2xpxYWmXferkc9dSV1ZCQnRFwLqJTPGX7jgetV19eg7PSTsyobMD3b6DB5cZktZA8vGeTsrb4KCr25+OscfhzHrrs9bjrnFhOy4F4vuVE2qOa+nqKq6oZ1iUz4FxGQgLfHDsWtF5JdQ1ltXYm9+8P+MZqvdtNqMXCtX16+8uFWSw8e/MPCA2y3Kq6rg6T0XBB7Ym0R45aO+UlpfTJ6R9wLjktlX3bdwWtV3GijOrySkZNGAv4xpWr3ok1NIRhY64862cu/XgBFquFsdPOvrLjywWf43K6uP7mqWctJ9LW1djtFJ84wfABAwLOZXbuzJadO4PWKykro6yigiljT43TeqeT0JAQrhs16oLLhYWG8pcnniAkJDC1S3VNDSaj5h2JtEUKFEqr0tDQwLp167BarWRlnfmN9Olyc3MB6N1bXw5bK2elHQBrkPx/1igbHocLt8OJ2dY0B6WjtAoAS3goBxetp3D9Xjx1LkLjI+lyw1Die3X2l029Kpuy3cfYM3slXSb6lkIdXLQBo8lIysjeF1xOpD0qr60FIC4sPOBcbFgY9nontfX1hH/rC0dhZSUAUTYb76z5mi9278bhdNEhOoo7RgxncHo64NvYqlN04KZBR0tL2VtURL/G9BPn255Ie1RV3jg+YmMCzkXGRFFnd+CwO7CFNX35VVpUAkB4ZASLZ3/ChpVrqHfUEZeUwIRbbqTngOygn1d4LJ893+zgivHXEBVz5k2/aquqWb9iNb0H9aVTWsp3vDqRtqGsogKAuCD3vNioKOwOB7V2O+FhTZ+NC4qLAYiKjOTtOXNYtno1jro6OiQmcue0aQzu2/eCyhmNRjo15v493ZG8PPYeOkT/M6QTEZHWTYFCabGqqqooKysDfLMH8/Ly+Oc//8nu3bv50Y9+RHh4+BnLg28zk9zcXF588UWysrKYOHHiZe2/XDwepwsAkyXwV5axcWaRx+UOCBS665wAHFm6GYPJSNakYWAwcDx3OzvfWUb2XdcR29WXqDk0JoLOV/fjwLyv2fT8p42NG+h169VNlhmfbzmR9sjh8o1Va5AZf9bGTUycbndAoNDu9I3V9zdswGw0cufIkRgNBuZv3cqzny3h8Rsm0PdbOWhPqnO5eHn5CgCmNM68+D7tibR19XV1AFisloBz5sZjLqczIFBY53AAsGzOQkwmEzf8500YjQZWLV7Ov154jTsfvpeufQLzBa9bvgqD0ciwsWffxGZj7lo8bjcjr1P+UJG6+nqAoBsxWi2+cVrvcvHt13L2xnE6e8ECzCYTP5o+HaPBwLxly3jm73/n1/fdR7+ePc+73Jn69tLbbwMwddy4i3G5ItLCKFAoLdbJ3IKns1qt3HHHHfziF784r/I2m42xY8fyxBNPYLEEPhBLK3Fy2bjhwqo1uBsAX8Aw5+GbsNh8wYn4np1Z/+xHHF6y0R8oPPz5Jo4t30p0Zgc6Du2Bt8FLwdrd7H73S3rdeo1/9uH5lhNpj06meDiZIuJ8uRpTSdjrnfz5lh8Q0RhIHJSexkPvzea9deuDBvbqXW7+9NkSjpSWMXVgf38+wu/ankh74L+lXuA4dbvcANTZHTz0x//yb0jSY0A2f/nV71j60YKAQKHL6WLLmg30HJBNbMLZdxrfmPs1HdNSSO8WmLpApL35zvdTt2+c2h0OnnvySSIaZxwOzs7mwVmzeG/ePPr17Hne5b6t3unk6Vdf5UheHjded12T/IYi0nYoUCgt1jPPPENCQgLgm/YeFRVFVlZW0BwZp5d3uVzk5ubyr3/9iwkTJjBz5swz1pHWwRTiC/I2uALzUjY0PuiYQwMDwSaLbwZTQp90f5AQwGyzEtczleLNB/A4XXg9Xo7nbiciNZ6+Px6PoTHfSmK/DLa8PJ99c74ittsMGlye8ypnNJsu7g9ApJWwNb6QcTaOy9M5G4N3tmCzIxpnIA7NzPAH9QDCQ0IYlJZG7r591LlchJ72wqe2vp6nF3/G3sIiru7ZnZuHDPle7Ym0FyGhvjHhapx5ezp34wz+0NDQgHOWxrHbe3B/f5AQwBZmo+eAbDavXo+zrh5r6Kkxd3D3Plz1TrKHDDhrn4rzCykrPsG4/9DqDxGA0MZ7lzPIOHU2zt4PCzJOT244Mqx/f3/wDyA8LIzB2dmsXLeOuvr68y4Xeto9tNZu53/+9jf2HjzINcOHc8ukSRfhSkWkJVKgUFqsQYMGkXoBMz5OLz969GjS09P5/e9/T0VFBS+//PIFv5GTliMkOgIAZ7Uj4JyzyoHJZsEUZAmVNcq3IMMSHvggZY2wgRc89S7qK+143Q0k9uviD/4BGE0mkvpncWjxBuwllXg9DedVLqLT2WdNiLRV8RG+sVphtwecK7fbCQuxBg3OxTUGHaJsgRsCRYfZ8HppEtircjh4auEijpwoZWyvnvx41JVNfsdfaHsi7Ul0vG9H8urK6oBz1RVVhIbZmgT7ToqK9eVKC4+MCDgXHhUBXi/19U0DhXu37sRkNtO939nzmO3d6tuYoc/gwA1WRNqjhFjfOK2oqgo4V15VRZjN1iSId1JcTAwAURGB4zQ6MhKv14ujvv68y538jMrqap56+WUOHz/OuCuu4J6bb9Z3K5E2TNsUSZt1xx13MHbsWL744gvefPPN5u6OfA9mm5WQuAhq8ksDztUUlBKZkhC0XnjHGAxmI/biioBzdeU1GC0mLOGhGM2NvwobAnfG9nobTv7hvMuJtFfhISEkRkZy6MSJgHOHT5ygS2Ji0Hqd4+KwmEwcLy8POFdSVY3FbCKqceaEw+n0Bwkn9M3mnqtGBXxZuZD2RNobW5iNmIQ4Co4cDziXf/Q4KRnBU2h0SOmEyWymOL8w4Fz5iTLMFktAEPHo/kOkZHQmNEjQ/nRH9h0iMjaahI6BmyaItEfhYWEkxsdz6HjgOD107BhZaWlB63Xu1Amz2cyxwsBxWlxaisViIToi4rzLATjq6vxBwhuuuYaf3HKLgoQibZwChdKmzZo1i+joaJ577jmOHTvW3N2R7yGhTzoVB/Kxl1T4j5Xvz8dRUkViv+D5jExWC/G90ijbfZzaolMBg7qyakp3HSWuV2cMRiNhSTFYo2wUbtqHx3VqyaTH5aZo8wHM4SGEdYg573Ii7dnQzAy25+WRV17hP7bt+HEKKioZeYbd6kMtFganp7H56FGOl50aq8VV1Ww8cpSc9HSMjbN4X1/1FUdOlHJ932x+OHLE925PpD3qM7g/B3buoaSgyH9s/449lBYW03fYoKB1rKEh9ByYzd6tOyjOK/AfLy8pZffm7fQcmN1kXHncbkryC+mUfu7VIYVH87TTsci3DOvfn2179pBXdGqcbt29m4LiYkYOHhy0TmhICDl9+7J5+3aOFZwap8WlpWzYto2cvn0xGo3nXQ7gtfff5/Dx40y4+mruvOmmS3S1ItKSaOmxtGkJCQk88sgjPPnkk8ycOZPXXnutubsk31HqqGyKNx9g22ufkXJlNg1uty9fYEo8SQN8wQdHWTVVR4qJSk/CFhcJQOb1OVQeKmTba5+RPLIXRqOJvDU7MVpMZFzne8gyGI1kTR7Orn8vZ8srC+g4uBter5eijftwlFTSY8YojI07tp5vOZH2asqA/uTu28cfFixgYr++ON0e5m/dSmZiAld26wpAUVUVewuL6N6xAx2iogC4dfgwdhYU8Lv587k+OxuzycjibduxmE3cPNSXf/B4eTmr9u0nLMRKRnw8uXv3BXz+qO7dzrs9kfZq1IQxbFm9njeeeYkrxl+D2+Vi1eLlJGd0pv9w372xrPgER/cfIq1rJnFJvpn742dM4fDu/bz+9EuMuPYqjCYza5Z+icVq4dqbmuYXrCgtx+P2EB0Xe9a+eDweKsrKz7k8WaS9mTJuHCvXreN3L7zApDFjcLpczFu2jC5paYzKyQGg6MQJ9hw8SI8uXejQmNv99qlT2blvH7Oef54JV1+N2WRi0ZdfYrVY+M/Jk/3tn0+544WF5K5fT5jNRkZqKivXrQvo51VDh16Gn4aIXE4KFEqbN2PGDObOncuqVauYO3cuN954Y3N3Sb4Da4SNfj+ZwMEF6ziydDMmq5n4XmlkXp/j3zyk6nARez9cRffpV/oDhaGxEfS/dyKHF2/geO528EJ0Rgcyr8/xlwHfjMW+d4/n6BdbOPz5RgAikuPpc+c44rqnXnA5kfYqymbjN1Mm89bqNXywYSMhZjM56encNnwYlsZA+u6CQv5vxZfce/Vof6AwMTKSWTdO5d2165i/dSter5eeHTty6/Bh/jK7Gmc92Oud/N+KL4N+/slA4fm0J9JehUdFcs/jD7Lw3Tksm7sIq9VKr4F9GT9jMubG3J2H9x5kzuv/Ztrdt/oDhbEJcfz0vx5iyYfzWLV4OV6vl/TuXRg/Y4q/zEmOWl+u0lDb2Zf519Xawesl5BzlRNqb6MhIfvvQQ7z58ce8v3AhIRYLQ/r147apU7E0jtNdBw7wyjvv8LPbb/cHChPj4/n9L37Bvz75hHnLluH1eumVlcVtN97oL3O+5Xbt3w/4dkd+5Z13gvZTgUKRtsfg9Sqhlsj5uGX5083dBRE5h1e2a4dzkZZu49RRzd0FETkPQys0p0SkpYvq16+5u3BZXKrv4u9d8+glabe1U4IeERERERERERERUaBQREREREREREREFCgUERERERERERERFCgUERERERERERERFCgUERERERERERERFCgUERERERERERERFCgUERERERERERERFCgUERERERERERERFCgUERERERERERERFCgUERERERERERERFCgUERERERERERERFCgUERERERERERERFCgUERERERERERERwNzcHRBpLe7JGtfcXRCRc/gZS5u7CyJyLgc0TkVag380dwdE5Jzeo19zd0HaIM0oFBEREREREREREQUKRURERERERERERIFCERERERERERERQYFCERERERERERERQYFCERERERERERERQYFCERERERERERERQYFCERERERERERERQYFCERERERERERERQYFCERERERERERERQYFCERERERERERERQYFCERERERERERERAczN3QFp+x577DHmzJlzznLTpk0DYM6cOfz3f/83t912W0CZ48ePM3bsWB544AF+/vOfn7V9q9VKQkICI0aM4OGHHyYhIeF7Xok0t/KSUhbN/oRDe/YD0KNfbybcPJXwqMiz1qutqubzjxawe8t2XC4XyempXDd9Mp2zMpqUyzt8jM8/nMfR/YcxGA1k9Mhiws03ktAxyff5J8r486OzzvpZdz96P5k9u333ixRpA+rKqjm4aD2VBwsBiOuZSuaEIVgjbMHLl9ew/pkPz9pm33vGE9OlEwA1+aUcWryB6rwTGIxG4nqkknl9TkD71cdKOLJsM1VHivE2eAnvGEvamAHE9Ui9CFcp0rq1hHGa++t/nrW97tOvpMOgrhdwVSJtS0sYpwC73l3BiW2HA9qKSIln4P2Tv8OViUhLpkChXHI333wzI0aM8P9948aNzJ49m5tvvpnBgwf7j6elpTF79mwAnnvuOcaPH39Bwb3HH3+c2NhY/99rampYs2YNH330Edu3b+fDDz/EarVehCuS5mCvqeX1p1/C43Ez6voxeL0NrFq8nKLj+dz75MOYzMF/ndXX1fGP/32B6ooqRl47mtDwMNYuy+X1p1/i3icfpkOq70HpRGExr/3vC1itVq6efB0Aq5es4O9P/ZX7Zz1KVEw04RHh/Mc9gQFsl8vFgn99THhUBB07p1y6H4JIK+Cy17P1tcV4PQ2kXpWN1+vleO52agvLGXDfJIwmU0AdS3gI3WeMCjje4HZzYN5aLOGhhHeKA8BeXME3ry7EGhVG+piBeOqdHP9qB1VHixn0wBRMVouvXEklW/+xGEt4KJ2v7ofRbKZo0z52vLWUXrdeQ0Kf9Ev7gxBpwVrKOA3WHsDBhevwehqIzuhwEa9apHVpKeMUoLaonKj0JDoO7RHweSLS9ihQKJfcwIEDGThwoP/vHo+H2bNnM2DAAKZOndqk7MlAYVVVFX/84x959tlnz/tzxo0bR2pq01kit912GzNnzuTdd99l6dKl3HDDDd/jSqQ5fbVkBZXlFTww61GSkjsCkJKZzpvPvsKmr9YxZPTIoPVWLlzGicIS30y/Hr5ZCX2HDuTPj/6O3EXLmP6T2wFfUNBV7+Qnjz9IpzTfv6Muvbvzt9/9mdWfreD6m6diDQ1hwMghAZ+x8N2P8Xg8zPjpHdjCwy7F5Yu0GnmrdlBfaWfwg1MJS4oBIDI1ke2vL6Fo0346DekRUMdktdBhYFbA8QPz1+L1NNDzB1dhsfm+jBxeuhmD0Uj/n0zAGukbbxEpCex4cylFmw6QPLynr9xnGzEYDQz42UR/uY5Du7Pp+U84tHiDAoXSrrWUcRqsvbyvduCurafHzVcRGnf2FQMibVlLGacNHg91pdUkXp0RtG0RaXuUo1BapDFjxjB//nzWrFnzvds6uaT5m2+++d5tSfPZtnYTmT26+oOEAF379CC+YxLb1m4OWsfr9bL5q3V079fLHyQEiIyO4vqbp5LevYv/WFlJKWER4f4gIUBqZhq28DCK8grO2K/CY/msWZrLoCuHktFdD08iJVsPEpPZ0f+lBiC2azK2xChKth4673ZqC8vIX7OLDoO7EZ15atwbjUaSBmT5v9QARGf6Zh3VFpUDvrFfeaiQ2G4pTcqZLGbienamrrQaZ43ju16iSKvXEsZpMM4aB4c/30xMVieS+nc5YzmR9qCljFNHSRVeTwNhiaf6ISJtmwKF0iI98cQT2Gw2Zs6cidPp/F5t2Wy+HBter/didE2agaPWTnlJKckZgXnFktNSKTh6PGi9ihNlVJdX0rWP742o1+vFWVcPwLAxVzaZhRjfIRF7rZ3aqmr/MXtNLXWOOiKjo87Yt6UfL8BitTB2mmarirgc9dSV1RCREh9wLqJTPDX5pefd1uHPN2G0mEkfN7DJ8Z63jKbrlOFNjtUWlAEQGh0OgMFgYOD9k8mcEDgD2G2v85Ux6RFI2qeWMk6DObZiKw0uN5k3BI5dkfakJY1Te3EFAGFJ0QB4nK7z/mwRaZ209FhapJSUFO677z6effZZXn31VR544IHv3FZubi4AvXv3vljdk8usqrwSgKjYmIBzkTFR1NkdOOwObGFNEy+XFpUAEB4ZweLZn7Bh5RrqHXXEJSUw4ZYb6Tkg21921ISx7Nmyg/f/9jYTbrkRgMXvf4LJZGLEtVcF7VfhsXz2fLODK8ZfQ1RM9EW4UpHWzVlpB8AaFbgE3xplw+Nw4XY4MdvOni+2trCMsl3HSRnVh5AgbZ1UX2Wn+mgxBxetxxplo0POqY2Egi1ZdNY4OLHjKLbEaP/SK5H2piWN0yb9qnFQsG4P8X3SiWjMoSbSXrWkcXpydmHBur2UbD2E216PJdJG59F9SRmp71cibZEChdJi3XXXXXz66ae8+uqrTJ48mfT0s+eTqqqqoqyszP/3mpoacnNzefHFF8nKymLixImXustyidTX+WYAWU5LqnySufGYy+kMCBTWOXxLC5fNWYjJZOKG/7wJo9HAqsXL+dcLr3Hnw/fStY8vv0tMfCyjJ13L/H99yEu/eRoAg9HILffd1WQ58unWLV+FwWhk2NjgydhF2puTswxMlsDHC2PjhkMel/ucX2zy1+4Bo4Hk4b3OWm7jXz7GU+8Go4EeM0adcRdIgAZPA3s+yKXB6abz6L7nuhSRNquljtOijfvwuhtIvUKBB5GWNE5Pzii0l1TQdcpwGjwNFG3ax8H56/DUu0i7pv+FXJqItAIKFEqLZbFYmDlzJrfffjuzZs3itddeO2v5k7kIT2ez2Rg7dixPPPEEFktgkElah5Orxg0GwwXVc7vcANTZHTz0x//ybzTSY0A2f/nV71j60QJ/oHDpxwv5cv4SMnpkkTN6JN6GBtYt/4r3/++f3HLfXU1mHwK4nC62rNlAzwHZxCZo5oMIcNpg/e5NeFxuijcfIL5XZ0JjI85YrsHTQNaUERhNRgo37mPP7JW4ahykXNEnsFsNDez9IJeKffkk9sukw6CuQVoUaSda6Dgt3LCP8OQ4otK107FISxqnCdkZRKYkkDq6r/9ZPGlAF7a+uoijy7+h09AeWMJDv3tHRaTFUYIeadFycnKYNm0aq1atYsGCBWct+8wzz/DGG2/w6quvcscdd2A0GpkwYQJPPfUUsbGxl6nHcimEhPqWCLqC5Kt0N75xDQ0NfECxWH1vWXsP7t9kN2JbmI2eA7LJO3IMZ109DruDVYu/ICUjjbt+eT/9hw9mwMgh/PhXD5DYqQNz/zkbt6tpPpaDu/fhqneSPWTAxbpMkVbPFOJ7IdPg8gSca3D7Avfm0LO/tKk8WEiD001CdsZZyxlNRjoMzCKxXybZP7qWqPQkDn++GXd907Ha4Paw670vKdl6iNjuKXSfceUFXJFI29MSx6m9uMK3q+o52hNpL1rSOE3q34XOV/dr8sLeYDDQcUh3vO4Gqo6WXMiliUgroEChtHi//OUviYmJ4Y9//CM1NTVnLDdo0CBGjhzJ6NGjeeKJJ/j1r3/Nxx9/zEMPPaSNTFq56HhfoLe6sjrgXHVFFaFhNqyhgfnGomJ9eQPDIwPfooZHRYDXS319PaVFJXjcbvoOG4jReOrXoslspt/wHGqrqikpKG5Sf+/WnZjMZrr3O/tSDpH2JCTaN9ac1YE7CjurHJhsFkxBUgicrmzPcQxmI3E9gi/5D8ZgMJCQnU6D042jpNJ/3ON0seOtpZRuP0Jcz1R63z4Go8l03u2KtEUtbZyebA8gvs/Z08yItBctcZx+28lZhNrcRKTtUaBQWry4uDgeeeQRSkpKeO6558673h133MHYsWP54osvePPNNy9dB+WSs4XZiEmIo+BI4O7G+UePk5LROWi9DimdMJnNFOcXBpwrP1GG2WIhPDICc2Oul4aGwICyt6Hh5J+aHD+6/xApGZ0JtZ05J5pIe2O2WQmJiwi6G2NNQSmRKQnnbKPqaDGRKQmYQwPzLrkdTtY/+xGHPtsYcM7TOPPBaPEFAhs8Dez693Iq9heQ0DeDXrddg9GsIKFISxqn/vaOFGONDiMsURuDiUDLGacNHg+bXvyUfXNWB5SzNwYSQ2MDNw8TkdZNgUJpFaZPn86gQYNYvnz5BdWbNWsW0dHRPPfccxw7duwS9U4uhz6D+3Ng5x5KCor8x/bv2ENpYTF9hw0KWscaGkLPgdns3bqD4rwC//HyklJ2b95Oz4HZGI1GklI6EhkTxeZVa3Gd9lbU5XSxZfV6wiLCSUru6D/ucbspyS+kU/r5v6EVaS8S+qRTcSAfe0mF/1j5/nwcJVUk9ss8a90Gjwd7UQXhycHzfpptVoxmE0Wb9uNy1PuPux1OCjfsIyQugrCkGACOLv+G8r35xGen0/PmqzSTUOQ0LWWcnlRTUKqdjkW+pSWMU6PJhMlipvibg9RV1DQpl796J6HxkUR2PnfQUkRaF21mIq2CwWBg5syZ3HTTTbgb83Kcj4SEBB555BGefPJJZs6cec4NUaTlGjVhDFtWr+eNZ17iivHX4Ha5WLV4OckZnek/fDAAZcUnOLr/EGldM4lL8j20jJ8xhcO79/P60y8x4tqrMJrMrFn6JRarhWtv8u2EbTQamXTbdN59+Q3+9vu/MGjUMLwNDWzMXUtJYTHT77kNk/nUr8uK0nI8bg/Rccp9KfJtqaOyKd58gG2vfUbKldk0uN0cz91OREo8SQOyAHCUVVN1pJio9CRscadmItRX1OL1NBAafeak61lThrPttc/45m8L6TSkOw2eBgrX7cFZ7aDPj8ZhMBhw2evJy92OwWQkpksnir85FNBOQp+0cy7bEmmrWsI4PanB00B9RS1x3fXyTeR0LWWcdpk4lG/+tpBv/raQlBG+XckL1u/BWeMg+67rLnizQRFp+RQolFajR48e/PCHP+T111+/oHozZsxg7ty5rFq1irlz53LjjTdemg7KJRUeFck9jz/IwnfnsGzuIqxWK70G9mX8jMmYG3e0Prz3IHNe/zfT7r7VHyiMTYjjp//1EEs+nMeqxcvxer2kd+/C+BlT/GUAeg/ux12P3MfyTxez9CPfxjmd0lO546Gf0r1v0zyEjlo7AKE27fAm8m3WCBv9fjKBgwvWcWTpZkxWM/G90si8Pse/9LfqcBF7P1xF9+lXNvli47b7ZjWYzpKgPSazI9l3XcvRZVs4vGQTGAxEZ3Sg5y1XE5nqG9PVx0v8CeAPfPp10HaiM6YrUCjtVksYp/72HPXgBVOQ5ZEi7VlLGaeRqQn0/fF4jizbzJEvNgMGotIS6THjKqLSEi/NxYtIszJ4tcuDyHlZenRTc3dBRM7hHweWNncXREREREQui/euebS5u3BZ3LL86UvSbnv5+V0o5SgUERERERERERERBQpFREREREREREREgUIRERERERERERFBm5mIiIiIiIiIiEgLdU/WuObuQruiGYUiIiIiIiIiIiKiQKGIiIiIiIiIiIgoUCgiIiIiIiIiIiIoUCgiIiIiIiIiIiIoUCgiIiIiIiIiIiIoUCgiIiIiIiIiIiIoUCgiIiIiIiIiIiIoUCgiIiIiIiIiIiIoUCgiIiIiIiIiIiKAubk7INJaDP4kt7m7ICLnMHT09c3dBRE5h5+WLm7uLojIebgna1xzd0FERJqBZhSKiIiIiIiIiIiIAoUiIiIiIiIiIiKiQKGIiIiIiIiIiIigQKGIiIiIiIiIiIigQKGIiIiIiIiIiIigQKGIiIiIiIiIiIigQKGIiIiIiIiIiIigQKGIiIiIiIiIiIigQKGIiIiIiIiIiIigQKGIiIiIiIiIiIigQKGIiIiIiIiIiIgA5ubugLQfjz32GHPmzGlyzGg0YrPZyMrK4tZbb2XatGkXXPaHP/wh69evZ+XKlSQmJgb97MrKSq644gquvvpqXnzxxUtwdXI5FFdV887XX7MzPx+AgWlp3DFiOFE221nrVTkcvLduPRuPHMHp9pCZEM9/DhtKtw4dmpTbkZfP+xs2cKS0lDCrlWFdunDzkBxCLZYm5XYXFDJ7/XoOlJQQERJCTno603NyiLKFXtwLFmmliktLeWvOHHbu2wfAoD59uGPaNKIjI89ar7K6mvfmzWPDtm043W4yU1O5bepUumVkNCn362ee4cDRowH1hw4YwC9+/GP/37fv3cvsBQs4kpdHWGgowwcO5JZJkwgNCfn+FynSytWVVXNw0XoqDxYCENczlcwJQ7BGnP2e6qxxcHjJJsp2H6PB5SYiOZ6M8TlEpfmewerKa1j/zIdnbaPvPeOJ6dIp4Hh9lZ1Nf51LXK/O9Jg+6jtemUjbUV5SyqLZn3Boz34AevTrzYSbpxIedfb7aW1VNZ9/tIDdW7bjcrlITk/luumT6ZyV8Z3K5R0+xucfzuPo/sMYjAYyemQx4eYbSeiYdDEvV0RaCAUK5bJ7/PHHiY2NBcDr9VJTU8Onn37KY489Rnl5OXffffcFlZ08eTJr165lyZIl3HbbbUE/c8mSJbhcLqZMmXLpL1Auieq6On43fz6ehgYm9+9Pg9fL/K1bOVZWxu+n3YjZZApaz+F08ttP51Fut3ND376Eh4Tw2Y4d/G7+Av4w7UY6x8UBviDhHxYsIDMhgVuHDaW0ppZF27dzsKSEmVMmYzAYANiZn88fFy4izGrlxoEDMBqMLNq2jR35+fz2xqlEKAAh7Vx1bS2/ff55PB4PU8aNo6GhgXnLlnE0P5+nHnkEszn4o4ejro6Zf/0r5ZWVTLzmGsLDwli8ciW/ff55nnrkEdKSkwHfveB4URE5/foxrH//Jm0kNo5n8AUJf//ii3Tp3JnbpkyhtKKChStWcODoUWY99JB/TIu0Ry57PVtfW4zX00DqVdm+cZW7ndrCcgbcNwnjGe6p7noXW/++GGe1nZQremMODSH/611se20xA342ifCOsVjCQ+g+IzDI1+B2c2DeWizhoYR3igvSOuz/ZDVuh/OiXqtIa2WvqeX1p1/C43Ez6voxeL0NrFq8nKLj+dz75MOYznA/ra+r4x//+wLVFVWMvHY0oeFhrF2Wy+tPv8S9Tz5Mh9ROF1TuRGExr/3vC1itVq6efB0Aq5es4O9P/ZX7Zz1KVEz05fmBiMhlo0ChXHbjxo0jNTW1ybHp06dzww038NJLL3H77bdfUNnrr7+eWbNm8dlnn50xULhw4UKioqK4+uqrL/r1yOWxcOs2ympq+d8Z/0FqY/C4a1IiTy1YxJd79zK2V6+g9T7d8g0FlZU8MWkSvZN9Dzwjsrrw4Lvv8emWb7h/zDUAvPP118RHRPCbKZOxNj54JURE8Pqqr/jm2HEGpHUG4J9frcZgMPDbqVPoGO17MBqSkcFjH33E3E2buX3E8Ev6cxBp6RZ88QVlFRU88/jjpHbsCEDX9HT+8NJLrFi7lnFXXBG03ieff05BcTH//fOf07tbNwBGDBrEz2fO5NOlS3nghz8EoKSsjPr6eob068dVQ4eesR/vzJ1LfGwsMx96CGvjrOCE2Fhee/99tuzaxcDevS/mZYu0KnmrdlBfaWfwg1MJS4oBIDI1ke2vL6Fo0346DekRtN7xL7fhOFFJ33uuJybTN74T+2Ww/k8fcTx3Gz1mXIXJaqHDwKyAugfmr8XraaDnD67CYgt8qVa0+QDle/Mv3kWKtHJfLVlBZXkFD8x6lKRk33hLyUznzWdfYdNX6xgyemTQeisXLuNEYQl3P3o/mT26AtB36ED+/OjvyF20jOk/uf2Cyq1esgJXvZOfPP4gndJ838u69O7O3373Z1Z/toLrb556SX8OInL5KUehtAihoaGMGTOGmpoa9jUuVTvfspGRkVxzzTVs2LCB0tLSgPKlpaWsXbuW66+/HqvVeqkuQS6x1QcO0Du5kz9ICNA3NZVOMdGsOXAwaB2v18vKvXsZ0LmzP0gIEBMWxh3Dh9Ozk++hy+l2E2WzMaZnT3+QEKBXJ1+dI43/rkqqqzlWVs5V3br5g4QAKbExDEpLY+Xes//bFWkPvtq0id7duvmDhAD9evakU1ISqzdtClrH6/Xy5bp1DOzd2x8kBIiNiuKH06bRM+tU0OFYQQEAKd9KHXA6p8tFVEQEY0eO9AcJAXp19X0ROpKX990uTqSNKNl6kJjMjv4gIUBs12RsiVGUbD0UtI7X66Vo837ieqT6g4QA1sgwMicMISrjzGOytrCM/DW76DC4G9Gn1T3JWW3n4Py1pI3pH6S2SPu0be0mMnt09QcJAbr26UF8xyS2rd0ctI7X62XzV+vo3q+XP/gHEBkdxfU3TyW9e5cLKgdQVlJKWES4P0gIkJqZhi08jKK8got2vSLScihQKC3GyWVgHo/ngstOnjwZj8fD559/HlB28eLFviVwWnbcatXU11NcVU1mYkLAuYyEBA6dOBG0Xkl1DWW1dvo1zkr1er3UuVwAXNunt38WotVs5vEbJjBt0MAm9Q+X+tpNbMyrVlZbC+Bfrny6DtFRVNfVUVpT810uUaRNqLHbKT5xgi6dOwecy+zcmUPHjgWtV1JWRllFBf169gQax2p9PQDXjRrVZBbitwOFJ8udzmqx8Ov77uOm8eObHD98/DjQdImySHvjctRTV1ZDREp8wLmITvHU5Ae+dAWoL6/BWWknpuupNAAep++emjy85xlnIQIc/nwTRouZ9HEDg57fN3cNITHhpF6VfaGXI9ImOWrtlJeUkpyRGnAuOS2VgqPHg9arOFFGdXklXfucup8663z3yWFjrvTPQjzfcgDxHRKx19qprar2H7PX1FLnqCMyOuoiXK2ItDRaeiwtQkNDA+vWrcNqtZKVFbhc5VxlR48eTXR0NIsXL+aWW25pUn7hwoWkpKSQk5Nzyfovl1Z5Y4AuLiw84FxsWBj2eie19fWEfys/YGFlJQBRNhvvrPmaL3bvxuF00SE6ijtGDGdwenrQzyuprmZnfgHvfP01neNiycnwlQtpnG3oaAw2nq66rg6ACruD+IiI73ilIq1bWUUFAHHRgfmKYqOisDsc1NrthIeFNTlXUFwMQFRkJG/PmcOy1atx1NXRITGRO6dNY3Dfvv6yxwsKCA0N5a2PP2b15s3U19eTlJDALZMmccXgwUH7VVJayo79+3l7zhw6d+rEkH79LtIVi7Q+zko7ANaosIBz1igbHocLt8OJ2dZ0FYajtAoAS3goBxetp3D9Xjx1LkLjI+lyw1DiewW+IADfbMKyXcdJGdWHkCCfWbzlAOV7jzPgZ2fOjSjS3lSVNz7DxsYEnIuMiaLO7sBhd2ALa7r5UGlRCQDhkREsnv0JG1auod5RR1xSAhNuuZGeA7IvqBzAqAlj2bNlB+//7W0m3HIjAIvf/wSTycSIa6+62JcuIi2AAoVy2VVVVVFWVgb4ZgTm5eXxz3/+k927d/OjH/2I8PDwCy5rtVoZP348H3/8MeXl5f4NUIqKiti4cSM//elPlbi+FTsZmLMGSdpsbfxS4XS7AwKFdqcvIfr7GzZgNhq5c+RIjAYD87du5dnPlvD4DRPo+60cmNV1dTz47/f8n/ejK0b6Pzc1Nhab1cK6Q4eYOqC//9+U0+1m63HfUkanx32xLluk1Tk5uy9YmoeTS4DrXS6+HfK3OxwAzF6wALPJxI+mT8doMDBv2TKe+fvf+fV99/lnGx4rKKCuro7aujoeuOMOah0OFq1YwfP//Ccejycgb2F1bS0PzJzp79ddM2Y0WY4s0t6cnAVosgTeU42N9zuPyx0QKHTX+e6pR5ZuxmAykjVpGBgMHM/dzs53lpF913XENs42PF3+2j1gNJA8PDCXsLPGwYH560gd1ZeI5MAZjiLtVX3jC2iLNfB+ZW485nI6AwKFdY3302VzFmIymbjhP2/CaDSwavFy/vXCa9z58L107dPjvMsBxMTHMnrStcz/14e89JunATAYjdxy311NliOLSNuhQKFcdtOmTQs4ZrVaueOOO/jFL37xnctOmTKF999/n6VLlzJjxgwAFi1ahNfr1bLjVs7r9QJccLDX1bg03V7v5M+3/MC/I/Gg9DQeem82761bHxAoNBgMPDhuDG5PA4u3b+cP8xfy4LixDOuSidlkYmK/vny4YRMvfLGcGwf4dl9+f/0G6huDmSajMjpI+/Wdx6rbF2C3Oxw89+STRDTOOBycnc2Ds2bx3rx5/kDhuCuuoKGhgfFXnZrFcMXgwfziqad4Z+5crszJwXjaODQYDPy/d92F2+1m8Zdf8vsXX+Shu+5i2IAB3+dSRVqvxnHKBb4/bXA3AL6AYc7DN/k3JInv2Zn1z37E4SUbAwKFHpeb4s0HiO/VmdDYwNn2+z9ZgyUiVLkJRb7FP0wv8H7qdvnup3V2Bw/98b+whfvupz0GZPOXX/2OpR8toGufHuddDmDpxwv5cv4SMnpkkTN6JN6GBtYt/4r3/++f3HLfXU1mH4pI26BAoVx2zzzzDAkJvlxzRqORqKgosrKyCAkJ3AHvQsrm5OSQnJzM4sWL/YHCBQsW0Lt3b7p27RpQXloPW+PsH6c7cLaeszEYaAs2g6lxZsTQzAx/kBAgPCSEQWlp5O7bR53LRehps4siQkIY0bikfViXTH75wYe8tWYNw7pkAnDToEHU1jtZvH07a/YfAHyBx8n9+/PeuvVNPkekvQlt/PfvbJzNezpnYzA9LDQ04FxI4/gd1r+/P0gIEB4WxuDsbFauW0ddfT2hISFce+WVAfWtFgtXDRnCh4sWcayggPSUFP+5iLAwRg4aBMDwgQP5xVNP8eZHHylQKO2WKcR3z2twBeaEbmi8z5pDA2cxmSy+GfwJfdKb7FpstlmJ65lK8eYDeJwuTKfNgKo8WEiD001CdkZAe8XfHKR0x1F63zEWT70LT/2ptB5edwOu2jpMoRYtR5Z2KSTUN8ZcQe6n7sZZwaFB7qeWxvtp78H9/cE/AFuYjZ4Dstm8ej3OuvrzLudpaGDV4i9IyUjjrl/e738R13foQP7vd39m7j9n88gzPTBrpr5Im6JAoVx2gwYNIjX1/KapX0hZg8HAxIkTeeONN6ioqKC6upqtW7fy2GOPfZ/uSgtwMudfhd0ecK7cbicsxNok2HdSXOODT5TNFnAuOsyG10tAoPB0VrOZgWlpfLZ9B1WOOqJsoRgMBn44cgRTB/SnoLKK+IhwEiMjmb1uPUaDgQTlJ5R2LKEx7UNFVVXAufKqKsJsNn8w8XRxMTEARAUZP9GRkXi9XhyNgcIziW7cdKg+yJeqk6wWC4P69GHxl19SVVMT9PNE2rqQaN+/e2e1I+Ccs8qByWZpEuw7yRrlSxpgCQ8MTlgjbOAFT33TQGHZnuMYzEbiegQ+y5Xv86Xs2Pn2soBzJVsPUbL1EH3vGU9Ml07neWUibUd0vO9+Wl1ZHXCuuqKK0DAb1tDAe2JUrC9HcHhk4P0tPCoCvF7q6+vPu1xlWQUet5u+wwY2ma1vMpvpNzyHJR98SklBMZ3SUgLaEZHWS4FCaVOmTJnC3//+d5YvX05ZWRkmk4mJEyc2d7fkewoPCSExMjLo7saHT5ygS2Ji0Hqd4+KwmEwcLy8POFdSVY3FbCIqNJS88gr+Z9EipvTvz7V9ejcpV+dyYTCAxeR7OFq9/wAxYTZ6JycTfdrMp10FBWQmJgTNoyjSXoSHhZEYH8+h44G7MR46doystLSg9Tp36oTZbOZYYWHAueLSUiwWC9EREZRVVPD7l15i5KBBTJ8woUm5vKIiABLj48krKuKpl19m6rhxXDdqVJNydfX1GAwGLBqr0k6ZbVZC4iKC7m5cU1BKZEpC0HrhHWMwmI3YiysCztWV12C0mAKCiFVHi4lMScAcGjjrv/NVfUkaELiB3fbXlxDTLZnUUdmEd9IO5dI+2cJsxCTEUXAk8H6af/Q4KRnBNw/qkNIJk9lMcX7g/bT8RBlmi4XwyAhCQkLOq1xtVQ0ADQ3egHLehoaTf7qAKxOR1kDJtKRN6d69Oz169GDFihUsX76c4cOHk5SU1NzdkotgaGYG2/PyyCuv8B/bdvw4BRWVjDzDTtmhFguD09PYfPQox8tOBQuLq6rZeOQoOenpGI1GOkZHYXc6WbprF27PqaVYJdXVrD14iF6dOvmXNi/YupU3Vq3G4384gk1HjrKnsIjrvhVkFGmPhvXvz7Y9e/yBO4Ctu3dTUFzMyDPsShwaEkJO375s3r6dYwUF/uPFpaVs2LaNnL59MRqNxMXEYHc4+GL1av8GKAAnyspYsXYtfbp3JzYqio4JCdgdDj5ftQr3aSkLSkpL+XrLFnp17YotyJItkfYioU86FQfysZdU+I+V78/HUVJFYr/MoHVMVgvxvdIo232c2qJT99S6smpKdx0lrldnDKfNOGrweLAXVRCeHDzYF5YUQ2zX5ID/AKyRNmK7JjdZ4izS3vQZ3J8DO/dQUnDqfrp/xx5KC4vpO2xQ0DrW0BB6Dsxm79YdFOedup+Wl5Sye/N2eg7Mxmg0nne5pJSORMZEsXnVWlzOU+kBXE4XW1avJywinKTkjpfg6kWkOel1urQ5U6ZM4eWXX6auro6nnnqqubsjF8mUAf3J3bePPyxYwMR+fXG6PczfupXMxASu7ObLQVlUVcXewiK6d+xAh6goAG4dPoydBQX8bv58rs/OxmwysnjbdixmEzcPHQL4NiD50ciRvLx8Bb+dN59R3bpSXVfPkh07MBoN/OiKkaf1YwDPfb6Upxd/xpCMDE7UVLNw63b6dU7lSuXCFGHKuHGsXLeO373wApPGjMHpcjFv2TK6pKUxKicHgKITJ9hz8CA9unShQ2Me2tunTmXnvn3Mev55Jlx9NWaTiUVffonVYuE/J0/2t//jH/yAP/397zz5l78wduRIHHV1fLZyJSajkbsb89OaTCbumj6dl95+m9/89a9cNWQI1bW1fLZyJUaDgbumT7/8PxiRFiR1VDbFmw+w7bXPSLkymwa3m+O524lIiffP8nOUVVN1pJio9CRscb6l/ZnX51B5qJBtr31G8sheGI0m8tbsxGgxkXFd0xcB9RW1eD0NhEZrib/IdzFqwhi2rF7PG8+8xBXjr8HtcrFq8XKSMzrTf7hvvJUVn+Do/kOkdc0kLsl3Px0/YwqHd+/n9adfYsS1V2E0mVmz9EssVgvX3nRqpdX5lDMajUy6bTrvvvwGf/v9Xxg0ahjehgY25q6lpLCY6ffchkkz9EXaHIP35BaFIpfYY489xpw5c1i2bNk58w5eSNlvKyws5JprriEkJISvvvqK8PDw79Ntv/IX/npR2pHvLr+igrdWr2F3YSEhZjMDOnfmtuHD/DkIv9yzl/9b8SX3Xj2a0T26++sVVVXx7tp1bMvLw+v10rNjR24dPozUxnxqJ3194CCfbNnC8fJyQsxmslNS+MGQHJIb86edtHr/AT7dsoWCyiqibTau7NaVqQMGEGLRg1JzM42+prm7IEB+URFvfvwxuw4cIMRiYWCfPtw2dao/j+CKtWt55Z13+Nntt3P1sGH+ekUnTvCvTz5h2549eL1eemVlcduNN5LaselshQ1btzJnyRIO5+VhtVjo3a0bt06ZQkqHDk3Krdm0iU+WLuVYfj4hISFkd+/OLZMmkfytcnJ5/bR0cXN3QQB7SSUHF6yj8nARJquZ2O4pZF6f48s3CBRt2s/eD1fRffqVdBh06kWYo6yaw4s3UH4gH7wQndGBzOtzCEuKadJ+9bEStryygK43jqDT0B7n3a/cX/+TpEFZ9Jg+6tyF5ZK6J2tcc3eh3TtRWMzCd+dweO8BrFYr3fv1ZvyMyYRH+e6nm1atY87r/2ba3bcy6Mqh/nplxSdY8uE8Duzci9frJb17F8bPmBIw++98yx3ctY/lny4m79AxADqlpzJ60rV079vrEv8E5FzGpQWfXdrWLD266ZK0215+fhdKgUKR86RAoUjLp0ChSMunQKFI66BAoUjL114CXZcqUPjHu3551vPLlgVuuNUeKEehiIiIiIiIiIiIKEehiIiIiIiIiIi0L+11xuC5aEahiIiIiIiIiIiIKFAoIiIiIiIiIiIiChSKiIiIiIiIiIgIChSKiIiIiIiIiIgIChSKiIiIiIiIiIgIChSKiIiIiIiIiIgIChSKiIiIiIiIiIgIChSKiIiIiIiIiIgIChSKiIiIiIiIiIgIChSKiIiIiIiIiIgIChSKiIiIiIiIiIgIYG7uDoi0Fj/Lrm/uLojIObzy5fLm7oKInMM9U8c1dxdE5DwMrdBXRZEWL625OyBtkWYUioiIiIiIiIiIiAKFIiIiIiIiIiIiokChiIiIiIiIiIiIoEChiIiIiIiIiIiIoEChiIiIiIiIiIiIoEChiIiIiIiIiIiIoEChiIiIiIiIiIiIoEChiIiIiIiIiIiIoEChiIiIiIiIiIiIoEChiIiIiIiIiIiIoEChiIiIiIiIiIiIAObm7oC0Dy+88AIvvvjiWcvMnTuXN998kzlz5vDf//3f3HbbbQFljh8/ztixY3nggQf4+c9/DsBjjz3GnDlzAsparVYSEhIYMWIEDz/8MAkJCRfnYqTZ1JVVc3DReioPFgIQ1zOVzAlDsEbYzlqv4kABR5ZupqagDHOohYTsDDKuG4TJajljnX1zVuM4UUm/n0wIOFe2N49jK76hJq8UDAaiOieSfu0gotISv98FirQRxVXVvPP11+zMzwdgYFoad4wYTpTt7GN1R14+72/YwJHSUsKsVoZ16cLNQ3IItfjGakl1NQ/++72ztvHk5In0Tk4OOF5eW8svP/iQwenp/Oyaq7/TdYm0JeUlpSya/QmH9uwHoEe/3ky4eSrhUZFnrXdw1z6WzVlIwbE8Qm2hZA8ZwLhpE7GGhjQpt2/bLlbM/5z8w8cwGA107pLBuJtuoHNWxndqT6Q9Ki4t5a05c9i5bx8Ag/r04Y5p04iOPPs43b53L7MXLOBIXh5hoaEMHziQWyZNIjQk5DuVO3D0KO9++il7Dh3CaDTSOyuLO6ZNI7lDh4t7wSLSIihQKJfVvffeS5cuXYKeSz7ti91zzz3H+PHjLyi49/jjjxMbG+v/e01NDWvWrOGjjz5i+/btfPjhh1it1u/eeWlWLns9W19bjNfTQOpV2Xi9Xo7nbqe2sJwB903CaDIFrVdxoIBtr39GREo8mdcPpr7STv7qndTkldLvpxMwGAwBdQo37KVw/V6iMwMffioOFbLjzc8JS4oh47pBeD1e8tfuYuvfF9H/pxOI7KxgobRv1XV1/G7+fDwNDUzu358Gr5f5W7dyrKyM30+7EfMZxuqOvHz+sGABmQkJ3DpsKKU1tSzavp2DJSXMnDIZg8FAZGgo911zdUBdp8fNm1+tIdIWSlp8fND2/5G7itp650W8UpHWy15Ty+tPv4TH42bU9WPwehtYtXg5RcfzuffJhzGZg39FOLhrH2/86WVS0jszfvpkKssrWPP5SvIOHeOexx/031MP7dnPW8+9SlJyR679j4l4PA2s+2IVr/3vC9zz2IOkdkm/oPZE2qPq2lp++/zzeDwepowbR0NDA/OWLeNofj5PPfII5jOM0+179/L7F1+kS+fO3DZlCqUVFSxcsYIDR48y66GH/OPqfMvlFxXx2+efJ8Ri4T+uvx6ABV98wX8/9xxPP/YYcdHRl+cHIiKXjQKFclmNHDmSYcOGnbNcVVUVf/zjH3n22WfPu+1x48aRmpra5Nhtt93GzJkzeffdd1m6dCk33HDDBfdZWoa8VTuor7Qz+MGphCXFABCZmsj215dQtGk/nYb0CFrv4KL1hMSE0+8nEzBZfL/yQqLDOfDp15TvyyOu+6l/M96GBo6t2MqRZVvO2I+DC9YREh3OgJ9NwmT1tZc0KIuNf5nD4c830ffu8RfngkVaqYVbt1FWU8v/zvgPUhtf3nRNSuSpBYv4cu9exvbqFbTeO19/TXxEBL+ZMhlr45efhIgIXl/1Fd8cO86AtM6EWiyM6t4toO6bq9fgbvDwwJhriAgJnIWUu3cfW48fv4hXKdK6fbVkBZXlFTww61GSkjsCkJKZzpvPvsKmr9YxZPTIoPUWv/8JMXGx/Pixn2NpnJUfHRfL/Hc+ZN/23XTv6xvfC9+dQ3RsDP/PE/8f1hDfS9qBI4fw1yf+yNKPF/CjR+67oPZE2qMFX3xBWUUFzzz+OKkdfeO0a3o6f3jpJVasXcu4K64IWu+duXOJj41l5kMPYW2ckZ8QG8tr77/Pll27GNi79wWVW7BiBfX19fz2oYfIbPyu1bd7d379pz+x4IsvuGPatEv6cxCRy085CqVFGjNmDPPnz2fNmjXfu61pjTevb7755nu3Jc2nZOtBYjI7+oOEALFdk7ElRlGy9VDQOh6XG2tEKB2HdPcHCQH/TMHagrImZTe9OI8jS7eQNCALa3RYQHsuRz21BWUk9M3wBwkBrBE2ojM7UnW0+Ptepkirt/rAAXond/IHCQH6pqbSKSaaNQcOBq3jdLuJstkY07OnP0gI0KtTJwCOlJae8fOOlpby2fbtjO7R3V/+dBV2O2+uXs20QQO/6yWJtDnb1m4is0dXf5AQoGufHsR3TGLb2s1B67icLsIjI8gZPdwf1API7JEFQOHRPAActXYKj+WTPWSAP0gIEBEdSUb3LI7uP3xB7Ym0V19t2kTvbt38QUKAfj170ikpidWbNgWt43S5iIqIYOzIkf7gH0Cvrl0BOJKXd0HlAIpPnCAyIsIfJATISk8nIjycYwUFF+FKRaSl0YxCaZGeeOIJ1qxZw8yZM5k3b973WjJsa8yJ5fV6L1b35DJzOeqpK6shITsj4FxEp3jK9gWfKWSymMn+0XUBx08GCENiIvzHvO4GPPVOev7naBL7ZrLumQ8C6plDLOT8fzdhtAb+6nTZ6zAY9e5F2rea+nqKq6oZ1iUz4FxGQgLfHDsWtJ7VbObxGwLzgR4uPQFA4llyMc1evwGr2cwPcnKCnv9H7ioSIiKY0r8/H6zfeD6XIdKmOWrtlJeU0ienf8C55LRU9m3fFbSexWrhzofvDThe0BjQi0mIAyDEFsr/+9SvmwQJT7LX1GI0GS+oPZH2qMZup/jECYYPGBBwLrNzZ7bs3Bm0ntVi4df33Rdw/HDjrPrEuLgLKgfQMTGRbXv2UFld7c+NWF1bi93hICYq6sIuTERaBX2rlcuqurqasrKygP9cLleTcikpKdx3330cPnyYV1999Xt9Zm5uLgC9G6fPS+vjrLQDYI0KnOVnjbLhcbhwO86de6yuvIaiTfs5MH8dYR1iiO+d5j9nCrWQ8/B/kNg3MMBxksFoxJYQRci3+lFbWEbVkWKi0pLO95JE2qTy2loA4sLCA87FhoVhr3dSW19/znZKqqv5cs9e3ly9hs5xseRkpActd7S0lE1HjjKuVy9iwwM/c9W+fWw5epR7rx59xtyIIu1NVXklAFGxMQHnImOiqLM7cNgd52yn/EQZm1atY8G/PyYppRO9BvYFwGg0ktAhkaiYpnnLCo/lc3T/IdK6Br/Pnqk9kfaorKICIGj+v9ioKOwOB7V2+znbKSktZcXatfzzo4/o3KkTQ/r1u+ByU8eNIz4mhufffJMjeXkcycvj+X/+E5PJxISrr/5O1yciLZtmFMpldf/99wc9/tZbbwXkLrzrrrv49NNPefXVV5k8eTLp6cG/KJ5UVVVFWdmppaQ1NTXk5uby4osvkpWVxcSJE7//BUiz8Dh9geTTlw+fZGxcpuhxuTHbzjzz1GWvZ/0zH/rqWE1kTR7WpD2DwYDBdOFJ0z1OF3s+8AWjU0frS420b47Glz7WIAnWrY2BOqfbTXiQPIInVdfV+Xc2tprN/OiKkUHbA/h85y6MBgPjs/sEnKu023lz9Rom9+9Phna9F/Grr6sDaLLc9yRz4zGX04kt7My7lNtravnzo7Ma27Ey6babgrZ3krOuno/+8Q4Ao24Y+73bE2nr6hpfqgVbVXVyqXC9y0XgK7JTqmtreWDmTH87d82Y0WSZ8fmWS4iLY9r48bz+wQc8+j//A/heCDz84x83WY4sIm2HAoVyWf3qV7+iZ8+eAceDHbNYLMycOZPbb7+dWbNm8dprr5217WlBEunabDbGjh3LE088gSXIjVFaiZPLxr/P5ocG6HnLaBo8DeSv2cm215fQ65bRQZczny+P082Ot5dRW1BO6tV9icnseO5KIm3YyRQP32enUoPBwIPjxuD2NLB4+3b+MH8hD44bG7Cc2el2k7tvH4Mz0oMuTX5t1VdE22zcNHjQd+6LSFvkv6V+z3H6g3vvxON28/XSXN740yvcfO+dQZczO+udvPP8Pyg8ls9VE8eR2aPr92pPpD24WPfT//euu3C73Sz+8kt+/+KLPHTXXQz71nLmc5WbPX8+H3/2Gb26dmXcFVfQ0NDAklWreO7113n4xz9mcF+9KBdpaxQolMuqT58+57Xr8Uk5OTlMmzaNjz/+mAULFtC//5kfGJ955hkSEhJwuVzk5ubyr3/9iwkTJjBz5kxCzjJ7RVo+U4gvyNvg8gSca3C7ATCHnj0QbLGFkNjPF2hIyE5n01/ncmDBuu8cKHQ7nOx4aylVR4rpkNONjGsVjBCxNb6QcTaOy9M5Pb7xaztHztmIkBBGZPk2MxjWJZNffvAhb61ZExAo3JGfT73LzfAuXQLaWL3/AOsPHeaR66/D4XTh4FR6C1dDA1WOOsKsFi1HlnYpJNT3TORyBqbscDfO4A8NDT1rG7bwMPoO9W0Q1CdnAC88+T8sfG9OQGDPYXfwznOvcnT/IQaNGsa4m4Kv7jjf9kTai9DG7y7OIOPU2Th7P+wc4zQiLIyRg3zPp8MHDuQXTz3Fmx99FBAoPFu5WrudT5ctIystjf/++c8xNubjHjloEL/+05/427vv8lLPnpqQIdLGKEehtHi//OUviYmJ4Y9//CM1NTVnLDdo0CBGjhzJ6NGjeeKJJ/j1r3/Nxx9/zEMPPaSNTFq5kGjfpiPO6sCcSc4qByabBdMFLFEyWczE9eyMs9KOq7bugvvjrHGw9bXFVB0ppuPQ7nSbNvJ7vfEVaSviI3xjtSJI3qRyu52wECuhF/Blwmo2MzAtjbKaWqocTcfqlqPHsJhMDEjrHFDv5KYpf1q8hP/nrbf9/wGs2X+A/+ett9lbVHTe/RBpS6LjfTuSV1dWB5yrrqgiNMyGNfT8X7BarBZ69O9DVVkFtdWnntNqq6p5/ekXObr/EDmjR3Ljj245r3vlmdoTaU8SYn3jtKKqKuBceVUVYTabP5h4PqwWC4P69KG0ooKqs3yf+na5wpIS3G43IwcP9gcJAcxmM1fm5FBZXU2e7qcibY4ChdLixcXF8cgjj1BSUsJzzz133vXuuOMOxo4dyxdffMGbb7556Tool5zZZiUkLoKa/NKAczUFpUSmBM8/Zi+pYN0zH5D/9e6Ac556FxjAYL6wGUXuehfb//k5tfllJF/Rm243KkgoclJ4SAiJkZEcOnEi4NzhEyfokpgYtF5eeQU///e7fL4jcBfHOpcLgwEspqaPLHuKishMTCAsyAzFyQP68+uJEwL+A+ibmsKvJ04gLT7+u1yiSKtnC7MRkxBHwZHjAefyjx4nJSMw+A5QUlDEs7+cxdovVgWcq6+rA4MBc2Pu3/q6Ov755/+j8GgeI64dzdQ7fxBwr7yQ9kTam/CwMBLj4zl0PHCcHjp2jKy0tCC1IK+oiPt/8xuWNG7meLq6+noMBgMWs/m8y5kbcwQ3NDQElGtonIih6RgibY8ChdIqTJ8+nUGDBrF8+fILqjdr1iyio6N57rnnONY4w0Rap4Q+6VQcyMdeUuE/Vr4/H0dJlX9J8beFxkXhrnNSsG4PDZ5Ty5bryms4sf0w0ZkdMYdc2FKJA5+u8QUJR/Yia+LQ73QtIm3Z0MwMtuflkVde4T+27fhxCioqGdm4pPjbOkZHYXc6WbprF+7TxmpJdTVrDx6iV6dOTZYsuz0e8srLyUwIHuxLjY2lb2pqwH/g2325b2oqEUpJIe1Yn8H9ObBzDyUFp2YC7d+xh9LCYvoOC55KIy4pgTqHg/UrVuM5Lb1A+Ykydmz4howeWYQ0LoWc9/aHjUHCq7jhPwNzSF9oeyLt0bD+/dm2Z0+TGXtbd++moLiYkYMHB63TMSEBu8PB56tW4T5tXJWUlvL1li306toVW2joeZfr3KkTsdHRrFi71r/kGXzLn1euW0dkRASdOypHt0hbo9d00ioYDAZmzpzJTTfd1ORmdi4JCQk88sgjPPnkk8ycOfOcG6JIy5U6KpvizQfY9tpnpFyZTYPbzfHc7USkxJM0wBd8cJRVU3WkmKj0JGxxkRhNRrImDWfvB7lsfXURSQOzcNvrfTMMjQayJp1/vkwAe3EFxZsPYrJZiEiOp2jzgYAyHQYGD4SItBdTBvQnd98+/rBgARP79cXp9jB/61YyExO4sptvE4Oiqir2FhbRvWMHOkRFYTIa+dHIkby8fAW/nTefUd26Ul1Xz5IdOzAaDfzoipFNPuNETQ1uT4N/qbOIXJhRE8awZfV63njmJa4Yfw1ul4tVi5eTnNGZ/sN9AYiy4hMc3X+ItK6ZxCUlYDKZmHjrTXz0j3/xj/95gQEjcrDX2lm7LBej0cikW/8DgOL8Qr5Zs4HQMBsdO6eyZfX6gM8fMHLIebcn0l5NGTeOlevW8bsXXmDSmDE4XS7mLVtGl7Q0RuXkAFB04gR7Dh6kR5cudEjwjdO7pk/npbff5jd//StXDRlCdW0tn61cidFg4K7p0wHOu5zRaOTuGTP482uv8V9/+hPXjBhBQ0MDy7/+mvyiIu6/4w7/rEMRaTs0qqXV6NGjBz/84Q95/fXXL6jejBkzmDt3LqtWrWLu3LnceOONl6aDcklZI2z0+8kEDi5Yx5GlmzFZzcT3SiPz+hyMjcuHqw4XsffDVXSffiW2ON8uqB0GZmE0Gzn25TYOLliPyWomJqsT6dcOIiwx+oL6UHmoEACPw8XeDwOXSp38PJH2LMpm4zdTJvPW6jV8sGEjIWYzOenp3DZ8GJbGzUN2FxTyfyu+5N6rR9MhKgqAUd27YTGZ+GTLFt5e8zUhZjPZKSn8YEgOyTExTT6jpr4eAJvl7BujiEhw4VGR3PP4gyx8dw7L5i7CarXSa2Bfxs+YjLkxj+jhvQeZ8/q/mXb3rcQl+VJ8DBg5BLPFzMqFy1g0ey6WkBCyenVj3E0TSeiY5Ku3x/cSrc7uYM7r/w76+QNGDjnv9kTaq+jISH770EO8+fHHvL9wISEWC0P69eO2qVP9m4fsOnCAV955h5/dfjsdEnzj9KqhQ7GYzXyydClvffwxISEhZHfvzi2TJpHcoYO//fMtN7R/f5544AE+XLSId+fNAyAzNZVf3XsvA3v3vow/ERG5XAxe7fIgcl5uWf50c3dBRM7hle1aTirS0m2cOqq5uyAi52FoheaUiLR0Uf36NXcXLoulRzddknbHpQVPt9HeKUehiIiIiIiIiIiIKFAoIiIiIiIiIiIiChSKiIiIiIiIiIgIChSKiIiIiIiIiIgIChSKiIiIiIiIiIgIChSKiIiIiIiIiIgIChSKiIiIiIiIiIgIChSKiIiIiIiIiIgIChSKiIiIiIiIiIgIChSKiIiIiIiIiIgIChSKiIiIiIiIiIgIChSKiIiIiIiIiIgIChSKiIiIiIiIiIgIYG7uDoi0FvdkjWvuLojIOfyMpc3dBRE5lwMapyKtwT+auwMick7v0a+5uyBtkGYUioiIiIiIiIiIiAKFIiIiIiIiIiIiokChiIiIiIiIiIiIoEChiIiIiIiIiIiIoEChiIiIiIiIiIiIoEChiIiIiIiIiIiIoEChiIiIiIiIiIiIoEChiIiIiIiIiIiIoEChiIiIiIiIiIiIoEChiIiIiIiIiIiIoEChiIiIiIiIiIiIAObm7oC0Ly+88AIvvvjiWcvMnTuXN998kzlz5jQ5bjQasdlsZGVlceuttzJt2jT/ucceeyygPIDVaiUhIYERI0bw8MMPk5CQcHEuRJpFeUkpi2Z/wqE9+wHo0a83E26eSnhU5FnrHdy1j2VzFlJwLI9QWyjZQwYwbtpErKEhZ6wz95+zKS0q5se/+vlFaU+kPakrq+bgovVUHiwEIK5nKpkThmCNsJ21XtnePI6t+IaavFIwGIjqnEj6tYOISktsUs5Z4+Dwkk2U7T5Gg8tNRHI8GeNzAspV553g8GcbqTpajMFgIDqzI5kThhCWGH1xL1ikFWop47TiQAFHlm6mpqAMc6iFhOwMMq4bhMlqubgXLNIKtZRxuvnledQcLw34nPjsdHrfes33vEoRaWkUKJRmce+999KlS5eg55KTk/1/fvzxx4mNjQXA6/VSU1PDp59+ymOPPUZ5eTl33313k7qnlweoqalhzZo1fPTRR2zfvp0PP/wQq9V6Ca5ILjV7TS2vP/0SHo+bUdePwettYNXi5RQdz+feJx/GZA7+6+zgrn288aeXSUnvzPjpk6ksr2DN5yvJO3SMex5/EIPBEFBnY+7XbFy5howeWRelPZH2xGWvZ+tri/F6Gki9Khuv18vx3O3UFpYz4L5JGE2moPUqDhWy483PCUuKIeO6QXg9XvLX7mLr3xfR/6cTiOzs+9Lirnex9e+LcVbbSbmiN+bQEPK/3sW21xYz4GeTCO/ouwfYSyrZ+vfFmKxm0q7pD0DeVzv55tWFDPr5VEKiwi7PD0SkBWop47TiQAHbXv+MiJR4Mq8fTH2lnfzVO6nJK6XfTyfonirtWksZp16vF3txJfG904jvk97ks0Jjwi/tD0FEmoUChdIsRo4cybBhw85Zbty4caSmpjY5Nn36dG644QZeeuklbr/99iaBv2Dlb7vtNmbOnMm7777L0qVLueGGGy7ORchl9dWSFVSWV/DArEdJSu4IQEpmOm8++wqbvlrHkNEjg9Zb/P4nxMTF8uPHfo6lcXZCdFws89/5kH3bd9O9by9/2YaGBr6c/zlffLL4jP24kPZE2qO8VTuor7Qz+MGphCXFABCZmsj215dQtGk/nYb0CFrv4IJ1hESHM+BnkzBZfY8nSYOy2PiXORz+fBN97x4PwPEvt+E4UUnfe64nJtP3uyCxXwbr//QRx3O30WPGVb5+rN5Jg9NN/59OICI5HoCYrGS2vDyfvK920GXCkEv5YxBp0VrKOD24aD0hMeH0+8kETBZfeyHR4Rz49GvK9+UR1z01SC9E2oeWMk7ry2tocLqJ751Gh4GBL9FFpO1RjkJpdUJDQxkzZgw1NTXs27fvvOqcXKb8zTffXMquySW0be0mMnt09QcJAbr26UF8xyS2rd0ctI7L6SI8MoKc0cP9QT2AzMaZgoVH85qUfXnmn/hi7iIGjMghMjZwaeKFtCfSXpVsPUhMZkf/lxqA2K7J2BKjKNl6KGgdl6Oe2oIyEvpm+L/UAFgjbERndqTqaDHgm9VQtHk/cT1S/V9qAKyRYWROGEJURgf/sbqyaszhIf4gIUBkagLmsBDsReUX63JFWqWWME49LjfWiFA6DunuDxICRGf6ztcWlF206xVpjVrCOAWoLa4AwJagtB0i7YVmFEqrdHIpisfjOa/yNpsvj4fX671kfZJLx1Frp7yklD45/QPOJaelsm/7rqD1LFYLdz58b8DxgsaAXkxCnP+Y2+2m3lHHzT+7k+whA3n2l7O+V3si7ZHLUU9dWQ0J2RkB5yI6xVO273jQeuYQCzn/300YrYGPJS57HQaj771mfXkNzko7MaOyAd/v9AaXG5PVQvLwnk3q2eKjqNifj7PG4c/l5LLX465zYjlHbieRtqyljFOTxUz2j64LaOtkgDAkJuKCr02krWgp4xTwv1wLS/IFCj1Ol3KIirRxChRKs6iurqasLPBNcWRkJBbL2W88DQ0NrFu3DqvVSlbW+U1/z83NBaB3794X3llpdlXllQBExcYEnIuMiaLO7sBhd2ALO/uX//ITZRzavZ/Fs+eSlNKJXgP7+s+F2kJ56H/+C9MZ8r1caHsi7ZGz0g6ANUj+P2uUDY/DhdvhxGxrmivWYDRiS4gKqFNbWEbVkWJiu6UA4CitAsASHsrBRespXL8XT52L0PhIutwwlPhenf11U6/Kpmz3MfbMXkmXib5lxgcXbcBoMpIyUvcCab9a0jg9XV15DZWHCjm4cD1hHWKI7532va5TpDVrSePUXlyBKcTMwYXrKdl6iAanm9C4CNKvHURS/+A550WkdVOgUJrF/fffH/T4W2+91SR3YVVVlT+g6PF4yMvL45///Ce7d+/mRz/6EeHhTRPonl4efJuZ5Obm8uKLL5KVlcXEiRMvwdXIpVZfVwfQZLnvSebGYy6n86yBQntNLX9+dFZjO1Ym3XZTk/YMBsMFBQnP1Z5Ie+RxugCaLCM8ydi44ZDH5Q74YnOmtvZ84HvJkzraF4R31zkBOLJ0MwaTkaxJw8Bg4Hjudna+s4zsu64jtqtvQ6zQmAg6X92PA/O+ZtPznzZ2wkCvW69ushxZpL1pSeP0JJe9nvXPfOjrg9VE1uRhQfsn0l60pHFaW1SBp96Nu85JjxmjcNc5yV+9kz2zV+Jt8CpvoUgbpDuwNItf/epX9OzZM+D4t4+dzC14OqvVyh133MEvfvGLgHPByttsNsaOHcsTTzxxztmK0jKdXDH+fXY/NBgM/ODeO/G43Xy9NJc3/vQKN997Z9DlzM3Rnkib4B+s368Zj9PNjreXUVtQTurVff35kxrcDYDvC07OwzdhsYUAEN+zM+uf/YjDSzb6v9gc/nwTx5ZvJTqzAx2H9sDb4KVg7W52v/slvW695oyzmkTavBY0Tv0M0POW0TR4Gshfs5Ntry+h1y2jgy67FGkXWtA47TSkO16vl+ThpzbsS+yXyaa/zuXQovUk9c/0L2kWkbZBgUJpFn369DmvXY+feeYZEhISADAajURFRZGVlUVISMhZy7tcLnJzc/nXv/7FhAkTmDlz5hnrSMsXEur7/87ldAaccze+cQ0NDT1rG7bwMPoOHQhAn5wBvPDk/7DwvTnfObB3sdsTaQtMIb6XMQ2uwPyxDW43AObQs7+wcTuc7HhrKVVHiumQ042Mawedat/im/Wb0Cfd/6UGwGyzEtczleLNB/A4XXg9Xo7nbiciNZ6+Px7v/wKT2C+DLS/PZ9+cr4jtNgOj+fxnEYu0FS1lnJ6e48xiCyGxX6avXnY6m/46lwML1ilQKO1WSxqnnYYFTu4wWcwkDczi6LJvsBdXEN5RebpF2hIFCqVFGzRoEKmpqd+p/OjRo0lPT+f3v/89FRUVvPzyy99rRpo0n+j4WACqK6sDzlVXVBEaZsMaev6BYIvVQo/+ffh66Upqq2sIj/x+CdMvdnsirVVItO/fvrPaEXDOWeXAZLOcNQG6s8bB9n9+Tm1+GR2Hdqfr1BFNfm9bo3zpJizhgS8GrBE28IKn3kV9pR2vu4HEfl2azHIwmkwk9c/i0OIN2EsqieikLzbS/rSUcXqmzzBZzMT17Ez+6l24auuCtiPS1rX0ceqr60v543G6z++iRL6HoRWXKHSldLhBaY6wtGl33HEHY8eO5YsvvuDNN99s7u7Id2QLsxGTEEfBkcAd3vKPHiclI/gSwpKCIp795SzWfrEq4Fx9XR0YDJgvIAfSxW5PpK0x26yExEVQk18acK6moJTIlIQz1nXXu/xfapKv6E23G0cGvNwJ7xiDwWzEXlwRUL+uvAajxYQlPBSjufHxpiFwp3uvt+HkH87/wkTakJYyTu0lFax75gPyv94dUM5T7wIDGDTrV9qpljJO6ytr2fDcHI5+sSWgnOOEb7PB0Fi9IBdpaxQolDZv1qxZREdH89xzz3Hs2LHm7o58R30G9+fAzj2UFBT5j+3fsYfSwmL6DhsUtE5cUgJ1DgfrV6zG4z71trP8RBk7NnxDRo8sQs6xZPlStifSFiX0SafiQD72kgr/sfL9+ThKqvxLC4M58Oka35eakb3Imjg0aBmT1UJ8rzTKdh+ntqjcf7yurJrSXUeJ69UZg9FIWFIM1igbhZv24XGdGqsel5uizQcwh4cQ1iHme1+rSGvVEsZpaFwU7jonBev20OA5tbyyrryGE9sPE53ZEXOIcktL+9USxmlIdDieOicF6/f6N0ABqKuooWjjPqKzOmKNDNyZWURaN019kTYvISGBRx55hCeffJKZM2fy2muvNXeX5DsYNWEMW1av541nXuKK8dfgdrlYtXg5yRmd6T98MABlxSc4uv8QaV0ziUtKwGQyMfHWm/joH//iH//zAgNG5GCvtbN2WS5Go5FJt/7HBfXhYrcn0haljsqmePMBtr32GSlXZtPgdvvyBabEkzTAtzOio6yaqiPFRKUnYYuLxF5cQfHmg5hsFiKS4ynafCCg3ZO7KmZen0PloUK2vfYZySN7YTSayFuzE6PFRMZ1vt8FBqORrMnD2fXv5Wx5ZQEdB3fD6/VStHEfjpJKeswYhfECdjkXaWtawjg1moxkTRrO3g9y2frqIpIGZuG21/tmGBoNvl1YRdqxljBOAbKmDGfXO8v55m8L6ZjTHY/TRf6aXRiMRrpOHn55fhgiclkpUCjtwowZM5g7dy6rVq1i7ty53Hjjjc3dJblA4VGR3PP4gyx8dw7L5i7CarXSa2Bfxs+YjLlxN+vDew8y5/V/M+3uW4lL8i3JGDByCGaLmZULl7Fo9lwsISFk9erGuJsmktAx6YL7cbHbE2lrrBE2+v1kAgcXrOPI0s2YrGbie6WReX2Of/OQqsNF7P1wFd2nX4ktLpLKQ4UAeBwu9n4YuLQfTn2xCY2NoP+9Ezm8eAPHc7eDF6IzOpB5fQ62uEh/+YQ+6fS9ezxHv9jC4c83AhCRHE+fO8cR1/38c9+KtEUtZZx2GJiF0Wzk2JfbOLhgPSarmZisTqRfO4iwxOhL/FMQadlayjhN6J1O7zvGcHTFVg59tgGjxURMZicyxg8iLDHm0v4QRKRZGLxeJekROR9Lj25q7i6IyDn848DS5u6CiIiIiMhl8d41jzZ3Fy6Lqq1bL0m7Uf36XZJ2WzvlKBQREREREREREREFCkVERERERERERESBQhEREREREREREUGBQhEREREREREREUGBQhEREREREREREUGBQhEREREREREREUGBQhEREREREREREUGBQhEREREREREREUGBQhEREREREREREUGBQhEREREREREREUGBQhEREREREREREUGBQhEREREREREREUGBQhEREREREREREUGBQhEREREREREREQHMzd0BERGRi+XV+Oubuwsicg4/LV3c3F0QkfNwT9a45u6CiIg0A80oFBEREREREREREQUKRURERERERERERIFCERERERERERERQYFCERERERERERERQYFCERERERERERERQYFCERERERERERERQYFCERERERERERERQYFCERERERERERERQYFCERERERERERERQYFCERERERERERERAczN3QGR8/HCCy/w4osvnrXM3Llz6dWrV5NjTz75JIcPH+btt9++lN2Ty6S8pJRFsz/h0J79APTo15sJN08lPCryrPVqq6r5/KMF7N6yHZfLRXJ6KtdNn0znrIzvVO7grn0sm7OQgmN5hNpCyR4ygHHTJmINDbmYlyvSahWXlvLWnDns3LcPgEF9+nDHtGlER559rFZWV/PevHls2LYNp9tNZmoqt02dSreMjCbltu/dy+wFCziSl0dYaCjDBw7klkmTCA1pOgZ3HzjAu/PmceDoUSLCwsjp148f3HADURERF/V6RVqjurJqDi5aT+XBQgDieqaSOWEI1gjbWes5axwcXrKJst3HaHC5iUiOJ2N8DlFpib52y2tY/8yHZ22j7z3jienSCQCP08WRZVso2XoIt6OesKQY0scOJK5H6kW4SpHWraU8+/7frD+Td/howOf0HtyP/7z/7u91jSLS8ihQKK3KvffeS5cuXYKeS05ObvL3Dz74gPfff5+hQ4dejq7JJWavqeX1p1/C43Ez6voxeL0NrFq8nKLj+dz75MOYzMF/ndXX1fGP/32B6ooqRl47mtDwMNYuy+X1p1/i3icfpkNqpwsqd3DXPt7408ukpHdm/PTJVJZXsObzleQdOsY9jz+IwWC4bD8TkZaouraW3z7/PB6PhynjxtHQ0MC8Zcs4mp/PU488gvkMY9VRV8fMv/6V8spKJl5zDeFhYSxeuZLfPv88Tz3yCGmNv+O3793L7198kS6dO3PblCmUVlSwcMUKDhw9yqyHHvKPwR379vHUSy8RZrMx7brrMBqNLFy+nB179/K7hx8mIizssv1MRFoal72era8txutpIPWqbLxeL8dzt1NbWM6A+yZhNJmC1nPXu9j698U4q+2kXNEbc2gI+V/vYttrixnws0mEd4zFEh5C9xmjAuo2uN0cmLcWS3go4Z3iAPA2NLDjzaVUHS0heWQvQmMiKNq0nx1vLSX7ruuI7Zoc0I5Ie9FSnn29Xi/FBYX0HNiXPoP7NfmsmIS4S/tDEJFmoUChtCojR45k2LBhZy3j8Xh45ZVXzjkDUVqXr5asoLK8ggdmPUpSckcAUjLTefPZV9j01TqGjB4ZtN7Khcs4UVjC3Y/eT2aPrgD0HTqQPz/6O3IXLWP6T26/oHKL3/+EmLhYfvzYz7FYLQBEx8Uy/50P2bd9N9379grSC5H2Y8EXX1BWUcEzjz9OakffWO2ans4fXnqJFWvXMu6KK4LW++TzzykoLua/f/5zenfrBsCIQYP4+cyZfLp0KQ/88IcAvDN3LvGxscx86CGsFt8YTIiN5bX332fLrl0M7N0bgDc++ACD0cjvHn6Yjom+mU5D+/fn0T/+kTmffcYd06Zd0p+DSEuWt2oH9ZV2Bj84lbCkGAAiUxPZ/voSijbtp9OQHkHrHf9yG44TlfS953piMn3jO7FfBuv/9BHHc7fRY8ZVmKwWOgzMCqh7YP5avJ4Gev7gKiw23+zfoo37qTxURPcZo/x1OuR0Y8OzH3H0i28UKJR2raU8+1acKMNV76TXwL4MGDnkUl+2iLQAylEobUp9fT3Tpk3jhRdeYOrUqXTo0KG5uyQXyba1m8js0dX/oATQtU8P4jsmsW3t5qB1vF4vm79aR/d+vfwPQACR0VFcf/NU0rt3uaByLqeL8MgIckYP9wcJATJ7+L7cFB7Nu3gXLNJKfbVpE727dfMHCQH69exJp6QkVm/aFLSO1+vly3XrGNi7tz9ICBAbFcUPp02jZ5ZvjDldLqIiIhg7cqQ/SAjQq6tv3B7J843BktJSjhUUMHroUH+QECClQwcG9e3Ll+vWXbwLFmmFSrYeJCazoz9ICBDbNRlbYhQlWw8FreP1einavJ+4Hqn+ICGANTKMzAlDiMo48zNXbWEZ+Wt20WFwN6JPq1u0aT9hHWObBBZNFjOZE4YQ37Pz97hCkdavJTz7AhTn+9ITJHZKuqjXJyItl2YUSptSX19PTU0Nf/nLX7jhhhsYM2ZMc3dJLgJHrZ3yklL65PQPOJeclsq+7buC1qs4UUZ1eSWjJowFfA9Frnon1tAQho258oLLWawW7nz43oDPKWgMEGr5hbR3NXY7xSdOMHzAgIBzmZ07s2XnzqD1SsrKKKuoYMrYU2Ow3ukkNCSE60adWsJotVj49X33BdQ/fPw4AIlxvjFYVlkJQOdOnQLKdkxIYN2WLZSWlxMfG3thFyjSBrgc9dSV1ZCQnRFwLqJTPGX7jgetV19eg7PSTsyobMA3ThtcbkxWC8nDe571Mw9/vgmjxUz6uIH+Yw0eD9XHS+g0/NRMfI/ThclqIal/8DQzIu1FS3n2BSg6XgBAYrLvZYCzrl55uUXaOAUKpVWprq6mrKws4HhkZCQWi4WIiAiWLFlyxhxY0jpVlfu+9EfFxgSci4yJos7uwGF3YAtrmoC9tKgEgPDICBbP/oQNK9dQ76gjLimBCbfcSM8B2RdU7tvKT5RxaPd+Fs+eS1JKJ3oN7HuxLlmkVSqrqAAgLjo64FxsVBR2h4Nau53wb+UHLCguBiAqMpK358xh2erVOOrq6JCYyJ3TpjG4b/CxVVJayo79+3l7zhw6d+rEkH6+3ElWqxUAR319QJ3qmhoAKqqqFCiUdslZaQfAGhWYp9MaZcPjcOF2ODHbrE3OOUqrALCEh3Jw0XoK1+/FU+ciND6SLjcMJb5X8BmAtYVllO06TsqoPoSc9pl1ZTV4PV5CosM5tmIreat34qqpwxplI33cQDrmdL9YlyzS6rSkZ9/i/EKsoSEsem8u29ZtxlXvJDYxnnE3TaTfsEGX4vJFpJkpmiKtyv333x/0+FtvvcWwYcMwGo0YjVpR39bU19UBNFnue5K58ZjL6Qx4WKpzOABYNmchJpOJG/7zJoxGA6sWL+dfL7zGnQ/fS9c+Pc673OnsNbX8+dFZjf2yMum2m4L2T6Q9qWsMzJ0M1J3u5FLhepeL8G+dszeOwdkLFmA2mfjR9OkYDQbmLVvGM3//O7++7z769Ww6Y6m6tpYHZs70f95dM2b4P6Nzx47YQkNZ98033Hjttf4NTpwuF1t37/b/WaQ98jh9//ZNlsCvAcbGF60elzsgUOiucwJwZOlmDCYjWZOGgcHA8dzt7Hxn2Rk3H8lfuweMBpKHN83h62lsr2DtbhrcHtLGDMBss1K4bg/7Pl4NoGChtFst6dm3KK8AZ109dXYH0++5nTqHgzWff8kHf3uLBo9HeQtF2iAFCqVV+dWvfkXPnoHLW4Idk7bD6/X974XuKOx2uQGoszt46I//hS3cN5Ohx4Bs/vKr37H0owV07dPjvMudzmAw8IN778TjdvP10lze+NMr3HzvnUGXiIi0F97GwXqhY9Xl9o1Bu8PBc08+6d+ReHB2Ng/OmsV78+YFBAoNBgP/71134Xa7Wfzll/z+xRd56K67GDZgAGazmUljxvDBwoU8/+ab3HjttTR4vbw/fz51Tl9wwnSGXV1F2jz/TfXCqjW4GwBfwDDn4Zv8G5LE9+zM+mc/4vCSjQGBQo/LTfHmA8T36kxobMS32vMAUF9Ry+CHbsQWHwVAQnYGm56fy+Elm+gwuNsF/z4RaQta0rPvkNEj8TY0MGzsqVQgfYcO4oUn/4fF739Kv+GDNVFDpI1RoFBalT59+pxz12Npe0Ia86C4Gr/gn87dODMiNDQ04JylcVZT78H9/Q9AALYwGz0HZLN59XqcdfXnXe70fCy28DD6DvXlWuqTM4AXnvwfFr43R4FCaddCQ3xjxBlkrJ6cwRcWZKyGNI7BYf37+4OEAOFhYQzOzmblunXU1df72weICAtj5CDfkqfhAwfyi6ee4s2PPmJYY37E/7j+emodDhatWMHqjRsBX+BxyrhxvPvpp00+R6Q9MYX4ZiM1uDwB5xoag/bm0MBZTCaLL7ie0CfdHyQEMNusxPVMpXjzAX+OwZMqDxbS4HQHzYd4slx0l47+ICGA0WQksV8Xji7bgr24gvAOShEg7U9LevYdes0VQT7HwoAROSz/9DOK8wrp2Fk7lIu0JQoUikiLFx3v+5JQXVkdcK66oorQMFvQpMpRsb48aeGREQHnwqMiwOulvr7+vMudKXGzxWqhR/8+fL10JbXVNUHbEWkPEhpz/lVUVQWcK6+qIsxmaxLsOykuJgaAqIjAsRMdGYnX68XxrUDh6awWC4P69GHxl19SVVNDVEQEBoOBO2+6ianjxlFYUkJ8TAyJ8fG8N28eRqORhDhtPiTtU0i0b5w5qx0B55xVDkw2S5Ng30nWKF/SAEt4YHDCGmEDL3jqmwYKy/Ycx2A2EtcjNbBOdFhj3SDBjsbP8NS7z+eSRNqclv7s6ysXCYAzSD5gEWndNEdYRFo8W5iNmIQ4Co4E7sSYf/Q4KRnBE6h3SOmEyWymOL8w4Fz5iTLMFgvhkRHnXa6koIhnfzmLtV+sCihXX1cHBgPmIDmfRNqL8LAwEuPjOXQ8cKweOnaMrLS0oPU6d+qE2WzmWGHgGCwuLcVisRAdEUFeURH3/+Y3LMnNDShXV1+PwWDA0phj7auNG9mxbx8xUVH0zMoiMT4egJ3799Olc2d/PkOR9sZssxISF0FNfmnAuZqCUiJTEoLWC+8Yg8FsxF5cEXCurrwGo8UUEESsOlpMZEoC5tAgeUsjbFijw6gtCtaeLzgSEvPtjKYi7UNLefatKq/g+f/6I8s//Syg3IlC30ZksYnxF3p5ItLCKVAoIq1Cn8H9ObBzDyUFRf5j+3fsobSwmL5n2HHNGhpCz4HZ7N26g+K8Av/x8pJSdm/eTs+B2RiNxvMuF5eUQJ3DwfoVq/G4T81yKD9Rxo4N35DRI4uQIMtARNqTYf37s23PHvKKTo3Vrbt3U1BczMjBg4PWCQ0JIadvXzZv386xglNjsLi0lA3btpHTty9Go5GOCQnYHQ4+X7UK92ljsKS0lK+3bKFX167YGsfggi++4PUPPsDjObW8cuP27ew5eJDrRp3KsyTSHiX0SafiQD72kgr/sfL9+ThKqkjslxm0jslqIb5XGmW7j1NbVO4/XldWTemuo8T16ozhtDxlDR4P9qIKwpPPPHs3sV8mtflllO/L8x9zO5wUbz5AZOeEJrski7Q3LeHZNyo2hjqHgw0r1/g3QAGoKC1n06q1ZPbsRmR0FCLStmjqi4i0CqMmjGHL6vW88cxLXDH+GtwuF6sWLyc5ozP9h/uCD2XFJzi6/xBpXTOJS/LNiBg/YwqHd+/n9adfYsS1V2E0mVmz9EssVgvX3jTR3/75lDOZTEy89SY++se/+Mf/vMCAETnYa+2sXZaL0Whk0q3/cfl/MCItzJRx41i5bh2/e+EFJo0Zg9PlYt6yZXRJS2NUTg4ARSdOsOfgQXp06UKHBN9YvX3qVHbu28es559nwtVXYzaZWPTll1gtFv5z8mTANwbvmj6dl95+m9/89a9cNWQI1bW1fLZyJUaDgbumT/f3Y+q11/Ln117jf//2N4b2709JWRnzv/iC/r16MWqIdmiU9i11VDbFmw+w7bXPSLkymwa3m+O524lIiSdpQBYAjrJqqo4UE5WehC3Ot8Qw8/ocKg8Vsu21z0ge2Quj0UTemp0YLSYyrmv6IqC+ohavp4HQ6DOn40i7uj+lu46y81/LSRnZG0t4KAXr9+Cuc9Jl4tBL9wMQaQVawrMvwKTbZ/Dui6/x6h/+Ss7oETjr6vl6WS5Gk4lJt+vZV6QtMnhPblEo0oK98MILvPjii7z11lsXtJnJmDFjSElJ4e233/7efVh6dNP3bkO+nxOFxSx8dw6H9x7AarXSvV9vxs+Y7M+RsmnVOua8/m+m3X0rg6489QWjrPgESz6cx4Gde/F6vaR378L4GVNISu7YpP3zLbd9/WZWLlxGcV4BlpAQsnp1Y9xNE0nomHTpfwhyVkMr9P6rJcgvKuLNjz9m14EDhFgsDOzTh9umTiU60jdWV6xdyyvvvMPPbr+dq0/7nV504gT/+uQTtu3Zg9frpVdWFrfdeCOpHZuOwTWbNvHJ0qUcy88nJCSE7O7duWXSJJI7dGhS7quNG/nk888pKCkhOjKSUTk53Hjddf7NU6R5/LR0cXN3QQB7SSUHF6yj8nARJquZ2O4pZF6f48s3CBRt2s/eD1fRffqVdBjU1V/PUVbN4cUbKD+QD16IzuhA5vU5hCXFNGm/+lgJW15ZQNcbR9BpaI8z9sNZ4+Dwkk2U7jpKg8tDZEo8GdcNIiq9wxnryOVxT9a45u5Cu9dSnn13bd7Gl/M/p/BYPharhYweXblu+iQSO2mcNrdxacFnl7Y1VVu3XpJ2o/r1uyTttnYKFIqcJwUKRVo+BQpFWj4FCkVaBwUKRVo+BQq/HwUKg1OOQhEREREREREREVGgUERERERERERERBQoFBERERERERERERQoFBERERERERERERQoFBERERERERERERQoFBERERERERERERQoFBERERERERERERQoFBERERERERERERQoFBERERERERERERQoFBERERERERERERQoFBERERERERERERQoFBERERERERERERQoFBERERERERERERQoFBEREREREREREcDc3B0QaS2GVmi4iIiIiIiIiEjbpRmFIiIiIiIiIiIiokChiIiIiIiIiIiIKFAoIiIiIiIiIiIiKFAoIiIiIiIiIiIiKFAoIiIiIiIiIiIiKFAoIiIiIiIiIiIiKFAoIiIiIiIiIiIiKFAoIiIiIiIiIiIiKFAoIiIiIiIiIiIiKFAoIiIiIiIiIiIigLm5OyCX3tdff82dd95JTEwMubm5WK3W5u6SyHdSXFrKW3PmsHPfPgAG9enDHdOmER0ZedZ6ldXVvDdvHhu2bcPpdpOZmsptU6fSLSOjSbkDR4/y7qefsufQIYxGI72zsrhj2jSSO3T4TuVE2quWMlZ//cwzHDh6NOBzhg4YwC9+/OPvd5EibVBdWTUHF62n8mAhwP/f3n2HZVX/fxx/svcQAQeI4sLBEBVxa4orNTNnOVq2bKjVt7Jfu74N21pa9tWWZWaOVHArzhRTC63cgymy94bfH8CteKOCI9frcV1el5zPOJ9z4Nzn3O/zGbi08MR7QBCW9jZV50/NYtf7v1ywTr8J/XBuXM9oe1T4n5zadYgO/xlx+Q0XuUmlJiazcsGvHD94BAAf/1YMGDUEO8eq76epSSl89NwbF6zzgecex7tFMwCyMzJZvXA5hyL/prCwkMYtmjFg9J24uLtWKhMfFcPqn5cReyIaU1NTfAJa03f4YOydLnxfF5EbkwKFt4Dly5dja2tLWloaGzZsoH///te6SSI1lpmdzevTp1NcXMwdISGUlJSwfP16ouLiePvZZzE3r/rjLDcvj9c+/ZTU9HQG3nYbdra2rNq8mdenT+ftZ5/Fq359AOISEnh9+nSsLCwYVn6NhG7YwCuffMK0F17AxcmpRvlEblXXy7VaWlpKTEIC7f39CQ4IqLQvNxeXq3gGRG5MhTn5RM5ZRWlxCZ7dfcuuoS37yT6VSpuJgzA1MzMqY2FnRfMR3Yy2lxQVcXT5TizsrLGrZ3y9pRyKJWr9n1g6Vh2AFBHIycpm7rTPKS4uolv/XpSWlrB11UYSYuJ49OWnMavifmpnb8ewCWOMthcWFhL6w2LsHO2p28ADgKLCQr77ZDZJp07TpW9PrGys2bZ6I3Omfcbjr/0HW3s7AE7HneKrt6fjWMuJ24b0Jz83j+1rwok6cpyJrz6LpbXV1T0RIldR7969L5i+fv36f6kl1xcFCm9yBQUFrFmzhiFDhrBixQqWLFmiQKHckEI3bCAlLY33p07Fs25dAJo2bMh/P/+c8J07CenSpcpyv65dS/zp07zy5JO0alb29rRT27Y8+dprLFu3jifGjy+rPzyc/Px8Xp88GW9PTwD8mjfnxQ8+IHTDBsYNHVqjfCK3quvlWk1MSSE/P58gf3+6d+hwtQ9b5IYXu/Uv8tNzaPfUEGzdnQFw8HRj/9w1JOw5Qr0gH6MyZpYW1AlsYrT96IqdlBaX0GJkdyxsKgcR4iMOcnR5WbqInN+2NeGkp6bxxBvP4V6/7H7q4d2Qbz+cxZ5tEQT16GxUxtLaijadg4y2h81fTHFxMSMeHoeNnS0Ae7fvIu5ENPc+8xhNW5dd3839W/HZK++xbU04fe4aCMD6JWGYmpny4AtP4uDkCED9Rg2Y98ls9m7fRXCvrlfl+EXk2lGg8Ca3adMmMjIyCA4OJi0tjbVr15KYmIibm9u1bppIjWzbs4dWzZoZAg8A/i1agx8zHQAAbs9JREFUUM/dne179lQZfCgtLWVTRASBrVoZAg8AtRwdGT90KKamZ6ZpPZ2UhIO9vSHwANCkYUPs7eyIjo+vcT6RW9X1cq1W/N9DUwKIVEti5DGcvesagoQAtZrWx8bNkcTI41UGCquSfSqFuN/+oU67Zjh5162Utm/uatKOxFOreX0KsvIoys2/kocgclPZt3MP3j5NDUFCgKatfahd1519O/dWGSisyqnoOH5bt4W2XTvQqPmZwP6+nXtxcXc1BAkB3OrVoXHL5uzbuccQKDQzMyegU3tDkBDAu7yehJi4yzpGkWvtVu0xeDFazOQmt3z5ckxMTAgKCqJPnz4UFRXx66+/GuX7888/eeihh2jfvj3BwcE8/PDDHDx4sEZ5evXqxbhx44zqPnd7r169eOmll3jxxRfx9/ene/fupKSkUFpayvz58xk+fDiBgYH4+fnRv39/Zs+eTWlpabXb8uGHH+Lj48ORI0cqlSkpKaFbt2489dRTNT+Rck1l5eRwOimJxg0aGKV5N2jA8ejoKsslpqSQkpaGf4sWQFkwIi+/7EtJ327dKgUs6rq5kZWdTXpmpmFbZnY2Obm5ODs61jifyK3oerpWzw0UVtQnIsYKc/PJS8nC3qO2UZp9vdpkxSVXu64Ta/dgamFOw5BAo7S8tCya3NGR1vf2wdzK4rLaLHIzy83OITUxmfqNPI3S6nt5Eh8VU+261i0OxcLSgt5Db6+0PT4qhnoNq6i/oSepicnkZucAMPLR8QweO7xy2eiyAKFT7VrVboeI3DjUo/AmlpWVRXh4OG3atMHV1ZUePXpgaWnJ0qVLmTBhgiHf77//zn333Ye7uzsTJkzA2tqa7777jvHjx7No0SI8PT2rlacmQkNDady4MS+++CJJSUm4uLjw8ccf88UXXzB06FBGjhxJdnY2S5cu5cMPP8TOzo4xY8ZUq72DBg1i9uzZrFy5kieffNKwz4iICE6fPs3gwYOvzAmWf01KWhpAlfP/1XJ0JCc3l+ycHOxsbSulxZ8+DYCjgwPfL1nC+u3byc3Lo46bG/cOHUo7Pz9D3iEhIezZv5/p337L+PKhi/OWLsXMzIwBPXvWOJ/Ireh6ulZj4uPL7g+LF7N9717y8/Nxd3Vl9KBBdGnX7gofuciNrSC9LCBg6WhrlGbpaENxbiFFuQWY21x4QbzsUymk/BODR7fWWFVRV7tJd1Y516GIVJaRmg6AYy1nozQHZ0fycnLJzcnFxvbC83yeio7j4J9/0aXfbTg6n7k3F+Tlk5eTW2lbBfvynoNpyamGYcqGdqWlE33kBKsW/IqDsyPtu3Ws6aGJyA1AgcKb2OrVq8nPz6dv374A2Nvb07lzZ8LDw4mMjMTf3x+A9957D2dnZxYtWkStWmVvhXr06MHtt9/Ojz/+yHPPPVetPDWRl5fHzJkzqVPe06OwsJB58+YxcOBA3n33XUO+ESNG0KlTJ7Zs2WIIFFanLc2bN2fVqlWVAoVhYWE4ODjQo0ePSzmdcg1V9ASqasVuS4uyHgn5hYXYnZOWk5sLwILQUMzNzLhv+HBMTUxYvn4973/1FS9OnGjoweTq4sLQfv2Yu3Ahz5X/DZqamvL0gw9WGuJY3Xwit6Lr6VqNjo8nLy+P7Lw8nhg3juzcXFaGhzP9m28oLi7WvIUiZykuKATAzML4q4Fp+YIJxYVFFw0Uxu08CKYm1O/Yssp0BQlFqic/Lw8AC0vjnrfm5dsKCwouGiiM2LgVE1NTgntXXnQor6J+K+NrumKfBfkFRmmfvvg2BXn5mJiaMvyhseddfVlEbmwKFN7EVqxYAUCfPn0M2/r06UN4eDiLFy/G39+f5ORkIiMjeeCBBwxBNwBvb28WLVpEvXr1qpWnpry8vAxBQgALCwu2b99OYWFhpXypqanY29uTk1P2pru6bRk8eDAffvghhw4donnz5hQVFbF69Wr69OlT5RdYub5VDD03MTGpUbnCoiKgLAjxycsvY1/ei6mdry9PvfEGPy1fbgg+LFixgsWrV9OyaVNCunShpKSENVu38sncuTz94IOGHk3VzSdyK7qertWKtH7duxv206VdO555+23mLV1K1/btK819KHJLq5jipWaXbiXFhUWc3nuU2i0bYF3L/sq0S+QWZbgka3g/PVthQSF//PY7Ldr4UsvVePVxAJMLXPTn7rq4uJjBY4djZm7O7i07WPjld2SlZ9C5b89LbqOIXJ/0hHyTOn36NDt27KBRo0aYmJgQExNDTEwMLVq0wMTEhLCwMAoKCoiNjQWgYcOGRnW0atWKWrVqVStPTdWubTwHjoWFBdu2beO5555jxIgRdOjQgZCQEMP8hUC12zJo0CBMTExYtWoVANu2bSMtLU3Djm9Q1lZlKyYWFBi/2SwoDy7bWlsbpVmVB4WDAwIMgQcAO1tb2vn6ciw6mrz8fLJzcli2fj1NvLx45ckn6dq+Pd07dOC1p57Co25dvpw/n8LCwmrnE7lVXS/XKkCfrl0rBQmhrFdj96Ag0jMztfiQyFnMyucLLCksNkorKQ/km1tfeE7B9GOnKCkowtW30RVvn8itxsq67H5aWMX9tKi8B7B1FffTsx07cJjC/AJ8g9oYpVmW9yQsquK5tbCifpvK9ZuZmdGmcxB+HQK59+lH8WrqzbolYYbejyJy81Cg8CYVFhZGSUkJJ06coHfv3oZ/w4YNo7S0lPT0dNatW0dJSQlw4bdV1clzIcXFxg+dZucMPSktLWXixIk89dRTxMTEEBgYyHPPPceaNWsq9Visblvq169P27ZtWblyJQArV67Ezc2N4ODgSzoGubZcywPAaRkZRmmpGRnY2tgYAhRnc3F2BsDR3rhng5ODA6WlpeTm53MqMZGioiI6t2tXqYeRubk5Xdu3Jz0zk9iEhGrnE7lVXS/X6oU4OZQNk8qv4suXyK3Kyqns2ivIzDVKK8jIxczGArMqhkCeLeVgDCbmprj4aBoOkctVsUhIZnqmUVpmWgbWtjZYWhvfT892KPJvzMzNae5vPBWAtY0N1rY2ZKalV1F/2TaHKuYvrGBiYkLr9gEU5heQGH/6gu0QkRuPhh7fpCpWO3733XexP+eL14EDB5gxYwZLlizhrbfeAiAqKsqojvfffx8nJyeGDBly0TwPP/wwpqamRr1IioqKSE1NxcvL64Lt/f3339m4cSMTJ05k0qRJlcqnpaXRoHwFzYqg4cXaAmW9Cl9//XWOHTvGxo0bGTx4sFGAUm4Mdra2uNWuzfEY4xXejkdH0+Q8f18N6tXD3Nyc6FOnjNJOJydjYWGBk709GeWrp1YEos9WUt6btZSyYER18oncqq6XazUlLY23Pv+czm3bMnzAgEr5KgKJblX0bBe5VZnbWGLlYl/l6sZZ8ck4eLhetI6MqNM4eLhibq0pXkQul42tDc6uLsSfNL6fxkXF4NGowUXriDpyHI9GDbC2qXoew3pensRVsXpyfFQsLu6u2NjZkpuTyxdvfEjr9gH0HV55ZFZ+XsW8xFrBXORmox6FN6Hjx4+zf/9+OnTowJ133klISEilf4888ghubm5s27YNgBYtWhAaGkpWVpahjujoaL777juSkpKoU6fORfMAuLq6cvz4ccPkuAAbNmwgv3xy+wtJK18ps2nTppW2//zzz+Tm5lJUPuylum0BGDBgABYWFsyYMYO0tDQGDRpU3VMo16HggAD2HTxYqbdQ5IEDxJ8+TefzrGBqbWVFez8/9u7fX2mY4enkZH7ft4/2fn6YmprSoF49ajk5Eb5zp2F4JJQNldwcEYGDvT0N6tatdj6RW9n1cK26ODuTk5vLhu3bDQulACSlpBC+cyetmzenlqPjVTh6kRuXa+uGpB2NIycxzbAt9UgcuYkZuPl7X7BsSXExOQlp2NWveh40Eam51u0COPr3QRLjz9xPj/x1kORTp/ELbnvBssVFRSTGnaJew/P38G3dzp+k+NMc+eugYVtifALH/jmEX4ey+m1sbTAzN2fvtl3kZucY8uXm5LJ78w6cXV1wq69nX5GbjXoU3oQqFjEZPnx4lekWFhYMGzaML774gl9//ZWpU6cyYcIEhg0bxogRIzA1NWXevHk4Ojry0EMPAVQrz6BBg3jzzTeZMGECd9xxBydPnuTnn3/Gw8Pjom0ODAzE3t6ed955h9jYWJycnNi5cydhYWFYWVmRnZ1tyFudtgDUqlWLLl26EBYWRoMGDWjTps2lnlK5DtwREsLmiAjenDGDQb16UVBYyPL162ns5UW39u0BSEhK4uCxY/g0bkwd17LeD2OHDOHvw4d5Y/p0BvTsibmZGSs3bcLSwoK7y+esNDU15YERI/hozhz+74MPuK1TJ0pKSti4YwdxCQk8Pm6coTdhdfOJ3Kqul2v1wZEj+eCrr3j544/p3bkzuXl5rN68GbPyOkSkMs9uvpzee5R9c1bj0dWXkqIiYrbsx96jNu5tmgCQm5JJxsnTODZ0x8blzGqn+WnZlBaXYO2kRUxErpRuA3rxx/ZdfP3+53TpdxtFhYVsXbWR+o0aENCx7MVbyukkoo4cx6upNy7uZ3r+piWnUlxUjJPL+eeSb9e9Izs2bGHBrG/o2v82LCwt2bpqA47OznTu28OQb/C44Xz9/ky+evtT2vfoRHFRMbs2bScrI4Nxkx+5rAVXROT6ZFJasUqE3DT69etHcnIyW7duPe8kt7GxsYSEhNCoUSNWrlzJ7t27mT59OpGRkVhZWREUFMR//vOfSkOGL5anpKSEmTNn8ssvv5CcnEyLFi149tlnmTt3Ljk5OXz//fcA9OrVCw8PD8PPZ9f/wQcfcODAASwtLfH29mb8+PFERkby3XffsXnzZlzLv1BWp71QFjR95plnePTRR5kyZcplndeMyMjLKi+XLy4hgW8XL+afo0exsrAgsHVrxgwZYphzLHznTmbNm8djY8fS86z5KBOSkvjh11/Zd/AgpaWltGzShDF33onnOb3/9h86xC8rV3K0fGi7t6cnQ/v1I7BVq0vKJ3Krul6u1d8jI1myZg0nYmOxtLCgVbNm3HPHHXjUqXOVz4BcyMPJq651E+Q8chLTORYaQfqJBMwszanV3APv/u2xtC8bupiw5wiHftlK8+FdqdP2zCiQzOhE/pgVStM7O1Gvg0+19hX51Ury0rLo8B8F7q9XE5qEXOsm3PKSTp0mbP4SThw6iqWlJc39W9FvxGDsHMvup3u2RrBk7o8MfeAe2nbtYCgXc+wkX771MXeMH0lQz87nrT8jLZ1VP/3KoX1/Y2JqirdPUwaMGkItt8rTcxz9+xAbfl1F3IloTExNaNS8Cb3uHICn94Wnl5KrL8Trwr1LbxZX67u4o7//Van3RqdAodzUwsLCmDJlCmFhYTRp0uSy6lKgUERE5PIpUChyY1CgUOT6p0Dh5VGgsGqao1BuWqWlpfz0008EBARcdpBQRERERERERORmp8m05KZTVFTE008/TXx8PJGRkcyYMeNaN0lERERERERE5LqnQKHcdMzNzTl58iQxMTE88cQT9O3b91o3SURERERERETkuqdAodyUfv3112vdBBERERERERGRG4rmKBQREREREREREREFCkVERERERERERESBQhEREREREREREUGBQhEREREREREREUGBQhEREREREREREUGBQhEREREREREREUGBQhEREREREREREUGBQhEREREREREREUGBQhEREREREREREUGBQhEREREREREREQHMr3UDRG4UEc5F17oJInIRHdJ0WxMREREREblU6lEoIiIiIiIiIiIiChSKiIiIiIiIiIiIAoUiIiIiIiIiIiKCAoUiIiIiIiIiIiKCAoUiIiIiIiIiIiKCAoUiIiIiIiIiIiKCAoUiIiIiIiIiIiKCAoUiIiIiIiIiIiKCAoUiIiIiIiIiIiICmF/rBoiIiIiIiIiIiFSleNPGq1Oxv//VqfcGd1UDhTt27ODee+/F2dmZLVu2YGlpWSm9V69eeHh48P3331+1NiQnJ2NjY4Otre0Vqe+FF15gyZIlHDx48IrUd7adO3cyfvx4nnjiCZ588skq8/Tq1QuADRs2XPH9XwklJSXExcXh6elZo3IVx/7OO+9w11131Xi/0dHRNGjQoMbl5MaXmpjMygW/cvzgEQB8/FsxYNQQ7BwdLlgu9kQ0a39ZTtSRE5iYmtDIpwkDRt2Ja133snqTUvjouTcuWMcDzz2Od4tmV+ZARG4ip5OT+W7JEv4+fBiAtq1bM27oUJwcLnxdHjh6lPnLl3M0Kgp7W1va+/sz8vbbcbS3v6T6q1ufyK0oLyWTYyt3kX7sFAAuLTzxHhCEpb3NBctlxiZxYvVuMqJOY2JigpN3XbwHBGHr5lQpX9rReE6u20tWfArm1ha4+jaiUd+2mFlalO0/NYtd7/9ywX35TeiHc+N6l3GUIje26+U5N+bYSdYvXUnUkeOUFJdQt0F9et7RDx//VlfgKEXkenNVA4XLly/H1taWtLQ0NmzYQP/+/a/m7oxs2rSJZ599liVLllyxQOGoUaPo1KnTFanrZpOVlcV9991Hjx49zhvoPJ8mTZowbdo02rZtW+P9vvLKKxw/fvyqBpzl+pSTlc3caZ9TXFxEt/69KC0tYeuqjSTExPHoy09jZl71R1zSqdPMeW8GlpaW9BzcF4Dta8L56u1PefyN53B0dsLO3o5hE8YYlS0sLCT0h8XYOdpTt4HHVT0+kRtRZnY2r0+fTnFxMXeEhFBSUsLy9euJiovj7Wefxfw81+Vfhw/z9uefY2tjw9C+fTE1NSVs40b+OnSIN59+Gvvy+3h1669ufSK3osKcfCLnrKK0uATP7r6UlpYSs2U/2adSaTNxEKZmZlWWy0lMJ/KrVZhZmuN1WwAAsdv+5s/ZYbR9cghWjmXXVdrRePbNXY29R228+7cjPz2HuO1/kxWbjP/DAzAxMcHCzormI7oZ7aOkqIijy3diYWeNXT2Xq3cSRK5z18tzbll9n2HnYE+PgX0wt7Rg79adzPv0K+6eeD+t2qlHlsjN5qoFCgsKClizZg1DhgxhxYoVLFmy5F8PFEZGRpKRkXFF6wwMDCQwMPCK1nmzSEtLY9++ffTo0aPGZV1dXRkyZMgl7Xfr1q14eChgcyvatiac9NQ0nnjjOdzr1wXAw7sh3344iz3bIgjq0bnKctvXhFOYX8BDU5+inldZ79fGrZrz5ZsfsX11OP1HDcHS2oo2nYOMyobNX0xxcTEjHh6HjZ0CDSLnCt2wgZS0NN6fOhXPumXXZdOGDfnv558TvnMnIV26VFnu64ULMTE15c2nn6aumxsAHQICeO6dd1iyejXjhg6tUf3VrU/kVhS79S/y03No99QQbN2dAXDwdGP/3DUk7DlCvSCfqstt/5uSgiICHh6Aff3aADg3qc8fM1cQu+0vGg8ou28eW7kLK2c7/B8agJlF2dcNKyc7ji7bQerhWFyae2JmaUGdwCZG+zi6YielxSW0GNkdCxurq3D0IjeG6+U5d/XC5ZiamfLIy1NwcHIEIKhHZz575T1WL1ymQKHITeiqLWayadMmMjIyCA4OpmvXrmzdupXExMSrtTsRuQXt27kHb5+mhocngKatfahd1519O/eet1xKYjK29naGhycAT28vbOxsSYiNP2+5U9Fx/LZuC227dqBRc+MvNyIC2/bsoVWzZoYgHoB/ixbUc3dn+549VZZJTE4mOj6eHh06GIJ6AB516tDWz49NERE1qr8m9YncihIjj+HsXdcQJASo1bQ+Nm6OJEYeP2+5vJRMzO2sDEFCAAdPV8xtrchJSAWguLAIS3tr6gY1NwQJAZy86wCQHZ9y3vqzT6UQ99s/1GnXDCfvuufNJ3IruB6ec0tLSzlx6CjNfFsYgoQAFpYW+AS0JuV0EtkZmZdzmCJyHbpqgcLly5djYmJCUFAQffr0oaioiF9//fWi5fbu3cv9999v6Ln3wAMPEBkZWSlPaWkp8+fPZ/jw4QQGBuLn50f//v2ZPXs2paWlQNlcgp999hkAvXv3Zty4cYbyBw8eZOLEibRv3x5/f39GjhzJunXrKu1j3LhxPPjgg3z88ccEBgbSqVMnDh48yAsvvICPT+W3rAkJCbz44ot07dqVwMBAhg0bZlTf1TJjxgz8/Pw4ceIEjzzyCIGBgQQFBfH888+TmppaKW9WVhZvv/02PXv2JCAggMGDB7Nw4cJKedLT03nzzTfp1q0bvr6+DBgwgG+//dZwXs/e59q1a+nSpQuBgYEsXLiQ3r17A/DZZ5/h4+NDTEwMACdPnuT555+ne/fu+Pr60qFDBx599FEOl88tBWVzFPr4+LB48eJKP2/bto3XX3+dTp06ERAQwL333suBAwcM5Xx8fIiNjSUiIsJQftSoUXTt2pWSkpJKx3b06FF8fHz44YcfrsCZl2stNzuH1MRk6jcyng+zvpcn8VEx5y1bu44bOdk5lR5scrKyycvNq/QQdK51i0OxsLSg99DbL6/xIjeprJwcTicl0biKOWO9GzTgeHR0leVS0tMBaFDPeC6yuq6uZGZlkZyaWu36q1ufyK2oMDefvJQs7D1qG6XZ16tNVlzyecva1HakKCefgqzcM/Xl5FOUV4BF+dyGZhbm+N7XF6+eAZXKVgQIrZzPP0foibV7MLUwp2GIRu/Ire16ec41MTFh4ivP0G+k8civnKxsgPNOVSAiN66rEijMysoiPDycNm3a4OrqSo8ePbC0tGTp0qUXLLdt2zbGjRtHZmYmkyZN4rHHHiMuLo4xY8bw+++/G/J98sknvPbaazRt2pSpU6fy9NNPY2VlxYcffsiPP/4IlM0l2KdPHwCmTp3Ko48+CpQNRx41ahSRkZHcf//9PP300xQWFvL4448bBZD27NnDypUr+c9//sPQoUNp2rSpUZvT0tIYOXIkoaGh3HHHHTz33HNYW1vzxBNP/GvBwpKSEsaPH4+dnR3PP/88ffv2ZenSpbz22muGPAUFBYwZM4Z58+bRs2dPpk6diqenJy+99BLfffcdADk5OYwdO5Zff/2VoUOH8uKLL9KsWTPefvtt3nij8mS3RUVFvPLKK9x77708+OCDNG/enKlTpwLQp08fpk2bhouLC0lJSYwcOZLff/+dsWPH8uqrrzJo0CC2bt3KAw88QGFh4QWP7aWXXuLvv/9m4sSJPPTQQ/z555889NBDFBUVATBt2jRq1apF48aNmTZtGkFBQQwaNIjExER27dpVqa7Q0FDMzc0ZMGDA5Z5yuQ5kpJYFAhxrORulOTg7kpeTS25OrlEaQLcBvXGq5czPX37Pqeg4TkXH8fOX32FmZkanPt2rLHMqOo6Df/5Fh55dcHR2qjKPyK0uJS0NABcn42uklqMjObm5ZOfkGKVVLHaWm59vlJaZlQVAWkZGteuvbn0it6KC9LJr0NLRePoMS0cbinMLKcotqLKsZ3dfrJzsOLhgM9mnUsg+lcKBBZswNTPFo3PVixrkpWaRsOcIR1dEYFvHmdqtvKrMl30qhZR/YqgX7GOY61DkVnU9PefWcqtNLdfK84VmpWfy955IXOu5ayoekZvQVZmjcPXq1eTn59O3b9nkqfb29nTu3Jnw8HAiIyPxr2IJ6pKSEl599VX8/PyYN28eZuVvJsaOHcudd97JW2+9xdKlSyksLGTevHkMHDiQd99911B+xIgRdOrUiS1btjBmzBgCAwPx8fFh7dq1hISEGFbhfeuttzAxMeGXX36hbvmwpbvvvpu7776badOmMWDAAFxcyj4Ic3JyeP/99wkICOB8vvrqK06dOsWPP/5Iu3btALjrrrsYNGgQX3zxBSEhIVfgjF5YUVERt99+Oy+88AIAo0ePJiEhgXXr1pGbm4uNjQ2//PILBw4c4IMPPmDw4MFAWTB17NixzJ49m7FjxzJnzhyOHz/OokWLDL0m77nnHj766CO+/PJLRo0aRYsWLYCy39f999/Pww8/bGhH7dq1eeedd/Dx8THMNzhv3jzS09P58ccfadLkzFBNOzs7Zs+ezaFDh2jduvV5j6127dr8+OOPhr8HS0tLPvzwQ3bu3EmXLl0YMmQIn376aaU5Dm+//XbeeecdVq5cSXBwsKGusLAwOnXqZPj9yo0tPy8PKBv6cC7z8m2FBQXY2Bqv3uhcuxY9BvVhxQ+/8Pmr0wAwMTVl9MT7Kw3TOFvExq2YmJoS3Nt44nURKZNXHpirCNSdzdKi7LrMLyzE7py0BnXrYmNtTcSff3Jnnz6YmJgAUFBYSGR5L/KCwkKKy3uKX6z+6tYncisqLij72z97WHAF0/LFEYoLizC3Mb7OrJ3tadDTn6PLd7Bn+rLyQia0vKdnpeHIFQpz8g0rG5tamtFkcHCV+wWI23kQTE2o37HlJR2XyM3ken7OLS4u5pf/zaMwv4Dut1/977oi8u+7Kj0KV6xYAWDo0Xf2/yuGlp7r77//Jjo6mpCQENLT00lJSSElJYW8vDxuu+02/vnnHxISErCwsGD79u1GPdxSU1Oxt7cnp4qeChWSkpL4888/GTJkiCFICGBlZcWDDz5IXl4e27dvN2y3trbGz8/vgscaHh5O69atDUHCivpmz57N9OnTL1j2Sjq3l1zLli0pKioirbz3RXh4OC4uLgwaNMiQx8TEhGnTpvHDDz9gYmLCmjVraN68OW5ubobzn5KSYgh2bty4sdI+goKMJ8A918MPP8y2bdsqBQnz8vIwNS3707vQ7wugb9++hiBhxXEBF5zvsnbt2nTq1Im1a9dSXFwMlP19HT9+vNLxy42tYjR8RQCgJtYtDmPZdz/j1dSb4Q+PY9iEMXh6e/HzF99w4I/9RvkLCwr547ffadHG1+iNqoicUTFNRU2vS3Nzcwb16sWxqCimf/stJ2NjOR4Tw8dz5pBXUNazyczMrNr1V7c+kVuS4QZa86In1u7hyNLfcPRyx2dUd5qP6IaDpysH5m8i+Z8qphYwgRaje9B8RDds3Z3ZN3cNSftPGGUrLizi9N6j1G7ZAOta5x+aLHKruF6fc0tKSlj01Q8c/esgfh3aEtilQ43bJyLXvyveo/D06dPs2LGDRo0aYWJiYpinrkWLFpiYmBAWFsaLL75o1BsgKioKKBtKOm3atCrrjouLo06dOlhYWBAeHs769es5fvw4J0+eJL18PqKz59I7V2xsLADe3t5GaRWBrLi4OMM2Z2dnQ0DrQnX26tXLaHtV+7gYK6uyld0qhtVWpaioCDu7c/tiYNRLruL8VgTKYmNj8fLyMrrZnL1acFRUFHl5eXTq1KnKfcfHV578tnZt4zfHVSksLOTjjz/mr7/+IioqipiYGEO7zp1H8FznO66LlRs8eDBbt25l165ddOzYkdDQUKysrP6VHp7y77CyLrteCguMh0cVlfeWsLa2NkrLzcll66oNeDTy4v7/PG64xv06BPLFmx+x9JsFPPu+D+YWZ97gHjtwmML8AnyD2lyFIxG5eViX38cKqrguK3rw2VZxXQIM69+f7NxcVoaHs333bgDa+fpyR0gI85ctw97WlsLy+2N16q9OfSK3IjOrsvtbSWGxUVpJ+TVmbm3ci6kot4CYLfux96yN34P9MCm/f7r5N+KPmSs4vGQbtZqNwNT8TBDewsYKN/+yZ2JX34bs+XQpR0MjcPVtVKnu9GOnKCkoMtoucqu6Hp9ziwoLWTj7e/7eHUkzv5YMm3DPpR6eiFznrnigMCwsjJKSEk6cOGFY3OJs6enprFu3jttvr7wYQEXgZ9KkSbRp06bKuhs3bkxpaSkTJ05k48aNtGvXjsDAQEaNGkVQUBD33nvvBdt2oSBixf4tzvrQrE5vg+Li4kt601MVR8eyyWWzs7PPmyczM5N6VUzOfrE2VKedxcXFtGvXjieeeKLKdHd390o/XyyICvD777/z4IMPYmtrS+fOnRk2bBitWrUiKirKqFdoVaqzj6r06dOHV199lZUrV9KxY0dWrlxJz549sbfXW+qbhVPtWgBkphuvtJaZloG1rQ2W5Q9ZZ0tOSKS4qAi/4MBKf19m5ub4d2zPmoXLSIw/TT2vM0H0Q5F/Y2ZuTnN/DYcSuRDXWmXXZVXz/6VmZGBrY2MIJp7LxMSEe++6iyEhIZxKTKS2szNutWvz0/LlmJqa4uriYpjXtjr1V6c+kVuRlVPZs1BBpvH8ZgUZuZjZWGBWxXDH3OQMSotKcPNvbAgSQtlCBu4BTTi+6ndyEtOxr1f1tWVmYY5LiwbEbf+Hwuw8LOzOBDlSDsZgYm6Ki0/VwyJFbjXX23NuQV4+P342h6N/H6J5QCvunng/ZuZXZRYzEbkOXPGru2K143fffdcoKHPgwAFmzJjBkiVLjAKFFT3bKgJKZ4uMjCQ9PR1ra2t+//13Nm7cyMSJE5k0aZIhT8Uw2wZVrIR47j6OHTtmlHb8+HGASkOSq6N+/fqG3pBnW7JkCbt37+aVV16pci6lqnh6emJtbc2RI0eqTI+OjiYnJ4dmzZrVqI0V7Tx48KDR9k2bNhEWFsZ//vMfPDw8yM7ONjr/6enp/PbbbzRs2LDG+50+fTrW1taEhoZW6h34xRdf1LiumrCzs+O2225j48aN3H333cTGxhoWW5Gbg42tDc6uLsSfNF71LS4qBo9GVX8WmJc/1JSUGL84KDX0VK2cFnXkOB6NGmBtYzwPjIicYWdri1vt2hyPMb4uj0dH08Sr6kUMALbt3o2zoyOtmzXD2fHMqox/HzlC4wYNsLSwwNLCotr1V6c+kVuRuY0lVi72Va5unBWfjIOHa5XlTM3Lgw5V3T9LSyr+Q05iGvu/WYtnNz/qd2xRKV9xfiGYgIl55ZfxGVGncfBwxdy6es/MIje76+k5t7i4mPkzv+bo34doHdSGEQ+NVZBQ5CZ3RecoPH78OPv376dDhw7ceeedhISEVPr3yCOP4ObmxrZt20hISKhU1tfXFzc3N77//vtKPeqysrKYPHkyU6dOxczMzDDn3rkrEP/888/k5uZWGrZb8Raloiehm5sbvr6+LFu2jFOnThnyFRQU8PXXX2NpaUmXLl1qdMzdu3dn37597N9/Zr6HwsJC5syZw/79+6sdJISyYbXdunVj586d/PHHH0bp3377LVB57seatDMpKYm1a9ca1RkeHk6tWrXo1asXBw4cYNOmTZXyzJo1i0mTJnH48OEL7qOiB+bZw4LT0tJwcXGpFCTMzMxkyZIlwJmh0ZfD1NS0yqHIgwcPJiEhgS+//BIHBwd69Ohx2fuS60vrdgEc/fsgifFnPk+O/HWQ5FOn8QtuW2UZd4+6ODg7snfrTgoLzixmUFhQyB/bd2Frb4d7/TMvDIqLikiMO0W9hurlIFIdwQEB7Dt4kNiz7vORBw4Qf/o0nc+az/dcoRs2MHfhwkr3hd3793Pw2DH6djszuXp1669ufSK3ItfWDUk7GkdOYpphW+qROHITMwxDhc9l6+6MpaMNp/YcprjwzPN2cWERCXuPYm5nhW0dZ6xdHCnKKyA+4iAlZ11/ealZJO0/gZN3XcytzgTqS4qLyUlIw66+evmKnO16ec4NX7aaI/sP0KqdPyMfGa8gocgt4Ipe5RWLmAwfPrzKdAsLC4YNG8YXX3zBr7/+apT20ksvMWXKFO666y6GDx+OlZUVCxcuJC4ujg8++ABzc3MCAwOxt7fnnXfeITY2FicnJ3bu3ElYWBhWVlaVgowVwan//e9/dO/end69e/PSSy9x7733Mnz4cO6++27s7OxYtmwZf/31Fy+99JJh+G91Pfroo6xevZp7772XsWPH4u7uTmhoKEePHmXu3Lk1qgvgueee448//uD+++9n2LBh+Pj4kJuby+bNm9myZQt33XXXJQW8Ro8ezaJFi5gyZQpjxozB29ub8PBwtm3bxttvv42ZmRmPPPIIa9as4fHHH2f06NE0a9aM3bt38+uvv9K9e3e6d+9+wX1UzOm4fv166tevT9++fenevTtfffUVkyZNomvXriQmJvLLL7+QlJQEXHiYdXW5uLhw4MABfvzxRzp06GAIInfr1g1nZ2fCwsK46667ahS0lRtDtwG9+GP7Lr5+/3O69LuNosJCtq7aSP1GDQjoWBYwSDmdRNSR43g19cbF3RVTU1MGjRnO/Jlf8+VbH9O2WzClJSXs3rKTxFOnGT5hTKUHoLTkVIqLinFyqXWtDlPkhnJHSAibIyJ4c8YMBvXqRUFhIcvXr6exlxfd2rcHICEpiYPHjuHTuDF1XMt6Lw3p04eP5szhvS+/pENAAIkpKazYsIGAli3pdtbiWdWpvyb1idyKPLv5cnrvUfbNWY1HV19KiorK5h/0qI17m7J5u3NTMsk4eRrHhu7YuDhgYmpKk8Ed+efHjfwxK5S67ZpRWlpKwu7D5Cam4zOiG6blL42bDOrIoYVbiJy9EvfAJhTl5BO34wCYmtBkUHCltuSnZVNaXIK1k6aHETnb9fCcm5OVzdZVGzEzN6Nxy+ZE7thtlKdVW/8qh0GLyI3rigcKHRwc6Nu373nzjBw5ktmzZxt6lJ2tf//+ODk5MWvWLGbOnImpqSnNmjVj1qxZ3HbbbQC4uroye/ZsPvjgA2bNmoWlpSXe3t589NFHREZG8t1335GUlISrqysDBw5kzZo1LF68mIiICHr37k1gYCDz589n+vTpzJ07l5KSElq0aMHnn39+SQtd1K5dmwULFvDhhx/y008/UVBQQIsWLZg7d+55FwW5EC8vLxYtWsRXX33F5s2bWbhwIdbW1nh7e/POO+8wdOjQGtcJZZPdfv/993zyySeEhoaSmZlJkyZN+OSTTwwrJjs7O7NgwQKmT5/OqlWrWLBgAfXr12fixIk8/PDDF50v0MbGhilTpjBnzhzeeustvLy8ePLJJykuLiYsLIyNGzfi7u5O586deeCBBxg4cCA7duy4pB6SZ3vyySd59dVXefvtt3n88ccNgUJLS0v69evHggULtNrxTcrO0YEJU58ibP4S1i9diaWlJS0D/eg3YrBhkuYTh46xZO6PDH3gHlzcywISrdr5c/+zE9m4bBXrFoUCUK+hJ+MmP0xzv8rzs+Rml63MbW1T9QIMIlKZk4MDr0+ezLeLF/NzWBhWFhYE+fszZsgQwzzA/xw9yqx583hs7FhDoDC4TRueuu8+fl27lm8XL8bJwYE7evfmzr59K91/qlN/TeoTuRVZ2tvg/9AAjoVGcHLdXswszand0gvv/u0Ni5FknEjg0C9baT68KzYuDkBZT0S/B/oRteEPTqwtCxjY169N63tDcGl+pkdSncAmmJqbEr1pH8dCd2FmaY5zk3o07NMWWzenSm0pyskHwKyKBVREbmXXw3NuzPEoisrnB14x75cq8zSc1kSBQpGbjEnphVb4ELnBvfrqq6xfv55NmzZVa3GaC1kXtecKtUpErpYOaRoOI3K9ezh51bVugohUw4QmNe9EISL/rhCvqoeh32xSZ3x6Veqt9eSki2e6BemVuty00tLSWLVqFXfeeedlBwlFRERERERERG526npxlSUmJlYrn62tLXZ2dle5NbeGv/76i//9739ERkaSn5/PmDFjrnWTRERERERERESuewoUXmVdu3atVr4nnniCJ5988iq35tbg4ODAb7/9hpWVFR988AH16tW71k0SEREREREREbnuKVB4lX399dfVytegQYOr3JJbh5eXFzt27LjWzRARERERERERuaEoUHiVde7c+Vo3QURERERERERE5KK0mImIiIiIiIiIiIgoUCgiIiIiIiIiIiIKFIqIiIiIiIiIiAgKFIqIiIiIiIiIiAgKFIqIiIiIiIiIiAgKFIqIiIiIiIiIiAgKFIqIiIiIiIiIiAgKFIqIiIiIiIiIiAgKFIqIiIiIiIiIiAhgfq0bIHKj6JCmy0Xkele8aeO1boKIXIzvtW6AiIiIiJyPehSKiIiIiIiIiIiIAoUiIiIiIiIiIiKiQKGIiIiIiIiIiIigQKGIiIiIiIiIiIigQKGIiIiIiIiIiIigQKGIiIiIiIiIiIigQKGIiIiIiIiIiIigQKGIiIiIiIiIiIigQKGIiIiIiIiIiIigQKGIiIiIiIiIiIgA5te6AWcrKCjghx9+IDQ0lGPHjmFiYoKXlxcDBw5k1KhRODg4XOsmVqlXr154eHjw/fffV/lzdc2YMYPPPvuM7777juDgYKP0mJgYevfuzdChQ3n33XevSNuvtKysLAoKCnBxcalRuYpjX79+PZ6enjUqW1JSQlxcXI3Lyc3rdHIy3y1Zwt+HDwPQtnVrxg0ditNFPkMOHD3K/OXLORoVhb2tLe39/Rl5++042tv/G80WuWmczshk3o4d/B0XB0CglxfjOnXE0cbmguUOxJ9iwa5dHE1MxN7KivYNGzK8fXscbazPW+arzVuIT0vjlTsGV5melZ/PMwt+5p7gYHr4NL/0gxK5yeSlZHJs5S7Sj50CwKWFJ94DgrC0v/B1mhmbxInVu8mIOo2JiQlO3nXxHhCErZtTpXwFWbmcWLOHlAPRlBQWYV+/No36tcfRy61SvpRDsUSH/0lWbDKYmODYwI2Gfdoa5RO5FaUmJrNywa8cP3gEAB//VgwYNQQ7xws/08aeiGbtL8uJOnICE1MTGvk0YcCoO3Gt635J+c629JsFJCec5sHnn7z8AxSR69J106MwISGBYcOG8d5771G3bl2eeeYZpkyZQuPGjfnoo4+46667OHbs2LVuplzA/v37GTBgAIfLgzM10adPH6ZNm1bjAGNWVhYjR45kyZIlNd6n3Jwys7N5ffp0jpw4wR0hIQzq1Yvd+/fz388/p6io6Lzl/jp8mDdnzCAuIYGhffvSr3t3du7dy6uffEJWTs6/eAQiN7bMvDzeXLGCI6dPMzgggIH+/uyJiuLt0DCKiovPW+7vuDj+GxpKXFoadwa2oW/r1uw8fpzXly0jKz+/yjIbDxxkwz8HzltnUXExn65bT0Zu3mUfl8jNpDAnn8g5q8iMTsSzuy8e3VqTfCCa/V+voeQC12lOYjqRX60i+1QqXrcF0KCnP5kxSfw5O4z8jDP3yqL8QiK/WkXS/hPUC/ahYUhb8jNy2DenrGyFtOOn+OvbtRTlFtCob1sa9mpDbkoGkV+tJDM68aqeA5HrXU5WNnOnfU7MsRN069+Lrv16cvDPv/jmw1kUX+CZNunUaea8N4NT0XH0HNyXHgP7EHssiq/e/pSMtPQa5zvb7i072L35tyt+rCJyfbkuehQWFBTw2GOPERMTw9dff02nTp0MaWPHjmX8+PE8/PDDPPzwwyxfvhybi/RIkGvj0KFDnD59+pLKtmjRghYtWtS4XFpaGvv27aNHjx6XtF+5+YRu2EBKWhrvT52KZ926ADRt2JD/fv454Tt3EtKlS5Xlvl64EBNTU958+mnqupX1YugQEMBz77zDktWrGTd06L92DCI3srDIfaRkZfPeiGF41qoFQFN3N94OXcmmQ4fo3bJlleW+2bYdExMTXh9yB3WdynomBTVqxAuLFrF0z17GdupoyFtSUsKSvX+waPfu87YjJTubT9et59CphCt4dCI3h9itf5GfnkO7p4Zg6+4MgIOnG/vnriFhzxHqBflUXW7735QUFBHw8ADs69cGwLlJff6YuYLYbX/ReEAQADGb9pGblI7fhP44e5fdi938G7Hrg0XEbNmHz4juABwLjcDKyY42jw3CzLLsa4l72ybs/ngJJ9buwe+BflfzNIhc17atCSc9NY0n3ngO9/pl15GHd0O+/XAWe7ZFENSjc5Xltq8JpzC/gIemPkU9r7IRV41bNefLNz9i++pw+o8aUqN8UHbf3bRiLRt+XXU1D1lErhPXRY/CpUuX8tdff/H8889XChJWCAgI4P/+7/+Ijo5mzpw516CFInKj2LZnD62aNTMECQH8W7Sgnrs72/fsqbJMYnIy0fHx9OjQwRAkBPCoU4e2fn5sioi46u0WuVlsP3qUVvXrGYKEAH6entRzduK3o1WPDEjMzCQ6JZXuzZoZgoQAHrWcaevlxeZDZ3qqFxQVMXXxEn75fTddmzXDxc7WqL7I6BieXvAzJ5OT6efb+goencjNITHyGM7edQ1BQoBaTetj4+ZIYuTx85bLS8nE3M7KECQEcPB0xdzWipyEsp6CpaWlJOw9gouPpyFICGDpYIv3gCAcG9UBoDA3n+z4FFz9GhmChACW9jY4edclI+rSXj6L3Cz27dyDt09TQ5AQoGlrH2rXdWffzr3nLZeSmIytvZ0h+Afg6e2FjZ0tCbHxNc5XWFDIzNc+YMPSlbTp1B6HWpWnGRCRm891Eyi0tbVl6AV67AwePBg3NzeWL1/Oq6++SqtWrUhJSamUJycnhzZt2jB16lTDtr1793L//fcTGBhIYGAgDzzwAJGRkZXK9erVi5deeokXX3wRf39/unfvTkpKCqWlpcyfP5/hw4cTGBiIn58f/fv3Z/bs2ZSWll7Zk3CJxo0bx4MPPsjmzZu566678PPzo0ePHsyYMYOSkpJKeY8ePcqkSZMIDg6mXbt2jBs3jt9//71SniNHjvD444/Tvn17AgICGD16NFu2bKlynx9//DGBgYF06tSJJ5980nDex48fT69evQz5f/vtNyZMmEBwcDCtW7emW7duvPLKK2RkZBjyzJgxAx8fH2JiYgw/+/n5ceLECR555BECAwMJCgri+eefJzW17EF0586d9O7dG4DPPvsMHx8fDhw4gL+/P5MmTTI6V/Pnz8fHx+eShkbLjSErJ4fTSUk0btDAKM27QQOOR0dXWS4lvWx4RYN69YzS6rq6kpmVRXJqqlGaiFSWlZ/P6YxMvN1cjdIaubpyPCmpynIp2dkANKhi+ok6To5k5uWRnJUFQGFxMTkFBUwK6c3E23piamr8KBOblkbr+vV5d9hddPBudOkHJHITKszNJy8lC3uP2kZp9vVqkxWXfN6yNrUdKcrJpyAr90x9OfkU5RVgUT63YX5qFgXpOTg3rQ+UBQ6LCwoBqN+xhaG3ormVBe2n3IVHF+NgfmFOHiZVXNsit4rc7BxSE5Op38h4Dvb6Xp7ER8Wct2ztOm7kZOeQnZFp2JaTlU1ebh4OTo41zldUVER+bh6jHruXYRPGYGZqdrmHJyLXuWt+By4uLmbfvn20atUKKyur8+YzMTEhODiYEydOMHjwYIqLi1m9enWlPOHh4eTm5nLHHXcAsG3bNsaNG0dmZiaTJk3iscceIy4ujjFjxhgFyEJDQzl48CAvvvgiI0eOxMXFhU8++YTXXnuNpk2bMnXqVJ5++mmsrKz48MMP+fHHH6/8ybhEhw4dYvLkyQQHB/PSSy/h5eXFZ599xvz58w15Tpw4wciRI9mxYwdjx47l6aefJi0tjfvvv98QOD148CCjRo3iyJEjPPLII0yZMoWioiIefvhhwsLCKu1zz549rFy5kv/85z8MHTqUxx9/nFGjRgHw6KOP8uKLLwKwdetWHnjgAXJzc3nqqaf4v//7P/z9/VmwYAEvv/zyBY+rpKSE8ePHY2dnx/PPP0/fvn1ZunQpr732GgBNmjQxBCcr5jj08vKiR48ebNq0idzc3Er1hYaG4uPjQ7NmzS79ZMt1LSUtDQAXJ+M3nbUcHcnJzSW7ivkGLS0tAcitYh60zPLgRNpZgW0RqVpqecDPxdbOKK2WrS05+QVkV3GdWZmX9SbKLSw0SsvMK5tfMC2n7DPd1tKST0aPomOTxudtR59WLflP/36VeieKSJmC9LL7oKWjcW9cS0cbinMLKcotqLKsZ3dfrJzsOLhgM9mnUsg+lcKBBZswNTPFo3MrAHKTy+6XFnbWHFu5i9/e/JHtr/3Arg8XkfzPmRd2Jqam2Lg6YnVOO7JPpZBx8jSOXudfTEHkZpeRWvYS27GWs1Gag7MjeTm55ObkGqUBdBvQG6dazvz85fecio7jVHQcP3/5HWZmZnTq073G+axtrJn87v/hGxR4ZQ9SRK5b13yOwvT0dAoKCnBzu/jKZu7uZQ8M1tbWeHh4sGrVKu6++25DelhYGO7u7gQHB1NSUsKrr76Kn58f8+bNw8ys7M3H2LFjufPOO3nrrbdYunSpoWxeXh4zZ86kTp3y4RCFhcybN4+BAwdWWmF4xIgRdOrUiS1btjBmzJgrcQou2+nTp5k1a5ahF9+dd95Jt27dWL58uaGNn3zyCUVFRSxevJiGDRsCcPvtt9OnTx/mzJnDp59+yltvvYWLiwtLlizB1rbsoW3s2LHce++9/Pe//yUkJMQQUMnJyeH9998nICDA0I42bdqwYMECOnfubFi1+ZtvvqFevXp8/fXXhrL33HMPo0aNMuqpeK6ioiJuv/12XnjhBQBGjx5NQkIC69atIzc3F1dXV0JCQnjnnXfw8fFhyJCyeTQGDx7MmjVr2LhxI7fffjtQtljO7t27mTJlyuWfcLlu5ZUHICr+1s5maWEBQH5hIeeGMBrUrYuNtTURf/7JnX36YGJiAkBBYSGRBw4Y/i8iF1YR6LM0N368sCy/DxcUFWF3zotBz1q1sLG0IOL4cYa0CThzDRYVERkTW/b/4rKJ201MTDArTz8fczP1dhA5n4refWYWxtepafm1W1xYhLmN8b3U2tmeBj39Obp8B3umLysvZELLe3oahiMX5ZUFGU+u24uJmSlNBgWDiQkxW/bz97z1+N7fl1rlvQ2ratvBhWXPh549/C7vQEVuYPnlL8ksLC2M0szLtxUWFGBjazx3v3PtWvQY1IcVP/zC569OA8oC86Mn3l9pmHF185mYmBi+S4vIreGa9yisGMJbnQ8f87O+eAwaNIhdu3aRnFw2PCIrK4vNmzczcOBATE1N+fvvv4mOjiYkJIT09HRSUlJISUkhLy+P2267jX/++YeEhDMTnHt5eRmChAAWFhZs376dN954o1IbUlNTsbe3J+caroJqcs4XJBsbG3r27Gn42crKCm9vb5LKh3iVlJSwadMmevToYQgSAtSqVYsff/yRl156idTUVCIiIujRowd5eXmG85WRkUGfPn1ISkpi3759hrLW1tb4+V38Ae7LL79k0aJFlQI3NTmHAwYMqPRzy5YtKSoqIq2851hVevbsiYODA6tWnZlsd+XKlZSWljJw4MCL7lNuXBWfJ+deIxdjbm7OoF69OBYVxfRvv+VkbCzHY2L4eM4c8grKvvDoAUnk4i75GjQzY6C/H8cTk5ixYSNRycmcSErik7XryC8PPpppGKLIlVExfU7NLlMATqzdw5Glv+Ho5Y7PqO40H9ENB09XDszfZOgtWFJUNvVNUV4BAY/cTp22TakT2ISAhwZgbmPFiTVVL0JUXFDEX9+vJzs+Fc8efpXmNxS51Rgu0xreTwHWLQ5j2Xc/49XUm+EPj2PYhDF4envx8xffcOCP/TXOJyK3nmveo9DFxQULCwtDwO9CKlbUdXd3Z/DgwXz55ZesWbOGu+++m3Xr1pGfn8+gQYMAiIqKAmDatGlMmzatyvri4uIMwcHatY3nabGwsCA8PJz169dz/PhxTp48SXr5XGZXY47CiqHXxcXFVaZXbD+3t5Szs7PRHE2WlpaGOQrT0tLIycmpFCSs0Lx5cwDD8OPvv/+e77//vsr9x8efmdS2qn1WxczMjOjoaD799FOOHDlCVFRUpQDtxbicM19VxbGf7xxV5Onbty+hoaHk5ORga2tLaGgogYGBeHh4VHvfcuOxLr+GCgqMh0xV9Ai0tbausuyw/v3Jzs1lZXg428tXUm3n68sdISHMX7YMe1vjIVoiUplNec/dgqIio7SC8s9tmyp6/ALc1bYt2fkFrNq/n9+OHAWgbUMvBgcE8FPELuwvMD2JiFSfmVXZdVpSaPwsVVJ+7ZpbG/diKsotIGbLfuw9a+P3YD/DHIJu/o34Y+YKDi/ZRq1mIzCzKHux5tq6IRY2Z65bcxtLXFp4cnrvUYoLCjE7q6dUUW4Bf323joyTp6nTvhmN+rS9cgcscgOysi67dgqreKYtKu8VbF3FM21uTi5bV23Ao5EX9//nccP3Nb8OgXzx5kcs/WYBz77vQ2FhUbXymVsYfxaIyM3vmgcKTUxMCAwMZN++feTn5593nsLS0lJ2795NgwYNcHd3x93dHR8fH1auXMndd9/NypUr8fb2xtfXF8AQJJs0aRJt2rSpss7Gjc/Mb3Rub6HS0lImTpzIxo0badeuHYGBgYwaNYqgoCDuvffeK3DkxhwdyyaNzS6f4+lcFUHKinwVLhawqwiqXeiNVEWeMWPGEBISUmWepk2bGv5f3d5Vc+bMYdq0aXh7e9O+fXv69u1LQEAA33//PcuXL79o+Ut5iwZlw48XLVpEeHg4fn5+REZG8sorr1xSXXLjcC1fZbWq+QRTMzKwtbExBBPPZWJiwr133cWQkBBOJSZS29kZt9q1+Wn5ckxNTXGtYpEFEamstr09AGlV9BhPzcnB1soS6/N86TAxMWF8504MaRNAfHoGte3tcHNwYEHELkxNTHAtr1tELo+VU9m1VJBpPL9ZQUYuZjYWlYJ4FXKTMygtKsHNv3GlhUZMzcxwD2jC8VW/k5OYjqVj2QQfFnbGQQxLexsoheL8M4HCgqxc9n+zluy4FOp2aE7TIZ0u+flP5GbhVLvsmTYzPdMoLTMtA2tbGyytjZ9pkxMSKS4qwi84sNJ3RDNzc/w7tmfNwmUkxp+muLi4WvnqeamThcit6JoHCqFsTr2IiAgWLFjA+PHjq8yzfv16oqOjmThxomHb4MGD+fjjj4mOjmbbtm089thjhrSKnmO2trZ07ty5Ul2RkZGkp6dX+Ramwu+//87GjRuZOHFipRV0K4a9NqhiVdXLVRGIO3z4MH369DFKP3ToEECNF+OoVasW1tbWhl6WZ5szZw6JiYk88MADQFkA8NzzdeTIEWJiYrCxMZ4D40Ly8/OZMWMGwcHBzJ07t9LQ8U8//bRGddVUcHAwbm5urF+/nsTERMzNzY2GMcvNx87WFrfatTkeY7wS3PHoaJp4eZ237Lbdu3F2dKR1s2Y4nxWM//vIERo3aGCY41BEzs/Oygo3B4cqVzc+kZRE4wvMR7z9yFGcbW1oVb8+Tmf14P0nPh5vN9cq5z0UkZozt7HEysW+ytWNs+KTcfAwXrUcwNS8PJhQYjyqprS0pOI/2NV1xsTclJzTaUb58lKzMLUwMwQRi/ILDUHC+l1a0WRgh0s7KJGbjI2tDc6uLsSfNH6mjYuKwaNR1d9FK75vlVR1nZZ3pIHSaucTkVvTdTHhz9ChQwkMDOTDDz9k69atRun//PMPL7/8Mp6enkyYMMGwfdCgQZSUlPDf//6XwsJCBg8ebEjz9fXFzc2N77//vlIPvaysLCZPnszUqVMv2CuuYg68s3vRAfz888/k5uZSVMWwqsvl7++Pm5sbCxcuJDU1tVJaQUEB8+fPx9bWlq5du9aoXnNzc7p06cKmTZsqDR9OT09nzpw5REdH4+7ujq+vL0uWLKk0NLiwsJAXX3yRp5566qLHXPE2qqI3Z15eHrm5uTRq1KhSkPCff/4hIiIC4LLPY8XvsMRwQzvTloEDB7J161bCw8Pp2LGj0TBmuTkFBwSw7+BBYs/6O448cID406fp3K7decuFbtjA3IULKw1r371/PwePHaNvt25Xtc0iN5MO3o3YHxtLbGqaYdu+mBji09Lp3KTJecuFRkby9dbtFJ/1eb7nZBQHTyXQt3Wrq9lkkVuOa+uGpB2NIycxzbAt9UgcuYkZuPl7V1nG1t0ZS0cbTu05THHhmee34sIiEvYexdzOCts6zphZWlC7pRcpB2LITjjzPJuXkknyP1G4tGxg6JF4dNlvZUHCzi0VJBQ5R+t2ARz9+yCJ8WeeaY/8dZDkU6fxC656eL67R10cnB3Zu3UnhQVnFuIrLCjkj+27sLW3w71+3WrnE5Fb03Xxet7U1JTPPvuMxx57jAkTJtC3b1+Cg4MxMzPjzz//ZPny5dSrV4+ZM2diZ3dmvdJ69eoRFBTExo0badOmDV5n9RaysLDgpZdeYsqUKdx1110MHz4cKysrFi5cSFxcHB988EGl4NW5AgMDsbe355133iE2NhYnJyd27txJWFgYVlZW5x0efDksLS157bXXmDx5MkOHDmX48OHUq1eP5ORkli9fzpEjR3jzzTcvKeD1zDPPMGLECEaMGMGYMWOwt7fn559/Jicnh8mTJwPw0ksvce+99zJs2DDuvvtunJ2dCQ0N5c8//+SZZ56hVvmwzvOpaNf8+fNJSkpi8ODBBAQEsHjxYuzt7fH29ubw4cMsXLjQEFTMzs7GycmpxsdToWKuxPXr11O/fn369u1rqG/QoEF88803bN++nffee++S9yE3ljtCQtgcEcGbM2YwqFcvCgoLWb5+PY29vOjWvj0ACUlJHDx2DJ/GjanjWtZzYkifPnw0Zw7vffklHQICSExJYcWGDQS0bEm3oKBreUgiN5Q72gSw5fBh/hsaykB/PwqKilkRGYm3mytdm5W9fEvIyODQqQSa161DnfIevHe0acMna9cxbdVqgho1Iikrk7DI/fg38KTrOS/tROTyeHbz5fTeo+ybsxqPrr6UFBWVzT/oURv3NmUB/dyUTDJOnsaxoTs2Lg6YmJrSZHBH/vlxI3/MCqVuu2aUlpaSsPswuYnp+Izohmn5C1zv/u1JP36KfXNWU79zS0xNzYj97W9MLcxo1LfspV3O6TRO7z2GmY0F9vVrk7D3qFE76wSe/+WCyM2u24Be/LF9F1+//zld+t1GUWEhW1dtpH6jBgR0LLuOUk4nEXXkOF5NvXFxd8XU1JRBY4Yzf+bXfPnWx7TtFkxpSQm7t+wk8dRphk8Yg1n5d+Dq5hORW891c/W7urryww8/sHTpUhYvXsz06dMpKirCy8uLSZMmMXr0aBwcHIzKDR48mIiICMMiJmfr378/Tk5OzJo1i5kzZ2JqakqzZs2YNWsWt91220XbM3v2bD744ANmzZqFpaUl3t7efPTRR0RGRvLdd9+RlJSEq2vVwzMuVUhICD/88ANff/01P//8MykpKTg7O+Pr68vLL79Mhw6X9ra1SZMmLFiwgI8++oj//e9/mJqa4u/vz3vvvWcYyhwYGMj8+fOZMWMGX3/9NUVFRXh7e/Puu+8ydOjQi+6jU6dODBgwgI0bN7Jjxw769u3Lp59+yjvvvMOiRYsoKCjAw8ODhx9+mCZNmvDkk0+yY8cO+vXrd0nHBGUrPk+ZMoU5c+bw1ltv4eXlRXBwMAB+fn40atSI+Pj48867KDcfJwcHXp88mW8XL+bnsDCsLCwI8vdnzJAhWJQPH/7n6FFmzZvHY2PHGgKFwW3a8NR99/Hr2rV8u3gxTg4O3NG7N3f27VuthXtEpIyjjQ2v3jGY77b/xsLfd2Nlbk77hg0Z0zEYi/IgwoH4U3wRvolHe/YwBAqDG3vzZO9eLPvjD77/bQdONjYMCvBnSJs2ugZFrjBLexv8HxrAsdAITq7bi5mlObVbeuHdvz2m5mXXacaJBA79spXmw7ti41L2DO7auiF+D/QjasMfnFhbtvCXff3atL43BJfmnob6rWvZE/DoQE6s+p2YLfuhFJwa1cG7f3tDXenHTwFQnFvIoV+MRxSBAoVya7NzdGDC1KcIm7+E9UtXYmlpSctAP/qNGGxYZOTEoWMsmfsjQx+4Bxf3smfaVu38uf/ZiWxctop1i0IBqNfQk3GTH6a5X0tD/dXNJyK3HpPSq7F8r8h1YsCAAfj4+PDJJ59cdl0Z5StDi8j1q3jTxmvdBBG5iMd88691E0SkGiY00Yt2ketdiNetsUp86oyrs8ZBrScnXTzTLUiv6OWmFRERwbFjx7jrrruudVNERERERERERK57183Q45tRQUEB6enp1crr5OSEpaXlVW7RrWHp0qVs3LiRbdu20aJFC7ppIQoRERERERERkYtSoPAq2rt3L+PHj69W3u+++84wt55cHjMzMzZv3oy3tzcffPABJiYm17pJIiIiIiIiIiLXPQUKr6IWLVrw9ddfVzuvXBmDBw9m8ODB17oZIiIiIiIiIiI3FAUKryInJyc6d+58rZshIiIiIiIiIiJyUVrMRERERERERERERBQoFBEREREREREREQUKRUREREREREREBAUKRUREREREREREBAUKRUREREREREREBAUKRUREREREREREBAUKRUREREREREREBAUKRUREREREREREBAUKRUREREREREREBDC/1g0QERG5Uh7zzb/WTRCRi5hdu/+1boKIVEMERde6CSIicg2oR6GIiIiIiIiIiIgoUCgiIiIiIiIiIiIKFIqIiIiIiIiIiAgKFIqIiIiIiIiIiAgKFIqIiIiIiIiIiAgKFIqIiIiIiIiIiAgKFIqIiIiIiIiIiAgKFIqIiIiIiIiIiAgKFIqIiIiIiIiIiAgKFIqIiIiIiIiIiAhgfq0bICJyOU4nJ/PdkiX8ffgwAG1bt2bc0KE4OThckXL7Dx1iQWgoJ2NjsbW2pmNgIKMHDcLayurqHJDITSAvJZNjK3eRfuwUAC4tPPEeEISlvc0VKVfdfGlH4zm5bi9Z8SmYW1vg6tuIRn3bYmZpcaUOVeSGdbXvn3/88w+LV63iWHQ0pqamNGvUiNGDBtGsUaNK+V58/32ORkUZ7adDmzY88+CDl3GEIje+1MRkVi74leMHjwDg49+KAaOGYOd44eu0uuWqm+/koWOsXbyC2OPR2NjZ0DLQj153DsDOwf5KHaqIXEdqFCh84YUXWLJkyQXz9O7dm5kzZ1a7znHjxhEbG8uGDRtq0hQKCgpITU2lTp06NSp3OWbMmMFnn33G+vXr8fT0vKJ1x8TE0Lt3b4YOHcq7775bZZ5x48YRERHBwYMHr+i+r6To6GgaNGhQozIVx/7EE0/w5JNP/iv7lJtDZnY2r0+fTnFxMXeEhFBSUsLy9euJiovj7Wefxdy86o+46pbbf+gQb332GY0bNGDMHXeQnJZGWHg4R6OieGPyZExMTP7NwxW5IRTm5BM5ZxWlxSV4dveltLSUmC37yT6VSpuJgzA1M7usctXNl3Y0nn1zV2PvURvv/u3IT88hbvvfZMUm4//wAF2/cku72vfPvw8f5t1Zs/CsW5e7Bw+muLiY1Vu28Nonn/D65Mk0LQ8WlpaWEpOQQHt/f4IDAirty83F5aqeA5HrXU5WNnOnfU5xcRHd+veitLSEras2khATx6MvP43Zea7T6parbr7jBw7z7UdfYG1jQ49BfTAxNeG3NZs4duAwD784GRs723/tnIjIv+OSehROnTqVWrVqVZlWr169GtX16KOPkpubW6MysbGxPPDAAzzyyCPcddddNSp7Ofr06YOXlxcuenCp0oMPPoibm9t5A53n4+LiwrRp0/Dx8anxPmfOnMmSJUtYu3ZtjcvKjS90wwZS0tJ4f+pUPOvWBaBpw4b89/PPCd+5k5AuXS6r3LylS6ldqxavTZ6MpUVZDyTXWrWY8/PP/PHPPwS2avUvHKXIjSV261/kp+fQ7qkh2Lo7A+Dg6cb+uWtI2HOEekFVf9ZXt1x18x1buQsrZzv8HxqAmUXZ446Vkx1Hl+0g9XAsLs2v7As/kRvJ1b5/frt4MbWdnfnvs89iZWkJQPcOHXj6v//lpxUreOmJJwBITEkhPz+fIH9/unfocLUPW+SGsm1NOOmpaTzxxnO41y+73jy8G/Lth7PYsy2CoB6dL6tcdfOt+GExJiamPPTiJGrXcQOgVVt/Pn91GptWrKX/qCFX9TyIyL/vkuYoDAkJYciQIVX+61DDm3yXLl0ICQmpUZmYmBhOnDhRozJXQosWLRgyZAi2tnprUpWtW7deUjlbW1uGDBlCixYtalz2t99+o7i4+JL2Kze+bXv20KpZM8OXFQD/Fi2o5+7O9j17LqtcQWEhjvb29O7c2RAkBGjZtCkAJ2Njr/ThiNwUEiOP4exd1xDEA6jVtD42bo4kRh6/7HLVyVdcWISlvTV1g5obgoQATt5loxCy41Mu8yhFbmxX8/6ZlZPDydhYOgYGGoKEAM6OjrRs2pSDx89cz9Hx8QB4/IsjhERuFPt27sHbp6khiAfQtLUPteu6s2/n3ssuV518qUkpnI6Np03nIEOQEMCtXh18Alqzd1vEFTlWEbm+aDETEbkhZeXkcDopicZVDDv3btCA49HRl1XO0sKCFydO5K5+/SrlORETA2hIlEhVCnPzyUvJwt6jtlGafb3aZMUlX1a56uYzszDH976+ePWsPJSxIkBo5aw5leTWdbXvn7bW1nz80ksM7NXLKF9mVhZmpme+fpwbKMzLz6/5AYnchHKzc0hNTKZ+I+Pe7/W9PImPirmsctXNl5GaDkAdz7pG+VzcXcnJyiY9JbX6ByYiN4SrFijs1asX//d//8fChQvp3bs3bdq0YfTo0ezYsaNSvnHjxtHrrAeJgoIC/vvf/9K7d298fX3p0aMHr7/+OunpZR9SixcvZvz48UDZEOizh6ump6fz5ptv0q1bN3x9fRkwYADffvstpaWlhjwzZswgMDCQI0eOcP/999OmTRu6devGV199RWlpKXPmzKFnz54EBgby4IMPEhMTU6msj49PpW1ZWVm8/fbb9OzZk4CAAAYPHszChQuv7Mk8j8WLF+Pj48OBAwd45plnCAoKIjAwkIkTJ1ZqI5Sd1xkzZtC3b1/8/f3p168fs2fPrtQbLz8/n48//phevXrh6+tL7969+fTTTykoKDDa5+rVq+nVqxcBAQG88MILht/DkiVL8PHxYefOnQAkJiby+uuvG36f7dq1Y/z48ezevdtQZ0xMDD4+PsyYMaPSz0uXLuXjjz+me/fu+Pn5MWLEiEp/P7169SIiIoLY2FhD+aeffhpfX18yMjIqHX9mZiZ+fn689957V+jsy7WWkpYGgIuTk1FaLUdHcnJzyc7JuWLlEpOTCd+5k28WLaJBvXoE+ftf3gGI3IQK0suuHUtH4573lo42FOcWUpRbYJRW3XKXWn9eahYJe45wdEUEtnWcqd3Kq2YHJnITudr3T1NTU+q5uxvlOxkby6Hjx/Fp3NiwLSY+Hmtra75bvJjxzz7Lvc8+y5Ovv862s54TRW5FFQE6x1rORmkOzo7k5eSSm2M8fVd1y1U3n6VV2aia/DzjIH5OVjYAmemZ1TomEblxXNIchRkZGaSkVD1sx8nJCbPyicS3b9/OsmXLGDduHG5ubsyfP58JEyYwd+7c8w5RfuONN1ixYgXjx4+nQYMGHD58mB9++IGTJ08yd+5cgoKCePTRR/niiy8YNWoU7dq1AyAnJ4exY8cSHx/PPffcQ926ddmxYwdvv/02J06c4NVXXzXso7CwkHvvvZeQkBD69u3LokWL+OCDD9ixYwexsbHcd999pKam8r///Y+pU6fy/fffV9nWgoICxowZw+HDhxk5ciQtWrRg06ZNvPTSS+Tm5hoCmlfbY489RpMmTZgyZQrR0dF8++23nD59ml9++cWQ5/HHH2fz5s0MHjyY+++/n8jISD788EOSk5OZOnUqxcXFPPLII+zZs4eRI0fSpEkT9u/fzxdffME///zDrFmzKk38/n//93+MHTsWe3t7/P396dSpE8899xzt27c3lM/Ly2PMmDFkZmYyZswY6tSpw4kTJwx/B+vWraN2beNeIRU+/fRTbGxseOCBBygsLGTu3Lk88sgjhIeHU6tWLV588UU+/PBDUlNTDUHjuLg4QkNDWbduXaX5K9esWUNBQQGDBw++Or8E+ddV9DqwPGtYU4WKocL5hYXYXYFymdnZPPHaa4Zy948YUWk4soiUKS4oBKg03LeCafmk6MWFRZjbWF5SuUupvzAnn13vl90PTS3NaDI4uMryIreKf/P+eXbZz8ufp4ecNeVQdHw8eXl5ZOfl8cS4cWTn5rIyPJzp33xDcXGx5i2UW1Z+Xh4AFpbGz5vm5dsKCwqwsbW5pHLVzedevy5WNtb8vTuS7reHGL4PFhYUcuSvsgU2iwoLa36AInJdu6Qn5aFDh543benSpbRs2RKAuLg4Pv/8c8MchEOGDKFfv358+OGHLFiwoMryy5cvZ9iwYTz99NOGbba2tmzZsoXs7GwaNGhA586d+eKLL2jTpg1DhpRNnjpnzhyOHz/OokWLDL3b7rnnHj766CO+/PJLRo0aZZgDr7CwkDvuuIPnn38egKCgIAYOHMjevXtZt26dYbGS2NhYVqxYQUFBQZUPRb/88gsHDhzggw8+MASgRo0axdixY5k9ezZjx47F1PTqj+729fU19MaDsqDpTz/9xIkTJ2jUqBGbNm1i8+bNTJkyhUcffRSAu+++m8LCQn744Qcef/xx1q1bx2+//cb//vc/unXrZqjL39+fV155hfXr11eaS3LgwIFMnjy5Ujuee+45GjRoYPidhIWFcfLkSaM6GzRowKuvvsru3bvp27fveY+rtLSUX375xTAnpIeHB1OmTGHt2rWMHDmSkJAQvv32W/Lz8w37bNKkCc7OzqxcubJSoDAsLIzGjRvTSotP3DQqegrXdOXSSylnYmLCpPvvp6ioiFWbNvHWZ58x+f77CW7Tpkb7FrnpVfTgr+mCwtUtdyn1m0CL0T0oKS4h7re/2Td3DS1H98DVt1ENGylyc/g3758A+QUFTJs9m5OxsdzZty+tmjUzpIV06UJJSQn9unc3bOvSrh3PvP0285YupWv79v/Ks7TI9cZwu6vxdVq9ctXNZ2ZuTue+Pdn46yoWfvk93QeGUFpawrolYRTkl/Xg1zUqcvO5pEDh+++/j6ura5VpXl5nhvM0bty4UnDJxcWFIUOGMG/ePJKTk6vsTVa3bl3CwsLw9fUlJCQER0dHJk+ebBSUOteaNWto3rw5bm5ulXo7hoSE8OWXX7Jx48ZKi2Wc3a5GjRoB0LZt20orGnt6elJaWkpSUhL169c32md4eDguLi4MGjTIsM3ExIRp06ZRVFRU4w/2SzVgwIBKP1cEapOSkmjUqBHh4eGYmpoyduzYSvmef/55HnvsMezs7FizZg0uLi60bt260vnr0aMHZmZmhIeHVzpnQUFBF23X7bffTseOHSutkH32MOacKoa1nK1Hjx6VFo6p+P0lJiaet4yFhQX9+vVj8eLFpKen4+TkREpKCjt27OCxxx67aJvlxmFtZQVU/puqUFD+ZtPW2vqKlLO3taVz27YAdAwM5Jm33+bbRYsUKBQ5h1n5EKWSQuNFpkqKigAwtzbuvVDdckWXUL+FjRVu/t4AuPo2ZM+nSzkaGqFAodyy/s37Z3ZODu9++SWHjh3jto4dGX3WMzNAn65djeqytLCge1AQv6xcSXR8PA09PKpzWCI3FSvrsuutsIrrrai8d711FddpdcvVpP7b7uhHXk4uv63bzL6IskWLfAJa061/L9YuWoGtfVX9iEXkRnZJgcK2bdvi6Wk88em5mpavDnq2hg0bUlpaSmxsbJWBwtdee43JkyczdepUXn75Zdq0aUOfPn0YNmwYDg4O591XVFQUeXl5dOrUqcr0+PLJkiucHeg0Lx+udG57KoZQl5SUVFlnbGwsXl5eRgFBj0t4oLEqf/gqKv+iU5WioiJDvrOdHYiDM0NCKuYfrDjX9vaVJ293c3PDza1s9aqoqChSUlKqff4uNGT4bCYmJsyePZu9e/cSFRVFVFQUheUPk+c7rxVczlksouK4LlbujjvuYMGCBaxbt45hw4axatUqioqKNOz4JuNa/nefds58lACpGRnY2tgYvtRciXIVLC0saNu6Nas2bSIjKwtHey2KIFLByqnseijINJ43qSAjFzMbC8yqGOZU3XKXWn8FMwtzXFo0IG77PxRm52FhZ/wlS+Rm92/dP9MzM3l75kxOxMQQ0qULE0aNqvZLdKfyZ/78KoIYIrcCp9pl11tV8/9lpmVgbWuDpbXxdVrdcjWp38TEhNvvHkr320NITkjE0cWZWq4urF0ciompKU4utYzqEJEb21WdpMeiijm8KoJXFUG4c3Xq1ImNGzca/m3bto133nmHb775hsWLFxsFj86ut127djzxxBNVpru7u1f6uar917QHYHFx8RXrNehUPuFzdnb2efNkZGTg6OhotP1i3b3PXrDkQnkaNWpUaS7Hs5273+p0MT927JhhiHPXrl25/fbbadmyJaWlpTz++OMXLX+p3djbtWtH/fr1WblyJcOGDWPlypX4+vrSsGHDS6pPrk92tra41a7N8RjjVd+OR0fTxKvqxQqqWy42IYG3Z85kSEgIfc8aOg9lcy2ZmJhgYa55zkTOZm5jiZWLfZWrG2fFJ+PgUfVohOqWq26+nMQ09n+zFs9uftTv2KJSvuL8QjABE/Oqn0NEbnZX+/4JkJuXZwgS3n7bbdx71nQwFVLS0njr88/p3LYtw88ZHRObkACAWzVfTIvcbGxsbXB2dSH+pPH1FhcVg0cj49XHa1KuJvVH7tyDg5MD3i2aYe90puPOiYNHqd/Qs8p5DkXkxnZVJxSIiooy2nby5EnMzMyq7JFYUFDAn3/+SWZmJgMHDuSDDz5g27ZtPPfcc8THxxMaGnrefXl4eJCdnU3nzp0r/WvdujUZGRnY2Nict+ylql+/PtHR0UbbN23axPPPP09SUlK167K0tKRBgwYcOXKkyvTc3FyioqJodta8LjVpZ3JyslEQ8q+//uKZZ57hyJEjeHp6kpaWRseOHSudv6CgINLS0ioNAa6ur776ioyMDBYvXsz06dN54okn6N27N7m5xj1BriQTExNuv/12duzYQVxcHLt371ZvwptUcEAA+w4eNHyhAIg8cID406fpXL7Q0aWWq+vqSk5uLmu3bq3U0zcxOZkdf/xBy6ZNsaliyIfIrc61dUPSjsaRk5hm2JZ6JI7cxAzDEODLKVedfNYujhTlFRAfcZCSs16W5aVmkbT/BE7edTG30hcbuXVdzfsnwJyff+ZETAwDevasMkgI4OLsTE5uLhu2byfnrGfDpJQUwnfupHXz5tSq4gW5yK2idbsAjv59kMT4M9fbkb8OknzqNH7BbS+7XHXzbV8dzvJ5iyp1Pjn4519EHT5GcC/j6QNE5MZ3VQOF+/bt448//jD8nJSUxLJly+jYsaOhB93ZUlNTGTVqFF9++eWZBpqa4ufnZ/g/VD0kuFevXhw4cIBNmzZVqnPWrFlMmjSJw4cPX7HjqtC9e3eSkpJYu3Ztpe3ffvutYWXemujduzdRUVGsXLnSKO2nn36ioKCAPn361LidPXr0oKSkhIULF1baPn/+fFauXImrqyu9evUiLS2N+fPnG+13ypQp/Pbbbxfdj6mpaaXfSVpaGjY2NpXmdywoKOCnn34CqtfTsab7rDB48GAKCwt5//33KS0tNZrHUW4Od4SEYGdjw5szZrBiwwYWr17Nx3Pn0tjLi27t2wOQkJTE5ogIEs4K3FennJmZGfcPH05UXByvfvopqzdv5peVK3nxgw8wNTHh/uHDr8kxi1zvPLv5Ym5jxb45q4nZ+hdR4X/yz/yN2HvUxr1NEwByUzJJ2HuU3JTMGpWrbj5TM1OaDOpIzqlUImevJG7HP0Rt+IM/Zq0AUxOaDAr+d0+KyHXmat4/Y06dYsuuXdja2NDI05PNERFG/yo8OHIkyWlpvPzxx4SFh7No1Spe/OADzExNeWDEiH/3pIhcZ7oN6IWNrS1fv/8521ZvZNOKNSyY9Q31GzUgoGNZYD7ldBJ/bN9FyumkGpWrUb7be5MYd4p5n37FrvDtrF20gvmff01T3xYEdGr/750QEfnXXNK4uXXr1l0wCFaxAq2lpSUPPfQQ9957L9bW1vz444+UlJTw3HPPVVmuTp06DB48mB9//JHc3FwCAwNJS0tj3rx5uLq6GoI9FftetmwZpaWlDB06lEceeYQ1a9bw+OOPM3r0aJo1a8bu3bv59ddf6d69O93PWk3tShk9ejSLFi1iypQpjBkzBm9vb8LDw9m2bRtvv/32eYdXn8/EiRPZtGkTzz77LFu2bCEgIIDi4mIiIiJYtWoVXbp0YeTIkTVuZ69evejatSvvvvsuhw8fxs/Pj71797J06VIef/xxnJ2dGTFiBEuWLOHNN9/kr7/+wt/fn0OHDrFgwQJat25daQXh83FxcSEiIoKff/6Zrl270r17dzZs2MAjjzxC//79yczMZOnSpYaephcaZl1dLi4u7Nq1i7lz59KuXTsCAgKAsoVPmjVrRlhYGMHBwdSpU+ey9yXXHycHB16fPJlvFy/m57AwrCwsCPL3Z8yQIYapD/45epRZ8+bx2Nix1Cmfm7Q65QC6d+iAhbk5v65bx3eLF2NlZYVv8+aMHjSI+vqbEqmSpb0N/g8N4FhoBCfX7cXM0pzaLb3w7t8e0/LhvhknEjj0y1aaD++KjYtDtcvVJF+dwCaYmpsSvWkfx0J3YWZpjnOTejTs0xZbN+OXlSK3kqt5//ynfHRMTm4us+bNq3L/3Tt0ACDI35//PPQQS9as4Ydff8XSwoJWzZpxzx134KH7rNzi7BwdmDD1KcLmL2H90pVYWlrSMtCPfiMGY15+vZ04dIwlc39k6AP34OLuWu1yNcnXun0AIx4Zz5awdaz8aSl2jvZ07d+L7gNDtOKxyE3qkgKF77zzzgXTKwKFbdq0YeDAgcycOZPMzEzat2/PM888U2n14XO9+eabNGjQgNDQUEJDQ7GxsaFTp05MmTLFMD9hkyZNGDduHIsXL2bfvn0EBwfj5eXFggULmD59OqtWrWLBggXUr1+fiRMn8vDDD1+VDzFra2u+//57PvnkE0JDQ8nMzKRJkyZ88sknl9SDzcnJiZ9//pk5c+awdu1aVq5ciampKV5eXrzwwgvcc889hoVXasLU1JSZM2fy+eefs3z5cpYtW4aXlxevvPIKd999N1AW1P3mm2/4/PPPWb16NcuWLcPd3Z27776bxx9/vFpDt5999lk+/PBD3nzzTd58801Gjx5NRkYGCxcu5K233sLV1ZU2bdrw2WefMXr0aHbs2MF9991X4+M524QJEzh48CAfffQRd911lyFQCGW9Cj/66KNKq1LLzad+nTpMvcCK1j2Dg+kZbNx76GLlKnRq25ZObc8/vENEjNm6OeF73/l7wNdp25Q6bY0XPLtYuZrmc/Pzxs3v/MOdRW5lV+v+2adr1ypXMz6f9v7+tPf3r3Z+kVuJa113xk955Lzpbbt2oG3XDjUuV9N8/sFt8b/AcGcRubmYlJaWll6Ninv16oWHhwfff//91ahe5KJmz57NjBkz2Lp1a5VD3WsqIzLyCrRKRK6mh5NXXesmiMhFzK7d/1o3QUSqIcK56OKZROSaCvG6NQK4qTM+vSr11npy0lWp90anvsJyUyooKGDx4sWEhIRckSChiIiIiIiIiMjN7pKGHkv1pKSkVGvBDmtraxwcHC6aTy4uISGBd955hyNHjnDy5Enef//9a90kEREREREREZEbggKFV9Hw4cOJjY29aL6hQ4fy7rvv/gstuvk5OTnx+++/U1RUxKuvvmpYMVtERERERERERC7sqgUKN2zYcLWqvmG8//775OfnXzSfu7v7v9CaW4O1tTVbt2691s0QEREREREREbnhqEfhVdSuXbtr3QQREREREREREZFq0WImIiIiIiIiIiIiokChiIiIiIiIiIhIdUyePBkfHx9SU1ON0p5//nl8fHx47LHHjNKys7Np1aoVTz/99L/RTACio6NrXEaBQhERERERERERkWoICgoCIDIy0iht586dWFhYsGvXLoqLiyulRUZGUlxcTHBw8L/SzpkzZ/LAAw/UuJwChSIiIiIiIiIiItVwvkDhiRMniI+PZ9CgQWRmZvLXX39VSt+zZw8AHTp0+Ffa+dtvvxkFK6tDgUIREREREREREZFqaNasGc7Ozvz555+Vtu/YsQNTU1MeffRRTExM+O233yql7927F3d3d7y9vf/N5taYAoUiIiIiIiIiIiLVYGJiQvv27dm3b1+l7Tt27KBFixY0atQIHx8fduzYYUgrLS0lMjLS0JuwuLiY//3vf/Tr1w9fX1+6du3Kq6++SkpKiqHMzp078fHxYcmSJQwePBg/Pz+mTp0KQEREBGPGjKF9+/YEBgYyevRoNmzYYCjbq1cvIiIiiI2NxcfHhxkzZlT7+BQoFBERERERERERqaagoCDS0tI4ceIEUBYIjIiIMMw/2LFjR/bs2UNBQQEAR48eJT09nY4dOwIwZcoU3n//fZo3b87UqVPp378/v/zyC3fffTcZGRmV9vXGG2/QoUMH/vOf/9C7d2+OHTvGI488QmlpKVOmTOHZZ58lNzeXiRMn8vvvvwPw4osv0rhxY2rVqsW0adPo06dPtY/N/HJPjoiIiIiIiIiIyI2kd+/eF0xfv379edMqegb++eefNGrUiEOHDpGcnGwIBAYHB/PNN9+wZ88eOnbsyN69ew3lNm/ezOrVqxk/fjz/93//Z6izXbt2TJ48mS+++ILnnnuu0vaXX37Z8PNXX31FTk4On332GS4uLgDcfvvtjB49mn/++Yf27dsTEhLCt99+S35+PkOGDKnReVGgUKSaHP39r3UTROQifkLXqYiIyJUQcq0bICJSrtaTk65OxUuXXXLRFi1a4ODgQGRkJEOGDGHHjh2YmZnRvn17oKzHoZmZGREREYbehXXr1qVhw4Z8/fXXADzyyCOV6hwwYACffvop69evrxQorFg8pULdunUBePPNN3nwwQfx9fWlVq1arF69+pKP52wKFIqIiIiIiIiIyC3lQj0GL8bU1JR27doZFjTZsWMHvr6+2NvbA+Dg4EDLli3ZvXs3AH/88YdhWHJMTAyOjo64uroa1dukSRM2b95caVtFr8EK/fv3Z+3atYSFhREWFoabmxs9evRg6NChhkDl5dAchSIiIiIiIiIiIjXQvn17Dhw4QH5+Pr///rth2HGF4OBgIiMjSUlJ4fjx44bhyqWlpeets6SkBAsLi0rbzMzMKv1sYWHB9OnTWbZsGU8++ST169dn8eLFjBkzhtmzZ1/2cSlQKCIiIiIiIiIiUgMdOnSgsLCQlStXkpGRYegxWKFjx47k5OQQGhpKaWmpId3Dw4OMjAySkpKM6jx+/Dj16tW74H7j4uL4/fff8fHx4YknnuDnn39m48aNNGrUiDlz5lz2cSlQKCIiIiIiIiIiUgOtW7fG1taWn376CQsLC9q1a1cpvV27dpibm7NkyRI8PDxo0KABAL169QLgyy+/rJR/3bp1HD9+nJ49e15wv1988QX33XcfCQkJhm1169bF3d0dU9MzYT5TU1NKSkpqfFyao1BERERERERERKQGzM3NCQwMZNu2bbRv3x5ra+tK6XZ2dvj5+bF3716GDh1q2N6jRw969+7Nd999R0JCAsHBwZw4cYL58+fToEEDo0VOzjVmzBh+/fVXxowZw6hRo3BycmLHjh1ERETw1FNPGfK5uLiwa9cu5s6dS7t27QgICKjWcalHoYiIiIiIiIiISA1VrEh87vyEFSqGG1fMTwhgYmLCp59+yqRJkzhw4ADvvPMOa9asYdSoUfzyyy84OjpecJ8+Pj58/fXXNGzYkLlz5/Lmm29y+PBhXn75ZSZOnGjIN2HCBBo1asRHH33EokWLqn1MJqUXmkVRREREREREREREbgnqUSgiIiIiIiIiIiIKFIqIiIiIiIiIiIgChSIiIiIiIiIiIoIChSIiIiIiIiIiIoIChSIiIiIiIiIiIoIChSIiIiIiIiIiIoIChSIiIiIiIiIiIoIChSIiIiIiIiIiIoIChSIiIiIiIiIiIoIChSIiIiIiIiIiIoIChSIiIiIiIiIiIoIChSIiIiIiIiIiIoIChSIiIiIiIiIiIgL8P+Sr8xGKVJwyAAAAAElFTkSuQmCC" + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQoAAAIYCAYAAAAl5NFGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3QU5dfA8W/appdN75UQIJUWCL13RJo0KYoKCiKKoqg/QJAuKCICKoI0BSX0DtJCBwmhBUggFUiBJKSXzb5/xB0TEhV97dzPOR5hd+bZ2WVnZ+bOfe7V02q1WoQQQgghhBBCCCGEEI81/b97A4QQQgghhBBCCCGEEH8/CRQKIYQQQgghhBBCCCEkUCiEEEIIIYQQQgghhJBAoRBCCCGEEEIIIYQQAgkUCiGEEEIIIYQQQgghkEChEEIIIYQQQgghhBACCRQKIYQQQgghhBBCCCGQQKEQQgghhBBCCCGEEAIJFAohhBBCCCGEEEIIIZBAoRBCCCGEEEIIIYQQAgkUCiGEEEIIIYQQQgghkEChEEIIIYQQQvxltFrtb16nvLwcAI1G87vWF0IIIR6VnlaONEIIIYQQQgjxhyovLyc2NpZz586hp6eHsbEx8+bN45tvvsHX1/dn19HT00NPT+8Xxy4pKUGlUv0Zmy2EEOIxJxmFQggh/jAajYaysrK/ezOEEEKIv1RaWhrbt2+npKREeWzv3r0MHjyY5cuXc+vWLWrXrs0rr7yCra1tlXUr523o6+tXCxIWFxezd+9e4uPjWbhwIY0aNeKNN94gPT39z31TQgghHkuSUSiEEI+5tLQ08vPziY2NZePGjSxfvvzv3iQhhBDiX2XZsmV8+eWXfPfdd3h4eADQuXNn8vPz+fDDD/H398fCwgI9PT0MDAyU9crLy9HXr8jdSE9PJz4+HoDGjRtjaGgIwPXr1xk8eDDm5ub4+/vj6elJo0aNaNWqFRYWFn/xOxVCCPFfZ/h3b4AQQoi/Rn5+Pubm5srfT5w4wYwZM4iLi+OZZ57BxsYGAwMDsrOzsbGxUZbTarXKVCjdxczDCgsLKSoq4sqVK3zzzTcEBgYyZMgQLC0t/+y3JYQQQvzt+vbtS5s2bXB0dESj0WBgYICJiQlubm40bty4yrK6acNarRZ9fX1u3brF7NmzOX78OEZGRpiamlKnTh1Gjx5N48aNsbS0pGXLluzatYshQ4bwwgsvoNVqf3V6shBCCPF7SKBQCCEeA++99x6RkZFs3boVLy8vtFotn332GRkZGUyePJk2bdpgYWFB//79sbKyqrLuw9kPDx48qLLM2bNnmTRpEk5OTpiZmZGUlISvr68ECYUQQvwnabVaJcinY29vj729fZXlvL29uXjxIh9++CF+fn40bNiQmTNnkp2dzbJly7CwsCAtLY0333yTzMxMpkyZgru7OxcvXmTDhg1Mnz6dZcuWYWdnh1qtxtTUlPr16wNIkFAIIcSfRgKFQgjxH6ab0tSrVy+aNWumZApmZGRw7949wsLCGDBgQJVA4MNycnL48ssv2bVrF1lZWfj7+9OtWze6deuGra0ttra2ODg48MMPP9CvXz/ef/99ZbqUEEII8V9TU7MRjUZDdHQ0WVlZhIWF8f7777Nnzx6MjIxYtmwZTz31FA0bNsTc3JzY2Fjy8/OxsLDg2LFjXLt2jZUrVypBwKZNm9KyZUuefPJJNm7cyNixY/Hw8KCkpEQChEIIIf50ciUnhBD/Ybpsh9DQ0CoXF46Ojnh7e3P37l3u3LmDRqPBzc2NBQsWkJeXx7Rp09BoNJSUlPDBBx+wb98+unfvjpOTE6dOnWLGjBlER0fzwQcf4OjoiJWVFSqViueeew5HR8e/6+0K8VjQZTM9SmdUIcSj0ZXZ0Gq1GBgYVNm3Kk/zzc/P58aNG6Snp+Pj44O/vz8A2dnZzJkzh6SkJPbt20eXLl2wt7dnzZo1vPLKKwwbNgwjIyNq1arF7t27yc7Oxt7enjNnzmBlZUX9+vVJTk7m2rVrXLx4kRs3bgAQFRXF6NGj8fT0pLy8XBqYCCGE+NNJoFAIIf4jNBoNQJXswIeDCRkZGajVaj788EPOnj3LgwcP6NChA3Xr1mXTpk1ERUWRnJzMtGnTMDAw4MyZM3z77bfMmDGDjh07YmVlxQsvvMCKFSuYM2cOvXr1omXLlri5uVFUVKRkEkrtJCGqy8vLIyMjAx8fnyoNDH6NRqOpUiNUAoRCVHf48GHWrVvHiBEjiIiI+Nl97OeOTw+X2Xh4+ZKSEubOncuOHTsoKCjA0tISExMT+vfvz6hRo7C0tKR+/frEx8dTWlpK586dqVOnDmvWrAFQagS7u7tTUlJCcnIyAQEBZGZmkpGRQf369SksLMTMzAwXFxc8PT2ZOHEitWvXxtDQEEdHRywsLLh58+Zv+v0QQgghfisJFAohxL+ELosIqPECofIFTk5ODgYGBko3xLy8PAYNGkRJSQl79uwhIyMDd3d3Ll26xCuvvELz5s0BqF+/PtevX6eoqAgTExM2bNiAn58fffv2BSoyKZKTk5XX2bJlC82bN8fHxweA1NRUXF1dJVAoxEPu3bvH4MGDcXBwYM2aNdX2YV02E1AtWPHw3+Pj47l16xbm5uZERET8uRsuxN+o8rEkPT2dy5cvk5CQgFqtpkWLFtjb2yvLZGZmcvjwYZo2bVplv9DtW/r6+lWC7A8fp27cuMHhw4c5e/YsGo2GJk2a8NRTT2FlZYVWq2XdunVs3LiRF154gQYNGpCXl8fSpUtZvXo1Tz31FGq1GhcXF/Lz80lJScHW1hYnJydsbGy4desWubm5WFpa4ujoiKmpKfHx8XTo0AE7OztUKhXDhw+nY8eOmJmZYW1tja2tLcnJyWRkZKDRaLCzs8PR0ZG4uDjKyspQqVR/7T+GEEKIx4YECoUQ4i9w+/ZtTp48SaNGjfD09PxdgbRfyyLasGEDW7Zs4dq1a1haWtKgQQOeffZZAgMDsbCwwMXFhStXrpCfn8/06dM5ePAgEyZMwMXFhZCQEABcXV0BuHbtGqGhoaSnp5ORkcHw4cNJTk4mPT1duWCJiIigSZMm6Ovr4+LiAsDly5dp3LixEtAUQlSws7NjxowZmJqa1vj8z2UzARw9epTjx4/TpUsXvv76a3bu3IlGo8HCwoIRI0YwZMiQak2IhPgv0NPTIzc3l48//phdu3ZRWlqKqakpBQUFWFtbM3z4cJ5++mkAAgMDMTU1rXIzSzeGbt/Ky8sjLS0NU1NT5XgHFTe53nrrLQoKCvDy8qK8vJwFCxZw/PhxFi1ahLm5OZGRkTRp0oQRI0Yo+3HDhg1JTU1VsgXd3NzQ19fnxo0bhISEYGpqipeXF0lJSTx48ABLS0vUajWOjo7K1OKQkBA2b96Mvb09gYGBVbb9q6++4tSpUyxatAgHBwd8fHxISkqioKBAAoVCCCH+NBIoFEKIP0h5eTnJyclotVq8vb2BnzIWoqKimDx5MnPmzMHT07PKehqNRlnul5qK3Lp1i5iYGB48eEBgYCANGjRQntu5cycff/wx9evXZ9y4cdy5c4fVq1eTmprKwoULcXJywsPDg5MnT3Lz5k2Cg4Px9PTEysqK+Ph4SkpKUKlUuLu7A3DlyhVCQ0Px8PAgJiYGIyMjnnrqKby8vPDw8MDe3h49PT2Ki4sBcHFxQa1WExMTo7xvIURVjRo1qvHxsrIyrl27xpkzZ0hPTycsLIzmzZsrwYcLFy4QGRnJli1bqFWrFosWLUJPT4/ly5ezePFiPD096d69u0xHFP9qGo2m2jEwPT2dsWPHcuvWLZ555hmaNm2KmZkZycnJLFu2jHnz5lFUVMRzzz2Hh4cH5ubmJCUlAT9l3icmJrJq1SoOHDhARkYGRkZG1KtXjzFjxtCkSRMMDQ2ZM2cOWVlZzJgxgzp16mBmZsYXX3zB+fPnyczMxNzcHCcnJ6KioliwYAEtW7ZEq9UqN+V0HBwcUKvVXL16VXnM39+fo0ePcv/+fdzc3LCyssLd3Z1bt26h0Who2rQpdevWZe3atQQHB1O3bl0KCwvZv38/a9asoW3btnh7e1NQUICDgwP79+/n3r17SnMyIYQQ4o8mgUIhhPh/0Gg0REZG8u233xIbG4uRkRG2trZEREQwbNgwatWqBUBwcDD6+vpkZWUBVMkMfPjC6OGLpby8PKZMmcLRo0dRqVRotVo0Gg2jR4+mf//+mJubs2LFCgICAnj33Xext7fHwMCA8PBwbt26pbyWri5aXFwcwcHBSpZhXFwcpaWlqFQqXFxcsLCw4OLFiwwaNIjatWuzc+dOevfuTffu3SkrK1PqEH7xxRfExMSwYMEC7O3tcXFxUTIkZNqxeBzpygP8UrDu5s2bmJmZ4ezsrEyJXLp0KatWrcLCwgI9PT1WrVpF48aNGT9+PKGhoQQHBwMVWYkzZ85UAvq2trYMHjyYY8eO0b1797/kPQrxZzh58iSrVq3i008/rRLw/vTTT7l8+TJr1qxROgID1KlTh4YNG9KzZ0+2bt3K4MGDlWDe3bt3ycrKQq1Wk5OTw9y5c0lISKBXr174+Phw/fp11qxZw7x58/jwww/x8fHhzp07ODo64uTkhFqtBmDMmDFVtvG1115j7ty5rF69mtWrVwMVdQft7e3p06cPo0aNws7ODicnJ65fv66sV7duXTZv3kxGRgYAZmZmeHt7s3v3btLT0/H19eX111/npZdeYsSIEbRs2ZLy8nIuX75MkyZN+N///qes16VLF7y9vXFycvrz/jGEEEI89iRQKIQQv1NeXh6ffPIJmzZtokWLFvTt2xcjIyN++OEHNmzYwKlTp/j000/x8/PDxcUFY2NjEhMTlew93RhRUVF8//33yoVFu3bt6N+/vzKdd+HChRw6dIjx48fTtGlTCgsLmTt3Llu2bKFly5b4+flhYmJCYmIily5dokWLFpSUlNC4cWPatm2rbK+Pjw8qlYpr164BYGFhgZeXF7GxsRQUFCgXWbopygAtWrTg448/Ztu2bXTv3l0JEl65coXFixfj4+ODoaEhNjY2uLm5sW/fPqB68FOI/4LKdQR19c4qq1weIC0tjby8PNzd3TE2NgZg//79jB07lhEjRvDWW2+hp6fHN998wyeffMLAgQMZNGgQJiYmHDt2jGnTplFQUMD69evx9fXFwMAAIyMjpRGCSqXC2dkZDw8P4uLilNcX4t9Gq9Vy7Ngxvv/+e/Lz85VM2rS0NLZt28YTTzxBUFCQsqyenh5lZWXY2tqydu1aJYMfwNfXl6ioKFJSUlCr1axdu5YDBw4wdepUBg4cqNyIMzMzY8mSJdy4cQMfHx86duzIggULGDZsGHXq1MHAwABfX18aNmxIcHAwTk5O1K1bl08++YT79+9z8eJFUlJSyMrK4ujRo3z55ZeEhobSoEED3N3diY6OVvbT2rVrU1ZWRlpaGgCmpqb4+Phw7949bt++jYuLC82bNycyMpLvvvuO8+fPY2JiwqBBg+jUqVOVKdJNmjShSZMmf90/jhBCiMeSBAqFEOJ32rhxIytXrmTixIn069dPqRHWp08fmjVrxmuvvcbkyZNZuHChknGXlJREXl4etra2lJeX88UXX7Bz505cXV2pV68eN2/e5NNPPyU5OZkpU6agUqm4ePEizZs3Z+jQocprf/nll2RnZ+Po6AjA008/zdtvv82YMWOwsrLC0NAQHx8fgoKCaNWqFc2bN8fFxQVra2vi4+OBn7IaDh8+zIMHD3BwcMDOzg53d3dOnToFQEBAAC+++CKffPIJgwcPplOnTujr67Np0ybs7e15++23AVCpVAQEBJCamkpOTg7W1tZ/5T+FEH+JXysPkJyczEcffcSxY8eUaYKtWrVi6NCh+Pr64u7urmQ8QcW0ylWrVlGvXj2mTp2qjOPl5UVeXh4LFy5k7969tG3bFldXV3JycgCUGw329vY4Oztz/fp1iouLlYCkEP9ENTXs0WUP2tvbA5CVlaUECqOiosjPz6dNmzYYGRlVyTTU3bTSBQlLS0sxMjLC39+fPXv2kJCQQHBwMM7OzowaNYrevXsDKPUDY2Nj0dfX5+bNmwAMHDgQtVrNnj17yMrK4u7duxw+fJgVK1YQFhbGl19+iYmJCYWFhVhbW9OtWzflfbVq1YpnnnmG9PR0VCoVPj4+HDp0iHv37indiwGuX7+uZOU7OTlhbW1NUVGR8tn4+fkxceJECfiLx4JGo6GwsFBpuvdb1tPX1//V7H0hxP+PBAqFEOJ3yM7OZtmyZbRq1Ypnn31WeVx3IdStWzcl40d3AVSrVi2uXbtGRkYGtra2REZGsnTpUp555hlGjBiBubk5paWlfPTRR+zdu5cbN25Qv3596tWrx7p163jllVdo1qwZWq0WJycnQkNDldft0KEDTk5OXL58mZs3b5KQkEBqaipr1qzhwIEDbNy4ETc3N+zt7ZVC7yYmJnh5eVFQUEBaWpqSmejt7c3Bgwe5f/8+tra2jB07FisrK7Zt28ann35KaWkpISEhvPLKK1Vqro0dO5axY8f+Rf8CQvxxfqnjcGXJycmcO3eOa9euYWVlRdu2balTpw5QkR08b948YmJiGDVqFA4ODpw5c4avv/4aAwMD3n33XVxdXVGr1UpwwsDAgMTERIYPH65sB1QEJDt06MCiRYuIjo6mU6dOuLu7k5SURGZmJvb29kpmlJubG+fOnSMpKQl/f/8/82MS4v+lpkC7vr4+d+/e5dy5cwD07NkTR0dHvvjiCwoKCoCKwMCv0QUMAgIClHrBUHHjDioabUVGRnL27FlSUlJwcHBAX1+fxMREACwtLenfvz/9+/cnNTUVjUaDSqVixYoVrFq1iqioKBo2bMhTTz1Fx44defnllykvLycjI4NNmzYBKFmP9vb2lJSUcP36dVxcXLC1taV58+Z4e3srvzPt2rVTbsjpPpvK/xfivyYmJoaDBw+SkJDAsGHDGDp0KBMnTmTo0KHVvve6Mh5AtWCg7jdEt869e/cwMTFRbjAIIf4YEigUQogaVJ5eWJlu2tO+ffu4f/8+Xbt2BVCyBCpfCHXo0KHKunXq1FEKmkNFJ+SwsDBeeeUVTExMlOVsbW0pKCggKSmJ+vXrM3LkSG7fvs3hw4c5ePAgJSUlADg5OdGjRw/eeOMNDAwMCAkJISwsrEpm0WeffcaCBQu4cuUKERERuLm5ceLECTIyMnBwcMDJyQkTExPi4+Np0qQJBgYGSmbktWvXiIiIoLy8nGHDhtGtWzc0Go3URhL/Wj8XEHw4gKGbMli5O7muIZFWq8XKyor09HTWrVvHe++9R7t27UhLS2Pfvn3MnDmTJ598Ej09PXr06EF4eDgODg4AWFlZ4ezszIULF8jNzUVPTw9TU1P09fWrlCSAimCDvb29Ml3Rx8eH/fv3c+vWrSqBQh8fH8rKyoiLi8Pf3/93dVQX4v+jvLxc+d79XIaPRqNRGvYkJibi6elJu3bt8PT05NKlS9y6dQtDQ0M8PDyYOHEiLi4uynExPz//V7dBt//6+vqiUqmUhiYA27ZtY9GiRZiZmdG0aVPatGlDREQEzZo14/bt2wAUFRWxc+dO6tatS7169ZR1GzduzFdffYVKpcLOzo6goCC++uorYmJicHV1JTU1lZSUFKZMmaJkDuqaivn6+gJgZGTE8uXLa9xeIf5rsrKy2LhxIw0aNFAa/Vy/fp0JEyZQXFxMaGgoNjY2fPTRR9SqVavG41XlMh6VabVa9u/fT35+PhqNhhkzZmBjY8OUKVNo3bq1HP+E+ANJoFAI8a+n0WiIjY3Fy8vrkacw/FrTAd3j5eXl3LlzBysrKywtLSkrK8PIyEi5cDE1Na2y/C+pU6cOhYWFyoX/yy+/zLhx40hLS2PXrl0cP36cqKgosrOz0dfX586dOwC4ubmxePFi8vLyuHTpEmlpaZSUlPDdd9+xfPly+vbti4WFBXPnzuWJJ56gVatWQEWwIz8/H319fYyMjABwd3cnJyeH2NhYHBwcsLKywsTEhNu3byuBh969e9O+fXulEYvuvekyI4X4N6ipg+rPTR1OSUnh66+/5siRIxQUFBAaGkr//v2JiIgAIDc3lzfffJN69eoxduxYbG1tycrKYvz48Zw+fZrWrVsrgcVdu3bh5ORE7dq1yc3NpU2bNlUyHTw9PYmKiiIxMZHatWvj6OhIYmKiUpJAd9OhqKhIyTIG8PDwACouuBo3bqyM5+vri4mJCdeuXaNr165yoST+NLpGWvr6+lWOeZX/rNVqleNk5e/i2rVrWbJkCdbW1piYmLBlyxY2b97MjBkz6NChAw4ODrz11lsYGhrSokULAKVpjy6Y93Pfa41GQ2ZmJmq1Gg8PD9RqNSkpKWg0GsrLy1m0aBEWFhbMmzcPPz8/ZT2VSkVKSgqZmZkYGhoye/Zs7O3tGTVqFN7e3ty+fZtPPvkEb29v5Xg4e/ZsOnTowN69e0lLS6N27dqMHj2aZs2aKdOhg4KClOxCIR43ycnJbNmyBXt7e0JCQjA0NOTbb78lOTmZ6dOn0717d4yMjPDx8amyXuXfi/j4eC5evEhBQQFNmjRR9tvS0lL27dvH1q1bCQ4OZsCAAQQHBytBeTn2CfHHkUChEOJfJSUlhfj4eC5fvsyZM2e4fv06OTk5lJWVsWTJEtq2bVvlZOPnLpor362saZn9+/ezdOlSrl27hrm5OXXr1uWpp56qciFuaGioXBj8XKCwck0l3UlRamqqsg23bt3igw8+ICkpCRcXF5599lm6dOlCv379SE5OpqioCBMTE2JjY/H09KR58+bK2CYmJrz11lukpqYSFhZGdHQ0+/bt46mnnqJ27dpcv36dXbt20a9fPwICAoCK6c/16tVT3q+/vz8HDhyoEshwdnbG2dn5N/7LCPH3qSkD+OGA4M2bN7GwsGDXrl3s2rULZ2dnPvroI7Kyspg5cybXr1+nSZMmWFlZsW/fPnbu3Mn8+fPp1q0bCQkJZGdn07t3b2XKv4eHB9u2bVP2HQ8PD55//nk+//xzjhw5AoC1tTUeHh6EhoYyYMAAateujaenJ1qtluvXrxMUFERwcDBHjx5VMnh1vykpKSnExcXRtGlToCLAaGVlpXQW13F2dqawsJDLly//CZ+s+LdLTU3l8uXLREdHc/XqVc6fP8/ixYtp3rx5lePTo9Ad9x4WExPD6tWrOXfuHIaGhjRr1oy+ffsq3bovXLjArFmzGDJkCIMGDcLU1JQrV64wffp0oqOjCQwMpF69enh7e3P69Gll3Lp16wIQGxurvH5NdLV+586dS0BAAK6urty5c4fMzEzKysq4f/8+3bt3V4INZWVlfPnll2RkZGBpacnNmzcJDw/n3Xff5YsvvuCDDz6grKyMgoICgoODefvtt3F3d0ej0WBmZsYTTzzBE0888cifmxCPkzp16rBs2TIsLS2Vx2xsbDA0NCQkJAQzMzPl8czMTMzNzTE1NUVPT4/8/Hxmz57Nzp07UalUGBoasnDhQp566ikmTJiAgYEBjRs3ZuvWrTg4OPDmm2/+HW9RiMeCBAqFEP9oRUVFLFu2jA0bNpCXl0dxcbHyXGBgIEOHDsXFxQUHBwelVlh5eXm1GiaVL4jy8/O5evUqqampeHl5ERYWVuU1jx49ytSpUwkICODdd98lNzeXHTt28Nprr6Gvr0/nzp2xsLBAo9GQm5v7i9tf+SLM2dkZGxsbpaGJhYUFEyZM4O7du0pHY2dnZ/Ly8rCysiIlJYWCggISEhIYPXo0HTp04LnnnsPIyIjMzEw2btyIvb29ku340UcfsXbtWr7//nsiIyOxtrbmySefZMSIEcoJ25NPPsmTTz6pbJNKpaoy3VGIv0JKSgpXrlzh5s2blJWV0bhx41/s5KnLAK5pOtLDmcHZ2dnY2Njw2Wef4ezsTM+ePcnOzqZbt260bduWlJQUfHx8qF27NuXl5axevZoTJ04wbdo02rVrh0ql4s033+S5555j/vz51KlTB29vb3x9fZk0aRL79+/H09MTAwMDAgMDCQ0NRa1Wo6+vz4svvkinTp1ISEggNjaW5ORkUlJSWLt2LQ8ePFAymoyNjbly5Qp9+vShR48e7Nixg48++ghra2usrKxITk5m7ty52NraKgEJV1dXiouLuXDhAvBTMwc/Pz82btyoZF9JcffH2+XLl1m/fj2nT58mNTWV0tJSzM3NcXV1xdfXl0GDBik3gipnzlf+O1S9gVZaWkp8fDzm5uasW7eOqKgoWrZsycSJE7l8+TJTpkyhvLyczp07U1RUxK5du9i2bRufffYZDRs2JD4+Hn19ffr166cE61xdXWnevLmSlW9kZISbmxv5+flKfVwbGxvCwsKIiooiNTUVNze3Ktulm65/+fJlrl27pmT6+/j4cOXKFe7cuUNQUBC+vr6sXbsWIyMjatWqxalTpzh8+DD169fn3LlzbNiwgfDwcHr16kXTpk354YcfMDY2xt/fX8nk1Wq1Ml1YiIfoyg7o6+sr+6VKparSqRsqbnSVlZXx0Ucf4ebmRq9evbh48SLTpk1jxYoVREREUFpayuzZs9m6dSvjx48nPDycBw8esGfPHj7//HM8PDx46qmnlLFr1679l79fIR4nEigUQvyj6enpYW1tTdu2balXrx5BQUEcO3aMhQsX0qlTJ0aNGlVtimHlbopxcXEUFBQowcBNmzaxaNEi7t27h4WFBaWlpbRq1YqZM2eiUqkoKSlh8eLFuLu7M3PmTKUe33PPPUffvn1ZvHgxrVq1wtfXFyMjI+Li4n6x2+g333zD2bNnGTduHJ6enri5uZGYmEhJSQkxMTHcunWLF198kaeeekpZ54cffuD27dtYWlqSnp5OnTp16NGjBytWrODUqVO4uLiQkJCAoaEhb7/9NqGhoWg0GoKCgnjvvffIzMzEwcFBmW4sxN+psLCQyMhIoqOjOX/+PHfv3qWsrAwLCwusra3JyMhg7dq1DBw4kFdeeaXGMX4pA1hPT4+YmBiWLl3KqVOnsLKy4oUXXmDBggW0b9+eVq1aoVarCQwM5ODBg7zxxhsMHjwYqAiM7Nmzhy5dutCzZ0+gIviQnZ2Nq6srUVFRfP/99zz//PO88cYbLF++nLNnz3LkyBHy8vKAioDHmDFj6Nu3L4aGhvj7+xMcHKyMp9VqeeGFFzhz5gxarRZ3d3fUarXSRKFZs2bMmTOHyZMn8/TTT+Pp6Ul6ejo2NjbMnj2bkJAQ5XWWL1+uXCRV7v6qu0kiHl+6m2EJCQls2LABLy8v5syZg7m5OU5OTqjVaszNzTE2Nq52bNB9lzQaDSkpKejr6ysBMoBz584xYsQIOnfuzM2bNwkNDcXHxwetVsvixYvJycnho48+wt/fHxMTE9544w2efPJJPvjgA1auXEm9evUwNTXl2WefpU2bNtjY2GBubk79+vUJDg7G3Ny8ymtev35dyaTt378/ly5dYvXq1YwdO7ZKeRGVSsWlS5c4efIkHTp0UIKQgYGBbNmyhWvXrhEWFsbYsWNZtmwZy5YtAypu2g0dOpRu3boRFxeHi4uLMqaTk5NSe7gymdIoRHU/d2PqypUr7Nu3jz59+rB//37mzJmDgYEBJ0+epGnTphgZGeHi4oKBgQFZWVkA3L17l+3btzNhwgSGDRumjBUREaE0BuvWrRseHh6Ympqi0Wiq1fYVQvxxJFAohPhHMzY2ZvDgwWi1WgwNDTEwMMDc3JyFCxcqNfwqn6ikp6fz/vvv07NnT5YtW8bVq1dp2bIlS5cuZf/+/UyZMoWOHTvSt29fDAwMOHv2LIsWLcLc3JxJkyaRk5NDdHQ0CxYswMnJicLCQm7cuEFKSgpFRUXEx8cTGxtLcHAw7u7unDx5kgEDBijTCStnYBgZGXH58mV2795N37598fT0pHbt2kRFRfHgwQPMzc2xtrbm+++/p2nTppiamnLq1ClWrlyJmZkZ169fZ/v27dSpU4exY8fSsmVLduzYQVlZGc2aNaN58+ZKl1NdcLSmO7lC/J3KysqYPn06AM888wxeXl64u7srXUfv37/P//73P5YsWUKXLl2UafK6wIcu4H/9+nWMjY1p06ZNlUBHcnIyM2bMIDMzk1GjRlFYWMi6desAKC4uJicnBxsbGzw8PLh8+TL169dXsphu3ryJVqslNjaWCRMmKFlIRUVF2NnZERYWptTmbNWqFa1atSI7O5tr165RXl7O3bt3mT17Np9//jl9+/Zlz549fPvtt0yfPh0vLy+Ki4uJi4vj7t27qNVq9PT0cHJywsLCgpiYGKBin33iiSdo0KABO3bs4P79+wQEBBAeHq5kCeo8nP0shI7u2FOnTh1sbGxQq9V069btkdY9f/48n3zyCadPn8bIyAgHBwc6derEmDFjMDExwcfHBzMzM/bs2cOyZcsIDw/HyMiIrKwsDh06xHvvvacEtPPy8rh//z5OTk6cOXOGy5cv06BBA9566y02bNjA8ePHycnJobCwEKjICnr77bdp2rSpcuy6ePGiEijs0aMHFy9eZOXKlejp6fHss88qzX9iYmJYuHAhGo2GXr16YW1tDVRkLxUXFytlPlq1akVQUBBpaWm4uLhgY2OjvHddoyEhRIWfa/r1sPT0dC5evEhSUhIODg506dJFyXQ/ffo0S5YsITw8nJYtW+Ll5cW4ceNo3Lgx7733Ho6OjkDFjS7dTbNLly5RWFhIQEAA8fHxnDt3jpiYGJKTk4mPj8fIyIiUlBS8vLxwcnJSyvNIoFCIP4cECoUQ/xgajUaZwlA5+PfwSYDu4vnWrVtA1Tv9+vr67N27l1OnTtG4cWNeeuklbG1tAVi+fDlhYWHMmDFD6abYpEkTMjMz2bx5M4MGDVKmBH/88cd88MEHpKenU15ejpWVFUFBQTRt2hQzMzMMDQ3p3LkzS5YsISoqisGDB1eZ8mxkZMTdu3fZv38/gYGB1K9fH6gocr5r1y5SUlJo0aIFzzzzDB999BHPPvsslpaWlJSU0KFDB5555hm++OILpUCzubk5zZo1o1mzZn/GRy/EI0tOTqa8vBwvL69HWt7S0pKQkBASExMZMWJEjV2zx44dyzvvvMPOnTvx8fFBpVKhr6/PlStXmD17NtHR0Zibm6PRaHB3d+ett94iPDwcgM2bN3P58mXmzJlD9+7dgYrgwltvvcXNmze5f/8+Xl5e+Pr6YmxsrGQCQsVFkLW1NRcuXMDV1ZXWrVtTp04dPD09cXBwoLy8XKmnlJmZyaVLl2jTpk2VadKHDx/mxIkTaLVanJycOH36NCNGjKB79+7o6+tz7tw5CgsLlWCpSqWiZcuW5ObmUlhYqAQt3d3dGTVq1O/4FxGPI92UP6j4HuuOg05OTjg4OHDz5k3gp2n7umUf7kwcGxvL1KlTKSwsZMKECdjY2HDgwAE+//xzMjMzeeutt5QxdY1+dN/ZK1euYGZmxu7du9m7dy83btwgIyOD8vJyPD09adq0qXJM7NevH/369SMtLY1bt25hZGTE+fPn+eCDD9iwYQNNmzbFxcUFe3t7pd6mrkbvK6+8grGxMStWrGDTpk0EBQWRl5dHXFwcrq6ufPDBB7Rt21ZpBNSoUSMOHz5c5bfG1tZWORcQ4r9Id7M6MTGRSZMmERAQwJQpU5T94mHl5eU1lvN4uOmX7sZ3ZStWrGDVqlXk5+djY2PD/fv3WbVqFcuWLUOtVlOrVi1MTEy4c+cOjRo1olatWnh5eXHv3j1lW9RqNfb29spvVXZ2NsbGxgwfPhwDAwPlBp+Pjw9Tp07Fzc0NNzc3DAwM8Pb2Vsr4WFlZSRMvIf4EEigUQvy/FRcX8/XXX3Pu3DkWLVr0u8epfGLycwd9rVaLsbExTk5OpKamcu/ePezs7JTl1Wo1wcHBXLx4kRdffJHAwEAAMjIySExM5KmnnqKoqIjz589z8eJFbt26xdGjRyksLOTKlSvUq1cPc3NzysrKGDZsGM7Oznh4eGBvb49KpeL+/fvK1KcePXpw4sQJ5s2bh7OzM+3atUOr1VJSUsKdO3f48MMPycrK4o033lACk97e3hQVFXHjxg1atGjBsGHDqF27NjExMdjZ2REaGoqfnx/6+vq8//77v/uzFOKPUrm+5/379+nWrRvDhg3j1VdfrXbxoQte6IIRurIAHh4exMTEkJaWhpOTk9I5VRdcr1OnDk5OTqSkpCiZDElJSbz99tsUFRUxe/Zs3N3diY2NZfXq1bz33ntK/cDLly/j6+urBAmhom7fkCFDmDRpEhkZGQAEBARQXFxMdna2spydnR1qtRpLS0tmz56tTMvU/fbMnj0blUrFa6+9xvbt25k9ezZTpkyhcePG6Onpce7cOQ4ePEj37t0pLS0lPDycFStWsH79evbt20dJSQnBwcG88MILSgdlgNdff73Gz7pyJkflmk/i8aa7iVY5IPhzU/4sLCxwd3fnxo0bSq2/X/oeffXVV8THx/PFF18oWXxPPvkkkydPZsOGDbRt25ZOnTrh7u6uHHMrZ+TZ2NgQExND+/btCQ0NJSAgADc3N2xsbCgtLVWWjY+PJz09nYiICCWA5+/vz5YtW0hLSwPA0dERX19fjh07xtKlS/Hx8aFz586o1WplOvPevXtJSEjAw8ODAQMGEB4ertQu1P0eGRkZ1XhDQoh/q8rnxImJiZw/f57Lly9jZGRE8+bNadasmfK8iYkJycnJVW4k6MaoXNNX9/+Hz7cTExPZsWMHR44cIScnB39/f4YMGUKjRo0wMDDg9OnTLF68mG7dutGvXz9MTEzYvXs3a9eu5fjx43Tv3h17e3ssLCy4ceOGckyrXbs2J0+eJCUlBVtbW8zNzfHy8iIhIYGioiKcnJzQ19enU6dOvP3228rvh6WlJVlZWZw7d46cnBzc3d3x9fXlwoULSpkQOVYK8ceTQKEQ4mc96h063QW/Wq2uVi9EFzj4pSBgWloajo6OnDx5ktWrVxMfH4+7uzvPPfccjRs3rhKM0Gg0GBoaKiccqampVQKFBgYGuLm5kZCQgEajUda7ffs2arWapUuX8vnnn2NgYICjoyOenp707dsXLy8vIiIiKC8vx8bGBlNTU0aMGFFlW2/fvs2kSZNo3bo1Y8aMwc/Pj+nTp/P666/z0ksvER4eTnh4OEVFRZw6dYpbt27xxhtvKLXKoCKj8H//+x9t2rQBKu7cRkREVAkiCPFPkZaWxokTJ5S6Ymq1mhUrVuDk5FTjlKSfC14EBASwY8cOYmNjlSmKD/+23L9/H0AJqh89epSUlBS+/PJLZZ2QkBDq1avHwIED2bFjB/7+/mRkZChjVa5X2rhxY7RarVKiQFe/7Pbt28prWlhY0KpVK77//ns2b97M0KFDlefOnj3LypUrGTJkCOXl5Tz11FMcPnyYmTNn4u3trQQd27Zty+uvv45KpaK8vJyIiAhCQ0MxNjb+xWlbZWVlVQI/us9EGib8d+Tn5/P5558TEBBA165df1PWS+Vla/pOXL9+nT179pCcnExYWBhPPPGEchPL29sbgBs3bhAYGMiZM2e4cuUKsbGxREVFMXPmTLp27UpOTg5Xr14lPDycBg0aAD9lDz3xxBPs3r2bgwcP0qlTJ2rXrs2lS5eqBNpdXV0xMTHB0dGR2bNnU1JSgqGhIfr6+mRmZrJgwQIaNGjA4MGD+fzzz9m2bRsffvghtWrVUpqexMfH88YbbwAV04BffPFF3nnnHZYtW0aXLl3o3LkzUDFFsW7dukon5IdJoED8V9T0O6H7+2effca3335LSUkJarWavLw8vvrqK8LDw5k/fz62trY4OTnh5+dHYmKickx8uBnYnTt3SEhIQF9fX8mQ193oXrBgAVeuXKF+/fqo1Wr27dvHyJEjWbJkCS1btuTYsWNYWFjQp08f5dhcu3ZtBgwYgJ2dHVBxA8HV1ZUbN25QUlKCsbExISEh7Nq1i7t37xISEoJKpcLPz49du3aRkZGBv78/tra2pKenKw2XdM6cOcOrr77K1KlT6d+/P7Vr16agoEC5ESiE+ONJoFAIUU1MTAxxcXH06dPnkZY3MjJi4MCBaDSaKkHCh7uR5uXlUVhYWKUm0MGDB3nxxRcZPnw4qampFBcX06BBA44ePcqYMWOYP38+bdu2rZLVBBUBt6NHj5KcnExISIhy5xSgVq1aHD58WOmACGBtbY2xsTEuLi58+OGHmJmZKXc09fX1uXjxIg8ePCAgIICOHTvyySefsH79egYMGIBGoyEnJ4eVK1cSExPD+PHjlXH9/f1ZvHgxO3bsICoqiq1bt1JWVkadOnV49tlnad++fZUpG9bW1gwZMuTR/iGE+IP9UuOdynT727Jlyzhw4AC+vr5KZlCjRo1qXCc/P5/z589z7tw5ioqKaNWqlTI9WBeku379OvBTQNHAwID8/Hy+++47CgoKlIymoqIirly5gomJCYGBgVy4cIHY2FguX77M1atXKSsr48SJE0yYMAELCwuSkpKU8aDit8fZ2VnJrCgpKcHV1RVLS0uSkpKqTPnt3bs3O3bsYObMmVy9epWIiAhyc3OVqf/Dhg1DX18fMzMzPv30Uw4dOsSVK1dQq9WEhYVRr149TExMqvze6aYr/1Ktp5qmgon/FiMjI5YuXUqXLl3o2rVrlYv/8vJyZT97OMCuu6gvKSmhpKSEI0eOcODAAUpKShg8eDBubm4sWrRI+S5v3bqV1NRUXnzxRSWj0NDQkJEjR6LRaDAxMcHJyQl/f3/69++vlA24d+8eRUVFmJmZKYFu3ffS1dUVHx8fZZ8NCAggJyeH9PR0ZTtdXFxo0aIFq1at4uDBg7Rt2xaoCNjv2rWL7du306JFC6CivEBMTAxvvvkmXl5eZGZmotVqefbZZ3nmmWeAn26cRUZGVslaFOK/LDs7W6mF7eTk9LMlZiZMmMDOnTsZMmQI3bp1w9HREY1Gw/bt21myZAkvvPACixcvxsnJCRcXFy5cuEBycjLe3t7o6enx4MEDvvrqKzZu3Eh6ejp6enpKwG/YsGG4uLiwceNGjh8/zsSJE+nVqxcqlYru3buzfv16SktLgYqu4tnZ2UydOpVu3bphYWGBqakpISEhSiavmZkZnp6exMTEUFBQgKWlJcHBwQBK7VADAwNq1apFdnY2qampNGnShL59+/Lxxx/z4YcfKufKsbGxzJ49G7VarcwccHFxobi4mJs3b9KqVSu5USDEn0DOUoUQ1Xz66adkZmbSo0ePaoG/n5sWp7swrkxPT4+EhAQ+//xzDh48SHFxMT4+PnTt2pWePXvi6OiIpaUlgYGBfPXVVwwcOJCXXnoJR0dHjh49ytixY9m+fTtt27atNt0qKCgI+KlOYWUBAQEUFhZWuaBxdHTEx8eHlJQUnJ2dq9ytzM3NZfz48TRp0oT58+fz9NNPc/DgQaZMmcLRo0cJCgri5s2b7Nu3j2eeeYbGjRtXeT1dbbFBgwZhbm4uGUHiH+fUqVOMHj2a8ePHM3z48BqXqVyvSBd4d3R0JCMjQ/kd0Gq1lJaWcuXKFVxcXJSLgtzcXObNm8fOnTuVDqJff/013bt3Z8aMGfj5+WFgYEBCQgJQ0d3w5s2bxMfHc/bsWc6cOcPzzz9P//79gYomRjk5OWRmZhIaGqpkLOsaAg0cOBA3NzcAfH19OX36NImJiUoARE9Pj6SkJKVGUm5uLnZ2dnh6epKamkpubi6mpqaUlZVhbGzM5MmTWbduHVFRUWzfvh0DAwMaNmzIK6+8UqUWo6mpKV27dn3krqiSIfj40t04c3V1JSsri5ycHKytratMzdcdz3RBQ0NDQ+X5V199lTt37hAeHs7x48cxNTUlLi6O6OhotFotjRo1YuHChRgYGDB//nw2bdpEixYtiIiIwNPTEyMjI2rVqsXs2bOBimn2uvq6uu+qhYUFlpaWSo2wyhlH1tbWmJiYKM/VqlULqJqRa2pqyrBhw9izZw8TJkxgwIABBAYGcvPmTVauXEn79u2VjEB3d3e++eYb9uzZw507d3B1daV+/fpKHd7KJEgo/ksezhD84Ycf2L17N2fPniUhIYGCggJMTExQq9UUFRXRqFEjZs2aVaXD93fffceOHTuYPHkygwcPrjL+mDFjuHfvHvv27ePu3bs4OTnh7e1NaWkp8fHxyp+/+OILvvvuO5588knCw8PJzc1l06ZNrFixAk9PTwYNGkRBQQF5eXlVbhoEBwcrmYMAnTt3Jjc3l0WLFrF06VIKCgqAiuN23bp1Wbx4MWq1Gm9vbw4cOEBOTo5yowIgJSUFqAgUenl5odVquX37Nnp6eowcOZLo6Gg+//xzDhw4gI2NDbdv38bc3JwFCxYo1xoBAQEsXLiQhg0bSpBQiD+JBAqFENW8++67VRpz6PzSRW9aWhoffPABfn5+jB49GqiY2jB16lTi4uLo168fNjY2HDx4kHnz5nHjxg1mzZqFu7s7ZmZmODo6Mnz4cKUTWr169WjUqBFXrlypcpKl+7+uM6ou8FA5I0N34aGbcggVgcx+/fqxY8cO3n//ff73v/9hYmLCvXv3WLp0KZmZmfTr1w+ouEhZsGABkZGRHD58mFOnTuHu7s6LL77I4MGDqxV11rGysnr0D1mIv4Bu3/H29ua9996rNm2v8r5V07RhExMTysvLefvtt3F3d2fy5MmcPXuW8ePHM336dPr3709JSQmff/45GzZsYNy4cXTr1g2NRsO6detYt24dvXv3pn79+jg4OHD69GkaN25Mbm4uKpWKkpISAEaMGMHLL78M/JTNaG1tjaGhIZMmTVK6gltaWmJpacn169e5d+8eAJ06dVIudiZNmoSxsTFlZWV88803ZGdn8+DBA6WWqZubG1FRUUq5A92ULH9/fyZPnkx8fDx6enp4eXn9YsafrqzBw40hhNB9f3XHSh8fH27dukVmZibW1tbK/nb27FnWrVvH+fPnUalUtGnThl69elGvXj2g4hinm5L3wgsv0L17d06dOsW0adMAGDVqlDLFuE+fPuzevZv4+HgiIiLw9vbG3NycgoICJZu3Jmq1Gn9/f3bs2MGdO3eUID9UNNC6ffs2Tk5OlJSU4Onpibm5OXfu3FFKjGi1WlxdXZk3bx7r1q1j586drF69GgsLC7p06cIrr7yiZO5CxTFSdzNAiP+yu3fv8uDBAzw9PZVyGrrj7fbt21m3bh1NmzZl3LhxuLu7o1arMTQ0ZO/evaxcuZIvv/ySUaNGKTMAduzYgY+PD61atQJ+KrOha1TyyiuvMHnyZOX1fXx8MDAwIDY2lvbt2xMdHc1nn31Gz549mThxorJcSEgIPXv2JDo6mkGDBtGiRQsiIyOZMmWK0mncw8NDOSdv3rw5pqamDB06lMGDB3P16lWSk5PJz8/n+vXrrFq1iqVLl/LOO+/g5eVFYWEhd+7cwd/fH2tra6ytrUlNTaWgoEA599fX1+fq1atK86JPPvmEQ4cOcfDgQUpKSujcuTPNmjWr8ltmY2Oj3IQQQvw5JFAoxGOuphqCuq7ClWm1Wm7evElUVBQXL17EyMhIOXirVCry8vI4f/48t2/fVgKF27Zt4+TJk8yePZuePXtiYGDAiBEjmDNnDl999RXNmzene/fuODo6EhcXh52dnXKRZWlpiY+PD2fPniUrK0vpVqi7yNJNrUpOTq7Wkc3JyQkrKyuSkpKUEw+tVktERATPPfccX331FZcuXSIgIICsrCwSExN54403lExBXUfXcePGMXLkSAkAin8t3YWJk5MTPXv2/Nm6R6mpqdy6dQsTExOlYPnZs2eZPXs2BgYGpKenExYWhp6eHv7+/hgYGFSpVfbNN9/Qvn17XnrpJeWx119/nV69elG7dm0MDAxwd3cnLS2Nl156icaNG2NtbU1CQgJfffUVu3fvxsDAgJEjRyr7emBgIBs3blTqGFW2YsUKzp07x+LFi4mIiGDYsGF89tlnXLt2jfbt2xMfH8+1a9eoV68et27d4sGDBwC0bdsWGxsb7O3tq7x/3Z91WVO6z+7h8gk6kiX4+NIdM3+u2Uzlxj+2traEhoZy6tQp7t69q3yPz549q3Qj7datGxkZGaxbt47t27fz/vvv07ZtW8LCwgCoW7cuAwYMAFDqX547dw5nZ2clSKC7AaDL1HFycsLV1ZUrV6784nvRHccjIyOZP38+s2bNwsjIiNzcXLZs2UJycjIjR45EpVKhUqmwsrIiOjqa7OxsHB0d0dPTo7y8nEaNGhEYGEhKSgoWFhZVAo5CPA4KCwvZvn07O3fu5MKFC0BFVq6Pjw+9evWiS5cuStAvMDAQAwMDWrVqxYgRI6qMExISwo0bN9i/fz89evTA19eX2NhY4uLiCA8Px93dvcqNfN0NLWtrawDlN8HT0xMLCwuldICzszOvv/46nTp1AipKhcTGxhIZGUl5ebkyOycgIIBFixaxadMm7ty5Q3JyMjExMZw4cYIlS5bwxRdf0Lx5c9LT08nNzSUoKEiZ4QOwc+dO7t+/T1lZGa6urpibm5OYmEhZWRlGRkY4Ojpy4cIF0tPT8fb2xtramvDwcBwcHJTfTpVKRadOnZRtFUL8PSRQKMS/UOUpgv9fNV0EFxQUcPDgQczNzZWmGxcuXOCdd96htLQUZ2dncnJy2Lp1KwMHDuR///sftra2BAUFERMTg1arJTc3l++//x5fX1+efPLJKq83ZswY1q5dy759++jZsydeXl7s2LGD7OxsJSinUqnw8PCguLhY6ZBW+f3r6+vj5eVFamoq6enpStdDXc0Vb29vUlJSyMnJUbKiDAwMePXVV2nVqhU7duwgKSmJoKAgxowZQ5MmTZQTrsr10yRIKP4tfq4zauUi5rm5uUpdToD9+/fz8ccfc/PmTWXafKNGjZg3bx7BwcGsX7+ep59+mqCgIF555RWl1qeZmRkJCQkUFxeTlpZGSUkJ4eHhym+TVqtVahbp+Pr6cvbsWYKCgmjYsCEajYZatWrRoEED3n77bZYvX05+fj7jxo3D1taWJk2aEBYWxpIlS3BwcCA8PJz8/Hx27drFpk2bePLJJ5WpTC+88AKOjo5s3LiRxYsX4+DgwEsvvYSZmRmvvfaakrnYu3dvevfu/YufY+XPS6Y0/TeUlZVx7949Jbj1W1Qut1H5/zXRarV8/fXXLF++nLS0NDp27Kg0+EhISKB58+ZKk4+srCy+/PJLvLy8MDU15fnnn2fQoEHMmTOHtm3bKkFr3fRDrVaLiYkJvr6+7Nu3j4KCAtRqNVDRBMTU1JTk5GTl5piu03hqaqoyTb8mrVu3ZsCAAaxfv564uDiaN29OTk4O+/bto3v37lWydnr37q3s/zq63xhTU1NlfxTivyopKYkvvviC8PBwevToAcCDBw9YtGgRu3fvJiQkhNdeew1bW1sSEhLYsWMHb7/9NllZWUpQ0MXFBZVKpUzrh4rjty5D3c/Pj7i4OCWwWFpaSlZWllISpHJN7ofpfp9cXV2xtbUlOTkZAA8PD5577jnS0tKYM2cOp0+f5u7du7i7u+Pm5sadO3eU3w4/Pz9ef/118vLyKCkpwdbWlrNnzzJmzBg2b95MixYtmDJlCtevX2f27NnUqlWLnJwcdu7cSWZmJuHh4RgaGmJhYUFZWRnnz5+nX79+GBkZ0adPH+7fv6+cW9vZ2bF8+fI/9h9JCPGHkEChEP9wKSkpXLp0iQsXLnDlyhXS09OxtramRYsWdOnSpUoGjI6u3tGv1ce6d+8e0dHRJCQk4OnpSevWrVGpVKSmpjJx4kRCQkJo06YN9+/fZ/78+ejr67Nw4ULs7OzIy8vjs88+U4oSW1lZ4ebmxr59+0hPT8fJyYm0tLRqmQVarRYrKyvc3d2Vixrd9Klbt27h6empXKi7uLigr69PXFxclYCDLlBYr149du3apVwIVb7Lamdnx7lz58jKylI6tOqCKLruxEL8nSp36H1Uv9Q19eGxcnJyOHLkiNJ1e/ny5cybN49t27bh7+9PUlISM2bMoFatWrz88stYWlqyd+9e1q1bR/v27enWrRuhoaH4+PiQnp6uFDLXNUtITEykqKiIgoICVCoVubm5ykWKLlioC05aWloqUypv3LhBixYtlHqHtra2TJs2jblz5/LNN9+g0WiYPn06fn5+jBs3jokTJzJ+/HhCQ0MBiI+Pp23btlWmT1lYWPD000/TvXt3rKyslM9i8+bNlJWVVbnRUFO34cokOPjvVvmYeenSJW7dukVJSQnW1ta0b9+eQYMG4eXlVaVBli7IXtMx8+GGXKdOneLq1atYWVnRrl073N3dlXV37tzJ/PnzadiwIWPGjOH69ets3LiRsrIypbZfTk4OP/zwA6NHj6ZOnTrK2P7+/owYMYJPPvmE6OhowsLCMDU1JTs7W2lCpKenp9wUS0hIwM3NTfkd8fLyIiUlhczMTNzd3ZXamteuXVOOjz/XNGXChAmEhYWxfft2tmzZglqtZsiQIQwaNEgJRgKMGzeuxs9c9hnxX5KSkoKNjQ0WFhbKPqLbf7777js2bNigNOmBimPrN998w0svvcTAgQOrHIOGDRvGa6+9xpw5c/D19aVVq1Y4OTnh6OjItWvXlDF0yyclJXHixAl8fHyUAL+joyNlZWUUFhZWWbYmun3cysoKV1dXLl26RF5eHhYWFpw/f56pU6fy4MED2rVrR9OmTenYsSOTJ08mMjKS5ORk/P392bx5M7m5uTz99NPKjQonJyeMjIyUmwRPPPEECxYsYNy4cdSqVYv8/Hxu377Ns88+q5xzuLq6Mn/+fLy8vJT1dI2LhBD/fBIoFOIfKiEhgeeff57k5GSsra2VZhy1a9cmOTmZTz75hG+++YapU6fSoUOHKhcBNXVRfNjx48eZNm0aWVlZqNVq0tPTCQ0NZdGiRXh4eBAUFEReXh5QMaXhwoUL9OnTB19fX4yNjXF0dFSKpEPFiYuHhwcajYabN2/i5OSEiYkJhYWFpKWlKU0PNBoNhoaGuLq6kpSURG5uLm5ubhgbG3Pt2jVat25dZbqkra1tlZOpynx8fCgrK+PatWvVAn/vvvsuhoaGyuuCXMyIf4bS0lJeeuklEhMT2bVr168GCyvv27rvcE0Bw/3797Nx40aSk5Np2bIlUDFFNygoCB8fH6VBQGJiIv7+/hw5coT8/HxefvllJRDftGlTevXqhbu7uzJ+7dq1iYqK4vbt28qUXX9/f86cOUNWVhbW1tZV9lOtVqvs52fOnGH58uVMmTJFCYropkLp6ekpWbyOjo689tpr3L59m2+//ZaioiJmzZpFs2bN+Pbbb4mMjCQ6OhpLS0t69OhBq1atqgT/YmJiWLNmDS+//DJqtZqSkhIyMjL45ptvcHZ2rtJpXboN/zfVdMz09fWlcePG6Ovrc+bMGVauXElqamq1RgG/tA8mJyczbtw4RowYwfnz5/n+++8xNDTkzp07rF+/nuXLl+Ps7ExRURFLly7F3d2dBQsWKOO3atWKkSNHkpqaikajISUlBX19fYKCgpT9WPf/oKAgVCoVly9fJiwsDB8fH1JTU7l//75y083Z2Vk5XjZv3ly5QVa3bl2+//570tPTcXd3V2r1Xrx4kXbt2tUYKNS9tpWVFb1796Zz5841NiYT4nHx4YcfsmzZMrp06cLkyZOxtbVVgvHJycns3LmTNm3aKNNir1y5wqpVq2jdujUvvvhilbE0Gg0WFhZMnTqVI0eO0LRpU+Cn0gCxsbEUFRVRWFjIzZs3iYmJ4fDhwyQnJ/P+++8r4zg5OWFpaVmlPmhNSktLSU5OxsjICA8PDzw9PTlx4gQ3b94kJCSEb775hpSUFJYsWVLlnLm0tJSysjJu3LiBv78/R48eZceOHVy9epUOHTpQXFzMhg0bKCsro2PHjgB069aNevXqsW3bNhITE3FzcyM8PJz69esrvyGWlpZ06NDhj/vHEUL8peRsWYh/KF13xLp16/LBBx9gYWGBmZkZKpUKY2NjLl26xOjRo5k+fTre3t5KZqFGo+HkyZPs27dPydDr378/wcHByoV/fHw8Y8eOxdvbm0mTJuHu7k50dDTvvPMOc+fOZdq0aTg7O3PixAkyMjKUaX/ffPMNsbGxeHh4KFOgdB0WzczMlDuO165dIyIigqCgIPbt20dycjJOTk5K8ABQMjzMzc2xsbHByclJCSDo2NraYmVlxenTp6s8rrvY6dmzJ87OzrRu3RqoerH3S1OthPg7GRoaoq+vT1paGtnZ2djZ2f3i8rrve3Z2Nnfv3sXOzq5K4Atg3759TJ06FVdXV5o1a0ZUVJSS7ZuUlISPjw/Ozs6YmZlx5coVOnTogEqlorS0lI8//pj+/fujVqspLy+nbt26WFtbK1MuQ0JC2L59O3fu3FECinXr1mXXrl3cuXOHRo0aUb9+fY4ePcq1a9cICAhQ9vPo6GhOnz6Nvr4+7u7uWFpakpiYWOV96bi6uvLxxx8zatQoHjx4QHZ2Nvb29ri4uDBmzJhf/IzMzMzYunUrUVFRPPXUU5iZmSl14d54441f/YzFv19Nx0xzc3Olvl5RURHTpk1j+/btHDx4UMl6ycnJ4fTp0xw9epT4+HjMzc3p0qULPXr0QKVS4eDgwNWrV1m8eDFGRkZMnz4dLy8vjh07xvTp01m+fDlvvPEGBQUF3Lp1i9GjRytBwtLSUpo1a0bdunVJTU0lLy8PlUql7P8PB/utrKxQqVSkp6cDFfXC9u/fXyU738HBAXt7eyUwrxsjNDSUTZs2kZSURIMGDZSbZD/88APw81OmK2+DBAnF42748OGUlZWxfPlyTExMmDZtmhKYi4qKIiUlhXfeeUdZ/sqVKxQWFioldioH5HUzWVxcXOjbt69SS1uXlX/y5Elat27NgwcPMDAwwM7ODicnJwwNDRk5ciSvv/46PXv2xMTEhLp16xIdHU1ycjJ+fn413iw8ffo006ZNo1+/fjz//PN4enoqN+9DQkK4f/8+zs7OeHp6AhVlhg4dOsSRI0eAihtu3bp1Y/z48ajVag4ePMi+ffsoLCykVq1aTJs2TbkJCeDt7a00IRNC/PdIoFCIfyhLS0scHBy4c+cOPj4+1U7yg4KCmDdvHs888wyrVq1SOiFu376djz76CLVajaurK8eOHePbb7/l7bffZvDgwRgaGrJ+/XpKSkpYuHAhHh4eAPj5+eHo6KicQLi7u1NQUEBCQgIODg5MmzaNzz//nAsXLnDu3DkyMzOVul/PP/88EyZMwMXFBbVazdWrV4GKxgG7d+9m48aNSoMEgC1btvDDDz8oF/QWFhY4ODhw7tw54KcLF7VaTdu2bSkrK6uWMQkVNVd02y/Ev4Uuc+jw4cOkpKT8ahBr8+bNfPbZZyQkJGBiYkLt2rXp378/Xbt2xczMjPv37/PRRx/h5OTE/PnzcXZ2BuCjjz7iyy+/5MKFC7Ru3Ro7O7sq0506d+5Mamoqy5YtIyoqCqioDaqrD/jaa6/h5OSkTBnW1TqCigBGaWkpKSkpREREMGjQIDZt2sScOXN47bXXsLCwICYmhs8//5ymTZtWyew9f/68UgvpYfb29mzcuLHGz6FySYXKjSTKy8upVasWX331FRs3bmTHjh0UFhbi7+/PxIkT6dKly6P+04h/sV87ZhobGzNw4EAiIyO5cuUKPXv2pKSkhPnz53Py5ElsbW2xtbXl0qVLHDlyhNzcXAYNGoSJiYmSAb9z504lU8/b25tvvvmGc+fOkZeXR3p6OiqVCktLS+U1dd/RkJAQjhw5QmZmJi4uLtjZ2XHp0iVlSrHuJlppaalSFwwqmh7omgrompvY2tri5ubGxYsXq7xGQEAA8FNH7uDgYDZt2qQcI6U7txC/ztbWltGjR5Oens7mzZtRqVRMmzZNKbcTEhJC27ZtleVjYmIwNDRUmuHVlLULFY2DSkpK0NPTw8jISCmt065dO3r06IGjo6MyZTknJ4f//e9/Sv3v9u3b065dO06fPs2RI0fw8/OrMh1al2V4+/ZtEhMTKS4uBsDT0xOVSqXchG/atCnz5s3j3XffpV27diQmJnLs2DHq1KlDYWEhGzdu5IUXXsDDw4N3332X3r17K839pF63EI8fCRQK8Q9laGiIh4cH0dHRpKamVguI6br41q5dm7179/LKK6+Qm5vL5MmT6dChAy+99BJqtRpzc3Peffdd5s6di5+fH82bNyc2NhZfX18l60c3raJly5bKRYaubuCNGzdo3LgxTk5OSpfG+Ph4tFot+fn5LF68mE2bNtGxY0e8vLxwdXUlPj4egBYtWvD000+zYsUKEhMT6dSpE5mZmezcuZOGDRsqtUpsbGxo1KgRKSkpVaZVWFhY8MYbb/wVH7cQfyldl9K4uDil9l5Ntm3bxpQpU2jQoAFjxowhOzubjRs38s4773Dv3j1eeOEFzp49S3x8PFOmTKlS47NXr17s2LGD8+fPAxWBd3d3d27duoVWq8Xa2pqXX36ZQYMGcePGDW7cuMG9e/dITExky5YtWFpa8u677yoBCF2WE4CXl5cy/bK8vJyQkBDeeecdli5dyqhRozA3Nyc/P58GDRpUmUL1wQcfYGNjoxRpr4lu6vLDdQR/rqSC7rEmTZoQGhqKRqPB3Nz8Uf4ZxH9ITcfMylk3enp6WFlZYWJiohznFi9ezIYNG3jzzTfp1KkTpqamlJaW8uyzz7J161batWuHh4cHPj4+ZGVlKQE8XaC7bt26HDp0iHv37mFubo6lpWWVzHhd0wFfX1/Wr19PSkoKrVu3pmnTpuzevZsuXbrQunVr5Vh87NgxAKX+WeW6nDqWlpZ4eHiQk5NTJeBev359YmNjleV02yeE+G0sLS2ZNWsWubm5bNiwAQcHB7y8vEhPT2fChAnAT+U/7t69i56eHgUFBUrnYaj4jYiOjubcuXPExsaSmJjI7du3mT9/Pq1bt8bd3R2NRoObmxvNmzev8vr29vY899xzjB07lkOHDtG+fXvatGnDvn37WLduHcHBwTRq1KhKl+C8vDw2b96Ms7Oz0oDIx8cHtVqtdD/v06eP0tH8/PnzODo60qlTJwYNGqQ0JdKV9NBqtQQGBv7pn7UQ4p9LAoVC/IPVq1ePrVu3kpycXC1QqKtL1Lx5c1asWEFaWhp79uzB3NycKVOmVLn717VrV3bu3MmuXbto3rw5arWa7Oxs5WKp8pRd3Z/9/PwwMTFRLnru3bvH+fPnCQoKUgIHUFF/6dy5c5ibm2NsbIyvry+HDh0iPz8fKysrxo8fj5OTE9u2bVOmbrVu3ZoRI0YoxdaNjY159dVX/5wPUYh/IG9vb4yMjKpc2D8sMzOTL774Ak9PTxYvXoypqSl6enp07tyZsWPHsnbtWnr27KkE1nXTkXW/DW5ubjRo0ECZum9tbY2Xlxdnz54lOztbqeVnaGhIy5Ytq0wpatmyJfHx8RQXF2NpaYlarebIkSOEh4dTp04d7OzsUKlUXLhwgby8PKysrBg6dCgREREcOnSIoqIigoODqV+/vvJbpNVqlTIBv6Ry7cLfqqYsRfH40B0zk5KSlEChjp6envLd1AXQTp06RceOHasV2Pfw8ODy5cvcuXMHDw8PateuzenTp7l//z7wU3A6JCSErVu3Kpm1tWrV4tKlS0pdXt1UQ61Wi1ar5ebNm7Ru3Zphw4Zx6NAhXn/9dYYPH06tWrU4c+YM69evZ8CAAUr9sFq1amFlZVVlSrCpqSnvv/++1NwV4k9kaGjI7NmzGTt2LMuXL8fQ0JCAgACaNWsGVDTFMjIywsLCgvLyclJTU3FxcaGsrAxDQ0POnTvHnDlzyM3NJSwsDBcXF65fv05cXBytW7fG1dUVGxsb5Rxb9xuh0WgwMjLCy8tL6ZwMFecMY8eOZdSoUUyePJk333wTd3d3DAwMSEhI4KuvvuL8+fO8+OKLSvdxXW1DXRMUtVrN+PHjGTRoEPb29r9Ym1V+X4QQEigU4h9MF5C7fv26cnLyMN0JwbFjx5RsvG+++Ybk5GQuX75Mamoq+fn5GBoaYmFhQW5uLt7e3spFj+6upoGBAVlZWXz22WfUrVuXNm3aYG1trWQypKam8sorr9CuXTuef/55TExMuHLlCp9//jn16tXD19cXPT09bGxsuH//PhkZGUrwcMSIEfTs2RNjY+MqBeSFeFzZ29tjZ2dXrS4nVM1UuHbtGqNGjcLMzEyZdmtra8szzzzDK6+8wvHjx3F1dQUqMhjgp2C/hYUFbm5u3Lt3j5KSEkxMTHB3d6eoqIiUlBTUajXTp09X6q85ODiQlZXF+fPnycjI4Omnn1YCIkOGDGHlypWMHTuWgQMH8sYbbzBgwIAqwRCoCGzU1IkdqDJVWKZBij+D7piZkJBA8+bNle9ZXl4eJ06c4Ouvv6ZRo0ZKxt5XX32FsbExqampnDlzhuPHj3P8+HEyMzOxtbVV6nwGBwdTWlqq/F33XdZl3CQkJNC2bVt69erFxIkTWb16Na+//jplZWXExcXx9ddfY2FhoawfGBjIokWLWLlyJWvXriU3Nxdra2tGjBjB2LFjlX3K1NS0Wo3eyq8vhPhzaDQabGxsmDdvHu+99x6HDh2iRYsWVW58AdSpU4edO3dy48YNGjVqpDzeoEEDPvvsM4yMjLCzs+P8+fNcuHBBOeY7OTnh5OREfHx8lQx63W+WhYUFmZmZNGnSRNmmiIgIvvjiC9566y3GjBmDt7c3enp6yvF80qRJDB06VFne2NiY9evXV7uBVrkUiBBC/BwJFArxD+bu7o6ZmVmNXX91Fwq6ph2XL18mMDCQu3fvsnr1ajw8PAgODqZv3774+vpia2uLpaUlFhYWNGrUiGXLlvHDDz8QEhJS5a7iunXreOGFF7CyssLNzY20tDS0Wi3169dn9OjRbNiwgQkTJlBSUkJBQQENGzaskt0wYsQIhg8fXu1ERJoJCPETCwsLnJ2dSUhIUOqU6ej2pcodgYEqNTpr166tTP0NDg5GpVIRHx+v3CzQXXg8ePAAgJs3b1KnTh2cnJwwMDDgxo0bBAcH06BBA/bu3cuAAQNo2rQpJSUlnDt3jk6dOvHkk08qAYsRI0YoHRsDAwMxNTXlzTffrPG9abXaKrUEHyZBQvFn0TXM2b9/PwUFBURHRxMfH09mZiZ5eXmEh4czc+ZMHBwcKC8vx9jYmMuXL7No0SJu376Ng4MDL7/8Mu7u7owcOZK0tDQApU5nSkoK8NO+qbtRl5SUBECPHj04fPgwX3zxBZcuXSIkJITz58/j5+dHSkoK169fp6CgADMzM8LDw6lXrx4pKSnY2NgotUWFEH8/3XmxnZ0dNjY2AERGRmJpacnzzz+vHKcbNmyInp4ex44dY9CgQcrjpqammJqaKuP5+/vj4ODArVu3lHHd3Nw4ceKEcqNAd15969YtFi9eDMBTTz1VZbvCw8PZsWMHx48fJyYmBlNTU2rXrk1ISAj29vbV3odk2Qshfi8JFArxD2Zra4ujo2ONWUe6kxHdxYWBgQHm5ubo6ekxZcoUIiIiMDIywsjISJlytXfvXl588UWaNWuGl5cXn3/+OfXr18fZ2Zm8vDw+/fRTiouLleL/lpaWnD59mqSkJLy8vBg/fjxt27bl0qVLWFhYULduXfz9/atkN+iCGkKIn2doaIinpycXLlwgIyMDd3f3GpcxNTUlIyNDCQDqsg1NTEywtrYmNzeX2rVrU7duXbZu3UqfPn3w8PDAwMCAvLw85bcjNjaWOnXq4OjoiKmpKdHR0fTp04f+/fvj5+fH5s2buXr1Kmq1mpEjR9KlS5cqwX7dDYaH6aZZVaanp/eLU5qE+LOo1Wq8vLw4ceIEd+/excfHhxYtWnD16lWuXLlCYGCgkvGjr69PZmYmI0eOxNLSkjFjxhASEoKnpyd37twBfgoMent7Y2BgQEpKihKE12q1WFhYKNMD8/LysLCwUGqKbt26lcjISOrWrcvUqVNJTk7G0dGxyjRiCwsL6tSp89d/UEKIX6Q71sbGxrJ//34iIiLIycnhww8/xMbGhv79+wMVWczt27fn0KFDnD17lkaNGim/EZXdvXuXrKwsHjx4QElJCWZmZnh6enLw4EG2bt2KSqUiLi6OmzdvkpSUhEajYfr06UoZgspMTU1p37497du3/0s+CyHE40kChUL8g5mamuLq6srly5eVixAdXXCurKwMqJjyV69ePfT19Tlx4gQdOnSoMtbMmTPJyclRapPMmTOHiRMn8vTTTxMQEEBJSQlZWVnMmzcPHx8fAPr160erVq2U4sZQUVz9l5ovCCEeTeV6ajUFCp2dnXF2diY6Opr79+9XyThKTEzk3r17SvH04cOH89577/Hiiy8yePBgHB0d+frrr0lJScHAwIDz58/z5JNPolarCQoKqtLso0GDBjRo0OBXt1cXYKl8Y+D31hIU4s9gZmaGtbU1FhYWfPbZZzg6OmJoaEhRURGbN29m+vTp7Nmzh4ULFxIcHMwPP/xAdnY28+bNq1Kj8+DBg+jr6ysX92q1Gg8PD5KSksjKysLe3p7S0lJUKhWOjo7cu3dPOUZbWVkxZMgQ+vfvr9QPhZ9qiAoh/vl0x7nvvvuOvLw8Jk+eTHl5OcOHD2fatGnY2NjQsWNHLCwsGD16NOfOnePtt99m5syZyk21srIycnJyOHXqFMuWLSMzM5NJkyYpr2FpaYlWq2XmzJkYGRnh6upKQEAAw4cPp0mTJtSqVUvKDAgh/jZyhi/EP5i+vj4+Pj4cP36cO3fu4O/vX6WLI8D3338PVFzsh4WF0bJlS9auXYuRkRGtWrVCpVKxdu1akpKSmDVrFvb29mi1WsLCwli7di179+7lwoULuLu707x5c0JDQ5WpgW3btv1b3rcQj4OHa5BqNJpqNYratWvH8uXL2bdvH0OHDqWkpIS8vDxWr16NiYmJEuDr1q0bRkZGLFmyhFmzZlFaWkqzZs149913+fLLL5WpkV5eXqxcubLG7dEVUtdtw8MXKHLBIv7p9PX18fb25tixY5SWlipT+s3NzRkyZAilpaXMmzePl19+mTVr1mBkZIShoSGnTp3CxcVFyb7/7LPPMDAwIDo6mvPnz9OuXTscHR2Jj48nJycHe3t7JUi+Zs2aGmvvVg4SCiH+fe7cucOOHTvo2LEjrq6uGBsbM2fOHN566y0mTpzI0qVLady4MUFBQfzvf//jo48+YvTo0dStW5f69etjbGzMtWvX+OGHH3BxcWHZsmW0bt2a8vJyoKLRYHh4OO7u7ri4uPzN71YIIaqSQKEQ/3BBQUFARQZR5Wm+5eXl3L17l6+//pqQkBClgcDUqVP59NNP2bx5M5GRkZSVlWFqasrEiRPp0aMH8NMFv4ODA0OGDGHIkCF/wzsT4vGmq0F648YNoGr38aKiIvT09OjVqxdxcXHMmDGDAwcOEBYWxvnz57l+/TqvvvoqTZs2VW4edOzYkVatWnHx4kXc3NxwcXGhvLycDz/8UJnuqAtu1DQ16v/TbViIfwrdMfPGjRv4+voCP2XDjhgxgsLCQhYuXMjrr7/O22+/Ta9evfjiiy/YuXMnxsbGPHjwgJEjR+Lj48N3332nHC8XLlyItbV1lVqhgDToEuI/RndMXbNmDfn5+fTr1w9jY2NKS0tp3rw5kyZNYsqUKYwbN46PP/6YJk2a0K1bNwICAjhw4AAXLlzg+++/Jy8vD1dXV4YPH07btm2V83Tdb4evr6/yGyWEEP80ckUgxD+cn58f+vr6XLx4kSZNmpCenk56ejqxsbFs3LgRjUbDq6++ip2dHVqtFmdnZ9577z369etHUlISLi4u1KlTp8pUQyHE309Xg/Tq1avEx8dz9+5dbt++ze3bt7l58yZ5eXmMGDGCuXPnsnHjRnbs2EFkZCS+vr68+eabdO3aFfgp8L9161bMzc2VukVarZarV6+SmJhYrSC61BAU/1W6Y2ZcXBydO3cGKvYRXbBw5MiRlJSUsGTJEubNm8cbb7xB8+bNOXfuHF5eXjRo0ICAgACMjIzo2LEjULEvqdXqv+09CSH+Onp6emRkZLBnzx5CQkJo2LAhgNLcq1u3bpSVlTFx4kRee+01PvjgAyIiIvDz88PPz4+8vDwMDQ2lkYgQ4l9NT6s7cxJC/COlp6fTp08fioqKqFWrFomJiWRnZytdE0eOHFljkwEhxD9beXk5L7zwAlFRUbi6upKZmUlJSQkAxsbGeHt78+abb9KsWTMApaHJw3TZD4MGDeL8+fM8//zzhIWFkZ6ezsqVK1GpVHz66ad4eHj8pe9PiL9Deno63bp1IzQ0lOXLl1d5Trev5OXlceXKFXx8fKR2oBCimhUrVjBnzhzeffddnn76acrLy5VMQKg4HickJGBtbV2l8ZcQQvxXSEahEP9wVlZWBAUFkZOTQ+3atenXrx/BwcH4+/tXOWkRQvy76Ovr4+npibe3N97e3vTp04fg4GDq1q1bY/dwXddjXX2jh7MCp0+fzooVK9izZw9r1qwBoHHjxrz22msSJBSPDWtrawIDA3FwcKhW01f3ZwsLixq7iQohRElJCceOHaNjx460a9cOoNr5tkqlonbt2n/H5gkhxF9CMgqFEEKIf6CHm5v8El1ApKSkhPj4eCUjUW4mCCGEEEIIIX4LCRQKIYQQf6Py8nIlS1BfX1+Ce0IIIYQQQoi/jQQKhRBCCCGEEEIIIYQQSNqCEEIIIYQQQgghhBBCAoVCCCGEEEIIIYQQQggJFAohhBBCCCGEEEIIIZBAoRBCCCGEEEIIIYQQAgkUCiGEEEIIIYQQQgghkEChEEIIIYQQQgghhBACCRQKIR5T7du3p3379n/3ZgghfoHsp0L8O8i+KsQ/n+ynQohHJYFCIYQQQgghhBBCCCEEhn/3BgghhBBCCCGEEEII8W/x1ltvsWnTpiqPGRkZ4ejoSNu2bRk3bhzW1tZ/ymuXlJSQlZWFk5PTnzK+BAqFEEIIIYQQQgghhPiNJk2ahFqtBqC4uJi4uDjWr1/PxYsX+frrrzEwMPhDXy81NZVnn32WUaNG0adPnz90bB0JFAohhBBCCCGEEEII8Rt16NABd3f3Ko95e3vz3nvvceTIEdq2bfuHvl5KSgoJCQl/6JgPkxqFQgghhBBCCCGEEEL8AZo0aQLAjRs3/uYt+X0kUCiEEEIIIYQQQgghxB/g7t27AHh6eiqPxcXFMWbMGBo1akRoaCgDBw7k6NGjVdYrKSlhxowZtG/fnqCgIFq3bs17771HTk4OAJGRkQwbNgyomPIcEBDwp2y/TD0WQgghhBBCCCGEEI+V9u3b/+LzBw4c+NUxHjx4wP379wEoLS0lPj6e999/n8DAQNq1awfAtWvXGDx4MPb29owaNQojIyO2b9/OCy+8wPz58+nWrRsA06ZNY/v27QwbNgwPDw9u3LjB2rVrSUxM5Msvv6Rx48aMHj2apUuXMmDAABo2bPj//ARqpqfVarV/yshC/Mc8iIn5uzdBCPErNIcP/t2bIIT4FS8GFf/dmyCEeATP+XX4uzdBCPErOng2+Ls34S8x8ODcP2XcjPf3/OLzvxQorKnrsY6JiQmrVq0iNDQUgKFDh3L37l22bNmCmZkZAGVlZQwfPpyEhAQOHjyISqUiNDSUvn37MnnyZGWsjz76iKNHj7Jq1SrMzc05deoUw4YNY9asWdLMRAghhBBCCCGEEEKIP8KjZAz+mnnz5mFvbw9UZBSmpqaydu1ahgwZwmeffUbdunU5ffo0Q4cOpaioiKKiImXdjh07MmvWLC5evEjDhg1xdnZm586dBAUF0aFDB6ysrBg/fjzjx4//f2/nbyGBQiGEEEIIIYQQQgghfqMGDRpU63rctWtXOnXqxPTp05kzZw4Aq1evZvXq1TWOcefOHQCmTp3K+PHjmTRpEv/73/8ICwujY8eO9O3bF0tLyz/3jVQigUIhhBBCCCGEEEIIIf4AarWaJk2asG/fPjQaDQBDhgyhQ4eaSzrUqlULgIiICA4ePKj8d+zYMWbNmsXKlSuJjIzE1tb2L9l+CRQKIYQQQgghhBBCCPEHKS8vB8DR0REAAwMDmjVrVmWZuLg4UlJSMDU1paSkhKtXr+Ls7Ez37t3p3r075eXlrFixgrlz57Jjxw6GDh36l2y7/l/yKkIIIYQQQgghhBBC/MdlZmZy8uRJ6tati5ubG0FBQWzatIm0tDRlmdLSUt5++23GjRtHWVkZWVlZDBgwgGXLlinL6OvrExwcrPwZKgKO8FMg8s8gGYVCCCGEEEIIIYQQQvxG+/fvR61WA6DVarl79y4bNmygsLCQV199FYB3332X4cOH07dvXwYNGoSNjQ07duzgwoULTJgwQVm/Z8+erFu3jsLCQurXr092djZr1qzB3t6erl27AijLbt26Fa1WS+/evTE0/GNDexIoFEIIIYQQQgghhBDiN5o1a5byZwMDA6ytrQkODmbGjBlEREQAUL9+fb7++msWLVrEihUrKCsrw8fHh9mzZ9O7d29l/enTp+Ph4cGOHTvYsWMHpqamRERE8Oqrryr1Cf38/Bg6dCiRkZFcvHiRJk2a4Onp+Ye+Jz2tVqv9Q0cU4j/qQUzM370JQohfoTl88O/eBCHEr3gxqPjv3gQhxCN4zq/movtCiH+ODp4N/u5N+EsMPDj3Txn3m7YT/5Rx/+2kRqEQQgghhBBCCCGEEEIChUIIIYQQQgghhBBCCAkUCiGEEEIIIYQQQgghkGYmNSopKWHlypVs376dpKQk9PX18fb2pkuXLgwfPhxjY2Nl2by8PEpKSpTCkr/1dbKysnBycgIgMjKSSZMmsWrVKpo0afKbxkpOTsbDw0P5e0BAAL1792b27Nm/ebt+ze8d+6233mLTpk1VHjMyMsLR0ZG2bdsybtw4rK2tqy1/7dq1P2S7xb9f+r17rNq0iSs3bgDQIDCQob17Y21p+chjJKam8va8eTzZqRP9u3Wr8lz01atE7t7NzeRk9PX18ff2ZmCPHvh7e/+u5YR4XKU/yGXNyZNcuX0bgPqengyNaIqVqekjj5F07x7vbNpMr7Aw+jVqWOW5y6m32XD2LIn37mGmUtHE15cBjRthYmRUZbl3IjdxMyOz2tjhPt682qnj73hnQvx3FN3P5eauM+TcvAuAbR13fLo2RmXx6Ptp/t37nF+8HY82wXi1r/+7xi/JKyRh7w/cj02mvLQMC1c7vDs3wsrT4f/5DoX498vKuMeu9Vu4dS0OgICQenQd0Atzq0c/972bfJul0+fTqlsH2j3Z9WeX27xyPffS0hn55st/yHhCiH8vCRQ+pKysjJEjRxIdHc2TTz7JgAED0Gg0nD17lgULFvD999+zatUqVCoVly5d4sUXX+SDDz74zYG91NRUnn32WUaNGkWfPn0AaNy4MXPnzsXPz+83jTV58mRu3brF6tWrlcfmzp37h3e++aNMmjRJaeldXFxMXFwc69ev5+LFi3z99dcYGBgAMGDAAKVLkBC5+fm89/HHaDQanujQgfLycrYdOEDS7dvMfP31R2oJr9Fo+HTNGso0mmrPXblxg9lLluDu7Mygnj3RaDTsOXqUqR99xHvjx1PrxyDgoy4nxOMqt6iI6du3oykvp2doKOVaLdtjYki+f5/3ez+J4Y+/8b9EU17Op4cOU6Ypr/bc5dTbzNixAx97ewY3CedeXj67Ll3iZkYGU5/oiZ6eHgBarZbU7GwaeXsR7uNTZQx7S4s/5s0K8S9VWlBMzPLdaDXluLcKQqvVknL0Evl3swh7qQf6j7CflmvKufZdFNoa9tNHHb+suJSYz3dTkluAW/N6GJoYc/vkVS4u303Yiz0wd1b/4e9diH+Lgrx8vpy7GI2mjJZd2qHVlhO1+yBpKbcZ/b/XMHjEc9+Ny9eiKat+7lvZuaMnOXfkBN4Bv3wd+qjjCSH+3SRQ+JBdu3Zx+vRpFi1aRKdOnZTHhw0bxhdffMG8efP47rvvGDx4MNevXyc9Pf13vU5KSgoJCQlVHvPw8KiSFfiooqKicHNzq/JYr169ftd2/RU6dOiAu7t7lce8vb157733OHLkCG3btgUqWojXr1+/piHEY2jH999zPzubeZMm4e7sDEAtLy9mLF7MoVOn6NC8+a+OsWnvXlLu3Knxua8iI7GzsWHG669jrFIB0Co8nNdmzOCb7dt5d+zY37ScEI+rnTEXuZ+Xz5z+fXH/8aZQLUcHZu7YxeHr12lft+6vjrH5fDSpWVk1Prfm5EnsLCyY8kRPVD9eJNlbWPBl1DEuJKcQ5llxHM3IzaO4tIxG3t60rO3/B707If4bUqMuU5xTQMNxvTBztAHA0t2BS1/uJe2HOFwaB/zqGCmHYyhIy/5/jZ9y+CKFmTkEP9cFG5+KY7tDiDdnPthIytGLBPRv9f9+r0L8Wx3be4icrGzGTpuIo2vF/uHm48VX85fww7HTNG7d7FfHOLJjPxm37/7s8+Xl5Rzevo/vt+x+pG36tfGEEP8NUqPwIefPnwegeQ1Bh8GDB2NkZER0dPRfvFX/fbqMzBs/TikV4mHHfviBev7+SpAQIKROHVwcHTn+ww+/un5iaiqb9uyhT5cu1Z7LKyggMTWVpvXrK8E/ABsrK+rWqsW1W7d+03JCPM6Ox8dTz9VFCRICBLu742JjzYn4m7+6ftK9e2w+f57eDarfKCopK8PK1JR2deooQUKAui4uACTeu6c8lvJjoNHVxhohRFUZMTex8XFWgngA6lqumDpYkRHz68ey/Lv3SToYg2e70N89vlarJe18HLYB7kqQEEBlaYZP18ZYeTv9vjcnxH/ExVM/4BNQSwkSAtQKDMDO2ZGLp87/6vp3k29zePte2vTsXOPzpSWlfDr1A77fvIuwiEZYqn/5ePlr4wkh/jskUPgQc3NzANavX1/tOTMzM3744Qfmzp3LokWLmDRpElCRbdiuXTtluRMnTvDcc8/RpEkTAgMDadmyJZMnT+bBgwdARS3CYcOGARXTcAMCApTHAwICOHXqlDLWnj176Nu3L/Xr16dhw4Y888wznDt3Tnk+ICCA1NRUTp8+TUBAAJGRkcrjb731VpXtP3z4ME8//TT169enefPmvPrqq6SkpCjPl5aWsmzZMp544glCQ0MJCQnhiSee4Lvvvvv9H+gjunu34s5U5enSb731lvLZ6PzaZwsVJ56ffPIJnTt3Jjg4mGbNmvHGG29w52cyycQ/X15BAemZmfjWkHHr4+HBreTkX1xfo9GwdN06QurUoVXjxtWeNzMx4cN336V7pf1YJzcvDwN9/d+0nBCPq7ziYtIf5OLjYF/tOW97e25lVq8XWJmmvJylh48Q7OZGS//qWYAqQ0MmdetaLYiYcK9iXIdK9UqT798HwO3HgGVRaelvezNC/EeVFhZTdD8PCze7as9ZuNiRd/teDWv9pFxTzvWNx1D7u+IYVn2a4qOOX5yVR0lOATa1XIGK8zdNScV+6tq0ziNlNQrxX1WYX0BWxj1cvd2rPefq6c6dpJQa1vqJRqNh04qv8QsMIDSiUY3LlJWVUVxYxIAXh9P3uSEY6P98yYFHGU8I8d8hU48f8sQTT7BixQrmzJlDZGQkHTp0ICIigvr166NSqVD9mEXUsWNHMjIyWL9+PaNHjyY4OBiomAb8/PPP06BBA8aNG4eenh7Hjh1j/fr15OTksHDhQho3bszo0aNZunQpAwYMoGHDhjVuy+nTp3n11Vdp1aoV/fv3p7CwkDVr1vDMM8+wY8cOPDw8mDt3LrNmzUKtVjN69GgaNGhQ41g7duxgwoQJ+Pv78/LLL1NaWsqXX37JxYsXiYyMxMrKikmTJrFr1y4GDRrE0KFDycrKYsOGDbzzzjs4ODjQunXrP+QzfvDgAfd/vIArLS0lPj6e999/n8DAwCoB14c9ymcLsHTpUhYvXsyQIUMICAggJSWFVatWcenSJbZv367UQBT/HvezswGwta5+p1NtZUVBYSH5BQWYm5nVuP6W/fu5k57O6889R3l59VpK+vr6uDg6Vns8MTWV67duEfrjVMlHXU6Ix1VWfj4Atmbm1Z5Tm5lRUFxCfnEx5pWaglW2NfoCd3NymNCpI+Va7a++XkZuLldu32HNyZN42Kpp5O2lPJeSlYWJkRGrT5zgRPxNikvLcLSyZEDjxjSr9dtqAQvxX1KSUwCAyqr6MVNlZYqmsJSywhIMTVXVngdIOXqRwnsPqPd0O7Tl1ffTRx2/8F7FTV4jcxNu7jrD3TPX0RSVYmJniW+3cOzq/vZyPEL8VzzIygHASm1T7TlLGyuKCgopLCjE1Kzm5kNRuw5wLy2DwWOfpbyG/RTAxNSE8bPfeaRro0cZTwjx3yGBwof4+/vzySef8Pbbb3Pjxg1u3LjBkiVLMDMzo127dowdOxYfHx/q1KlDWFgY69evp1mzZsrU2ZUrV+Li4sKKFSuUoOLgwYMZMGAAR48eBSpqETZr1oylS5cSFhb2s/UEd+7ciYmJCUuWLFGKszdr1oxx48Zx+fJlPDw86NWrFwsXLsTe3v5nxykvL2fWrFnUrl2bDRs2YGJiAkBwcDDPPPMM27Zto1OnTmzfvp3nn3+eCRMmKOt26NCBrl27cvTo0T8sUNi7d+9qj5mYmChNYn7Oo3y2ANu2baNVq1a8++67ymMuLi58/fXXpKam/mObvIifV1RcDFDj90P1Y5fT4tJSqocmIPnOHTbu2sUz/ftjp1aTce+XMyUqv+biHxsE9erQ4f+9nBCPg8Ifs/ZUNRRYV/14IVJSVlZjoDDlfhaRP/zAiObNsLOwICM39xdfK7eoiHHrvlFeb0TzZlVeNzkri6LSUgqKS3ipbRsKSkrYffESiw58j6a8XOoWiseWLmvPwKj6fqr/4z6kKS2rMVCYn5ZF0oEL+D3RBGNrc4qy8n73+GVFJQAk7j+PnoE+fj2agJ4eKUcvcWXNAYKe6YT6x2xDIR43xUVFABipjKo9Z/jjY6UlJTUGCtNT73Bw6x66D+mLta2arMz7Nb6Gnp7eIwUJH3U8IcR/hwQKa9CmTRsOHjzIgQMHOHToEMePHycjI4Pt27ezb98+vvjiC8LDw2tcd9myZTx48KBKQCMrKwsLCwsKCgp+03Y4OzuTn5/P+++/z+DBg/Hz8yMgIIA9e/b8pnEuXbpERkYGo0ePVoKEUBF0/Pbbb/H19cXCwoJz586hX2nqpFarpaysDID8H7NE/gjz5s3D3r5iWlppaSmpqamsXbuWIUOG8Nlnn9GsWc2FeR/1s3V2dubUqVN89dVXdO/eHXt7ewYOHMjAgQP/sPcg/lraHzOLdAHzR1VeXs6SNWsI8PN7pGYnOsUlJcz97DMSU1N5slMn6tUwBfK3LCfE4+L/ta8eOkSAs/MjNTvRvca4Du0o05Sz+9IlZmzfybgO7WniW9HhuH3dOmi1WjoFBirrNPPz441vv2PtyVM0r+VX5ZgnxGNDl63723ZTtOXlXN8YhZW34y9PC37E8cvLKjL8y4pKaPRaH4xMK24g2NXx4Mz8jSTsPSeBQvHYUnaj33E8jVz+NZ61fB+p2clfPZ4Q4t9BAoU/w9jYmG7dutGtWzcALl++zJdffsn27duZMmUKu3btqnE9AwMDkpOTWbhwIXFxcSQlJZGWlva7tuHpp58mKiqKNWvWsGbNGtzd3Wnbti39+vWjTp06jzxOamoqAF5eXtWeCwkJUf6sUqnYunUrUVFRJCQkkJiYqAQItY8wBexRNWjQoFrX465du9KpUyemT5/+//5sJ06cyIsvvsjMmTOZNWuWMqX5qaeewsHB4Q97H+KvY/Jj9lFJSUm150p+zGAyqxQE19l64ACJqalMe/VVHuRVZD3kFRYCFUG+B3l5WJqbVzkJyy8oYPayZVy/eZO2TZsysEePGrfpUZcT4nFi+mOGb8mPN5kqK9FoKpapITN424UYku7fZ+oTT/CgsCKLIv/HTOLisjIeFBZhaWJcZV+1MDYmwq9iCnETXx/e+PY7Vp04oQQKO9arV+11VIaGtPT3Z+O5H0jJysLTrnoNNSH+6wyMK/bT8lJNtefKf9x3DU2qZzGlHL1E/p0sQkd1ozS/Yj8tK6zYTzUlZZTmF2FoZvzI4xsYVWQy2Qd6KUFCAENTFbZ13Ek/H4+mpBSDGjKqhPivMzap2CdKazj3Lfsxa9ekhnPfqF3fczcllecmvUJ+bsW5b9GPCRUlJaXk5+ZhZmH+yAHIP3o8IcS/gwQKKykoKGDZsmUEBgbSqVOnKs8FBgYyf/58Hjx4wJEjR8j6sZviw5YvX87cuXPx8fGhUaNGdOrUidDQUFavXs22bdt+0/ZYWFiwZs0aoqOj2b9/P0eOHGH16tWsXbuWuXPn0rNnz0caR1eT7Zd+wIuLixk8eDBXr16lSZMmREREMGLECMLDw2nTps1v2u7fQ61W06RJE/bt20dOTg7WNdSie9TPtk6dOuzZs4ejR49y8OBBjh49yscff8yKFStYv349fn5Sm+rfxv7HZgTZlZrW6GQ9eICZqakSTKws+soVyjQa3v7gg2rPbTtwgG0HDvDJ1Kk4/BgsyMnNZeann5KQkkKH5s15bsCAGvebR11OiMeNnYUFANk1ZNBnFRRgZqzCxKj6Rf+F5GTKNOW8u2lztee2X4hh+4UYPh48sEqzkspUhobU9/Rkz6XLPCgswsq0+sWTjrVpxTStohqCmUI8DoytK/bTktzCas+VPCjEwNSoxuBc1vVUtJpyoj/dXu251KOXST16mcZv9Hvk8VVWFQVDjMyr768qC1PQgqZYAoXi8WRtV3Hum5tTvQxHbvYDTMxMUZlUP/e9cekqmjINy6YvqPbcsd3fc2z397w2dzJqe9tH2o4/ejwhxL+DBAorMTY2Zvny5dSvX79aoFCnVq1aHD16tMY7OMXFxSxatIgmTZrw5ZdfYlipVpKu0cZvcevWLXJzcwkLCyMsLIzXX3+duLg4hgwZwooVKx45UOji4gJAUlJStecmTZpEgwYNMDIy4tKlS8yYMYN+/fopz//ebMjfQxfQrGkq2KN+thqNhtjYWCwsLGjfvj3t27cHKuo9vvrqq3z77bfVukGLfz5zMzMc7Oy4lVK9w9ut5GT8fqbu5NDevcl/KGCRk5vLJ6tW0bJxY1qFh2NtZQVAYVGREvzr1rYtw/v0qXHMR11OiMeRubExDpaWNXY3TsjMxPdnsrqfjmiqZBDq5BQWsvj7Q7Twr0Wr2v5Ym5qSmpXN7F27eCI0lI6BVTMGi0pL0dMDIwN97ufnM3PHTiL8/OjbsGqTr9QfmyM5/kzQUYj/OkNTFca2FjV2N867cw9Lt+pdywF8ujWmrLBqdlNpXiHXNhzFsb4vjvVrYWRhgoGR4SONb+5sg56hPgXp2dWWK8rKQ9/IoMYgohCPA1MzU2zsbbmTWP3c93ZSCm7eNTf76TLgSQrzq5775j/I5bvP1xAa0YiwZo2xsHr0498fPZ4Q4t9BAoWVGBgY0K1bN7Zs2cKWLVuqNQfJzs5mz549NGvWDFNTUyWgpQtwFRUVUVhYiLe3d5VA1tWrVzl9+jRQ0Ybe0NBQKRxbUwdWnffff59r166xZ88ezM0r7rr6+vpiZWVVJZimr6//i+MEBQVha2tLZGQk/fr1U2r8nTt3jsjISOrUqaNMLa5Vq1aVdVetWqVs958pMzOTkydPUrduXSxruHh71M+2vLycYcOG0ahRI5YtW6YsFxoaCtQchBT/Dk1CQ9l1+DCpaWm4OTkBEBMby530dJ74mSYiNQUQdc1MnOztCak0hX/5hg0kpKTQtU2bXwz+PepyQjyuwn282X3pEqlZ2bj92K3xYkoKd7Jz6Pnjb/HDagog6pqZOFlZEfxjuQpnaysKSkrYf/UqbesEYPjjsTQjN5dTN29R18UFU5UKU5WKgpISvo+NpWtwEGY/Hvcyc/M4fO06gW6u2PxMl3QhHgf2gV7cPn6FgoxszBxsAMiKu01hxgPcWwbVuE5NAURdMxMTW8sq9QQfZXwDlRF2dT25dyWJ/LQszJ0qMqiK7udy72oSdvU80ZPzNvEYC2wYyon9h8m4k4aDS8W5b9zla9y7m07Lru1qXKemAKKu+Yitgx21An+hvuhfMJ4Q4t9BAoUPeeutt4iJiWHixIls3bqVli1bYmFhQVJSEpGRkZSWljJ58mQAbG0rUqy//vprMjMz6dmzJ6GhoURGRmJhYYGPjw83btzg22+/VQJU+fn5WFtbo/5xKuXWrVvRarU1dgJ+5plneP755xkyZAhPPvkkxsbG7N+/n6SkJObMmaMsZ2trS2xsLOvWrSM8PLxasE+lUvHWW2/x5ptvMmjQIJ544gny8/NZtWoVfn5+9O/fn5SUFAwNDZk4cSJDhgzB0NCQgwcPEhUVhZGR0R/azGT//v3K+9dqtdy9e5cNGzZQWFjIq6++WuM61tbWj/zZDh06lCVLljBmzBhatmxJUVER69evx9TUlL59+/5h70P8tZ7o0IEjp08zfdEierRrR0lpKdsOHMDX05OWjRoBkJaZybWbNwnw9cXJvuaMiJqk3L3L0TNnMDM1xdvdnSM/Bp8raxUe/sjLCfE4eyIslKM3bjBjxw66hwRTUqZhe0wMPg72tPCvOD6lPXjA9btp1HZ2wunHrN5HYaCvz4hmzfj04CHe27adlv61yC0qZu/ly+jr6zGi+U+F1p9p3pwFe/cxZfNW2tWtQ2FpCXsvXcHgoeWEeBy5twwi/Xw8F5fvwa1FEOVlZaQcvYSFmx2OYRUlWgrv5/IgMR0rL0dMbX9bxtCjjA/g06URObfucnH5Hlyb1UVf34DUE1fQNzLAu1PDP/Q9C/Fv07JrO6KPn2HFvMU079yWstJSonYfxNXbg9CmFfvH/fRMkuJu4VnLB1vHRz/3FUKIXyKBwofoMu9WrlzJgQMHWLx4MYWFhTg6OtKpUydGjx6No6MjABEREXTt2pWDBw9y8uRJOnXqxMKFC5k1axYbN26kpKQENzc3XnjhBfz8/Hj55Zc5efIknTt3xs/Pj6FDhxIZGcnFixdp0qRJtW1p0aIFS5YsYdmyZXz66acUFxfj7+/PggUL6N69u7Lcyy+/zJQpU5g5cyZjxoypFigE6NWrF5aWlixdupT58+djZWVF27ZtmTBhAmZmZtSuXZuPP/6YTz75hAULFmBubo6/vz8rVqxg3bp1nD59mtLSUoxqqC31W82aNUv5s4GBAdbW1gQHBzNjxgwiIiJ+dr1H/WzHjRuHjY0NGzduZM6cORgYGNCgQQPmzZsn9Qn/xawtLXlv/Hi+ioxkw86dGBsZ0TgkhCG9einfy6vx8SxZs4YXn376NwUKr8bFAVBQWMiSNWtqXKZVePgjLyfE48zK1JQpT/Rk1fETfHv2HMaGhjTy8mJI0yYY/ZgBGHvnLksPHWZ0m9a/KVAI0LK2P0YGBmyJjmb1iZMYGxoS5ObGU40b4WpjoyzX2MebCZ07svl8NF+fOo2RoQH1XFwYGB6uZDoK8bhSWZgS8nxXbu44TeL+8xioDLGr64lPl0boG1bspw8S0rj+XRS1+7X4zYHCRxkfwERtQejo7iTsPkvK0UugBWtvJ3y6NPrNrynEf425lSXPTRrH/7F35/FRVof+xz+zJpN9B0JCCGEnYQ2rIgooO4iFalXcanut2+VnrVWvtpS29taldUNvbdHiUsUFUFbZN0FAFtn3PTvZl0kyM5nfHxMG4gybggnJ9/169XX1ec45c55cTzLznbMs+HA2y+YsxGq10qlHGsMmjsFc+9736P7DzH77P4y/73YFhSJy2Rjcl/M4W5FGrGT79vrugohcgGvVivrugohcwK9Sqy5cSETq3f0p/rd2EZGGY2irnhcu1AjctuL5K9LuRzc8cUXavdpp4w8RERERERERERHR0mP5/iorKymt3Wz+QqKiorwHuIiIiIiIiIiISMOjoFC+twULFvDUU09dVNlly5aRUHtqpYiIiIiIiIiINDwKCuV7u/baa3nnnXcuqmxsbOwV7o2IiIiIiIiIiPwQCgrle4uLi/OeAC0iIiIiIiIiIlc3HWYiIiIiIiIiIiIiCgpFREREREREREREQaGIiIiIiIiIiIigoFBERERERERERERQUCgiIiIiIiIiIiIoKBQREREREREREREUFIqIiIiIiIiIiAgKCkVERERERERERAQw13cHRK4Wv8xfVN9dEJELeJOA+u6CiFzA/SlD67sLInIR+hTpo6JIg9eqvjsgjZFmFIqIiIiIiIiIiIiCQhEREREREREREVFQKCIiIiIiIiIiIigoFBERERERERERERQUioiIiIiIiIiICAoKRUREREREREREBAWFIiIiIiIiIiIigoJCERERERERERERQUGhiIiIiIiIiIiIoKBQREREREREREREUFAoIiIiIiIiIiIigLm+OyBNw5NPPsns2bMvWG78+PEAPmWNRiM2m42UlBRuv/12b7nztW21WomJiaF///489thjxMTE/MCnkPpWWVDK4YWbKD6cDUBUxwSSR/TGGmI7b73qMjtHF2+hYO8JahxOQuKjaT0snbBWsXXKlWac4uiXmyk5novBYCA8uTnJI3oTFBv+vcqJNFW5JaW8//XX7M7MBKBHq1ZM6t+PMNv5x2qJ3c5HGzex+dgxqp0ukmOi+VnfPrRr1qxOuW9PnGD2lq0cPnUKo8FAu7g4fto73afcxbYn0hQV5uWzcObnHNl3EIAOXTsz4tZxBIeFnrdeeUkpSz6bz95tO3E4HMQnJXDThDEkprT2tHuqgL89MfW8bdz3xEMkd2zHs/dNPm+58ffdTs9r+1z0M4k0Nrn5+bw7eza7DxwAoGeXLkwaP57w0POP0+LSUj6aO5dvduyg2ukkOSGBO8aNo13r1t+r3LY9e5i1aBGHT5zAaDTSrnVrbhs92qeciDQOBrfb7a7vTkjjt3XrVo4fP+79982bNzNz5kxuvfVWevXq5b3eqlUrZs6cyezZs3nqqaeIjIwEwO12U1ZWxhdffMG3337Lb3/7W+677z7gTFB4dnmAsrIy1q9fz5IlS+jQoQOffvopVqv1ez/DbSue/9515YdzVFSxddoXuF01xPfvhNvt5uSanQRGhND9wdEYTSa/9ZxVDra9MY/q0gpaXtMZc2AAmV/vobqkgu6/Gk1wc89/MxV5xWydNheT1UzLazoDkPHVbtxuNz0fGUdAWNAllZP68ebOgPruQpNXWlnJ07Nm46qpYViXLtS43czbvp3YkBD+NP5mzOcYq/bqap6ZPYfCigpGpqURHBDAl7t2UVBezp/H30xiVBQAuzOz+NO8eSRERnJ9hw643DUs3rWboooKfj92DG3j4i6pPfnxbR43sL670ORVlJXz5h9ewuVy0m/IdbjdNaxdtIKI6EgeePYxTGb/cwmqKiv5vz/+jdKiEgbcOIjA4CA2LFtDSWExDzz7GM0SWlBdWcXuLdt96jocDuZ/MIvgsBAe/sMT2IKD2LZuk9/XWfjRHFwuFw9N+Q2RsdGX9dnl4vUp0pyS+lRaXs6Tzz+Py+Vi+KBB1NTUMHfZMmKjonju8ccxn2Oc2isrefrFFyksLmbUDTcQHBTEotWrKSgq4rnHH6dVfPwlldt94ABTX3uNhObNuaF/f1wuF1+uWUNRcTF/mDyZtgoL61VY16713YUfxZX6LP7RDU9ckXavdvrtLz+KHj160KNHD++/u1wuZs6cSffu3Rk3blydsjNnzgRg6NChJCQk1Lk3YcIERo4cybRp07jzzjvrBH/+yt9xxx1MmTKFDz/8kKVLlzJy5MjL/WjyI8lYu4uq4gp6PTqOoLgIAEITYtn59mJythykRe8OfuudXLUD+6li0u4fTkRycwBiu7Zm04ufcXLNDjpMvM7T/rrd1FQ76fbLEYTEez6URKTEs+2NeWR8tYs2I3pfUjmRpmrB9h0UlJXz14k/IaH2y5u2cbE8N38hq/bvZ0inTn7rfbHtW7KKi3lm9Gg6x7cAoH9KGx798CO+2PYtDw2+AYB3168nKjiYP958MwEWz9uY69q149cff8LMTd/wP6NGXlJ7Ik3RV4tXUlxYxMNTnyAu3vO3sWVyEjNeepMtX22k96ABfuutXrCMU9l5nhmBHdoCkNanB3974o+sWbiMCb+4E2tgAN0H+P4tXPDhLFwuFxN/OQlbsOdLNX/l1i1eSUVZORN+OUkhoTRp85cvp6CoiBeeeoqE5p5x2jYpiT9Pm8bKDRsYes01fut9vmQJWbm5/O6RR+jcrh0A/Xv25JEpU/hi6VIevuuuSyo3Y9YsoiMi+PPjjxNQ+9nruj59eOzPf+ajefN45uGHr+jPQUR+fNqjUK4qgYGBDB48mLKyMg7UTsG/kNPLlL/99tsr2TW5wvK2HyYiubk3JASIbBuPLTaMvO1H/NZxu93kbD1IVIcEb0gIYA0NInlEb8Jan1l+WFlQijk4wBv+AYQmxGAOCqAip/CSy4k0VesOHaJzfAtvSAiQlpBAi4hw1h867LeO2+1m9f79dE9M9IZ6ABFBQUzq14+OLTzjt6yqiuP5+fRr08YbEgKEBwXRqUUL9mfnXFJ7Ik3Vjg1bSO7Q1hsSArTt0oHo5nHs2LDVbx23283WrzbSvmsnb0gIEBoexvBbx5HUvs05Xy/7RCbrl66h57V9aN0+5ZzlyopLWTp7AW06tadbv17nLCfSFHy1ZQud27XzhoQAXTt2pEVcHOu2bPFbx+12s2rjRnp07uwN/wAiw8K4a/x4OqakXFK5sooKjmVk0K9HD29ICBARFkantm3Zd8T/e3ARubppRqFcdQwGA+CZlXgxbLV7YmmV/dXLYa+isqCMmNTWPvdCWkRTcOCk33pVhWVUF1cQMTAV8Pw3UONwYrJaiO/XsU5ZW3QYRQczqS6ze/c8dFRU4aysxnLWHogXW06kKSqrqiK3pJS+bZJ97rWOieHbEyf81ssrLaOgvIIx3boBnrFa5XQSaLFwY5fO3nJBFgsv3fpTAv0styqtrMRkNFxSeyJNkb28gsK8fLqkd/O5F98qgQM79/itV3SqgNLCYgaOGAJ4xpWjqhprYAB9B1973tdcOms+FquFIePPv7Jj1fwlOKodDL913HnLiTR2ZRUV5J46Rb/u3X3uJScmsm33br/18goKKCgqYuyQM+O0qrqawIAAbho48JLLBQUG8vdnniEgwHdrl9KyMkxGzTsSaYwUFMpVpaamho0bN2K1WklJOfc30mdbs2YNAJ0768Ph1aq6uAIAq5/9/6xhNlx2B057NWZb3T0o7fklAFiCAzm8cBPZm/bjqnQQGB1Km5F9iO6U6C2bcF0qBXtPsG/matqM8iyFOrzwG4wmIy0HdL7kciJNUWF5OQBRQcE+9yKDgqioqqa8qorg73zgyC4uBiDMZuP99V+zfO9e7NUOmoWHMal/P3olJQGeg61ahPseGnQ8P5/9OTl0rd1+4mLbE2mKSgprx0dkhM+90IgwKivs2Cvs2ILqfvmVn5MHQHBoCItmfs43q9dTZa8kKi6GEbfdTMfuqX5fL/tEJvu+3cU1w24gLOLch36Vl5SyaeU6OvdMo0Wrlt/z6UQah4KiIgCi/PzNiwwLo8Jup7yiguCguu+Ns3JzAQgLDeW92bNZtm4d9spKmsXGcvf48fRKS7ukckajkRa1e/+e7VhGBvuPHKHbObYTEZGrm4JCabBKSkooKCgAPLMHMzIy+Pe//83evXu55557CA4OPmd58BxmsmbNGl5//XVSUlIYNWrUj9p/uXxc1Q4ATBbfX1nG2plFLofTJyh0VlYDcGzpVgwmIymj+4LBwMk1O9n9/jJS772JyLaejZoDI0JIvL4rh+Z+zZZXv6ht3ECn26+vs8z4YsuJNEV2h2esWv3M+LPWHmJS7XT6BIUV1Z6x+vE332A2Grl7wACMBgPztm/npS8X89TIEaR9Zw/a0yodDt5YsRKAsbUzL35IeyKNXVVlJQAWq8Xnnrn2mqO62icorLTbAVg2ewEmk4mRP7sFo9HA2kUr+OC16dz92AO07eK7X/DGFWsxGI30HXL+Q2w2r9mAy+lkwE3aP1SksqoKwO9BjFaLZ5xWORx892u5itpxOnP+fMwmE/dMmIDRYGDusmW88M9/8vSDD9K1Y8eLLneuvk177z0Axg0dejkeV0QaGAWF0mCd3lvwbFarlUmTJvHrX//6osrbbDaGDBnCM888g8Xi+4ZYrhKnl40bLq1ajbMG8ASG6Y/dgsXmCSeiOyay6aXPOLp4szcoPLpkCydWbCc8uRnN+3TAXeMma8Ne9n64ik633+CdfXix5USaotNbPJzeIuJiOWq3kqioquZvt/2UkNogsWdSKyZ/NJOPNm7yG+xVOZy8+OVijuUXMK5HN+9+hN+3PZGmwPsn9RLHqdPhBKCyws7kv/yP90CSDt1T+ftv/8jSz+b7BIWOagfb1n9Dx+6pRMac/6TxzWu+pnmrliS18926QKSp+d5/T52ecVpht/Pys88SUjvjsFdqKo9OncpHc+fStWPHiy73XVXV1Tz/1lscy8jg5ptuqrO/oYg0HgoKpcF64YUXiImJATzT3sPCwkhJSfG7R8bZ5R0OB2vWrOGDDz5gxIgRTJky5Zx15OpgCvCEvDUO330pa2rf6JgDfYNgk8UzgymmS5I3JAQw26xEdUwgd+shXNUO3C43J9fsJCQhmrSfD8NQu99KbNfWbHtjHgdmf0Vku4nUOFwXVc5oNl3eH4DIVcJW+4VMde24PFt1bXhn8zc7onYGYp/k1t5QDyA4IICerVqx5sABKh0OAs/6wqe8qornF33J/uwcru/Ynlt79/5B7Yk0FQGBnjHhqJ15ezZn7Qz+wMBAn3uW2rHbuVc3b0gIYAuy0bF7KlvXbaK6sgpr4Jkxd3jvARxV1aT27n7ePuVmZlOQe4qhP9HqDxGAwNq/XdV+xml17ez9ID/j9PSBI327dfOGfwDBQUH0Sk1l9caNVFZVXXS5wLP+hpZXVPC///gH+w8f5oZ+/bht9OjL8KQi0hApKJQGq2fPniRcwoyPs8sPGjSIpKQk/vSnP1FUVMQbb7xxyd/IScMREB4CQHWp3ededYkdk82Cyc8SKmuYZ0GGJdj3jZQ1xAZucFU5qCquwO2sIbZrG2/4B2A0mYjrlsKRRd9QkVeM21VzUeVCWpx/1oRIYxUd4hmrRRUVPvcKKyoICrD6DeeiakOHMJvvgUDhQTbcbuoEeyV2O88tWMixU/kM6dSRnw+8ts7v+EttT6QpCY/2nEheWlzqc6+0qITAIFudsO+0sEjPXmnBoSE+94LDQsDtpqqqblC4f/tuTGYz7buefx+z/ds9BzN06eV7wIpIUxQT6RmnRSUlPvcKS0oIstnqhHinRUVEABAW4jtOw0NDcbvd2KuqLrrc6dcoLi3luTfe4OjJkwy95hruv/VWfbYSacR0TJE0WpMmTWLIkCEsX76cGTNm1Hd35Acw26wERIVQlpnvc68sK5/QljF+6wU3j8BgNlKRW+Rzr7KwDKPFhCU4EKO59ldhje/J2G53zel/uOhyIk1VcEAAsaGhHDl1yufe0VOnaBMb67deYlQUFpOJk4WFPvfySkqxmE2E1c6csFdXe0PCEWmp3H/dQJ8PK5fSnkhTYwuyERETRdaxkz73Mo+fpGVr/1toNGvZApPZTG5mts+9wlMFmC0WnxDx+MEjtGydSKCf0P5sxw4cITQynJjmvocmiDRFwUFBxEZHc+Sk7zg9cuIEKa1a+a2X2KIFZrOZE9m+4zQ3Px+LxUJ4SMhFlwOwV1Z6Q8KRN9zAL267TSGhSCOnoFAatalTpxIeHs7LL7/MiRMn6rs78gPEdEmi6FAmFXlF3muFBzOx55UQ29X/fkYmq4XoTq0o2HuS8pwzgUFlQSn5e44T1SkRg9FIUFwE1jAb2VsO4HKcWTLpcjjJ2XoIc3AAQc0iLrqcSFPWJ7k1OzMyyCgs8l7bcfIkWUXFDDjHafWBFgu9klqx9fhxThacGau5JaVsPnac9KQkjLWzeN9e+xXHTuUzPC2Vuwb0/8HtiTRFXXp149DufeRl5XivHdy1j/zsXNL69vRbxxoYQMceqezfvovcjCzv9cK8fPZu3UnHHql1xpXL6SQvM5sWSRdeHZJ9PEMnHYt8R99u3dixbx8ZOWfG6fa9e8nKzWVAr15+6wQGBJCelsbWnTs5kXVmnObm5/PNjh2kp6VhNBovuhzA9I8/5ujJk4y4/nruvuWWK/S0ItKQaOmxNGoxMTE8/vjjPPvss0yZMoXp06fXd5fke0oYmEru1kPsmP4lLa9Npcbp9OwX2DKauO6e8MFeUErJsVzCkuKwRYUCkDw8neIj2eyY/iXxAzphNJrIWL8bo8VE65s8b7IMRiMpY/qx5z8r2PbmfJr3aofb7SZn8wHsecV0mDgQY+2JrRdbTqSpGtu9G2sOHODP8+czqmsa1U4X87ZvJzk2hmvbtQUgp6SE/dk5tG/ejGZhYQDc3q8vu7Oy+OO8eQxPTcVsMrJox04sZhO39vHsP3iysJC1Bw4SFGCldXQ0a/Yf8Hn9ge3bXXR7Ik3VwBGD2bZuE++8MI1rht2A0+Fg7aIVxLdOpFs/z9/GgtxTHD94hFZtk4mK88zcHzZxLEf3HuTt56fR/8brMJrMrF+6CovVwo231N1fsCi/EJfTRXhU5Hn74nK5KCoovODyZJGmZuzQoazeuJE/vvYaowcPptrhYO6yZbRp1YqB6ekA5Jw6xb7Dh+nQpg3Navd2v3PcOHYfOMDUV19lxPXXYzaZWLhqFVaLhZ+NGeNt/2LKnczOZs2mTQTZbLROSGD1xo0+/byuT58f4achIj8mBYXS6E2cOJE5c+awdu1a5syZw80331zfXZLvwRpio+svRnB4/kaOLd2KyWomulMrkoenew8PKTmaw/5P19J+wrXeoDAwMoRuD4zi6KJvOLlmJ7ghvHUzkoene8uAZ8Zi2n3DOL58G0eXbAYgJD6aLncPJap9wiWXE2mqwmw2fj92DO+uW88n32wmwGwmPSmJO/r1xVIbpO/Nyub/Vq7igesHeYPC2NBQpt48jg83bGTe9u243W46Nm/O7f36esvsqZ31UFFVzf+tXOX39U8HhRfTnkhTFRwWyv1PPcqCD2ezbM5CrFYrnXqkMWziGMy1e3ce3X+Y2W//h/H33e4NCiNjovjl/0xm8adzWbtoBW63m6T2bRg2cay3zGn2cs9epYG28y/zryyvALebgAuUE2lqwkND+cPkycyYNYuPFywgwGKhd9eu3DFuHJbacbrn0CHefP99fnXnnd6gMDY6mj/9+td88PnnzF22DLfbTaeUFO64+WZvmYstt+fgQcBzOvKb77/vt58KCkUaH4PbrQ21RC7GbSuer+8uiMgFvLlTJ5yLNHSbxw2s7y6IyEXoU6Q5JSINXVjXrvXdhR/Flfos/tENT1yRdq922qBHREREREREREREFBSKiIiIiIiIiIiIgkIRERERERERERFBQaGIiIiIiIiIiIigoFBERERERERERERQUCgiIiIiIiIiIiIoKBQREREREREREREUFIqIiIiIiIiIiAgKCkVERERERERERAQFhSIiIiIiIiIiIoKCQhEREREREREREUFBoYiIiIiIiIiIiKCgUERERERERERERABzfXdA5GrxVvTw+u6CiFzAxnHO+u6CiFzAvw4tre8uiMhF+Fd9d0BELugjutZ3F6QR0oxCERERERERERERUVAoIiIiIiIiIiIiCgpFREREREREREQEBYUiIiIiIiIiIiKCgkIRERERERERERFBQaGIiIiIiIiIiIigoFBERERERERERERQUCgiIiIiIiIiIiIoKBQREREREREREREUFIqIiIiIiIiIiAgKCkVERERERERERAQw13cHpPF78sknmT179gXLjR8/HoDZs2fzu9/9jjvuuMOnzMmTJxkyZAgPP/wwjzzyyHnbt1qtxMTE0L9/fx577DFiYmJ+4JNIfcvNz+fd2bPZfeAAAD27dGHS+PGEh4aet15xaSkfzZ3LNzt2UO10kpyQwB3jxtGudes65Q4dP86HX3zBviNHMBqNdE5JYdL48cQ3awZAXn4+D0+Zct7X+t2jj9KlXbvv/YwijUFhXj4LZ37OkX0HAejQtTMjbh1HcJj/sVp4qoC/PTH1vG3e98RDJHf0jK2s4yf58uMvyDh6AqPRSIduXbhpwhhCwuu2f/LwMZbNWcjxg0eocdXQPDGe68cOo0PXzpfhKUWubpUFpRxeuIniw9kARHVMIHlEb6whNv/lC8vY9MKn520z7f5hRLRpAUBZZj5HFn1DacYpDEYjUR0SSB6eXqf9NU//+7zttZ9wLc16tr2EpxJpXBrCOAWw55dwZOE3FB3Jwu2sITQxltY39SKsVexleEoRaWgUFMoVd+utt9K/f3/vv2/evJmZM2dy66230qtXL+/1Vq1aMXPmTABefvllhg0bdknh3lNPPUVkZKT338vKyli/fj2fffYZO3fu5NNPP8VqtV6GJ5L6UFpezh9efRWXy8XYoUOpqalh7rJlHM/M5LnHH8ds9v/rzF5ZyZRXXqGwuJhRN9xAcFAQi1av5g+vvspzjz9Oq/h4ADJzcvjDq68SYLHwk+HDAZi/fDm/e/llnn/ySaLCwwkNCeGhSZN8XqPa4eCdTz8lPCSEpJYtr9wPQeQqUFFWztvPT8PlcjJw+GDc7hrWLlpBzslMHnj2MUx+xmpwSDA/ud/3yyGHw8H8D2YRHBZC80TP2MrNzOafz71KWGQ4N4wbTpW9knWLV3L84BEe/P3jWAMDADiVncv0v75OcGgIg0bdiNlqYevaDbz/yj/52YP30rlX1yv7gxBpwBwVVWyfvgi3q4aE61Jxu92cXLOT8uxCuj84GqPJ5FPHEhxA+4kDfa7XOJ0cmrsBS3AgwS2iAKjILeLbtxZgDQsiaXAPXFXVnPxqFyXHc+n58FhMVguA3/YADi/YiNtVQ3jrZpfxqUWuLg1lnDrKK9n+z4U4Kx20vLYLFpuVjPV72DF9Ed1/NYrg5lFX9gchIj86BYVyxfXo0YMePXp4/93lcjFz5ky6d+/OuHHj6pQ9HRSWlJTwl7/8hZdeeumiX2fo0KEkJCTUuXbHHXcwZcoUPvzwQ5YuXcrIkSN/wJNIfZq/fDkFRUW88NRTJDRvDkDbpCT+PG0aKzdsYOg11/it9/mSJWTl5vK7Rx6hc+1Mv/49e/LIlCl8sXQpD991l6f9lSupqqriD5Mnk1z731Fa+/Y8/eKLzF++nEnjxxMYEMB1ffr4vMa/P/sMl8vFI3ffTUhQ0JV4fJGrxleLV1JcWMTDU58gLt4zVlsmJzHjpTfZ8tVGeg8a4FPHGhhA9wG9fa4v+HAWLpeLib+chC3YM7aWzV6A0WTk508+Qmh4GADxrRN5/+W32LpuE30HXwvAl5/MxWgy8l/P/j9vud6DBvD67/7Kl598oaBQmrSMtbuoKq6g16PjCIqLACA0IZadby8mZ8tBWvTu4FPHZLXQrEeKz/VD8zbgdtXQ8afXYbF5gvqjS7diMBrp9osRWEM9YzekZQy7ZiwlZ8sh4vt1BPDbXsZXu3CWV9Hh1usIjDr/igGRxqyhjNPsb/ZTXWKn0x03ENMlCYDoLkls/vtsji//lk6333AlHl9E6pH2KJQGafDgwcybN4/169f/4LZOL2n+9ttvf3BbUn++2rKFzu3aeUNCgK4dO9IiLo51W7b4reN2u1m1cSM9Onf2hoQAkWFh3DV+PB1TzryRyj11itCQEG9ICJCSlERIcDAnsrLO2a9jGRksWrWK6/v2pVNbLY8S2bFhC8kd2npDQoC2XToQ3TyOHRu2XnQ72ScyWb90DT2v7UPr9mfGqslkplv/dG/4B5Bcez/nZCbgGftH9x+iXWrHOuUsVgsdunWhIPcU5SWl3/sZRa52edsPE5Hc3Bs+AES2jccWG0be9iMX3U55dgGZ6/fQrFc7wpPPjHmj0Uhc9xRv+AAQnuyZHVieU3jO9qrL7BxdspWIlBbEdWtzCU8k0vg0lHFaWVjmee128d5rgREhBMVFnHc8i8jVSzMKpUF65plnWL9+PVOmTGHu3Lk/aMmwzebZY8Ptdl+u7smPrKyigtxTp+jXvbvPveTERLbt3u23Xl5BAQVFRYwdMgTw/DdQVV1NYEAANw2suyyjeWwsO/bto7i01LvnYWl5ORV2OxFhYT5tnzZz3jysVis/HT36ez6dSONhL6+gMC+fLundfO7Ft0rgwM49F93W0lnzsVgtDBlfdyb4Tx+4y6ds1glPQBge7dl+wmAw8ODvfg0Gg0/ZirJyAL9LtkSaAoe9isqCMmJSW/vcC2kRTcGBkxfd1tElWzBazCQN7VHnesfbBvmULc8qACAwPPic7Z1YuZ0ah5Pkkb4zjEWakoY0Tm3RnvfB9rwSQlpGA1DjclFVXF4nxBSRxkMzCqVBatmyJQ8++CBHjx7lrbfe+kFtrVmzBoDOnbV5/dWqoKgIgKjwcJ97kWFhVNjtlFdU+NzLys0FICw0lPdmz+beJ57g7scf59GpU9m8Y0edsuOGDiU6IoJXZ8zgWEYGxzIyePXf/8ZkMjHi+uv99utYRgabd+7kxmuu8ds3kaampLAYgLDICJ97oRFhVFbYsVfYL9hO9olM9n27iz7XX0NYxLnHVklRMbu++ZZP33qP0Igw0gf2896LjI0mMqbuvkllxaXs3rKdmBZx3qXMIk1NdbHn76U1zHcMWMNsuOwOnPbqC7ZTnl1AwZ6TtOjbgQA/bZ1WVVLBqZ1H2fvxaqxhNpql+z/wq7rMTtbGfUR3SSKkhfY8k6atIY3T5untCW4Ryf7ZX1FyPI+KvGIOzPoKR3klCQNTv8fTiUhDpxmF0mDde++9fPHFF7z11luMGTOGpKSk85YvKSmhoKDA++9lZWWsWbOG119/nZSUFEaNGnWluyxXSGVVFYDfmaVWi2ej5SqHg+/OUaiwewKJmfPnYzaZuGfCBIwGA3OXLeOFf/6Tpx98kK4dPfuvxERFMX7YMN7+5BOe+N//BTxLMh77+c/rLEc+2+K1azEajQy/7rrL8ZgiV72qykrAs8T3u8ynN0WvrsYW5P+0xtM2rliLwWik7xD/Bx2c9srTz1FdWYXBaGTCL+4856nK4Nkf99N/vY+jqprrRg690KOINFquagcAJovvxwBj7WFDLocTs+38qzkyN+wDo4H4fp3OW27z32fhqnKC0UCHiQPPeVprzuYDuJ01JFyjL3ZFGtI4NdusJA3twd6Zq/n2/+Z7r6eM6UtUB//vkUXk6qagUBosi8XClClTuPPOO5k6dSrTp08/b/nTexGezWazMWTIEJ555hksFt8PrnJ1OL1s3OBnGeH5OJxOwBMYvvzss96DRnqlpvLo1Kl8NHeuNyicOW8es778kk5t2zL0mmuoqalh8dq1vPz22zz285/TKy2tTtvVDgdrNm2iV1oasdHRP/QRRRqF0zs8XOpYPZuj2sG29d/QsXuqz4zAs7lcLsbcOQGT2czmNV/zyT/epay4hAE3Xe9Ttqamhs/++QGHdu0jrU9PelzjeyiRSJPhHajfvwmXw0nu1kNEd0okMDLknOVqXDWkjO2P0WQke/MB9s1cjaPMTstruviUzf7mAMHxUYQl6aRjkYY0TrO/2c+BWesIah5JwrVdMJpN5G47xKF5G8Bg8B56IiKNh5YeS4OWnp7O+PHjWbt2LfPnzz9v2RdeeIF33nmHt956i0mTJmE0GhkxYgTPPfcckZGRP1KP5UoIDPCczlZd7bvEotrh+cY1KDDQ515A7QzEvt261TmNODgoiF6pqRw+cYLKqirKKyr4YtkyUlq14nePPMK16elc16cPUx59lJbNm/OPDz/EUfs6p+3cv5+qqir696i734tIUxYQ6BmrDj9j1Vk7OyLQz1g92+G9B3BUVZPau/t5y5lMJroP6E1anx7c/dgDtGqbzNLZC7yzGr2v63Aw881/s2PjFtqldeIn999+CU8k0viYAjxfnNY4XD73amq/YDMHnv/L1eLD2dRUO/3un3Y2o8lIsx4pxHZNJvWeGwlLiuPokq04q+r+Ta3ILaIyv5TYC7Qn0lQ0pHF6dMlWrOFBdH9gJM16tiW2azJd7hpKZPuWHFm4ieqyC28pIiJXFwWF0uD95je/ISIigr/85S+UlZWds1zPnj0ZMGAAgwYN4plnnuHpp59m1qxZTJ48WQeZXOViaoPeopISn3uFJSUE2WzeMPFsURERAISF+H6LGh4aitvtxl5VRXZeHk6nkwG9emE0nvm1aDabuTY9neLSUjJycurU37prF2azmR7a+1LE6/RhIqXFvicKlxaVEBhkwxroO1bPtn/7bkxmM+27nn+Z1NkMBgNd0rvhqKomLyvXe726sor3X/knuzdvp323ztz+8H2YzFpMIU1bQLjnb2J1qe+H++oSOyabBZOf7QPOVrDvJAaz8ZKWHRoMBmJSk6ipdmLPK/ZpDyC6y/m3mRFpKhrKOK0us+MotRPTJcnn9Zr1bEuNw0XpibyLbl9Erg4KCqXBi4qK4vHHHycvL4+XX375outNmjSJIUOGsHz5cmbMmHHlOihXXHBQELHR0Rw56XvC25ETJ0hp1cpvvcQWLTCbzZzIzva5l5ufj8ViITwkBHNtcFBTU+NTrqY2ZP5u1Lz/yBHatGpFkO38e62JNCW2IBsRMVFkHfMdq5nHT9KydeIF2zh+8AgtWycS6Gds2Svs/P3JP7H407k+96oqT+9l6vkg43K5+PCNdzi0ez9denfn9ofuw6wtKEQw26wERIVQlpnvc68sK5/QljEXbKPkeC6hLWMwB/ruj+a0V7Pppc848uVmn3uu2hlKRkvdU8dLjuViDQ8iKFYHg4lAwxmnRpNnrLpdvu+R3TXuOv9XRBoPBYVyVZgwYQI9e/ZkxYoVl1Rv6tSphIeH8/LLL3PixIkr1Dv5MfTt1o0d+/bVmdm3fe9esnJzGdCrl986gQEBpKelsXXnTk5kZXmv5+bn882OHaSnpWE0Gkls0YLI8HBWbtjgXcoMnmXNqzduJDQkhMTmzb3XnU4nJ7OyznnIiUhT1qVXNw7t3kde1pmxenDXPvKzc0nr2/O8dV1OJ3mZ2bRI8j+2bEE2TGYzW7/ahL38zEnn9go7m1d/TURMFLHxnrG68osvObhzL517deWn/3WXZhKKnCWmSxJFhzKpyCvyXis8mIk9r4TYrsnnrVvjclGRU0RwvP89RM02K0aziZwtB3HYq7zXnfZqsr85QEBUCEFxEXXqlGXl66Rjke9oCOPUbLMSmhjDqV3HcJSf2drD7XaT/c1+DCYjYUlxP+xBRaTB0btmuSoYDAamTJnCLbfcgrN2X46LERMTw+OPP86zzz7LlClTLnggijRcY4cOZfXGjfzxtdcYPXgw1Q4Hc5cto02rVgxMTwcg59Qp9h0+TIc2bWgW4/mm9c5x49h94ABTX32VEddfj9lkYuGqVVgtFn42ZgzgOd34vokT+dv06fzPiy9yQ//+1NTUsOLrr8nMyeGhSZO8sw4BThUW4nS5vEuiReSMgSMGs23dJt55YRrXDLsBp8PB2kUriG+dSLd+nlC/IPcUxw8eoVXbZKLizsyKKMovxOV0ER517rE1ZtIE3nnhDf753CukD+qPy+li06p1lJWUMGnyf2EwGKgoK2ftohWYzCbadGrP9q99Z0x07tn1gsugRRqrhIGp5G49xI7pX9Ly2lRqnE5OrtlJSMto4rqnAGAvKKXkWC5hSXHYos6cKF5VVI7bVUNg+LkPR0gZ248d07/k238soEXv9tS4asjeuI/qUjtd7hla58CjGlcNVUXlRLXXl28iZ2so47TNqL7smL6IrW/MpUWfDhgtZk7tOErJsVxa39TznCeZi8jVS0GhXDU6dOjAXXfdxdtvv31J9SZOnMicOXNYu3Ytc+bM4eabb74yHZQrKjw0lD9MnsyMWbP4eMECAiwWenftyh3jxnlPtN5z6BBvvv8+v7rzTm9QGBsdzZ9+/Ws++Pxz5i5bhtvtplNKCnfcfLO3DECfbt145uGH+XThQj6c61nWmJyQwG8feMBnH8Ky8nIALTsW8SM4LJT7n3qUBR/OZtmchVitVjr1SGPYxDHepb9H9x9m9tv/Yfx9t9cJCk/PEgy0nfvAk+QObbn7sQdY/vkilnw2H4PRQOv2Kfz0gbtJSPZsQ3DyyHGctbOD573/qd92kp5PUVAoTZY1xEbXX4zg8PyNHFu6FZPVTHSnViQPT8do9iw1LDmaw/5P19J+wrV1AghnhWf2kek8BylEJDcn9d4bOb5sG0cXbwGDgfDWzeh42/WEJtRdMum0V4EbTH6WR4o0ZQ1lnIa1iqXbf43k6JItnFi5nRpXDUFxEXT46UBvYCkijYvBrVMeRC5Kyfbt9d0FEbmAjREXP+NYROrHvw4tre8uiIiINAof3fBEfXfhR3HbiuevSLtN5ed3qbRHoYiIiIiIiIiIiCgoFBEREREREREREQWFIiIiIiIiIiIigg4zERERERERERGRBur+lKH13YUmRTMKRUREREREREREREGhiIiIiIiIiIiIKCgUERERERERERERFBSKiIiIiIiIiIgICgpFREREREREREQEBYUiIiIiIiIiIiKCgkIRERERERERERFBQaGIiIiIiIiIiIigoFBERERERERERERQUCgiIiIiIiIiIiIoKBQREREREREREREUFIqIiIiIiIiIiAgKCkVERERERERERAQFhSIiIiIiIiIiIoKCQhEREREREREREUFBoYiIiIiIiIiIiKCgUERERERERERERFBQKCIiIiIiIiIiIigoFBERERERERERERQUioiIiIiIiIiICAoKRUREREREREREBDDXdwek6XjyySeZPXt2nWtGoxGbzUZKSgq3334748ePv+Syd911F5s2bWL16tXExsb6fe3i4mKuueYarr/+el5//fUr8HTyY8jNz+fd2bPZfeAAAD27dGHS+PGEh4aet15xaSkfzZ3LNzt2UO10kpyQwB3jxtGudes65Xbu38/M+fM5lpFBUGAg/Xr04LbRowkMCKhTbu+hQ3w4dy6Hjh8nJCiI9K5d+enIkYSFhFzW5xW5WhXm5bNw5ucc2XcQgA5dOzPi1nEEh51/rJaXlLLks/ns3bYTh8NBfFICN00YQ2JK6zrl/m/q38g4etynfudeXfnZQ/d5//3wngMsm72ArBMZBNoCSe3dnaHjR2ENDPCpK9LUVBaUcnjhJooPZwMQ1TGB5BG9sYbYzluvuszO0cVbKNh7ghqHk5D4aFoPSyeslec9WGVhGZte+PS8baTdP4yINi18rleVVLDllTlEdUqkw4SB3/PJRBqPhjhOj6/8luxN++nzm4nf86lEpKFTUCg/uqeeeorIyEgA3G43ZWVlfPHFFzz55JMUFhZy3333XVLZMWPGsGHDBhYvXswdd9zh9zUXL16Mw+Fg7NixV/4B5YooLS/nD6++isvlYuzQodTU1DB32TKOZ2by3OOPYzb7/3Vmr6xkyiuvUFhczKgbbiA4KIhFq1fzh1df5bnHH6dVfDzgCQn/9PrrtElM5I6xY8kvKmLBypUcOn6cqZMnYzAYANh14ADPTZtGkM3G+Jtuwmg0smDFCnbt388fH3uMkKCgH+1nItIQVZSV8/bz03C5nAwcPhi3u4a1i1aQczKTB559DNM5xmpVZSX/+utrlBaVMODGQQQGB7Fh2Rrefn4aDzz7GM0SPB9W3G43uVnZdOyRRpdeXeu0ERET5f3nw3sO8M6Lb9AyKZFhE8ZQXFjE+iWryThygvufetQ7pkWaIkdFFdunL8LtqiHhulTcbjcn1+ykPLuQ7g+Oxmgy+a3nrHKw/Z+LqC6toOU1nTEHBpD59R52TF9E91+NJrh5JJbgANpP9A35apxODs3dgCU4kOAWUX5ah4Ofr8Npr76szypytWqI47RgfwbHl32LNez8QaWIXN0UFMqPbujQoSQkJNS5NmHCBEaOHMm0adO48847L6ns8OHDmTp1Kl9++eU5g8IFCxYQFhbG9ddff9mfR34c85cvp6CoiBeeeoqE5s0BaJuUxJ+nTWPlhg0MveYav/U+X7KErNxcfvfII3Ru1w6A/j178siUKXyxdCkP33UXAO/PmUN0ZCRTJk/GarEAEBMZyfSPP2bbnj306NwZgHc++QSD0cgfH3uM5rUzWPt068YTf/kLs7/8kkm1M11FmqqvFq+kuLCIh6c+QVy8Z6y2TE5ixktvsuWrjfQeNMBvvdULlnEqO4/7nniI5A5tAUjr04O/PfFH1ixcxoRfeP42FJ0qwFFVTaceaXQf0Puc/Vj08edEREXy8ycfwWL1jOnwqEjmvf8pB3bupX1ap8v52CJXlYy1u6gqrqDXo+MIiosAIDQhlp1vLyZny0Fa9O7gt97JVTuwnyom7f7hRCR7xnds19ZsevEzTq7ZQYeJ12GyWmjWI8Wn7qF5G3C7auj40+uw2Hxn9eZsPUTh/szL95AiV7mGNk6zNu7j0FzPfRFp3LRHoTQIgYGBDB48mLKyMg7ULiu92LKhoaHccMMNfPPNN+Tn5/uUz8/PZ8OGDQwfPhyr1XqlHkGusK+2bKFzu3bekBCga8eOtIiLY92WLX7ruN1uVm3cSI/Onb0hIUBkWBh3jR9PxxTPG6Rqh4OwkBCGDBjgDQkBOrX1hBXHMjIAyMvP50RWFoP69PGGhAAtmzWjZ1oaqzZuvHwPLHKV2rFhC8kd2npDQoC2XToQ3TyOHRu2+q3jdrvZ+tVG2nft5A0JAULDwxh+6ziS2rfxXsvN9Cy/im0Rd84+OKodBIeGkD6onzckBEju4Bnz2cczvt/DiTQSedsPE5Hc3Bs+AES2jccWG0be9iN+67jdbnK2HiSqQ4I3fACwhgaRPKI3Ya2bnfP1yrMLyFy/h2a92hF+Vt3TqksrODxvA60Gd/v+DyXSyDSkcbrj7S85OGc9ESnNCY73PyNYRBoPBYXSYJxeBuZyuS657JgxY3C5XCxZssSn7KJFizzLVbXs+KpVVlFB7qlTtElM9LmXnJjIkRMn/NbLKyigoKiIrh07Ap43T5VVVQDcNHCgdxai1WLh6Qcf5JZhw+rUP3ryJACxUZ43RAXFxQAktvDdr6V5TAylZWXkFxZ+n0cUaRTs5RUU5uUT3zrB5158qwSyjp/0W6/oVAGlhcW07XJmrFZXesZq38HX1pmFmHMyC4DYeM+HndPlzmaxWrj7sQcYNPqmOtezagPCs5coizQ1DnsVlQVlhLSM9rkX0iKaskzfL10BqgrLqC6uIKKtZ8sOt9uNq9oBQHy/juec3QRwdMkWjBYzSUN7+L1/YM56AiKCSbgu9VIfR6RRamjjtLKojJSx/ehy942YAyx+aotIY6Klx9Ig1NTUsHHjRqxWKykpvtPgL1R20KBBhIeHs2jRIm677bY65RcsWEDLli1JT0+/Yv2XK6ugqAiAqPBwn3uRYWFU2O2UV1QQ/J39AbNycwEICw3lvdmzWbZuHfbKSprFxnL3+PH0Skvz+3p5+fnsOniQ92bPJrFFC3p39eyDdnpGqr3KN5goLSsDoKikhOjafTVFmpqSQk+YHhYZ4XMvNCKMygo79go7tqC6exvl5+QBEBwawqKZn/PN6vVU2SuJiothxG0307H7mfAgNzMba2AACz+aw46NW3FUVRMZG83QW0bRtW9Pv/0qPFXAkb0HWTRzDnEtW9Cph/+xL9IUVBdXAGAN891T1xpmw2V34LRXY7bVXYVhzy8BwBIcyOGFm8jetB9XpYPA6FDajOxDdCffL/PAM0upYM9JWg7sQoCf18zddojC/Sfp/qtz77km0tQ0tHHa679v1vgUaUIUFMqPrqSkhIKCAsAzIzAjI4N///vf7N27l3vuuYfg4OBLLmu1Whk2bBizZs2isLDQewBKTk4Omzdv5pe//KU2rr+KnZ4F6G/p+OmlwlUOB8HfuVdhtwMwc/58zCYT90yYgNFgYO6yZbzwz3/y9IMPemcbnlZaXs7DU6Z4X+/eiRO9r5HYvDm2wEA2fvstN994o/e/qWqHg+1793r/WaSpqqqsBKiz3Pc0c+01R3W1T1BYWTtWl81egMlkYuTPbsFoNLB20Qo+eG06dz/2AG27eGZB5GRkUV1ZRWWFnQn330ml3c76Jav45B/vUuNy+exbWFFWzt+emFrbLyuj77jFb/9EmorTs4tMFt+PAcbaw4ZcDqdPAOGs9BwycmzpVgwmIymj+4LBwMk1O9n9/jJS772JyNpZTGfL3LAPjAbi+/nuC1pdZufQvI0kDEwjJN535pRIU9WQximgkFCkiVFQKD+68X4Oe7BarUyaNIlf//rX37vs2LFj+fjjj1m6dCkTJ04EYOHChbjdbi07vsq53W6ASw57HU4n4AkMX372We+JxL1SU3l06lQ+mjvXJyg0GAz897334nQ6WbRqFX96/XUm33svfbt3x2w2M3rwYD5ZsIBXZ8zg5htvpMbt5uN586is9rwxM+mNlDRhtUP1kseq0+EZq5UVdib/5X+wBXvGaofuqfz9t39k6WfzvUFh70EDcNfU0HfImdMa0/r05LVn/5dFH39B1369MBrP7KxiMBj46QN343I6+XrpGt558U1ufeBuuqRrLzRporwD9dKq1Tg9Bxg4K6tJf+wW70EH0R0T2fTSZxxdvNkngHA5nORuPUR0p0QCI0N82jz4+XosIYHam1DkuxrQOBWRpkdBofzoXnjhBWJiYgAwGo2EhYWRkpJCQIDvCXiXUjY9PZ34+HgWLVrkDQrnz59P586dadu2rU95uXoE1v7/u7o2jDvb6Rl8QYGBPvcCamcg9u3WzRsSAgQHBdErNZXVGzdSWVXlbR8gJCiIAT09yxf79ejBr597jhmffUbf7t0B+Mnw4ZTb7SxcuZJ1mzcDnuBx7NChfPjFF3VeR6SpCQj0jCWHn7HqrJ0dEehnrFpqx2rnXt28ISGALchGx+6pbF23ierKKqyBAfS5wfeEc4vVQvf+6az44ktyM7JpnnjmQ5AtOIi0Pp79lrqkd+e1Z/+XBR/NVlAoTZapdn+xGofvntA1tV+wmQN9Z92aLJ4vwmK6JNU5DdVssxLVMYHcrYdwVTswnTVjt/hwNjXVTmJSW/u0l/vtYfJ3HafzpCG4qhy4qs7MyHc7a3CUV2IKtGgmkzRJDWWcikjTpKBQfnQ9e/YkIcF3o/sfWtZgMDBq1CjeeecdioqKKC0tZfv27Tz55JM/pLvSAMTULiUvKinxuVdYUkKQzVYn7DstKiICgLAQ329Hw0NDcbvd2L8TFJ7NarHQs0sXFq1aRUlZGWEhIRgMBu6+5RbGDR1Kdl4e0RERxEZH89HcuRiNRmKidEiCNF3h0Z6xWlpc6nOvtKiEwCAb1kDf8RYW6dl/NDjUd6wGh4WA201VVZXfumfKhQJQ7WcP0dMsVgsdunXh66WrKS8t8/t6Io1dQLjnv/vqUrvPveoSOyabpU6IcJo1zLPBhyXYN+y3htjADa6qugFEwb6TGMxGojr4vpcrPOA5XGj3e8t87uVtP0Le9iOk3T+MiDa+B4iJNHYNZZyKSNOkoFAalbFjx/LPf/6TFStWUFBQgMlkYtSoUfXdLfmBgoOCiI2O5shJ3xNTj5w4QUqrVn7rJbZogdls5kR2ts+93Px8LBYL4SEhZOTk8NwbbzBu6FBuGjiwTrnKqioMBgOW2v1gvtq8mYiwMLq0a0dEWJi33O6DB2mTmOjdz1CkKbIF2YiIiSLrmO9YzTx+kpat/W+i3qxlC0xmM7mZvmO18FQBZouF4NAQSgqL+PeLb5LWtyc3jK17SvmpbM/hRZGx0eRl5fDu3/7BtSMG03fwtXXKVVVWgsGA2c++TyJNgdlmJSAqxO+pqWVZ+YS2jPFbL7h5BAazkYrcIp97lYVlGC0mn3Ci5HguoS1jMAf67jGceF0acd19D7Db+fZiItrFkzAwleAW+vJNmqaGMk5FpGkyXriIyNWjffv2dOjQgZUrV7JixQr69etHXFxcfXdLLoO+3bqxY98+MnJyvNe2791LVm4uA3r18lsnMCCA9LQ0tu7cyYmsLO/13Px8vtmxg/S0NIxGI81jYqiw21mydi3O2uUc4Dn9+Ott2+jUti222uWS85cv5+1PPsHlOrMUZPPOnew7fNgnZBRpirr06sah3fvIyzozVg/u2kd+di5p5ziV2BoYQMceqezfvovcjDNjtTAvn71bd9KxR6pn+4nICCrtdr5Zvd57AApAUX4hW9ZuILljO0LDw4iKi6HSbmfTynW4zhrThacK2PXNt7TukEKAnyXQIk1FTJckig5lUpFX5L1WeDATe14JsV2T/dYxWS1Ed2pFwd6TlOcUeq9XFpSSv+c4UZ0SMZy1P2iNy0VFThHB8f7DvqC4CCLbxvv8D8AaaiOybXydpZMiTU1DGKci0jTp63RpdMaOHcsbb7xBZWUlzz33XH13Ry6TsUOHsnrjRv742muMHjyYaoeDucuW0aZVKwampwOQc+oU+w4fpkObNjSr3dvyznHj2H3gAFNffZUR11+P2WRi4apVWC0WfjZmDOA5gOTeCROY9t57/P6VV7iud29Ky8v5cvVqjAYD906Y4O3HuBtv5G/Tp/PXf/yDPt26kVdQwLzly+nWqRMDe/f27bhIEzNwxGC2rdvEOy9M45phN+B0OFi7aAXxrRPp1s8T6hfknuL4wSO0aptMVJxnrA6bOJajew/y9vPT6H/jdRhNZtYvXYXFauHGW87MDB9950Q+fH06b/35FdIH9ae6soqvl63BaDIx+s6fAJ4xPer2W/jsXx/wr/99je7906kor2DDsjUYjUZG3/6TH/8HI9KAJAxMJXfrIXZM/5KW16ZS43Rycs1OQlpGe2f52QtKKTmWS1hSHLYoz9L+5OHpFB/JZsf0L4kf0Amj0UTG+t0YLSZa31T3S7uqonLcrhoCw7XEX+T70DgVkfqioFAandGjR/PSSy8REBDAjTfeWN/dkcskPDSUP0yezIxZs/h4wQICLBZ6d+3KHePGYald7rvn0CHefP99fnXnnd6gMDY6mj/9+td88PnnzF22DLfbTaeUFO64+WZvGYDr+vTBYjbz+dKlvDtrFgEBAaS2b89to0cT36yZt1zf7t159J57+HzJEmbMmkV4aChjhwzh5ptuqnPSqkhTFRwWyv1PPcqCD2ezbM5CrFYrnXqkMWziGMy1Y/Xo/sPMfvs/jL/vdm9QGBkTxS//ZzKLP53L2kUrcLvdJLVvw7CJY71lADr3TOP2R37OqnlLWPzJXCxWC607tOWmCaOJbXFmrHYf0BuzxczqBctYOHMOloAAUjq1Y+gto4hprpnm0rRZQ2x0/cUIDs/fyLGlWzFZzUR3akXy8HSMZs9hCCVHc9j/6VraT7jWG0AERobQ7YFRHF30DSfX7AQ3hLduRvLwdG+Z05wVnv1CTX4OXBCRC9M4FZH6YnC7T5+9LiLnU7J9e313QUQuYGOE88KFRKRe/evQ0vrugoiISKPw0Q1P1HcXfhRLj2+5Iu3+5d7fnPf+smW+B241BZr+IiIiIiIiIiIiIlp6LCIiIiIiIiIiTUtTnTF4IZpRKCIiIiIiIiIiIgoKRUREREREREREREGhiIiIiIiIiIiIoKBQREREREREREREUFAoIiIiIiIiIiIiKCgUERERERERERERFBSKiIiIiIiIiIgICgpFREREREREREQEBYUiIiIiIiIiIiKCgkIRERERERERERFBQaGIiIiIiIiIiIgA5vrugMjV4pf5i+q7CyJyAW+uCqjvLojIhYwbWt89EJGL0KdIHxVFRJoizSgUERERERERERERBYUiIiIiIiIiIiKioFBERERERERERERQUCgiIiIiIiIiIiIoKBQREREREREREREUFIqIiIiIiIiIiAgKCkVERERERERERAQFhSIiIiIiIiIiIoKCQhEREREREREREUFBoYiIiIiIiIiIiKCgUERERERERERERABzfXdAmobXXnuN119//bxl5syZw4wZM5g9eza/+93vuOOOO3zKnDx5kiFDhvDwww/zyCOPAPDkk08ye/Zsn7JWq5WYmBj69+/PY489RkxMzOV5GKk3lQWlHF64ieLD2QBEdUwgeURvrCG289YrOpTFsaVbKcsqwBxoISa1Na1v6onJajlnnQOz12E/VUzXX4zwuVewP4MTK7+lLCMfDAbCEmNJurEnYa1if9gDijQSuSWlvP/11+zOzASgR6tWTOrfjzDb+cfqroxMPv7mG47l5xNktdK3TRtu7Z1OoMUzVvNKS3n0Px+dt41nx4yic3y8z/XC8nJ+88mn9EpK4lc3XP+9nkukMSnMy2fhzM85su8gAB26dmbEreMIDgs9b73Dew6wbPYCsk5kEGgLJLV3d4aOH4U1MKBOuQM79rBy3hIyj57AYDSQ2KY1Q28ZSWJK6+/VnkhTlJufz7uzZ7P7wAEAenbpwqTx4wkPPf843bl/PzPnz+dYRgZBgYH069GD20aPJjAg4HuVO3T8OB9+8QX7jhzBaDTSOSWFSePHE9+s2eV9YBFpEBQUyo/qgQceoE2bNn7vxZ/1we7ll19m2LBhlxTuPfXUU0RGRnr/vaysjPXr1/PZZ5+xc+dOPv30U6xW6/fvvNQrR0UV26cvwu2qIeG6VNxuNyfX7KQ8u5DuD47GaDL5rVd0KIsdb39JSMtokof3oqq4gsx1uynLyKfrL0dgMBh86mR/s5/sTfsJT/Z981N0JJtdM5YQFBdB65t64na5ydywh+3/XEi3X44gNFFhoTRtpZWV/HHePFw1NYzp1o0at5t527dzoqCAP42/GfM5xuqujEz+PH8+yTEx3N63D/ll5SzcuZPDeXlMGTsGg8FAaGAgD95wvU/dapeTGV+tJ9QWSKvoaL/t/2vNWsqrqi/jk4pcvSrKynn7+Wm4XE4GDh+M213D2kUryDmZyQPPPobJ7P8jwuE9B3jnxTdomZTIsAljKC4sYv2S1WQcOcH9Tz3q/Zt6ZN9B3n35LeLim3PjT0bhctWwcflapv/1Ne5/8lES2iRdUnsiTVFpeTl/ePVVXC4XY4cOpaamhrnLlnE8M5PnHn8c8znG6c79+/nT66/TJjGRO8aOJb+oiAUrV3Lo+HGmTp7sHVcXWy4zJ4c/vPoqARYLPxk+HID5y5fzu5df5vknnyQqPPzH+YGIyI9GQaH8qAYMGEDfvn0vWK6kpIS//OUvvPTSSxfd9tChQ0lISKhz7Y477mDKlCl8+OGHLF26lJEjR15yn6VhyFi7i6riCno9Oo6guAgAQhNi2fn2YnK2HKRF7w5+6x1euImAiGC6/mIEJovnV15AeDCHvviawgMZRLU/89+Mu6aGEyu3c2zZtnP24/D8jQSEB9P9V6MxWT3txfVMYfPfZ3N0yRbS7ht2eR5Y5Cq1YPsOCsrK+evEn5BQ++VN27hYnpu/kFX79zOkUye/9d7/+muiQ0L4/dgxWGs//MSEhPD22q/49sRJurdKJNBiYWD7dj51Z6xbj7PGxcODbyAkwHcW0pr9B9h+8uRlfEqRq9tXi1dSXFjEw1OfIC6+OQAtk5OY8dKbbPlqI70HDfBbb9HHnxMRFcnPn3wES+2s/PCoSOa9/ykHdu6lfZpnfC/4cDbhkRH81zP/D2uA50vaHgN688ozf2HprPnc8/iDl9SeSFM0f/lyCoqKeOGpp0ho7hmnbZOS+PO0aazcsIGh11zjt977c+YQHRnJlMmTsdbOyI+JjGT6xx+zbc8eenTufEnl5q9cSVVVFX+YPJnk2s9aae3b8/SLLzJ/+XImjR9/RX8OIvLj0x6F0iANHjyYefPmsX79+h/c1vjaP17ffvvtD25L6k/e9sNEJDf3hoQAkW3jscWGkbf9iN86LocTa0ggzXu394aEgHemYHlWQZ2yW16fy7Gl24jrnoI1PMinPYe9ivKsAmLSWntDQgBriI3w5OaUHM/9oY8pctVbd+gQneNbeENCgLSEBFpEhLP+0GG/daqdTsJsNgZ37OgNCQE6tWgBwLH8/HO+3vH8fL7cuZNBHdp7y5+tqKKCGevWMb5nj+/7SCKNzo4NW0ju0NYbEgK07dKB6OZx7Niw1W8dR7WD4NAQ0gf184Z6AMkdUgDIPp4BgL28guwTmaT27u4NCQFCwkNp3T6F4wePXlJ7Ik3VV1u20LldO29ICNC1Y0daxMWxbssWv3WqHQ7CQkIYMmCAN/wD6NS2LQDHMjIuqRxA7qlThIaEeENCgJSkJEKCgzmRlXUZnlREGhrNKJQG6ZlnnmH9+vVMmTKFuXPn/qAlw7baPbHcbvfl6p78yBz2KioLyohJbe1zL6RFNAUH/M8UMlnMpN5zk8/10wFhQESI95rbWYOrqpqOPxtEbFoyG1/4xKeeOcBC+v+7BaPV91eno6ISg1HfvUjTVlZVRW5JKX3bJPvcax0Tw7cnTvitZzWbeWqk736gR/NPARB7nr2YZm76BqvZzE/T0/3e/9eatcSEhDC2Wzc+2bT5Yh5DpFGzl1dQmJdPl/RuPvfiWyVwYOcev/UsVgt3P/aAz/Ws2kAvIiYKgABbIP/93NN1QsLTKsrKMZqMl9SeSFNUVlFB7qlT9Ove3edecmIi23bv9lvParHw9IMP+lw/WjurPjYq6pLKATSPjWXHvn0Ul5Z690YsLS+nwm4nIizs0h5MRK4K+lQrP6rS0lIKCgp8/udwOOqUa9myJQ8++CBHjx7lrbfe+kGvuWbNGgA6106fl6tPdXEFANYw31l+1jAbLrsDp/3Ce49VFpaRs+Ugh+ZtJKhZBNGdW3nvmQItpD/2E2LTfAOO0wxGI7aYMAK+04/y7AJKjuUS1iruYh9JpFEqLC8HICoo2OdeZFAQFVXVlFdVXbCdvNJSVu3bz4x160mMiiS9dZLfcsfz89ly7DhDO3UiMtj3NdceOMC248d54PpB59wbUaSpKSksBiAsMsLnXmhEGJUVduwV9gu2U3iqgC1rNzL/P7OIa9mCTj3SADAajcQ0iyUsou6+ZdknMjl+8Ait2vr/O3uu9kSaooKiIgC/+/9FhoVRYbdTXlFxwXby8vNZuWED//7sMxJbtKB3166XXG7c0KFER0Tw6owZHMvI4FhGBq/++9+YTCZGXH/993o+EWnYNKNQflQPPfSQ3+vvvvuuz96F9957L1988QVvvfUWY8aMISnJ/wfF00pKSigoOLOUtKysjDVr1vD666+TkpLCqFGjfvgDSL1wVXuC5LOXD59mrF2m6HI4MdvOPfPUUVHFphc+9dSxmkgZ07dOewaDAYPp0jdNd1U72PeJJ4xOGKQPNdK02Wu/9LH62WDdWhvUVTudBPvZR/C00spK78nGVrOZe64Z4Lc9gCW792A0GBiW2sXnXnFFBTPWrWdMt2601qn3Il5VlZUAdZb7nmauveaorsYWdO5TyivKyvnbE1Nr27Ey+o5b/LZ3WnVlFZ/9630ABo4c8oPbE2nsKmu/VPO3qur0UuEqhwPfr8jOKC0v5+EpU7zt3DtxYp1lxhdbLiYqivHDhvH2J5/wxP/+L+D5QuCxn/+8znJkEWk8FBTKj+q3v/0tHTt29Lnu75rFYmHKlCnceeedTJ06lenTp5+37fF+NtK12WwMGTKEZ555BoufP4xylTi9bPyHHH5ogI63DaLGVUPm+t3seHsxnW4b5Hc588VyVTvZ9d4yyrMKSbg+jYjk5heuJNKInd7i4YecVGowGHh06GCcrhoW7dzJn+ct4NGhQ3yWM1c7naw5cIBerZP8Lk2evvYrwm02bunV83v3RaQx8v5J/YHj9KcP3I3L6eTrpWt458U3ufWBu/0uZ66uqub9V/9F9olMrhs1lOQObX9QeyJNweX6e/rf996L0+lk0apV/On115l87730/c5y5guVmzlvHrO+/JJObdsy9JprqKmpYfHatbz89ts89vOf0ytNX5SLNDYKCuVH1aVLl4s69fi09PR0xo8fz6xZs5g/fz7dup37DeMLL7xATEwMDoeDNWvW8MEHHzBixAimTJlCwHlmr0jDZwrwhLw1DpfPvRqnEwBz4PmDYIstgNiunqAhJjWJLa/M4dD8jd87KHTaq9n17lJKjuXSLL0drW9UGCFiq/1Cprp2XJ6t2uUZv7YL7DkbEhBA/xTPYQZ92yTzm08+5d31632Cwl2ZmVQ5nPRr08anjXUHD7HpyFEeH34T9moHds5sb+GoqaHEXkmQ1aLlyNIkBQR63hM5qn237HDWzuAPDAw8bxu24CDS+ngOCOqS3p3Xnv1fFnw02yfYs1fYef/ltzh+8Ag9B/Zl6C3+V3dcbHsiTUVg7WeXaj/jtLp29n7QBcZpSFAQA3p63p/269GDXz/3HDM++8wnKDxfufKKCr5YtoyUVq343SOPYKzdj3tAz548/eKL/OPDD5nWsaMmZIg0MtqjUBq83/zmN0RERPCXv/yFsrKyc5br2bMnAwYMYNCgQTzzzDM8/fTTzJo1i8mTJ+sgk6tcQLjn0JHqUt89k6pL7JhsFkyXsETJZDET1TGR6uIKHOWVl9yf6jI726cvouRYLs37tKfd+AE/6BtfkcYiOsQzVov87JtUWFFBUICVwEv4MGE1m+nRqhUFZeWU2OuO1W3HT2AxmejeKtGn3ulDU15ctJj/evc97/8A1h88xH+9+x77c3Iuuh8ijUl4tOdE8tLiUp97pUUlBAbZsAZe/BesFquFDt26UFJQRHnpmfdp5SWlvP386xw/eIT0QQO4+Z7bLupv5bnaE2lKYiI947SopMTnXmFJCUE2mzdMvBhWi4WeXbqQX1REyXk+T323XHZeHk6nkwG9enlDQgCz2cy16ekUl5aSob+nIo2OgkJp8KKionj88cfJy8vj5Zdfvuh6kyZNYsiQISxfvpwZM2ZcuQ7KFWe2WQmICqEsM9/nXllWPqEt/e8/VpFXxMYXPiHz670+91xVDjCAwXxpM4qcVQ52/nsJ5ZkFxF/TmXY3KyQUOS04IIDY0FCOnDrlc+/oqVO0iY31Wy+jsIhH/vMhS3b5nuJY6XBgMIDFVPcty76cHJJjYwjyM0NxTPduPD1qhM//ANISWvL0qBG0io7+Po8octWzBdmIiIki69hJn3uZx0/SsrVv+A6Ql5XDS7+Zyobla33uVVVWgsGAuXbv36rKSv79t/8j+3gG/W8cxLi7f+rzt/JS2hNpaoKDgoiNjubISd9xeuTECVJatfJTCzJycnjo979nce1hjmerrKrCYDBgMZsvupy5do/gmpoan3I1tRMxNB1DpPFRUChXhQkTJtCzZ09WrFhxSfWmTp1KeHg4L7/8MidqZ5jI1SmmSxJFhzKpyCvyXis8mIk9r8S7pPi7AqPCcFZWk7VxHzWuM8uWKwvLOLXzKOHJzTEHXNpSiUNfrPeEhAM6kTKqz/d6FpHGrE9ya3ZmZJBRWOS9tuPkSbKKihlQu6T4u5qHh1FRXc3SPXtwnjVW80pL2XD4CJ1atKizZNnpcpFRWEhyjP+wLyEykrSEBJ//gef05bSEBEK0JYU0YV16dePQ7n3kZZ2ZCXRw1z7ys3NJ6+t/K42ouBgq7XY2rVyH66ztBQpPFbDrm29p3SGFgNqlkHPf+7Q2JLyOkT/z3UP6UtsTaYr6duvGjn376szY2753L1m5uQzo1ctvneYxMVTY7SxZuxbnWeMqLz+fr7dto1PbttgCAy+6XGKLFkSGh7NywwbvkmfwLH9evXEjoSEhJDbXHt0ijY2+ppOrgsFgYMqUKdxyyy11/phdSExMDI8//jjPPvssU6ZMueCBKNJwJQxMJXfrIXZM/5KW16ZS43Rycs1OQlpGE9fdEz7YC0opOZZLWFIctqhQjCYjKaP7sf+TNWx/ayFxPVJwVlR5ZhgaDaSMvvj9MgEqcovI3XoYk81CSHw0OVsP+ZRp1sN/ECLSVIzt3o01Bw7w5/nzGdU1jWqni3nbt5McG8O17TyHGOSUlLA/O4f2zZvRLCwMk9HIPQMG8MaKlfxh7jwGtmtLaWUVi3ftwmg0cM81A+q8xqmyMpyuGu9SZxG5NANHDGbbuk2888I0rhl2A06Hg7WLVhDfOpFu/TwBREHuKY4fPEKrtslExcVgMpkYdfstfPavD/jX/75G9/7pVJRXsGHZGoxGI6Nv/wkAuZnZfLv+GwKDbDRPTGDbuk0+r999QO+Lbk+kqRo7dCirN27kj6+9xujBg6l2OJi7bBltWrViYHo6ADmnTrHv8GE6tGlDsxjPOL13wgSmvfcev3/lFa7r3ZvS8nK+XL0ao8HAvRMmAFx0OaPRyH0TJ/K36dP5nxdf5Ib+/ampqWHF11+TmZPDQ5MmeWcdikjjoVEtV40OHTpw11138fbbb19SvYkTJzJnzhzWrl3LnDlzuPnmm69MB+WKsobY6PqLERyev5FjS7dispqJ7tSK5OHpGGuXD5cczWH/p2tpP+FabFGeU1Cb9UjBaDZyYtUODs/fhMlqJiKlBUk39iQoNvyS+lB8JBsAl93B/k99l0qdfj2RpizMZuP3Y8fw7rr1fPLNZgLMZtKTkrijX18stYeH7M3K5v9WruKB6wfRLCwMgIHt22Exmfh82zbeW/81AWYzqS1b8tPe6cRHRNR5jbKqKgBslvMfjCIi/gWHhXL/U4+y4MPZLJuzEKvVSqceaQybOAZz7T6iR/cfZvbb/2H8fbcTFefZ4qP7gN6YLWZWL1jGwplzsAQEkNKpHUNvGUVM8zhPvX2eL9EqK+zMfvs/fl+/+4DeF92eSFMVHhrKHyZPZsasWXy8YAEBFgu9u3bljnHjvIeH7Dl0iDfff59f3XknzWI84/S6Pn2wmM18vnQp786aRUBAAKnt23Pb6NHEN2vmbf9iy/Xp1o1nHn6YTxcu5MO5cwFITkjgtw88QI/OnX/En4iI/FgMbp3yIHJRblvxfH13QUQu4M2dWk4q0tBtHjewvrsgIhehT5HmlIg0dGFdu9Z3F34US49vuSLtDm3lf7uNpk57FIqIiIiIiIiIiIiCQhEREREREREREVFQKCIiIiIiIiIiIigoFBERERERERERERQUioiIiIiIiIiICAoKRUREREREREREBAWFIiIiIiIiIiIigoJCERERERERERERQUGhiIiIiIiIiIiIoKBQREREREREREREUFAoIiIiIiIiIiIiKCgUERERERERERERFBSKiIiIiIiIiIgIYK7vDohcLd6KHl7fXRCRC9g4zlnfXRCRC/jXoaX13QURuQj/qu8OiMgFfUTX+u6CNEKaUSgiIiIiIiIiIiIKCkVERERERERERERBoYiIiIiIiIiIiKCgUERERERERERERFBQKCIiIiIiIiIiIigoFBERERERERERERQUioiIiIiIiIiICAoKRUREREREREREBAWFIiIiIiIiIiIigoJCERERERERERERQUGhiIiIiIiIiIiIAOb67oA0La+99hqvv/76ecvMmTOHGTNmMHv27DrXjUYjNpuNlJQUbr/9dsaPH++99+STT/qUB7BarcTExNC/f38ee+wxYmJiLs+DSL3Izc/n3dmz2X3gAAA9u3Rh0vjxhIeGnrfezv37mTl/PscyMggKDKRfjx7cNno0gQEB56zz1ocfkpmby5T//u/L0p5IU1KYl8/CmZ9zZN9BADp07cyIW8cRHHb+sXpgxx5WzltC5tETGIwGEtu0ZugtI0lMaV2nXHlJKUs+m8/ebTtxOBzEJyVw04QxPuUyjp5gyadzOX7wKAajgdYdUhhx683ENI+7nI8rclWqLCjl8MJNFB/OBiCqYwLJI3pjDbGdt17B/gxOrPyWsox8MBgIS4wl6caehLWKrVOuuszO0cVbKNh7ghqHk5D4aFoPS/cpV3Qoi2NLt1KWVYA50EJMamta39QTk9VyeR9Y5CrUUMbpxbYnIo2DgkKpFw888ABt2rTxey8+Pt77z0899RSRkZEAuN1uysrK+OKLL3jyyScpLCzkvvvuq1P37PIAZWVlrF+/ns8++4ydO3fy6aefYrVar8ATyZVWWl7OH159FZfLxdihQ6mpqWHusmUcz8zkuccfx2z2/+ts5/79/On112mTmMgdY8eSX1TEgpUrOXT8OFMnT8ZgMPjUWb5+PcvWraNT27aXpT2RpqSirJy3n5+Gy+Vk4PDBuN01rF20gpyTmTzw7GOYzjFWj+w7yLsvv0VcfHNu/MkoXK4aNi5fy/S/vsb9Tz5KQpskAKoqK/nXX1+jtKiEATcOIjA4iA3L1vD289N44NnHaJbQAoBT2blM/+trWK1Wrh9zEwDrFq/kn8+9wkNTnyAsIvzH+YGINECOiiq2T1+E21VDwnWpuN1uTq7ZSXl2Id0fHI3RZPJbr+hINrtmLCEoLoLWN/XE7XKTuWEP2/+5kG6/HEFooic0cFY52P7PRVSXVtDyms6YAwPI/HoPO6YvovuvRhPc3PNerehQFjve/pKQltEkD+9FVXEFmet2U5aRT9dfjtDfVGnSGsw4vcj2RKTxUFAo9WLAgAH07dv3guWGDh1KQkJCnWsTJkxg5MiRTJs2jTvvvLNO8Oev/B133MGUKVP48MMPWbp0KSNHjrw8DyE/qvnLl1NQVMQLTz1FQvPmALRNSuLP06axcsMGhl5zjd9678+ZQ3RkJFMmT8Zq8cxOiImMZPrHH7Ntzx56dO7sLVtTU8OsL7/k04ULz9mPS2lPpCn6avFKiguLeHjqE8TFe8Zqy+QkZrz0Jlu+2kjvQQP81lvw4WzCIyP4r2f+H9YAz+/1HgN688ozf2HprPnc8/iDAKxesIxT2Xnc98RDJHfwhPlpfXrwtyf+yJqFy5jwizsBTyjoqKrmF089SotWnr8LbTq35x9//BvrvlzJ8FvHXdGfg0hDlrF2F1XFFfR6dBxBcREAhCbEsvPtxeRsOUiL3h381js8fyMB4cF0/9VoTFbPx4i4nils/vtsji7ZQtp9wwA4uWoH9lPFpN0/nIhkz++B2K6t2fTiZ5xcs4MOE6/ztLdwEwERwXT9xQhMFk97AeHBHPriawoPZBDVPsFPL0SahgYzTi+yPRFpPLRHoVx1AgMDGTx4MGVlZRyoXYJ6IaeXKX/77bdXsmtyBX21ZQud27XzhoQAXTt2pEVcHOu2bPFbp9rhICwkhCEDBnhDPcA7U/BYRkadsr/961/5ZMECBvbuTVRExA9qT6Sp2rFhC8kd2npDQoC2XToQ3TyOHRu2+q1jL68g+0Qmqb27e0NCgJDwUFq3T+H4waOAZ2b51q820r5rJ29ICBAaHsbwW8eR1P7MTPWCvHyCQoK9ISFAQnIrbMFB5GRkXa7HFbkq5W0/TERyc2/4ABDZNh5bbBh524/4reOwV1GeVUBMWmtvWABgDbERntyckuO5gGec5mw9SFSHBG/4AGANDSJ5RG/CWjcDwOVwYg0JpHnv9t6QECA82XO/PKvgsj2vyNWoIYzTi21PRBoXzSiUq9LppSgul+uiyttsnn083G73FeuTXDllFRXknjpFv+7dfe4lJyaybfduv/WsFgtPP/igz/WjJ08CEBsV5b3mcDioqKxk8r330r9nTx76/e9/UHsiTZG9vILCvHy6pHfzuRffKoEDO/f4rRdgC+S/n3u6Tkh4WkVZOUaT53vNolMFlBYWM3DEEMDzO91RVY01MIC+g6+tUy+6WSyHdu+nvKTUuzdiRVk5lfZKQsPDftBzilzNHPYqKgvKiElt7XMvpEU0BQdO+q1nDrCQ/v9uwWj1/fjgqKjEYPSM06rCMqqLK4gYmAp4xmmNw4nJaiG+X0dvHZPFTOo9N/m0dTogDIgIueRnE2ksGso4vdj2RKRxUVAo9aK0tJSCAt9vikNDQ7FYzr95dU1NDRs3bsRqtZKSknJRr7dmzRoAOmtZ6FWpoKgIgKhw3z3FIsPCqLDbKa+oIDgo6Lzt5OXns+vgQd6bPZvEFi3o3bWr916Qzcarv/sdpnPs93Kp7Yk0RSWFxQCERUb43AuNCKOywo69wo4tqO4m7EajkZhmvnscZZ/I5PjBI7RL9Xxoyc/JAyA4NIRFMz/nm9XrqbJXEhUXw4jbbqZj91Rv3YEjhrBv2y4+/sd7jLjtZgAWffw5JpOJ/jdedzkeV+SqVF1cAYA1zPdvpjXMhsvuwGmvxmyrG9wbjEZsMb4he3l2ASXHcols1xIAe34JAJbgQA4v3ET2pv24Kh0ERofSZmQfojsl+u1XZWEZxUeyObxgE0HNIoju3OoHPafI1ayhjNOLbU9EGhcFhVIvHnroIb/X33333Tp7F5aUlHgDRZfLRUZGBv/+97/Zu3cv99xzD8HBwXXqn10ePIeZrFmzhtdff52UlBRGjRp1BZ5GrrTKqioAvwfRnF4CXOVwEOxz94zS8nIenjLF2869EyfWWT5sMBguKSS8UHsiTVFVZSUAFj+nlZprrzmqq32CQn+qK6v47F/vAzBwpGcGYaXdDsCy2QswmUyM/NktGI0G1i5awQevTefuxx6gbRfPnk0R0ZEMGn0j8z74lGm/fx7wfOC57cF76yxHFmlqXNUOgDrLfU8z1h425HI4fQKIc7W17xPPl7EJg9IAcFZWA3Bs6VYMJiMpo/uCwcDJNTvZ/f4yUu+9ici28XXacVRUsemFTz19sJpIGdPXb/9EmoqGOE7P156INC76Cyz14re//S0dO3b0uf7da6f3Fjyb1Wpl0qRJ/PrXv/a556+8zWZjyJAhPPPMMxecrSgN0+kl4z/k9EODwcB/33svTqeTRatW8afXX2fyvffS189y5vpoT6QxOL27ww89qbS6qpr3X/0X2ScyuW7UUO9+hE6HE4DKCjuT//I/2II9My06dE/l77/9I0s/m+8NCpfOWsCqeYtp3SGF9EEDcNfUsHHFV3z8f//mtgfvrTP7UKRJ8Q7UH9aMq9rJrveWUZ5VSML1ad59zmqcNYAniEh/7BYstgAAojsmsumlzzi6eLNvAGGAjrcNosZVQ+b63ex4ezGdbhvkd9mlSJPQEMfpedoTkcZFQaHUiy5dulzUqccvvPACMTExgGdpWlhYGCkpKQQEBJy3vMPhYM2aNXzwwQeMGDGCKVOmnLOONHyBtf+/q66u9rlX7fB84xoUGHjeNkKCghjQsycA/Xr04NfPPceMzz773sHe5W5PpDEICPSMVYefseqsnR0ReIGxaq+w8/7Lb3H84BF6DuzL0FvOzAS31M4q7tyrmzckBLAF2ejYPZWt6zZRXVmFq6aGtYuW07J1K+79zUMYa/dQSuvTg//749+Y8++ZPP5CB8z68kiaIFOA57/7GofvPs81Tk8Ybw48/9hw2qvZ9e5SSo7l0iy9Ha1v7HmmfYtndn5MlyRv+ABgtlmJ6phA7tZDuKodmM6aeWyxBRDbNdlTLzWJLa/M4dD8jQoKpclqiOP0fO2JSOOioFAatJ49e5KQcPFLxM4uP2jQIJKSkvjTn/5EUVERb7zxxg+e5SL1IyYyEoCikhKfe4UlJQTZbN4w8WJYLRZ6dunColWrKCkrIyzkh22YfrnbE7lahUd7xmppcanPvdKiEgKDbFgDzz1Wy0tK+fff/o/s4xmkDxrA2Lsm1vm9HRbp2ac0ONR3jAWHhYDbTVVVFcUFRbicTtL69vCGhAAms5mu/dJZ/MkX5GXl0qKV9laSpicg3DN+qkvtPveqS+yYbJY64YBPmTI7O/+9hPLMApr3aU/bcf3rjFNrmGcjEEuw75cC1hAbuMFV5Tjna5gsZqI6JpK5bg+O8kq/7Yg0dg1tnF6oPZErrU/RFYqutB2uXzqmSBq1SZMmMWTIEJYvX86MGTPquzvyPQUHBREbHc2Rk74nvB05cYKUVv5/w2fk5PDQ73/P4trDbM5WWVWFwWDAYr74PzqXuz2RxsYWZCMiJoqsY75jNfP4SVq29n+IAXj2NzwdEva/cRDj7v6pz4eQZi1bYDKbyc3M9qlfeKoAs8VCcGgI5tpxWFPje9K9u6bm9D9dwpOJNB5mm5WAqBDKMvN97pVl5RPaMuacdZ1VDm9YEH9NZ9rdPMBnnAY3j8BgNlKRW+RTv7KwDKPFhCU4kIq8Ija+8AmZX+/1KeeqcoABDOaL3ztYpDFpKOP0YtsTkcZFQaE0elOnTiU8PJyXX36ZEydO1Hd35Hvq260bO/btIyMnx3tt+969ZOXmMqBXL791msfEUGG3s2TtWpy1yzTAc1rx19u20altW2wXWAZ5JdsTaYy69OrGod37yMs6M1YP7tpHfnYuaX3PvUxp7nuf1oaE1zHyZ777zQJYAwPo2COV/dt3kZuR5b1emJfP3q076dgjFaPRSFzL5oRGhLF17QYctUueARzVDrat20RQSDBx8dpXSZqumC5JFB3KpCKvyHut8GAm9rwS7xJgfw59sd4TFgzoRMqoPn7LmKwWoju1omDvScpzCr3XKwtKyd9znKhOiRiMRgKjwnBWVpO1cR81rjPLKysLyzi18yjhyc0xB2h7AGm6GsI4vdj2RKRx0dQXafRiYmJ4/PHHefbZZ5kyZQrTp0+v7y7J9zB26FBWb9zIH197jdGDB1PtcDB32TLatGrFwPR0AHJOnWLf4cN0aNOGZjExmEwm7p0wgWnvvcfvX3mF63r3prS8nC9Xr8ZoMHDvhAmX1IfL3Z5IYzRwxGC2rdvEOy9M45phN+B0OFi7aAXxrRPp1s8T6hfknuL4wSO0aptMVFwMuZnZfLv+GwKDbDRPTGDbuk0+7XYf0BuAYRPHcnTvQd5+fhr9b7wOo8nM+qWrsFgt3Fi7n6HRaGT0HRP48I13+Mef/k7PgX1x19Swec0G8rJzmXD/HZg0+1easISBqeRuPcSO6V/S8tpUapxOTq7ZSUjLaOK6pwBgLyil5FguYUlx2KJCqcgtInfrYUw2CyHx0eRsPeTTbrMenrrJw9MpPpLNjulfEj+gE0ajiYz1uzFaTLS+yfN7wGgykjK6H/s/WcP2txYS1yMFZ0WVZ4ah0eA5hVWkCWsI4/RS2hORxkPvkqVJmDhxInPmzGHt2rXMmTOHm2++ub67JJcoPDSUP0yezIxZs/h4wQICLBZ6d+3KHePGeU+z3nPoEG++/z6/uvNOmtUegnNdnz5YzGY+X7qUd2fNIiAggNT27blt9GjimzW75H5c7vZEGpvgsFDuf+pRFnw4m2VzFmK1WunUI41hE8d4Dw85uv8ws9/+D+Pvu52ouBiO7vN88KissDP77f/4bfd0UBgZE8Uv/2cyiz+dy9pFK3C73SS1b8OwiWOJijuzFKtzr67c+/iDrPhiEUs/mw9Ai6QEJk3+Je3TOl3JH4FIg2cNsdH1FyM4PH8jx5ZuxWQ1E92pFcnD0zHWLvctOZrD/k/X0n7CtdiiQik+4lny77I72P/pWr/tng4MAiND6PbAKI4u+oaTa3aCG8JbNyN5eDq2qNA65Y1mIydW7eDw/E2YrGYiUlqQdGNPgmLDr/BPQaRhawjj9FLaE5HGw+B2u7VJj8hFKNm+vb67ICIXsDHCeeFCIlKv/nVoaX13QUREpFH46IYn6rsLP4or9Vk8rGvXK9Lu1U57FIqIiIiIiIiIiIiCQhEREREREREREVFQKCIiIiIiIiIiIigoFBERERERERERERQUioiIiIiIiIiICAoKRUREREREREREBAWFIiIiIiIiIiIigoJCERERERERERERQUGhiIiIiIiIiIiIoKBQREREREREREREUFAoIiIiIiIiIiIiKCgUERERERERERERFBSKiIiIiIiIiIgICgpFREREREREREQEMNd3B0SuFhsjnPXdBRG5gD5F+rMm0tD9q747ICIX5f6UofXdBRERqQeaUSgiIiIiIiIiIiIKCkVERERERERERERBoYiIiIiIiIiIiKCgUERERERERERERFBQKCIiIiIiIiIiIigoFBERERERERERERQUioiIiIiIiIiICAoKRUREREREREREBAWFIiIiIiIiIiIigoJCERERERERERERAcz13QGRi/Haa6/x+uuvn7fMnDlz6NSpU51rzz77LEePHuW99967kt2TH0lhXj4LZ37OkX0HAejQtTMjbh1HcFjoeeuVl5Sy5LP57N22E4fDQXxSAjdNGENiSuvvVe7wngMsm72ArBMZBNoCSe3dnaHjR2ENDLicjyty1crNz+fd2bPZfeAAAD27dGHS+PGEh55/rBaXlvLR3Ll8s2MH1U4nyQkJ3DFuHO1at65Tbuf+/cycP59jGRkEBQbSr0cPbhs9msCAumNw76FDfDh3LoeOHyckKIj0rl356ciRhIWEXNbnFbkaVRaUcnjhJooPZwMQ1TGB5BG9sYbYzluvuszO0cVbKNh7ghqHk5D4aFoPSyesVayn3cIyNr3w6XnbSLt/GBFtWgDgqnZwbNk28rYfwWmvIigugqQhPYjqkHAZnlLk6lbf730LTxXwtyemnve17nviIZI7tvvezygiDY+CQrmqPPDAA7Rp08bvvfj4+Dr//sknn/Dxxx/Tp0+fH6NrcoVVlJXz9vPTcLmcDBw+GLe7hrWLVpBzMpMHnn0Mk9n/r7Oqykr+9dfXKC0qYcCNgwgMDmLDsjW8/fw0Hnj2MZoltLikcof3HOCdF9+gZVIiwyaMobiwiPVLVpNx5AT3P/UoBoPhR/uZiDREpeXl/OHVV3G5XIwdOpSamhrmLlvG8cxMnnv8ccznGKv2ykqmvPIKhcXFjLrhBoKDgli0ejV/ePVVnnv8cVrV/o7fuX8/f3r9ddokJnLH2LHkFxWxYOVKDh0/ztTJk71jcNeBAzw3bRpBNhvjb7oJo9HIghUr2LV/P3987DFCgoJ+tJ+JSEPjqKhi+/RFuF01JFyXitvt5uSanZRnF9L9wdEYTSa/9ZxVDrb/cxHVpRW0vKYz5sAAMr/ew47pi+j+q9EEN4/EEhxA+4kDferWOJ0cmrsBS3AgwS2iAHDX1LBrxlJKjucRP6ATgREh5Gw5yK53l5J6701Eto33aUekqWgI732DQ4L5yf13+LyGw+Fg/gezCA4LoXliyyv6cxCRH5+CQrmqDBgwgL59+563jMvl4s0337zgDES5uny1eCXFhUU8PPUJ4uKbA9AyOYkZL73Jlq820nvQAL/1Vi9YxqnsPM+3nR3aApDWpwd/e+KPrFm4jAm/uPOSyi36+HMioiL5+ZOPYLFaAAiPimTe+59yYOde2qd18tMLkaZj/vLlFBQV8cJTT5HQ3DNW2yYl8edp01i5YQNDr7nGb73PlywhKzeX3z3yCJ3beWYm9O/Zk0emTOGLpUt5+K67AHh/zhyiIyOZMnkyVotnDMZERjL944/ZtmcPPTp3BuCdTz7BYDTyx8ceo3msZ6ZTn27deOIvf2H2l18yafz4K/pzEGnIMtbuoqq4gl6PjiMoLgKA0IRYdr69mJwtB2nRu4PfeidX7cB+qpi0+4cTkewZ37FdW7Ppxc84uWYHHSZeh8lqoVmPFJ+6h+ZtwO2qoeNPr8Ni88z+zdl8kOIjObSfONBbp1l6O7556TOOL/9WQaE0aQ3hva81MIDuA3r7vMaCD2fhcrmY+MtJ2IL1xZtIY6M9CqVRqaqqYvz48bz22muMGzeOZs2a1XeX5DLZsWELyR3aet8oAbTt0oHo5nHs2LDVbx23283WrzbSvmsn7xsggNDwMIbfOo6k9m0uqZyj2kFwaAjpg/p5Q0KA5A6eDzfZxzMu3wOLXKW+2rKFzu3aeUNCgK4dO9IiLo51W7b4reN2u1m1cSM9Onf2hoQAkWFh3DV+PB1TPGOs2uEgLCSEIQMGeENCgE5tPeP2WIZnDObl53MiK4tBffp4Q0KAls2a0TMtjVUbN16+Bxa5CuVtP0xEcnNvSAgQ2TYeW2wYeduP+K3jdrvJ2XqQqA4J3pAQwBoaRPKI3oS1Pvd7rvLsAjLX76FZr3aEn1U3Z8tBgppH1gkWTRYzySN6E90x8Qc8ocjVryG89/Un+0Qm65euoee1fWjd3vdLARG5+mlGoTQqVVVVlJWV8fe//52RI0cyePDg+u6SXAb28goK8/Lpkt7N5158qwQO7Nzjt17RqQJKC4sZOGII4HlT5KiqxhoYQN/B115yOYvVwt2PPeDzOlm1AWFETNT3f0iRRqCsooLcU6fo1727z73kxES27d7tt15eQQEFRUWMHXJmDFZVVxMYEMBNA88sYbRaLDz94IM+9Y+ePAlAbJRnDBYUFwOQ2KKFT9nmMTFs3LaN/MJCoiMjL+0BRRoBh72KyoIyYlJb+9wLaRFNwYGTfutVFZZRXVxBxMBUwDNOaxxOTFYL8f06nvc1jy7ZgtFiJmloD++1GpeL0pN5tOh3Zia+q9qByWohrtu5QwqRpqChvPf1Z+ms+VisFoaMH/l9H09EGjgFhXJVKS0tpaCgwOd6aGgoFouFkJAQFi9efM49sOTqVFLo+dAfFhnhcy80IozKCjv2Cju2oLobsOfn5AEQHBrCopmf883q9VTZK4mKi2HEbTfTsXvqJZX7rsJTBRzZe5BFM+cQ17IFnXqkXa5HFrkqFRQVARAVHu5zLzIsjAq7nfKKCoK/sz9gVm4uAGGhobw3ezbL1q3DXllJs9hY7h4/nl5p/sdWXn4+uw4e5L3Zs0ls0YLeXbsCYLVaAbBXVfnUKS0rA6CopERBoTRJ1cUVAFjDfJcLWsNsuOwOnPZqzDZrnXv2/BIALMGBHF64iexN+3FVOgiMDqXNyD5Ed/I/A7A8u4CCPSdpObALAWe9ZmVBGW6Xm4DwYE6s3E7Gut04yiqxhtlIGtqD5untL9cji1x1Gup73+wTmez7dhfXDLuBsAjfv/Ui0jgoTZGrykMPPeT3+rvvvkvfvn0xGo0YjVpR39hUVVYC1Fnue5q59pqjutrnzVKl3Q7AstkLMJlMjPzZLRiNBtYuWsEHr03n7sceoG2XDhdd7mwVZeXeU+AsViuj77jFb/9EmpLK2mDudFB3ttNLhascDoK/c6+idgzOnD8fs8nEPRMmYDQYmLtsGS/88588/eCDdO1Yd8ZSaXk5D0+Z4n29eydO9L5GYvPm2AID2fjtt9x8443eA06qHQ62793r/WeRpshV7flv32Tx/RhgrP2i1eVw+gSFzspqAI4t3YrBZCRldF8wGDi5Zie73192zsNHMjfsA6OB+H519/B11baXtWEvNU4XrQZ3x2yzkr1xHwdmrQNQWChNVkN87wuwccVaDEYjfYf4HlgkIo2HgkK5qvz2t7+lY0ff5S3+rknj4XZ7/u+lnijsdDgBqKywM/kv/+PdbLlD91T+/ts/svSz+bTt0uGiy53NYDDw0wfuxuV08vXSNbzz4pvc+sDdfpeIiDQV7trBeqlj1eH0jMEKu52Xn33WeyJxr9RUHp06lY/mzvUJCg0GA/997704nU4WrVrFn15/ncn33kvf7t0xm82MHjyYTxYs4NUZM7j5xhupcbv5eN48Kqs94YTpHKe6ijR63j+ql1atxlkDeALD9Mdu8R5IEt0xkU0vfcbRxZt9gkKXw0nu1kNEd0okMDLkO+25AKgqKqfX5JuxRYcBEJPami2vzuHo4i0069Xukn+fiDQGDfG9r6Pawbb139CxeyqR2m5HpFFTUChXlS5dulzw1GNpfAICPR9GHLUf8M/mrJ0ZERgY6HPPUjurqXOvbnVOZLMF2ejYPZWt6zZRXVl10eWstf0AsAUHkdbHs9dSl/TuvPbs/7Lgo9kKCqVJCwzwjJFqP2P19Ay+ID9jNaB2DPbt1s0bEgIEBwXRKzWV1Rs3UllV5W0fICQoiAE9ewLQr0cPfv3cc8z47DP61u6P+JPhwym321m4ciXrNm8GPMHj2KFD+fCLL+q8jkhTYgrwzEaqcbh87tXUhvbmQN9ZTCaLJ1yP6ZLkDQkBzDYrUR0TyN16yLvH4GnFh7OpqXb63Q/xdLnwNs29ISGA0WQktmsbji/bRkVuEcHNtEWAND0N8b3v4b0HcFRVk9q7+w9/QBFp0BQUikiDFx7t+ZBQWlzqc6+0qITAIFudNzKnhUV69k4JDg3xuRccFgJuN1VVVRddzt9rgGdZSIduXfh66WrKS8v8tiPSFMTU7vlXVFLic6+wpIQgm61O2HdaVEQEAGEhvmMnPDQUt9uN/TtB4dmsFgs9u3Rh0apVlJSVERYSgsFg4O5bbmHc0KFk5+URHRFBbHQ0H82di9FoJCZKsyGkaQoI94yz6lK7z73qEjsmm6VO2HeaNcyzaYAl2DecsIbYwA2uqrpBYcG+kxjMRqI6JPjWCQ+qresn7Kh9DVeV82IeSaTRaYjvffdv343JbKZ9104+dUSkcdFmbiLS4NmCbETERJF1zPckxszjJ2nZ2v8G6s1atsBkNpObme1zr/BUAWaLheDQkIsul5eVw0u/mcqG5Wt9ylVVVoLBgNnPnk8iTUVwUBCx0dEcOek7Vo+cOEFKq1Z+6yW2aIHZbOZEtu8YzM3Px2KxEB4SQkZODg/9/vcsXrPGp1xlVRUGgwFL7R5rX23ezK4DB4gIC6NjSgqx0dEA7D54kDaJid79DEWaGrPNSkBUCGWZ+T73yrLyCW0Z47decPMIDGYjFblFPvcqC8swWkw+IWLJ8VxCW8ZgDvSzb2mIDWt4EOU5/trzhCMBEd/d0VSkaWgo733PdvzgEVq2TiTQZvOpIyKNi4JCEbkqdOnVjUO795GXleO9dnDXPvKzc0nr29NvHWtgAB17pLJ/+y5yM7K81wvz8tm7dScde6RiNBovulxUXAyVdjubVq7D5Twzy6HwVAG7vvmW1h1SCPCzDESkKenbrRs79u0jI+fMWN2+dy9ZubkM6NXLb53AgADS09LYunMnJ7LOjMHc/Hy+2bGD9LQ0jEYjzWNiqLDbWbJ2Lc6zxmBefj5fb9tGp7ZtsdWOwfnLl/P2J5/gcp1ZXrl55072HT7MTQO1Cbs0bTFdkig6lElFXpH3WuHBTOx5JcR2TfZbx2S1EN2pFQV7T1KeU+i9XllQSv6e40R1SsRw1oFyNS4XFTlFBMefe/ZubNdkyjMLKDyQ4b3mtFeTu/UQoYkxdU5JFmlqGsJ739NcTid5mdm0SPKdHSwijY+mvojIVWHgiMFsW7eJd16YxjXDbsDpcLB20QriWyfSrZ8nfCjIPcXxg0do1TaZqDjPjIhhE8dydO9B3n5+Gv1vvA6jycz6pauwWC3ceMsob/sXU85kMjHq9lv47F8f8K//fY3u/dOpKK9gw7I1GI1GRt/+kx//ByPSwIwdOpTVGzfyx9deY/TgwVQ7HMxdtow2rVoxMD0dgJxTp9h3+DAd2rShWYxnrN45bhy7Dxxg6quvMuL66zGbTCxctQqrxcLPxowBPGPw3gkTmPbee/z+lVe4rndvSsvL+XL1aowGA/dOmODtx7gbb+Rv06fz13/8gz7dupFXUMC85cvp1qkTA3v3/vF/MCINSMLAVHK3HmLH9C9peW0qNU4nJ9fsJKRlNHHdUwCwF5RSciyXsKQ4bFGhACQPT6f4SDY7pn9J/IBOGI0mMtbvxmgx0fqmul8EVBWV43bVEBh+7u04Wl3fjfw9x9n9wQpaDuiMJTiQrE37cFZW02ZUnyv3AxC5CjSE976nFeUX4nK6CI/SnqEiTYHBffqIQpEG7LXXXuP111/n3XffvaTDTAYPHkzLli157733fnAflh7f8oPbkB/mVHYuCz6czdH9h7BarbTv2plhE8cQHOb5ALNl7UZmv/0fxt93Oz2vPfMBoyD3FIs/ncuh3ftxu90ktW/DsIljiYtvXqf9iy23c9NWVi9YRm5GFpaAAFI6tWPoLaOIaR535X8Icl59ivT9V0OQmZPDjFmz2HPoEAEWCz26dOGOceMID/WM1ZUbNvDm++/zqzvv5PqzfqfnnDrFB59/zo59+3C73XRKSeGOm28moXndMbh+yxY+X7qUE5mZBAQEkNq+PbeNHk18s2Z1yn21eTOfL1lCVl4e4aGhDExP5+abbvIeniL145f5i+q7CwJU5BVzeP5Gio/mYLKaiWzfkuTh6Z79BoGcLQfZ/+la2k+4lmY923rr2QtKObroGwoPZYIbwls3I3l4OkFxEXXaLz2Rx7Y359P25v606FP39NSzVZfZObp4C/l7jlPjcBHaMprWN/UkLKnZOevIj+P+lKH13YUmr6G89z15+Bj/+NPfGXvXT+l9/YAr/+By0Ya28j+7tLEp2b79irQb1rXrFWn3aqegUOQiKSgUafgUFIo0fAoKRa4OCgpFGj4FhT+MgkL/tEehiIiIiIiIiIiIKCgUERERERERERERBYUiIiIiIiIiIiKCgkIRERERERERERFBQaGIiIiIiIiIiIigoFBERERERERERERQUCgiIiIiIiIiIiIoKJT/3959x2VV938cf7H3EAEHQ3DhYIiKqLlSXKmZqWm5GrZsqNVd2a95253dNtWm3drOzByluAfOFFehlXswRfbe8PsDuBQvVHDkej8fDx8POd9xvufAuc65Puc7REREREREREREUKBQREREREREREREUKBQREREREREREREUKBQREREREREREREUKBQREREREREREREUKBQREREREREREREUKBQREREREREREREAPNr3QCRG0WHdF0uIiIiIiIiInLzUo9CERERERERERERUaBQREREREREREREFCgUERERERERERERFCgUERERERERERERFCgUERERERERERERFCgUERERERERERERFCgUERERERERERERFCgUERERERERERERFCgUERERERERERERFCgUERERERERERERwPxaN0Cuvu3btzNu3DicnZ3ZvHkzlpaW17pJIpfkdEoK3yxezF+HDwPQtnVrxgwZgpODwwXLZWRl8ePSpezat4/C4mJ8PT0ZNXgwzXx8quQ7Gh3NvF9/5eDx45iamtKqSRPGDBlCw3r1LimfyK3qerlWX3rnHY5GRxvtp0ObNjz70EOXd5AiN6H81CyOrdhJxrFTALi08MS3fwiW9jbV50/LZuc7P1+wzoDxfXFu3MBoe3TEH5zaeYgO/xp++Q0XuUmlJaWwYv4vHD94BAC/wFb0HzEYO8fq76dpyam8//y/L1jng88/gW+LZgDkZGaxasFSDkX9RVFREY1bNKP/yLtwcXetUubHT7/iz52/G9XV0MeLx1999hKOTESuZwoU3gKWLl2Kra0t6enprF+/nn79+l3rJonUWlZODm/MnElJSQl3hoVRWlrK0nXriI6P563nnsPcvPqPs7z8fF6fMYO0jAwG3H47dra2rNy0iTdmzuSt557Du2FDAOITE3lj5kysLCwYWnGNhK9fz6sffsj0F1/ExcmpVvlEblXXy7VaVlZGbGIi7QMDCQ0KqrIvNxeXq3gGRG5MRbkFRM1ZSVlJKZ7d/Muvoc37yTmVRpsJAzE1MzMqY2FnRfPhXY22lxYXc3TpDizsrLFrYHy9pR6KI3rdH1g6Vh+AFBHIzc5h7vSPKSkppmu/npSVlbJl5QYSY+N57JVnMKvmfmpn8abznQAAcLlJREFUb8fQ8aOMthcVFRH+/SLsHO2p7+UBQHFREd98OJvkU6e5rU8PrGys2bpqA3Omf8QTr/8LW3s7Q/nTsQl4N/UlpEfnKvXaOthf4aMW+Wf16tXrgunr1q37h1pyfVGg8CZXWFjI6tWrGTx4MMuWLWPx4sUKFMoNKXz9elLT03lnyhQ869cHoGmjRvzn44+J2LGDsNtuq7bcL2vWkHD6NK8+9RStmpW/Pe3Uti1Pvf46v65dy5Njx5bXHxFBQUEBb0yahK+nJwABzZvz0rvvEr5+PWOGDKlVPpFb1fVyrSalplJQUEBIYCDdOnS42octcsOL2/InBRm5tHt6MLbuzgA4eLqxf+5qEvccoUGIn1EZM0sL6gU3Mdp+dNkOykpKaXFPNyxsrKqkJUQe5OjS8nQROb+tqyPISEvnyX8/j3vD8vuph28jvn7vU/ZsjSSke2ejMpbWVrTpHGK0ffm8RZSUlDD8kTHY2NkCsHfbTuJPxDDu2cdp2rr8+m4e2IqPXv0vW1dH0PvuAQCUFBeTmpRMt5CwausWkZuPAoU3uY0bN5KZmUloaCjp6emsWbOGpKQk3NzcrnXTRGpl6549tGrWzBB4AAhs0YIG7u5s27On2uBDWVkZGyMjCW7VyhB4AKjj6MjYIUMwNT0zTevp5GQc7O0NgQeAJo0aYW9nR0xCQq3zidyqrpdrtfL/HpoSQKRGkqKO4exb3xAkBKjTtCE2bo4kRR2vNlBYnZxTqcT/9jf12jXDybd+lbR9c1eRfiSBOs0bUpidT3FewZU8BJGbyr4de/D1a2oIEgI0be1H3fru7Nuxt9pAYXVOxcTz29rNtO3SAZ/mZwL7+3bsxcXd1RAkBHBrUI/GLZuzb8ceQ6Aw+VQSJcUluDWsb1S3yI3uVu0xeDFazOQmt3TpUkxMTAgJCaF3794UFxfzyy+/GOX7448/ePjhh2nfvj2hoaE88sgjHDx4sFZ5evbsyZgxY4zqPnd7z549efnll3nppZcIDAykW7dupKamUlZWxrx58xg2bBjBwcEEBATQr18/Zs+eTVlZWY3b8t577+Hn58eRI0eqlCktLaVr1648/fTTtT+Rck1l5+ZyOjmZxl5eRmm+Xl4cj4mptlxSaiqp6ekEtmgBlAcj8gvKv5T06dq1SsCivpsb2Tk5ZGRlGbZl5eSQm5eHs6NjrfOJ3Iqup2v13EBhZX0iYqwor4D81GzsPeoapdk3qEt2fEqN6zqxZg+mFuY0Cgs2SstPz6bJnR1pPa435lYWl9VmkZtZXk4uaUkpNPTxNEpr6O1JQnRsjetauygcC0sLeg25o8r2hOhYGjSqpv5GnqQlpZCXkwvA6fjyOUvdGpTfTwvzdT8VudmpR+FNLDs7m4iICNq0aYOrqyvdu3fH0tKSJUuWMH78eEO+Xbt2cf/99+Pu7s748eOxtrbmm2++YezYsSxcuBBPT88a5amN8PBwGjduzEsvvURycjIuLi588MEHfPbZZwwZMoR77rmHnJwclixZwnvvvYednR2jRo2qUXsHDhzI7NmzWbFiBU899ZRhn5GRkZw+fZpBgwZdmRMs/5jU9HSAauf/q+PoSG5eHjm5udjZ2lZJSzh9GgBHBwe+XbyYddu2kZefTz03N8YNGUK7gABD3sFhYezZv5+ZX3/N2Iqhi98tWYKZmRn9e/SodT6RW9H1dK3GJiSU3x8WLWLb3r0UFBTg7urKyIEDua1duyt85CI3tsKM8oCApaOtUZqlow0leUUU5xVibnPhBfFyTqWS+ncsHl1bY1VNXe0m3lXtXIciUlVmWgYAjnWcjdIcnB3Jz80jLzcPG9sLz/N5Kiaeg3/8yW19b8fR+cy9uTC/gPzcvCrbKtk7lb90S09Jw8bOlsTY8hdvOzduY9+OPeTl5GLv5Ei3AWF0Cut2qYcoItcxBQpvYqtWraKgoIA+ffoAYG9vT+fOnYmIiCAqKorAwEAA/vvf/+Ls7MzChQupU6cOAN27d+eOO+7ghx9+4Pnnn69RntrIz8/nk08+oV5FT4+ioiK+++47BgwYwNtvv23IN3z4cDp16sTmzZsNgcKatKV58+asXLmySqBw+fLlODg40L1790s5nXINVfYEqm7FbkuL8h4JBUVF2J2TlpuXB8D88HDMzcy4f9gwTE1MWLpuHe988QUvTZhg6MHk6uLCkL59mbtgAc9X/A2ampryzEMPVRniWNN8Irei6+lajUlIID8/n5z8fJ4cM4acvDxWREQw86uvKCkp0byFImcpKSwCwMzC+KuBacWCCSVFxRcNFMbvOAimJjTs2LLadAUJRWqmID8fAAtL45635hXbigoLLxoojNywBRNTU0J7VV10KL+yfivja7pyn4UFhcCZHoVJ8YkMGjOckuJi9myJZPkPiyjIy6fHoD61OTQRuQEoUHgTW7ZsGQC9e/c2bOvduzcREREsWrSIwMBAUlJSiIqK4sEHHzQE3QB8fX1ZuHAhDRo0qFGe2vL29jYECQEsLCzYtm0bRUVFVfKlpaVhb29Pbm75m+6atmXQoEG89957HDp0iObNm1NcXMyqVavo3bt3tV9g5fpWOfTcxMSkVuWKiouB8iDEh6+8gn1FL6Z2/v48/e9/8+PSpYbgw/xly1i0ahUtmzYl7LbbKC0tZfWWLXw4dy7PPPSQoUdTTfOJ3Iqup2u1Mq1vtzO9HW5r145n33qL75YsoUv79lXmPhS5pVVO8VK7S7eKkqJiTu89St2WXljX0UqoIpfDcEnW8n56tqLCIn7/bRct2vhTx9V49XEAkwtc9JW79g9pg4evF93uCDO0J6hTe/43bSYRS1cT0qMzdlr9WOSmoifkm9Tp06fZvn07Pj4+mJiYEBsbS2xsLC1atMDExITly5dTWFhIXFwcAI0aNTKqo1WrVtSpU6dGeWqrbl3jOXAsLCzYunUrzz//PMOHD6dDhw6EhYUZ5i8EatyWgQMHYmJiwsqVKwHYunUr6enpGnZ8g7K2Kl8xsbCw0CitsCK4bGttbZRmVREUDg0KMgQeAOxsbWnn78+xmBjyCwrIyc3l13XraOLtzatPPUWX9u3p1qEDrz/9NB716/P5vHkUFRXVOJ/Irep6uVYBenfpUiVICOW9GruFhJCRlaXFh0TOYlYxX2BpUYlRWmlFIN/c+sJzCmYcO0VpYTGu/j5XvH0itxor6/L7aVE199Piih7A1tXcT8927MBhigoK8Q9pY5RmWdGTsLia59aiyvptyusPDG1L9wG9qwQtTUxMaNetEyXFxcQcPXHxAxKRG4oChTep5cuXU1payokTJ+jVq5fh39ChQykrKyMjI4O1a9dSWloKXPhtVU3yXEhJifFDp9k5Q0/KysqYMGECTz/9NLGxsQQHB/P888+zevXqKj0Wa9qWhg0b0rZtW1asWAHAihUrcHNzIzQ09JKOQa4t14oAcHpmplFaWmYmtjY2hgDF2VycnQFwtDd+y+nk4EBZWRl5BQWcSkqiuLiYzu3aVelhZG5uTpf27cnIyiIuMbHG+URuVdfLtXohTg4OABRU8+VL5FZl5VR+7RVm5RmlFWbmYWZjgVk1QyDPlnowFhNzU1z8NA2HyOVyqlt+P83KyDJKy0rPxNrWBktr4/vp2Q5F/YWZuTnNA42nArC2scHa1oas9Ixq6i/f5lDN/IVns3Os+Nwo0P1U5Gajocc3qcrVjt9++23sz/nideDAAWbNmsXixYt58803AYiOjjaq45133sHJyYnBgwdfNM8jjzyCqampUS+S4uJi0tLS8Pb2vmB7d+3axYYNG5gwYQITJ06sUj49PR2vihU0K4OGF2sLlPcqfOONNzh27BgbNmxg0KBBRgFKuTHY2driVrcux2ONV3g7HhNDk/P8fXk1aIC5uTkxp04ZpZ1OScHCwgIne3syK1ZPrQxEn620ojdrGeXBiJrkE7lVXS/Xamp6Om9+/DGd27ZlWP/+VfJVBhLdqunZLnKrMrexxMrFvtrVjbMTUnDwcL1oHZnRp3HwcMXcWlO8iFwuG1sbnF1dSDhpfD+Nj47Fw8fronVEHzmOh48X1jbVz2PYwNuT+GpWT06IjsPF3RUbO1tKiov57M0P8PDx5q77R1TJl5xQfj8937BmEblxqUfhTej48ePs37+fDh06cNdddxEWFlbl36OPPoqbmxtbt24FoEWLFoSHh5OdnW2oIyYmhm+++Ybk5GTq1at30TwArq6uHD9+3DA5LsD69espqJjc/kLSK1bKbNq0aZXtP/30E3l5eRRXDHupaVsA+vfvj4WFBbNmzSI9PZ2BAwfW9BTKdSg0KIh9Bw9W6S0UdeAACadP0/k8K5haW1nRPiCAvfv3VxlmeDolhV379tE+IABTU1O8GjSgjpMTETt2GIZHQvlQyU2RkTjY2+NVv36N84ncyq6Ha9XF2ZncvDzWb9tmWCgFIDk1lYgdO2jdvDl1HB2vwtGL3LhcWzci/Wg8uUnphm1pR+LJS8rELdD3gmVLS0rITUzHrqECBiJXSut2QRz96yBJCWfup0f+PEjKqdMEhLa9YNmS4mKS4k/RoNH5e/i2bhdIcsJpjvx50LAtKSGRY38fIqBDef1m5uZYWloStWM36Slphnx5uXn8tmYTLu6ueDY2nhJKRG5s6lF4E6pcxGTYsGHVpltYWDB06FA+++wzfvnlF6ZMmcL48eMZOnQow4cPx9TUlO+++w5HR0cefvhhgBrlGThwIFOnTmX8+PHceeednDx5kp9++gkPD4+Ltjk4OBh7e3umTZtGXFwcTk5O7Nixg+XLl2NlZUVOTo4hb03aAlCnTh1uu+02li9fjpeXF23atLnUUyrXgTvDwtgUGcnUWbMY2LMnhUVFLF23jsbe3nRt3x6AxORkDh47hl/jxtRzLe/9MHrwYP46fJh/z5xJ/x49MDczY8XGjVhaWHBvxZyVpqamPDh8OO/PmcP/vfsut3fqRGlpKRu2byc+MZEnxowx9CasaT6RW9X1cq0+dM89vPvFF7zywQf06tyZvPx8Vm3ahFlFHSJSlWdXf07vPcq+Oavw6OJPaXExsZv3Y+9RF/c2TQDIS80i8+RpHBu5Y+PiYChbkJ5DWUkp1k5a0EDkSunavye/b9vJl+98zG19b6e4qIgtKzfQ0MeLoI7lL95STycTfeQ43k19cXE/0/M3PSWNkuISnFzOP5d8u24d2b5+M/M//You/W7HwtKSLSvX4+jsTOc+3Q35+t87hP9Nm8EX02bQsVf53L+7Nm4jOzOLcc8+dlkLrojI9cmkrHKVCLlp9O3bl5SUFLZs2XLeSW7j4uIICwvDx8eHFStWsHv3bmbOnElUVBRWVlaEhITwr3/9q8qQ4YvlKS0t5ZNPPuHnn38mJSWFFi1a8NxzzzF37lxyc3P59ttvAejZsyceHh6Gn8+u/9133+XAgQNYWlri6+vL2LFjiYqK4ptvvmHTpk24VnyhrEl7oTxo+uyzz/LYY48xefLkyzqvmVFRl1VeLl98YiJfL1rE30ePYmVhQXDr1owaPNgw51jEjh18+t13PD56ND3Omo8yMTmZ73/5hX0HD1JWVkbLJk0YddddeJ7T+2//oUP8vGIFRyuGtvt6ejKkb1+CW7W6pHwit6rr5VrdFRXF4tWrOREXh6WFBa2aNeO+O+/Eo169q3wG5EIeSVl5rZsg55GblMGx8EgyTiRiZmlOneYe+PZrj6V9+dDFxD1HOPTzFpoP60K9tmdGgWTFJPH7p+E0vasTDTr41WhfUV+sID89mw7/UuD+ejW+Sdi1bsItL/nUaZbPW8yJQ0extLSkeWAr+g4fhJ1j+f10z5ZIFs/9gSEP3kfbLh0M5WKPneTzNz/gzrH3ENKj83nrz0zPYOWPv3Bo31+YmJri69eU/iMGU8et6vQcJw8dY92SFcQeOwkm4N3Eh15D7sCric9VOW6puTDvC/cuvVlcre/ijoGBV6XeG50ChXJTW758OZMnT2b58uU0adLksupSoFBEROTyKVAocmNQoFDk+qdA4eVRoLB6mqNQblplZWX8+OOPBAUFXXaQUERERERERETkZqfJtOSmU1xczDPPPENCQgJRUVHMmjXrWjdJREREREREROS6p0Ch3HTMzc05efIksbGxPPnkk/Tp0+daN0lERERERERE5LqnQKHclH755Zdr3QQRERERERERkRuK5igUERERERERERERBQpFREREREREREREgUIRERERERERERFBgUIRERERERERERFBgUIRERERERERERFBgUIRERERERERERFBgUIRERERERERERFBgUIRERERERERERFBgUIRERERERERERFBgUIREREREREREREBzK91A0RuFJHOxde6CSJyER3SdVsTERERERG5VOpRKCIiIiIiIiIiIgoUioiIiIiIiIiIiAKFIiIiIiIiIiIiggKFIiIiIiIiIiIiggKFIiIiIiIiIiIiggKFIiIiIiIiIiIiggKFIiIiIiIiIiIiggKFIiIiIiIiIiIiggKFIiIiIiIiIiIiAphf6waIiIiIiIiIiIhUp2TjhqtTcWDg1an3BndVA4Xbt29n3LhxODs7s3nzZiwtLauk9+zZEw8PD7799tur1oaUlBRsbGywtbW9IvW9+OKLLF68mIMHD16R+s62Y8cOxo4dy5NPPslTTz1VbZ6ePXsCsH79+iu+/yuhtLSU+Ph4PD09a1Wu8tinTZvG3XffXev9xsTE4OXlVetycuNLS0phxfxfOH7wCAB+ga3oP2Iwdo4OFywXdyKGNT8vJfrICUxMTfDxa0L/EXfhWt+9vN7kVN5//t8XrOPB55/At0WzK3MgIjeR0ykpfLN4MX8dPgxA29atGTNkCE4OF74uDxw9yrylSzkaHY29rS3tAwO55447cLS3v6T6a1qfyK0oPzWLYyt2knHsFAAuLTzx7R+Cpb3NBctlxSVzYtVuMqNPY2JigpNvfXz7h2Dr5lQlX/rRBE6u3Ut2Qirm1ha4+vvg06ctZpYW5ftPy2bnOz9fcF8B4/vi3LjBZRylyI3tennOTYiOZdVPvxJ3IgZTU1P8glrTZ9gg7J0u3A4RuTFd1UDh0qVLsbW1JT09nfXr19OvX7+ruTsjGzdu5LnnnmPx4sVXLFA4YsQIOnXqdEXqutlkZ2dz//3307179/MGOs+nSZMmTJ8+nbZt29Z6v6+++irHjx+/qgFnuT7lZucwd/rHlJQU07VfT8rKStmycgOJsfE89sozmJlX/xGXfOo0c/47C0tLS3oM6gPAttURfPHWDJ749/M4OjthZ2/H0PGjjMoWFRUR/v0i7Bztqe/lcVWPT+RGlJWTwxszZ1JSUsKdYWGUlpaydN06ouPjeeu55zA/z3X55+HDvPXxx9ja2DCkTx9MTU1ZvmEDfx46xNRnnsG+4j5e0/prWp/Iragot4CoOSspKynFs5s/ZWVlxG7eT86pNNpMGIipmVm15XKTMoj6YiVmluZ43x4EQNzWv/hj9nLaPjUYK8fy6yr9aAL75q7C3qMuvv3aUZCRS/y2v8iOSyHwkf6YmJhgYWdF8+FdjfZRWlzM0aU7sLCzxq6By9U7CSLXuevlOfd0/Cm+eGsmjnWcuH1wPwry8tm2OoLoI8eZ8NpzWFpbXb2TICLXxFULFBYWFrJ69WoGDx7MsmXLWLx48T8eKIyKiiIzM/OK1hkcHExwcPAVrfNmkZ6ezr59++jevXuty7q6ujJ48OBL2u+WLVvw8FDA5la0dXUEGWnpPPnv53FvWB8AD99GfP3ep+zZGklI987Vltu2OoKigkIenvI0DbzLe782btWcz6e+z7ZVEfQbMRhLayvadA4xKrt83iJKSkoY/sgYbOwUaBA5V/j69aSmp/POlCl41i+/Lps2asR/Pv6YiB07CLvttmrLfblgASampkx95hnqu7kB0CEoiOenTWPxqlWMGTKkVvXXtD6RW1Hclj8pyMil3dODsXV3BsDB0439c1eTuOcIDUL8qi+37S9KC4sJeqQ/9g3rAuDcpCG/f7KMuK1/0rh/+X3z2IqdWDnbEfhwf8wsyr9uWDnZcfTX7aQdjsOluSdmlhbUC25itI+jy3ZQVlJKi3u6YWGjAITcuq6X59x1i5djambKQy8+hYOTIwANfbz47sPZ7N22k9CeXa7G4YvINXTVFjPZuHEjmZmZhIaG0qVLF7Zs2UJSUtLV2p2I3IL27diDr19Tw8MTQNPWftSt786+HXvPWy41KQVbezvDwxOAp683Nna2JMYlnLfcqZh4flu7mbZdOuDT3PjLjYjA1j17aNWsmSGIBxDYogUN3N3ZtmdPtWWSUlKISUige4cOhqAegEe9erQNCGBjZGSt6q9NfSK3oqSoYzj71jcECQHqNG2IjZsjSVHHz1suPzULczsrQ5AQwMHTFXNbK3IT0wAoKSrG0t6a+iHNDUFCACffegDkJKSet/6cU6nE//Y39do1w8m3/nnzidwKrpfnXDMzc4I6tTcECQF8K9ITY+Mv6dhE5Pp21QKFS5cuxcTEhJCQEHr37k1xcTG//PLLRcvt3buXBx54wNBz78EHHyQqKqpKnrKyMubNm8ewYcMIDg4mICCAfv36MXv2bMrKyoDyuQQ/+ugjAHr16sWYMWMM5Q8ePMiECRNo3749gYGB3HPPPaxdu7bKPsaMGcNDDz3EBx98QHBwMJ06deLgwYO8+OKL+PlVfcuamJjISy+9RJcuXQgODmbo0KFG9V0ts2bNIiAggBMnTvDoo48SHBxMSEgIL7zwAmlpaVXyZmdn89Zbb9GjRw+CgoIYNGgQCxYsqJInIyODqVOn0rVrV/z9/enfvz9ff/214byevc81a9Zw2223ERwczIIFC+jVqxcAH330EX5+fsTGxgJw8uRJXnjhBbp164a/vz8dOnTgscce43DF3FJQPkehn58fixYtqvLz1q1beeONN+jUqRNBQUGMGzeOAwcOGMr5+fkRFxdHZGSkofyIESPo0qULpaWlVY7t6NGj+Pn58f3331+BMy/XWl5OLmlJKTT0MZ4Ps6G3JwnRsectW7eeG7k5ueRkZhm25WbnkJ+XX+Uh6FxrF4VjYWlBryF3XF7jRW5S2bm5nE5OpnE1c8b6enlxPCam2nKpGRkAeDUwnousvqsrWdnZpKSl1bj+mtYncisqyisgPzUbe4+6Rmn2DeqSHZ9y3rI2dR0pzi2gMDvvTH25BRTnF2JRMbehmYU5/vf3wbtHUJWylQFCK+fzzxF6Ys0eTC3MaRSm0Ttya7uennPveWwsg0YPq7ItIaY8QOhUt06NjkdEbixXJVCYnZ1NREQEbdq0wdXVle7du2NpacmSJUsuWG7r1q2MGTOGrKwsJk6cyOOPP058fDyjRo1i165dhnwffvghr7/+Ok2bNmXKlCk888wzWFlZ8d577/HDDz8A5XMJ9u7dG4ApU6bw2GOPAeXDkUeMGEFUVBQPPPAAzzzzDEVFRTzxxBNGAaQ9e/awYsUK/vWvfzFkyBCaNm1q1Ob09HTuuecewsPDufPOO3n++eextrbmySef/MeChaWlpYwdOxY7OzteeOEF+vTpw5IlS3j99dcNeQoLCxk1ahTfffcdPXr0YMqUKXh6evLyyy/zzTffAJCbm8vo0aP55ZdfGDJkCC+99BLNmjXjrbfe4t//rjrZbXFxMa+++irjxo3joYceonnz5kyZMgWA3r17M336dFxcXEhOTuaee+5h165djB49mtdee42BAweyZcsWHnzwQYqKii54bC+//DJ//fUXEyZM4OGHH+aPP/7g4Ycfpri4GIDp06dTp04dGjduzPTp0wkJCWHgwIEkJSWxc+fOKnWFh4djbm5O//79L/eUy3UgM608EOBYx9kozcHZkfzcPPJy84zSALr274VTHWd++vxbTsXEcyomnp8+/wYzMzM69e5WbZlTMfEc/ONPOvS4DUdnp2rziNzqUtPTAXBxMr5G6jg6kpuXR05urlFa5WJneQUFRmlZ2dkApGdm1rj+mtYncisqzCi/Bi0djafPsHS0oSSviOK8wmrLenbzx8rJjoPzN5FzKpWcU6kcmL8RUzNTPDq3qrZMflo2iXuOcHRZJLb1nKnbyrvafDmnUkn9O5YGoX6GuQ5FblXX63NuZnoGf+76g59nf4uDsyPtu3as/cGJyHXvqsxRuGrVKgoKCujTp3zyVHt7ezp37kxERARRUVEEVrMEdWlpKa+99hoBAQF89913mFVMojx69Gjuuusu3nzzTZYsWUJRURHfffcdAwYM4O233zaUHz58OJ06dWLz5s2MGjWK4OBg/Pz8WLNmDWFhYYZVeN98801MTEz4+eefqV8xbOnee+/l3nvvZfr06fTv3x8Xl/KJk3Nzc3nnnXcICgrifL744gtOnTrFDz/8QLt27QC4++67GThwIJ999hlhYWFX4IxeWHFxMXfccQcvvvgiACNHjiQxMZG1a9eSl5eHjY0NP//8MwcOHODdd99l0KBBQHkwdfTo0cyePZvRo0czZ84cjh8/zsKFCw29Ju+77z7ef/99Pv/8c0aMGEGLFi2A8t/XAw88wCOPPGJoR926dZk2bRp+fn6G+Qa/++47MjIy+OGHH2jS5EwXdjs7O2bPns2hQ4do3br1eY+tbt26/PDDD4a/B0tLS9577z127NjBbbfdxuDBg5kxY0aVOQ7vuOMOpk2bxooVKwgNDTXUtXz5cjp16mT4/cqNrSA/HwCLitUTz2Zesa2osBAbW+PVG53r1qH7wN4s+/5nPn5tOgAmpqaMnPBAlWEaZ4vcsAUTU1NCexlPvC4i5fIrAnOVgbqzWVqUX5cFRUXYnZPmVb8+NtbWRP7xB3f17o2JiQkAhUVFRFX0Ii8sKqKkoqf4xeqvaX0it6KSwvK//bOHBVcyrVgcoaSoGHMb4+vM2tkerx6BHF26nT0zf60oZELL+3pUGY5cqSi3wLCysamlGU0GhVa7X4D4HQfB1ISGHVte0nGJ3Eyu1+fcGS+9RWF+ASampgx7ePRFV18WkRvTVelRuGzZMgBDj76z/185tPRcf/31FzExMYSFhZGRkUFqaiqpqank5+dz++238/fff5OYmIiFhQXbtm0z6uGWlpaGvb09udX0VKiUnJzMH3/8weDBgw1BQgArKyseeugh8vPz2bZtm2G7tbU1AQEBFzzWiIgIWrdubQgSVtY3e/ZsZs6cecGyV9K5veRatmxJcXEx6RW9LyIiInBxcWHgwIGGPCYmJkyfPp3vv/8eExMTVq9eTfPmzXFzczOc/9TUVEOwc8OGDVX2ERJiPAHuuR555BG2bt1aJUiYn5+PqWn5n96Ffl8Affr0MQQJK48LuOB8l3Xr1qVTp06sWbOGkpISoPzv6/jx41WOX25slaPhKwMAtbF20XJ+/eYnvJv6MuyRMQwdPwpPX29++uwrDvy+3yh/UWERv/+2ixZt/KnjqkCzyPlUTlNR2+vS3NycgT17ciw6mplff83JuDiOx8bywZw55BeW92wyMzOrcf01rU/klmS4gda+6Ik1eziy5Dccvd3xG9GN5sO74uDpyoF5G0n5u5qpBUygxcjuNB/eFVt3Z/bNXU3y/hNG2UqKijm99yh1W3phXef8Q5NFbhXX43NuSUkJg0YP457HxtG4ZTMWfP4N21ZH1Lp9InL9u+I9Ck+fPs327dvx8fHBxMTEME9dixYtMDExYfny5bz00ktGvQGio6OB8qGk06dPr7bu+Ph46tWrh4WFBREREaxbt47jx49z8uRJMirmIzp7Lr1zxcXFAeDr62uUVhnIio8/MyGrs7OzIaB1oTp79uxptL26fVyMlVX5ym6Vw2qrU1xcjJ3duX0xMOolV3l+KwNlcXFxeHt7G91szl4tODo6mvz8fDp16lTtvhMSqk5+W7eu8Zvj6hQVFfHBBx/w559/Eh0dTWxsrKFd584jeK7zHdfFyg0aNIgtW7awc+dOOnbsSHh4OFZWVv9ID0/5Z1hZl18vRYXGw6OKK3pLWFtbG6Xl5eaxZeV6PHy8eeBfTxiu8YAOwXw29X2WfDWf597xw9zizBvcYwcOU1RQiH9Im6twJCI3D+uK+1hhNddlZQ8+22quS4Ch/fqRk5fHiogItu3eDUA7f3/uDAtj3q+/Ym9rS1HF/bEm9dekPpFbkZlV+f2ttKjEKK204hoztzbuxVScV0js5v3Ye9Yl4KG+mFTcP90Cffj9k2UcXryVOs2GY2p+JghvYWOFW2D5M7GrfyP2zFjC0fBIXP19qtSdcewUpYXFRttFblXX43OumZmZYaVk/5A2/G/aTNYuXk67bh2xOs+9XURuTFc8ULh8+XJKS0s5ceKEYXGLs2VkZLB27VruuKPqJKmVgZ+JEyfSpk2bautu3LgxZWVlTJgwgQ0bNtCuXTuCg4MZMWIEISEhjBs37oJtu1AQsXL/Fmd9aNakt0FJScklvempjqNj+eSyOTk5582TlZVFg2omZ79YG2rSzpKSEtq1a8eTTz5Zbbq7u3uVny8WRAXYtWsXDz30ELa2tnTu3JmhQ4fSqlUroqOjjXqFVqcm+6hO7969ee2111ixYgUdO3ZkxYoV9OjRA3t7vaW+WVROnpyVkWWUlpWeibWtDZYVD1lnS0lMoqS4mIDQ4Cp/X2bm5gR2bM/qBb+SlHCaBt5nguiHov7CzNyc5oEaDiVyIa51yq/L6ub/S8vMxNbGxhBMPJeJiQnj7r6bwWFhnEpKoq6zM2516/Lj0qWYmpri6uJimNe2JvXXpD6RW5GVU/mzUGGW8fxmhZl5mNlYYFbNcMe8lEzKiktxC2xsCBICmJqZ4R7UhOMrd5GblIF9g+qvLTMLc1xaeBG/7W+KcvKxsDsTWEg9GIuJuSkuftUPixS51Vzvz7kmJia0bh9E9JHjJCWcxtO3+rlHReTGdMUDhZWrHb/99ttGQZkDBw4wa9YsFi9ebBQorOzZVhlQOltUVBQZGRlYW1uza9cuNmzYwIQJE5g4caIhT+UwW69qVkI8dx/Hjh0zSjt+/DhAlSHJNdGwYUNDb8izLV68mN27d/Pqq69WO5dSdTw9PbG2tubIkSPVpsfExJCbm0uzZs1q1cbKdh48eNBo+8aNG1m+fDn/+te/8PDwICcnx+j8Z2Rk8Ntvv9GoUaNa73fmzJlYW1sTHh5epXfgZ599Vuu6asPOzo7bb7+dDRs2cO+99xIXF2dYbEVuDja2Nji7upBw0njVt/joWDx8qv8sMK+Yf6m01PjFQZmhp2rVtOgjx/Hw8cLaxngeGBE5w87WFre6dTkea3xdHo+JoYn3+b9IbN29G2dHR1o3a4az45lVGf86coTGXl5YWlhgaWFR4/prUp/IrcjcxhIrF/tqVzfOTkjBwcO12nKm5hVBh+run2Wllf8hNymd/V+twbNrAA07tqiSr6SgCEzAxLzqy/jM6NM4eLhibl2zZ2aRm9318pybl5vHZ/9+j9btg+gzbFCVtIL8ynmJdT8Vudlc0TkKjx8/zv79++nQoQN33XUXYWFhVf49+uijuLm5sXXrVhITE6uU9ff3x83NjW+//bZKj7rs7GwmTZrElClTMDMzM8y5d+4KxD/99BN5eXlVhu1WvkWp7Eno5uaGv78/v/76K6dOnTLkKyws5Msvv8TS0pLbbrutVsfcrVs39u3bx/79Z+Z7KCoqYs6cOezfv7/GQUIoH1bbtWtXduzYwe+//26U/vXXXwNV536sTTuTk5NZs2aNUZ0RERHUqVOHnj17cuDAATZu3Fglz6effsrEiRM5fPjwBfdR2QPz7GHB6enpuLi4VAkSZmVlsXjxYuDM0OjLYWpqWu1Q5EGDBpGYmMjnn3+Og4MD3bt3v+x9yfWldbsgjv51kKSEM58nR/48SMqp0wSEtq22jLtHfRycHdm7ZQdFhWcWMygqLOL3bTuxtbfDveGZFwYlxcUkxZ+iQSP1chCpidCgIPYdPEjcWff5qAMHSDh9ms5nzed7rvD165m7YEGV+8Lu/fs5eOwYfbqemVy9pvXXtD6RW5Fr60akH40nNyndsC3tSDx5SZmGocLnsnV3xtLRhlN7DlNSdOZ5u6SomMS9RzG3s8K2njPWLo4U5xeSEHmQ0rOuv/y0bJL3n8DJtz7mVmcCC6UlJeQmpmPXUL18Rc52PTzn2tjaYGZuzt6tO8nLOTO3fF5uHrs3bcfZ1QW3hrXraCMi178r2qOwchGTYcOGVZtuYWHB0KFD+eyzz/jll1+M0l5++WUmT57M3XffzbBhw7CysmLBggXEx8fz7rvvYm5uTnBwMPb29kybNo24uDicnJzYsWMHy5cvx8rKqkqQsTI49b///Y9u3brRq1cvXn75ZcaNG8ewYcO49957sbOz49dff+XPP//k5ZdfNgz/ranHHnuMVatWMW7cOEaPHo27uzvh4eEcPXqUuXPn1qougOeff57ff/+dBx54gKFDh+Ln50deXh6bNm1i8+bN3H333ZcU8Bo5ciQLFy5k8uTJjBo1Cl9fXyIiIti6dStvvfUWZmZmPProo6xevZonnniCkSNH0qxZM3bv3s0vv/xCt27d6Nat2wX3UTmn47p162jYsCF9+vShW7dufPHFF0ycOJEuXbqQlJTEzz//THJyMnDhYdY15eLiwoEDB/jhhx/o0KGDIYjctWtXnJ2dWb58OXfffXetgrZyY+javye/b9vJl+98zG19b6e4qIgtKzfQ0MeLoI7lAYPU08lEHzmOd1NfXNxdMTU1ZeCoYcz75Es+f/MD2nYNpay0lN2bd5B06jTDxo/CzPzMR2N6SholxSU4udS5VocpckO5MyyMTZGRTJ01i4E9e1JYVMTSdeto7O1N1/btAUhMTubgsWP4NW5MPdfy3kuDe/fm/Tlz+O/nn9MhKIik1FSWrV9PUMuWdD1r8aya1F+b+kRuRZ5d/Tm99yj75qzCo4s/pcXF5fMPetTFvU35vN15qVlknjyNYyN3bFwcMDE1pcmgjvz9wwZ+/zSc+u2aUVZWRuLuw+QlZeA3vCumFS+NmwzsyKEFm4mavQL34CYU5xYQv/0AmJrQZGBolbYUpOdQVlKKtZOmhxE52/XynDtozDC+fOcTvnhrBu27d6KkuISdG7eRnZnJmEmPXrFpuETk+nFFexQuW7YMBwcH+vTpc94899xzD6ampoYeZWfr168fc+fOpV69enzyySfMmDEDOzs7Pv30U8Nqta6ursyePRsvLy8+/fRT3n//feLj43n//fe57777OHLkiCEINWDAADp37syiRYt49913AQgODmbevHm0bt2auXPnMmPGDKysrPj4448ZM2ZMrY+5bt26zJ8/n9tvv50ff/yRd999l7KyMubOnXveRUEuxNvbm4ULFzJ06FA2bdrEm2++yccff0x2djbTpk3jrbfeqnWdUD7Z7bfffsuwYcMIDw9n2rRpnD59mg8//JChQ4cC5YG++fPnc/fdd7Ny5UrefPNN/vjjDyZMmMDMmTMvOl+gjY0NkydPJjExkTfffJMDBw7w1FNP8eCDD/L7778zdepUFi1aROfOnVmyZAmmpqZs3779ko7nbE899RROTk689dZbVXpMWlpa0rdvXwCtdnyTsnN0YPyUp6nv5cG6JSv4bc0mWgYHMHbSI4ZJmk8cOsbC/33PiUNnphxo1S6QB56bgI2dDWsXhrNu8Qps7GwZM+kRgjq1r7KPyren1jaapFmkJpwcHHhj0iQaeXjw0/LlrIiIICQwkBcfe8wwD/DfR4/y8bff8vfRo4ZyoW3a8PT995OemcnXixaxdfdu7uzVi2fHj69y/6lJ/bWpT+RWZGlvQ+DD/bGr78LJtXuJ3/Y3dVt603pcmGExkswTiRxasJnME2d6M7m2bkTAg32xsLHkxJrdnFy7B3MbS1qPCzMEGAHqBTehxb3dKS0p5Vj4TuK2/oWTTz3aPDYQu/pVAxLFueXDF82qWUBF5FZ2vTzn+vo1Zdwzj2Fjb8eaheFsWLoK1/rujJ8ykSatml+FIxeRa82k7EIrfIjc4F577TXWrVvHxo0ba7Q4zYWsjd5zhVolIldLh/QrPvWuiFxhj6SsvNZNEJEaGN8k7Fo3QUQuIsy7+mHoN5u0WTOuSr11npp48Uy3IL1Sl5tWeno6K1eu5K677rrsIKGIiIiIiIiIyM1OXS+usqSkpBrls7W1xc7O7iq35tbw559/8r///Y+oqCgKCgoYNWrUtW6SiIiIiIiIiMh1T4HCq6xLly41yvfkk0/y1FNPXeXW3BocHBz47bffsLKy4t1336VBgwbXukkiIiIiIiIiItc9BQqvsi+//LJG+by8vK5yS24d3t7eV2SRFBERERERERGRW4kChVdZ586dr3UTRERERERERERELkqLmYiIiIiIiIiIiIgChSIiIiIiIiIiIqJAoYiIiIiIiIiIiKBAoYiIiIiIiIiIiKBAoYiIiIiIiIiIiKBAoYiIiIiIiIiIiKBAoYiIiIiIiIiIiKBAoYiIiIiIiIiIiKBAoYiIiIiIiIiIiADm17oBIjeKDum6XESudyUbN1zrJojIxfhf6waIiIiIyPmoR6GIiIiIiIiIiIgoUCgiIiIiIiIiIiIKFIqIiIiIiIiIiAgKFIqIiIiIiIiIiAgKFIqIiIiIiIiIiAgKFIqIiIiIiIiIiAgKFIqIiIiIiIiIiAgKFIqIiIiIiIiIiAgKFIqIiIiIiIiIiAgKFIqIiIiIiIiIiAhgfq0bcLbCwkK+//57wsPDOXbsGCYmJnh7ezNgwABGjBiBg4PDtW5itXr27ImHhwfffvtttT/X1KxZs/joo4/45ptvCA0NNUqPjY2lV69eDBkyhLfffvuKtP1Ky87OprCwEBcXl1qVqzz2devW4enpWauypaWlxMfH17qc3LxOp6TwzeLF/HX4MABtW7dmzJAhOF3kM+TA0aPMW7qUo9HR2Nva0j4wkHvuuANHe/t/otkiN43TmVl8t307f8XHAxDs7c2YTh1xtLG5YLkDCaeYv3MnR5OSsLeyon2jRgxr3x5HG+vzlvli02YS0tN59c5B1aZnFxTw7PyfuC80lO5+zS/9oERuMvmpWRxbsZOMY6cAcGnhiW//ECztL3ydZsUlc2LVbjKjT2NiYoKTb318+4dg6+ZUJV9hdh4nVu8h9UAMpUXF2Desi0/f9jh6u1XJl3oojpiIP8iOSwETExy93GjUu61RPpFbUVpSCivm/8Lxg0cA8AtsRf8Rg7FzvPAzbdyJGNb8vJToIycwMTXBx68J/UfchWt990vKd7YlX80nJfE0D73w1OUfoIhcl66bHoWJiYkMHTqU//73v9SvX59nn32WyZMn07hxY95//33uvvtujh07dq2bKRewf/9++vfvz+GK4Ext9O7dm+nTp9c6wJidnc0999zD4sWLa71PuTll5eTwxsyZHDlxgjvDwhjYsye79+/nPx9/THFx8XnL/Xn4MFNnzSI+MZEhffrQt1s3duzdy2sffkh2bu4/eAQiN7as/HymLlvGkdOnGRQUxIDAQPZER/NW+HKKS0rOW+6v+Hj+Ex5OfHo6dwW3oU/r1uw4fpw3fv2V7IKCastsOHCQ9X8fOG+dxSUlzFi7jsy8/Ms+LpGbSVFuAVFzVpIVk4RnN388urYm5UAM+79cTekFrtPcpAyivlhJzqk0vG8PwqtHIFmxyfwxezkFmWfulcUFRUR9sZLk/SdoEOpHo7C2FGTmsm9OedlK6cdP8efXayjOK8SnT1sa9WxDXmomUV+sICsm6aqeA5HrXW52DnOnf0zssRN07deTLn17cPCPP/nqvU8pucAzbfKp08z57yxOxcTTY1Afug/oTdyxaL54awaZ6Rm1zne23Zu3s3vTb1f8WEXk+nJd9CgsLCzk8ccfJzY2li+//JJOnToZ0kaPHs3YsWN55JFHeOSRR1i6dCk2F+mRINfGoUOHOH369CWVbdGiBS1atKh1ufT0dPbt20f37t0vab9y8wlfv57U9HTemTIFz/r1AWjaqBH/+fhjInbsIOy226ot9+WCBZiYmjL1mWeo71bei6FDUBDPT5vG4lWrGDNkyD92DCI3suVR+0jNzuG/w4fiWacOAE3d3XgrfAUbDx2iV8uW1Zb7aus2TExMeGPwndR3Ku+ZFOLjw4sLF7Jkz15Gd+poyFtaWsrivb+zcPfu87YjNSeHGWvXcehU4hU8OpGbQ9yWPynIyKXd04OxdXcGwMHTjf1zV5O45wgNQvyqL7ftL0oLiwl6pD/2DesC4NykIb9/soy4rX/SuH8IALEb95GXnEHA+H44+5bfi90Cfdj57kJiN+/Db3g3AI6FR2LlZEebxwdiZln+tcS9bRN2f7CYE2v2EPBg36t5GkSua1tXR5CRls6T/34e94bl15GHbyO+fu9T9myNJKR752rLbVsdQVFBIQ9PeZoG3uUjrhq3as7nU99n26oI+o0YXKt8UH7f3bhsDet/WXk1D1lErhPXRY/CJUuW8Oeff/LCCy9UCRJWCgoK4v/+7/+IiYlhzpw516CFInKj2LpnD62aNTMECQECW7Sggbs72/bsqbZMUkoKMQkJdO/QwRAkBPCoV4+2AQFsjIy86u0WuVlsO3qUVg0bGIKEAAGenjRwduK3o9WPDEjKyiImNY1uzZoZgoQAHnWcaevtzaZDZ3qqFxYXM2XRYn7etZsuzZrhYmdrVF9UTCzPzP+Jkykp9PVvfQWPTuTmkBR1DGff+oYgIUCdpg2xcXMkKer4ecvlp2ZhbmdlCBICOHi6Ym5rRW5ieU/BsrIyEvcewcXP0xAkBLB0sMW3fwiOPvUAKMorICchFdcAH0OQEMDS3gYn3/pkRl/ay2eRm8W+HXvw9WtqCBICNG3tR9367uzbsfe85VKTUrC1tzME/wA8fb2xsbMlMS6h1vmKCov45PV3Wb9kBW06tcehTtVpBkTk5nPdBAptbW0ZcoEeO4MGDcLNzY2lS5fy2muv0apVK1JTU6vkyc3NpU2bNkyZMsWwbe/evTzwwAMEBwcTHBzMgw8+SFRUVJVyPXv25OWXX+all14iMDCQbt26kZqaSllZGfPmzWPYsGEEBwcTEBBAv379mD17NmVlZVf2JFyiMWPG8NBDD7Fp0ybuvvtuAgIC6N69O7NmzaK0tLRK3qNHjzJx4kRCQ0Np164dY8aMYdeuXVXyHDlyhCeeeIL27dsTFBTEyJEj2bx5c7X7/OCDDwgODqZTp0489dRThvM+duxYevbsacj/22+/MX78eEJDQ2ndujVdu3bl1VdfJTMz05Bn1qxZ+Pn5ERsba/g5ICCAEydO8OijjxIcHExISAgvvPACaWnlD6I7duygV69eAHz00Uf4+flx4MABAgMDmThxotG5mjdvHn5+fpc0NFpuDNm5uZxOTqaxl5dRmq+XF8djYqotl5pRPrzCq0EDo7T6rq5kZWeTkpZmlCYiVWUXFHA6MwtfN1ejNB9XV44nJ1dbLjUnBwCvaqafqOfkSFZ+PinZ2QAUlZSQW1jIxLBeTLi9B6amxo8ycenptG7YkLeH3k0HX59LPyCRm1BRXgH5qdnYe9Q1SrNvUJfs+JTzlrWp60hxbgGF2Xln6sstoDi/EIuKuQ0L0rIpzMjFuWlDoDxwWFJYBEDDji0MvRXNrSxoP/luPG4zDuYX5eZjUs21LXKryMvJJS0phYY+xnOwN/T2JCE69rxl69ZzIzcnl5zMLMO23Owc8vPycXByrHW+4uJiCvLyGfH4OIaOH4WZqdnlHp6IXOeu+R24pKSEffv20apVK6ysrM6bz8TEhNDQUE6cOMGgQYMoKSlh1apVVfJERESQl5fHnXfeCcDWrVsZM2YMWVlZTJw4kccff5z4+HhGjRplFCALDw/n4MGDvPTSS9xzzz24uLjw4Ycf8vrrr9O0aVOmTJnCM888g5WVFe+99x4//PDDlT8Zl+jQoUNMmjSJ0NBQXn75Zby9vfnoo4+YN2+eIc+JEye455572L59O6NHj+aZZ54hPT2dBx54wBA4PXjwICNGjODIkSM8+uijTJ48meLiYh555BGWL19eZZ979uxhxYoV/Otf/2LIkCE88cQTjBgxAoDHHnuMl156CYAtW7bw4IMPkpeXx9NPP83//d//ERgYyPz583nllVcueFylpaWMHTsWOzs7XnjhBfr06cOSJUt4/fXXAWjSpIkhOFk5x6G3tzfdu3dn48aN5OXlVakvPDwcPz8/mjVrduknW65rqenpALg4Gb/prOPoSG5eHjnVzDdoaWkJQF4186BlVQQn0s8KbItI9dIqAn4utnZGaXVsbcktKCSnmuvMyry8N1FeUZFRWlZ++fyC6bnln+m2lpZ8OHIEHZs0Pm87erdqyb/69a3SO1FEyhVmlN8HLR2Ne+NaOtpQkldEcV5htWU9u/lj5WTHwfmbyDmVSs6pVA7M34ipmSkenVsBkJdSfr+0sLPm2Iqd/Db1B7a9/j0731tIyt9nXtiZmJpi4+qI1TntyDmVSubJ0zh6n38xBZGbXWZa+UtsxzrORmkOzo7k5+aRl5tnlAbQtX8vnOo489Pn33IqJp5TMfH89Pk3mJmZ0al3t1rns7axZtLb/4d/SPCVPUgRuW5d8zkKMzIyKCwsxM3t4iububuXPzBYW1vj4eHBypUruffeew3py5cvx93dndDQUEpLS3nttdcICAjgu+++w8ys/M3H6NGjueuuu3jzzTdZsmSJoWx+fj6ffPIJ9epVDIcoKuK7775jwIABVVYYHj58OJ06dWLz5s2MGjXqSpyCy3b69Gk+/fRTQy++u+66i65du7J06VJDGz/88EOKi4tZtGgRjRo1AuCOO+6gd+/ezJkzhxkzZvDmm2/i4uLC4sWLsbUtf2gbPXo048aN4z//+Q9hYWGGgEpubi7vvPMOQUFBhna0adOG+fPn07lzZ8OqzV999RUNGjTgyy+/NJS97777GDFihFFPxXMVFxdzxx138OKLLwIwcuRIEhMTWbt2LXl5ebi6uhIWFsa0adPw8/Nj8ODyeTQGDRrE6tWr2bBhA3fccQdQvljO7t27mTx58uWfcLlu5VcEICr/1s5maWEBQEFREeeGMLzq18fG2prIP/7grt69MTExAaCwqIioAwcM/xeRC6sM9FmaGz9eWFbchwuLi7E758WgZ5062FhaEHn8OIPbBJ25BouLiYqNK/9/SfnE7SYmJphVpJ+PuZl6O4icT2XvPjML4+vUtOLaLSkqxtzG+F5q7WyPV49Aji7dzp6Zv1YUMqHlfT0Mw5GL88uDjCfX7sXEzJQmA0PBxITYzfv567t1+D/QhzoVvQ2ra9vBBeXPh57dAy7vQEVuYAUVL8ksLC2M0swrthUVFmJjazx3v3PdOnQf2Jtl3//Mx69NB8oD8yMnPFBlmHFN85mYmBi+S4vIreGa9yisHMJbkw8f87O+eAwcOJCdO3eSklI+PCI7O5tNmzYxYMAATE1N+euvv4iJiSEsLIyMjAxSU1NJTU0lPz+f22+/nb///pvExDMTnHt7exuChAAWFhZs27aNf//731XakJaWhr29PbnXcBVUk3O+INnY2NCjRw/Dz1ZWVvj6+pJcMcSrtLSUjRs30r17d0OQEKBOnTr88MMPvPzyy6SlpREZGUn37t3Jz883nK/MzEx69+5NcnIy+/btM5S1trYmIODiD3Cff/45CxcurBK4qc057N+/f5WfW7ZsSXFxMekVPceq06NHDxwcHFi58sxkuytWrKCsrIwBAwZcdJ9y46r8PDn3GrkYc3NzBvbsybHoaGZ+/TUn4+I4HhvLB3PmkF9Y/oVHD0giF3fJ16CZGQMCAzielMys9RuITknhRHIyH65ZS0FF8NFMwxBFrozK6XNqd5kCcGLNHo4s+Q1Hb3f8RnSj+fCuOHi6cmDeRkNvwdLi8qlvivMLCXr0Duq1bUq94CYEPdwfcxsrTqyufhGiksJi/vx2HTkJaXh2D6gyv6HIrcZwmdbyfgqwdtFyfv3mJ7yb+jLskTEMHT8KT19vfvrsKw78vr/W+UTk1nPNexS6uLhgYWFhCPhdSOWKuu7u7gwaNIjPP/+c1atXc++997J27VoKCgoYOHAgANHR0QBMnz6d6dOnV1tffHy8IThYt67xPC0WFhZERESwbt06jh8/zsmTJ8momMvsasxRWDn0uqSkpNr0yu3n9pZydnY2mqPJ0tLSMEdheno6ubm5VYKElZo3bw5gGH787bff8u2331a7/4SEM5PaVrfP6piZmRETE8OMGTM4cuQI0dHRVQK0F+NyznxVlcd+vnNUmadPnz6Eh4eTm5uLra0t4eHhBAcH4+HhUeN9y43HuuIaKiw0HjJV2SPQ1tq62rJD+/UjJy+PFRERbKtYSbWdvz93hoUx79dfsbc1HqIlIlXZVPTcLSwuNkorrPjctqmmxy/A3W3bklNQyMr9+/ntyFEA2jbyZlBQED9G7sT+AtOTiEjNmVmVX6elRcbPUqUV1665tXEvpuK8QmI378fesy4BD/U1zCHoFujD758s4/DirdRpNhwzi/IXa66tG2Fhc+a6NbexxKWFJ6f3HqWksAizs3pKFecV8uc3a8k8eZp67Zvh07vtlTtgkRuQlXX5tVNUzTNtcUWvYOtqnmnzcvPYsnI9Hj7ePPCvJwzf1wI6BPPZ1PdZ8tV8nnvHj6Ki4hrlM7cw/iwQkZvfNQ8UmpiYEBwczL59+ygoKDjvPIVlZWXs3r0bLy8v3N3dcXd3x8/PjxUrVnDvvfeyYsUKfH198ff3BzAEySZOnEibNm2qrbNx4zPzG53bW6isrIwJEyawYcMG2rVrR3BwMCNGjCAkJIRx48ZdgSM35uhYPmlsTsUcT+eqDFJW5qt0sYBdZVDtQm+kKvOMGjWKsLCwavM0bdrU8P+a9q6aM2cO06dPx9fXl/bt29OnTx+CgoL49ttvWbp06UXLX8pbNCgffrxw4UIiIiIICAggKiqKV1999ZLqkhuHa8Uqq9XNJ5iWmYmtjY0hmHguExMTxt19N4PDwjiVlERdZ2fc6tblx6VLMTU1xbWaRRZEpKq69vYApFfTYzwtNxdbK0usz/Olw8TEhLGdOzG4TRAJGZnUtbfDzcGB+ZE7MTUxwbWibhG5PFZO5ddSYZbx/GaFmXmY2VhUCeJVykvJpKy4FLfAxlUWGjE1M8M9qAnHV+4iNykDS8fyCT4s7IyDGJb2NlAGJQVnAoWF2Xns/2oNOfGp1O/QnKaDO13y85/IzcKpbvkzbVZGllFaVnom1rY2WFobP9OmJCZRUlxMQGhwle+IZubmBHZsz+oFv5KUcJqSkpIa5WvgrU4WIreiax4ohPI59SIjI5k/fz5jx46tNs+6deuIiYlhwoQJhm2DBg3igw8+ICYmhq1bt/L4448b0ip7jtna2tK5c+cqdUVFRZGRkVHtW5hKu3btYsOGDUyYMKHKCrqVw169qllV9XJVBuIOHz5M7969jdIPHToEUOvFOOrUqYO1tbWhl+XZ5syZQ1JSEg8++CBQHgA893wdOXKE2NhYbGyM58C4kIKCAmbNmkVoaChz586tMnR8xowZtaqrtkJDQ3Fzc2PdunUkJSVhbm5uNIxZbj52tra41a3L8VjjleCOx8TQxNv7vGW37t6Ns6MjrZs1w/msYPxfR47Q2MvLMMehiJyfnZUVbg4O1a5ufCI5mcYXmI9425GjONva0KphQ5zO6sH7d0ICvm6u1c57KCK1Z25jiZWLfbWrG2cnpODgYbxqOYCpeUUwodR4VE1ZWWnlf7Cr74yJuSm5p9ON8uWnZWNqYWYIIhYXFBmChA1va0WTAR0u7aBEbjI2tjY4u7qQcNL4mTY+OhYPn+q/i1Z+3yqt7jqt6EgDZTXOJyK3putiwp8hQ4YQHBzMe++9x5YtW4zS//77b1555RU8PT0ZP368YfvAgQMpLS3lP//5D0VFRQwaNMiQ5u/vj5ubG99++22VHnrZ2dlMmjSJKVOmXLBXXOUceGf3ogP46aefyMvLo7iaYVWXKzAwEDc3NxYsWEBaWlqVtMLCQubNm4etrS1dunSpVb3m5ubcdtttbNy4scrw4YyMDObMmUNMTAzu7u74+/uzePHiKkODi4qKeOmll3j66acvesyVb6Mqe3Pm5+eTl5eHj49PlSDh33//TWRkJMBln8fK32Gp4YZ2pi0DBgxgy5YtRERE0LFjR6NhzHJzCg0KYt/Bg8Sd9XccdeAACadP07ldu/OWC1+/nrkLFlQZ1r57/34OHjtGn65dr2qbRW4mHXx92B8XR1xaumHbvthYEtIz6NykyXnLhUdF8eWWbZSc9Xm+52Q0B08l0qd1q6vZZJFbjmvrRqQfjSc3Kd2wLe1IPHlJmbgF+lZbxtbdGUtHG07tOUxJ0Znnt5KiYhL3HsXczgrbes6YWVpQt6U3qQdiyUk88zybn5pFyt/RuLT0MvRIPPrrb+VBws4tFSQUOUfrdkEc/esgSQlnnmmP/HmQlFOnCQitfni+u0d9HJwd2btlB0WFZxbiKyos4vdtO7G1t8O9Yf0a5xORW9N18Xre1NSUjz76iMcff5zx48fTp08fQkNDMTMz448//mDp0qU0aNCATz75BDu7M+uVNmjQgJCQEDZs2ECbNm3wPqu3kIWFBS+//DKTJ0/m7rvvZtiwYVhZWbFgwQLi4+N59913qwSvzhUcHIy9vT3Tpk0jLi4OJycnduzYwfLly7Gysjrv8ODLYWlpyeuvv86kSZMYMmQIw4YNo0GDBqSkpLB06VKOHDnC1KlTLyng9eyzzzJ8+HCGDx/OqFGjsLe356effiI3N5dJkyYB8PLLLzNu3DiGDh3Kvffei7OzM+Hh4fzxxx88++yz1KkY1nk+le2aN28eycnJDBo0iKCgIBYtWoS9vT2+vr4cPnyYBQsWGIKKOTk5ODk51fp4KlXOlbhu3ToaNmxInz59DPUNHDiQr776im3btvHf//73kvchN5Y7w8LYFBnJ1FmzGNizJ4VFRSxdt47G3t50bd8egMTkZA4eO4Zf48bUcy3vOTG4d2/enzOH/37+OR2CgkhKTWXZ+vUEtWxJ15CQa3lIIjeUO9sEsfnwYf4THs6AwAAKi0tYFhWFr5srXZqVv3xLzMzk0KlEmtevR72KHrx3tmnDh2vWMn3lKkJ8fEjOzmJ51H4CvTzpcs5LOxG5PJ5d/Tm99yj75qzCo4s/pcXF5fMPetTFvU15QD8vNYvMk6dxbOSOjYsDJqamNBnUkb9/2MDvn4ZTv10zysrKSNx9mLykDPyGd8W04gWub7/2ZBw/xb45q2jYuSWmpmbE/fYXphZm+PQpf2mXezqd03uPYWZjgX3DuiTuPWrUznrB53+5IHKz69q/J79v28mX73zMbX1vp7ioiC0rN9DQx4ugjuXXUerpZKKPHMe7qS8u7q6YmpoycNQw5n3yJZ+/+QFtu4ZSVlrK7s07SDp1mmHjR2FW8R24pvlE5NZz3Vz9rq6ufP/99yxZsoRFixYxc+ZMiouL8fb2ZuLEiYwcORIHBwejcoMGDSIyMtKwiMnZ+vXrh5OTE59++imffPIJpqamNGvWjE8//ZTbb7/9ou2ZPXs27777Lp9++imWlpb4+vry/vvvExUVxTfffENycjKurtUPz7hUYWFhfP/993z55Zf89NNPpKam4uzsjL+/P6+88godOlza29YmTZowf/583n//ff73v/9hampKYGAg//3vfw1DmYODg5k3bx6zZs3iyy+/pLi4GF9fX95++22GDBly0X106tSJ/v37s2HDBrZv306fPn2YMWMG06ZNY+HChRQWFuLh4cEjjzxCkyZNeOqpp9i+fTt9+/a9pGOC8hWfJ0+ezJw5c3jzzTfx9vYmNDQUgICAAHx8fEhISDjvvIty83FycOCNSZP4etEiflq+HCsLC0ICAxk1eDAWFcOH/z56lE+/+47HR482BApD27Th6fvv55c1a/h60SKcHBy4s1cv7urTp0YL94hIOUcbG167cxDfbPuNBbt2Y2VuTvtGjRjVMRSLiiDCgYRTfBaxkcd6dDcECkMb+/JUr578+vvvfPvbdpxsbBgYFMjgNm10DYpcYZb2NgQ+3J9j4ZGcXLsXM0tz6rb0xrdfe0zNy6/TzBOJHPp5C82HdcHGpfwZ3LV1IwIe7Ev0+t85saZ84S/7hnVpPS4Ml+aehvqt69gT9NgATqzcRezm/VAGTj718O3X3lBXxvFTAJTkFXHoZ+MRRaBAodza7BwdGD/laZbPW8y6JSuwtLSkZXAAfYcPMiwycuLQMRbP/YEhD96Hi3v5M22rdoE88NwENvy6krULwwFo0MiTMZMeoXlAS0P9Nc0nIrcek7KrsXyvyHWif//++Pn58eGHH152XZkVK0OLyPWrZOOGa90EEbmIx/0LrnUTRKQGxjfRi3aR612Y962xSnzarKuzxkGdpyZePNMtSK/o5aYVGRnJsWPHuPvuu691U0RERERERERErnvXzdDjm1FhYSEZGRk1yuvk5ISlpeVVbtGtYcmSJWzYsIGtW7fSokULumohChERERERERGRi1Kg8Crau3cvY8eOrVHeb775xjC3nlweMzMzNm3ahK+vL++++y4mJibXukkiIiIiIiIiItc9BQqvohYtWvDll1/WOK9cGYMGDWLQoEHXuhkiIiIiIiIiIjcUBQqvIicnJzp37nytmyEiIiIiIiIiInJRWsxEREREREREREREFCgUERERERERERERBQpFREREREREREQEBQpFREREREREREQEBQpFREREREREREQEBQpFREREREREREQEBQpFREREREREREQEBQpFREREREREREQEBQpFREREREREREQEML/WDRAREblSHvcvuNZNEJGLmF2337VugojUQCTF17oJIiJyDahHoYiIiIiIiIiIiChQKCIiIiIiIiIiIgoUioiIiIiIiIiICAoUioiIiIiIiIiICAoUioiIiIiIiIiICAoUioiIiIiIiIiICAoUioiIiIiIiIiICAoUioiIiIiIiIiICAoUioiIiIiIiIiICAoUioiIiIiIiIiICGB+rRsgInI5Tqek8M3ixfx1+DAAbVu3ZsyQITg5OFyRcvsPHWJ+eDgn4+KwtbamY3AwIwcOxNrK6uockMhNID81i2MrdpJx7BQALi088e0fgqW9zRUpV9N86UcTOLl2L9kJqZhbW+Dq74NPn7aYWVpcqUMVuWFd7fvn73//zaKVKzkWE4OpqSnNfHwYOXAgzXx8quR76Z13OBodbbSfDm3a8OxDD13GEYrc+NKSUlgx/xeOHzwCgF9gK/qPGIyd44Wv05qWq2m+k4eOsWbRMuKOx2BjZ0PL4AB63tUfOwf7K3WoInIdqVWg8MUXX2Tx4sUXzNOrVy8++eSTGtc5ZswY4uLiWL9+fW2aQmFhIWlpadSrV69W5S7HrFmz+Oijj1i3bh2enp5XtO7Y2Fh69erFkCFDePvtt6vNM2bMGCIjIzl48OAV3feVFBMTg5eXV63KVB77k08+yVNPPfWP7FNuDlk5ObwxcyYlJSXcGRZGaWkpS9etIzo+nreeew5z8+o/4mpabv+hQ7z50Uc09vJi1J13kpKezvKICI5GR/PvSZMwMTH5Jw9X5IZQlFtA1JyVlJWU4tnNn7KyMmI37yfnVBptJgzE1MzsssrVNF/60QT2zV2FvUddfPu1oyAjl/htf5Edl0LgI/11/cot7WrfP/86fJi3P/0Uz/r1uXfQIEpKSli1eTOvf/ghb0yaRNOKYGFZWRmxiYm0DwwkNCioyr7cXFyu6jkQud7lZucwd/rHlJQU07VfT8rKStmycgOJsfE89sozmJ3nOq1puZrmO37gMF+//xnWNjZ0H9gbE1MTflu9kWMHDvPIS5OwsbP9x86JiPwzLqlH4ZQpU6hTp061aQ0aNKhVXY899hh5eXm1KhMXF8eDDz7Io48+yt13312rspejd+/eeHt746IHl2o99NBDuLm5nTfQeT4uLi5Mnz4dPz+/Wu/zk08+YfHixaxZs6bWZeXGF75+Panp6bwzZQqe9esD0LRRI/7z8cdE7NhB2G23XVa575YsoW6dOrw+aRKWFuU9kFzr1GHOTz/x+99/E9yq1T9wlCI3lrgtf1KQkUu7pwdj6+4MgIOnG/vnriZxzxEahFT/WV/TcjXNd2zFTqyc7Qh8uD9mFuWPO1ZOdhz9dTtph+NwaX5lX/iJ3Eiu9v3z60WLqOvszH+eew4rS0sAunXowDP/+Q8/LlvGy08+CUBSaioFBQWEBAbSrUOHq33YIjeUrasjyEhL58l/P497w/LrzcO3EV+/9yl7tkYS0r3zZZWrab5l3y/CxMSUh1+aSN16bgC0ahvIx69NZ+OyNfQbMfiqngcR+edd0hyFYWFhDB48uNp/HWp5k7/tttsICwurVZnY2FhOnDhRqzJXQosWLRg8eDC2tnprUp0tW7ZcUjlbW1sGDx5MixYtal32t99+o6Sk5JL2Kze+rXv20KpZM8OXFYDAFi1o4O7Otj17LqtcYVERjvb29Orc2RAkBGjZtCkAJ+PirvThiNwUkqKO4exb3xDEA6jTtCE2bo4kRR2/7HI1yVdSVIylvTX1Q5obgoQATr7loxByElIv8yhFbmxX8/6ZnZvLybg4OgYHG4KEAM6OjrRs2pSDx89czzEJCQB4/IMjhERuFPt27MHXr6khiAfQtLUfdeu7s2/H3ssuV5N8acmpnI5LoE3nEEOQEMCtQT38glqzd2vkFTlWEbm+aDETEbkhZefmcjo5mcbVDDv39fLieEzMZZWztLDgpQkTuLtv3yp5TsTGAhoSJVKdorwC8lOzsfeoa5Rm36Au2fEpl1WupvnMLMzxv78P3j2qDmWsDBBaOWtOJbl1Xe37p621NR+8/DIDevY0ypeVnY2Z6ZmvH+cGCvMLCmp/QCI3obycXNKSUmjoY9z7vaG3JwnRsZdVrqb5MtMyAKjnWd8on4u7K7nZOWSkptX8wETkhnDVAoU9e/bk//7v/1iwYAG9evWiTZs2jBw5ku3bt1fJN2bMGHqe9SBRWFjIf/7zH3r16oW/vz/du3fnjTfeICOj/ENq0aJFjB07FigfAn32cNWMjAymTp1K165d8ff3p3///nz99deUlZUZ8syaNYvg4GCOHDnCAw88QJs2bejatStffPEFZWVlzJkzhx49ehAcHMxDDz1EbGxslbJ+fn5VtmVnZ/PWW2/Ro0cPgoKCGDRoEAsWLLiyJ/M8Fi1ahJ+fHwcOHODZZ58lJCSE4OBgJkyYUKWNUH5eZ82aRZ8+fQgMDKRv377Mnj27Sm+8goICPvjgA3r27Im/vz+9evVixowZFBYWGu1z1apV9OzZk6CgIF588UXD72Hx4sX4+fmxY8cOAJKSknjjjTcMv8927doxduxYdu/ebagzNjYWPz8/Zs2aVeXnJUuW8MEHH9CtWzcCAgIYPnx4lb+fnj17EhkZSVxcnKH8M888g7+/P5mZmVWOPysri4CAAP773/9eobMv11pqejoALk5ORml1HB3JzcsjJzf3ipVLSkkhYscOvlq4EK8GDQgJDLy8AxC5CRVmlF87lo7GPe8tHW0oySuiOK/QKK2m5S61/vy0bBL3HOHoskhs6zlTt5V37Q5M5CZyte+fpqamNHB3N8p3Mi6OQ8eP49e4sWFbbEIC1tbWfLNoEWOfe45xzz3HU2+8wdaznhNFbkWVATrHOs5GaQ7OjuTn5pGXazx9V03L1TSfpVX5qJqCfOMgfm52DgBZGVk1OiYRuXFc0hyFmZmZpKZWP2zHyckJs4qJxLdt28avv/7KmDFjcHNzY968eYwfP565c+eed4jyv//9b5YtW8bYsWPx8vLi8OHDfP/995w8eZK5c+cSEhLCY489xmeffcaIESNo164dALm5uYwePZqEhATuu+8+6tevz/bt23nrrbc4ceIEr732mmEfRUVFjBs3jrCwMPr06cPChQt599132b59O3Fxcdx///2kpaXxv//9jylTpvDtt99W29bCwkJGjRrF4cOHueeee2jRogUbN27k5ZdfJi8vzxDQvNoef/xxmjRpwuTJk4mJieHrr7/m9OnT/Pzzz4Y8TzzxBJs2bWLQoEE88MADREVF8d5775GSksKUKVMoKSnh0UcfZc+ePdxzzz00adKE/fv389lnn/H333/z6aefVpn4/f/+7/8YPXo09vb2BAYG0qlTJ55//nnat29vKJ+fn8+oUaPIyspi1KhR1KtXjxMnThj+DtauXUvdusa9QirNmDEDGxsbHnzwQYqKipg7dy6PPvooERER1KlTh5deeon33nuPtLQ0Q9A4Pj6e8PBw1q5dW2X+ytWrV1NYWMigQYOuzi9B/nGVvQ4szxrWVKlyqHBBURF2V6BcVk4OT77+uqHcA8OHVxmOLCLlSgqLAKoM961kWjEpeklRMeY2lpdU7lLqL8otYOc75fdDU0szmgwKrba8yK3in7x/nl3244rn6cFnTTkUk5BAfn4+Ofn5PDlmDDl5eayIiGDmV19RUlKieQvlllWQnw+AhaXx86Z5xbaiwkJsbG0uqVxN87k3rI+VjTV/7Y6i2x1hhu+DRYVFHPmzfIHN4qKi2h+giFzXLulJeciQIedNW7JkCS1btgQgPj6ejz/+2DAH4eDBg+nbty/vvfce8+fPr7b80qVLGTp0KM8884xhm62tLZs3byYnJwcvLy86d+7MZ599Rps2bRg8uHzy1Dlz5nD8+HEWLlxo6N1233338f777/P5558zYsQIwxx4RUVF3HnnnbzwwgsAhISEMGDAAPbu3cvatWsNi5XExcWxbNkyCgsLq30o+vnnnzlw4ADvvvuuIQA1YsQIRo8ezezZsxk9ejSmpld/dLe/v7+hNx6UB01//PFHTpw4gY+PDxs3bmTTpk1MnjyZxx57DIB7772XoqIivv/+e5544gnWrl3Lb7/9xv/+9z+6du1qqCswMJBXX32VdevWVZlLcsCAAUyaNKlKO55//nm8vLwMv5Ply5dz8uRJozq9vLx47bXX2L17N3369DnvcZWVlfHzzz8b5oT08PBg8uTJrFmzhnvuuYewsDC+/vprCgoKDPts0qQJzs7OrFixokqgcPny5TRu3JhWWnziplHZU7i2K5deSjkTExMmPvAAxcXFrNy4kTc/+ohJDzxAaJs2tdq3yE2vsgd/bRcUrmm5S6nfBFqM7E5pSSnxv/3FvrmraTmyO67+PrVspMjN4Z+8fwIUFBYyffZsTsbFcVefPrRq1syQFnbbbZSWltK3WzfDttvatePZt97iuyVL6NK+/T/yLC1yvTHc7mp9ndasXE3zmZmb07lPDzb8spIFn39LtwFhlJWVsnbxcgoLynvw6xoVuflcUqDwnXfewdXVtdo0b+8zw3kaN25cJbjk4uLC4MGD+e6770hJSam2N1n9+vVZvnw5/v7+hIWF4ejoyKRJk4yCUudavXo1zZs3x83NrUpvx7CwMD7//HM2bNhQZbGMs9vl4+MDQNu2bausaOzp6UlZWRnJyck0bNjQaJ8RERG4uLgwcOBAwzYTExOmT59OcXFxrT/YL1X//v2r/FwZqE1OTsbHx4eIiAhMTU0ZPXp0lXwvvPACjz/+OHZ2dqxevRoXFxdat25d5fx1794dMzMzIiIiqpyzkJCQi7brjjvuoGPHjlVWyD57GHNuNcNazta9e/cqC8dU/v6SkpLOW8bCwoK+ffuyaNEiMjIycHJyIjU1le3bt/P4449ftM1y47C2sgKq/k1VKqx4s2lrbX1Fytnb2tK5bVsAOgYH8+xbb/H1woUKFIqcw6xiiFJpkfEiU6XFxQCYWxv3XqhpueJLqN/Cxgq3QF8AXP0bsWfGEo6GRypQKLesf/L+mZOby9uff86hY8e4vWNHRp71zAzQu0sXo7osLSzoFhLCzytWEJOQQCMPj5oclshNxcq6/HorquZ6K67oXW9dzXVa03K1qf/2O/uSn5vHb2s3sS+yfNEiv6DWdO3XkzULl2FrX10/YhG5kV1SoLBt27Z4ehpPfHquphWrg56tUaNGlJWVERcXV22g8PXXX2fSpElMmTKFV155hTZt2tC7d2+GDh2Kg4PDefcVHR1Nfn4+nTp1qjY9oWKy5EpnBzrNK4YrndueyiHUpaWl1dYZFxeHt7e3UUDQ4xIeaKwqHr6KK77oVKe4uNiQ72xnB+LgzJCQyvkHK8+1vX3Vydvd3NxwcytfvSo6OprU1NQan78LDRk+m4mJCbNnz2bv3r1ER0cTHR1NUcXD5PnOayWXcxaLqDyui5W78847mT9/PmvXrmXo0KGsXLmS4uJiDTu+ybhW/N2nnzMfJUBaZia2NjaGLzVXolwlSwsL2rZuzcqNG8nMzsbRXosiiFSyciq/HgqzjOdNKszMw8zGArNqhjnVtNyl1l/JzMIclxZexG/7m6KcfCzsjL9kidzs/qn7Z0ZWFm998gknYmMJu+02xo8YUeOX6E4Vz/wF1QQxRG4FTnXLr7fq5v/LSs/E2tYGS2vj67Sm5WpTv4mJCXfcO4Rud4SRkpiEo4szdVxdWLMoHBNTU5xc6hjVISI3tqs6SY9FNXN4VQavKoNw5+rUqRMbNmww/Nu6dSvTpk3jq6++YtGiRUbBo7PrbdeuHU8++WS16e7u7lV+rm7/te0BWFJScsV6DTpVTPick5Nz3jyZmZk4Ojoabb9Yd++zFyy5UB4fH58qczme7dz91qSL+bFjxwxDnLt06cIdd9xBy5YtKSsr44knnrho+Uvtxt6uXTsaNmzIihUrGDp0KCtWrMDf359GjRpdUn1yfbKztcWtbl2Oxxqv+nY8JoYm3tUvVlDTcnGJibz1yScMDgujz1lD56F8riUTExMszDXPmcjZzG0ssXKxr3Z14+yEFBw8qh+NUNNyNc2Xm5TO/q/W4Nk1gIYdW1TJV1JQBCZgYl79c4jIze5q3z8B8vLzDUHCO26/nXFnTQdTKTU9nTc//pjObdsy7JzRMXGJiQC41fDFtMjNxsbWBmdXFxJOGl9v8dGxePgYrz5em3K1qT9qxx4cnBzwbdEMe6czHXdOHDxKw0ae1c5zKCI3tqs6oUB0dLTRtpMnT2JmZlZtj8TCwkL++OMPsrKyGDBgAO+++y5bt27l+eefJyEhgfDw8PPuy8PDg5ycHDp37lzlX+vWrcnMzMTGxua8ZS9Vw4YNiYmJMdq+ceNGXnjhBZKTk2tcl6WlJV5eXhw5cqTa9Ly8PKKjo2l21rwutWlnSkqKURDyzz//5Nlnn+XIkSN4enqSnp5Ox44dq5y/kJAQ0tPTqwwBrqkvvviCzMxMFi1axMyZM3nyySfp1asXeXnGPUGuJBMTE+644w62b99OfHw8u3fvVm/Cm1RoUBD7Dh40fKEAiDpwgITTp+lcsdDRpZar7+pKbl4ea7ZsqdLTNyklhe2//07Lpk2xqWbIh8itzrV1I9KPxpOblG7YlnYknrykTMMQ4MspV5N81i6OFOcXkhB5kNKzXpblp2WTvP8ETr71MbfSFxu5dV3N+yfAnJ9+4kRsLP179Kg2SAjg4uxMbl4e67dtI/esZ8Pk1FQiduygdfPm1KnmBbnIraJ1uyCO/nWQpIQz19uRPw+Scuo0AaFtL7tcTfNtWxXB0u8WVul8cvCPP4k+fIzQnsbTB4jIje+qBgr37dvH77//bvg5OTmZX3/9lY4dOxp60J0tLS2NESNG8Pnnn59poKkpAQEBhv9D9UOCe/bsyYEDB9i4cWOVOj/99FMmTpzI4cOHr9hxVerWrRvJycmsWbOmyvavv/7asDJvbfTq1Yvo6GhWrFhhlPbjjz9SWFhI7969a93O7t27U1payoIFC6psnzdvHitWrMDV1ZWePXuSnp7OvHnzjPY7efJkfvvtt4vux9TUtMrvJD09HRsbmyrzOxYWFvLjjz8CNevpWNt9Vho0aBBFRUW88847lJWVGc3jKDeHO8PCsLOxYeqsWSxbv55Fq1bxwdy5NPb2pmv79gAkJiezKTKSxLMC9zUpZ2ZmxgPDhhEdH89rM2awatMmfl6xgpfefRdTExMeGDbsmhyzyPXOs6s/5jZW7JuzitgtfxId8Qd/z9uAvUdd3Ns0ASAvNYvEvUfJS82qVbma5jM1M6XJwI7knkojavYK4rf/TfT63/n902VgakKTgaH/7EkRuc5czftn7KlTbN65E1sbG3w8PdkUGWn0r9JD99xDSno6r3zwAcsjIli4ciUvvfsuZqamPDh8+D97UkSuM13798TG1pYv3/mYras2sHHZauZ/+hUNfbwI6lgemE89nczv23aSejq5VuVqle+OXiTFn+K7GV+wM2IbaxYuY97HX9LUvwVBndr/cydERP4xlzRubu3atRcMglWuQGtpacnDDz/MuHHjsLa25ocffqC0tJTnn3++2nL16tVj0KBB/PDDD+Tl5REcHEx6ejrfffcdrq6uhmBP5b5//fVXysrKGDJkCI8++iirV6/miSeeYOTIkTRr1ozdu3fzyy+/0K1bN7qdtZralTJy5EgWLlzI5MmTGTVqFL6+vkRERLB161beeuut8w6vPp8JEyawceNGnnvuOTZv3kxQUBAlJSVERkaycuVKbrvtNu65555at7Nnz5506dKFt99+m8OHDxMQEMDevXtZsmQJTzzxBM7OzgwfPpzFixczdepU/vzzTwIDAzl06BDz58+ndevWVVYQPh8XFxciIyP56aef6NKlC926dWP9+vU8+uij9OvXj6ysLJYsWWLoaXqhYdY15eLiws6dO5k7dy7t2rUjKCgIKF/4pFmzZixfvpzQ0FDq1at32fuS64+TgwNvTJrE14sW8dPy5VhZWBASGMiowYMNUx/8ffQon373HY+PHk29irlJa1IOoFuHDliYm/PL2rV8s2gRVlZW+DdvzsiBA2movymRalna2xD4cH+OhUdycu1ezCzNqdvSG99+7TGtGO6beSKRQz9vofmwLti4ONS4XG3y1Qtugqm5KTEb93EsfCdmluY4N2lAo95tsXUzflkpciu5mvfPvytGx+Tm5fHpd99Vu/9uHToAEBIYyL8efpjFq1fz/S+/YGlhQatmzbjvzjvx0H1WbnF2jg6Mn/I0y+ctZt2SFVhaWtIyOIC+wwdhXnG9nTh0jMVzf2DIg/fh4u5a43K1yde6fRDDHx3L5uVrWfHjEuwc7enSryfdBoRpxWORm9QlBQqnTZt2wfTKQGGbNm0YMGAAn3zyCVlZWbRv355nn322yurD55o6dSpeXl6Eh4cTHh6OjY0NnTp1YvLkyYb5CZs0acKYMWNYtGgR+/btIzQ0FG9vb+bPn8/MmTNZuXIl8+fPp2HDhkyYMIFHHnnkqnyIWVtb8+233/Lhhx8SHh5OVlYWTZo04cMPP7ykHmxOTk789NNPzJkzhzVr1rBixQpMTU3x9vbmxRdf5L777jMsvFIbpqamfPLJJ3z88ccsXbqUX3/9FW9vb1599VXuvfdeoDyo+9VXX/Hxxx+zatUqfv31V9zd3bn33nt54oknajR0+7nnnuO9995j6tSpTJ06lZEjR5KZmcmCBQt48803cXV1pU2bNnz00UeMHDmS7du3c//999f6eM42fvx4Dh48yPvvv8/dd99tCBRCea/C999/v8qq1HLzaVivHlMusKJ1j9BQeoQa9x66WLlKndq2pVPb8w/vEBFjtm5O+N9//h7w9do2pV5b4wXPLlautvncAnxxCzj/cGeRW9nVun/27tKl2tWMz6d9YCDtAwNrnF/kVuJa352xkx89b3rbLh1o26VDrcvVNl9gaFsCLzDcWURuLiZlZWVlV6Pinj174uHhwbfffns1qhe5qNmzZzNr1iy2bNlS7VD32sqMiroCrRKRq+mRlJXXugkichGz6/a71k0QkRqIdC6+eCYRuabCvG+NAG7arBlXpd46T028KvXe6NRXWG5KhYWFLFq0iLCwsCsSJBQRERERERERudld0tBjqZnU1NQaLdhhbW2Ng4PDRfPJxSUmJjJt2jSOHDnCyZMneeedd651k0REREREREREbggKFF5Fw4YNIy4u7qL5hgwZwttvv/0PtOjm5+TkxK5duyguLua1114zrJgtIiIiIiIiIiIXdtUChevXr79aVd8w3nnnHQoKCi6az93d/R9oza3B2tqaLVu2XOtmiIiIiIiIiIjccNSj8Cpq167dtW6CiIiIiIiIiIhIjWgxExEREREREREREVGgUEREREREREREpCYmTZqEn58faWlpRmkvvPACfn5+PP7440ZpOTk5tGrVimeeeeafaCYAMTExtS6jQKGIiIiIiIiIiEgNhISEABAVFWWUtmPHDiwsLNi5cyclJSVV0qKioigpKSE0NPQfaecnn3zCgw8+WOtyChSKiIiIiIiIiIjUwPkChSdOnCAhIYGBAweSlZXFn3/+WSV9z549AHTo0OEfaedvv/1mFKysCQUKRUREREREREREaqBZs2Y4Ozvzxx9/VNm+fft2TE1NeeyxxzAxMeG3336rkr53717c3d3x9fX9J5tbawoUioiIiIiIiIiI1ICJiQnt27dn3759VbZv376dFi1a4OPjg5+fH9u3bzeklZWVERUVZehNWFJSwv/+9z/69u2Lv78/Xbp04bXXXiM1NdVQZseOHfj5+bF48WIGDRpEQEAAU6ZMASAyMpJRo0bRvn17goODGTlyJOvXrzeU7dmzJ5GRkcTFxeHn58esWbNqfHwKFIqIiIiIiIiIiNRQSEgI6enpnDhxAigPBEZGRhrmH+zYsSN79uyhsLAQgKNHj5KRkUHHjh0BmDx5Mu+88w7NmzdnypQp9OvXj59//pl7772XzMzMKvv697//TYcOHfjXv/5Fr169OHbsGI8++ihlZWVMnjyZ5557jry8PCZMmMCuXbsAeOmll2jcuDF16tRh+vTp9O7du8bHZn65J0dERERERERERORG0qtXrwumr1u37rxplT0D//jjD3x8fDh06BApKSmGQGBoaChfffUVe/bsoWPHjuzdu9dQbtOmTaxatYqxY8fyf//3f4Y627Vrx6RJk/jss894/vnnq2x/5ZVXDD9/8cUX5Obm8tFHH+Hi4gLAHXfcwciRI/n7779p3749YWFhfP311xQUFDB48OBanRcFCkVqyDEw8Fo3QUQu4kd0nYqIiFwJYde6ASIiFeo8NfHqVLzk10su2qJFCxwcHIiKimLw4MFs374dMzMz2rdvD5T3ODQzMyMyMtLQu7B+/fo0atSIL7/8EoBHH320Sp39+/dnxowZrFu3rkqgsHLxlEr169cHYOrUqTz00EP4+/tTp04dVq1adcnHczYFCkVERERERERE5JZyoR6DF2Nqakq7du0MC5ps374df39/7O3tAXBwcKBly5bs3r0bgN9//90wLDk2NhZHR0dcXV2N6m3SpAmbNm2qsq2y12Clfv36sWbNGpYvX87y5ctxc3Oje/fuDBkyxBCovByao1BERERERERERKQW2rdvz4EDBygoKGDXrl2GYceVQkNDiYqKIjU1lePHjxuGK5eVlZ23ztLSUiwsLKpsMzMzq/KzhYUFM2fO5Ndff+Wpp56iYcOGLFq0iFGjRjF79uzLPi4FCkVERERERERERGqhQ4cOFBUVsWLFCjIzMw09Bit17NiR3NxcwsPDKSsrM6R7eHiQmZlJcnKyUZ3Hjx+nQYMGF9xvfHw8u3btws/PjyeffJKffvqJDRs24OPjw5w5cy77uBQoFBERERERERERqYXWrVtja2vLjz/+iIWFBe3atauS3q5dO8zNzVm8eDEeHh54eXkB0LNnTwA+//zzKvnXrl3L8ePH6dGjxwX3+9lnn3H//feTmJho2Fa/fn3c3d0xNT0T5jM1NaW0tLTWx6U5CkVERERERERERGrB3Nyc4OBgtm7dSvv27bG2tq6SbmdnR0BAAHv37mXIkCGG7d27d6dXr1588803JCYmEhoayokTJ5g3bx5eXl5Gi5yca9SoUfzyyy+MGjWKESNG4OTkxPbt24mMjOTpp5825HNxcWHnzp3MnTuXdu3aERQUVKPjUo9CERERERERERGRWqpckfjc+QkrVQ43rpyfEMDExIQZM2YwceJEDhw4wLRp01i9ejUjRozg559/xtHR8YL79PPz48svv6RRo0bMnTuXqVOncvjwYV555RUmTJhgyDd+/Hh8fHx4//33WbhwYY2PyaTsQrMoioiIiIiIiIiIyC1BPQpFREREREREREREgUIRERERERERERFRoFBERERERERERERQoFBERERERERERERQoFBERERERERERERQoFBERERERERERERQoFBERERERERERERQoFBERERERERERERQoFBERERERERERERQoFBERERERERERERQoFBERERERERERERQoFBERERERERERERQoFBERERERERERESA/wdJVPF+uRn/ZQAAAABJRU5ErkJggg==" }, "metadata": {}, "output_type": "display_data" @@ -905,12 +905,12 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 52, "outputs": [ { "data": { "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAABS0AAAN2CAYAAAAc7KxxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3QU5dfA8W/appdN75UQSgo19F6liPQmRVFAQUARVFRAUKQIiogCgiBNQOmE3qt0CC2QBFIJKaSQXjb7/hF3JCQo+qqgv/s5x6PuzszObnZ2Zu5zn3v1tFqtFiGEEEIIIYQQQgghhHhG6D/tHRBCCCGEEEIIIYQQQoiHSdBSCCGEEEIIIYQQQgjxTJGgpRBCCCGEEEIIIYQQ4pkiQUshhBBCCCGEEEIIIcQzRYKWQgghhBBCCCGEEEKIZ4oELYUQQgghhBBCCCGEEM8UCVoKIYQQQgghhBBCCCGeKRK0FEIIIYQQQgghhBBCPFMkaCmEEEIIIYQQQgghhHimSNBSCCGEEEIIIYQQQgjxTJGgpRBCCCGEEEIIIYQQ4pkiQUshhBBCCCGEEH8prVb7h9cpLS0FQKPR/Kn1hRBC/LfoaeVsIIQQQgghhBDiTygtLSUiIoLz58+jp6eHsbExc+bMYd26dfj6+j52HT09PfT09H5z20VFRahUqr9jt4UQQvwLSKalEEII8T9Ao9FQUlLytHdDCCHEv1hycjI7duygqKhIeWzv3r0MGDCAZcuWcefOHapWrcrYsWOxtbUtt+7DuTL6+voVApaFhYXs3buX6Oho5s+fT7169ZgwYQIpKSl/75sSQgjxzJJMSyGEEOIZlZycTG5uLhEREWzcuJFly5Y97V0SQgjxP2zx4sV89913/PTTT3h4eADQoUMHcnNz+fzzz/H398fCwgI9PT0MDAyU9UpLS9HXL8uXSUlJITo6GoD69etjaGgIwK1btxgwYADm5ub4+/vj6elJvXr1aN68ORYWFv/wOxVCCPEsMHzaOyCEEEL8r8vNzcXc3Fz5/1OnTvHJJ58QFRXFSy+9hI2NDQYGBmRmZmJjY6Msp9VqlSl2upvBR+Xn51NQUMD169dZt24dNWvWZODAgVhaWv7db0sIIcR/TM+ePWnZsiWOjo5oNBoMDAwwMTHBzc2N+vXrl1tWN7Vbq9Wir6/PnTt3mDlzJidPnsTIyAhTU1OqVavGyJEjqV+/PpaWljRr1oxdu3YxcOBAhg8fjlar/d0p5EIIIf67JGgphBBCPEUfffQRmzZtYtu2bXh5eaHValmyZAmpqalMnjyZli1bYmFhQe/evbGysiq37qOZLA8ePCi3zLlz53jvvfdwcnLCzMyMuLg4fH19JWAphBDid2m1WiXgqGNvb4+9vX255by9vbly5Qqff/45fn5+1K1blxkzZpCZmcnixYuxsLAgOTmZd955h7S0NKZMmYK7uztXrlxhw4YNTJ8+ncWLF2NnZ4darcbU1JTatWsDSMBSCCH+x0nQUgghhHgKdFPlunXrRuPGjZUMytTUVO7fv0+tWrXo27dvuaDko7Kysvjuu+/YtWsXGRkZ+Pv706lTJzp16oStrS22trY4ODhw4cIFevXqxccff6xMwxNCCCF+S2WNcjQaDZcuXSIjI4NatWrx8ccfs2fPHoyMjFi8eDF9+vShbt26mJubExERQW5uLhYWFpw4cYKbN2+yYsUKJSDZsGFDmjVrxgsvvMDGjRsZPXo0Hh4eFBUVSbBSCCEEIEFLIYQQ4qnQZa6EhISUuzlzdHTE29ube/fukZSUhEajwc3NjXnz5pGTk8O0adPQaDQUFRXx2WefsW/fPjp37oyTkxOnT5/mk08+4dKlS3z22Wc4OjpiZWWFSqXilVdewdHR8Wm9XSGeGbrssSfpXCzEf42urIhWq8XAwKDcMfDwVOzc3FwiIyNJSUnBx8cHf39/ADIzM5k1axZxcXHs27ePjh07Ym9vz+rVqxk7diyDBw/GyMiIKlWqsHv3bjIzM7G3t+fs2bNYWVlRu3Zt4uPjuXnzJleuXCEyMhKA48ePM3LkSDw9PSktLZXmO0IIIQAJWgohhBB/O41GA1Aua/LRoElqaipqtZrPP/+cc+fO8eDBA9q2bUv16tXZvHkzx48fJz4+nmnTpmFgYMDZs2f58ccf+eSTT2jXrh1WVlYMHz6c5cuXM2vWLLp160azZs1wc3OjoKBAybCU+mDi3yonJ4fU1FR8fHzKNfX4PRqNplzdVwlWin+zI0eOsHbtWoYOHUqjRo0eeyw87rf+0bIijy5fVFTE7NmzCQsLIy8vD0tLS0xMTOjduzcjRozA0tKS2rVrEx0dTXFxMR06dKBatWqsXr0aQKnP7O7uTlFREfHx8QQEBJCWlkZqaiq1a9cmPz8fMzMzXFxc8PT0ZOLEiVStWhVDQ0McHR2xsLDg9u3bf+g4F0II8d8kQUshhBDi/0mXuQVUeoP18A1iVlYWBgYGSifUnJwc+vfvT1FREXv27CE1NRV3d3euXr3K2LFjadKkCQC1a9fm1q1bFBQUYGJiwoYNG/Dz86Nnz55AWVZMfHy88jpbt26lSZMm+Pj4AJCYmIirq6sELcW/0v379xkwYAAODg6sXr26wnGmyx4DKgRkHv3/6Oho7ty5g7m5OY0aNfp7d1yIJ/Dw73JKSgrXrl0jJiYGtVpN06ZNsbe3V5ZJS0vjyJEjNGzYsNz3V3cM6OvrlwvMP/qbHxkZyZEjRzh37hwajYYGDRrQp08frKys0Gq1rF27lo0bNzJ8+HDq1KlDTk4OixYtYtWqVfTp0we1Wo2Liwu5ubkkJCRga2uLk5MTNjY23Llzh+zsbCwtLXF0dMTU1JTo6Gjatm2LnZ0dKpWKIUOG0K5dO8zMzLC2tsbW1pb4+HhSU1PRaDTY2dnh6OhIVFQUJSUlqFSqf/aPIYQQ4pkiQUshhBD/0+7evcvPP/9MvXr18PT0/FNBvd/L3NqwYQNbt27l5s2bWFpaUqdOHV5++WVq1qyJhYUFLi4uXL9+ndzcXKZPn86hQ4cYP348Li4uBAcHA+Dq6grAzZs3CQkJISUlhdTUVIYMGUJ8fDwpKSnKDV+jRo1o0KAB+vr6uLi4AHDt2jXq16+vBFeF+Dexs7Pjk08+wdTUtNLnH5c9BnDs2DFOnjxJx44d+eGHH9i5cycajQYLCwuGDh3KwIEDKzS5EuKfpKenR3Z2Nl9++SW7du2iuLgYU1NT8vLysLa2ZsiQIbz44osA1KxZE1NT03KDVLpt6I6BnJwckpOTMTU1Vc4dUDZ49e6775KXl4eXlxelpaXMmzePkydPsmDBAszNzdm0aRMNGjRg6NChyvFWt25dEhMTlSxKNzc39PX1iYyMJDg4GFNTU7y8vIiLi+PBgwdYWlqiVqtxdHRUpn8HBwezZcsW7O3tqVmzZrl9//777zl9+jQLFizAwcEBHx8f4uLiyMvLk6ClEEL8j5OgpRBCiP+80tJS4uPj0Wq1eHt7A79mnxw/fpzJkycza9YsPD09y62n0WiU5X6rIc6dO3cIDw/nwYMH1KxZkzp16ijP7dy5ky+//JLatWszZswYkpKSWLVqFYmJicyfPx8nJyc8PDz4+eefuX37NkFBQXh6emJlZUV0dDRFRUWoVCrc3d0BuH79OiEhIXh4eBAeHo6RkRF9+vTBy8sLDw8P7O3t0dPTo7CwEAAXFxfUajXh4eHK+xbi36hevXqVPl5SUsLNmzc5e/YsKSkp1KpViyZNmigBlsuXL7Np0ya2bt1KlSpVWLBgAXp6eixbtoyFCxfi6elJ586dZSqq+EdoNJoK55OUlBRGjx7NnTt3eOmll2jYsCFmZmbEx8ezePFi5syZQ0FBAa+88goeHh6Ym5sTFxcH/JrdHxsby8qVKzlw4ACpqakYGRlRo0YNRo0aRYMGDTA0NGTWrFlkZGTwySefUK1aNczMzFi6dCkXL14kLS0Nc3NznJycOH78OPPmzaNZs2ZotVplsE3HwcEBtVrNjRs3lMf8/f05duwY6enpuLm5YWVlhbu7O3fu3EGj0dCwYUOqV6/OmjVrCAoKonr16uTn57N//35Wr15Nq1at8Pb2Ji8vDwcHB/bv38/9+/eVJnVCCCH+N0nQUgghxH+SRqNh06ZN/Pjjj0RERGBkZIStrS2NGjVi8ODBVKlSBYCgoCD09fXJyMgAKJcx+eiN5aM3mzk5OUyZMoVjx46hUqnQarVoNBpGjhxJ7969MTc3Z/ny5QQEBPDBBx9gb2+PgYEBoaGh3LlzR3ktXY2+qKgogoKClOzLqKgoiouLUalUuLi4YGFhwZUrV+jfvz9Vq1Zl586ddO/enc6dO1NSUqLUrVy6dCnh4eHMmzcPe3t7XFxclGwXmRounlW6Mgu/FTi8ffs2ZmZmODs7K9NhFy1axMqVK7GwsEBPT4+VK1dSv359xo0bR0hICEFBQUBZtuaMGTOUAQBbW1sGDBjAiRMn6Ny58z/yHsX/tp9//pmVK1fy9ddflwuSf/3111y7do3Vq1crnbUBqlWrRt26denatSvbtm1jwIABSmDx3r17ZGRkoFarycrKYvbs2cTExNCtWzd8fHy4desWq1evZs6cOXz++ef4+PiQlJSEo6MjTk5OqNVqAEaNGlVuH9966y1mz57NqlWrWLVqFVBWp9Le3p4ePXowYsQI7OzscHJy4tatW8p61atXZ8uWLaSmpgJgZmaGt7c3u3fvJiUlBV9fX95++21ef/11hg4dSrNmzSgtLeXatWs0aNCADz/8UFmvY8eOeHt74+Tk9Pf9MYQQQvwrSNBSCCHEf05OTg5fffUVmzdvpmnTpvTs2RMjIyMuXLjAhg0bOH36NF9//TV+fn64uLhgbGxMbGysktWo28bx48c5ePCgcmPWunVrevfurUy5nj9/PocPH2bcuHE0bNiQ/Px8Zs+ezdatW2nWrBl+fn6YmJgQGxvL1atXadq0KUVFRdSvX59WrVop++vj44NKpeLmzZsAWFhY4OXlRUREBHl5ecpNqm4aOUDTpk358ssv2b59O507d1YCltevX2fhwoX4+PhgaGiIjY0Nbm5u7Nu3D6gYiBXin/Jw3Uld3b2HPVxmITk5mZycHNzd3TE2NgZg//79jB49mqFDh/Luu++ip6fHunXr+Oqrr+jXrx/9+/fHxMSEEydOMG3aNPLy8li/fj2+vr4YGBhgZGSkNAdRqVQ4Ozvj4eFBVFSU8vpC/F20Wi0nTpzg4MGD5ObmKpnAycnJbN++neeff57AwEBlWT09PUpKSrC1tWXNmjXKLAEAX19fjh8/TkJCAmq1mjVr1nDgwAGmTp1Kv379lAE2MzMzvvnmGyIjI/Hx8aFdu3bMmzePwYMHU61aNQwMDPD19aVu3boEBQXh5ORE9erV+eqrr0hPT+fKlSskJCSQkZHBsWPH+O677wgJCaFOnTq4u7tz6dIl5XiqWrUqJSUlJCcnA2BqaoqPjw/379/n7t27uLi40KRJEzZt2sRPP/3ExYsXMTExoX///rRv377cNPYGDRrQoEGDf+6PI4QQ4pklQUshhBD/ORs3bmTFihVMnDiRXr16KfXqevToQePGjXnrrbeYPHky8+fPVzIR4+LiyMnJwdbWltLSUpYuXcrOnTtxdXWlRo0a3L59m6+//pr4+HimTJmCSqXiypUrNGnShEGDBimv/d1335GZmYmjoyMAL774IpMmTWLUqFFYWVlhaGiIj48PgYGBNG/enCZNmuDi4oK1tTXR0dHArxkqR44c4cGDBzg4OGBnZ4e7uzunT58GICAggNdee42vvvqKAQMG0L59e/T19dm8eTP29vZMmjQJAJVKRUBAAImJiWRlZWFtbf1P/imEUPxemYX4+Hi++OILTpw4oUwRbd68OYMGDcLX1xd3d3clwwzKptSuXLmSGjVqMHXqVGU7Xl5e5OTkMH/+fPbu3UurVq1wdXUlKysLQBmYsLe3x9nZmVu3blFYWKgER4X4/6isKZQuq9Le3h6AjIwMJWh5/PhxcnNzadmyJUZGRuUyMHWDUbqAZXFxMUZGRvj7+7Nnzx5iYmIICgrC2dmZESNG0L17dwCl3mRERAT6+vrcvn0bgH79+qFWq9mzZw8ZGRncu3ePI0eOsHz5cmrVqsV3332HiYkJ+fn5WFtb06lTJ+V9NW/enJdeeomUlBRUKhU+Pj4cPnyY+/fvK13AAW7duqVk/js5OWFtbU1BQYHy2fj5+TFx4kQZJBDPDI1GQ35+vtIg8Y+sp6+v/7szBIQQ/z8StBRCCPGfkpmZyeLFi2nevDkvv/yy8rjuRrJTp05KlpXuBrJKlSrcvHmT1NRUbG1t2bRpE4sWLeKll15i6NChmJubU1xczBdffMHevXuJjIykdu3a1KhRg7Vr1zJ27FgaN26MVqvFycmJkJAQ5XXbtm2Lk5MT165d4/bt28TExJCYmMjq1as5cOAAGzduxM3NDXt7e6WxgomJCV5eXuTl5ZGcnKxkbHp7e3Po0CHS09OxtbVl9OjRWFlZsX37dr7++muKi4sJDg5m7Nix5er/jR49mtGjR/9DfwHxv+a3Onc/LD4+nvPnz3Pz5k2srKxo1aoV1apVA8oym+fMmUN4eDgjRozAwcGBs2fP8sMPP2BgYMAHH3yAq6srarVaCcAYGBgQGxvLkCFDlP2AsuBo27ZtWbBgAZcuXaJ9+/a4u7sTFxdHWloa9vb2Siaam5sb58+fJy4uDn9//7/zYxL/IyoLzuvr63Pv3j3Onz8PQNeuXXF0dGTp0qXk5eUBZQGQ36MLjAQEBCi1mqFsQA7KGq5t2rSJc+fOkZCQgIODA/r6+sTGxgJgaWlJ79696d27N4mJiWg0GlQqFcuXL2flypUcP36cunXr0qdPH9q1a8cbb7xBaWkpqampbN68GUDJBrW3t6eoqIhbt27h4uKCra0tTZo0wdvbW/k9aN26tTLQpvtsHv63EE9DeHg4hw4dIiYmhsGDBzNo0CAmTpzIoEGDKnw3dWVLgAqBSd1xrlvn/v37mJiYKAMSQoi/hgQthRBC/Ks8PL30YbrpdPv27SM9PZ3nnnsOQMn4ePhGsm3btuXWrVatmtJAAMo6iteqVYuxY8diYmKiLGdra0teXh5xcXHUrl2bYcOGcffuXY4cOcKhQ4coKioCwMnJiS5dujBhwgQMDAwIDg6mVq1a5bK5lixZwrx587h+/TqNGjXCzc2NU6dOkZqaioODA05OTpiYmBAdHU2DBg0wMDBQMkZv3rxJo0aNKC0tZfDgwXTq1AmNRiP1v8Tf6nHByUeDNLrporpjElAaXmm1WqysrEhJSWHt2rV89NFHtG7dmuTkZPbt28eMGTN44YUX0NPTo0uXLoSGhuLg4ACAlZUVzs7OXL58mezsbPT09DA1NUVfX79caQcoC6jY29srU1V9fHzYv38/d+7cKRe09PHxoaSkhKioKPz9/cvtsxAPKy0tVb4fj8uq0mg0SlOo2NhYPD09ad26NZ6enly9epU7d+5gaGiIh4cHEydOxMXFRTnH5Obm/u4+6I4zX19fVCqV0owHYPv27SxYsAAzMzMaNmxIy5YtadSoEY0bN+bu3bsAFBQUsHPnTqpXr06NGjWUdevXr8/333+PSqXCzs6OwMBAvv/+e8LDw3F1dSUxMZGEhASmTJmiZFTqmsv5+voCYGRkxLJlyyrdXyGehoyMDDZu3EidOnWURlK3bt1i/PjxFBYWEhISgo2NDV988QVVqlSp9Lf/4bIlD9Nqtezfv5/c3Fw0Gg2ffPIJNjY2TJkyhRYtWsi5RIi/kAQthRBC/G00Gg0RERF4eXk98bSb32vGoXu8tLSUpKQkrKyssLS0pKSkBCMjI+XGz9TUtNzyv6VatWrk5+crAY433niDMWPGkJyczK5duzh58iTHjx8nMzMTfX19kpKSAHBzc2PhwoXk5ORw9epVkpOTKSoq4qeffmLZsmX07NkTCwsLZs+ezfPPP0/z5s2BsqBObm4u+vr6GBkZAeDu7k5WVhYRERE4ODhgZWWFiYkJd+/eVQIs3bt3p02bNkoTId1702WMCvFXqazD8eOmdyckJPDDDz9w9OhR8vLyCAkJoXfv3jRq1AiA7Oxs3nnnHWrUqMHo0aOxtbUlIyODcePGcebMGVq0aKEEOXft2oWTkxNVq1YlOzubli1blsta8fT05Pjx48TGxlK1alUcHR2JjY1VSjvoBikKCgqUDGkADw8PoOyGtX79+sr2fH19MTEx4ebNmzz33HNyoymUhmr6+vrlzh8P/7dWq1XOOQ9/Z9asWcM333yDtbU1JiYmbN26lS1btvDJJ5/Qtm1bHBwcePfddzE0NKRp06YASmMoXWDxcd8/jUZDWloaarUaDw8P1Go1CQkJaDQaSktLWbBgARYWFsyZMwc/Pz9lPZVKRUJCAmlpaRgaGjJz5kzs7e0ZMWIE3t7e3L17l6+++gpvb2/l3DJz5kzatm3L3r17SU5OpmrVqowcOZLGjRsrU9YDAwOVrEshnkXx8fFs3boVe3t7goODMTQ05McffyQ+Pp7p06fTuXNnjIyM8PHxKbfew8d0dHQ0V65cIS8vjwYNGijHVnFxMfv27WPbtm0EBQXRt29fgoKClCC+nEeE+OtI0FIIIcRfIiEhgejoaK5du8bZs2e5desWWVlZlJSU8M0339CqVatyF4KPCw48PKpd2TL79+9n0aJF3Lx5E3Nzc6pXr06fPn3KBRwMDQ2VG6vHBS0frhumu2BNTExU9uHOnTt89tlnxMXF4eLiwssvv0zHjh3p1asX8fHxFBQUYGJiQkREBJ6enjRp0kTZtomJCe+++y6JiYnUqlWLS5cusW/fPvr06UPVqlW5desWu3btolevXgQEBABlU9Rr1KihvF9/f38OHDhQLmDj7OyMs7PzH/zLCPHbKstefjQ4efv2bSwsLNi1axe7du3C2dmZL774goyMDGbMmMGtW7do0KABVlZW7Nu3j507dzJ37lw6depETEwMmZmZdO/eXSmd4OHhwfbt25Xvt4eHB6+++irffvstR48eBcDa2hoPDw9CQkLo27cvVatWxdPTE61Wy61btwgMDCQoKIhjx44p2ce64z4hIYGoqCgaNmwIlAU7raysiIyMLPe+nJ2dyc/P59q1a3/DJyv+KYmJiVy7do1Lly5x48YNLl68yMKFC2nSpEm53/onoTuHPCo8PJxVq1Zx/vx5DA0Nady4MT179lS601++fJlPP/2UgQMH0r9/f0xNTbl+/TrTp0/n0qVL1KxZkxo1auDt7c2ZM2eU7VavXh2AiIgI5fUro6uzPHv2bAICAnB1dSUpKYm0tDRKSkpIT0+nc+fOSlClpKSE7777jtTUVCwtLbl9+zahoaF88MEHLF26lM8++4ySkhLy8vIICgpi0qRJuLu7o9FoMDMz4/nnn+f5559/4s9NiGdNtWrVWLx4MZaWlspjNjY2GBoaEhwcjJmZmfJ4Wloa5ubmmJqaoqenR25uLjNnzmTnzp2oVCoMDQ2ZP38+ffr0Yfz48RgYGFC/fn22bduGg4MD77zzztN4i0L8T5CgpRBCiD+loKCAxYsXs2HDBnJycigsLFSeq1mzJoMGDcLFxQUHBwelbl1paWmFGkAP31Dm5uZy48YNEhMT8fLyolatWuVe89ixY0ydOpWAgAA++OADsrOzCQsL46233kJfX58OHTpgYWGBRqMhOzv7N/f/4ZtYZ2dnbGxslGY8FhYWjB8/nnv37imdwZ2dncnJycHKyoqEhATy8vKIiYlh5MiRtG3blldeeQUjIyPS0tLYuHEj9vb2ShboF198wZo1azh48CCbNm3C2tqaF154gaFDhyoX0y+88AIvvPCCsk8qlarcdFchdBISErh+/Tq3b9+mpKSE+vXr/2anXV32cmXT3B7Nas7MzMTGxoYlS5bg7OxM165dyczMpFOnTrRq1YqEhAR8fHyoWrUqpaWlrFq1ilOnTjFt2jRat26NSqXinXfe4ZVXXmHu3LlUq1YNb29vfH19ee+999i/fz+enp4YGBhQs2ZNQkJCUKvV6Ovr89prr9G+fXtiYmKIiIggPj6ehIQE1qxZw4MHD5QMMmNjY65fv06PHj3o0qULYWFhfPHFF1hbW2NlZUV8fDyzZ8/G1tZWCbq4urpSWFjI5cuXgV8bnPj5+bFx40Yl202aKfw7XLt2jfXr13PmzBkSExMpLi7G3NwcV1dXfH196d+/vzLA83B2/sP/D+UHxoqLi4mOjsbc3Jy1a9dy/PhxmjVrxsSJE7l27RpTpkyhtLSUDh06UFBQwK5du9i+fTtLliyhbt26REdHo6+vT69evZTAoaurK02aNFEy/42MjHBzcyM3N1epTWxjY0OtWrU4fvw4iYmJuLm5ldsvXemDa9eucfPmTWU2gY+PD9evXycpKYnAwEB8fX1Zs2YNRkZGVKlShdOnT3PkyBFq167N+fPn2bBhA6GhoXTr1o2GDRty4cIFjI2N8ff3VzKRtVqtTOkW/0q68g36+vrKsaNSqcp1pYeyAaySkhK++OIL3Nzc6NatG1euXGHatGksX76cRo0aUVxczMyZM9m2bRvjxo0jNDSUBw8esGfPHr799ls8PDzo06ePsu2qVav+4+9XiP8lErQUQgjxp+jp6WFtbU2rVq2oUaMGgYGBnDhxgvnz59O+fXtGjBhRYYrpw51Uo6KiyMvLUwKTmzdvZsGCBdy/fx8LCwuKi4tp3rw5M2bMQKVSUVRUxMKFC3F3d2fGjBlK/cZXXnmFnj17snDhQpo3b46vry9GRkZERUX9ZkfgdevWce7cOcaMGYOnpydubm7ExsZSVFREeHg4d+7c4bXXXqNPnz7KOhcuXODu3btYWlqSkpJCtWrV6NKlC8uXL+f06dO4uLgQExODoaEhkyZNIiQkBI1GQ2BgIB999BFpaWk4ODgoU8KF+D35+fls2rSJS5cucfHiRe7du0dJSQkWFhZYW1uTmprKmjVr6NevH2PHjq10G7+Vvaynp0d4eDiLFi3i9OnTWFlZMXz4cObNm0ebNm1o3rw5arWamjVrcujQISZMmMCAAQOAsuDPnj176NixI127dgXKAiyZmZm4urpy/PhxDh48yKuvvsqECRNYtmwZ586d4+jRo+Tk5ABlQZ1Ro0bRs2dPDA0N8ff3JygoSNmeVqtl+PDhnD17Fq1Wi7u7O2q1Wmks0rhxY2bNmsXkyZN58cUX8fT0JCUlBRsbG2bOnElwcLDyOsuWLVNuMh/uzqwbVBHPPt0gV0xMDBs2bMDLy4tZs2Zhbm6Ok5MTarUac3NzjI2NK/zO6v7mGo2GhIQE9PX1lWAdwPnz5xk6dCgdOnTg9u3bhISE4OPjg1arZeHChWRlZfHFF1/g7++PiYkJEyZM4IUXXuCzzz5jxYoV1KhRA1NTU15++WVatmyJjY0N5ubm1K5dm6CgIMzNzcu95q1bt5RM4N69e3P16lVWrVrF6NGjy5VTUalUXL16lZ9//pm2bdsqAdGaNWuydetWbt68Sa1atRg9ejSLFy9m8eLFQNlg3KBBg+jUqRNRUVG4uLgo23RyclLqPj9MprSKf6vHDThdv36dffv20aNHD/bv38+sWbMwMDDg559/pmHDhhgZGeHi4oKBgQEZGRkA3Lt3jx07djB+/HgGDx6sbKtRo0ZKg7hOnTrh4eGBqakpGo2mQl1lIcRfR4KWQggh/hRjY2MGDBiAVqvF0NAQAwMDzM3NmT9/vlLz8eGLyJSUFD7++GO6du3K4sWLuXHjBs2aNWPRokXs37+fKVOm0K5dO3r27ImBgQHnzp1jwYIFmJub895775GVlcWlS5eYN28eTk5O5OfnExkZSUJCAgUFBURHRxMREUFQUBDu7u78/PPP9O3bV5lO+nA2jZGREdeuXWP37t307NkTT09PqlatyvHjx3nw4AHm5uZYW1tz8OBBGjZsiKmpKadPn2bFihWYmZlx69YtduzYQbVq1Rg9ejTNmjUjLCyMkpISGjduTJMmTZROxLpAbWUj/kL8npKSEqZPnw7ASy+9hJeXF+7u7kpX4PT0dD788EO++eYbOnbsqJQb0AV3dAMEt27dwtjYmJYtW5YL5sTHx/PJJ5+QlpbGiBEjyM/PZ+3atQAUFhaSlZWFjY0NHh4eXLt2jdq1aytZY7dv30ar1RIREcH48eOVrK+CggLs7OyoVauWUm+1efPmNG/enMzMTG7evElpaSn37t1j5syZfPvtt/Ts2ZM9e/bw448/Mn36dLy8vCgsLCQqKop79+6hVqvR09PDyckJCwsLwsPDgbLj6vnnn6dOnTqEhYWRnp5OQEAAoaGhSvakzqOZ2+LfR/c7Xq1aNWxsbFCr1XTq1OmJ1r148SJfffUVZ86cwcjICAcHB9q3b8+oUaMwMTHBx8cHMzMz9uzZw+LFiwkNDcXIyIiMjAwOHz7MRx99pATBc3JySE9Px8nJibNnz3Lt2jXq1KnDu+++y4YNGzh58iRZWVnk5+cDZZlYkyZNomHDhsp54MqVK0rQskuXLly5coUVK1agp6fHyy+/rDSYCg8PZ/78+Wg0Grp164a1tTVQljFWWFiolDVp3rw5gYGBJCcn4+Ligo2NjfLedc2shPg3eVzzt0elpKRw5coV4uLicHBwoGPHjko2/ZkzZ/jmm28IDQ2lWbNmeHl5MWbMGOrXr89HH32Eo6MjUDaApRsMu3r1Kvn5+QQEBBAdHc358+cJDw8nPj6e6OhojIyMSEhIwMvLCycnJ6VkkAQthfh7SNBSCCHE79JoNMq0m4cDkY9eoOmCBHfu3AHKZ23o6+uzd+9eTp8+Tf369Xn99dextbUFYNmyZdSqVYtPPvlE6aTaoEED0tLS2LJlC/3791embX/55Zd89tlnpKSkUFpaipWVFYGBgTRs2BAzMzMMDQ3p0KED33zzDcePH2fAgAHlpqUbGRlx79499u/fT82aNalduzZQ1lRg165dJCQk0LRpU1566SW++OILXn75ZSwtLSkqKqJt27a89NJLLF26VCm2bm5uTuPGjWncuPHf8dGL/5j4+HhKS0vx8vJ6ouUtLS0JDg4mNjaWoUOHVtohfvTo0bz//vvs3LkTHx8fVCoV+vr6XL9+nZkzZ3Lp0iXMzc3RaDS4u7vz7rvvEhoaCsCWLVu4du0as2bNonPnzkBZAOXdd9/l9u3bpKen4+Xlha+vL8bGxkqGJJTdRFpbW3P58mVcXV1p0aIF1apVw9PTEwcHB0pLS5WaYWlpaVy9epWWLVuWm8p+5MgRTp06hVarxcnJiTNnzjB06FA6d+6Mvr4+58+fJz8/XwncqlQqmjVrRnZ2Nvn5+UoA1d3dnREjRvyJv4h4lummfELZ9013TnFycsLBwYHbt28Dv5ZA0C37aIfviIgIpk6dSn5+PuPHj8fGxoYDBw7w7bffkpaWxrvvvqtsU9dMSvfdun79OmZmZuzevZu9e/cSGRlJamoqpaWleHp60rBhQ+X80qtXL3r16kVycjJ37tzByMiIixcv8tlnn7FhwwYaNmyIi4sL9vb2Sh1VXX3ksWPHYmxszPLly9m8eTOBgYHk5OQQFRWFq6srn332Ga1atVKaTdWrV48jR46U+02wtbVVzqtCPC26geLY2Fjee+89AgICmDJlivLdfVRpaWml5Usebf6mG3R+2PLly1m5ciW5ubnY2NiQnp7OypUrWbx4MWq1mipVqmBiYkJSUhL16tWjSpUqeHl5cf/+fWVf1Go19vb2yu9JZmYmxsbGDBkyBAMDA2XgzsfHh6lTp+Lm5oabmxsGBgZ4e3srpYWsrKykmZsQfwMJWgohxH9YYWEhP/zwA+fPn2fBggV/ejsPXzQ+7oJMq9VibGyMk5MTiYmJ3L9/Hzs7O2V5tVpNUFAQV65c4bXXXqNmzZoApKamEhsbS58+fSgoKODixYtcuXKFO3fucOzYMfLz87l+/To1atTA3NyckpISBg8ejLOzMx4eHtjb26NSqUhPT1em1HXp0oVTp04xZ84cnJ2dad26NVqtlqKiIpKSkvj888/JyMhgwoQJSpDU29ubgoICIiMjadq0KYMHD6Zq1aqEh4djZ2dHSEgIfn5+6Ovr8/HHH//pz1L8b3m4Zmt6ejqdOnVi8ODBvPnmmxVu3nQBGl3ARVdewcPDg/DwcJKTk3FyclI6G+uC8dWqVcPJyYmEhAQlKyUuLo5JkyZRUFDAzJkzcXd3JyIiglWrVvHRRx8p9SavXbuGr6+vErCEsjqPAwcO5L333iM1NRWAgIAACgsLyczMVJazs7NDrVZjaWnJzJkzlSm5ut+HmTNnolKpeOutt9ixYwczZ85kypQp1K9fHz09Pc6fP8+hQ4fo3LkzxcXFhIaGsnz5ctavX8++ffsoKioiKCiI4cOHK53IAd5+++1KP+uHs3Iermsm/h10g2MPBycfN+XTwsICd3d3IiMjldqQv/X3/v7774mOjmbp0qVKduMLL7zA5MmT2bBhA61ataJ9+/a4u7sr56+HMxVtbGwIDw+nTZs2hISEEBAQgJubGzY2NhQXFyvLRkdHk5KSQqNGjZRgor+/P1u3biU5ORkAR0dHfH19OXHiBIsWLcLHx4cOHTqgVquVKed79+4lJiYGDw8P+vbtS2hoqFLrUve7YWRkVOkghhB/p4evAWNjY7l48SLXrl3DyMiIJk2a0LhxY+V5ExMT4uPjyw086LbxcD1l3b8fvb6MjY0lLCyMo0ePkpWVhb+/PwMHDqRevXoYGBhw5swZFi5cSKdOnejVqxcmJibs3r2bNWvWcPLkSTp37oy9vT0WFhZERkYq54eqVavy888/k5CQgK2tLebm5nh5eRETE0NBQQFOTk7o6+vTvn17Jk2apBzjlpaWZGRkcP78ebKysnB3d8fX15fLly8rZVHkvCPEX0+ClkII8S/0pCO5usCGWq2uUG9HFyD5rYBkcnIyjo6O/Pzzz6xatYro6Gjc3d155ZVXqF+/frmgi0ajwdDQULkYTExMLBe0NDAwwM3NjZiYGDQajbLe3bt3UavVLFq0iG+//RYDAwMcHR3x9PSkZ8+eeHl50ahRI0pLS7GxscHU1JShQ4eW29e7d+/y3nvv0aJFC0aNGoWfnx/Tp0/n7bff5vXXXyc0NJTQ0FAKCgo4ffo0d+7cYcKECUrdPCjLtPzwww9p2bIlUDbC36hRo3LBEiH+iOTkZE6dOqXUt1Or1SxfvhwnJ6dKp7o9LkATEBBAWFgYERERyvTUR4//9PR0ACUIf+zYMRISEvjuu++UdYKDg6lRowb9+vUjLCwMf39/UlNTlW09XIO2fv36aLVapdSDro7e3bt3lde0sLCgefPmHDx4kC1btjBo0CDluXPnzrFixQoGDhxIaWkpffr04ciRI8yYMQNvb28lANqqVSvefvttVCoVpaWlNGrUiJCQEIyNjX9zOmBJSUm54JbuM5EmIv+83Nxcvv32WwICAnjuuef+UKbRw8tW9re7desWe/bsIT4+nlq1avH8888rg1Pe3t4AREZGUrNmTc6ePcv169eJiIjg+PHjzJgxg+eee46srCxu3LhBaGgoderUAX7N2Hr++efZvXs3hw4don379lStWpWrV6+WC867urpiYmKCo6MjM2fOpKioCENDQ/T19UlLS2PevHnUqVOHAQMG8O2337J9+3Y+//xzqlSpojTsiY6OZsKECUDZVO3XXnuN999/n8WLF9OxY0c6dOgAlE1RrV69utJR/FESEBH/pMqOZd3/L1myhB9//JGioiLUajU5OTl8//33hIaGMnfuXGxtbXFycsLPz4/Y2Fjl/PJoU7ikpCRiYmLQ19dXsvB1g8zz5s3j+vXr1K5dG7Vazb59+xg2bBjffPMNzZo148SJE1hYWNCjRw/lPFe1alX69u2LnZ0dUDbg4OrqSmRkJEVFRRgbGxMcHMyuXbu4d+8ewcHBqFQq/Pz82LVrF6mpqfj7+2Nra0tKSorS0Evn7NmzvPnmm0ydOpXevXtTtWpV8vLylAE+IcRfT4KWQgjxLxIeHk5UVBQ9evR4ouWNjIzo168fGo2mXMDy0Y7BOTk55Ofnl6t7dejQIV577TWGDBlCYmIihYWF1KlTh2PHjjFq1Cjmzp1Lq1atymWSQVnw79ixY8THxxMcHKyMsANUqVKFI0eOKN1PAaytrTE2NsbFxYXPP/8cMzMzZeRbX1+fK1eu8ODBAwICAmjXrh1fffUV69evp2/fvmg0GrKyslixYgXh4eGMGzdO2a6/vz8LFy4kLCyM48ePs23bNkpKSqhWrRovv/wybdq0KTfNyNramoEDBz7ZH0L8T/qtxk4P0x0Tixcv5sCBA/j6+iqZWPXq1at0ndzcXC5evMj58+cpKCigefPmyhRuXcDw1q1bwK/BTQMDA3Jzc/npp5/Iy8tTMsgKCgq4fv06JiYm1KxZk8uXLxMREcG1a9e4ceMGJSUlnDp1ivHjx2NhYUFcXJyyPSj7fXB2dlayZIqKinB1dcXS0pK4uLhy07K7d+9OWFgYM2bM4MaNGzRq1Ijs7GylhMLgwYPR19fHzMyMr7/+msOHD3P9+nXUajW1atWiRo0amJiYlPtN0k0p/616ZpVNMRRPh5GREYsWLaJjx44899xz5YIcpaWlyvHwaFBeF7woKiqiqKiIo0ePcuDAAYqKihgwYABubm4sWLBA+c5t27aNxMREXnvtNSXT0tDQkGHDhqHRaDAxMcHJyQl/f3969+6tlGC4f/8+BQUFmJmZKcFx3ffH1dUVHx8f5dgKCAggKyuLlJQUZT9dXFxo2rQpK1eu5NChQ7Rq1QooC/Lv2rWLHTt20LRpU6CsVEN4eDjvvPMOXl5epKWlodVqefnll3nppZeAXwfENm3aVC6bU4inLTMzU6kV7uTk9NiyN+PHj2fnzp0MHDiQTp064ejoiEajYceOHXzzzTcMHz6chQsX4uTkhIuLC5cvXyY+Ph5vb2/09PR48OAB33//PRs3biQlJQU9PT0l+Dh48GBcXFzYuHEjJ0+eZOLEiXTr1g2VSkXnzp1Zv349xcXFAPj4+JCZmcnUqVPp1KkTFhYWmJqaEhwcrGQhm5mZ4enpSXh4OHl5eVhaWhIUFASg1IM1MDCgSpUqZGZmkpiYSIMGDejZsydffvkln3/+uXJtGBERwcyZM1Gr1crsBBcXFwoLC7l9+zbNmzeXgQUh/gZyxSeEEP8iX3/9NWlpaXTp0qVCEPJx0yJ1AYCH6enpERMTw7fffsuhQ4coLCzEx8eH5557jq5du+Lo6IilpSU1a9bk+++/p1+/frz++us4Ojpy7NgxRo8ezY4dO2jVqlWFaXyBgYHAr3UtHxYQEEB+fn65G0JHR0d8fHxISEjA2dm53Kh2dnY248aNo0GDBsydO5cXX3yRQ4cOMWXKFI4dO0ZgYCC3b99m3759vPTSS9SvX7/c6+nq3PXv3x9zc3PJwhJ/yunTpxk5ciTjxo1jyJAhlS7zcE0uXaDe0dGR1NRU5VjVarUUFxdz/fp1XFxclJuq7Oxs5syZw86dO5UOvz/88AOdO3fmk08+wc/PDwMDA2JiYoCyzqa3b98mOjqac+fOcfbsWV599VV69+4NlDXJysrKIi0tjZCQECXbWtdwql+/fri5uQHg6+vLmTNniI2NVYI8enp6xMXFKXXAsrOzsbOzw9PTk8TERLKzszE1NaWkpARjY2MmT57M2rVrOX78ODt27MDAwIC6desyduzYcrU7TU1Nee655564a7FkTj77dANirq6uZGRkkJWVhbW1dbkyB7pzgy6AaWhoqDz/5ptvkpSURGhoKCdPnsTU1JSoqCguXbqEVqulXr16zJ8/HwMDA+bOncvmzZtp2rQpjRo1wtPTEyMjI6pUqcLMmTOBspIFutrGuu+UhYUFlpaWSr26h7O8rK2tMTExUZ6rUqUKUD6j2NTUlMGDB7Nnzx7Gjx9P3759qVmzJrdv32bFihW0adNGyZR0d3dn3bp17Nmzh6SkJFxdXaldu7ZSA/lhErAU/7RHMycvXLjA7t27OXfuHDExMeTl5WFiYoJaraagoIB69erx6aeflutm/9NPPxEWFsbkyZMZMGBAue2PGjWK+/fvs2/fPu7du4eTkxPe3t4UFxcTHR2t/PfSpUv56aefeOGFFwgNDSU7O5vNmzezfPlyPD096d+/P3l5eeTk5JQbZAgKClIyKgE6dOhAdnY2CxYsYNGiReTl5QFl58Dq1auzcOFC1Go13t7eHDhwgKysLGVgAyAhIQEoC1p6eXmh1Wq5e/cuenp6DBs2jEuXLvHtt99y4MABbGxsuHv3Lubm5sybN0+5tg4ICGD+/PnUrVtXApZC/E0kaCmEEP8iH3zwQbmmMjq/dXOfnJzMZ599hp+fHyNHjgTKpuNMnTqVqKgoevXqhY2NDYcOHWLOnDlERkby6aef4u7ujpmZGY6OjgwZMkTpsFijRg3q1avH9evXy10A6/6t616sC7A8nF2ju3HTTTmFsqBqr169CAsL4+OPP+bDDz/ExMSE+/fvs2jRItLS0ujVqxdQdpM3b948Nm3axJEjRzh9+jTu7u689tprDBgwoEKBdh0rK6sn/5CF+IXu++3t7c1HH31UYcrmw9//yqZ2m5iYUFpayqRJk3B3d2fy5MmcO3eOcePGMX36dHr37k1RURHffvstGzZsYMyYMXTq1AmNRsPatWtZu3Yt3bt3p3bt2jg4OHDmzBnq169PdnY2KpWKoqIiAIYOHcobb7wB/JrlaW1tjaGhIe+99x4NGzbE1NQUS0tLLC0tuXXrFvfv3wegffv2ys3ie++9h7GxMSUlJaxbt47MzEwePHig1Kd1c3Pj+PHjStkI3VQ/f39/Jk+eTHR0NHp6enh5ef1mJqSuPMSjzVLEv4fue6Y77/j4+HDnzh3S0tKwtrZWjotz586xdu1aLl68iEqlomXLlnTr1o0aNWoAZecL3ZTM4cOH07lzZ06fPs20adMAGDFihDINvEePHuzevZvo6GgaNWqEt7c35ubm5OXlKdnIlVGr1fj7+xMWFkZSUpIyMABljdTu3r2Lk5MTRUVFeHp6Ym5uTlJSklJSRavV4urqypw5c1i7di07d+5k1apVWFhY0LFjR8aOHatkHkPZ+UY3gCDE03bv3j0ePHiAp6enUj5Ed+7asWMHa9eupWHDhowZMwZ3d3fUajWGhobs3buXFStW8N133zFixAhllkFYWBg+Pj40b94c+LWsiK7JztixY5k8ebLy+j4+PhgYGBAREUGbNm24dOkSS5YsoWvXrkycOFFZLjg4mK5du3Lp0iX69+9P06ZN2bRpE1OmTGHFihXo6enh4eGhXIM2adIEU1NTBg0axIABA7hx4wbx8fHk5uZy69YtVq5cyaJFi3j//ffx8vIiPz+fpKQk/P39sba2xtramsTERPLy8pRrXX19fW7cuKE0x/rqq684fPgwhw4doqioiA4dOtC4ceNyvzc2NjbKoIUQ4u8hQUshhHhGVVZzUted+2FarZbbt29z/Phxrly5gpGRkXJhpVKpyMnJ4eLFi9y9e1cJWm7fvp2ff/6ZmTNn0rVrVwwMDBg6dCizZs3i+++/p0mTJnTu3BlHR0eioqKws7NTblItLS3x8fHh3LlzZGRkKJ1KdTepuil78fHxFTo9Ojk5YWVlRVxcnHJRqNVqadSoEa+88grff/89V69eJSAggIyMDGJjY5kwYYKSQanrujxmzBiGDRsmwUjxt9Ld2Dk5OdG1a9fH1vZKTEzkzp07mJiYKA0Czp07x8yZMzEwMCAlJYVatWqhp6eHv78/BgYG5WrmrVu3jjZt2vD6668rj7399tt069aNqlWrYmBggLu7O8nJybz++uvUr18fa2trYmJi+P7779m9ezcGBgYMGzZMOR5r1qzJxo0blVpdD1u+fDnnz59n4cKFNGrUiMGDB7NkyRJu3rxJmzZtiI6O5ubNm9SoUYM7d+7w4MEDAFq1aoWNjQ329vbl3r/uv3VZarrP7tEyFDqSPfns051/HtfQ6OHmUra2toSEhHD69Gnu3bunfN/OnTundAzu1KkTqamprF27lh07dvDxxx/TqlUratWqBUD16tXp27cvgFLX9Pz58zg7OyvBEN2ggS47ysnJCVdXV65fv/6b70V3Tty0aRNz587l008/xcjIiOzsbLZu3Up8fDzDhg1DpVKhUqmwsrLi0qVLZGZm4ujoiJ6eHqWlpdSrV4+aNWuSkJCAhYVFueCnEM+K/Px8duzYwc6dO7l8+TJQllHs4+NDt27d6NixoxKArFmzJgYGBjRv3pyhQ4eW205wcDCRkZHs37+fLl264OvrS0REBFFRUYSGhuLu7l5uEF03UGVtbQ2gHLeenp5YWFgoJRicnZ15++23ad++PVBWGiUiIoJNmzZRWlqqzNIJCAhgwYIFbN68maSkJOLj4wkPD+fUqVN88803LF26lCZNmpCSkkJ2djaBgYHKTB+AnTt3kp6eTklJCa6urpibmxMbG0tJSQlGRkY4Ojpy+fJlUlJS8Pb2xtramtDQUBwcHJTfN5VKRfv27ZV9FUI8HRK0FEKIv9DDU0T/vyq72c/Ly+PQoUOYm5srDWMuX77M+++/T3FxMc7OzmRlZbFt2zb69evHhx9+iK2tLYGBgYSHh6PVasnOzubgwYP4+vrywgsvlHu9UaNGsWbNGvbt20fXrl3x8vIiLCyMzMxMJUCoUqnw8PCgsLBQ6bz48PvX19fHy8uLxMREUlJSlI6nuppF3t7eJCQkkJWVpWSiGRgY8Oabb9K8eXPCwsKIi4sjMDCQUaNG0aBBA+Vi+OFafhKwFH+lx3UufrhpQHZ2tlJrFWD//v18+eWX3L59Wyk/UK9ePebMmUNQUBDr16/nxRdfJDAwkLFjxyr1W83MzIiJiaGwsJDk5GSKiooIDQ1Vfj+0Wq1Sl0vH19eXc+fOERgYSN26ddFoNFSpUoU6deowadIkli1bRm5uLmPGjMHW1pYGDRpQq1YtvvnmGxwcHAgNDSU3N5ddu3axefNmXnjhBWWK3PDhw3F0dGTjxo0sXLgQBwcHXn/9dczMzHjrrbeUjM7u3bvTvXv33/wcH/68ZKrcP6ukpIT79+8rgbY/4uHyIg//uzJarZYffviBZcuWkZycTLt27ZTmNDExMTRp0kRpUJORkcF3332Hl5cXpqamvPrqq/Tv359Zs2bRqlUrJdCtm36q1WoxMTHB19eXffv2kZeXh1qtBsoa2JiamhIfH68Menl4eBAeHk5iYqJS8qAyLVq0oG/fvqxfv56oqCiaNGlCVlYW+/bto3PnzuUypbp3764cpzq63wJTU1PluBHiaYqLi2Pp0qWEhobSpUsXAB48eMCCBQvYvXs3wcHBvPXWW9ja2hITE0NYWBiTJk0iIyNDCVC6uLigUqmU8ghQdi7UZcH7+fkRFRWlBDmLi4vJyMhQSqA8XLP8UbrfEFdXV2xtbYmPjwfAw8ODV155heTkZGbNmsWZM2e4d+8e7u7uuLm5kZSUpBzffn5+vP322+Tk5FBUVIStrS3nzp1j1KhRbNmyhaZNmzJlyhRu3brFzJkzqVKlCllZWezcuZO0tDRCQ0MxNDTEwsKCkpISLl68SK9evTAyMqJHjx6kp6cr15J2dnYsW7bsr/0jCSH+EhK0FEKIPykhIYGrV69y+fJlrl+/TkpKCtbW1jRt2pSOHTuWyzrS0dX0+r1abffv3+fSpUvExMTg6elJixYtUKlUJCYmMnHiRIKDg2nZsiXp6enMnTsXfX195s+fj52dHTk5OSxZskQpMG5lZYWbmxv79u0jJSUFJycnkpOTK2SJaLVarKyscHd3V24KddPy7ty5g6enpxKQcHFxQV9fn6ioqHKBFV3QskaNGuzatUu5kXx4NN7Ozo7z58+TkZGhdFHWBYt0Xb6F+D0Pd7p+Ur/V1fjRbWVlZXH06FGlw/yyZcuYM2cO27dvx9/fn7i4OD755BOqVKnCG2+8gaWlJXv37mXt2rW0adOGTp06ERISgo+PDykpKUrjAF0DkdjYWAoKCsjLy0OlUpGdna3c5OkCl7pAqaWlpTKdNjIykqZNmyr1MW1tbZk2bRqzZ89m3bp1aDQapk+fjp+fH2PGjGHixImMGzeOkJAQAKKjo2nVqlW5aXkWFha8+OKLdO7cGSsrK+Wz2LJlCyUlJeUGJirr2v0wCVT+Mx4+/1y9epU7d+5QVFSEtbU1bdq0oX///nh5eZVrlKYLzFd2/nm0Mdvp06e5ceMGVlZWtG7dGnd3d2XdnTt3MnfuXOrWrcuoUaO4desWGzdupKSkRKkFmZWVxYULFxg5ciTVqlVTtu3v78/QoUP56quvuHTpErVq1cLU1JTMzEyl0ZWenp4y2BUTE4Obm5tyvHt5eZGQkEBaWhru7u5KzdSbN28q55rHNfwZP348tWrVYseOHWzduhW1Ws3AgQPp37+/EhgFGDNmTKWfuXy3xT8tISEBGxsbLCwslO+x7jv+008/sWHDBqUJFJSdp9atW8frr79Ov379yv2eDx48mLfeeotZs2bh6+tL8+bNcXJywtHRkZs3byrb0C0fFxfHqVOn8PHxUQYEHB0dKSkpIT8/v9yyldEdh1ZWVri6unL16lVycnKwsLDg4sWLTJ06lQcPHtC6dWsaNmxIu3btmDx5Mps2bSI+Ph5/f3+2bNlCdnY2L774ojKw4eTkhJGRkTKo8PzzzzNv3jzGjBlDlSpVyM3N5e7du7z88svK+dvV1ZW5c+fi5eWlrKdrjCWEePZJ0FIIIf6gmJgYXn31VeLj47G2tlYayVStWpX4+Hi++uor1q1bx9SpU2nbtm25m6jKOqg+6uTJk0ybNo2MjAzUajUpKSmEhISwYMECPDw8CAwMJCcnByibhnP58mV69OiBr68vxsbGODo6Kk0JoOyi0sPDA41Gw+3bt3FycsLExIT8/HySk5OVZiAajQZDQ0NcXV2Ji4sjOzsbNzc3jI2NuXnzJi1atCg3XdbW1rbche7DfHx8KCkp4ebNmxWCkB988AGGhobK64LcDIonV1xczOuvv05sbCy7du363cDlw8ef7ntWWfBy//79bNy4kfj4eJo1awaUTaMODAzEx8dHaZoRGxuLv78/R48eJTc3lzfeeEMJ3Dds2JBu3brh7u6ubL9q1aocP36cu3fvKtOq/f39OXv2LBkZGVhbW5c7lrRarXIsnj17lmXLljFlyhQl8KObYqenp6dkIDs6OvLWW29x9+5dfvzxRwoKCvj0009p3LgxP/74I5s2beLSpUtYWlrSpUsXmjdvXi4QGR4ezurVq3njjTdQq9UUFRWRmprKunXrcHZ2xsHBQVlWunY/XZWdf3x9falfvz76+vqcPXuWFStWkJiYWKGBxm8dK/Hx8YwZM4ahQ4dy8eJFDh48iKGhIUlJSaxfv55ly5bh7OxMQUEBixYtwt3dnXnz5inbb968OcOGDSMxMRGNRkNCQgL6+voEBgYqx5vu34GBgahUKq5du0atWrXw8fEhMTGR9PR0ZTDN2dlZOfc0adJEGfiqXr06Bw8eJCUlBXd3d6VO8pUrV2jdunWlQUvda1tZWdG9e3c6dOhQaYM6IZ4ln3/+OYsXL6Zjx45MnjwZW1tbJXgfHx/Pzp07admypTJ1+fr166xcuZIWLVrw2muvlduWRqPBwsKCqVOncvToURo2bAj8WmIhIiKCgoIC8vPzuX37NuHh4Rw5coT4+Hg+/vhjZTtOTk5YWlqWq/lameLiYuLj4zEyMsLDwwNPT09OnTrF7du3CQ4OZt26dSQkJPDNN9+Uu0YsLi6mpKSEyMhI/P39OXbsGGFhYdy4cYO2bdtSWFjIhg0bKCkpoV27dgB06tSJGjVqsH37dmJjY3FzcyM0NJTatWsrx7mlpSVt27b96/44Qoh/lFx5CiHEH6TrjFq9enU+++wzLCwsMDMzQ6VSYWxszNWrVxk5ciTTp0/H29tbybjUaDT8/PPP7Nu3T8lc7N27N0FBQUqAIzo6mtGjR+Pt7c17772Hu7s7ly5d4v3332f27NlMmzYNZ2dnTp06RWpqqjLtc926dURERODh4aFMrdN1VzUzM1NGpm/evEmjRo0IDAxk3759xMfH4+TkpARJACVbx9zcHBsbG5ycnJRAiY6trS1WVlacOXOm3OO6m8WuXbvi7OxMixYtgPI3y781hU+I32NoaIi+vj7JyclkZmZiZ2f3m8vrvpOZmZncu3cPOzu7ckE4gH379jF16lRcXV1p3Lgxx48fVzKV4+Li8PHxwdnZGTMzM65fv07btm1RqVQUFxfz5Zdf0rt3b9RqNaWlpVSvXh1ra2tlum1wcDA7duwgKSlJCW5Wr16dXbt2kZSURL169ahduzbHjh3j5s2bBAQEKMfipUuXOHPmDPr6+ri7u2NpaUlsbGy596Xj6urKl19+yYgRI3jw4AGZmZnY29vj4uLCqFGjfvMzMjMzY9u2bRw/fpw+ffpgZmam1CecMGHC737G4p9T2fnH3NxcqcdYUFDAtGnT2LFjB4cOHVIyjbKysjhz5gzHjh0jOjoac3NzOnbsSJcuXVCpVDg4OHDjxg0WLlyIkZER06dPx8vLixMnTjB9+nSWLVvGhAkTyMvL486dO4wcOVIJWBYXF9O4cWOqV69OYmIiOTk5qFQq5Th9dIDAysoKlUpFSkoKUFa7bv/+/eVmADg4OGBvb68E83XbCAkJYfPmzcTFxVGnTh1l8OvChQvA46e1P7wPErAU/wZDhgyhpKSEZcuWYWJiwrRp05Qg4fHjx0lISOD9999Xlr9+/Tr5+flK2Z+HA/i6GS0uLi707NlTqTWuy/z/+eefadGiBQ8ePMDAwAA7OzucnJwwNDRk2LBhvP3223Tt2hUTExOqV6/OpUuXiI+Px8/Pr9JBwDNnzjBt2jR69erFq6++iqenpzJwHhwcTHp6Os7Oznh6egJlpY8OHz7M0aNHgbKBtE6dOjFu3DjUajWHDh1i37595OfnU6VKFaZNm6YMLgJ4e3srzeiEEP89ErQUQog/yNLSEgcHB5KSkvDx8alwkxQYGMicOXN46aWXWLlypdIFdceOHXzxxReo1WpcXV05ceIEP/74I5MmTWLAgAEYGhqyfv16ioqKmD9/Ph4eHgD4+fnh6OioXNy5u7uTl5dHTEwMDg4OTJs2jW+//ZbLly9z/vx50tLSlBp0r776KuPHj8fFxQW1Ws2NGzeAsoYau3fvZuPGjUrjEICtW7dy4cIFJXBhYWGBg4MD58+fB3698VOr1bRq1YqSkpIKmaRQVrNIt/9C/JV0mVpHjhwhISHhdwNqW7ZsYcmSJcTExGBiYkLVqlXp3bs3zz33HGZmZqSnp/PFF1/g5OTE3LlzcXZ2BuCLL77gu+++4/Lly7Ro0QI7O7ty0+g6dOhAYmIiixcv5vjx40BZvVddPcm33noLJycnZVq3rp4XlAVpiouLSUhIoFGjRvTv35/Nmzcza9Ys3nrrLSwsLAgPD+fbb7+lYcOG5bKSL168qNT7epS9vT0bN26s9HN4uDTFw81VSktLqVKlCt9//z0bN24kLCyM/Px8/P39mThxIh07dnzSP434B/ze+cfY2Jh+/fqxadMmrl+/TteuXSkqKmLu3Ln8/PPP2NraYmtry9WrVzl69CjZ2dn0798fExMTJct+586dSgajt7c369at4/z58+Tk5JCSkoJKpcLS0lJ5Td13KTg4mKNHj5KWloaLiwt2dnZcvXpVmfatGxwrLi5WatRBWTMQXbMNXWMeW1tb3NzcuHLlSrnXCAgIAH7tQB8UFMTmzZuV8410oxf/Fba2towcOZKUlBS2bNmCSqVi2rRpSgmg4OBgWrVqpSwfHh6OoaGh0riwsoxjKGtMVVRUhJ6eHkZGRkq5n9atW9OlSxccHR2VaeVZWVl8+OGHSn30Nm3a0Lp1a86cOcPRo0fx8/MrN2Vdl3159+5dYmNjKSwsBMDT0xOVSqUMgDds2JA5c+bwwQcf0Lp1a2JjYzlx4gTVqlUjPz+fjRs3Mnz4cDw8PPjggw/o3r270ohR6pkL8b9HgpZCCPEHGRoa4uHhwaVLl0hMTKwQnNN1w65atSp79+5l7NixZGdnM3nyZNq2bcvrr7+OWq3G3NycDz74gNmzZ+Pn50eTJk2IiIjA19dXybTSTQVq1qyZcpOmqzMZGRlJ/fr1cXJyUjq0RkdHo9Vqyc3NZeHChWzevJl27drh5eWFq6sr0dHRADRt2pQXX3yR5cuXExsbS/v27UlLS2Pnzp3UrVtXqfVjY2NDvXr1SEhIKDcVyMLCggkTJvwTH7cQFei6CEdFRSm1Giuzfft2pkyZQp06dRg1ahSZmZls3LiR999/n/v37zN8+HDOnTtHdHQ0U6ZMKVe3tVu3boSFhXHx4kWgLFDv7u7OnTt30Gq1WFtb88Ybb9C/f38iIyOJjIzk/v37xMbGsnXrViwtLfnggw+UIIsuqwzAy8tLmXpbWlpKcHAw77//PosWLWLEiBGYm5uTm5tLnTp1yk3N++yzz7CxsVGaIlRGN7380bqTjytNoXusQYMGhISEoNFoMDc3f5I/g3gKKjv/PJzppKenh5WVFSYmJso5Y+HChWzYsIF33nmH9u3bY2pqSnFxMS+//DLbtm2jdevWeHh44OPjQ0ZGhhJM1AXHq1evzuHDh7l//z7m5uZYWlqWy77XNePw9fVl/fr1JCQk0KJFCxo2bMju3bvp2LEjLVq0UM5rJ06cAFBq8T1cb1XH0tISDw8PsrKyygXpa9euTUREhLKcbv+E+C+ytLTk008/JTs7mw0bNuDg4ICXlxcpKSmMHz8e+LXcyb1799DT0yMvL0/p4A1lx/GlS5c4f/48ERERxMbGcvfuXebOnUuLFi1wd3dHo9Hg5uZGkyZNyr2+vb09r7zyCqNHj+bw4cO0adOGli1bsm/fPtauXUtQUBD16tUr1207JyeHLVu24OzsrDS48vHxQa1Wc/36dQB69OhBdnY2W7du5eLFizg6OtK+fXv69++vNL3SlTDRarXUrFnzb/+shRDPLglaCiHEn1CjRg22bdtGfHx8haClrvZWkyZNWL58OcnJyezZswdzc3OmTJlSbpT4ueeeY+fOnezatYsmTZqgVqvJzMxUbjYfnlat+28/Pz9MTEyUm8b79+9z8eJFAgMDlQAJlNUYO3/+PObm5hgbG+Pr68vhw4fJzc3FysqKcePG4eTkxPbt25UpgS1atGDo0KFKcwNjY2PefPPNv+dDFOJP8vb2xsjIqFzw4lFpaWksXboUT09PFi5ciKmpKXp6enTo0IHRo0ezZs0aunbtqgTidVPGdcevm5sbderUUUogWFtb4+Xlxblz58jMzFRqPxoaGtKsWbNyU9WaNWtGdHQ0hYWFWFpaolarOXr0KKGhoVSrVg07OztUKhWXL18mJycHKysrBg0aRKNGjTh8+DAFBQUEBQVRu3Zt5fdCq9Uq5RZ+y8O1Lv+oyrI3xbNHd/6Ji4tTgpY6enp6yndIF8w7ffo07dq1q9B4wsPDg2vXrpGUlISHhwdVq1blzJkzpKenA78GtIODg9m2bZuSGVylShWuXr2q1ETWTTXVarVotVpu375NixYtGDx4MIcPH+btt99myJAhVKlShbNnz7J+/Xr69u2r1LKrUqUKVlZW5aZtm5qa8vHHH0u9Y/E/z9DQkJkzZzJ69GiWLVuGoaEhAQEBNG7cGChrjmZkZISFhQWlpaUkJibi4uJCSUkJhoaGnD9/nlmzZpGdnU2tWrVwcXHh1q1bREVF0aJFC1xdXbGxsVGuKXXHsUajwcjICC8vL6UDOZSdf0ePHs2IESOYPHky77zzDu7u7hgYGBATE8P333/PxYsXee211/D39wd+rYWpa+CjVqsZN24c/fv3x97e/jfr7cpvgBBCgpZCCPEn6IKDt27dUi4cH6W7WDtx4oSSpbhu3Tri4+O5du0aiYmJ5ObmYmhoiIWFBdnZ2Xh7eys3jbrRbwMDAzIyMliyZAnVq1enZcuWWFtbK1kpiYmJjB07ltatW/Pqq69iYmLC9evX+fbbb6lRowa+vr7o6elhY2NDeno6qampSiBz6NChdO3aFWNj43ING4R4ltnb22NnZ1eh1iqUzzq5efMmI0aMwMzMTJkabWtry0svvcTYsWM5efIkrq6uQFk2Cvw6OGBhYYGbmxv379+nqKgIExMT3N3dKSgoICEhAbVazfTp05U6gA4ODmRkZHDx4kVSU1N58cUXlaDPwIEDWbFiBaNHj6Zfv35MmDCBvn37lgv4QFnwRlcD91EPT+eWKbD/23Tnn5iYGJo0aaJ8H3Jycjh16hQ//PAD9erVUzIZv//+e4yNjUlMTOTs2bOcPHmSkydPkpaWhq2trVK/NSgoiOLiYuX/dd85XZZTTEwMrVq1olu3bkycOJFVq1bx9ttvU1JSQlRUFD/88AMWFhbK+jVr1mTBggWsWLGCNWvWkJ2djbW1NUOHDmX06NHKd9/U1LRCfeSHX1+I/2UajQYbGxvmzJnDRx99xOHDh2natGm5AS2AatWqsXPnTiIjI6lXr57yeJ06dViyZAlGRkbY2dlx8eJFLl++rJw/nZyccHJyIjo6ulyWvu53xcLCgrS0NBo0aKDsU6NGjVi6dCnvvvsuo0aNwtvbGz09PeXc+N577zFo0CBleWNjY9avX19hYOzh0idCCPE4ErQUQog/wd3dHTMzs0q7Z+tutHQNZ65du0bNmjW5d+8eq1atwsPDg6CgIHr27Imvry+2trZYWlpiYWFBvXr1WLx4MRcuXCA4OLjc6PPatWsZPnw4VlZWuLm5kZycjFarpXbt2owcOZINGzYwfvx4ioqKyMvLo27duuUyVYYOHcqQIUMqXCRKkw3xb2NhYYGzszMxMTFKvTwd3ff94c7aQLm6q1WrVlWmZwcFBaFSqYiOjlYGF3Q3bg8ePADg9u3bVKtWDScnJwwMDIiMjCQoKIg6deqwd+9e+vbtS8OGDSkqKuL8+fO0b9+eF154QQnKDB06VOnWWrNmTUxNTXnnnXcqfW9arbZc7clHScBS6Joy7d+/n7y8PC5dukR0dDRpaWnk5OQQGhrKjBkzcHBwoLS0FGNjY65du8aCBQu4e/cuDg4OvPHGG7i7uzNs2DCSk5MBlPqrCQkJwK/HkG4ALi4uDoAuXbpw5MgRli5dytWrVwkODubixYv4+fmRkJDArVu3yMvLw8zMjNDQUGrUqEFCQgI2NjZKzVghxJPRXQfa2dlhY2MDwKZNm7C0tOTVV19Vznl169ZFT0+PEydO0L9/f+VxU1NTTE1Nle35+/vj4ODAnTt3lO26ublx6tQpZWBBdx15584dFi5cCECfPn3K7VdoaChhYWGcPHmS8PBwTE1NqVq1KsHBwdjb21d4H5LJL4T4syRoKYQQf4KtrS2Ojo6VZnrpLhR1N2cGBgaYm5ujp6fHlClTaNSoEUZGRhgZGSlT+fbu3ctrr71G48aN8fLy4ttvv6V27do4OzuTk5PD119/TWFhodIUw9LSkjNnzhAXF4eXlxfjxo2jVatWXL16FQsLC6pXr46/v3+5TBVd8EaIfztDQ0M8PT25fPkyqampuLu7V7qMqakpqampSjBSl4VpYmKCtbU12dnZVK1alerVq7Nt2zZ69OiBh4cHBgYG5OTkKMd3REQE1apVw9HREVNTUy5dukSPHj3o3bs3fn5+bNmyhRs3bqBWqxk2bBgdO3YsNzigG5B4lG763sP09PR+c6qcEGq1Gi8vL06dOsW9e/fw8fGhadOm3Lhxg+vXr1OzZk0ly0pfX5+0tDSGDRuGpaUlo0aNIjg4GE9PT5KSkoBfg5Te3t4YGBiQkJCgBO61Wi0WFhbK9NCcnBwsLCyUWrHbtm1j06ZNVK9enalTpxIfH4+jo2O5qd4WFhZUq1btn/+ghPgP0J23IiIi2L9/P40aNSIrK4vPP/8cGxsbevfuDZRlYLdp04bDhw9z7tw56tWrpxzHD7t37x4ZGRk8ePCAoqIizMzM8PT05NChQ2zbtg2VSkVUVBS3b98mLi4OjUbD9OnTlXIODzM1NaVNmza0adPmH/kshBD/myRoKYQQf4KpqSmurq5cu3ZNuYnT0QUKS0pKgLIpnzVq1EBfX59Tp07Rtm3bctuaMWMGWVlZSm2fWbNmMXHiRF588UUCAgIoKioiIyODOXPm4OPjA0CvXr1o3ry5UqgcypoZ/FZTEiH+Sx6u61dZ0NLZ2RlnZ2cuXbpEenp6uQyv2NhY7t+/rzQrGDJkCB999BGvvfYaAwYMwNHRkR9++IGEhAQMDAy4ePEiL7zwAmq1msDAwHKNaurUqUOdOnV+d391QaSHBxL+bO1J8b/NzMwMa2trLCwsWLJkCY6OjhgaGlJQUMCWLVuYPn06e/bsYf78+QQFBXHhwgUyMzOZM2dOudqrhw4dQl9fXwliqNVqPDw8iIuLIyMjA3t7e4qLi1GpVDg6OnL//n3lfGdlZcXAgQPp3bu3UhcWfq0NK4T4a+jOGT/99BM5OTlMnjyZ0tJShgwZwrRp07CxsaFdu3ZYWFgwcuRIzp8/z6RJk5gxY4YyWFZSUkJWVhanT59m8eLFpKWl8d577ymvYWlpiVarZcaMGRgZGeHq6kpAQABDhgyhQYMGVKlSRco1CCGeGrlaFkKIP0FfXx8fHx9OnjxJUlIS/v7+5Tq4Ahw8eBAoC2rUqlWLZs2asWbNGoyMjGjevDkqlYo1a9YQFxfHp59+ir29PVqtllq1arFmzRr27t3L5cuXcXd3p0mTJoSEhChTQ1u1avVU3rcQz4pH68pqNJoKdbhat27NsmXL2LdvH4MGDaKoqIicnBxWrVqFiYmJEmzs1KkTRkZGfPPNN3z66acUFxfTuHFjPvjgA7777jtlWqyXlxcrVqyodH90jQt0+/DoDZ7c8Im/ir6+Pt7e3pw4cYLi4mKlPIK5uTkDBw6kuLiYOXPm8MYbb7B69WqMjIwwNDTk9OnTuLi4KBn+S5YswcDAgEuXLnHx4kVat26No6Mj0dHRZGVlYW9vrwTWV69eXWnd44cDlkKIv0dSUhJhYWG0a9cOV1dXjI2NmTVrFu+++y4TJ05k0aJF1K9fn8DAQD788EO++OILRo4cSfXq1alduzbGxsbcvHmTCxcu4OLiwuLFi2nRogWlpaVAWVPI0NBQ3N3dcXFxecrvVgghypOgpRBC/EmBgYFAWdbWw1OxS0tLuXfvHj/88APBwcFKY42pU6fy9ddfs2XLFjZt2kRJSQmmpqZMnDiRLl26AL8GNhwcHBg4cCADBw58Cu9MiGefrq5sZGQkQLkpcAUFBejp6dGtWzeioqL45JNPOHDgALVq1eLixYvcunWLN998k4YNGyqDDe3ataN58+ZcuXIFNzc3XFxcKC0t5fPPP1emuuoCOJVNufv/dO0W4o/SnX8iIyPx9fUFfs3mHTp0KPn5+cyfP5+3336bSZMm0a1bN5YuXcrOnTsxNjbmwYMHDBs2DB8fH3766Sfl3DN//nysra3L1YAFpFGbEE+B7vy0evVqcnNz6dWrF8bGxhQXF9OkSRPee+89pkyZwpgxY/jyyy9p0KABnTp1IiAggAMHDnD58mUOHjxITk4Orq6uDBkyhFatWinXpbrj29fXV/kdEUKIZ41cXQshxJ/k5+eHvr4+V65coUGDBqSkpJCSkkJERAQbN25Eo9Hw5ptvYmdnh1arxdnZmY8++ohevXoRFxeHi4sL1apVKzfVVAjxZHR1ZW/cuEF0dDT37t3j7t273L17l9u3b5OTk8PQoUOZPXs2GzduJCwsjE2bNuHr68s777zDc889B/w6ULBt2zbMzc2V2lxarZYbN24QGxtboQGB1JwUT5vu/BMVFUWHDh2Asu+yLnA5bNgwioqK+Oabb5gzZw4TJkygSZMmnD9/Hi8vL+rUqUNAQABGRka0a9cOKPvOq9Xqp/aehBDl6enpkZqayp49ewgODqZu3boASpO3Tp06UVJSwsSJE3nrrbf47LPPaNSoEX5+fvj5+ZGTk4OhoaE0wRFC/KvpaXVXN0IIIf6QlJQUevToQUFBAVWqVCE2NpbMzEylY+qwYcMqbb4hhPj/Ky0tZfjw4Rw/fhxXV1fS0tIoKioCwNjYGG9vb9555x0aN24MoDTjeZQuk6V///5cvHiRV199lVq1apGSksKKFStQqVR8/fXXeHh4/KPvT4jfkpKSQqdOnQgJCWHZsmXlntN9p3Nycrh+/To+Pj5Sa1KIf6nly5cza9YsPvjgA1588UVKS0uVDEkoO7fFxMRgbW1drgGcEEL8V0impRBC/ElWVlYEBgaSlZVF1apV6dWrF0FBQfj7+5e7oBRC/PX09fXx9PTE29sbb29vevToQVBQENWrV8fR0bHC8rru4boaXo9mS06fPp3ly5ezZ88eVq9eDUD9+vV56623JGApnjnW1tbUrFkTBweHCvWUdf9tYWFRacdfIcS/Q1FRESdOnKBdu3a0bt0aoML1pUqlomrVqk9j94QQ4h8hmZZCCCGE+M95tDHPb9EFfYqKioiOjlYyNWXwQQghhBBCiKdHgpZCCCGE+NcqLS1Vsif19fUl0CiEEEIIIcR/hAQthRBCCCGEEEIIIYQQzxRJRxBCCCGEEEIIIYQQQjxTJGgphBBCCCGEEEIIIYR4pkjQUgghhBBCCCGEEEII8UyRoKUQQgghhBBCCCGEEOKZIkFLIYQQQgghhBBCCCHEM0WClkIIIYQQQgghhBBCiGeKBC2FEEI8c9q0aUObNm2e9m4I8a8nx5IQfw05loT4a8ixJIT4IyRoKYQQQgghhBBCCCGEeKYYPu0dEEIIIYQQQgghhBBC/HHvvvsumzdvLveYkZERjo6OtGrVijFjxmBtbf23vHZRUREZGRk4OTn9LduXoKUQQgghhBBCCCGEEP9i7733Hmq1GoDCwkKioqJYv349V65c4YcffsDAwOAvfb3ExERefvllRowYQY8ePf7SbetI0FIIIYQQQgghhBBCiH+xtm3b4u7uXu4xb29vPvroI44ePUqrVq3+0tdLSEggJibmL93mo6SmpRBCCCGEEEIIIYQQ/zENGjQAIDIy8invyZ8jQUshhBBCCCGEEEIIIf5j7t27B4Cnp6fyWFRUFKNGjaJevXqEhITQr18/jh07Vm69oqIiPvnkE9q0aUNgYCAtWrTgo48+IisrC4BNmzYxePBgoGxaekBAwN+y/zI9XAghhBBCCCGEEEKIp6RNmza/+fyBAwd+dxsPHjwgPT0dgOLiYqKjo/n444+pWbMmrVu3BuDmzZsMGDAAe3t7RowYgZGRETt27GD48OHMnTuXTp06ATBt2jR27NjB4MGD8fDwIDIykjVr1hAbG8t3331H/fr1GTlyJIsWLaJv377UrVv3//kJVE5Pq9Vq/5YtCyHEM2p/3IWnvQtC/CfU3Xrs9xcSQjyR1wILn/YuCPGfsMSu49PeBSH+E6yCg5/2Lvzl+h2a/bR34bFSP97zm8//VtCysu7hOiYmJqxcuZKQkBAABg0axL1799i6dStmZmYAlJSUMGTIEGJiYjh06BAqlYqQkBB69uzJ5MmTlW198cUXHDt2jJUrV2Jubs7p06cZPHgwn376qTTiEUIIIYQQQgghhBDiv+ZJMil/z5w5c7C3twfKMi0TExNZs2YNAwcOZMmSJVSvXp0zZ84waNAgCgoKKCgoUNZt164dn376KVeuXKFu3bo4Ozuzc+dOAgMDadu2LVZWVowbN45x48b9v/fzj5CgpRBCCCGEEEIIIYQQ/2J16tSp0D38ueeeo3379kyfPp1Zs2YBsGrVKlatWlXpNpKSkgCYOnUq48aN47333uPDDz+kVq1atGvXjp49e2Jpafn3vpGHSNBSCCGEEEIIIYQQQoj/GLVaTYMGDdi3bx8ajQaAgQMH0rZt20qXr1KlCgCNGjXi0KFDyj8nTpzg008/ZcWKFWzatAlbW9t/ZP8laCmEEEIIIYQQQgghxH9QaWkpAI6OjgAYGBjQuHHjcstERUWRkJCAqakpRUVF3LhxA2dnZzp37kznzp0pLS1l+fLlzJ49m7CwMAYNGvSP7Lv+P/IqQgghhBBCCCGEEEKIf0xaWho///wz1atXx83NjcDAQDZv3kxycrKyTHFxMZMmTWLMmDGUlJSQkZFB3759Wbx4sbKMvr4+QUFByn9DWfATfg2K/h0k01IIIYQQQgghhBBCiH+x/fv3o1arAdBqtdy7d48NGzaQn5/Pm2++CcAHH3zAkCFD6NmzJ/3798fGxoawsDAuX77M+PHjlfW7du3K2rVryc/Pp3bt2mRmZrJ69Wrs7e157rnnAJRlt23bhlarpXv37hga/rVhRglaCiGEEEIIIYQQQgjxL/bpp58q/21gYIC1tTVBQUF88sknNGrUCIDatWvzww8/sGDBApYvX05JSQk+Pj7MnDmT7t27K+tPnz4dDw8PwsLCCAsLw9TUlEaNGvHmm28q9Sz9/PwYNGgQmzZt4sqVKzRo0ABPT8+/9D3pabVa7V+6RSGEeMbtj7vwtHdBiP+EuluPPe1dEOI/47XAwqe9C0L8Jyyx6/i0d0GI/wSr4OCnvQt/uX6HZj/tXXisda0mPu1deCZJTUshhBBCCCGEEEIIIcQzRYKWQgghhBBCCCGEEEKIZ4oELYUQQgghhBBCCCGEEM8UCVoKIYQQQgghhBBCCCGeKdI9XAghxF8iI/U+u9Zv5c7NKAACgmvwXN9umFtZPvE2tqxYz/3kFIa980aF527fiOTA5p0kxSdiYmpCYP1atO3eGZWJcbnlch9ks29jGBGXrlJcXIyrlzvte3XFw8/7//X+hPinpDzIZvXPP3P97l0Aant6MqhRQ6xMTZ94G98ePUZSZiaTn++qPJaanc2Ytet+c70Pu3amhqtrhcczcnOZ8ONP1PXy4rVWLZ94P4R4mgrSs7m96yxZt+8BYFvNHZ/n6qOy+O1j6UnXy4pJJmbvBXIS0zA0VWFX3ROvtrUxMjcpt1z6rUTiD18mJ/E+6Olh5eGAV7s6WHk6/IXvVoi/V8r9+6zcvJnrkZEA1KlZk0Hdu2Nt+eTXeUt++IG7KSlMHTu2wnOT5swhOi6uwuOhtWoxftiwSrcXm5jIpDlzeKF9e3p36vTE+yGE+PeQoOU/5N1332Xz5s2/uUybNm34+uuv/6E9qqh169a4ubmxatUqAAYNGkRiYiIHDx78x/bhr3jNPXv2sGHDBq5evUpBQQEuLi40bdqUIUOG4OHh8UTb0P29bt68+Zcs90clJCTQpk2bJ1r2wIEDAJUub2RkhK2tLU2aNGHs2LE4Ozv/5vb19PSwtLTE19eXgQMH8vzzz/8/3oX4X5KXk8t3sxei0ZTQrGNrtNpSju8+RHLCXUZ++BYGhr9/ujl/7GfOHz2Fd4Bfhedu34hk+Wdf4+blQYdeXcnKyOTUvqMk3onnlffGoKenB0BhQQFLZy0gO/MBjdu1wMTcjNMHjvHd7IWM/PAtnNxd/vL3LsRfKbuggOk7dqApLaVrSAilWi07wsOJT0/n4+4vYGhg8LvbOBRxk4M3Iqju4lzucUsTE15v1bLC8kWaEr4/cQpLUxM87ewq3ebSY8fJLSz6M29JiKeiOK+Q8GW70WpKcW8eiFarJeHYVXLvZVDr9S7oP+ZYetL1Mm8ncXX5PgxNVXi0DEZPT4/Ek9fJvH2PkJGdMDItG1DLvHOPa9/vw8zRBu/2ddBqtNw9fYPwb3cRMvw5LD0kcCmefdm5uXz05ZdoNBqeb9uW0tJSth84QNzdu8x4+20Mn+A67+CpUxw4eZLqVapUeE6r1ZKQnEy94GAahISUe87B1rbS7Wk0Gr5evZoSjebPvSkhxL+CBC3/Ye+99x5qtbrS51xcnq2b6ZEjR5Kfn/+0d+OJFRUV8c4777Bz506Cg4N55ZVXsLa2JjIyks2bN7Nx40bmzJlD27Ztn/au/i5bW1tmz55d7rFPP/0UKPsOPbpseno6APXq1aNPnz7KcyUlJURFRbFmzRpOnTrFtm3bsLKyUp5/dHmtVkt8fDzr1q1jwoQJGBgY0Llz57/8/Yn/nhN7D5OVkcnoaRNxdC0LlLj5ePH93G+4cOIM9Vs0fuy6paWlHNmxj4Nbdz92md0btmJjq2bYu29gpDICwNpWzY7VPxF5NYKqQdUBOLrzAGn3Unl54ih8AsouioNCazNv4nSO7TpAr1df/KveshB/i53hV0jPyWVW7564/3K9UMXRgRlhuzhy6xZtqld/7LqlpaVsvniJjefPV/q8iZERzar6V3j8+5OnKCnVMLp1KyyMjSs8f+xWJOEJCX/yHQnxdCQev0ZhVh51x3TDzNEGAEt3B65+t5fkC1G41A/4f60Xvf00evp6hIzohKld2bWVXU1PLny5jfjD4fg+Vx+A22FnMLY2p9ZrXTBQld16Odbx4/znm4nZd4Gglzv8jZ+CEH+NsIMHSc/MZM577+H+SxJEFS8vPlm4kMOnT9O2SZPHrltaWsqmPXv4adeuxy6Tmp5OYWEh9YODaR4a+kT7tHnvXhKSkv7YGxFC/OtI0PIf1rZtW9zd3Z/2bjyRJr9x8nkWzZ49m507dzJhwgReeeWVcs+NHDmSV155hXHjxrFx40YCAiq/UH1WmJmZ0a1bt3KPzZ8/H6DC44AStPTw8Kj0eQ8PDz766CPWrVvH8OHDyz1e2fI9evSgU6dOLFy4UIKW4olcOX0Bn4AqSsASoErNAOycHbly+uJjg5bFRcUs/vhzkhPuUqtxfaJv3Kp0GXNLC2rWDVYClgA+v2Rk3otLpGpQdbRaLRdPnKFqcHUlYAlgaW1Fx77d0DeQMs7i2XcyOpoari5KwBIgyN0dFxtrTkXffmzQsqikhA+3bCXufjrNqvpzLTHxiV4v7v599ly9SouAqlSvZPA0My+P70+epHud2vx4tvJgqBDPotTw29j4OCuBRwB1FVdMHaxIDb/z2KDlk6xXkJFDXnImzqFVlYAlgJmDDbbVPUi+EIXvc/Upzi8kNykdt6Y1lYAlgMrCFGsfZzKinuw4FeJpO3HhAjX8/ZWAJUBwtWq4ODpy8sKFxwYti4qLef+zz4i7e5fmoaFcvVXxOg8g/pfgo5uT0xPtT2xiIpv37KFHx45sCAv7g+9GCPFvIndw4j/hzp07rF69ms6dO1cIWALY2dkxf/589PT0+Pjjj5/CHj5dnX6p8XLhwoUnWt7NzY369esTHR1NTk7O37lr4j8gPzePjNT7uHpXHJBx9XQnKe7xGVolJSUU5hfQ97Uh9HxlIAb6FafrGamMGPLWSFp0aV/u8aS4sps9G/uyaUOZaelkZ2RRpWY1oCxzuKigEIAGrZv+ZranEM+CnMJCUh5k4+NgX+E5b3t77qSlPXbdYo2GvKIixrZtw+utWqKv/2SXeOvPnkNlaEifevUqfX7psePYW1jw/CPT9YR4lhXnF1KQnoOFW8VyBxYuduTcvf//Wq/oQS4A5k4VZ0+Z2lpSkltIYVYuhsZG1HuzB25NalZ8rbwC9J7wOBXiacrJyyMlLQ3fSsps+Xh4cCc+/rHrFhcXk1dQwLiXXmLUoEGPPTc9GrQsKCx87DY1Gg2L1q4luFo1mtev/0feihDiX0gyLZ9Ru3btYvHixdy+fRtPT0/Gjx/P6tWrKSoqUmpOPlqDUufRx7VaLevWrWPjxo1ER0dTUlKCm5sbPXr04NVXX1VqwT3q4fqSv1djcfTo0bzxRlnjjKioKD7//HNOnz5NcXEx1atXZ9SoUTRr1qzcOidPnuTLL78kIiICe3t7RowY8ac/r61bt6LVahk4cOBjl/H09KRt27bs2rWLe/fuKfUdr169yrx587h48SIWFha8+OKLaLXaCus/yXJarZaFCxeyfft27t69i6WlJU2aNOGtt956qtP/dRcImj9Q88XMzAyg0s/i9+zZs4clS5Zw+/Zt9PX1CQ4OZvTo0dStW1dZprS0lBUrVrBhwwYSEhJQq9V06NCBcePGYWFhAcCbb77Jzp07WbJkCS1atAAgMzOTLl26YGpqytatW5X9FE/Pg4wsAKzUNhWes7SxoiAvn/y8fEzNKjY+MDE1YdzM9zF4gjp9Ohlp6dyJiGL3+i04urlQvXYQAPeTUwEwt7Rg9/qtnDt6isL8Amwd7Xmu3wtUqxX4J96dEP+cjNyyQIitmXmF59RmZuQVFpFbWIh5JVO4zVQqvujXF4M/EASJu3+fC7FxdA4OQm1e8TWPR0ZyKS7uiWtpCvGsKMrKA0BlVfEaQWVliia/mJL8IgxNVX9qPX2jslsoTWFxheWK88qCLUXZ+Rhbm2Nqb1Vhmdx76TyITUHt7/YH35kQ/7z0zEwAbK2tKzyntrIiLz+f3Lw8zCu5JjczNeXLyZN/9zovISkJExMTVm7axMmLFyksLMTR3p5+XbrQ5KH7B4Ct+/eTlJLC26+8Qmlp6Z9/Y0KIfwUJWv7DHjx4oEzlfZS1tTUGBgZs2bKFd955h6CgICZMmMDt27cZM2YMtra2eHp6/uHX/OKLL1i0aBHdu3enT58+5ObmsmXLFubOnYu5uflvBvp0KquxCLBgwQLu3bunBCRv3rzJgAEDlCCkkZERO3bsYPjw4cydO1fJ+Dt58iSvvvoq3t7ejBs3jvT0dD755BP09PQeW/Pzt1y6dAlDQ0OCgoJ+c7mGDRuyc+dOzp8/T+fOnYmMjGTQoEFYWVnx+uuvU1xczHfffUdRUflmA0+63KJFi1i4cCEDBw4kICCAhIQEVq5cydWrV9mxY8cfCsz8lU6dOgVAjRo1nmj5/Px8zp49i7u7O5Z/oCMgwJkzZ3jzzTdp3rw5vXv3Jj8/n9WrV/PSSy8RFhamNEN6//332bp1Ky+88AJDhw4lOjqaH374gQsXLvDDDz9gbGzMhx9+yKlTp5g2bRphYWGYmJgwffp00tPTWb16tQQsnxGFBQUA5aZu6xj+8lhxUVGlQUs9Pb0/dFzk5eQyb+K0X15PRZeBPZTXLfilBu+BzTsxMDCgU/8e6OvrcXz3IdYsWMaQt0ZSpeazXRpC/G/LLy4LgKgqaWig+uU4KSopqTRoqaenh8FjBiEfZ9/1G+jr6dEhsGIWWFZeHt+fPEXXkBC87StmfgrxLNMUlR1LBkYVjyX9X44vTXFJhaDlk65n5mSDgYkRaddicW8RpCQAaIpLyIgsmwVQWlzy2H27+eMxANxb/PZ1qxDPAl3Wo0qlqvCcyqjsGqywuJiKQ19Pfp0Xn5REQUEBuQUFjB40iNz8fHYdPsyXK1ag0WiUOpfxSUls3LWLl3r3xk6tJvV+5VnTQoj/Dgla/sO6d+/+2Oe2bNlC1apVmT17Nr6+vqxdu1Y5Ofj6+vLxxx//4aBlcXGxMm165syZyuO9e/emUaNGHDt27ImClpXVWFy6dCnx8fFMnjyZWrVqAfDxxx9ja2vL5s2blYDSiy++yJAhQ/jkk09o27YtKpWKzz77DAcHB9avX69k1TVu3JghQ4b8qaBlamoq1tbWlZ5MH+bo6AhASkoKUBZ0BVi3bp2SCdmhQwdeeOGFcus96XLbt2+nefPmfPDBB8pjLi4u/PDDDyQmJv6poPMfUVRUVC4onpWVxcWLF/nss88wNzenf//+v7l8SUkJ8fHxfP3116Snp/Puu+/+4X3YuXMnJiYmfPPNN8pFfOPGjRkzZgzXrl3Dw8OD06dPs2nTJj766CP69eunrNuiRQuGDRvGunXrGDJkCLa2tkyePJk333yTxYsXExgYqATB69Sp84f3Tfw9dMm4j8va/ivp6enRZ+QQNCUl/Lz/GMs/+4a+I4dQs14IJb/cIBbk5TPu0/cxNS/7DQqoFcjn70xn/8YwCVqKZ5ous/2fOJaKSko4FhlJXW8vHCoZnFp2/ATWpqb0qCu/teJfSDkx/T3r6RsY4NakJnEHLnFz/VE8WgahLdUSu/8ipUVl5yK9Suooa4pKuLbqALlJGbi3DMLGx7nCMkI8a/6Jc1PbJk0oLS2lQ/PmymNN6tZl/IwZrN6yhaa/lDD5ZvVqAvz8frPxjxDiv0WClv+wOXPmYP+YjAVPT0+uXLnC/fv3GT58eLkAXN++fZXA2R9hZGTEyZMnKS4uP30lIyMDCwsL8vLy/vA2AY4dO8a8efPo1q2bEvTMyMjgzJkzDBo0iIKCAgp+yb4CaNeuHZ9++ilXrlzB29uba9eu8corrygBSyjLggwICPhTNRS1Wu0TjeIZ/jJKrtVqKS0t5dixY7Ro0aLc1G0/Pz+aNm3KwYMHAZ54OQBnZ2dOnz7N999/T+fOnbG3t6dfv37lAnN/p7CwMMIqKUbt7+/P1KlTlSnxv7e8r68v8+bN+1NNeJydncnNzeXjjz9mwIAB+Pn5ERAQwJ49e5Rl9u7di56eHi1atCgXNK1RowYODg4cPnyYIUOGAGX1OMPCwli2bBlWVlZUq1ZNKUUgng3GJmVZX8WPZB4DlPyStWJiYvKXvJapuRlBobUBqFmvFgs+nMnOdZupWS8Eo19+M2vUDVEClgCmZqZUqxXIxZNnKSooRGVSMUtNiGeB6S8ZK0UlFTO0in4p72H6O4NzT+ra3bsUFpfQ0Ne3wnMno6I5eyeGtzu2J7+omHx+vYYoLi3lQX4BZiojmTIunlkGxmXHUmlxxbI4pb8cX4YmFWcH/JH1PFuHUFJQxN2T10kNvwOAbXV33JsHErPnAoam5c81JflFXFu5nwexKTjV88e7nQwIiH8Hk1+y+x+dYQZljXYAzP6f13ntmjat8JjKyIjm9evz065dxCclcfH6dWITE5n25ps8+OV+MeeXWTaFRUU8yMnB0tz8Hxn4E0L8cyRo+Q+rU6fOb3YPv3v3LoAyhVZHpVJVeOxJGRkZcfjwYQ4cOMCdO3eIjY0lK6usBt2fqVcYExPDW2+9hb+/P9OmTVMej/+lCPOqVasq1NnUSUpKwuiXm7LKsg59fX0JDw//w/vk6OhIfHw8JSUlSmCyMroMS0dHRzIzM8nLy3vsfuiCkU+6HMDEiRN57bXXmDFjBp9++ik1a9akdevW9OnTBwcHhz/8vv6opk2bMmzYMKBsNFSlUuHi4oKrq+vvLn/v3j2WLl3KgwcPmDp1Kg0aNPhT+/Diiy9y/PhxVq9ezerVq3F3d6dVq1b06tWLatXKGqTExcWh1Wpp2bJlpdswf6S22tSpU2nfvj2pqal8/fXXv5tRK/5Z1nZl2dHZWdkVnsvOfICJmenfEig0UhkREFKTn/cfJTc7Byt1Wa0lc0uLCsuaW1mAVkthoQQtxbPL7peBvMxKBhQz8vIwM1ZhYlQx0PJnXIqLx8jAgFqeFa8tLv9yPv9s994Kz52KiuZUVDQfdu1MjcecW4R42oyty46louz8Cs8VPcjHwNQIg0pKmvyR9fT09PDrHIpHiyDy0x5gbG2OidqCmL0XQF8PY5tfr2WKcvK5umIfuXfTcQ6tSpVujSSwIv417H+ZBZf54EGF5zIePMDM1FQJbP7VrH+ZCVBYVMSl69cp0WiY9NlnFZbbfuAA2w8c4KupU3Gwq9hISwjx7yVBy2dUZcFE4yc8GTzcbEWr1fL6669z6NAh6tatS+3atenbty/169dXMtn+iJycHEaNGoWenh5fffVVuewp3esOHDiQtm3bVrp+lSpVSE5OBiiXianzZ4sp16tXj1OnThEeHv6b04bPnTuHnp4etWvXVh570v14kuWqVavGnj17OHbsGIcOHeLYsWN8+eWXLF++nPXr1+Pn5/dH3tYf5uDgQOPGT94h+dHl27RpQ+/evXn11VdZvnx5ucY5T8rCwoLVq1dz6dIl9u/fz9GjR1m1ahVr1qxh9uzZdO3aldLSUszNzfnqq68q3caj3/Xr168rWcF79uwhODj4D++X+PuYmpliY29LUmzFLuF34xJw8/5zAy46qUnJrJy3mKbPtaZB6/Ij8YUFBaCnh6GRIU5uLhgYGpJy916FbWSkpWNoZFRpQFOIZ4W5sTEOlpaVdgmPSUvD9y8c/LqZnIyPgz1mlQwCda0VQlP/KhUenxG2iyB3N7qGBOMpN4XiGWZoqsLY1qLSLuE5SfexdKt81tMfWS/l8m1UlqbY+Lqgsvi1ZnNWzD0s3OyUupglhcVKwNK1SQ38Oof+f9+eEP8oczMzHOzsuJNQ8TrvTnw8fv/P8lfpmZl8vHAhjevUoddzz5V7LvGX+0YHOzsGde9O7iODelnZ2Xy1ciXN6teneWgo1lYVG18JIf7dnrzFpPhHeHt7A2XZjI/SZTLq6OvrV0jTLykpISMjQ/n/c+fOcejQIV5//XXWrl3LpEmT6NWrF25ubmT+0gnuSWm1WiZMmEB0dDRz5sypkPnp5lbWAdHAwIDGjRuX+8fR0ZGioiJMTU1xc3NDT0+P2NjYCq+RUMnJ8El06dIFAwMDvvvuu8cuc+/ePXbv3k3dunVxc3NDrVZjYWHxu/vxpMtpNBquXbtGUlISbdq04eOPP+bIkSN8/vnnZGdn8+OPP/6p9/ZPsra2Zu7cuWg0GsaPH/+npurfuXOH8PBwatWqxdtvv822bdsICwvDysqK5cuXA2XfldzcXAIDAyt8Vx48eICp6a8X/zk5OUyePJmqVavSs2dPli9f/qeyccXfq2bdEKKv3yQ1KVl5LOraTe7fSyGowf9vCpytoz0F+fmcPXwSzUPTZjPS0rl27jLeAX4Ym5igMjGmWu1AboVfIyUx6dflUu8TcfEq1WoHov8HOisL8TSE+nhzNTGRxIxM5bErCQkkZWbR+C8a+CrRaEjMyMDHvvLAo7taTZC7e4V/oKyLeZC7OxZ/U1aNEH8V+5peZEbfJS81U3ksI+ou+akPcAj2+X+vl3jiGtHbT1Oq+XUA+35EPA9iUnBtUE15LHrbqbKAZePqErAU/1oNQkK4cvOmEkQECI+IICklhcZ/IsnhYbY2NuTl53Pw5Eny8n/Nck5LT+fw6dPUrFoVtZUVfp6eBFerVu6far+UOHGytye4WjWlMZAQ4r9D7t6eMdWqVcPT05N169aVqze5e/duZWqzjr29PXfu3CmXAXjw4EEKf+nwBiiBySpVymdMbNiwgfz8fEoqqZv1OPPnz+fgwYOMHj2aFi1aVHje0dGRwMBANm/erGRTQlkzoEmTJjFmzBhKSkqwtbWlfv36bNu2jbSHskkuXrzItWvXnnh/Hubt7c1LL73Evn37+Oabbyo8n5mZyZgxYyguLubDDz8Eyqb1tGvXjmPHjhEZGaksm5CQwOHDh5X/f9LlNBoNgwcPZsaMGeVeOyQkBOBfEywJCgpi2LBhJCUlMWfOnD+8/scff8zrr79Obm6u8pivry9WVlbKZ9C6dWuACn+rgwcPMnbsWLZv3648Nnv2bJKTk/noo4+YOHEi1tbWvP/++5XW1RFPT7PnWmNqZsbyOQs5secQR3bsZf03K3D19iCkYdnFbHpKGpdOniU9pWIW2W8xMDCg84AeJCfcZenMBZw+cIxD2/awePo89PX16TKgp7Ls/7F352FRle0Dx7/sOygCCSgiqOACilvuviFlqbmvIZm5ZFoumWnra2Vpbrnkmmm55FIKLqCmIknpzyUtlMqVZJFFWURhWGaY3x/A5DigA4qMvvfnurrel3Puc+Y5OA9n5j7Pcz/dB/XG0sqKtXOX8fOen4jeG8nXc5ZgZm7Gs/0rXqNViEetd4vm2FhY8Fl4OOExMYSePsOig4eo7+ykGf2Ymp1N9IWLpJYxVU8fN27fRqkq0kxHF+JJVKdzM0ytLDj7zX4Sf4klPuoP/tp8GFv3Wri0KH4AoMi4ReqZyygyblXoOIC6XfzITc3izw0HST5xnriffuOv7w9Ts5EbLi2KEym5aVmknbmCiZUZtm61SD1zWec/IR4HvYOCsLGy4tOlS9kTGcmO/fv5cu1avDw86FyySE7qjRscOXGC1DJmC9zPqMGDSc/K4sMvvyQiKort+/bx3vz5mBgb8+qgQQ/7coQQjxGZHv6IHTx48J6rY/fp04eZM2cyduxYhgwZwoABA7hx4wYbNmzQ1IIs1atXLz799FNGjx5N7969uXr1Ktu2bdOMeAQICAjA1taW2bNnk5SUhIODA8ePHyciIgILCwutxNK9REVFsXLlSry9vWnUqBG7d+/Wmhrt5OREx44d+eCDDxgxYgQDBgxg2LBh1KhRg/DwcP744w+mTp2qufbp06cTHBzM4MGDCQ4ORqFQ8O2331Zq5fBSU6ZM4ebNmyxatIjDhw/TvXt37O3tuXLlCmFhYeTl5bFgwQJNXUWASZMmERUVxfDhw3nllVcwMTFhw4YN2NjYaCXF9IkzNzcnJCSEFStWMGHCBDp37kxeXh5bt27FysqKAQMG6LTZUI0fP569e/eydetWevfuXaFp4iNHjmTMmDEEBwfTt29fLCwsOHjwIPHx8XzxxRdA8Srh3bp1Y+3atSQlJdG+fXuSkpLYtGkTbm5umjqbx44dY9u2bQwePFgz7f+dd95hxowZLF++nMmTJz/0axeVY2Nvx+h3JxKxOZRDYXsxNzencYAf3Qe9iGnJ365/LlwhdO339Hv1JRxdyp6aV54WHdpgambKkYhD7N0ahpmFBd6NGxLUvydOtV00cTWdHBn7/mR++nE3v+w7jFqtpl4jL7oP6l3h1xSiOthbWfHf3i+y/ugxfjj1GxamprSuV4/gdk9jVrLwzd/JKayM+plx/+nKU5WYCne75OGmlZnUBxZPLnNbK/zHvMCV8BNcPXgGE3NTajX2oP7zrTE2Le5L2f+kcuHHX2g0sBNWjnZ6Hwfg1MwTnyFdSDxylisRJzCztaJO52bU7eqPUclD2ptxxeVKVIpCLvz4S5ntfCqgaksHCfEwONjZ8fHkyXy3YwfbIiKwMDOjjb8/wX36aL6j/nX5Mis2buT14cN5qpyFZ8vTxt+faWPGEPrTT2zauRNzMzOaNGzIS7174/7UU1VxSUKIx4SRujIrsYgKmzFjBqGhofeNO3/+PADHjx9n4cKF/Pnnn7i5uTFp0iTmz5+Pu7u7ZpGboqIili9fzo8//kh6ejq+vr68/fbbrF27ltzcXE3cb7/9xvz58/n7778xNzenfv36vPzyy8TExLB+/XqOHDmCk5MTgYGBWucPCQkhKSmJyMhIli5dWm79QYC2bdtqjouNjWXp0qWcOnUKpVKpeb1+/fppHRMTE8OCBQuIiYnB3t6ekSNHcu7cOU6fPq21uE1FHTlyhE2bNvHnn3+SnZ1N7dq16dKlCyEhIWUuphMXF8fcuXM5ceIE5ubmDCp5mrdq1SrNv4e+cUVFRaxfv57t27eTmJiIiYkJLVu2ZOLEiTRr1qzS1wT/jk4s63eTmJhIt27d6NevH3PmzLnvufSJP3r0KCNHjsTb25uwsLAKLX4TFRXFqlWruHz5Mvn5+TRs2JCRI0dqrUZeWFjImjVrCAsLIykpCUdHR9q3b8+kSZNwc3NDoVDw4osvkpuby969e3FwcNAcO3z4cH7//Xd++OEHGjdurHe7Sh2MP13hY4QQulrtjK7uJgjxxHi9Wf79g4QQ97W61vPV3QQhngj2T+A6AkMPz63uJpRryzPvVHcTDJIkLR8jdycVhRCVI0lLIR4OSVoK8fBI0lKIh0OSlkI8HJK0fLQkaVm2x6PInhBCCCGEEEIIIYQQ4n+G1LQUBkmlUpGRkaFXrJ2dHZaWllXcoocjIyMDlUp13zhLS0vs7OweQYv087i2WwghhBBCCCGEEI8nSVoKg5ScnEy3bt30ip09ezb9+/ev4hY9HAMHDiQpKem+cfrWpnxUHtd2CyGEEEIIIYQQ4vEkScvHyIMsTvO4cXZ2Zt26dXrFNmjQoIpb8/DMmzeP/Pz716xycXG5b8yj9Li2WwghhBBCCCGEEI8nSVoKg2RhYUGHDh2quxkPXatWraq7CZXyuLZbCCGEEEIIIYQQjydZiEcIIYQQQgghhBBCCGFQJGkphBBCCCGEEEIIIYQwKJK0FEIIIYQQQgghhBBCGBRJWgohhBBCCCGEEEIIIQyKJC2FEEIIIYQQQgghhBAGRZKWQgghhBBCCCGEEEIIgyJJSyGEEEIIIYQQQgghhEGRpKUQQgghhBBCCCGEEMKgSNJSCCGEEEIIIYQQQghhUCRpKYQQQgghhBBCCCGEMCim1d0AIYQQQjyeTLo+U91NEOKJMbqGsrqbIMQTYezlfdXdBCGeCFvwr+4mCCEjLYUQQgghhBBCCCGEEIZFkpZCCCGEEEIIIYQQQgiDIklLIYQQQgghhBBCCCGEQZGkpRBCCCGEEEIIIYQQwqBI0lIIIYQQQgghhBBCCGFQJGkphBBCCCGEEEIIIYQwKJK0FEIIIYQQQgghhBBCGBRJWgohhBBCCCGEEEIIIQyKJC2FEEIIIYQQQgghhBAGRZKWQgghhBBCCCGEEEIIgyJJSyGEEEIIIYQQQgghhEGRpKUQQgghhBBCCCGEEMKgmFZ3A4QQQjwZMq+ns3frTuLOXwLAx78JLwzpg429nd7nCPt2K+mpaYya/qbOvpWfLCTpn3id7U1a+TNswquan69euMKBHXtIikvAysaKxgF+BPZ9ARs720pclRCPXlp6OutDQ/nz4kUAWjZtSki/fjjY3bsv/f7XX+zYt48rCQkYGxvT0NOTob160dDTUyvu5q1bbNm9m1Nnz1KgVFK/Th2C+/TRibscH8/mXbs4HxeHsbExTby9CenXD7ennnqYlytElanq+1JO9i0ObA/n79/PUVhYiFu9Ojw38EXqenuWe76UhGus/HQBXXoEEdj3hQpfkxDVJS/jFlf2nuTmlRQAHH3rUP+FNpjbWul9jouhR1HcuIn/GN33/pnlu7mdmK6zvVazejR56RnNzxkXkkiI+oPbSelgZIR9XWfqPdsSew/nSlyVEMLQSdLyIZoxYwahoaH3jOnWrRvLly9/RC3SFRgYiLu7Oxs2bAAgJCSEpKQkIiMjH1kbHsZr7t+/n23btnHu3Dny8vJwdXWlU6dOjBgxgrp16+p1jtJ/r/Pnzz+UuIpKTEykW7duesUeOnQIoMx4MzMzHB0d6dixI5MmTaJ27dr3PL+RkRF2dnZ4eXkRHBxM7969H+AqhCiWezuHtXOXoVIp6fx8IGp1Eb/sO0xq4jXGffgWJqb3v938Fv1//HbkGJ4+3jr71Go1ackp+Ab40bSVv9a+Gk6Omv8f9/dFvlu4EksrK7r2ehYjYyOO/fQzV/6+yNj3JmNlY/3gFytEFbqVk8PHS5agUqnoHRREUVERuw8dIv7aNT5/+21My+lLf168yJwVK6hTuzbDXnwRlUrF/uhoZi5axMeTJ9OgJCGpyMtj5uLFZN68Sc9nnsHG2pp9R47w8ZIlfP7223i4uQFwLTWVj5cswcLMjAHPPw9AeGQkHy1axNwZM3B0cHgkvw8hKquq70v5eXms+WIpt7Ky6fBsVyxtrDl+KJq1c5cx7sO3eKqOq84xKpWK7d9sQqVUPZRrFOJRKczNJ+abfahVRdTp0gy1Wk1i9DlyUjJpMb4XxiYm9z1HyqkLpJy8gEN93QdfarWa3LSb1GriQa2m9bT2Wdaw0fz/rLgUYr87gLVLDTyfa4lapeba8b+I+Xovzce+gF1dSVwK8aSRpGUVePfdd6lZs2aZ+1xddT/AVKdx48ahUCiquxl6KygoYPr06URERODv78/o0aNxcHDg4sWLhIaGsn37dubNm0dQUFB1N/W+HB0dmTt3rta22bNnA8XvobtjMzIyAGjdujWDBw/W7FMqlVy6dIlNmzZx7Ngxdu3ahb29vWb/3fFqtZqEhAS2bNnCtGnTMDExoWfPng/9+sT/ll9/iuJmZhZvfPIOLm7FiXP3+vX4bsEKTv96gjZdO5R7bFFRET/vOUDkzn3lxmTdyKAwv4DGAX606NCm3Lg9m3ZgZGTMmPcmUeup4g+uTVr6s+y/c/l5zwGeH9KnklcoxKMRHhlJRlYW8959lzolD6Ea1KvHZ8uWEXX8OEEdO5Z53Hc7dlCrRg0+e/ttLMzNAejSti1vffYZW/bs4YM33gBg54EDJKel8dGbb9KkYUMA2rdsyZszZ7Lr4EHeePnl4nZERZGfn8/HkydTv04dAPwaNeK9+fMJj4wkpF+/Kv09CPGgqvq+dCTiEDdSrvPqOxOo79MAAL+2ASx851Oi9x5i4JjhuseEH+T6tZQHvDIhHr2kX2LJv5lLq4l9sHapAYBdHWfOrf2J1NOXcG3jU+6x6qIiEqJiuHro93Jj8jNvU1SgpFYTD54K0H1IUOpK+AksHGxo8XovTMyLUxkuLb357ctQ/jlwGr9Xu1fq+oQQhkuSllUgKCiIOiUf8A1dx3K+/BiquXPnEhERwbRp0xg9erTWvnHjxjF69GgmT57M9u3b8fEp/+ZpCKytrenTRzuBsnjxYgCd7YAmaVm3bt0y99etW5ePP/6YLVu2MHbsWK3tZcX379+fHj16sGzZMklaigd29vhp6vs00HwxBGjQ1IdatV04e/xMuV8OCwsKWTXrS1ITr9GiQxsu/3WhzLi0ki95zq4u5bYh80YGaUnJtO7aQZOwLD7mKXyaN+XMryckaSkM3q+nT9OkYUNNwhLA39cXVxcXjp4+XWbS8nZuLleTkuj5zDOahCVADXt7GjdoQMzffwPFD61+PnGCgCZNNAlLgJr29rzcrx/Gxv+WOk+7cQM7W1tNwhLAu149bG1sSEhOfqjXLERVqMr7klqt5syvJ2jk31iTsASwc7Dn+SF9MDbRXTYgJeEaP+/5if+82J1DoREP4QqFeHSux1yhRv3amoQlQM0Gblg523M9Jq7cpKWqUMnvK8LJTcnEJcCbrCtl3z9y0rIAsHIqfxR/oSKfnOQM3Ds11SQsAcxtrXCoX5vMS0kVvzAhhMGThXjEYyMuLo6NGzfSs2dPnYQlQK1atVi8eDFGRkbMmjWrGlpYvXr06AHA6dOn9Yp3d3enTZs2XL58mdu3b1dl08QTTpGTS+b1dNw8dR/WuHnUITk+sdxjlUol+Yo8hrw+ggGjgzExLnt6UWpi8YdcZ7fiKUUFefk6MdmZNwF4qk5tnX2OLk7k3s7hZkbm/S9IiGpyOzeXtBs38CqjzEn9unWJS0go8zhrS0u+/OADegYG6uy7dfs2JiXJyOsZGWRkZeHv6wsUJ17y8ov70nOdO2slRGs7O3M7J4ebt279e66cHHIVCmrcMZpfCENU1felrBsZ3Mq8SYOm//al0vvS04GddBKiKpWK0HWb8W7qQ/P2rR/k0oR45AoV+eRl3MbWvZbOPlvXWty+pluHspRaWYQqvwDfYV3xGdQZI2OjMuNyU4s/n1m7FCctVQWFOjGmFma0ntIf945NdduYm4eRsaQ2hHgSyUjLarR3715WrVrFlStX8PDwYOrUqWzcuJGCggJNzcm7a1CWunu7Wq1my5YtbN++ncuXL6NUKnF3d6d///6MGTMGI6OybxB31pe8X43FN954gzffLC5CfunSJb788kuOHz9OYWEhjRs3ZsKECXTu3FnrmKNHj7JkyRL+/vtvnJyceO211yr9+9q5cydqtZrg4OByYzw8PAgKCmLv3r2kpKRo6jueO3eOhQsXcubMGWxtbRk+fDhqtVrneH3i1Go1y5YtY/fu3Vy7dg07Ozs6duzIW2+9Va3T/0tHyKhU+tdJsrYuru9X1u/iXnbs2MG7777LkiVL+OKLL0hPT2f06NG8+eabXL16leXLl3Ps2DEyMjKwtramZcuWTJ06lYZ3jOwpKChg1apV7N69m5SUFFxdXRkwYACjRo3CpKQuTn5+PsuXL2f37t2kpaXx1FNP0bt3b15//XXM7xhNJKpXabLQvmYNnX12NezJy1WgyFVgZa1bqN3SypLJc97X/JuXJ+1aCuaWFuzdEsbZE2cozC+gpnMtgvr3xP/plgCYW5gBkF9GQjP3dg4At27ewsGx7PIdQlS3jKwsgDLrRda0tydXoSAnNxcba+3arMbGxri66I5CvpqUxIW4OJo3bgxAcloaAPZ2dmwIDeXQ0aMo8vJ4ytmZEf360crPT3Nsn6AgTp87x5LvvuPlkqngG8PCMDEx4YX//OdhXK4QVaaq70vpqdcBsLGzZd/WnZw6cox8RR6OLk68MLQvvi2aacX/svcQ6anXeemNVykqqthnLiGqW8HNXADM7XXrgpvbW6FSFKJUFGBqpfvZ3MTSjNZvDShz9PGdctOyMLEw5UrESa7HxFFUoMTS0ZZ6z7bEpbkXAEbGxlg56T40y0nJIPtqGjUbulfm8oQQBk6SllUgOztbM5X3bg4ODpiYmBAWFsb06dPx8/Nj2rRpXLlyhYkTJ+Lo6IiHh0eFX3PRokWsXLmSfv36MXjwYHJycggLC2PBggXY2NjcM9FXqqwaiwBLly4lJSVFk5A8f/48L730kiYJaWZmxp49exg7diwLFizQjPg7evQoY8aMwdPTk8mTJ5ORkcFnn32GkZFRuTU/7+X333/H1NQUvzu+VJWlXbt2RERE8Ntvv9GzZ08uXrxISEgI9vb2jB8/nsLCQtauXUtBQYHWcfrGrVy5kmXLlhEcHIyPjw+JiYmsX7+ec+fOsWfPnvsmX6rKsWPHAGjSpIle8QqFgpMnT1KnTh3s7rMibXnef/99hg8fjq2tLS1atODGjRsMHjxYk/CtWbMmf/31F9u2bSM2NpbIyEjMzIoTSxMmTODIkSO8+OKLjBw5kpiYGBYsWEB6ejrvvvsuKpWK1157jdOnTzN48GC8vb05d+4cK1eu5K+//mLFihXlJuPFo5WflweAmbmZzj7Tkm2FBQVlfjk0MjLSq8+kJiVTkJdPXq6CgaOHk6dQcOzAz/ywaj1FKhUtOrTBxa02FlaW/PlbDF16BGneH4UFhVyKLV5IS1mo++ReCENROuqxrIcy5iV/O/MLC7HR2Vv2uZaVPNjsU1LnObekhvXW8HBMTUx4ZeBAjI2M2H3oEPO+/pr3xo/XjMJ0cnSkX/furP3hB96ZMwcoTo6+NWqU1pRxIQxRVd+X8kr60qHQCExMTOgxrD/Gxkb8su8wm5Z+w4i3xtGgafF02bSkZA7v2k/P4AE4ONYk80bZ3xGEMFSlox5NzHRTB8YlC1qpCpVlJi2NjIwwMrn/5/Wc1CxU+UqUeQX4DOqMMq+Aa0f/5PzWI6iL1OXWuVQVFHL+h2gA6nS993dEIcTjSZKWVaDfPYrTh4WF0ahRI+bOnYuXlxfff/+95suJl5cXs2bNqnDSsrCwUDNtek7JFwuAQYMG0b59e6Kjo/VKWpZVY3HNmjUkJCTw0Ucf0aJFCwBmzZqFo6MjoaGhmpF6w4cPZ8SIEXz22WcEBQVhbm7O/PnzcXZ2ZuvWrdja2gLQoUMHRowYUamk5fXr13FwcLjvCDuXktEmaSUjSpYuXQrAli1bNCMhu3fvTt++fbWO0zdu9+7ddOnShQ8++ECzzdXVlc2bN5OUlFSppHNFFBQUaCXFb968yZkzZ5g/fz42NjYMGzbsnvFKpZKEhASWL19ORkYGM2bMqHRbevbsyeTJkzU/r169mps3b/L999/j7f3vhwsbGxtWr17NhQsXaNq0KT///DNHjhxhypQpjBs3DoBhw4ZRWFjIpk2bmDBhAgcPHuTYsWOsWbNGawSvv78/H330EYcOHXosFlz6X1A6ULcqk8htunZAXVTE093+fS/4tW3J0g/nsG/bLvzbtcLE1JQOz/2Hwzv38cOqDXTpGYRaXcTB0AgK8osfPhjL1CFhwEpHvT9oX8ovKGDu6tVcTUqi73PPaepXFiqVQHHyctGHH2Jbcg9v1awZEz/5hC27d2uSllv37GHH/v00btCAoI4dKSoq4qdffmHR2rW8NWqU1qhMIQxNVd+XlIXFfSkvV8Hk2e9jZVPcl3xaNOPL6Z9ycHs4DZr6UFRUxI5vNuPRwOueC/8IYdA0HarqXsK1TSPUajVu7Rprtjn71+f04jDi9p7EpXl9nenfqgIlsRsOkZOcSZ3/+FGjvm55ICHE40+SllVg3rx5ODk5lbnPw8ODs2fPkp6eztixY7UScEOGDNEkzirCzMyMo0ePUnjXCKLMzExsbW3Jzc2t8DkBoqOjWbhwIX369NEkPTMzMzlx4gQhISHk5eWRV/IkG+DZZ59l9uzZnD17Fk9PT2JjYxk9erQmYQnFoyB9fHwqVUNRrVbrNSLLtOSJn1qtpqioiOjoaLp27ao1ddvb25tOnToRGRkJoHccQO3atTl+/DjfffcdPXv2xMnJiaFDhzJ06NAKX1NlhIeHEx4errO9YcOGzJw5UzMl/n7xXl5eLFy48IEW4WnTRnsV57FjxzJgwABq1fq35k1eXp4mUVT6XoyKisLY2Jjhw7VX1pw+fTqvv/46NjY2/PTTTzg6OtK0aVOtpGvXrl0xMTEhKipKkpYGwsLSAigetXI3ZcnTeUtLywd6jbbP6C4+YmZuRov2rTm8az9pSSnUruvGM727k5er4NjBI5w9UVzf1ad5Uzo/H8iB7XuwttVnjJoQ1cPSorgv3T3CH6Cg5B5vfZ++lJOby5xVq7hw5QrPtGvH0F69NPtKF+l5unlzTcISwMbamlbNmnHkxAny8vNRqVTsOnQIbw8PPnrzTc3f8A4tW/Le/Pms2ryZZb6+mpHzQhiaqr4vmZX0pSatmmsSlgBW1lb4tmjGmaMnKcjL5/8ORZOSmMTodyeRc6v4s29eyWehgoJCcm7dxtrWRmaOCINmUlJ+p6hQtwRVUcnDMFPLB7sfuD7tq/u6Zqa4BHgTf+gPctOysKntqNmnVBQQu/4g2VfTeKp1QzyfbflAry+EMFyStKwCLVu2vOfq4deuXQOKV3W+k7m5uc42fZmZmREVFcWhQ4eIi4vj6tWr3LxZXM+novUKAf755x/eeustGjZsyCeffKLZnlCyCMCGDRt06myWSk5O1nyRKWvUoZeXFzExMRVuk4uLCwkJCSiVSk1isiylIyxdXFzIysoiNze33HaUJiP1jQN45513eP311/n888+ZPXs2TZs2JTAwkMGDB+Ps7Kxz/MPWqVMnRo0aBRSPIDA3N8fV1RU3N7f7xqekpLBmzRqys7OZOXMmTz/99AO15c7kZKnCwkK+/PJLYmNjiY+PJzExUVNns6ioCICkpCRq1aqlldAGcHZ21vwO4+PjycjIoH379mW+drKsXmswHGoVj5y+dfOWzr5bWdlYWlthXvIF8mGzsS8ubVBQMq3WyMiIHsP60aVHEOmp17F3rEFNJ0cO7AjHyNhY6lkKg+ZUMgshKztbZ19mdjbWVlaaxGZZbt66xefLl/NPYiJBHTsyesgQrWSIY40aANjf9bcXwMHODrVajSI/n4zMTJRKJR1atdIanWxqakqn1q3ZtHMnSampeMo0cWGgqvq+ZF+zuO6sjZ1uX7KxtwW1mvz8fC6e+wuVUsWqTxfqxP26L5Jf90Xy1tyPqOnkqLNfCENh4VD8Pi+4pdDZV5CtwMTKDJMySjE8DGY2xSUcVAXKf1/ztoJz3x4g51oGtds2okGf9pL4F+IJJknLalRWMtHiHl9G7nTnYitqtZrx48dz+PBhWrVqRUBAAEOGDKFNmzaMGDGiwu26ffs2EyZMwMjIiK+++krrSXTp6wYHB5c7yq1BgwakpqYCaI3ELFWauKqo1q1bc+zYMWJiYmjZsvynaadOncLIyIiAgADNNn3boU+cr68v+/fvJzo6msOHDxMdHc2SJUtYt24dW7du1ZoWXRWcnZ3p0EH/KUZ3x3fr1o1BgwYxZswY1q1bR6tWrSrdlrun2p46dYpRo0ZhbW1Nhw4dGDBgAE2aNCE+Pl4r+a3PYkEqlQpPT0/++9//lrnfXlavNRhW1lbUcHIk+aruaqzX4hNx96zcw5hS2ZlZfDt/BX5Pt+SZ3t219t1IKX5IUdO5OIEec/w0dg521PdtiK3Dv7Va/zl/Gbd6dcqsbyaEobCxtsa5Vi3iEnX7UlxCAt73KD+iyMvTJCx7PPMMI/r314mp6+qKqakpCSkpOvvS0tMxMzPDwdaW7JIVw8u6TxaVfHaRpUSEIavq+9JT7q6YmJqSdk23L2XeyMDUzAwbO1ueH9IXRY72jKec7Fv8+PVGmrdvTYsObbC1r1xdcSEeFVMrcywcbctcJfx2cjp27mXPMNRX/s0czq77CRf/+ngEttDap7hRPAjHsmZx4lSZX6hJWLp1bIJ3z7YP9NpCCMMnxb2qgaenJ1A8mvFupSMZSxkbG+tME1MqlWRmZmp+PnXqFIcPH2b8+PF8//33vPfeewwcOBB3d3eySlYi1ZdarWbatGlcvnyZefPm6Yz8dHcvXpXNxMSEDh06aP3n4uJCQUEBVlZWuLu7Y2RkxNWrV3VeI7GML2P66NWrFyYmJqxdu7bcmJSUFPbt20erVq1wd3enZs2a2Nra3rcd+sapVCpiY2NJTk6mW7duzJo1i59//pkvv/ySW7du8cMPP1Tq2h4lBwcHFixYgEqlYurUqZWaql+eJUuWYGlpSXh4OAsWLOC1116jc+fO3LqlPdLBzc2N9PR0cnJytLbHxsYydepULl26RJ06dcjKyqJdu3Za77M2bdqQlZWlqacqDEPTVs25/Od5rienarZdij1Pekoafk8/2JQd+5o1yFMoOHXkmGbxA4Cs9ExO/3Kc+r4NsXMoTmIf3R/F7o3btRLj5/+IJf7iFZ4O7PRA7RDiUXi6eXPOnj9PUuq/fSnm779JTkujwz0eMn2zbRv/JCbywn/+U2bCEoqnn7f28+PMuXMk3DFaPS09nVNnz9Lazw9jY2PqurpS08GBqOPHNdPSoXiK+pETJ7CztaVubakdJgxbVd6XzC0t8A1oxoWYWNKS/u1LmdfT+fvMOXwDmmFsbIy7Z10aNPXR+s+jYfFKyI7OtWjQ1EceponHglPTemRdvkbu9SzNtsxL11Bcz8bZv/4DndvCwQZVXgHJJy+gzPv3e29e1m1Sf7uIg3dtzO2KP/df3nWsOGHZobEkLIX4HyFJy2rg6+uLh4cHW7Zs0ao3uW/fPs3U5lJOTk7ExcVpjQCMjIwkv2QqJKBJTDZo0EDr2G3btqFQKFAqlehr8eLFREZG8sYbb9C1a1ed/S4uLjRr1ozQ0FDNaEoonhL83nvvMXHiRJRKJY6OjrRp04Zdu3Zx48YNTdyZM2eIjY3Vuz138vT0ZOTIkRw4cIAVK1bo7M/KymLixIkUFhby4YcfAsVTRZ999lmio6O5ePGiJjYxMZGoqCjNz/rGqVQqXn75ZT7//HOt127evDnw+Czy4efnx6hRo0hOTmbevHkP7bxZWVk4Ojri6PjvNKdbt24RGhoK/DvCsmvXrhQVFekkeTdv3szevXtxcnIiMDCQrKwsNm/erBWzZcsWpkyZolktXRiGzi8EYmVtzbp5y/h1/2F+3vMTW1d8i5tnXZq3K060ZKTd4PejJ8lIu3Gfs+nqNXwQ2RlZrP5sMUcP/EzU7p9Y+elCjE1M6DV8wL/t6NGN69dS2Lj4a05GHeXA9j1sXraOBs18ad6+9UO7XiGqSu+gIGysrPh06VL2REayY/9+vly7Fi8PDzq3Ln4Pp964wZETJ0gtub8mpqQQffIk1lZWeNapw5ETJ3T+KzW8Tx+sraz4ZMkSduzfz66DB/nvokWYm5kx7MUXgeJ72auDBnEtNZX3588nIiqKPZGRvDtvHtdSUxnRv/89y7QIYQiq+r7UfVBvLK2sWDt3GT/v+YnovZF8PWcJZuZmPNu/8vXChTBEdTo3w9TKgrPf7Cfxl1jio/7gr82HsXWvhUuL4llmioxbpJ65jCJDtyzD/Xj3bkfBzVz+WBVB0q9/En/4D35fvgcjY2MavNgOgNy0LNLOXMHEygxbt1qknrms858Q4skjnzirwMGDB++5OnafPn2YOXMmY8eOZciQIQwYMIAbN26wYcMGnaL2vXr14tNPP2X06NH07t2bq1evsm3bNs2IR4CAgABsbW2ZPXs2SUlJODg4cPz4cSIiIrCwsNAZzVaeqKgoVq5cibe3N40aNWL37t1aU8OcnJzo2LEjH3zwASNGjGDAgAEMGzaMGjVqEB4ezh9//MHUqVM11z59+nSCg4MZPHgwwcHBKBQKvv3220qtHF5qypQp3Lx5k0WLFnH48GG6d++Ovb09V65cISwsjLy8PBYsWICv77/FnCdNmkRUVBTDhw/nlVdewcTEhA0bNmBjY6M1ilWfOHNzc0JCQlixYgUTJkygc+fO5OXlsXXrVqysrBgwYIBOmw3V+PHj2bt3L1u3bqV3794PNE28VJcuXfj666+ZNGkSnTp14vr16/z444+axHXpezEwMJBOnToxZ84cLl68iJ+fH2fOnCEsLIwJEyZQo0YNBg0aRGhoKJ9++imxsbH4+/tz4cIFtm7dStOmTelfzkgiUT1s7O0Y/e5EIjaHcihsL+bm5jQO8KP7oBcxLfm79s+FK4Su/Z5+r76Eo0vFphI1aenHS2+O4uc9B/jph92YmZvh6dOA5wb2wtn1KU1c09bNGfTay0RHHGTvljBs7G3p9HwgXXoGPTYPFcT/Ngc7Oz6ePJnvduxgW0QEFmZmtPH3J7hPH81nhL8uX2bFxo28Pnw4Tzk58delS0DxquArNm4s87xd2haPSHGuVYtZU6eyaedOdh86hFqtprG3N8F9+/LUHYsItm3enA/eeIMf9+5l8+7dANSvU4fp48YR0KRJVf4KhHgoqvq+VNPJkbHvT+anH3fzy77DqNVq6jXyovug3hU+lxCGztzWCv8xL3Al/ARXD57BxNyUWo09qP98a4xNixdKzf4nlQs//kKjgZ2wcqxY2QOnJvVoEhJIfFQMcftPYWxmQo36rnh2b4m1cw0AbsYVl2NQKQq58OMvZZ7nqYCqLdMlhHj0jNSVWaVFlGnGjBmaEWX3cv78eQCOHz/OwoUL+fPPP3Fzc2PSpEnMnz8fd3d3zSI3RUVFLF++nB9//JH09HR8fX15++23Wbt2Lbm5uZq43377jfnz5/P3339jbm5O/fr1efnll4mJiWH9+vUcOXJEM3rtzvOHhISQlJREZGQkS5cu5auvviq33W3bttUcFxsby9KlSzl16hRKpVLzev369dM6JiYmhgULFhATE4O9vT0jR47k3LlznD59Wmtxm4o6cuQImzZt4s8//yQ7O5vatWvTpUsXQkJCylxMJy4ujrlz53LixAnMzc0ZNGgQAKtWrdL8e+gbV1RUxPr169m+fTuJiYmYmJjQsmVLJk6cSLNmzSp9TVCczAPK/N0kJibSrVs3+vXrx5w5c+57Ln3ijx49ysiRI/H29iYsLExrNft72bFjB++++y7r16/XWswnPz+fRYsWERERQWZmJi4uLrRr145XX32Vnj178tJLL2lGwebn57Ns2TJ2797NjRs38PDw4KWXXmLYsGGa5NLt27dZtmwZ+/fvJy0tDRcXFwIDA5kwYcIDJb8Pxp+u9LFCiH+1zZJnn0I8LCdq6D8zRghRvjWXD1Z3E4R4Imx55p3qbsJDN/Tw3OpuQrmexN/3wyBJSwNzd1JRCPHwSdJSiIdDkpZCPDyStBTi4ZCkpRAPx5OYRJOk5eNH5soJIYQQQgghhBBCCCEMigyRENVGpVKRkZGhV6ydnR2WlpZV3KKHIyMjQ2vl4vJYWlpiZ1exei9V6XFttxBCCCGEEEIIIZ48krQU1SY5OZlu3brpFTt79uzHZuGVgQMHkpSUdN84fWtTPiqPa7uFEEIIIYQQQgjx5JGkpYF5kMVpHjfOzs6sW7dOr9gGDRpUcWsennnz5pGfn3/fOBcXl0fQGv09ru0WQgghhBBCCCHEk0eSlqLaWFhY0KFDh+puxkPXqlWr6m5CpTyu7RZCCCGEEEIIIcSTRxbiEUIIIYQQQgghhBBCGBRJWgohhBBCCCGEEEIIIQyKJC2FEEIIIYQQQgghhBAGRZKWQgghhBBCCCGEEEIIgyJJSyGEEEIIIYQQQgghhEGRpKUQQgghhBBCCCGEEMKgSNJSCCGEEEIIIYQQQghhUCRpKYQQQgghhBBCCCGEMCiStBRCCCGEEEIIIYQQQhgUSVoKIYQQQgghhBBCCCEMiml1N0AIIR61NZcPVncThHgitK31fHU3QQghhNAy2juoupsghBDiIZGRlkIIIYQQQgghhBBCCIMiSUshhBBCCCGEEEIIIYRBkaSlEEIIIYQQQgghhBDCoEjSUgghhBBCCCGEEEIIYVAkaSmEEEIIIYQQQgghhDAokrQUQgghhBBCCCGEEEIYFElaCiGEEEIIIYQQQgghDIokLYUQQgghhBBCCCGEEAZFkpZCCCGEEEIIIYQQQgiDIklLIYQQQgghhBBCCCGEQZGkpRBCCCGEEEIIIYQQwqBI0lIIIYQQQgghhBBCCGFQTKu7AUIIIZ4MeRm3uLL3JDevpADg6FuH+i+0wdzWSu9zXAw9iuLGTfzHvHDPuJyUDM4s20Pd//hRr1uA1r4zy3dzOzFd55hazerR5KVn9G6LENUlLT2d9aGh/HnxIgAtmzYlpF8/HOzs7nnc73/9xY59+7iSkICxsTENPT0Z2qsXDT09teLOXbjA1vBwriYlYW1pSbuAAIb26oWlhQUA19PTeWPmzHu+1kcTJ9K0YcNKX6MQj0Lm9XT2bt1J3PlLAPj4N+GFIX2wsb93X7pT2LdbSU9NY9T0N3X2rfxkIUn/xOtsb9LKn2ETXtX8fOWvixwKjSA5IQlLK0uatWlBUL+emFtaVOKqhKgehtKf9I0TQjwZHquk5YwZMwgNDb1nTLdu3Vi+fPkjapGuwMBA3N3d2bBhAwAhISEkJSURGRn5yNrwMF5z//79bNu2jXPnzpGXl4erqyudOnVixIgR1K1bV69zlP57nT9//qHEVVRiYiLdunXTK/bQoUMAZcabmZnh6OhIx44dmTRpErVr177n+Y2MjLCzs8PLy4vg4GB69+79AFfxaKlUKr7++mu2bdtGdnY2rVu35qOPPsLNza26myYMXGFuPjHf7EOtKqJOl2ao1WoSo8+Rk5JJi/G9MDYxue85Uk5dIOXkBRzqP3XPuCJVEed//AW1qkhnn1qtJjftJrWaeFCraT2tfZY1bCp2UUJUg1s5OXy8ZAkqlYreQUEUFRWx+9Ah4q9d4/O338bUtOyPbn9evMicFSuoU7s2w158EZVKxf7oaGYuWsTHkyfToCRxee7CBWZ99RVedesS3Ls36VlZRERFcTk+nk8mTy6+h9naMiEkROc1CgoLWffjjzjY2lLP3b0qfw1CPLDc2zmsnbsMlUpJ5+cDUauL+GXfYVITrzHuw7cwKacv3em36P/jtyPH8PTx1tmnVqtJS07BN8CPpq38tfbVcHLU/P8rf11k3fzluNerS/eBL3IzM4tjB46QFJfA6HcnYmRk9OAXK0QVM5T+pG+cEOLJ8VglLUu9++671KxZs8x9rq6uj7g19zZu3DgUCkV1N0NvBQUFTJ8+nYiICPz9/Rk9ejQODg5cvHiR0NBQtm/fzrx58wgKCqrupt6Xo6Mjc+fO1do2e/ZsoPg9dHdsRkYGAK1bt2bw4MGafUqlkkuXLrFp0yaOHTvGrl27sLe31+y/O16tVpOQkMCWLVuYNm0aJiYm9OzZ86FfX1VYvnw5y5YtY+TIkTg7O7Ny5Upef/11duzYgYkeSSfxvyvpl1jyb+bSamIfrF1qAGBXx5lza38i9fQlXNv4lHusuqiIhKgYrh76Xa/XSvw5htzUrDL35WfepqhASa0mHjwVoPuhWAhDFx4ZSUZWFvPefZc6JQ/JGtSrx2fLlhF1/DhBHTuWedx3O3ZQq0YNPnv7bSzMzQHo0rYtb332GVv27OGDN94AYGNYGLVq1mTm5MmYm5kB4FSzJt9s28bvf/1FQJMmWFpY0KVtW53X+Hb7dlQqFW+OGIGttXVVXL4QD82vP0VxMzOLNz55Bxe34r7kXr8e3y1YwelfT9Cma4dyjy0qKuLnPQeI3Lmv3JisGxkU5hfQOMCPFh3alBu3b9tOajjWZNSMNzEzL+5zDo412bPxRy6e+5tGfo0reYVCPDqG0p/0jRNCPDkey6RlUFAQderUqe5m6KVjOV8uDNXcuXOJiIhg2rRpjB49WmvfuHHjGD16NJMnT2b79u34+JSfhDAE1tbW9OnTR2vb4sWLAXS2A5qkZd26dcvcX7duXT7++GO2bNnC2LFjtbaXFd+/f3969OjBsmXLHpuk5bZt2+jSpQvTp08HihO2CxYs4MqVKzSUaYDiHq7HXKFG/dqahCVAzQZuWDnbcz0mrtykpapQye8rwslNycQlwJusK8n3fJ2clAziD8fgEdicqwfO6O5PywLAysmh0tciRHX69fRpmjRsqElYAvj7+uLq4sLR06fLTFrezs3lalISPZ95RpOwBKhhb0/jBg2I+ftvoHikpL2tLW2bN9ckLAEaN2gAwNWkJAKaNCmzXVeTktj388/85+mnNfFCGLKzx09T36eBJsEC0KCpD7Vqu3D2+JlykyyFBYWsmvUlqYnXaNGhDZf/ulBmXNq14lIozq4u5bahsKAQGztbmrby1yQsAeqXjDRLiU+SpKV4LBhCf6pInBDiySEL8QiNuLg4Nm7cSM+ePXUSlgC1atVi8eLFGBkZMWvWrGpoYfXq0aMHAKdPn9Yr3t3dnTZt2nD58mVu375dlU17aPLy8khOTkatVgOQn58PFE+RF6I8hYp88jJuY+teS2efrWstbl/TrS9ZSq0sQpVfgO+wrvgM6oyRcfnT5IpURVzY/is1G7rh0qLsUZS5qZkAWLsUJy1VBYUVuRQhqtXt3FzSbtzAq4wyLPXr1iUuIaHM46wtLfnygw/oGRios+/W7duYGBd/3DM3M+O98ePp3727Vsw/iYkAODuWP7Vu6549mJubM7hXL72vR4jqosjJJfN6Om6euoMc3DzqkByfWO6xSqWSfEUeQ14fwYDRwZgYlz3TJDWx+CGbs1txSZOCvHydGDNzM0a8NY6uvZ7T2p4cnwTIdFbxeDCU/lSROCHEk+OxHGmpr71797Jq1SquXLmCh4cHU6dOZePGjRQUFGhqTt5dg7LU3dvVajVbtmxh+/btXL58GaVSibu7O/3792fMmDHl1qO5s77k/WosvvHGG7z5ZnFR4kuXLvHll19y/PhxCgsLady4MRMmTKBz585axxw9epQlS5bw999/4+TkxGuvvVbp39fOnTtRq9UEBweXG+Ph4UFQUBB79+4lJSVFU9/x3LlzLFy4kDNnzmBra8vw4cM1ia876ROnVqtZtmwZu3fv5tq1a9jZ2dGxY0feeuutap3+b1zypU+lUul9jHXJ9Lmyfhf3s3//flavXs2VK1cwNjbG39+fN954g1atWmliioqK+Pbbb9m2bRuJiYnUrFmT7t27M3nyZGxtbQGYMmUKERERrF69mq5duwKQlZVFr169sLKyYufOnZp2vvDCC2zdupXVq1fj6+vL2rVrad++PZ53LeJw/PhxXn75ZebMmcPatWv5559/6NWrF7Nnz+b69essX76cI0eOkJqaioWFBU2bNmXSpElabVer1WzYsIFt27YRHx+Pk5MTPXr0YMKECVhZWel9faL6FdzMBcDcXne6qLm9FSpFIUpFAaZW5jr7TSzNaP3WAIxN7v8MLTH6LIr0bJoMD0RdVHafyk3LwsTClCsRJ7keE0dRgRJLR1vqPdsSl+ZeFbwyIR6tjKwsABwddEcK17S3J1ehICc3F5u7pmYbGxvj6qI76uRqUhIX4uJo3rjskVzX09OJvXSJDaGh1HV1pY2/f5lxV5OS+O3cOXoFBpbZNiEMTXbmTQDsa9bQ2WdXw568XAWKXAVW1roLxVlaWTJ5zvv3LYuTdi0Fc0sL9m4J4+yJMxTmF1DTuRZB/Xvi/3TLMo/JvJFB3N+X2Lc1DBd3VxoH+FX84oR4xAypP1Wm3wkhHm+PZdIyOztbM5X3bg4ODpiYmBAWFsb06dPx8/Nj2rRpXLlyhYkTJ+Lo6IiHh0eFX3PRokWsXLmSfv36MXjwYHJycggLC2PBggXY2NjcM9FXqqwaiwBLly4lJSVFk5A8f/48L730kiYJaWZmxp49exg7diwLFizQjPg7evQoY8aMwdPTk8mTJ5ORkcFnn32GkZFRuTU/7+X333/H1NQUP797f4Bq164dERER/Pbbb/Ts2ZOLFy8SEhKCvb0948ePp7CwkLVr11JQUKB1nL5xK1euZNmyZQQHB+Pj40NiYiLr16/n3Llz7Nmzp9pqKx47dgyAJuVMnbubQqHg5MmT1KlTB7v7rPh6txMnTjBlyhS6dOnCoEGDUCgUbNy4kZEjRxIeHq5ZDOn9999n586d9O3bl1deeYXLly+zefNmTp8+zebNm7GwsODDDz/k2LFjfPLJJ4SHh2Npacmnn35KRkYGGzdu1CQsAd566y2io6P58ssvUavVtG3bVjOlviyffPIJ/fv3Z9CgQbi5uZGXl0dwcDC3bt0iODiYp556in/++YfNmzczevRoDh48SK1axaPxPv74YzZv3swzzzzDsGHDiIuL0yRAv/rqK72vT1S/0tGMJma6txTjksLsqkJlmUlLIyMjjEzuvwhBTmom8Yf+wLv301g42JCXWfbo5ZzULFT5SpR5BfgM6owyr4BrR//k/NYjqIvUUudSGLS8ktHt5ua6faV0Ond+YSH6LCmVl5/PspIHr33KqEN9KydHs0K4ubk5IwcN0poyfqeffvkFY2Njnu/SRY9XFqL65eflAWhNyS5lWrKtsKCgzCSLkZGRXp81U5OSKcjLJy9XwcDRw8lTKDh24Gd+WLWeIpVKp95e7u0cFr7zSUm7zOkV3L/M9glhaAypP1W03wkhHn+PZdKyX79+5e4LCwujUaNGzJ07Fy8vL77//nvNh38vLy9mzZpV4aRlYWGhZtr0nDlzNNsHDRpE+/btiY6O1itpWVaNxTVr1pCQkMBHH31EixYtAJg1axaOjo6EhoZqEkrDhw9nxIgRfPbZZwQFBWFubs78+fNxdnZm69atmlFnHTp0YMSIEZVKWl6/fh0HB4cyvyzdyaVkNEdaWhpQnHQF2LJli2YkZPfu3enbt6/WcfrG7d69my5duvDBBx9otrm6urJ582aSkpIqlXSuiIKCAq2k+M2bNzlz5gzz58/HxsaGYcOG3TNeqVSSkJDA8uXLycjIYMaMGRVuQ0REBJaWlqxYsUIzirdDhw5MnDiR2NhY6taty/Hjx9mxYwcff/wxQ4cO1RzbtWtXRo0axZYtWxgxYgSOjo589NFHTJkyhVWrVtGsWTNNErxlS+0nkpGRkeTm5qJWq7GysmLhwoU43GNUTatWrfjwww+12n316lXWrFmjNSq4bt26/Pe//+W3337jueee49KlS2zZsoXBgwfz6aefauJsbGxYuXIlly5dIj09Xa/rEwagdCRxFS2Aqi4q4sL2X7D3dLnngj4Arm0aoVarcWv378gyZ//6nF4cRtzek7g0r4+RsVRGEYapdFT+g64mnF9QwNzVq7malETf556jSRk1iY2MjJg0ciRKpZJ9P//MrK++YvLIkTxd8lmkVEFhIdEnT9LKzw/nWrolIIQwRJrbUhWuzN2mawfURUU83e3fzzt+bVuy9MM57Nu2C/92rTSzdErbMnjcCFRKJf93MJp181cwZNwImrZuXmVtFOJhMKT+VNF+J4R4/D2WSct58+bh5ORU5j4PDw/Onj1Leno6Y8eO1UrADRkyRJM4qwgzMzOOHj1KYaF2bbTMzExsbW3Jzc2t8DkBoqOjWbhwIX369NEkPTMzMzlx4gQhISHk5eWRV/JkC+DZZ59l9uzZnD17Fk9PT2JjYxk9erTWNNl27drh4+NTqRqKarVarydhpiUjp9RqNUVFRURHR9O1a1etqdve3t506tSJyMhIAL3jAGrXrs3x48f57rvv6NmzJ05OTgwdOlQrcVWVwsPDCQ8P19nesGFDZs6cqZkSf794Ly8vFi5cWKlFeGrXrk1OTg6zZs3ipZdewtvbGx8fH/bv36+J+emnnzAyMqJr165aSdMmTZrg7OxMVFSUJqnXo0cPwsPD+eabb7C3t8fX11dTiqDU/Pnz+frrr+ncuTN+fn4sX76c6dOns2bNGi5fvsy5c+fo2rUrjnfUPGvTRvtpZo8ePWjXrp1W0vzOkbSlfSUqKgq1Wk1ISIjW8aNGjaJHjx54eHiwefNmva9PVC8Ti+Kn7EWFuqUTipRKAEwtKz+aJDH6HDnJmTR/rQeFOcV/E5WK4hFpqgIlhTl5mFpbYGRkhOvTvrrtMzPFJcCb+EN/kJuWhU1tqSEmDJNlyejxu2cgQHHyEIrrV95LTm4uc1at4sKVKzzTrh1Dy6lBaWttTYeSB1ftAgKY+vnnfLd9u07S8tyFC+Tn59M+IKCilyNEtbGwLO5LhWX0JWXJ7ADL+/Sl+2n7jO6iWGbmZrRo35rDu/aTlpRC7bpumn1WNtb4tS3uR01bt2Dph3OI2BIqSUth8AypP1W03wkhHn+PZdKyZcuW91w9/Nq1awCaKbSlzM3Ndbbpy8zMjKioKA4dOkRcXBxXr17l5s3i+h6VqVf4zz//8NZbb9GwYUM++eQTzfaEkiL7GzZs0KmzWSo5OVmzMEpZow69vLyIiYmpcJtcXFxISEhAqVRqEpNlKR1h6eLiQlZWFrm5ueW2ozQZqW8cwDvvvMPrr7/O559/zuzZs2natCmBgYEMHjwYZ2fnCl9XRXXq1IlRo0YBxU8Uzc3NcXV1xc2t7BvgnfEpKSmsWbOG7OxsZs6cydNPP12pNgwfPpxffvmFjRs3snHjRurUqcMzzzzDwIED8fUtTsrEx8ejVqv5z3/+U+Y5bGy0JxDOnDmT5557TlNz8s6E/m+//aZJWK5atQoTExPOnz/PoUOHWLVqFdnZ2axdu5adO3dqJS0dy1i0wcjIiNWrV3PmzBni4+OJj4/XJPyLiooASEoqLkB/d61Me3t77O3tK3V9ovpYOBQ/OCm4pdDZV5CtwMTKDJMHmAKXeSEJtaqI35fv0dmXFB1LUnQsbaYNxLJm+XVOzWyKpyypCpSVbocQVc2p5IFPVna2zr7M7Gysraw0ic2y3Lx1i8+XL+efxESCOnZk9JAheo2MMTczo2XTpuz7+Weyb9/G/o6HoWdiYzE1NS13VXEhDJFDreK+dOvmLZ19t7KysbS2wtyyakrM2NgXlwQqyC9/gRAzczN8mjfl/w4eIefWbWzspE63MFyG3p8qEieEePw8lklLfZWVTNS3Bt6di62o1WrGjx/P4cOHadWqFQEBAQwZMoQ2bdpUaqTX7du3mTBhAkZGRnz11VdaT6ZKXzc4OJigMmpQATRo0IDU1FQArZGYpUoTQxXVunVrjh07RkxMjM604TudOnUKIyMjAu4YdaFvO/SJ8/X1Zf/+/URHR3P48GGio6NZsmQJ69atY+vWrXh7V21NOmdnZzp06FDp+G7dujFo0CDGjBnDunXrtBaf0ZetrS0bN27k999/5+DBgxw5coQNGzawadMm5s6dy4svvkhRURE2Njaa+o93u/u9/ueff2pGOu7fvx//OxZcOHToEAATJkzQjLadM2cO/fr1Y+nSpVhbW+Pp6alJmJa6e2TulStXGDZsGIWFhXTq1IkePXrQuHFj1Go1EyZM0MTps5hRRa9PVB9TK3MsHG3LXCX8dnI6du5lj4zXV/0ebVAqtJ/uF95WcH5bNC4BXrgENMDM1pL8mzmcXfcTLv718QhsoRWvuFH8kOleiU0hqpuNtTXOtWoRl6i7EmtcQgLe9yiPosjL0yQsezzzDCP699eJSUpN5fPly+kTFMRzdy3sl5efj5GREWZ3PbS8EBeHl4cH1la6tcqEMFRW1lbUcHIk+apuX7oWn4i7Z+UGMZTKzszi2/kr8Hu6Jc/07q6170ZK8cP9ms61uJ6cyvqFq+j0QiBPB3bSisvPywMjI0zLqActhCExlP6kb5wQ4snyRBZ8KB299c8//+jsKx3JWMrY2FhnGpZSqSQzM1Pz86lTpzh8+DDjx4/n+++/57333mPgwIG4u7uTVbLSp77UajXTpk3j8uXLzJs3T2fkp7u7O1CcDOrQoYPWfy4uLhQUFGBlZYW7uztGRkZcvXpV5zUSy/iyo49evXphYmLC2rVry41JSUlh3759tGrVCnd3d2rWrImtre1926FvnEqlIjY2luTkZLp168asWbP4+eef+fLLL7l16xY//PBDpa7tUXJwcGDBggWoVCqmTp1aqan6cXFxxMTE0KJFC95++2127dpFeHg49vb2rFu3Dih+r+Tk5NCsWTOd90p2drZmBW4oTpR/9NFHNGrUiAEDBrBu3Tqt0bilCf47k5D29vYsXrwYY2Njbt26xcsvv3zfdn/99ddkZ2ezY8cOlixZwhtvvEG3bt1QKLRH4JWOWr27P6ampjJ58mROnTpVoesT1c+paT2yLl8j93qWZlvmpWsormfj7F//gc5t5+5EzQZuWv/Z13sKAEtHO2o2cMPEzBQLBxtUeQUkn7yAMu/fv+t5WbdJ/e0iDt61MbfTXeFcCEPydPPmnD1/nqSSh5MAMX//TXJaGh3u8RDsm23b+CcxkRf+858yE5YAtZ2cyFUoOPDLLyiV/446vp6ezv/9/juNGzTA6o4HqUqlksTkZOrfY3aLEIaqaavmXP7zPNeT/+1Ll2LPk56Sht8DrjJsX7MGeQoFp44cI++OzzhZ6Zmc/uU49X0bYudgj6OLE3kKBSejjqK6o89l3sgg9tQfePp4Y/GA02qFeBQMoT/pGyeEeLI8kUlLX19fPDw82LJli1a9yX379mmmNpdycnIiLi5OawRgZGQk+XcMLS9NTDZo0EDr2G3btqFQKLQ++N/P4sWLiYyM5I033qBr1646+11cXGjWrBmhoaGa0ZRQvBjQe++9x8SJE1EqlTg6OtKmTRt27drFjRs3NHFnzpwhNjZW7/bcydPTk5EjR3LgwAFWrFihsz8rK4uJEydSWFioWXzFyMiIZ599lujoaC5evKiJTUxMJCoqSvOzvnEqlYqXX36Zzz//XOu1mzcvrvfzuBRW9vPzY9SoUSQnJzNv3rwKHz9r1izGjx9PTk6OZpuXlxf29vaa30FgYCCAzr9VZGQkkyZNYvfu3Zptc+fOJTU1lY8//ph33nkHBwcH3n//fU3Cvl27dgBs3rxZ61xpaWmaUZHbt2/XST7eLSsrCysrK62p9AUFBWzZsgX4d4Rl6Xv/7tfbsWMHe/fuxdbWtkLXJ6pfnc7NMLWy4Ow3+0n8JZb4qD/4a/NhbN1r4dKieHS0IuMWqWcuo8jQnV70sHj3bkfBzVz+WBVB0q9/En/4D35fvgcjY2MavNiuyl5XiIeld1AQNlZWfLp0KXsiI9mxfz9frl2Ll4cHnVu3BiD1xg2OnDhBasn9PzElheiTJ7G2ssKzTh2OnDih8x8UP5gaOXAg8deu8d/Fi9l/5Ag/7t3Le/PnY2xkxMiBA7XaciMzE6VKpZm2LsTjpPMLgVhZW7Nu3jJ+3X+Yn/f8xNYV3+LmWZfm7YofAGSk3eD3oyfJSLtxn7Pp6jV8ENkZWaz+bDFHD/xM1O6fWPnpQoxNTOg1fABQ3Od6vtSf1MRrrJmzlOOHojm8az+rPl2IsbExvV4a8FCvWYiqYgj9qSJxQognx2M5H+HgwYP3XB27T58+zJw5k7FjxzJkyBAGDBjAjRs32LBhg6YWZKlevXrx6aefMnr0aHr37s3Vq1fZtm2bZsQjQEBAALa2tsyePZukpCQcHBw4fvw4ERERWFhYaCWW7iUqKoqVK1fi7e1No0aN2L17t9bUaCcnJzp27MgHH3zAiBEjGDBgAMOGDaNGjRqEh4fzxx9/MHXqVM21T58+neDgYAYPHkxwcDAKhYJvv/22UiuHl5oyZQo3b95k0aJFHD58mO7du2Nvb8+VK1cICwsjLy+PBQsWaE0TnjRpElFRUQwfPpxXXnkFExMTNmzYgI2NjdYoVn3izM3NCQkJYcWKFUyYMIHOnTuTl5fH1q1bsbKyYsCAx+dmNH78ePbu3cvWrVvp3bt3haaJjxw5kjFjxhAcHEzfvn2xsLDg4MGDxMfH88UXXwDFib9u3bqxdu1akpKSaN++PUlJSWzatAk3NzdNnc1jx46xbds2Bg8erJn2/8477zBjxgyWL1/O5MmT6dq1K4GBgezYsYP8/Hzatm3LH3/8wc6dO2nSpAlPP/0033zzDa+++ipff/11ue3u0qULkZGRvPbaazz//PPcunWLsLAw4uPjATR9pXHjxgwaNIgNGzaQlpZG+/btNSuK9+3bF19fX3x8fPS6PmEYzG2t8B/zAlfCT3D14BlMzE2p1diD+s+3xti0eARv9j+pXPjxFxoN7ISVo12VtMOpST2ahAQSHxVD3P5TGJuZUKO+K57dW2LtXKNKXlOIh8nBzo6PJ0/mux072BYRgYWZGW38/Qnu00fzGeavy5dZsXEjrw8fzlNOTvx16RIAuQoFKzZuLPO8Xdq21fyvmakpOw8eZP2OHVhYWNCsUSOG9uqF21NPaR1zu+RvtkwNF48jG3s7Rr87kYjNoRwK24u5uTmNA/zoPuhFTEv60j8XrhC69nv6vfoSji4VK2XSpKUfL705ip/3HOCnH3ZjZm6Gp08DnhvYC2fXf/tSiw5tMDUz5UjEIfZuDcPMwgLvxg0J6t8Tp9ouD/WahagqhtKf9I0TQjw5jNSVWUWmmsyYMYPQ0ND7xp0/fx6A48ePs3DhQv7880/c3NyYNGkS8+fPx93dXbPITVFREcuXL+fHH38kPT0dX19f3n77bdauXUtubq4m7rfffmP+/Pn8/fffmJubU79+fV5++WViYmJYv349R44cwcnJicDAQK3zh4SEkJSURGRkJEuXLi23Ph9A27ZtNcfFxsaydOlSTp06hVKp1Lxev379tI6JiYlhwYIFxMTEYG9vz8iRIzl37hynT5/WWtymoo4cOcKmTZv4888/yc7Opnbt2nTp0oWQkJAyF9OJi4tj7ty5nDhxAnNzcwYNGgTAqlWrNP8e+sYVFRWxfv16tm/fTmJiIiYmJrRs2ZKJEyfSrFmzSl8T/Ds6sazfTWJiIt26daNfv37MmTPnvufSJ/7o0aOMHDkSb29vwsLCtBa/uZ+oqChWrVrF5cuXyc/Pp2HDhowcOVJrNfLCwkLWrFlDWFgYSUlJODo60r59eyZNmoSbmxsKhYIXX3yR3Nxc9u7di4ODg+bY4cOH8/vvv/PDDz/QuHFj8vPzWb58Obt27eL69eu4urrSu3dvxowZg6WlJYsXL+bSpUssXryYkydP8vLLLzN79mz63zENUa1Ws3r1an744QdSU1NxcnKiRYsWTJo0iaFDh9KiRQtWrlwJFP87r127lh9++IGkpCTc3Nzo27cvo0eP1vye7nd9lTX08NxKHyuE+NfqWs9XdxOEeGKcqCELhQkhhDAcQR4PNvXfEBny98Atz7xT3U0wSI9V0vJhuDupKITQn1qt1mslWkNnyDcrIR4nkrQU4uGRpKUQQghDIknLR0uSlmV7PAoECiEMwpOQsBRCCCGEEEIIIYTheyxrWgr9qFQqMjIy9Iq1s7PD8jFZvTAjI0OzoMu9WFpaYmdXNXXzKuNxbbcQQgghhBBCCCHEoyZJyydYcnIy3bp10yv27tqEhmzgwIEkJSXdN07f2pSPyuPabiGEEEIIIYQQQohH7X8uafkgi9M8bpydnVm3bp1esQ0aNKji1jw88+bNIz8//75xLi6GtSLj49puIYQQQgghhBBCiEftfy5p+b/EwsKCDh06VHczHrpWrVpVdxMq5XFttxBCCCGEEEIIIcSjJgvxCCGEEEIIIYQQQgghDIokLYUQQgghhBBCCCGEEAZFkpZCCCGEEEIIIYQQQgiDIklLIYQQQgghhBBCCCGEQZGkpRBCCCGEEEIIIYQQwqBI0lIIIYQQQgghhBBCCGFQJGkphBBCCCGEEEIIIYQwKJK0FEIIIYQQQgghhBBCGBRJWgohhBBCCCGEEEIIIQyKJC2FEEIIIYQQQgghhBAGxbS6GyCEEI/a6lrPV3cThHginKihrO4mCPHEWHP5YHU3QQghhNAI8mhZ3U0QQkZaCiGEEEIIIYQQQgghDIskLYUQQgghhBBCCCGEEAZFkpZCCCGEEEIIIYQQQgiDIklLIYQQQgghhBBCCCGEQZGkpRBCCCGEEEIIIYQQwqBI0lIIIYQQQgghhBBCCGFQJGkphBBCCCGEEEIIIYQwKJK0FEIIIYQQQgghhBBCGBRJWgohhBBCCCGEEEIIIQyKJC2FEEIIIYQQQgghhBAGRZKWQgghhBBCCCGEEEIIgyJJSyGEEEIIIYQQQgghhEExre4G/K+YMWMGoaGh94zp1q0by5cvf0Qt0hUYGIi7uzsbNmwAICQkhKSkJCIjIx9ZGx7Ga+7fv59t27Zx7tw58vLycHV1pVOnTowYMYK6devqdY7Sf6/z588/lLjK8vHxuef+0vdMYmIi3bp109lvZmaGo6MjHTt2ZNKkSdSuXRug3HgjIyPs7Ozw8vIiODiY3r17P5wLEf8T0tLTWR8ayp8XLwLQsmlTQvr1w8HOTu9zrN68mWtpacycNEln33vz5nE5Pl5ne9sWLZg6apTm58vx8WzetYvzcXEYGxvTxNubkH79cHvqqUpclRCPXub1dPZu3Unc+UsA+Pg34YUhfbCx178vhX27lfTUNEZNf/OhnP9e5xPCUOVl3OLK3pPcvJICgKNvHeq/0AZzW6sHOi4v8zYn5/14z3P4je5ODS9XAP7aHMWNs//oxNi61yJgwosVvSwhHjlD6EvR7317z7hGAzvxVMsGel6REOJxIUnLR+zdd9+lZs2aZe5zdXV9xK25t3HjxqFQKKq7GXorKChg+vTpRERE4O/vz+jRo3FwcODixYuEhoayfft25s2bR1BQUHU3tUK8vLwYN25cmfvufs+0bt2awYMHa35WKpVcunSJTZs2cezYMXbt2oW9vX258Wq1moSEBLZs2cK0adMwMTGhZ8+eD/mKxJPoVk4OHy9ZgkqlondQEEVFRew+dIj4a9f4/O23MTW9/+0m8tgxDh09SuMGuh841Wo1iamptPb35+nmzbX2OTs6av7/tdRUPl6yBAszMwY8/zwA4ZGRfLRoEXNnzMDRweEBr1SIqpV7O4e1c5ehUinp/HwganURv+w7TGriNcZ9+BYmevSl36L/j9+OHMPTx/uhnP9e5xPCUBXm5hPzzT7UqiLqdGlWfB+JPkdOSiYtxvfC2MSk0seZ2VjQaFBnnWOLlEou7z6OmY0lNq7/3ptyUjOxr+dC7bbaD6PNbCwe7kULUQUMpS+VFQdwJeIEalURDp7ycFqIJ5EkLR+xoKAg6tSpU93N0EvHjh2ruwkVMnfuXCIiIpg2bRqjR4/W2jdu3DhGjx7N5MmT2b59+31HMBoSJycn+vTpo1ds3bp1y4ytW7cuH3/8MVu2bGHs2LH3je/fvz89evRg2bJlkrQUegmPjCQjK4t5775LnZIRvQ3q1eOzZcuIOn6coHv8PSkqKmLH/v38uHdvuTHXMzLIz8+njb8/Xdq2Lb8dUVHk5+fz8eTJ1C/5W+vXqBHvzZ9PeGQkIf36VfIKhXg0fv0pipuZWbzxyTu4uBX3Jff69fhuwQpO/3qCNl07lHtsUVERP+85QOTOfQ/l/PqcTwhDlfRLLPk3c2k1sQ/WLjUAsKvjzLm1P5F6+hKubcr+LKjPcSbmZjwVoJvEv7znOGpVEb6Du2BmVZyQLFKpyEu/hfN/PMs8RghDZyh9qay4pF9jUebk4zOkC5aO+s9GEEI8PqSmpXgixMXFsXHjRnr27KmTsASoVasWixcvxsjIiFmzZlVDC6tXjx49ADh9+rRe8e7u7rRp04bLly9z+/btqmyaeEL8evo0TRo21CQsAfx9fXF1ceHoPd53BYWFTP/iC36IiKBzmzY41qhRZlxCcjIA7veZ4p124wZ2traahCWAd7162NrYaM4hhCE7e/w09X0aaBKKAA2a+lCrtgtnj58p97jCgkKWz5xPZNheWrRvjV3NskcV63t+fc8nhKG6HnOFGvVra5IlADUbuGHlbM/1mLiHflxOSgbXjv3FU60a4lD/3/6luJ6NWlWEtXONco8VwpAZSl+6W8FtBf8cOEMNb1dcmntV6JqEEI8PSVoaqL1799K3b1/8/f3p1asXhw8fZtSoUYSEhGhiAgMDtX4ub7tarWbz5s0MHDiQgIAA/Pz8eP7551m9ejVqtbrcNoSEhBAYGAgU10D08fEp97+lS5dqjrt06RITJkygdevWNG/enKFDhxIdHa1z/qNHjzJ06FBatGhBUFAQP/zwQ6V+VwA7d+5ErVYTHBxcboyHhwdBQUGcPHmSlJQUzfZz587x6quvEhAQQOfOnVm1alWZvxd94tRqNV999RXdu3fHz8+PDh06MG3aNJKrOVlibFzc1VUqld7HWFtbA9zzPVKe/fv3M2DAAAICAmjVqhUjR47kt99+04opKipi7dq1PP/88zRr1ozOnTsza9YsrSTplClT8PHx4eeff9Zsy8rKolOnTjz77LPk5uZWuG3i4budm0vajRt4lVEztn7dusQlJJR7bGFhIbl5eUweOZIJISGa9+rd7k5a5uXnlxlX29mZ2zk53Lx1S7PtVk4OuQoFNe4ojSCEIVLk5JJ5PR03T90ZGW4edUiOTyz3WKVSSb4ijyGvj2DA6GBMjHWn61Xk/PqcTwhDVajIJy/jNrbutXT22brW4va19Id6HMA/B05jbGZKvaAAre25aVkAWLsUJ/5VBYX6XoYQ1c6Q+tLdEqJiKCpUUr9Hm/tchRDicSbTwx+x7OxsMjIyytzn4OCAiYkJYWFhTJ8+HT8/P6ZNm8aVK1eYOHEijo6OeHh4VPg1Fy1axMqVK+nXrx+DBw8mJyeHsLAwFixYgI2NzT0TfaUcHR2ZO3euzvalS5eSkpJC587FNUbOnz/PSy+9hJOTE6+99hpmZmbs2bOHsWPHsmDBAs2Iv6NHjzJmzBg8PT2ZPHkyGRkZfPbZZxgZGZVb8/Nefv/9d0xNTfHz87tnXLt27YiIiOC3336jZ8+eXLx4kZCQEOzt7Rk/fjyFhYWsXbuWgoICreP0jVu5ciXLli0jODgYHx8fEhMTWb9+PefOnWPPnj2YlFPz5V4KCwvLfM+YmZlhp+cCJ8eOHQOgSZMmesUrFApOnjxJnTp19H6NUidOnGDKlCl06dKFQYMGoVAo2LhxIyNHjiQ8PFyzGNL777/Pzp076du3L6+88gqXL19m8+bNnD59ms2bN2NhYcGHH37IsWPH+OSTTwgPD8fS0pJPP/2UjIwMNm7cqEmsiuqVkZUFUGa9yJr29uQqFOTk5mJTxr+XtZUVSz766L59IzE5GUtLS9bv2MHRM2fIz8/HxcmJob160bFVK01cn6AgTp87x5LvvuPlkqngG8PCMDEx4YX//KfyFynEI5CdeRMA+5o1dPbZ1bAnL1eBIleBlbXuwgeWVpZMnvP+PftSRc6vz/mEMFQFN4sfaprb6953zO2tUCkKUSoKMLUyfyjH5aRkkPFXIu6dm2Jx17E5qZkAJJ+4wPWYOJS5+ZjZWVG3qx/uHfT7XCZEdTGkvqR1/tsKkk+cp1bTetjeUT9WCPHkkaTlI9bvHvXUwsLCaNSoEXPnzsXLy4vvv/8ec/PiP+ReXl7MmjWrwknLwsJCzbTpOXPmaLYPGjSI9u3bEx0drVfS0traWqf24Zo1a0hISOCjjz6iRYsWAMyaNQtHR0dCQ0M1CaXhw4czYsQIPvvsM4KCgjA3N2f+/Pk4OzuzdetWbG1tAejQoQMjRoyoVNLy+vXrODg4aH5f5XFxcQEgLS0NQDNCdMuWLZpFbbp3707fvn21jtM3bvfu3XTp0oUPPvhAs83V1ZXNmzeTlJRUqaTzmTNnaN++vc72tm3balZ6L1VQUKCV4Lx58yZnzpxh/vz52NjYMGzYsHvGK5VKEhISWL58ORkZGcyYMaPC7Y2IiMDS0pIVK1ZgZGQEFP/bTpw4kdjYWOrWrcvx48fZsWMHH3/8MUOHDtUc27VrV0aNGsWWLVsYMWIEjo6OfPTRR0yZMoVVq1bRrFkzTRK8ZcuWFW6bqBqlox7L6n/mZmYA5BcWYlPGsUZGRnolRRKSk8nLyyMnL483QkLIUSjYGxXFkm+/RaVSaepcOjk60q97d9b+8APvlPzNMzY25q1Ro7SmjAthiPLz8gAwMzfT2Wdasq2woKDMpKU+faki59e3bwphiEpHM5qY6X7VMS5ZbEpVqNRJmFT2uGvHz4OxEW7tGuscVzrSMvd6Fg16t6NIVUTq6Ytc2XMCVX4hHs801zlGCENhSH3pTqm/XUStLKJOR0n8C/Gkk6TlIzZv3jycnJzK3Ofh4cHZs2dJT09n7NixWgmAIUOGaE3B1peZmRlHjx6lsFB7KkpmZia2traVnl4bHR3NwoUL6dOnjybpmZmZyYkTJwgJCSEvL4+8ki9HAM8++yyzZ8/m7NmzeHp6Ehsby+jRozUJSygeBenj41OpGopqtVqvL1elKxir1WqKioqIjo6ma9euWqtwe3t706lTJyIjIwH0jgOoXbs2x48f57vvvqNnz544OTkxdOhQrcRcRfn4+JSZPLQvY6preHg44eHhOtsbNmzIzJkzqV27tl7xXl5eLFy4sFKL8NSuXZucnBxmzZrFSy+9hLe3Nz4+Puzfv18T89NPP2FkZETXrl21kqZNmjTB2dmZqKgoRowYARTX4wwPD+ebb77B3t4eX19f3nzzzQq3S1Sd0hICpUnqqhDUsSNFRUV079JFs61jq1ZM/fxzNoaF0al1a4yNjdm6Zw879u+ncYMGmmN++uUXFq1dy1ujRtHqPqOxhahOpdU4qqovVfX5hTAYmjd71R+nKlSSduYytRrXxbKmrc5+p2ae2Lk7Uaern6bvubTwImb1XuIP/4FrWx/MbCwr2FAhHhED6kt3Sjl1ERs3R+zryYrhQjzpJGn5iLVs2fKeq4dfu3YNQDOFtpS5ubnONn2ZmZkRFRXFoUOHiIuL4+rVq9y8WTxFrDL1Cv/55x/eeustGjZsyCeffKLZnlBSt27Dhg06IwBLJScnY1Yy8qqsUYdeXl7ExMRUuE0uLi4kJCSgVCo1icmylI6wdHFxISsri9zc3HLbUZqM1DcO4J133uH111/n888/Z/bs2TRt2pTAwEAGDx6Ms7Nzha8LissGdOhQ/mqxd+rUqROjRo0Cir+Umpub4+rqipub233jU1JSWLNmDdnZ2cycOZOnn366Uu0dPnw4v/zyCxs3bmTjxo3UqVOHZ555hoEDB+Lr6wtAfHw8arWa/5QzXdfGRntM3syZM3nuuee4fv06y5cvv++IWvFoWVoUr+p4d7kEKF5oB8Da8sG+kD3bqZPONnMzM7q0acOPe/eSkJyMU82a7Dp0CG8PDz56801NfcwOLVvy3vz5rNq8mWW+vpq/QUIYGgvL4r5UWEZfUpaMWrF8gL5U1ecXwlCYWBT/nS8q1K3lXaRUAmBqqXsvqMxxN6+kUFSgxKmZZ5ltKWuBECMjI2q3aUT21TSy469Tq3HlPuMLUdUMqS+Vyk3LIi/9Fp7PyawrIf4XSNLSQJWVTLQoSQzcz52LrajVasaPH8/hw4dp1aoVAQEBDBkyhDZt2mhGslXE7du3mTBhAkZGRnz11VdaX25KXzc4OJigoKAyj2/QoAGpqakAWiMxSxUVFVW4TQCtW7fm2LFjxMTE3HPa8KlTpzAyMiIg4N/Czvq2Q584X19f9u/fT3R0NIcPHyY6OpolS5awbt06tm7dire3d0Uuq8KcnZ31TnCWFd+tWzcGDRrEmDFjWLduHa3uqBWoL1tbWzZu3Mjvv//OwYMHOXLkCBs2bGDTpk3MnTuXF198kaKiImxsbPjqq6/KPMfd7/U///xTMyp4//79+Pv7V7hdouo4lZR0yMrO1tmXmZ2NtZWVJrH5sDmU1FzNLygg5fp1lEolHVq10lrQx9TUlE6tW7Np506SUlPxlGniwkA51CruS7du3tLZdysrG0trK8wtK9+Xqvr8QhgKC4fiUVoFtxQ6+wqyFZhYmWFSRpmEyhyXcT4RI1NjHH0qdm8pHV0pC/MIQ2aIfSnjfPGicbWa1tPvIoQQjzVZPdzAeHp6AsWjGe+WcNcKvMbGxjojm5RKJZmZmZqfT506xeHDhxk/fjzff/897733HgMHDsTd3Z2sksUz9KVWq5k2bRqXL19m3rx5OiM/3d3dATAxMaFDhw5a/7m4uFBQUICVlRXu7u4YGRlx9epVnddITCx/ZdR76dWrFyYmJqxdu7bcmJSUFPbt20erVq1wd3enZs2a2Nra3rcd+sapVCpiY2NJTk6mW7duzJo1i59//pkvv/ySW7duPdDq6I+Kg4MDCxYsQKVSMXXq1EpN1Y+LiyMmJoYWLVrw9ttvs2vXLsLDw7G3t2fdunVA8XslJyeHZs2a6bxXsrOzsbL6t17b7du3+eijj2jUqBEDBgxg3bp1lRqNK6qOjbU1zrVqEVdG/41LSMC7ErVc75SRlcVbn33Gj3v36uxLKnkI4lyrlmaUdVkPHYpKHgRVfGy5EI+OlbUVNZwcSb6q25euxSfi7vlgo7Gq+vxCGApTK3MsHG3LXKH4dnI6du5ll2qqzHHZ8WnYuTthaqk7C6RIpeL0V7u4GHpUZ1/u9eJZT5Y1K7bgoRCPkqH0Ja24q2mYO1hj7ay7AKQQ4skjSUsD4+vri4eHB1u2bNGqN7lv3z7N1OZSTk5OxMXFaY0AjIyMJL9kUQxAk5hs0KCB1rHbtm1DoVCgLBmer4/FixcTGRnJG2+8QdeuXXX2u7i40KxZM0JDQzWjKaF4MaD33nuPiRMnolQqcXR0pE2bNuzatYsbN25o4s6cOUNsbKze7bmTp6cnI0eO5MCBA6xYsUJnf1ZWFhMnTqSwsJAPP/wQKJ6a8+yzzxIdHc3Fixc1sYmJiURFRWl+1jdOpVLx8ssv8/nnn2u9dvPmxQXW7xz5Zcj8/PwYNWoUycnJzJs3r8LHz5o1i/Hjx5OTk6PZ5uXlhb29veZ3EBgYCKDzbxUZGcmkSZPYvXu3ZtvcuXNJTU3l448/5p133sHBwYH333+/zKnIovo83bw5Z8+f1yQRAWL+/pvktDQ6VGLE7p0ca9QgV6Eg8uhRchX/PrG/kZFB1PHjNG3UiJr29tR1daWmgwNRx49rpqVD8RT1IydOYGdrS9276roKYWiatmrO5T/Pcz353750KfY86Slp+D394FPhqvr8QhgKp6b1yLp8jdzrWZptmZeuobiejbN//YdyXJFKRW5qFjZuZa9ebGxigomZKWl/XCEv698HwUpFAdeO/ollLTvs6pad9BHCUBhCX7rT7eR0WTFciP8hMj38ETt48OA9V8fu06cPM2fOZOzYsQwZMoQBAwZw48YNNmzYoFOHrVevXnz66aeMHj2a3r17c/XqVbZt26YZ8QgQEBCAra0ts2fPJikpCQcHB44fP05ERAQWFhZaiaV7iYqKYuXKlXh7e9OoUSN2796tNZrJycmJjh078sEHHzBixAgGDBjAsGHDqFGjBuHh4fzxxx9MnTpVc+3Tp08nODiYwYMHExwcjEKh4Ntvv63UyuGlpkyZws2bN1m0aBGHDx+me/fu2Nvbc+XKFcLCwsjLy2PBggWauooAkyZNIioqiuHDh/PKK69gYmLChg0bsLGx0UqK6RNnbm5OSEgIK1asYMKECXTu3Jm8vDy2bt2KlZUVAwYMqPS1PWrjx49n7969bN26ld69e1domvjIkSMZM2YMwcHB9O3bFwsLCw4ePEh8fDxffPEFULxKeLdu3Vi7di1JSUm0b9+epKQkNm3ahJubm6bO5rFjx9i2bRuDBw/WTPt/5513mDFjBsuXL2fy5MkP/dpF5fQOCuLIiRN8unQpvQIDKSgsZPehQ3h5eNC5dWsAUm/c4PyVK/h4efFUOQuSlWfU4MHM//prPvzyS7p16IAiL4/9R45gYmzMq4MGAcUPBl4dNIiF33zD+/Pn80z79hQVFXH4//6Pa6mpTAgJuWfNWyEMQecXAvn96EnWzVtGx+7PoCws5Jd9h3HzrEvzdsV/izPSbhB/KQ6PBvVxdKlYX9Ln/EI8Cep0bkbamcuc/WY/7p2aUaRUkhh9Dlv3Wri0KC7Xo8i4RfbVNOzruWDlaKf3caXys3JQq4qwdCh/0RCvnm35Y1UEf6yKwL198UrHySfPU3BbQbORz8nCWMLgGUpfAihSFZGflYNjIyn1I8T/Cvn29ojNnj37nvv79OlDx44dWbt2LQsXLmTBggW4ubkxe/Zs5s+frxX70ksvkZWVxY8//sinn36Kr68vX331FWvXrtWM0nRycmL16tXMnz+fFStWYG5uTv369Vm4cCExMTGsX7+eGzdulLuieamzZ8+iVqu5fPlymSs3t23blo4dOxIQEMDmzZtZunQp69atQ6lUUr9+febMmUO/fv008c2aNWPDhg0sWLCAr776Cnt7e9544w3OnTvH6dOn9f11ajE1NWXWrFk899xzbNq0iW+//Zbs7Gxq165Nr169CAkJ0VlMx9XVlc2bNzN37lzWrFmDubk5g0oSIKtWrapw3MSJE6lRowbbt2/niy++wMTEhJYtWzJv3rwqr2f5MFlaWvLxxx8zcuRIPvzwQ8LCwvRe/KZTp06sWLGCVatWsXz5cvLz82nYsKHWauRGRkYsXryYNWvWEBYWRmRkJI6Ojjz33HNMmjQJJycnFAoFH374IY6OjkydOlVz/n79+rF9+3bWrFlD9+7dady4cZX8DkTFONjZ8fHkyXy3YwfbIiKwMDOjjb8/wX36aB64/HX5Mis2buT14cMrnLRs4+/PtDFjCP3pJzbt3Im5mRlNGjbkpd69cX/q35Uj2zZvzgdvvMGPe/eyuWTEbv06dZg+bhwBTZo8vAsWoorY2Nsx+t2JRGwO5VDYXszNzWkc4Ef3QS9iWtKX/rlwhdC139Pv1ZcqnLTU5/xCPAnMba3wH/MCV8JPcPXgGUzMTanV2IP6z7fG2NQEgOx/Urnw4y80GthJk2jR57hSytzi2U0mZSxEUsqujhN+o7pz9dAZrkaeAYyw93DGZ1AX7D0qt0ijEI+SofQlAKUiH9Rgcp8p5EKIJ4eRujLLR4tqERgYiLu7e7krcwsh9JMtNTGFeChO1NC/xIgQ4t7WXD5Y3U0QQgghNLY88051N+GhG3p4bnU3oVxP4u/7YXg8iuwJIYQQQgghhBBCCCH+Z8j0cGGQVCoVGRkZesXa2dlhaWlZxS16ODIyMlCpVPeNs7S0xM7OcFaTfFzbLYQQQgghhBBCiMeTJC2FQUpOTqZbt256xc6ePZv+/ftXcYsejoEDB5KUlHTfuH79+jFnzpxH0CL9PK7tFkIIIYQQQgghxONJkpaPkcjIyOpuwiPj7OzMunXr9Ipt0KBBFbfm4Zk3bx75+fn3jXNxcXkErdHf49puIYQQQgghhBBCPJ4kaSkMkoWFBR06dKjuZjx0rVq1qu4mVMrj2m4hhBBCCCGEEEI8nmQhHiGEEEIIIYQQQgghhEGRpKUQQgghhBBCCCGEEMKgSNJSCCGEEEIIIYQQQghhUCRpKYQQQgghhBBCCCGEMCiStBRCCCGEEEIIIYQQQhgUSVoKIYQQQgghhBBCCCEMiiQthRBCCCGEEEIIIYQQBkWSlkIIIYQQQgghhBBCCIMiSUshhBBCCCGEEEIIIYRBkaSlEEIIIYQQQgghhBDCoEjSUgghhBBCCCGEEEIIYVBMq7sBQgjxqJ2ooazuJgjxRGibJR8jhHhovIOquwVCPBHWXD5Y3U0QQgjxkMhISyGEEEIIIYQQQgghhEGRpKUQQgghhBBCCCGEEMKgSNJSCCGEEEIIIYQQQghhUCRpKYQQQgghhBBCCCGEMCiStBRCCCGEEEIIIYQQQhgUSVoKIYQQQgghhBBCCCEMiiQthRBCCCGEEEIIIYQQBkWSlkIIIYQQQgghhBBCCIMiSUshhBBCCCGEEEIIIYRBkaSlEEIIIYQQQgghhBDCoEjSUgghhBBCCCGEEEIIYVAkaSmEEEIIIYQQQgghhDAoptXdgCfJjBkzCA0NvWdMt27dWL58+SNqka7AwEDc3d3ZsGEDACEhISQlJREZGfnI2vAwXnP//v1s27aNc+fOkZeXh6urK506dWLEiBHUrVtXr3OU/nudP3/+ocRVlo+Pzz33l75nEhMT6datm85+MzMzHB0d6dixI5MmTaJ27doA5cYbGRlhZ2eHl5cXwcHB9O7d++FciPifl3k9nb1bdxJ3/hIAPv5NeGFIH2zs7fQ+R9i3W0lPTWPU9Dd19l08+xdRew5w7Z8EjIyNqOvlSVD/HtT19tSKS/ongQM/7ib+0j8YGRvh6ePNC0P64lTb5YGuT4hHJS09nfWhofx58SIALZs2JaRfPxzs9O9Lqzdv5lpaGjMnTdLZ9968eVyOj9fZ3rZFC6aOGqX5+eatW2zZvZtTZ89SoFRSv04dgvv0oaGnZ8UvSohqYCj3pZzsWxzYHs7fv5+jsLAQt3p1eG7gizpxQhiyvIxbXNl7kptXUgBw9K1D/RfaYG5rpfc5LoYeRXHjJv5jXqj0+TMuJJEQ9Qe3k9LByAj7us7Ue7Yl9h7OD3B1QghDJUnLKvDuu+9Ss2bNMve5uro+4tbc27hx41AoFNXdDL0VFBQwffp0IiIi8Pf3Z/To0Tg4OHDx4kVCQ0PZvn078+bNIygoqLqbWiFeXl6MGzeuzH13v2dat27N4MGDNT8rlUouXbrEpk2bOHbsGLt27cLe3r7ceLVaTUJCAlu2bGHatGmYmJjQs2fPh3xF4n9N7u0c1s5dhkqlpPPzgajVRfyy7zCpidcY9+FbmJje/3bzW/T/8duRY3j6eOvsizt/ifWLVuPiVptnB/REpSriROQvfPPFUkbPmEgdr3oA3EhJ45svlmJubs5/XnwOgKM/RfH154uZ8Mk72NdweLgXLsRDdisnh4+XLEGlUtE7KIiioiJ2HzpE/LVrfP7225jq0Zcijx3j0NGjNG7QQGefWq0mMTWV1v7+PN28udY+Z0dHzf9X5OUxc/FiMm/epOczz2Bjbc2+I0f4eMkSPn/7bTzc3B78YoWoQoZyX8rPy2PNF0u5lZVNh2e7YmljzfFD0aydu4xxH77FU3UM67uBEGUpzM0n5pt9qFVF1OnSrPheEn2OnJRMWozvhbGJyX3PkXLqAiknL+BQ/6lKnz8rLoXY7w5g7VIDz+daolapuXb8L2K+3kvzsS9gV1cSl0I8aSRpWQWCgoKoU6dOdTdDLx07dqzuJlTI3LlziYiIYNq0aYwePVpr37hx4xg9ejSTJ09m+/bt9x3BaEicnJzo06ePXrF169YtM7Zu3bp8/PHHbNmyhbFjx943vn///vTo0YNly5ZJ0lI8sF9/iuJmZhZvfPIOLm7Fo33d69fjuwUrOP3rCdp07VDusUVFRfy85wCRO/eVGxOxORSHmjV47YMpmFuYAxDQoQ2LP5jNwR3hvPL2eKA4QVmYX8CYdyfi6lH8d9irSSNWfbqQo/ujeH6Ifv1MiOoSHhlJRlYW8959lzolI+cb1KvHZ8uWEXX8OEH3uG8XFRWxY/9+fty7t9yY6xkZ5Ofn08bfny5t25Ybt/PAAZLT0vjozTdp0rAhAO1btuTNmTPZdfAgb7z8ciWvUIhHw1DuS0ciDnEj5TqvvjOB+j7FDxL82gaw8J1Pid57iIFjhj+sSxaiyiT9Ekv+zVxaTeyDtUsNAOzqOHNu7U+knr6Ea5vyv3epi4pIiIrh6qHfH/j8V8JPYOFgQ4vXe2FiXpzKcGnpzW9fhvLPgdP4vdr9oVyvEMJwSE1L8diIi4tj48aN9OzZUydhCVCrVi0WL16MkZERs2bNqoYWVq8ePXoAcPr0ab3i3d3dadOmDZcvX+b27dtV2TTxP+Ds8dPU92mg+WII0KCpD7Vqu3D2+JlyjyssKGT5zPlEhu2lRfvW2NXUHQmpyMklJeEazdq00HwxBLB1sMOzkTfxl/7RbMu4no61rY0mYQlQp74HVjbWpCYlP+BVClH1fj19miYNG2oSlgD+vr64urhw9B5/3wsKC5n+xRf8EBFB5zZtcKxRo8y4hOTifuD+lO5Il1JqtZqfT5wgoEkTTcISoKa9PS/364evt+6oMyEMjSHcl9RqNWd+PUEj/8aahCWAnYM9zw/pQ71GXg/hSoWoetdjrlCjfm1NQhGgZgM3rJztuR4TV+5xqkIlp7/azdWDv+PSwhtzB+tKn79QkU9OcgZOfp6ahCWAua0VDvVrkx2f9mAXKYQwSJK0rEZ79+6lb9+++Pv706tXLw4fPsyoUaMICQnRxAQGBmr9XN52tVrN5s2bGThwIAEBAfj5+fH888+zevVq1Gp1uW0ICQkhMDAQKK6B6OPjU+5/S5cu1Rx36dIlJkyYQOvWrWnevDlDhw4lOjpa5/xHjx5l6NChtGjRgqCgIH744YdK/a4Adu7ciVqtJjg4uNwYDw8PgoKCOHnyJCkpKZrt586d49VXXyUgIIDOnTuzatWqMn8v+sSp1Wq++uorunfvjp+fHx06dGDatGkkJ1dvQsTYuLg7q1QqvY+xti7+4HCv90hZduzYgY+PD/v37ycwMJDmzZtr3h9Xr15l+vTpdOnShWbNmtG2bVvGjRvHxZLabKUKCgpYunQpzz33HP7+/nTv3p3Vq1drtT8/P58vv/ySwMBAmjVrRrdu3Vi8eDEFBQUVaq+oWoqcXDKvp+PmqTvC3M2jDsnxieUeq1QqyVfkMeT1EQwYHYyJse70IgsrSyZ9/h4duv9HZ1/u7RyMTf69ldV6ypncnFxysm9pxeQp8rBzsNc5XghDcjs3l7QbN/AqozZz/bp1iUtIKPfYwsJCcvPymDxyJBNCQjT3hLvdnbTMy8/XibmekUFGVhb+vr5A8T2iNO65zp3vOdpTCENgKPelrBsZ3Mq8SYOm//algrzivvR0YKd7jvYUwlAUKvLJy7iNrXstnX22rrW4fS293GPVyiJU+QX4DuuKz6DOGBkbVfr8phZmtJ7SH/eOTXXPkZuHUTn3PSHE402mh1eB7OxsMjIyytzn4OCAiYkJYWFhTJ8+HT8/P6ZNm8aVK1eYOHEijo6OeHh4VPg1Fy1axMqVK+nXrx+DBw8mJyeHsLAwFixYgI2NzT0TfaUcHR2ZO3euzvalS5eSkpJC586dATh//jwvvfQSTk5OvPbaa5iZmbFnzx7Gjh3LggULNCP+jh49ypgxY/D09GTy5MlkZGTw2WefYWRkVG7Nz3v5/fffMTU1xc/P755x7dq1IyIigt9++42ePXty8eJFQkJCsLe3Z/z48RQWFrJ27VqdxJe+cStXrmTZsmUEBwfj4+NDYmIi69ev59y5c+zZswcTPWq63K2wsLDM94yZmRl2ei68cOzYMQCaNGmiV7xCoeDkyZPUqVNH79e42/vvv8/w4cOxtbWlRYsW3Lhxg8GDB2Nra8vw4cOpWbMmf/31F9u2bSM2NpbIyEjMzMwAmDBhAkeOHOHFF19k5MiRxMTEsGDBAtLT03n33XdRqVS89tprnD59msGDB+Pt7c25c+dYuXIlf/31FytWrMDISPeDj3j0sjNvAmBfs4bOPrsa9uTlKlDkKrCy1i3UbmllyeQ579+z3xgbG+P0lG6NopSEa8RfiqNhM1/Nts4vdOP877FsW7WBF4b2BWDftp2YmJjQ/tkuFbwyIR6tjKwsABwddEd21bS3J1ehICc3Fxtr3ZEq1lZWLPnoo/vegxKTk7G0tGT9jh0cPXOG/Px8XJycGNqrFx1btQIgOa14tIq9nR0bQkM5dPQoirw8nnJ2ZkS/frS6z31YiOpmKPel9NTrANjY2bJv605OHTlGviIPRxcnXhjaF98WzSpzeUI8UgU3cwEwt9e995jbW6FSFKJUFGBqZa6z38TSjNZvDdB6wPwg57dy0n0AnZOSQfbVNGo2dNf7moQQjw9JWlaBfv36lbsvLCyMRo0aMXfuXLy8vPj+++8xNy/+A+/l5cWsWbMqnLQsLCzUTJueM2eOZvugQYNo37490dHReiUtra2tdWofrlmzhoSEBD766CNatGgBwKxZs3B0dCQ0NFQzUm/48OGMGDGCzz77jKCgIMzNzZk/fz7Ozs5s3boVW1tbADp06MCIESMqlbS8fv06Dg4Omt9XeVxcilcITiv50lU6AnDLli2aRW26d+9O3759tY7TN2737t106dKFDz74QLPN1dWVzZs3k5SUVKmk85kzZ2jfvr3O9rZt22pWei9VUFCgleC8efMmZ86cYf78+djY2DBs2LB7xiuVShISEli+fDkZGRnMmDGjwu0t1bNnTyZPnqz5efXq1dy8eZPvv/8e7zumD9rY2LB69WouXLhA06ZN+fnnnzly5AhTpkzRLEA0bNgwCgsL2bRpExMmTODgwYMcO3aMNWvWaBLmAP7+/nz00UccOnTosVtw6UmVn5cHgJm5mc4+05JthQUFZX45NDIyqlSivyAvn+1rNgLQuUc3zfYatWrStdez7Nn0I8v+W/wQxsjYmKHjR2pNGRfCEJWOZizrPmde8sAnv7AQmzKO1bcvJSQnk5eXR05eHm+EhJCjULA3Kool336LSqWiS9u25JYs0Lc1PBxTExNeGTgQYyMjdh86xLyvv+a98eM1ozCFMESGcl/KK+lLh0IjMDExocew/hgbG/HLvsNsWvoNI94aR4Omj08NdvG/SVVQCICJmW7qwLhkQStVobLMpKWRkRFGJvceZPAg51cVFHL+h+LZfnW6ygM1IZ5EkrSsAvPmzcPJyanMfR4eHpw9e5b09HTGjh2r9cVkyJAhWlOw9WVmZsbRo0cpLCzU2p6ZmYmtrS25ubkVPidAdHQ0CxcupE+fPpqkZ2ZmJidOnCAkJIS8vDzySj4UAjz77LPMnj2bs2fP4unpSWxsLKNHj9YkLKF4FKSPj0+laiiq1Wq9PkSWrqyqVqspKioiOjqarl27aq3C7e3tTadOnYiMjATQOw6gdu3aHD9+nO+++46ePXvi5OTE0KFDGTp0aIWvqZSPj0+ZycM7VwEvFR4eTnh4uM72hg0bMnPmTGrfUQftXvFeXl4sXLjwgRbhadOmjdbPY8eOZcCAAdSq9e/0jry8PM00xdL3YlRUFMbGxgwfrl18fvr06bz++uvY2Njw008/4ejoSNOmTbWSrl27dsXExISoqChJWhqI0uoCj2rka0F+ARuXrCEl4RpdegZp1Qk7uCOCn/f8hKePN627dkBdVMSJw7+ybeW3DB0/Uka1CINWWqqjKvtSUMeOFBUV0b3LvyOPO7ZqxdTPP2djWBidWremUKkEIFehYNGHH2Jb8oCyVbNmTPzkE7bs3i1JS2HQDOW+pCws7kt5uQomz34fK5vivuTTohlfTv+Ug9vDJWkpDJ+mQxnW+VUFSmI3HCInOZM6//GjRv3a9z9ICPHYkaRlFWjZsuU9Vw+/du0aULyq853Mzc11tunLzMyMqKgoDh06RFxcHFevXuXmzeKpMRWtVwjwzz//8NZbb9GwYUM++eQTzfaEknpaGzZs0BkBWCo5OVkzBbisUYdeXl7ExMRUuE0uLi4kJCSgVCo1icmylI6wdHFxISsri9zc3HLbUZqM1DcO4J133uH111/n888/Z/bs2TRt2pTAwEAGDx6Ms7PuVCF9ODg40KGDfnWNOnXqxKhRo4DiD+Pm5ua4urri5uZ23/iUlBTWrFlDdnY2M2fO5Omnn65Ue0vdmZwsVVhYyJdffklsbCzx8fEkJiZq6lQWFRUBkJSURK1atbQS2gDOzs6a32F8fDwZGRlljkAFqr2GqPiXhaUFUDxq5W7KkqfnlpaWD+W1FLkKNi5aTfylOFp2fpqg/j219v2yLxJ3Tw9GTpugSZb7tQ1g5acLCft2K2/P88HUTHfkjRCGwNKiuC+VVbe3oOTBpPUD9qVnO3XS2WZuZkaXNm34ce9eEpKTsSh5oPp08+aahCWAjbU1rZo148iJE+Tl52vaK4ShMZT7kllJX2rSqrkmYQlgZW2Fb4tmnDl6koK8fMwtpS8Jw2ViUfy5qahQt25+UclDLlPLyn+2qsz5lYoCYtcfJPtqGk+1bojnsy0r/fpCCMMmSctqVFYy0ULPLwB3LlaiVqsZP348hw8fplWrVgQEBDBkyBDatGnDiBEjKtyu27dvM2HCBIyMjPjqq6+0PtSVvm5wcHC5o9waNGhAamoqgNZIzFKliauKat26NceOHSMmJoaWLcu/MZ06dQojIyMCAgI02/Rthz5xvr6+7N+/n+joaA4fPkx0dDRLlixh3bp1bN26VWtadFVwdnbWO8FZVny3bt0YNGgQY8aMYd26dbQqqWFWGXcv9HDq1ClGjRqFtbU1HTp0YMCAATRp0oT4+Hit5Lc+iwWpVCo8PT3573//W+b+skahiurhUKu43MOtm7d09t3KysbS2uqhfCHLyb7FtwtXkhKfROuuHej98iCtUTTpqddRKZX4PR2g9d40MTXFv11rfvphF9eT03D1kJpHwjA5lZROycrO1tmXmZ2NtZVVlSUKHUpqG+cXFGhWHre/68FSaZxarUYhSUthwAzlvmRfsvK4jZ1uX7KxtwW1mvx8SVoKw2bhUPz+Lbil0NlXkK3AxMoMkzJKMVTV+QtuKzj37QFyrmVQu20jGvRpL3Xuhd5Ge8tMvceNJC2rgaenJ1A8mvFuCQkJmv1QnBS6e8SFUqkkMzNTMyrw1KlTHD58mPHjxzNp0iStuKysrAqN3lSr1UybNo3Lly+zatUqnWPd3Yu/7JuYmOgkzi5dukRiYiJWVla4u7tjZGTE1atXdV4jMbH8FRvvpVevXixfvpy1a9eWm7RMSUlh3759tGrVCnd3d9RqNba2tvdtR82aNfWKU6lU/P3339ja2tKtWze6dSuuWRQREcGUKVP44YcfHqhG5KPg4ODAggULGDp0KFOnTmXPnj06Ix4ra8mSJVhaWhIeHo6jo6Nm+8qVK7Xi3NzcOHr0KDk5OdjY/FudLTY2lrVr1/L6669Tp04dzp07R7t27bQSUIWFhRw4cEBnGryoPlbWVtRwciT5qm7fvhafiLtn5UaQ3yk/L0/zxbD9s13pMUy3dnDpCOyiIt0HQmrNw4eKjzwX4lGxsbbGuVYt4sq4T8YlJOBdiZrJd8rIymLWsmV0aNmSgS+8oLUvqeRho3OtWlhZWGBqakpCSorOOdLS0zEzM8PhId03hKgKhnJfesrdFRNTU9Ku6falzBsZmJqZlZnQtEk3qwABAABJREFUFMKQmFqZY+FoW+Yq4beT07FzL7ssWlWcX5lfqElYunVsgnfPtg/02kIIw1f+Ml6iyvj6+uLh4cGWLVu06k3u27dPM7W5lJOTE3FxcVojACMjI8kvKdYPxVOboXiE4522bduGQqFAWTKsXh+LFy8mMjKSN954g65du+rsd3FxoVmzZoSGhmpGU0JxIum9995j4sSJKJVKHB0dadOmDbt27eLGjRuauDNnzhAbG6t3e+7k6enJyJEjOXDgACtWrNDZn5WVxcSJEyksLOTDDz8EiqdPP/vss0RHR3Px4kVNbGJiIlFRUZqf9Y1TqVS8/PLLfP7551qv3bx5c0B35KGh8vPzY9SoUSQnJzNv3ryHdt6srCwcHR21Epa3bt0iNDQU+HeEZdeuXSkqKuKHH37QOn7z5s3s3bsXJycnAgMDycrKYvPmzVoxW7ZsYcqUKZrV0oVhaNqqOZf/PM/15H//LlyKPU96Shp+Tz/4lJ3dG34s+WLYpcwvhgAu7rWxq2HPmV+OU1jwb43fwoJCfj96EmtbG1zcJNktDNvTzZtz9vx5TRIRIObvv0lOS6PDA4yMB3CsUYNchYLIo0c1i+0A3MjIIOr4cZo2akRNe3ssLSxo7efHmXPnSLijFEdaejqnzp6ltZ/fY3O/E/+7DOG+ZG5pgW9AMy7ExJKW9G9fyryezt9nzuEb0Ez6kngsODWtR9bla+Rez9Jsy7x0DcX1bJz96z+y81/edaw4YdmhsSQshfgfISMtq8DBgwfvuTp2nz59mDlzJmPHjmXIkCEMGDCAGzdusGHDBk0tyFK9evXi008/ZfTo0fTu3ZurV6+ybds2zYhHgICAAGxtbZk9ezZJSUk4ODhw/PhxIiIisLCwICcnR692R0VFsXLlSry9vWnUqBG7d+/Wmhrt5OREx44d+eCDDxgxYgQDBgxg2LBh1KhRg/DwcP744w+mTp2qufbp06cTHBzM4MGDCQ4ORqFQ8O2331Zq5fBSU6ZM4ebNmyxatIjDhw/TvXt37O3tuXLlCmFhYeTl5bFgwQJ871ggYNKkSURFRTF8+HBeeeUVTExM2LBhAzY2NlqjWPWJMzc3J+T/2bvv+J6u/4Hjr0/2TkREBpEIEiQkkiBWNBJbrSJGqFIddicdvpTSKm3VLoKiZmLHjr2L/tDaK1tEEpG9Pr8/knzqI0GiIaHv5+PRR+Xec8495+Zzc+/nfc8IDGT+/PkMHz6cli1bkpGRwdq1a9HX16dnz57P3baX7cMPP2THjh2sXbuWN998818NEy/UqlUrFi1axOjRo2nRogX37t1jw4YNqsB14WfR19eXFi1a8N1333Ht2jVcXV05d+4cmzZtYvjw4ZiZmdGrVy82btzI5MmT+euvv2jQoAFXr15l7dq11K9fnx49evzr+oqy07KDL38eO83SH+bSvN0b5GRnc2Tnfmzsq9Owaf5nKyEunvDrt7Cr5YC5ZcnfysdFx/J/x/9Az0Afq+rV+PPY6SJp3Jp5oaGhQef+b7F63lIWTvmJRi2boMzL48zhk9yLjeOtof3RfMp8uEJUBG/6+XHo1Ckmz55NZ19fsrKz2bpvHzXt7Gjp6QnA3fh4rty8iVPNmlR9wsJ/TzKkd29mLFrE1z/9RJtmzUjPyGDXoUNoamjwTq9eqnQDunbl72vX+OaXX+jQujVamprsOHgQHW1t+nbpUqZtFuJFqAj3JYB2vd7k9uXrBE2fi7d/KzQ0tTi+9yDaOtr493j+xRCFeJmqtXQh7twNLizZhW0LF/Jycog8fBEj28pYuuVPjZWe8JDkO3GY1LBE39y4zMtPi0si7txNNPW1MbKpzN1zN4qUU9X9xU7TJYR4+eTb2wswbdq0p+7v2rUrzZs3JygoiB9//JGZM2diY2PDtGnTmDFjhlrafv36kZSUxIYNG5g8eTLOzs7MmTOHoKAgVS9NCwsLfv31V2bMmMH8+fPR0dHBwcGBH3/8kfPnz/Pbb78RHx//xBXNC124cAGlUsmNGzcYOXJkkf2NGzemefPmuLu7s3r1ambPns3SpUvJycnBwcGB7777ju7d/3nT7OLiwooVK5g5cyZz5szBxMSEESNGcPHiRc6ePVvS06lGS0uLKVOm0LZtW1atWsWyZctITk7GysqKzp07ExgYWGQxHWtra1avXs306dNZvHgxOjo69Cr4YrZw4cJSpxs1ahRmZmYEBwfz/fffo6mpSaNGjfjhhx9e+HyWZUlPT49JkyYxePBgvv76azZt2qS2mv3zGDlyJLm5uYSGhrJ//34sLS1p1qwZ77zzDp06deLEiRP4+/ujoaHBvHnzmDt3Llu3bmXLli3Y2dkxYcIE+vbtC+QHiJctW8bcuXPZtWsXW7ZswdLSkr59+zJ8+HD09fXL4jSIMmJoYszQ8aMIXb2RfZt2oKOjQ113V9r16qJa+Ob21ZtsDPqd7u/0K9WXw9tX8h9KM9LS2Rj0e7FpCr8c1vNowOBPPmT/lp3sDd4OgHWNagSOGUYd17r/polCvBSmxsZMGjOG5SEhrAsNRVdbG68GDejftavqxealGzeYv3IlHwwYUOqgpVeDBnz67rts3L2bVZs3o6OtTb3aten35pvYVq2qSlelcmWmfPwxqzZvZuu+fSiVSuo6OtK/W7dSH1OI8lBR7kuVLMwZ9uUYdm/YypGd+1EqldSoU5N2vd4s1TGFKE86Rvo0eLcDN7ef4s7ec2jqaFG5rh0O7T3R0NIEIPn2Xa5uOEKdt1qUOmhZkvIf3MqfZiE3PZurG44UW44ELYV4/SiUz7O0tHhhfH19sbW1feLK3EKIf29v+PMFzYUQ6honybtPIcrKKbOST+cjhHiyxTf2lncVhHgtrHnjs/KuQpmryN8D/ez+/dQlryOZREUIIYQQQgghhBBCCFGhSBcJUW5yc3NJSEgoUVpjY2P09PRecI3KRkJCgmrBmafR09PD2Lh0QydepFe13kIIIYQQQgghhHj9SNBSlJuYmBjatGlTorTTpk17ZRZeeeutt4iKinpmuu7du/Pdd9+9hBqVzKtabyGEEEIIIYQQQrx+JGhZwYSFhZV3FV6aKlWqsHTp0hKlrVWr1guuTdn54YcfyMzMfGY6S0vLl1CbkntV6y2EEEIIIYQQQojXjwQtRbnR1dWlWbNm5V2NMufh4VHeVXgur2q9hRBCCCGEEEII8fqRhXiEEEIIIYQQQgghhBAVigQthRBCCCGEEEIIIYQQFYoELYUQQgghhBBCCCGEEBWKBC2FEEIIIYQQQgghhBAVigQthRBCCCGEEEIIIYQQFYoELYUQQgghhBBCCCGEEBWKBC2FEEIIIYQQQgghhBAVigQthRBCCCGEEEIIIYQQFYoELYUQQgghhBBCCCGEEBWKBC2FEEIIIYQQQgghhBAVigQthRBCCCGEEEIIIYQQFYpWeVdACCFetsZJ8qdPCCGEEEIIIYSoyKSnpRBCCCGEEEIIIYQQokKRoKUQQgghhBBCCCGEEKJCkaClEEIIIYQQQgghhBCiQpGgpRBCCCGEEEIIIYQQokKRoKUQQgghhBBCCCGEEKJCkaClEEIIIYQQQgghhBCiQpGgpRBCCCGEEEIIIYQQokKRoKUQQgghhBBCCCGEEKJCkaClEEIIIYQQQgghhBCiQpGgpRBCCCGEEEIIIYQQokKRoKUQQgghhBBCCCGEEKJCkaClEEIIIYQQQgghhBCiQtEq7wqUxrhx49i4ceNT07Rp04Z58+a9pBoV5evri62tLStWrAAgMDCQqKgowsLCXlodyuKYu3btYt26dVy8eJGMjAysra1p0aIFgwYNonr16iUqo/D3deXKlTJJ97ycnJyeur/wMxMZGUmbNm2K7NfW1sbc3JzmzZszevRorKysAJ6YXqFQYGxsTM2aNenfvz9vvvlm2TTkJcjNzWXRokWsW7eO5ORkPD09mTBhAjY2NuVdNfEKiLt/n982buTva9cAaFS/PoHdu2NqbFziMn5dvZrouDgmjh5dZN+N8HBWb9nClVu30NDQoJ6jI4Hdu2NTtSoA9+7fZ8TEiU8tf8KoUdSvXbvkjRKiHMi1JETZSLx3nx1rN3PrynUAnBrUo0OfrhialPxa2rRsLffvxjHk85FPTRcbEc2CyTNp1dEP324d8o8fn8CPn33z1HzvfDYcB2e5lkTFl5HwkJs7TvPgZiwA5s7VcOjghY6RfonLuLbxGOnxD2jwboci+xKuRhFx4P9IiboPCgUm1atQw78RJnZV1NIl3Yjhzt5zpMQkoKWnjYWLPfZtG6Gpo/3vGiiEqJBeqaBlofHjx1OpUqVi91lbW7/k2jzd+++/T3p6enlXo8SysrL4/PPPCQ0NpUGDBgwdOhRTU1OuXbvGxo0bCQ4O5ocffsDPz6+8q1oqNWvW5P333y923+OfGU9PT3r37q36OScnh+vXr7Nq1SqOHz/Oli1bMDExeWJ6pVJJREQEa9as4dNPP0VTU5NOnTqVcYtejHnz5jF37lwGDx5MlSpVWLBgAR988AEhISFoamqWd/VEBfYwNZVJv/xCbm4ub/r5kZeXx9Z9+wiPjmbqJ5+gpfXs203Y8ePsO3aMurVqFdkXffcuk375BV1tbXq2bw/A9rAwJvz8M9PHjcPc1BRjIyOGBwYWyZuVnc3SDRswNTKihq3tv2+sEC+QXEtClI20lFSCps8lNzeHlu19USrzOLJzP3cjo3n/64/QLMG1dObwCc4cOo69k+NT0+Xm5hK8ZBW5Oblq2w2NDOk5tH+R9NnZ2WxfFYKhiRFW1eVaEhVfdlom55fsRJmbR7VWLiiVSiIPXyQ1NhG3DzujUYLvCbF/XCX29FVMHaoW2Zd0K5a/lu/BwNIM+7aNUOYqiT55ifOLdtBwWAeMq+cHLpNuxHAhaBdGtpVxaO9B5oM0oo/9TUrUfRoM64BCoSjztgshytcrGbT08/OjWrVq5V2NEmnevHl5V6FUpk+fTmhoKJ9++ilDhw5V2/f+++8zdOhQxowZQ3Bw8DN7MFYkFhYWdO3atURpq1evXmza6tWrM2nSJNasWcOwYcOemb5Hjx507NiRuXPnvjJBy3Xr1tGqVSs+//xzID9gO3PmTG7evElt6VEjnmJ7WBgJSUn8MH481Qp6I9eqUYNv587lwMmT+D3lb2FeXh4hu3axYceOJ5d/4ACZmZlMGjMGh4K//6516vDFjBlsDwsjsHt39HR1adW4cZG8y4KDyc3NZeSgQRgZGPzLlgrxYsm1JETZOLr7AA8SkxjxzWdY2uRfS7YONVg+cz5nj57Cy6fZE/Pm5eVxcNsewjbvLNGxDm3fy73o2CLbdfR0cWvmVWR76OoQcnNz6TUsEH1DuZZExRd15C8yH6ThMaorBpZmABhXq8LFoN3cPXsda68nfy9U5uURceA8d/b9+cQ0N7efQtfUELcPOqOpkx+isGzkyJmfNnJ7z1lc32mXn27HaXTNDGnwbgc0tfPT6ZoacmPLCRKvRWFe59WIEQghSk7mtBQqt27dYuXKlXTq1KlIwBKgcuXKzJo1C4VCwZQpU8qhhuWrY8eOAJw9e7ZE6W1tbfHy8uLGjRukpKS8yKqVmYyMDGJiYlAqlQBkZmYC+UPkhXiao2fPUq92bVWQBaCBszPWlpYce8o1k5Wdzefff8/60FBaenlhbmZWbLq4+HiMjYxUQRYAxxo1MDI0JCIm5onl34mKYufBg7Ru0qTYXmdCVDRyLQlRNi6cPIuDUy1VwBKgVn0nKltZcuHkuSfmy87KZt7EGYRt2oGbtyfGlUyfepzYiGgObttN6y7tSlSv2Ihoju89TKMWjbGv8/QenEJUFPfO38TMwUoVsASoVMsG/Som3Dt/64n5crNzODtnK3f2/omlmyM6pkWD9NnpmaTGJGDhaq8KWALoGOlj6mBFcnicqiwdIz2svOqoApaAqudmakzCv22mEKICeq2Dljt27KBbt240aNCAzp07s3//foYMGULgI0OefH191X5+0nalUsnq1at56623cHd3x9XVlfbt2/Prr7+qAjzFCQwMxNfXF8ifA9HJyemJ/82ePVuV7/r16wwfPhxPT08aNmxIQEAAhw8fLlL+sWPHCAgIwM3NDT8/P9avX/9c5wpg8+bNKJVK+vcvOoylkJ2dHX5+fpw+fZrY2H/eKF+8eJF33nkHd3d3WrZsycKFC4s9LyVJp1QqmTNnDu3atcPV1ZVmzZrx6aefEvOUL1Mvg4ZG/uWSm5v7jJT/MCjoifK0z8iT7Nq1i549e+Lu7o6HhweDBw/mzJkzamny8vIICgqiffv2uLi40LJlS6ZMmaIWJB07dixOTk4cPHhQtS0pKYkWLVrg7+9PWlqaanuHDh24evUqv/76KwcPHiQoKAhvb2/s7e3Vjnvy5EmcnJzYuHEjXbp0wdXVlfHjxwNw7949Jk2aRJs2bXBxccHDw4OBAwcWqbtSqeS3336jc+fONGjQAF9fX2bMmKE2nUJJ2ifKX0paGnHx8dQsZr5bh+rVuRUR8cS82dnZpGVkMGbwYIYHBqqus8dZValCSmoqDx4+VG17mJpKWno6Zo9M1/C4tdu2oaOjQ+/OnUvRIiHKh1xLQpSN9NQ0Eu/dx8a+aK8rG7tqxIRHPjFvTk4OmekZ9PlgED2H9kdT48nDXnNzc9m4dDWO9Z1o6O1ZorrtDdmOto42bbp3LFF6IcpbdnomGQkpGNlWLrLPyLoyKdH3n5hXmZNHbmYWzn19cOrVEoVG0eHbWrraeI7tgW3z+kWPnZaBouB+pqmthcvbbbFr3VAtTWGwUtfMqFTtEkK8Gl7J4eHJyckkJBT/JsXU1BRNTU02bdrE559/jqurK59++ik3b95k1KhRmJubY2dnV+pj/vzzzyxYsIDu3bvTu3dvUlNT2bRpEzNnzsTQ0PCpgb5C5ubmTJ8+vcj22bNnExsbS8uWLQG4cuUK/fr1w8LCgvfeew9tbW22bdvGsGHDmDlzpqrH37Fjx3j33Xext7dnzJgxJCQk8O2336JQKJ445+fT/Pnnn2hpaeHq6vrUdE2bNiU0NJQzZ87QqVMnrl27RmBgICYmJnz44YdkZ2cTFBREVlaWWr6SpluwYAFz586lf//+ODk5ERkZyW+//cbFixfZtm3bc82tmJ2dXexnRltbG+MSLmxw/PhxAOrVq1ei9Onp6Zw+fZpq1aqV+BiFTp06xdixY2nVqhW9evUiPT2dlStXMnjwYLZv365aDOnLL79k8+bNdOvWjbfffpsbN26wevVqzp49y+rVq9HV1eXrr7/m+PHjfPPNN2zfvh09PT0mT55MQkICK1euVAVWAT766CMOHz7MTz/9hFKppHHjxsyaNeuJ9fzmm2/o0aMHvXr1wsbGhoyMDPr378/Dhw/p378/VatW5fbt26xevZqhQ4eyd+9eKlfOf+CZNGkSq1ev5o033qBv377cunWLoKAgbt++zZw5c0rcPlH+EpKSADA3LdobpZKJCWnp6aSmpWFYzHBSA319fpkw4ZnXdVc/P85evMgvy5czsHt3AFZu2oSmpiYdWrcuNs+dqCjOXLxIZ1/fYusmREUj15IQZSM58QEAJpXMiuwzNjMhIy2d9LR09A2KLiCip6/HmO++LNHz5pEd+7h/9x79RrxDXt6zX1DHRkRz5f/+onm7NzAxk2tJvBqyHuR3cNAxKXrv0THRJzc9m5z0LLT0dYrs19TTxvOjnmhoPrmvlEJDA32Loi/NUmMTSL4TR6Xaxc/7mpGYwoNbsdwMPY1BVTMq1yv9d3whRMX3SgYtuxc8ZBdn06ZN1KlTh+nTp1OzZk1+//13dHTy/4DWrFmTKVOmlDpomZ2drRo2/d1336m29+rVC29vbw4fPlyioKWBgUGRuQ8XL15MREQEEyZMwM3NDYApU6Zgbm7Oxo0bVQGlAQMGMGjQIL799lv8/PzQ0dFhxowZVKlShbVr12JklP9mqVmzZgwaNOi5gpb37t3D1NRUdb6exNLSEoC4uPyu+oU9RNesWaNa1KZdu3Z069ZNLV9J023dupVWrVrx1VdfqbZZW1uzevVqoqKinivofO7cOby9vYtsb9y4sWql90JZWVlqAc4HDx5w7tw5ZsyYgaGhIX379n1q+pycHCIiIpg3bx4JCQmMGzeu1PUNDQ1FT0+P+fPnqyaUbtasGaNGjeKvv/6ievXqnDx5kpCQECZNmkRAQIAqr4+PD0OGDGHNmjUMGjQIc3NzJkyYwNixY1m4cCEuLi6qIHijRo3UjhsWFkZaWhpKpRJ9fX1+/PFHTJ/yBdXDw4Ovv/5ard537txh8eLFqiA85M/7+b///Y8zZ87Qtm1brl+/zpo1a+jduzeTJ09WpTM0NGTBggVcv36d+/fvl6h9ovxlFEwjUNzfDp2CqQUys7MxLCavQqEo0RdDC3NzurdrR9D69XxW8HdYQ0ODj4YMURvm+qjdR46goaFB+1atStgSIcqXXEtClI3MjAwAtItZTVirYFt2VlaxQcuSXktxUTHs37KLTv17YmpeicT4Zw9NPbX/CAoNDZq0afnMtEJUFLlZ2QBqQ7ILaRQsaJWbnVNs0FKhUKDQLP3iOLlZ2VxZnz/KsJpP0Q412WmZnP5hQ34ddDRx7NKk2PoJIV59r+SV/cMPP2BhYVHsPjs7Oy5cuMD9+/cZNmyY2oN/nz591IZgl5S2tjbHjh0jOztbbXtiYiJGRkZqw2tL4/Dhw/z444907dpVFfRMTEzk1KlTBAYGkpGRQUbBQxeAv78/06ZN48KFC9jb2/PXX38xdOhQVcAS8ntBOjk5PdfwWaVSWaKHtMKVS5VKJXl5eRw+fBgfHx+1VbgdHR1p0aIFYWFhACVOB2BlZcXJkydZvnw5nTp1wsLCgoCAALXAVWk5OTkVGzw0KWYo3Pbt29m+fXuR7bVr12bixIlYPTLP2NPS16xZkx9//PG5FuGxsrIiNTWVKVOm0K9fPxwdHXFycmLXrl2qNLt370ahUODj46MWNK1Xrx5VqlThwIEDqqBex44d2b59O0uWLMHExARnZ2dGjhypdswZM2awaNEiWrZsiaurK/PmzePzzz9n8eLF3Lhxg4sXL+Lj44O5ubkqj5eX+uTyHTt2pGnTpmpB80d70hZeKwcOHECpVBaZmmHIkCF07NgROzs7Vq9eXeL2ifJVOP3Bi1yxce22bYTs2kXdWrXwa96cvLw8dh85ws9BQXw0ZAgej/UQz8rO5vDp03i4ulKlctHhTEJURHItCVE2CmfleVHXUl5eHiFLVmNXq+ZTF/R5VHZWNn8e/wNnNxcqWZg/O4MQFYXqgno5h8vNyuGvFftIjUmkWmtXzBysiiZSgHOAD3m5eUQf/5sLQbupG+CDhYv9y6mkEOKleSWDlo0aNXrq6uHR0dEAqiG0hXR0dIpsKyltbW0OHDjAvn37uHXrFnfu3OHBg/yhJ88zX+Ht27f56KOPqF27Nt98841qe0TBfFUrVqwo0gOwUExMjGphlOJ6HdasWZPz58+Xuk6WlpZERESQk5OjCkwWp7CHpaWlJUlJSaSlpT2xHoXByJKmA/jss8/44IMPmDp1KtOmTaN+/fr4+vrSu3dvqlSpUup2Qf60Ac2aleyhskWLFgwZMgTIf9jV0dHB2toaGxubZ6aPjY1l8eLFJCcnM3HiRJo0afJc9R0wYABHjhxh5cqVrFy5kmrVqvHGG2/w1ltv4ezsDEB4eDhKpZLWTxjOZ2io3hdn4sSJtG3blnv37jFv3jy1gP6ZM2dUAcuFCxeiqanJlStX2LdvHwsXLiQ5OZmgoCA2b96sFrR89N+FFAoFv/76K+fOnSM8PJzw8HBVwD8vLw+AqKgogCJzZZqYmKgCyaVtnyg/egXD9B+f6gHyAx4ABnp6z11+aloaW/btw9HOjgkjR6rm6mvWqBFfzJjBwtWrmevsrLZg1MWrV8nMzMTb3f25jyvEyybXkhBlQ1cv/1rKLuZayinoNab3L66lIzvCiI2MYuj40aQ+zO8okFHwYjYrK5vUhykYGBmqBU1vXr5GdmYWLl5uz31cIcqDpm7+PSEvu+i8/nk5OQBo6ZXNop056Vn89dteku/EUdWzNvb+jYpNp62vS5UGDgBYuNTg7KxN3Nh+SoKWQryGXsmgZUkVF0ws6Rx4jy62olQq+fDDD9m/fz8eHh64u7vTp08fvLy8nqunV0pKCsOHD0ehUDBnzhy1h6bC4/bv3x8/P79i89eqVYu7d+8CqPXELFQYGCotT09Pjh8/zvnz54sMG37UH3/8gUKhwP2RLzAlrUdJ0jk7O7Nr1y4OHz7M/v37OXz4ML/88gtLly5l7dq1ODq+2JUWq1SpUuIAZ3Hp27RpQ69evXj33XdZunQpHh4epa6DkZERK1eu5M8//2Tv3r0cOnSIFStWsGrVKqZPn06XLl3Iy8vD0NBQNf/j4x7/rP/999+qno67du2iQYMGqn379u0DYPjw4arett999x3du3dn9uzZGBgYYG9vrwqYFnq8Z+7Nmzfp27cv2dnZtGjRgo4dO1K3bl2USiXDhw9XpSvJYkalbZ8oPxYFPWuTkpOL7EtMTsZAX18VjHkesffukZOTQzMPD7XFRbS0tGjh6cmqzZuJunsX+0deZp376y+0tLRwL+EctEJUBHItCVE2TCvnX0sPHzwssu9hUjJ6Bvro6D3/tXTt4iVyc3JZOPnHIvuO7gzj6M4wPpo+Qa1H5dXzf6OppUWdBnWf+7hClAdd0/xRfVkP04vsy0pOR1NfG81ipmIorayUdC4u20NqdAJWjetQq6t3iXpLa2prYe5cnehjl8hOzUDb8PlfSAghKp7XMmhZ2Hvr9u3bRfZFRESo9e7S0NAo0qMhJyeHxMREVa/AP/74g/379/Phhx8yevRotXRJSUml6r2pVCr59NNPuXHjBgsXLiyS19Y2f6JhTU3NIoGz69evExkZib6+Pra2tigUCu7cuVPkGJGRT14R8Wk6d+7MvHnzCAoKemLQMjY2lp07d+Lh4YGtrS1KpRIjI6Nn1qNSpUolSpebm8vly5cxMjKiTZs2tGnTBsifK3Hs2LGsX7/+ueaIfJlMTU2ZOXMmAQEBfPzxx2zbtk1tCH9J3Lp1i4cPH+Lm5oabmxuffPIJ169fp3///ixdupQuXbpga2vLkSNHcHFxKTLMfefOnWq9WlNSUpgwYQJ16tTB1dWVpUuX0q5dO1XgsjDA/2gQ0sTEhFmzZhEQEMDDhw8ZO3bsM+u9aNEikpOT2bFjh9p1tnXrVrV0hb1WIyIi1ILQd+/eZdq0aQwYMKBU7RPly9DAgCqVK3OrmL89tyIicPyXv6vCnt/FvQjJK/jsPv6K6uqtW9S0s8NAv+h8ZUJUVHItCVE29A30MbMwJ+ZO0WspOjwSW/vnG3lVqH2fbqSnqk8PlZr8kA2LVtLQ2xO3Zl4Ymagvwhh+/Ra29tXRk2tJvGK09HXQNTcqdpXwlJj7GNsWP21baeRkZqsCljbN6+HYqXGRNGn3kri4bA/VWrpi01S9I0VuZjYoQKFV+gVbhRAV25OX8XqFOTs7Y2dnx5o1a9Tmm9y5c6dqaHMhCwsLbt26pdYDMCwsjMyCyfAhf2gz5PdwfNS6detIT08np6BbfEnMmjWLsLAwRowYgY+PT5H9lpaWuLi4sHHjRlVvSshfDOiLL75g1KhR5OTkYG5ujpeXF1u2bCE+Pl6V7ty5c/z1118lrs+j7O3tGTx4MHv27GH+/PlF9iclJTFq1Ciys7NVi68oFAr8/f05fPgw165dU6WNjIzkwIEDqp9Lmi43N5eBAwcydepUtWM3bNgQQK1nSEXm6urKkCFDiImJ4Ycffih1/ilTpvDhhx+Smpqq2lazZk1MTExU58DX1xegyO8qLCyM0aNHqwUKp0+fzt27d5k0aRKfffYZpqamfPnll6qAfdOmTQFYvXq1WllxcXGqXpHBwcGkpxd9w/qopKQk9PX11YbSZ2VlsWbNGuCfHpaFn/3HjxcSEsKOHTswMjIqVftE+WvSsCEXrlwh6pG/W+cvXyYmLo5mz9Hb+FHVra2pZGrKgZMnVUNkIX+47KFTpzA2MqL6I3PN5uTkEBkT88RFRYSoyORaEqJs1PdoyI2/r3Av5p9r6fpfV7gfG4drkyePKCoJW/vq1KrvpPafXe2aAJhXqUyt+k5qiwDl5uRwLzoW6xpyLYlXk0X9GiTdiCbtXpJqW+L1aNLvJauGaf8bN7Yczw9YNqtbbMASQM/chJyMLGJOXSHvkVFbGYkpxF+8jamDFVq6ZTNMXQhRcbySPS337t371NWxu3btysSJExk2bBh9+vShZ8+exMfHs2LFCrV5miC/d+HkyZMZOnQob775Jnfu3GHdunWqHo8A7u7uGBkZMW3aNKKiojA1NeXkyZOEhoaiq6urFlh6mgMHDrBgwQIcHR2pU6cOW7duVevtYGFhQfPmzfnqq68YNGgQPXv2pG/fvpiZmbF9+3b+7//+j48//ljV9s8//5z+/fvTu3dv+vfvT3p6OsuWLXuulcMLjR07lgcPHvDzzz+zf/9+2rVrh4mJCTdv3mTTpk1kZGQwc+ZMtWHCo0eP5sCBAwwYMIC3334bTU1NVqxYgaGhoVov1pKk09HRITAwkPnz5zN8+HBatmxJRkYGa9euRV9fn549ez532162Dz/8kB07drB27VrefPPNUg0THzx4MO+++y79+/enW7du6OrqsnfvXsLDw/n++++B/MBfmzZtCAoKIioqCm9vb6Kioli1ahU2NjaqeTaPHz/OunXr6N27t6oH7Weffca4ceOYN28eY8aMwcfHB19fX0JCQsjMzKRx48b83//9H5s3b6ZevXo0adKEJUuW8M4777Bo0aIn1rtVq1aEhYXx3nvv0b59ex4+fMimTZsIDw8HUF0rdevWpVevXqxYsYK4uDi8vb1VK4p369YNZ2dnnJycStQ+UTG86efHoVOnmDx7Np19fcnKzmbrvn3UtLOjpacnAHfj47ly8yZONWtS9QmLqRVHQ0ODd3r14sclS/hyxgze8PYmLy+P/SdOEH33LsMDA9Xm4Y1PTCQnN1c11FaIV4lcS0KUjZYdfPnz2GmW/jCX5u3eICc7myM792NjX52GTfOfyRLi4gm/fgu7Wg6YW/773mJPknQ/kdycXEzN5VoSr6ZqLV2IO3eDC0t2YdvChbycHCIPX8TItjKWbvmjptITHpJ8Jw6TGpbomxs/o8R/pMUlEXfuJpr62hjZVObuuRtF0lR1d0RDUwPHzk25uv4w53/dgaW7IzlpmUSfuAwaChw7P99aAkKIiu2VDFpOmzbtqfu7du1K8+bNCQoK4scff2TmzJnY2Ngwbdo0ZsyYoZa2X79+JCUlsWHDBiZPnoyzszNz5swhKChI1UvTwsKCX3/9lRkzZjB//nx0dHRwcHDgxx9/5Pz58/z222/Ex8c/cUXzQhcuXECpVHLjxo0iKzcDNG7cmObNm+Pu7s7q1auZPXs2S5cuJScnBwcHB9Ucg4VcXFxYsWIFM2fOZM6cOZiYmDBixAguXrzI2bNnS3o61WhpaTFlyhTatm3LqlWrWLZsGcnJyVhZWdG5c2cCAwOLDMu1trZm9erVTJ8+ncWLF6Ojo0OvXr0AWLhwYanTjRo1CjMzM4KDg/n+++/R1NSkUaNG/PDDDy98PsuypKenx6RJkxg8eDBff/01mzZtUlv85mlatGjB/PnzWbhwIfPmzSMzM5PatWurrUauUCiYNWsWixcvZtOmTYSFhWFubk7btm0ZPXo0FhYWpKen8/XXX2Nubs7HH3+sKr979+4EBwezePFi2rVrR926dfn555+ZN28eW7ZsYffu3VhbW/PBBx/w7rvvoqenh66uLtevX8fAwOCJ9Q4ICCA5OZn169czZcoULCwscHNzY86cOQQEBHDixAnefvttAL755hvs7e1Zv349YWFh2NjYMHz4cIYOHVri9omKw9TYmEljxrA8JIR1oaHoamvj1aAB/bt2Vb0sunTjBvNXruSDAQNKFWgBaNywIV+NGMGGHTtYXdDL1qFaNT5///0ic+2lFATHZTireBXJtSRE2TA0MWbo+FGErt7Ivk070NHRoa67K+16dUGr4Fq6ffUmG4N+p/s7/V5o0LJwKLmevsy1J15NOkb6NHi3Aze3n+LO3nNo6mhRua4dDu090SgYkp18+y5XNxyhzlstShW0fHArFoDc9GyubjhSbJqq7o6q/2toaRBx8AI3t59GU0cLM0dravg3wqCK6b9spRCiIlIon2fp61eYr68vtra2T1yZWwjxZEqlskQTYld0yefPl3cVhBBCCDWnzEo+3ZAQ4skW39hb3lUQ4rWw5o3PyrsKZW5v+PN17noZ/Oz+3dQlr6tXY4JAIUSF8DoELIUQQgghhBBCCFHxvZLDw0XJ5ObmkpCQUKK0xsbG6Om9GkNWEhISVAu6PI2enh7GxiUfmvCivar1FkIIIYQQQgghhHjZJGj5GouJiaFNmzYlSjtt2jR69OjxgmtUNt566y2ioqKema579+589913L6FGJfOq1lsIIYQQQgghhBDiZfvPBS3DwsLKuwovTZUqVVi6dGmJ0taqVesF16bs/PDDD2RmZj4znaWl5UuoTcm9qvUWQgghhBBCCCGEeNn+c0HL/xJdXV2aNWtW3tUocx4eHuVdhefyqtZbCCGEEEIIIYQQ4mWThXiEEEIIIYQQQgghhBAVigQthRBCCCGEEEIIIYQQFYoELYUQQgghhBBCCCGEEBWKBC2FEEIIIYQQQgghhBAVigQthRBCCCGEEEIIIYQQFYoELYUQQgghhBBCCCGEEBWKBC2FEEIIIYQQQgghhBAVigQthRBCCCGEEEIIIYQQFYoELYUQQgghhBBCCCGEEBWKBC2FEEIIIYQQQgghhBAVilZ5V0AIIYQQQgghhBBCiP+qNm3aPHX/vn37XlJNKhYJWgoh/nNyD+4v7yoI8VrQ9HmjvKsgxGtj8Y295V0FIV4LQx39yrsKQgghyogELYUQQgghhBBCCCGEKCf/1Z6UzyJzWgohhBBCCCGEEEIIISoUCVoKIYQQQgghhBBCCCEqFAlaCiGEEEIIIYQQQgghKhQJWgohhBBCCCGEEEIIISoUCVoKIYQQQgghhBBCCCEqFAlaCiGEEEIIIYQQQgghKhQJWgohhBBCCCGEEEIIISoUCVoKIYQQQgghhBBCCCEqFAlaCiGEEEIIIYQQQgghKhQJWgohhBBCCCGEEEIIISoUCVoKIYQQQgghhBBCCCEqFK3yroAoP+PGjWPjxo1q27S1talcuTKNGzdm2LBh1K5dW7UvMDCQqKgowsLCXnZVy1RWVhaJiYlUrVr1hR3D19cX4JU+V3l5eURHR1OtWrXyrop4BS06dJiYpCQmvNnlmWm/DNnIzXvxRbY3drBnbFt/1c83791j9anTXI29i4ZCQV1rKwZ4N8XGzOy5yhPiVfDr6tVEx8UxcfToZ6b94ocfuBEeXmR7Yzc3Ph4yhHv37zNi4sSnljFh1CjqP3LvLxSyaxf7jh1j7qRJJa67EBXNtY3HSI9/QIN3OzwzbdKNGO7sPUdKTAJaetpYuNhj37YRmjraaumyUtK5vfssCZcjyMvOwcimMvbtPDGxq6KW7mFUPLd3nSE5PA6FQoGpgxUOHbwwqGJapm0U4mXYtGwt9+/GMeTzkaXKFxsRzYLJM2nV0Q/fburXYWryQ/YEb+fynxfJzs7GpkY12r7VheqO9mrpFnzzI1G3i97r6nk0oO/wd0rdFiFExSZBS8H48eOpVKkSAOnp6YSHhxMcHMyuXbtYtGgRTZo0AeD9998nPT29PKv6r0VFRfHOO+/w3nvv0aNHj/KuToWVkpLC22+/jY+PDyNHlu5hRIj9l68Qdukyda2tnplWqVQSlZSEp30NGjs4qO2zMDZS/Ts6KYlvtm5DV0uLHo3cAQi9cIGJm7fy/Vs9qGRoWKryhHgVhB0/zr5jx6hbq9Yz0yqVSiLv3sWzQQOaNGyotq+KuTkAxkZGDA8MLJI3KzubpRs2YGpkRA1b2yL7/7x0ieAdOzAzleCKeHXF/nGV2NNXMXV49kvrpBsxXAjahZFtZRzae5D5II3oY3+TEnWfBsM6oFAoAMjJzOb8op1kPUzDtnk9tPR0iT5xiQtLduL2QWcMrfKfr9PuPeD8op1o6mhh90b+9Rl19G/+79dQGo3siq6JwYtruBBl7MzhE5w5dBx7J8dS5cvNzSV4ySpyc3KL7MvMyGDx97N5mJRMM38f9AwNOLnvMEHT5/L+1x9RtZo1kH+vi4uJxdndlfoeDdTKMLMwf/5GCSEqLAlaCvz8/Ir0pgsMDKRnz56MGTOGvXv3YmhoSPPmzcuphmUnMjKS27dvl3c1KrykpCQuXLiAj49PeVdFvELy8vLYeO5Pgs+cKXGeew9TyMzOwdPenpZ1ivbuKrTjwkUys3OY+GYX7C0sAHCxteWrjZvYfv4CA7yblqo8ISqyvLw8QnbtYsOOHSXOcy8hgczMTLwaNKBV48bFptHT1S1237LgYHJzcxk5aBBGBurBk71Hj7J0/Xpycot+yRTiVaDMyyPiwHnu7PuzxHlu7jiNrpkhDd7tgKZ2/tclXVNDbmw5QeK1KMzr5D83Rx68QHr8A1yHtsfMIf9FXZUG9pyeEUzk4Qs49WoFQNSxv8nLyqHhsA4Y2VQGwMzRhj/nbSPq6F/U7OBVhi0W4sXIy8vj4LY9hG3e+Vz5D23fy73o2OL3he4jPvYe73w2HAen/Bd1ro3d+fGzyRzesY+33h0AQFJ8AtmZWdR1d8WtmVw3QvwXyJyWoljW1tZ8/vnnJCQkEBwcXN7VEUJUcFk5OYwP2ciGP87QonZtzA1L1mskMjERABuzp/fgupucjLGenipgCeBoWQUjPV0iCsooTXlCVFRZ2dl8/v33rA8NpaWXF+aPTX/wJBExMQDYlnLqkztRUew8eJDWTZoU6dE5Zc4cFq1ZQ/06dXCoXr1U5QpREeRm53B2zlbu7P0TSzdHdEyffW/Kzc5Bx0gPK686qoAloOqhmRqTAOT3+Lp77jrmTtVUAUsAHWMDHDp4YWL/z7WYkfAQLUNdVcASwLiaBVoGuqTd/eceJkRFlZ2VzbyJMwjbtAM3b0+MK5XuOSs2IpqD23bTuku7IvuUSiXnjp6iToO6qoAlgLGpCe37dKVGnZqqbXEFQc8q1pbP2RIhxKtGgpbiidq3b4+Ojg6HDx8G8ntfFs7VCPlzQ3777be0adMGFxcXfHx8mDRpEg8ePFClGTduHP7+/pw7d44ePXrQoEED2rdvz+rVq4sc7/jx4wwdOpQmTZpQv359WrZsyYQJE0hOTlYrr3379qxatQovLy+8vLw4dOhQifKHhIQwcOBAIH9IvJOTk6rcBw8eMHnyZFq2bImLiwsdOnRg+fLlKJXKMjmXISEhODk5cfnyZUaNGoW7uztNmzbl+++/Jzc3l40bN9KuXTvc3NwICAjg8uXLqryzZ8+mXr163Lx5k8DAQBo2bIivry/z5s0j97GeL3/99RcjR46kWbNm1K9fH29vbz7++GNiY9XfaqakpDB16lRat25Nw4YN6dKlC+vXrwfg5MmTtGnTBoA5c+bg5OREZGRkqdp76tQp+vfvj6enJ+7u7gQEBBQ7v2dISAjdunXD1dWVpk2bMm7cOOLi4lT7Z8yYgZOTE6tWrVJty8rKokuXLjRp0oS7d++Wql7ixcnOzSUtK4vRfm348I3WaGiU7PYSkZD/5c+2YIqKjOzsYtNZm5qSkplB8iNTVDzMyCAtMwszff1SlydERZWdnU1aRgZjBg9meGBgya+lx4KWGZmZJcq3dts2dHR06N25c5F99xISGNK7N+M/+AA9Xd0StkCIikOZk0duZhbOfX1w6tUShYbimXk0tbVwebstdq3Vp1koDFbqmuVPNZKZmELWgzTMatnkH0upJDcr/55j09QZa69/njP1K5uQk5ZJVso/97DstExyMrLQNvrnHiZERZWTk0NmegZ9PhhEz6H90dTQLHHe3NxcNi5djWN9Jxp6exbZnxSfwMPEB9Sq7wzkX0tZGfn3sCa+LfDyaaZKezcy/15XxSb/XleYTgjx+pLh4eKJdHV1sbOzUwugPeqbb75h27ZtDBw4kOrVq3Pt2jVWrVrFnTt3CAoKUqVLSkpi6NCh+Pj40KNHD3bv3s3EiRNJTk7mvffeA+DIkSO8++67NGrUiFGjRqFQKDh69Chr167lwYMHzJo1S1VeTEwM8+fPZ8SIEcTFxeHm5lai/F5eXrz//vssWLCAPn364OHhAUBaWhoDBgwgJiaGfv36YWVlxYkTJ5g6dSq3b9/mf//7X5md02HDhuHh4cG4cePYvXs3QUFBXL16lStXrjBo0CCUSiXz589n1KhRhIaGoqWVf4kqlUoGDx5M7dq1+fTTTzl58iSzZs0iNjaWb775BoArV67Qr18/atSowbBhw9DX1+fs2bNs3ryZO3fusGHDBiA/6Ne/f3+uXbtG7969cXZ25uDBg3z11Vekp6fTsWNHxo8fz7Rp0/D398ff3x9z85LPEXPz5k3ee+896taty9ixYwFYt24dH374IStXrsTTM/9hZc6cOcyePZt27drRu3dv7t69y8qVKzl16hQbNmzA3NyckSNHsnfvXn7++WfatWuHhYUFc+fO5erVq/z0008vdDElUToGOjr8HNAHzRIGWApFJiaip63NiuPHOX7jJpnZOViaGNPHy4tmtf6ZK6lLw4acuXOH2fvCCCwYCr7yxEk0NTXo4OpS6vKEqKgM9PX5ZcIENDVL/oUQIDImBj09PX4LCeHYuXNkZmZiaWFBQOfONC+43z3uTlQUZy5epLOvL+bFzFc584svVPchIV5FmnraeH7UEw3N5++nkZGYwoNbsdwMPY1BVTMq17MDIP1+/ktxbUM9bu44Tezpq+RmZKNX2ZiaHRtTue4/vZOrtXIh4XIEV9Yeoman/CGtN3f8gYamBrbN6v2LFgrxcujp6zHmuy9LfW8COLJjH/fv3qPfiHfIyyvaIeT+3XsAGBobsXPtZv44dJzM9AzMLS3oENANZ7d/nvPiomPR0dNlx5pNXDh1juzMLCpVqYxfj040aNLo+RsohKiw5ElUPJWJiQnhxaxECrB161Z69uzJRx99pNpmYGDA4cOHSU1NxbBgYYzk5GQGDhzIl19+CUDfvn0ZNGgQ8+bNIyAgAFNTU5YtW4a1tTVLly5FR0cHgH79+tGnTx9VT89CGRkZTJs2jY4dO6q2lSR/9erVadasGQsWLMDNzY2uXbsCsGTJEm7dukVwcLCq92W/fv348ccfWbhwIX369MHZ2flfn0sANzc3fvrpJwA6duyIt7c3x44dY8uWLaqV2lNTU1mwYAGRkZHY29sD+XPIuLi4MGfOHBQKBQMGDOCTTz5h3bp1DBo0CEdHR37//XcUCgW//fYbZgXDCfv06UN2djbbt28nKSkJMzMzNmzYwOXLl5kxYwZdunRRpRswYAC//vorAwYMwM/Pj2nTpuHk5KQ6TyW1b98+0tLSmDNnjirY2bFjRwICArh06RKenp5EREQwd+5chg0bxscff6zK26lTJ3r06MGCBQv44osv0NXVZerUqfTv35/p06czaNAgFi9eTKdOndR+/6L8KRQKNBXP7sHyuIjERDKys0nLzOLDN1qTlpXFzgsXmb0vjNy8PNW8lBbGRnRzd2fZ0aN8viEEAA2FgjH+fmpDxktanhAVlUKheK4vhRExMWRkZJCakcGIwEBS09PZceAAvyxbRm5ubrFzWe4+cgQNDQ3at2pVbJkSsBSvOoVCgUKz9PemQtlpmZz+If+lr4aOJo5dmqiGjOdkZAFwZ+85FJoaOHZuAgoFkYcv8vfKfbgMbkulgl6YemZGVG/dgBtbT3D2ly35hWsoqNuvtdqQcSEqque9N8VFxbB/yy469e+JqXklEuMTiqTJKBhFs29jKJqamnTs2wMNDQVHdu5n1ewlDProfWrVz/+OdjcqhqyMTDLS0nlr6AAy0tM5vucg6xf+Rl5ursxzKcRrSJ5GxVPl5OSoVkh8nJWVFaGhobi4uODn54eJiQljxoxhzJgxRdIW9qgE0NTUZODAgYwcOZJjx47RoUMHFi5cSHJysirgCJCYmIiRkRFpaWlFyivsrVeotPkftXv3burUqUOVKlVISPjnRurn58fChQvZv39/mQUt/fz8VP82NjbG3NwcQ0NDVcASUC2KdO/ePVXQEvJ7aT76uxg8eDBbt25l//79ODo6MnHiREaPHq0KWEL+MHDdgiF9aWlpmJmZceDAAczNzen8yFBAhULB9OnTn/r7Likrq/x5nSZPnsyQIUNwcXGhUqVK7Nq1S5Vmz5495OXl4evrq3bOLSwsqFu3LgcOHOCLL74AoFGjRgQGBvLbb79x5swZzM3Ny7T3qyhfbeo6o1QqaVu/vmpbM0dHPl2/gVUnTtK8liMaGhqsO/0HG8+eo661FW3q1iVPqWTP33/zy759jPH3w6NGjVKVJ8Trxq95c/Ly8mj3SACyuYcHH0+dyspNm2jh6an22c/Kzubw6dN4uLpSpbIETYQolgKcA3zIy80j+vjfXAjaTd0AHyxc7MnLyQPyg5eeH/VAWz//eauyc3VOzwzm9u4zqqDl7T1nidh/HlOHqlg1dkKZpyTm5GUurz5I3X5vqPXKFOJ1kZeXR8iS1djVqqk2xPtxOdk5AGSkpTNm2pfoF8yL7uTmwk+fT2Zv8HZV0NLLpxnKvDyatGmpyu/auBGzv/6Oneu20KCphzznCfGakaCleKqkpKQnDg2eOHEiY8aMYfz48Xz99de4ubnh7+9Pz549MTY2VqUzMzPD4pGeUAA1CgIMUVFRQH4gMyIiglmzZnH9+nXCw8OfOl9h5ce+YJU2/6PCw8PJyMjA29u72P0xBfOElYXHz4OWllaxbYH8G/2jHB3Vh7Y+fg4VCgWJiYksXLiQK1euEB4eTnR0tGpezsLyoqKisLOzKxKctLW1/TdNU2nfvj179uwhNDSU0NBQqlSpgo+PD927d1cFmwt77wYEBBRbhra2ttrPY8eOZdeuXURGRvLTTz9hWswwRvFq8q9XdFicjpYWLWvXJvjMWSITE6lsZMS2/ztPzSoWfNW5k+ph1NuxJl9t3MSig4dp0L8a2pqaJSrPTgI04jXk36JFkW062tq08vJiw44dRMTEUOORv/MXr14lMzMTb3f3l1lNIV4p2vq6VGngAICFSw3OztrEje2nsHCxR1M7/3nNon4NVcASQEtfB3PnasSdu0FuVjbKXCWRhy9iVK0yrkPaoSi4h1VpYM+f87ZxbeNRKtXuhYZW6XuxCVGRHdkRRmxkFEPHjyb1YQoAGQWdSbKyskl9mIKBkSHaBZ1O6nk0VAUsAfQN9HF2c+HcsdNkZWSio6dL4zeaFzmOto42bt6e7N+yi7ioWKyq27yE1gkhXhYJWoonSklJISIigtatWxe739vbm/3796v+O3r0KNOmTWPZsmWEhISogp2PB6DgnwBaYYBuyZIlTJ8+HQcHBzw9PWnbti0NGzZkxYoVbN26tUj+x4cnlDb/o3Jzc/Hw8GDEiBHF7re0LLvV6YobVlHSno2Pn8fHz2FoaCiffPIJlpaWNG3alFatWuHi4sKRI0dYuHChKl9ubu6/7k35rHr+8ssvXLlyhT179nDo0CFCQkLYsGEDH3/8McOGDVPVff78+ejp6T2zzDt37nD//n0gv2esDA1//ZkWLK6TkZND7INksnNzafZYL0ktTU2a167F7ydOEZ2URI2nBCMfLU+I/xLTgpeImVlZatvP/fUXWlpauBcT6BdCFKWprYW5c3Wij10iOzUDHZP8aZC0DYs+x+gY6YMScjOzyXyQhjInjyoNaqoClgAamppYNnTk1s4/SLv3ACPrks8fLsSr4NrFS+Tm5LJw8o9F9h3dGcbRnWF8NH0CJgUrkRsaGxVJZ2hiBEolmZn5QcsnMTTJv9dllXAROiHEq0OCluKJdu7ciVKpVK0k/aisrCwuXbqElZUVnTp1olOnTuTl5bF06VKmT5/O9u3bCQwMBCA+Pl5tjkuA27dvA/m9BTMzM5k9ezZNmjQhKChIbQ6tRxfgeZJ/m9/W1pbU1FSaNVMftvDgwQOOHz+u6tFY3iIiIqhVq5bq50fPIcDMmTOpUaMGwcHBGBj885by8aCtjY0NV65cKVL+wYMHCQ0N5dNPP/1X9YyOjiY6OhpPT0+cnJwYMWIEsbGxDBo0iCVLljBs2DBVr05ra2vq1q1bpB5GRv88tOTk5PDFF19gZmZGt27dWLRoEZ06dcLf3/9f1VOUv4TUVKZuD8Xb0ZGeHuqTp0clJQFgaWysWjE8T1l08vbCCd2VSmWJyxPidZOQlMSUuXNp1qgRb3XooLYvqmDUweNDwK/eukVNOzsM9GXlYiEelXYviYvL9lCtpSs2TdWnB8rNzAYFKLQ0MbQyQ6GlQVpcUpEyMhJT0NDWRNtQj+zUjPyNxSxAolTmFf6jrJshRLlr36cb6anq03SlJj9kw6KVNPT2xK2ZF0YmxhgaGaKppUVcdGyRMhLjE9DS1sbQ2IjkxCSWzZiPa5NGvPFmO7V08bFxAFSqIqNphHjdyIQPolhxcXH88ssvVK1aVbVYy6MSExPp06ePWg8+DQ0NXF1dVf8upFQqWbVqlernnJwcli9fjrGxMd7e3mRkZJCeno69vb1awPHSpUucOnVKledJSpO/uKHXvr6+XL58mYMHD6qVO3/+fEaPHs21a9eeeOyXacWKFWo/L126FC0tLXx9fYH8ofw2NjZqAcuYmBh2794N5PewBGjVqhXx8fHs2bNHrbzly5dz4MABKlWq9MQh6iWxYMEC3n77bbXh+VZWVlhaWqo+F2+88QaQPxep8pEH9UuXLvHBBx+wfPly1bYlS5bw119/MX78eEaPHo2joyOTJk0iqSAIJV5d5oaGpGVlEXb5MmmP9AKLf5jCwStXqW9rg5mBAdUqVaKSoQEHr1wl65G/BVk5ORy+dg1jPT2qVapU4vKEeN2Ym5mRlp5O2LFjpBUE+QHiExI4cPIk9evUoZKJiWp7Tk4OkTExOBTMoSyE+IeeuQk5GVnEnLpCXsGzE+QHIuMv3sbUwQotXW00dbSpXNeOhMuRpN5N/CddwkPuXwrHvG51FBoaGFiaoWOiT+zZa+Rm/3MPy83O4e65G2gZ6mJQ1exlNlGIl8LWvjq16jup/WdXuyYA5lUqU6u+E9o62ujo6eLs7sLV838RF/XPtFyJ9+5z+dxFnN1d0NDQwKSSGRnp6fxx6Lhq8R6ApPuJnD1yEgfn2hibmhSphxDi1SY9LQV79+6lUqVKQH6vxZs3b7Jp0yYyMzNZtGhRscN3C4OZv//+O+np6bi7u5OUlMTKlSuxsLCgw2M9PebNm0dUVBS1a9dmx44dnDt3jm+//RZ9fX309fVp2LAhISEhGBkZ4eDgwLVr11i/fr0qyJWamvrEeQxNTU1LnL+wnVu2bEGpVNK9e3fee+89du/ezfDhwwkICKB27dqcOXOGzZs306pVK1o9YVXVl23jxo2kpKTQqFEjDh8+zP79+xk+fLiq12KrVq0IDQ1lwoQJuLq6EhkZybp160gvuKmnpqYC+fNIBgcHM3bsWPr374+DgwMHDhzg6NGjTJ06FU1NTczMzNDQ0GDfvn3Y2NjQtm3bEs8j2b9/fzZv3kz//v3p06cPpqamnDhxglOnTjFq1CgA6tSpQ2BgICtWrCApKQk/Pz/V58fQ0JDRo0cDcOPGDebMmUOLFi3o1KkTAP/73/8YOHAg3377LT/88EOZnmPxYt1NTuZq7F3qWFWlakEAZXDz5vy4ew//27QF37rOpGdnsfvi32hqKHi7eX7vZw0NDd5u3oyf9+zl602bae3kRJ4yjwOXrxKdlMSHb7RGqyDQXpLyhHjV3Y2P58rNmzjVrEnVgrmSh/TuzYxFi/j6p59o06wZ6RkZ7Dp0CE0NDd7p1Ustf3xiIjm5uVgU3BOF+C9LT3hI8p04TGpYom9ujIamBo6dm3J1/WHO/7oDS3dHctIyiT5xGTQU+auEF3Bo78mDW7FcWLILm2Z10dDQJOr432hoa2Lf1gMAhYYGjl2acun3/fw5fztWHrVRKpXcPXON9HsPcOrVEo3nWJVZiIomIS6e8Ou3sKvlgLmlxbMzPKJdrze5ffk6QdPn4u3fCg1NLY7vPYi2jjb+PTqp0nUe0IvVc5bw67ez8PTxJisjkxP7DqOhqUnnAT3LuklCiApAgpaCadOmqf6tra1N1apV8fX15d1338XBweGJ+SZPnkz16tXZvn0727dvR19fH29vb8aOHVtk8Z4lS5YwceJENm7cSK1atZgzZ47a8N5Zs2Yxbdo0goODycrKwtbWlmHDhuHo6MjIkSM5ceIE7dq1e7wKpc7v6OhIYGAgISEhXLhwgSZNmmBnZ8fatWv55Zdf2LlzJ2vXrsXGxoYPP/yQYcOGVZgV6ObMmcPcuXPZvXs31atXZ/LkyfTu3Vu1f+LEiRgYGBAWFsbmzZuxsrKiW7du+Pv707dvX06cOEG9evXQ09NjxYoV/Pzzz2zfvp2HDx/i6OjIzz//rAo26+vrM3bsWJYsWcKUKVOws7OjSZMmT6qaGicnJ5YuXcrcuXMJCgoiJSUFe3t7vv76a/r3769K9+WXX1KzZk3WrFnD999/j7GxMZ6enqrelHl5eXz55ZcoFAq11cKbNGlC165d2bx5M506dXrinKui4rkcE8uCAwd5v7WPKmjp5WDPx+382XTuT1afPIW2lib1rK0JaNwY20pmqryNHRz4slMngs+cYc2p0wA4WFTms/btcbP7Z9XVkpYnxKvs0o0bzF+5kg8GDFAFLb0aNODTd99l4+7drNq8GR1tberVrk2/N9/EtmpVtfwpBS+xZGi4EJB8+y5XNxyhzlst0DfPn0KkqrsjGloaRBy8wM3tp9HU0cLM0Zoa/o0wqPLPS1y9SkY0fL8Tt3f+QeThi6AEU/uqOLT3VJUF+Yv1uL7TjvCwP7m95wwARjaVqT/ID/M60uNZvB5uX73JxqDf6f5Ov1IHLStZmDPsyzHs3rCVIzv3o1QqqVGnJu16valWVr1GrvQbOYSD2/awe/1WtHW0sXeqRdu3OlPFuupTjiCEeFUplEqZREW8OOPGjWPjxo3FzqEoSmb27NnMmTOHffv2UU2G8pWJxNnPnutUCPFsmj5vlHcVhHhtDLu/s7yrIMRrYaijX3lXQYjXgp9do2cnesXsDT9b3lV4otfxfJeFitGFTAghhBBCCCGEEEIIIQrI8HAhSiAhIUG1kM3T6OnpYfwark6clJREdnb2M9Npa2tjZmb24iskhBBCCCGEEEKI15oELYUogbfeeouoqKhnpuvevTvffffdS6jRyzVy5EjVSuxP07hx4yKrnAshhBBCCCGEEEKUlsxpKUQJnDlzhszMzGems7S0pFatWi+hRi/XxYsXSU5OfmY6ExMTXFxcXkKN/h2Z01KIsiFzWgpRdmROSyHKhsxpKUTZeB3nWJQ5LV890tNSiBLw8PAo7yqUq1chECmEEEIIIYQQQojXhyzEI4QQQgghhBBCCCGEqFAkaCmEEEIIIYQQQgghhKhQJGgphBBCCCGEEEIIIYSoUCRoKYQQQgghhBBCCCGEqFAkaCmEEEIIIYQQQgghhKhQJGgphBBCCCGEEEIIIYSoUCRoKYQQQgghhBBCCCGEqFAkaCmEEEIIIYQQQgghhKhQJGgphBBCCCGEEEIIIYSoUCRoKYQQQgghhBBCCCGEqFAkaCmEEEIIIYQQQgghhKhQtMq7AkII8bJ94JJZ3lUQ4rXwa3lXQIjXyFBHv/KughCvhcU39pZ3FYR4LfjZNSrvKgghPS2FEEIIIYQQQgghhBAViwQthRBCCCGEEEIIIYQQFYoELYUQQgghhBBCCCGEEBWKBC2FEEIIIYQQQgghhBAVigQthRBCCCGEEEIIIYQQFYoELYUQQgghhBBCCCGEEBWKBC2FEEIIIYQQQgghhBAVigQthRBCCCGEEEIIIYQQFYoELYUQQgghhBBCCCGEEBWKBC2FEEIIIYQQQgghhBAVigQthRBCCCGEEEIIIYQQFYoELYUQQgghhBBCCCGEEBWKVnlXQLxY48aNY+PGjWrbtLW1qVy5Mo0bN2bYsGHUrl1btS8wMJCoqCjCwsJedlXLVFZWFomJiVStWvWFHcPX1xfglT5XeXl5REdHU61atfKuinjNXNt4jPT4BzR4t8Mz056bt5WUyPtFtld2qUG9fm+ofk66EcOdvedIiUlAS08bCxd77Ns2QlNH+7nKE+JV8Ovq1UTHxTFx9Ohnpr184wart27lRng4RgYGeDZoQO+OHTExMnqu8v+8dImQnTu5GRGBhoYGte3tCejcmdr29v+mSUKUm03L1nL/bhxDPh/5zLSpyQ/ZE7ydy39eJDs7G5sa1Wj7VheqO9o/V/kLvvmRqNvhRbbX82hA3+HvlKodQpS38njOy0hM4fQPG556LNeh7TCraV3K1gghKjIJWv5HjB8/nkqVKgGQnp5OeHg4wcHB7Nq1i0WLFtGkSRMA3n//fdLT08uzqv9aVFQU77zzDu+99x49evQo7+pUWCkpKbz99tv4+PgwcuSzH96FKKnYP64Se/oqpg7PfmmgVCpJi3tA5Xp2VK5fQ22fnpmh6t9JN2K4ELQLI9vKOLT3IPNBGtHH/iYl6j4NhnVAoVCUqjwhXgVhx4+z79gx6taq9cy0f127xtS5czHQ16d727ZoaGgQun8/f129yuSPPsLIwKBU5f997RrfzZ9PNSsr+nbpQm5uLrsOH2bizz8zacwYakngUrxizhw+wZlDx7F3cnxm2syMDBZ/P5uHSck08/dBz9CAk/sOEzR9Lu9//RFVqxUNijytfKVSSVxMLM7urtT3aKC2z8zC/PkbJUQ5KK/nPG1DXer0alnkGHk5OdzYehJtQz0MreV6EuJ1I0HL/wg/P78ivekCAwPp2bMnY8aMYe/evRgaGtK8efNyqmHZiYyM5Pbt2+VdjQovKSmJCxcu4OPjU95VEa8JZV4eEQfOc2ffnyXOk5mYQl5WDpXr2VHV/clfJG/uOI2umSEN3u2Apnb+rUvX1JAbW06QeC0K8zrVSlWeEBVZXl4eIbt2sWHHjhLnWbp+PQoNDSZ/9BFWVaoA0LhhQz6bNo2Nu3YR2L17qcpfHhJCZTMzvv3kE3R1dABo1bgxH337LWu2beOrESOes3VCvFx5eXkc3LaHsM07S5znUOg+4mPv8c5nw3Fwyg/quzZ258fPJnN4xz7eendAqcpPik8gOzOLuu6uuDXzev7GCFGOyvs5T1NHu9gybmw7iTI3D+ferdDW1y11u4QQFZvMafkfZm1tzeeff05CQgLBwcHlXR0hxCssNzuHs3O2cmfvn1i6OaJjWrRXV3FS45IA0LcwfWrZOkZ6WHnVUT3IAqo3/KkxCaUqT4iKLCs7m8+//571oaG09PLC3MzsmXnu3b9PREwMPo0bqwKWALZVq9LI1ZWDp06VqvyUtDTuREXR1N1dFbAEMDMxoW6tWly5detftVGIlyU7K5t5E2cQtmkHbt6eGFd69r1BqVRy7ugp6jSoqwpYAhibmtC+T1dq1KlZ6vLjomMBqGJt+S9bJET5qCjPeUXKj00g+vglqnrUxtTBqkR1EkK8WiRo+R/Xvn17dHR0OHz4MJDf+7JwrkbInxvy22+/pU2bNri4uODj48OkSZN48OCBKs24cePw9/fn3Llz9OjRgwYNGtC+fXtWr15d5HjHjx9n6NChNGnShPr169OyZUsmTJhAcnKyWnnt27dn1apVeHl54eXlxaFDh0qUPyQkhIEDBwL5Q+KdnJxU5T548IDJkyfTsmVLXFxc6NChA8uXL0epVJbJuQwJCcHJyYnLly8zatQo3N3dadq0Kd9//z25ubls3LiRdu3a4ebmRkBAAJcvX1blnT17NvXq1ePmzZsEBgbSsGFDfH19mTdvHrm5uWrH+euvvxg5ciTNmjWjfv36eHt78/HHHxMbG6uWLiUlhalTp9K6dWsaNmxIly5dWL9+PQAnT56kTZs2AMyZMwcnJyciIyNL3NaTJ0/i5OTExo0b6dKlC66urowfPx6Ae/fuMWnSJNVnxsPDg4EDB3LmzBm1MpRKJb/99hudO3emQYMG+Pr6MmPGDLXpCfLy8ggKCqJ9+/a4uLjQsmVLpkyZQkpKSonrKl4OZU4euZlZOPf1walXSxQaihLlS7ubCICBZf7DbG5WdpE0mtpauLzdFrvWDdW2Fz7E6pr9M19fScoToiLLzs4mLSODMYMHMzwwEA2NZz+qJRTck6tbFx2yamVhwcOUFO4nJpa4fAM9PX766is6PfI8UOhhSgqaJaiTEBVBTk4OmekZ9PlgED2H9kdTQ/OZeZLiE3iY+IBa9Z2B/OeVrIxMAJr4tsDLp1mpy78bGQNAFZv8IExheUK8KirKc97jbu85i4a2FjX83EtUHyHEq0eGh//H6erqYmdnpxZAe9Q333zDtm3bGDhwINWrV+fatWusWrWKO3fuEBQUpEqXlJTE0KFD8fHxoUePHuzevZuJEyeSnJzMe++9B8CRI0d49913adSoEaNGjUKhUHD06FHWrl3LgwcPmDVrlqq8mJgY5s+fz4gRI4iLi8PNza1E+b28vHj//fdZsGABffr0wcPDA4C0tDQGDBhATEwM/fr1w8rKihMnTjB16lRu377N//73vzI7p8OGDcPDw4Nx48axe/dugoKCuHr1KleuXGHQoEEolUrmz5/PqFGjCA0NRUsr/zJUKpUMHjyY2rVr8+mnn3Ly5ElmzZpFbGws33zzDQBXrlyhX79+1KhRg2HDhqGvr8/Zs2fZvHkzd+7cYcOG/Mmps7Ky6N+/P9euXaN37944Oztz8OBBvvrqK9LT0+nYsSPjx49n2rRp+Pv74+/vj7l56eeA+eabb+jRowe9evXCxsaGjIwM+vfvz8OHD+nfvz9Vq1bl9u3brF69mqFDh7J3714qV64MwKRJk1i9ejVvvPEGffv25datWwQFBXH79m3mzJkDwJdffsnmzZvp1q0bb7/9Njdu3GD16tWcPXuW1atXo6srQ0AqCk09bTw/6omGZumCGWlxSWjqanEz9DT3zt8iLysHPXMjavg3wrJhzWLzZCSm8OBWLDdDT2NQ1YzK9ez+VXlCVCQG+vr8MmECmprPDq4U0inoDZmeWTQQ8rDgJU9ScjKVK1UqUfkaGhpYWxbtEXYnKoqrt27RsG7dEtdNiPKkp6/HmO++LNX1dP/uPQAMjY3YuXYzfxw6TmZ6BuaWFnQI6Iazm0upy4+LjkVHT5cdazZx4dQ5sjOzqFSlMn49OtGgSaPna5wQL1FFec57VGpsAgmXIrFtWR9dk5L1/BRCvHokaCkwMTEhPLzoaoYAW7dupWfPnnz00UeqbQYGBhw+fJjU1FQMDfMnUE5OTmbgwIF8+eWXAPTt25dBgwYxb948AgICMDU1ZdmyZVhbW7N06VLVF6x+/frRp08fVU/PQhkZGUybNo2OHTuqtpUkf/Xq1WnWrBkLFizAzc2Nrl27ArBkyRJu3bpFcHCwqvdlv379+PHHH1m4cCF9+vTB2dn5X59LADc3N3766ScAOnbsiLe3N8eOHWPLli2qldpTU1NZsGABkZGR2BcsZpCXl4eLiwtz5sxBoVAwYMAAPvnkE9atW8egQYNwdHTk999/R6FQ8Ntvv2FWMKSvT58+ZGdns337dpKSkjAzM2PDhg1cvnyZGTNm0KVLF1W6AQMG8OuvvzJgwAD8/PyYNm0aTk5OqvNUWh4eHnz99deqn0NDQ7lz5w6LFy+mZct/JsquXr06//vf/zhz5gxt27bl+vXrrFmzht69ezN58mRVOkNDQxYsWMD169e5f/8+ISEhTJo0iYCAAFUaHx8fhgwZwpo1axg0aNBz1VuUPYVCgUKzZG/dH5V6N4nczBxyMrJw6tWSnIwsoo/9zZW1h1DmKYvMXZSdlqlaOVJDRxPHLk3UhhKVtjwhKhqFQlGqAAtAdSsr9PX0OPV//0c3f3/VwlRZ2dmcL3gpmZWd/dzlA2RkZjJ3xQoAuvr5lTq/EOXheT7vGQUjPvZtDEVTU5OOfXugoaHgyM79rJq9hEEfvU+t+k6lKv9uVAxZGZlkpKXz1tABZKSnc3zPQdYv/I283FyZ51JUeBXlOe9R0SevgIYCm6byIk2I15mM7xHk5OSovuA8zsrKitDQUEJCQlRDsMeMGUNwcLAqYFmosEclgKamJgMHDiQjI4Njx44BsHDhQoKDg1UBR4DExESMjIxIS0srcmxPT0+1n0ub/1G7d++mTp06VKlShYSEBNV/fgVfvPbv3//U/KXh98iXOWNjY8zNzbG3t1cFLAHVokj37t1Tyzts2DC138XgwYNRKpWq+k2cOJGwsDBVwBLyh4EX9jgsPA8HDhzA3Nyczp07q9IpFAqmT5/OqlWrnvj7Li0vL/WH7I4dO3L8+HFatGih2paVlaX696P1UyqVBAYGquUfMmQIW7Zswc7Ojt27d6NQKPDx8VH7ndWrV48qVapw4MCBMmmDKF/WXnVwfLMJ9fq9gUX9Glh51Kbh+53QMzfi1o7TKPPy1DMowDnAhzq9WmJgacaFoN3EX7z9/OUJ8RrQ0tKis68vN8PD+WX5cu5ERXErMpKfliwho+Bv8PMEKgtlZmUx/ddfuRMVRVd/f+o9cj8T4nWTk50DQEZaOu9+MZpGLRrj1syLIeNGom+gz97g7aUu08unGZ3796Tv8Heo59GARi2aMOzLsVSqUpmd67aQJ/cm8Zoq6+e8QrnZOcSdu0HlutXRq/Tk4eNCiFef9LQUJCUlPXFo8MSJExkzZgzjx4/n66+/xs3NDX9/f3r27ImxsbEqnZmZGRYWFmp5a9SoAUBUVBSQ/4UpIiKCWbNmcf36dcLDw7l79+4T61U4jLhQafM/Kjw8nIyMDLy9vYvdHxMTU6JySuLx86ClpVVsW4AiD6mOjupvGx8/hwqFgsTERBYuXMiVK1cIDw8nOjpaNS9nYXlRUVHY2dkVCU7a2tr+m6YVUdznRqFQ8Ouvv3Lu3DnCw8MJDw8nu6CHz6P1A1S9TAuZmJhgYmIC5P/OlEolrVu3LvbYjwfNxavJuknRHs6a2lpYujsSvu//SItLwtDqn8+Ztr4uVRo4AGDhUoOzszZxY/spLFzsn6s8IV4XPdu3JzU9nR0HDnCsYA5hDxcX3vTzY/WWLRgZPN/QudS0NL5buJCrN2/yRtOmBDzyMkyI15F2wcvxeh4N0Tf857rRN9DH2c2Fc8dOk5WRiY5eyaeoafxG82KOo42btyf7t+wiLioWq+o2/77yQlQwZf2cV+jBzVjysnKKbBdCvH4kaPkfl5KSQkRExBMDQ97e3uzfv1/139GjR5k2bRrLli0jJCREFbTS1tYukrcwQFUYoFuyZAnTp0/HwcEBT09P2rZtS8OGDVmxYgVbt24tkv/xXiGlzf+o3NxcPDw8GDFiRLH7LYuZu+t5FdebpaQ9Gx8/j4+fw9DQUD755BMsLS1p2rQprVq1wsXFhSNHjrBw4UJVvtzc3DLrTfk0j7f15s2b9O3bl+zsbFq0aEHHjh2pW7cuSqWS4cOHq9XvWfLy8jA0NFTNb/k4mc/y9aZtqA9AblbOE9Noamth7lyd6GOXyE7NQNtQ71+VJ8SrTKFQMKhHD7r6+RF77x6VzcyoUrkya7ZuRUNDA4vnmLf4wcOHTJ03j9uRkfg1b87QPn1eyr1FiPJkUrACuKFx0d5bhiZGoFSSmVm6oOWTGJrkdwDIKmY+WiFeZ//2OS/hSiQKLQ3Mnaq98LoKIcqXBC3/43bu3IlSqVStJP2orKwsLl26hJWVFZ06daJTp07k5eWxdOlSpk+fzvbt21XDe+Pj49XmuAS4ffs2kN9bMDMzk9mzZ9OkSROCgoJUi88AagvwPMm/zW9ra0tqairNmjVT2/7gwQOOHz+u6tFY3iIiIqhVq5bq50fPIcDMmTOpUaMGwcHBGDzSa+bxoK2NjQ1XrlwpUv7BgwcJDQ3l008/fQG1h0WLFpGcnMyOHTvUelEWVz/Ib++jvUvv3r3LtGnTGDBgALa2thw5cgQXFxdV78tCO3fuxM6u+Em5xasj80EqF5buxrKBA3a+bmr70uPzV0PWq2RE2r0kLi7bQ7WWrtg0VX9jn5uZDQpQaGmWuDwhXkdHz5zBzMSE+rVrY/bI38y/r1+nZvXq6BTzcvFp0jMyVAHLjm+8waAePcq6ykJUSFVtrdHU0iIuOrbIvsT4BLS0tYsNaD5JcmISy2bMx7VJI954s53avvjYOAAqValcXFYhXmll/Zz3qOTwOIxtLdDS00EI8XqTOS3/w+Li4vjll1+oWrWqarGWRyUmJtKnTx+1HnwaGhq4urqq/l1IqVSyatUq1c85OTksX74cY2NjvL29ycjIID09HXt7e7WA46VLlzh16pQqz5OUJn9xQ699fX25fPkyBw8eVCt3/vz5jB49mmvXrj3x2C/TioJFDgotXboULS0tfH19gfyh/DY2NmoBy5iYGHbv3g3804OxVatWxMfHs2fPHrXyli9fzoEDB6hUqdITh6j/G0lJSejr66uCkpAf/F6zZo1a/Xx8fABYvXq1Wv6QkBB27NiBkZGRqs3z589XSxMWFsbo0aOf2btWVHy6pobkZmQRc/oqORn/zH2akZTC3TPXMHW0QsfYAD1zE3Iysog5dYW8R3rpZiSmEH/xNqYOVmjpape4PCFeR9vDwghav16tJ/uZixe5cvMmbR9ZGK2klqxbx+3ISDq0bi0BS/GfoqOni7O7C1fP/0Vc1D/TByXeu8/lcxdxdndRewZ+FpNKZmSkp/PHoeOqRX4Aku4ncvbISRyca2NsavKUEoR4NZX1c16hvNxc0u4mYWgj0/0I8V8gPS3/I/bu3UulSpWA/F6LN2/eZNOmTWRmZrJo0SL09IoOqywMZv7++++kp6fj7u5OUlISK1euxMLCgg4dOqilnzdvHlFRUdSuXZsdO3Zw7tw5vv32W/T19dHX16dhw4aEhIRgZGSEg4MD165dY/369aoHv9TUVExNTYutv6mpaYnzF7Zzy5YtKJVKunfvznvvvcfu3bsZPnw4AQEB1K5dmzNnzrB582ZatWpFq1atyuxc/xsbN24kJSWFRo0acfjwYfbv38/w4cNVc1G2atWK0NBQJkyYgKurK5GRkaxbt470gofg1NRUAAICAggODmbs2LH0798fBwcHDhw4wNGjR5k6dSqampqYmZmhoaHBvn37sLGxoW3btk88/yXVqlUrwsLCeO+992jfvj0PHz5k06ZNqtXpC+tXt25devXqxYoVK4iLi8Pb21u1oni3bt1wdnbGycmJNm3aEBQURFRUFN7e3kRFRbFq1SpsbGwYMmTIv6qrePnSEx6SfCcOkxqW6JvnD4lzfLMpl1bu5/8WhmLlWYfcrGyij19CoaFBrS5NAdDQ1MCxc1Ourj/M+V93YOnuSE5aJtEnLoOGAsfOTVTHKEl5Qrzq7sbHc+XmTZxq1qRqwTzKXf39+XHJEr5fuJDGDRtyLyGBbWFhNKxbl5ZepVuZODI2lsOnT2Ogr499tWocKng5+KhWjRuXSVuEKG8JcfGEX7+FXS0HzC3zr6d2vd7k9uXrBE2fi7d/KzQ0tTi+9yDaOtr49+hU6mN0HtCL1XOW8Ou3s/D08SYrI5MT+w6joalJ5wE9y7pJQpSLl/GcB5CZlIoyNw89Uxk9I8R/gQQt/yOmTZum+re2tjZVq1bF19eXd999FwcHhyfmmzx5MtWrV2f79u1s374dfX19vL29GTt2bJFFWJYsWcLEiRPZuHEjtWrVYs6cOfj7+6v2z5o1i2nTphEcHExWVha2trYMGzYMR0dHRo4cyYkTJ2jXrt3jVSh1fkdHRwIDAwkJCeHChQs0adIEOzs71q5dyy+//MLOnTtZu3YtNjY2fPjhhwwbNqxUb8xfpDlz5jB37lx2795N9erVmTx5Mr1791btnzhxIgYGBoSFhbF582asrKzo1q0b/v7+9O3blxMnTlCvXj309PRYsWIFP//8M9u3b+fhw4c4Ojry888/q4LN+vr6jB07liVLljBlyhTs7Oxo0qTJk6pWIgEBASQnJ7N+/XqmTJmChYUFbm5uzJkzh4CAAE6cOMHbb78NwDfffIO9vT3r168nLCwMGxsbhg8fztChQ4H8+dlmzZrF4sWL2bRpE2FhYZibm9O2bVtGjx5dZMEjUfEl377L1Q1HqPNWC9XDrEW9GtQL9CX8wHlu7foDDW1NzByssW/XCIMqZqq8Vd0d0dDSIOLgBW5uP42mjhZmjtbU8G+EQZV/gu0lLU+IV9mlGzeYv3IlHwwYoApaNnFzY9Tbb7N5zx6Wh4RgamzMm23a0K1t21Lf4y5dvw5AWno681euLDaNBC3F6+L21ZtsDPqd7u/0UwUtK1mYM+zLMezesJUjO/ejVCqpUacm7Xq9qUpTGvUaudJv5BAObtvD7vVb0dbRxt6pFm3f6kwV66pl3SQhysXLeM4DyEnLnwNWU690054IIV5NCmXhssNCPKdx48axcePGYudQFCUze/Zs5syZw759+6hWTSaUftEC9k8v7yoI8Vr4tXL78q6CEK+NU2ayUJgQZWHxjb3lXQUhXgtr3visvKtQ5vaGny3vKjyRn12j8q5ChVQxupcJIYQQQgghhBBCCCFEARkeLkSBhIQEtQUMnkRPTw9jY+OXUKOXKykpiezs7Gem09bWxszM7MVXSAghhBBCCCGEEP9ZErQUosBbb71FVFTUM9N1796d77777iXU6OUaOXKkaiX2p2ncuHGRVc6FEEIIIYQQQgghypLMaSlEgTNnzpCZmfnMdJaWltSqVesl1OjlunjxIsnJyc9MZ2JigouLy0uo0Ysjc1oKUTZkTkshyo7MaSlE2ZA5LYUoGzKn5cslc1oWT3paClHAw8OjvKtQrl71QKQQQgghhBBCCCFeH7IQjxBCCCGEEEIIIYQQokKRoKUQQgghhBBCCCGEEKJCkaClEEIIIYQQQgghhBCiQpGgpRBCCCGEEEIIIYQQokKRoKUQQgghhBBCCCGEEKJCkaClEEIIIYQQQgghhBCiQpGgpRBCCCGEEEIIIYQQokKRoKUQQgghhBBCCCGEEKJCkaClEEIIIYQQQgghhBCiQpGgpRBCCCGEEEIIIYQQokKRoKUQQgghhBBCCCGEEKJC0SrvCgghxMs21NGvvKsgxGshd/P+8q6CEK+Nxj5vlHcVhHgtLC7vCgghhCgz0tNSCCGEEEIIIYQQQghRoUjQUgghhBBCCCGEEEIIUaFI0FIIIYQQQgghhBBCCFGhSNBSCCGEEEIIIYQQQghRoUjQUgghhBBCCCGEEEIIUaFI0FIIIYQQQgghhBBCCFGhSNBSCCGEEEIIIYQQQghRoUjQUgghhBBCCCGEEEIIUaFI0FIIIYQQQgghhBBCCFGhSNBSCCGEEEIIIYQQQghRoUjQUgghhBBCCCGEEEIIUaFI0FIIIYQQQgghhBBCCFGhaJV3BV5148aNY+PGjWrbtLW1qVy5Mo0bN2bYsGHUrl1btS8wMJCoqCjCwsJedlXLVFZWFomJiVStWvWFHcPX1xfglT5XeXl5REdHU61atfKuSomtXbuWoKAg4uLicHFx4euvv6ZOnTrlXS3xitm0bC3378Yx5PORz0ybmvyQPcHbufznRbKzs7GpUY22b3WhuqO9WrprFy5xYNseom9HoNBQUL2mPX49OhZJF3U7gj0bthJ+/TYKDQX2To506NMNCyvLMmyhEC/HokOHiUlKYsKbXZ6Z9nJMLGtPn+bGvXsY6eriWaMGb3l6YqKvp5YuLvkhK0+c4O/oaADc7ewI9G6Kib6+Wrr/i4hg49lz3IyPR0OhoLalJb29PKn9Au/9QrxIv65eTXRcHBNHj35m2gcPH7Jm61b+uHCBrJwcHKpVo3/XrtS2t39injtRUXzxww90a9uWXh07qu374ocfuBEeXiRPYzc3Ph4ypNRtEaI8Xdt4jPT4BzR4t8Mz056bt5WUyPtFtld2qUG9fm+ofn5w+y63d58lJSoeLX0dKte1o4afO9qG+fewjMQUTv+w4anHch3aDrOa1qVsjRCiIpOgZRkZP348lSpVAiA9PZ3w8HCCg4PZtWsXixYtokmTJgC8//77pKenl2dV/7WoqCjeeecd3nvvPXr06FHe1amwUlJSePvtt/Hx8WHkyGcHbiqCkJAQJkyYQM+ePalXrx6LFy9myJAh7NixAyMjo/KunnhFnDl8gjOHjmPv5PjMtJkZGSz+fjYPk5Jp5u+DnqEBJ/cdJmj6XN7/+iOqVst/8Lx15Tq//fwrljZW+PfsRG5uHqfCjrDk+9kMHTeKajVrABAfG8eS72ejo6ND6y5tATi2+wCLps5i+DefYWJm+uIaLkQZ23/5CmGXLlPX2uqZaf+OjmZa6A4MdHTo5u6GhkKDHRcu8Fd0NJO6dcVIVxeAhxkZTN62jdy8PLo0bEieUsm28+eJSEhgSvduaGlqFpQXw/c7dlKtUiUCvLzIVeax+6+/+WbrNv73ZhdqWcpLAPFqCTt+nH3HjlG3Vq1npk3PyGDirFkkPnhApzfewNDAgJ2HDjHpl1+Y+skn2NnYFMmTm5vLvJUrycnNLbJPqVQSefcung0a0KRhQ7V9VczNn79RQpSD2D+uEnv6KqYOz36BpVQqSYt7QOV6dlSuX0Ntn56ZoerfSTdjuLh0D1r6OlRv3QCFQkHUsb9JuhlLw/c7oq2vi7ahLnV6tSxyjLycHG5sPYm2oR6G1nI9CfG6kaBlGfHz8yvSmy4wMJCePXsyZswY9u7di6GhIc2bNy+nGpadyMhIbt++Xd7VqPCSkpK4cOECPj4+5V2VElu3bh21atVi6tSpAJibmzN27Fj++OMPWrduXb6VExVeXl4eB7ftIWzzzhLnORS6j/jYe7zz2XAcnPK/SLo2dufHzyZzeMc+3np3AAChqzdiWsmM974ai46uDgDuzbyY9dU09oZs5+1PPgTyA5TZmVm8O34U1nb5f5Nr1qvDwsk/cmzXAdr36VqWTRbihcjLy2PjuT8JPnOmxHmWHT2GQqFgUtc3sTLND8572dszLjiYTWfPMcC7KQCh5y+QkJLK9716Uq3gZWstyypM3b6Dg1ev0qZuXQB+O34cc0NDJnfrhq52/uNiq9q1+Xjdetae/oMvO3UsphZCVDx5eXmE7NrFhh07Spxn8549xMTFMWHkSOoVjJjybtSIkRMnsmXvXkYMHFgkz8bdu4mMiSm2vHsJCWRmZuLVoAGtGjd+voYIUc6UeXlEHDjPnX1/ljhPZmIKeVk5VK5nR1X3J7/MvrH1JAoNBQ3f64h+ZRMAKte34+wvW4g4cJ6aHbzQ1NEutowb206izM3DuXcrtPV1S90uIUTFJnNavkDW1tZ8/vnnJCQkEBwcXN7VEeKZMjIySEhIUPUGzsjIAPKnPBDiabKzspk3cQZhm3bg5u2JcaVn92hUKpWcO3qKOg3qqgKWAMamJrTv05UadWoCkJ6aRmxENC5ebqqAJYCRqTH2dRwJv35btS3h3n0MjAxVAUuAag526BsacDeq+C+TQlQkWTk5jA/ZyIY/ztCidm3MDQ2emefew4dEJCTSqnZtVcASwLaSGY3s7Dh09Zpq27EbN6hnY60KWAK4VquGtZkpx2/cBCAlM5Pw+/dpWrOmKmAJYGpgQF1ra67G3i2LpgrxwmVlZ/P599+zPjSUll5emJuZPTOPUqnk4KlTuNerpwpYAlQyMWFg9+44OxYNmtyJimLjrl30aN++2DIjCoKZtjK1gnhF5WbncHbOVu7s/RNLN0d0TJ99bwJIjUsCQN/iyc+FGYkppN1NwtLdURWwBDCoYoZ53ercPXv9yeXHJhB9/BJVPWpj6vDsUQlCiFePBC1fsPbt26Ojo8Phw4eB/N6XhXM1Qv7ckN9++y1t2rTBxcUFHx8fJk2axIMHD1Rpxo0bh7+/P+fOnaNHjx40aNCA9u3bs3r16iLHO378OEOHDqVJkybUr1+fli1bMmHCBJKTk9XKa9++PatWrcLLywsvLy8OHTpUovwhISEMLHi7PH78eJycnFTlPnjwgMmTJ9OyZUtcXFzo0KEDy5cvR6lUlsm5DAkJwcnJicuXLzNq1Cjc3d1p2rQp33//Pbm5uWzcuJF27drh5uZGQEAAly9fVuWdPXs29erV4+bNmwQGBtKwYUN8fX2ZN28euY8N4/nrr78YOXIkzZo1o379+nh7e/Pxxx8TGxurli4lJYWpU6fSunVrGjZsSJcuXVi/fj0AJ0+epE2bNgDMmTMHJycnIiMjS9XeU6dO0b9/fzw9PXF3dycgIKDY+T1DQkLo1q0brq6uNG3alHHjxhEXF6faP2PGDJycnFi1apVqW1ZWFl26dKFJkybcvfvPl88OHTqQkJDAtGnTOH/+PDNnzqRmzZqq6Q0KRUZG4uTkxLJly+jbty8uLi68/fbbqvMyc+ZM2rdvj6urK+7u7vTu3Zt9+/YVqfvmzZvp2bMnbm5utGrVigkTJpCQkFCq9omKIScnh8z0DPp8MIieQ/ujqaH5zDxJ8Qk8THxArfrOQP4XxayMTACa+LbAy6cZALr6eoye+gXN2rUuUkZaSioamv/cyipXrUJaahqpyQ/V0mSkZ2BsalIkvxAVTXZuLmlZWYz2a8OHb7RGQ+PZj2oJqakAVC9mmGlVUxMeZmRwPyWFlMxM4pIf4lDFokg6ewsLbsXHA2Cgrc3MPr3p1MC1SLqHGRloaihK2Sohykd2djZpGRmMGTyY4YGBJbqe7iUkkJCURAPnf+5NGZn596a2LVvi99ioqdzcXBb8/jsNnJ1p5eVVbJmPBy0LyxPiVaHMySM3Mwvnvj449WqJooT3gbS7iQAYWOYHLXOzsoukyUrOv4cZVq1UZJ++uTE5qZlkPkgttvzbe86ioa1FDT/3EtVHCPHqkeHhL5iuri52dnZqAbRHffPNN2zbto2BAwdSvXp1rl27xqpVq7hz5w5BQUGqdElJSQwdOhQfHx969OjB7t27mThxIsnJybz33nsAHDlyhHfffZdGjRoxatQoFAoFR48eZe3atTx48IBZs2apyouJiWH+/PmMGDGCuLg43NzcSpTfy8uL999/nwULFtCnTx88PDwASEtLY8CAAcTExNCvXz+srKw4ceIEU6dO5fbt2/zvf/8rs3M6bNgwPDw8GDduHLt37yYoKIirV69y5coVBg0ahFKpZP78+YwaNYrQ0FC0tPI/5kqlksGDB1O7dm0+/fRTTp48yaxZs4iNjeWbb74B4MqVK/Tr148aNWowbNgw9PX1OXv2LJs3b+bOnTts2JA/+XNWVhb9+/fn2rVr9O7dG2dnZw4ePMhXX31Feno6HTt2ZPz48UybNg1/f3/8/f0xL8WcRTdv3uS9996jbt26jB07Fsgfuv3hhx+ycuVKPD09gfyA6OzZs2nXrh29e/fm7t27rFy5klOnTrFhwwbMzc0ZOXIke/fu5eeff6Zdu3ZYWFgwd+5crl69yk8//aS2mNLgwYPZtWsXa9euZf369dSuXZv58+erzuHjZs2aha+vL126dEFXVxelUsl7773H33//zYABA7CzsyM2NpY1a9YwYsQINm3apAp0L1q0iBkzZuDh4cFHH33E/fv3Wb58OZcuXWL16tVoaWmVqH2iYtDT12PMd1+iqfnsYGWh+3fvAWBobMTOtZv549BxMtMzMLe0oENAN5zdXADQ0NDAomqVIvljI6IJv36L2i7Oqm0tO7Thyp9/sW7hCjoEdANg57rNaGpq4u3f6l+0UIiXw0BHh58D+qBZguBKId2Cv9Hp2UW/DD4s6DGflJaOjlYWAOYGhkXSVTIwIC0zi9TMTAx1dbE2LdorJvz+fa7evUuDV2hxOfHfZqCvzy8TJpTq3hRT8GLUxNiYFRs3su/YMdIzMqhapQqDunfHw1U9mL95715i4uL4ZOhQ8vLyii0zMiYGPT09fgsJ4di5c2RmZmJpYUFA5840L3iWFqIi09TTxvOjnmoviksiLS4JTV0tboae5t75W+Rl5aBnbkQN/0ZYNswfUaNR0KM/N7PoPSw7LT/An/UwHV1T9XtXamwCCZcisW1ZH12TkvX8FEK8eiRo+RKYmJgQXsxqgQBbt26lZ8+efPTRR6ptBgYGHD58mNTUVAwN8/84JycnM3DgQL788ksA+vbty6BBg5g3bx4BAQGYmpqybNkyrK2tWbp0KTo6+UMo+/XrR58+fVQ9PQtlZGQwbdo0Oj6ysmFJ8levXp1mzZqxYMEC3Nzc6No1f364JUuWcOvWLYKDg1VBqX79+vHjjz+ycOFC+vTpg7OzM2XBzc2Nn376CYCOHTvi7e3NsWPH2LJli2ql9tTUVBYsWEBkZCT2Bas85uXl4eLiwpw5c1AoFAwYMIBPPvmEdevWMWjQIBwdHfn9999RKBT89ttvmBUMIerTpw/Z2dls376dpKQkzMzM2LBhA5cvX2bGjBl06dJFlW7AgAH8+uuvDBgwAD8/P6ZNm4aTk5PqPJXUvn37SEtLY86cOarAXMeOHQkICODSpUt4enoSERHB3LlzGTZsGB9//LEqb6dOnejRowcLFizgiy++QFdXl6lTp9K/f3+mT5/OoEGDWLx4MZ06dVL7/QMcPXqUpKQkID/IO336dGxtbZ9YT2tra2bMmIFCkf+29f/+7//4448/mDRpEgEBAWq/s6FDh3Ls2DGcnJx48OABs2fPpmXLlixcuFD1ZaJatWp89dVXHD16lJo1a5aofaJiUCgUpfpSCJBRMA3Bvo2haGpq0rFvDzQ0FBzZuZ9Vs5cw6KP3qVXfqdi8WRmZBC9eCUDLjm1U280qV8Knsz/bVm1g7v+m59dNQ4OADwerDRkXoqJSKBRoKkrXk7FapUro62hz6tYturo1VP1NzsrJ4XxkVP6/c3PIVeYHVHSKeRGlU3D9ZuXkYKhbdE6wjOxs5u0/AMCbbm6lqp8Q5eV57k1pBfemtdu3o6WpydtvvYWGQsHWffv4YdEivvjwQ1UvzIiYGIJ37GBwr15UrlSJe/eLrpBcmC4jI4PUjAxGBAaSmp7OjgMH+GXZMnJzc2WeS1HhKRQKFJql72WfejeJ3MwccjKycOrVkpyMLKKP/c2VtYdQ5imp6u6IQVUzNPW0if/rDtV8XFX3sNzsHBKv5d/D8rJzipQdffIKaCiwaVr33zVOCFGhyfDwlyAnJ0f1x/dxVlZWhIaGEhISohqCPWbMGIKDg1UBy0KFPSoBNDU1GThwIBkZGRw7dgyAhQsXEhwcrAo4AiQmJmJkZERaWlqRYxf21itU2vyP2r17N3Xq1KFKlSokJCSo/vPz8wNg//79T81fGoVlAhgbG2Nubo69vb0qYAmoFkW6d++eWt5hw4ap/S4GDx6MUqlU1W/ixImEhYWpApaQP9xZt+ALXOF5OHDgAObm5nTu3FmVTqFQMH36dFatWvXE33dJWVnlz8kyefJkLl68CEClSpXYtWsXgYGBAOzZs4e8vDx8fX3VzrmFhQV169blwIEDqvIaNWpEYGAgW7ZsYdSoUZibmxfp/fr777/zwQcfUKlSJb744guUSiWffvopGRkZ3L17lzVr1hDz2ATznp6eam1t2LAhp0+fVltVPjc3V9XzILVgCOOxY8fIzMykf//+al8m3nzzTUJCQmjcuHGp2ideTTkFD6AZaem8+8VoGrVojFszL4aMG4m+gT57g7cXmy8rM4uVvywmNiKaVh3bqM2HuTcklC2/rcOulgNvDQuk59D+VHOwY92CZVz+8+JLaZcQL5uWpiadGrhy6148s8P2E37/Prfj4/l5z14yC3pfampoqKZrKe09KjM7hxm7dnPnfgJvujWkno11mbdBiIoiOyf/3pSWns43Y8fSukkTWjVuzMTRozE0MGDN1q1A/svw+StX4uToWGTI+OP8mjfnnV69+HjIEBo3bMgbTZsy5eOPsbSwYOWmTU/soSnEq87aqw6ObzahXr83sKhfAyuP2jR8vxN65kbc2nEaZV4eGpqa2DavT0rUfa6sPURqbAIp0fe5vPoAeVn516PisR6eudk5xJ27QeW61dGrZFQeTRNCvCTS0/IlSEpKeuIw1okTJzJmzBjGjx/P119/jZubG/7+/vTs2RNjY2NVOjMzMyws1OegqlGjBgBRUflvoDQ1NYmIiGDWrFlcv36d8PBwtfkKH1e5cmW1n0ub/1Hh4eFkZGTg7e1d7P7Hg13/xuPnQUtLq9i2AEUeAh0fmzz98XOoUChITExk4cKFXLlyhfDwcKKjo1Vf9ArLi4qKws7OrsgXv6f1SiyN9u3bs2fPHkJDQwkNDaVKlSr4+PjQvXt3VbC5sPfuoz0aH/X44jljx45l165dREZG8tNPP2H6yNC/iIgIpk6dirOzMytWrMDAwICIiAhWrFjBlClTcHZ2ZvLkycydOxdr63++rBb3udbS0mLNmjWcOnWKO3fuqD4bgOo8Fp7vwvNfSFdXl/r16z9X+8SrR7vgBUk9j4boP7LYiL6BPs5uLpw7dpqsjEx09P7p9ZWels7Kn38l/PotGrVsgl+PTmr7juwMw9bejsGfDlfNXeba2J0Fk39k07K1fPKDE1ry2RGvoR6NGpGamcXOixc5fv0GAI1q2NGlYUPWnDqNka4uOQVzOGflFO2xklWwT/+RF5cAqZmZTN+5i6uxd2ntXIc+T5izT4jXhW7BNdCkYUOMDP65NxkaGODh4sKhU6fIyMxk56FD3ImK4puxY0lOSQEgpaCXZmZWFskpKRgbGqJQKPBv0aLIcXS0tWnl5cWGHTuIiImhRhk9QwpRkVg3KTrSTlNbC0t3R8L3/R9pcUkYWplj59tQ1Qvz3vlbAJjXrUa1Vi7c3nUWrcdWBX9wM5a8rBwsXOxfRjOEEOVIgpYvWEpKChEREbRu3brY/d7e3uzfv1/139GjR5k2bRrLli0jJCREFRQqLkBTGEArDNAtWbKE6dOn4+DggKenJ23btqVhw4asWLGCrQVvhR/1+HCZ0uZ/VG5uLh4eHowYMaLY/ZaWlk/NXxrFDfMpaa+Rx8/j4+cwNDSUTz75BEtLS5o2bUqrVq1wcXHhyJEjLFy4UJUvNzf3X/emfFY9f/nlF65cucKePXs4dOgQISEhbNiwgY8//phhw4ap6j5//nz09PSeWeadO3e4XzBsaffu3WpDww8dOkR2djZDhw7FoOAB/bPPPuP8+fOsX78eMzMzjI2Naf5YT4LHfxcJCQn06tWLuLg4mjdvjq+vL87Oztja2tKrVy9VusK6P+0clrZ94tVjUrDCuKFx0TfkhiZGoFSSmflP0DI1+SHLflxAbHgUnj7NeHNgL7XP0P2798jNycG1ibvaYguaWlo0aOrJ7vVbuBcTh7WdfDEUrx+FQsHAZt50dWtIzINkKhsZUsXYmLWnTqOhUGBhZER2QWAyqZjRE4lpaRjo6qD3yH0yOT2dqaE7uBN/nzZ1nRnSssULvfcJUREUrjBuYlT03mRqbIxSqSQ9M5M///6bnNxcvpgxo0i6rfv2sXXfPuZMnEiVx16sP14e5Ac5hfgv0TbUByC3sCelQoFjp8ZU93ElPT4ZXVND9CoZcXv3WdBQoGumPgIx4UokCi0NzJ1k6h8hXncStHzBdu7ciVKpVK0k/aisrCwuXbqElZUVnTp1olOnTuTl5bF06VKmT5/O9u3bVUOB4+Pj1ea4BLh9+zaQ31stMzOT2bNn06RJE4KCgtQWTnl0AZ4n+bf5bW1tSU1NpVmzZmrbHzx4wPHjx4v0qCsvERER1Kr1z1DSR88hwMyZM6lRowbBwcGq4B1QJGhrY2PDlStXipR/8OBBQkND+fTTT/9VPaOjo4mOjsbT0xMnJydGjBhBbGwsgwYNYsmSJQwbNkzVq9Pa2pq6ddXncjl48CBGjzxs5+Tk8MUXX2BmZka3bt1YtGgRnTp1wt/fXy3fo4EeHR0dfv75Z7p3705SUhJDhgxBX1//qfX+/fffiYyMZNmyZWq9bs+ePauWrrC3Znh4OA4ODqrtWVlZfPrpp3Tp0qVU7ROvpqq21mhqaREXHVtkX2J8Alra2qqAZmZGhipg6e3vQ8e+3YvkKfy7lZenLLJPqep1XXSfEK+DY9dvYGagTz0bG0wfuX9dionBoYoFOlpa6GhpUcXYWLVK+KNux8dTs8o/C16lZ2WpApYdXF0Y2Kz4kRRCvG6qW1ujpaVFRGzRe1Pc/ftoa2tjamREYPfupD72AuDBw4fM+e03Wnp50apxY0xNTEhISmLK3Lk0a9SItzp0UEsfVTCi6WmBTSFeVZkPUrmwdDeWDRyw83VT25ce/wBANbQ77v9uomOsj1lNa3SM/vm+8eB2LEa2ldHUVg9bJIfHYWxrgZae+ugAIcTrR+a0fIHi4uL45ZdfqFq1qmqxlkclJibSp08ftR58GhoauBasSvhoAEmpVLJq1SrVzzk5OSxfvhxjY2O8vb3JyMggPT0de3t7tYDjpUuXOHXqlCrPk5Qmf3FDr319fbl8+TIHDx5UK3f+/PmMHj2aa9euPfHYL9OKFSvUfl66dClaWlr4+voC+UP5bWxs1AKWMTEx7N69G8jvYQnQqlUr4uPj2bNnj1p5y5cv58CBA1SqVOmJQ9RLYsGCBbz99ttqw/OtrKywtLRUfS7eeOMNIH8u0sJh15D/O/vggw9Yvny5atuSJUv466+/GD9+PKNHj8bR0ZFJkyapFt3x8vJCQ0ODtWvXqtU3Pj6ezMz8Vft27Nih6qn5JIXlPRoYViqVrFyZv2BK4WeoWbNmaGtrs27dOrW679y5k507d5a6feLVpKOni7O7C1fP/0Vc1D9TSCTeu8/lcxdxdndRfd63rthQELBsVWzAEsDS1gpjMxPOHTlJdtY/K1BmZ2Xz57HTGBgZYmlj9WIbJUQ52X7+PEuPHCP3kb/hZ++EcyX2Lm3r11Nta+xgz8WoKKISk1TbLkRGEpP0gP9n777jqiz/P46/2EMFRMCNAioOcI8kRyKm5krNUc6v28xMK3M1vt/qp6mpOXJbKmnmQC1XrkzNkWY5UtwLcCIKssfvD+TkETQQkKO+n49Hj+S+r899X9fh3Jz7fO5r+N03hcqCXbu5cOMmzZSwlOeMrY0NNX19OXT0KJfum97o2s2bHDhyhJq+vpibm+Pl7k7l8uWN/ivvmboacmEXFyqXL4+1lRXOTk5Ex8Sw7bffDIv8ANwID+eXffuoVK4cBR0cnng7RXKbjWM+kmLjCfv9JImx//Qmjo2I4urBUzh6FcG6QOp3rpDdxzjz4z6Sk/75DLt54hJ3zl+j2ANDzJOTkoi+GkG+YhlPvyYizxb1tMwhW7ZsoWDBgkBqr8WzZ8+yevVq4uLimDt3bobDW9OSmUuWLCEmJoZq1aoRERFBYGAgLi4uNH/gaezXX39NSEgIZcuWZcOGDRw6dIjPP/8cOzs77OzsqFKlCqtWrSJ//vx4eHhw6tQpli9fbvjSf/fuXaN5DO/n6OiY6fi0dq5du5aUlBTatm1L//79+fnnnxk0aBCdO3embNmyHDx4kDVr1tCgQQMaNGiQY691dgQFBREVFUX16tXZuXMn27dvZ9CgQYZefQ0aNGD9+vV89NFH+Pr6cvnyZX744Qdi7t1kpi0k07lzZ1auXMnQoUPp0qULHh4e/PLLL+zevZv/+7//w8LCAicnJ8zNzdm6dSvFihXj5Zdffujr/6AuXbqwZs0aunTpQqdOnXB0dGTv3r3s37+ft99+G4By5crRrVs3Fi9eTEREBAEBAYb3T758+RgyZAgAZ86cYfr06dSrV48WLVLn//v444/p3r07n3/+ORMmTKBcuXJ06dKFxYsX07dvXxo3bszZs2f54YcfcHNzo2PHjnz55Zd07dqVb7/99qH1btCgAYsXL6Z///689tprJCQksGHDBo4ePYq5ubnh9StUqBCDBg1iypQp9OrVi4CAAK5cuUJgYCB16tTB398fc3PzTLVPnh7h125w8fQ53Mt44OyWOjdt0w6tOX/iNAvGz6BukwaYW1iyZ8sOrKytaHJvvsproVf4a88BbO3tKFKyBH/+9nu6Y1f1S028t+zyGku//obZn02mev06pCQnc3DnPq5fucZrfbpgkcGqySJPm6t37nDyylXKFSlM4XvJjtZVqzJl8xbGb9xErdKluREVyfrDR6lcsgT17nuQ1LpqFXaeOsXn69bRorIv8YlJ/HT4MB6uLtQrm1ru8q1b7Dp1Gnsba0oXKsTOk+kfPNYvVzbdNpGn0dUbNwg+exZvT08K35s3vWubNvx96hT/mzqV5i+9hKWFBRt27MDayorXM+iI8G96d+zIxLlz+XDyZBr7+RETG8umX3/FwtycXvdNnyPyNIsJj+TOhWs4lHLDzjl16gOv1i9wPHA7f81eT5Ga5UiKTyB0z3HMzM0p0+oFQ2zJBr4cX/ILfy/eQqGKpYiNiCJk1zEKliuGW1VPo/PERdwlJSkZW0eNuhJ5HujbWw4ZO3as4d9WVlYULlwYf39/+vbtazT89UGffvopJUuWZN26daxbtw47Ozvq1q3L0KFD0y1yMn/+fD755BOCgoIoU6YM06dPNxre+9VXXzF27FhWrlxJfHw8xYsXp1+/fnh5eTF48GD27t1L06ZNH1qXzMZ7eXnRrVs3Vq1axZEjR6hTpw7u7u4sW7aMqVOnsnHjRpYtW0axYsV488036devn1Gv0bw0ffp0ZsyYwc8//0zJkiX59NNP6dixo2H/J598gr29Pdu2bWPNmjUUKVKEV199lSZNmvD666+zd+9eKlasiK2tLYsXL2bKlCmsW7eOyMhIvLy8mDJliiHZbGdnx9ChQ5k/fz6fffYZ7u7u1KlTJ1P19Pb25ptvvmHGjBksWLCAqKgoSpcuzYcffkiXLl0M5UaPHo2npyfff/89X3zxBQUKFKBmzZqG3pTJycmMHj0aMzMzo9XC69SpQ5s2bVizZg0tWrTgpZdeYtSoURQrVoxly5bxf//3fxQqVIhOnTrx1ltv4ejoiKOjI2vXrsXR0ZEbGQwthNSk5WeffcaCBQsYN24cjo6OVKpUiWXLlvHhhx+yb98+Q9mBAwfi6urKokWLGDduHK6urnTs2JHBgwcb3i//1j55upw/eZagBUto2+sNQ9KyoIsz/Ua/w88rfmTXxu2kpKRQqpwnTTu0NpQ5H5y6qEhsdAxBC5ZkeOyqfqmLg1SsUZn/vPcm29duNKw+XrRUCbq9049yvhUyjBV52pwIu8KsX3Yw4KWGhqRlHU8PBjf2Z+2ff7J4z14c7exoWaUybapWNfoMdrCz4+PWrVj02x6WHziIjaUlNUuVossLdbC6N0Lg+L3eZdFx8cz6ZUf6CqCkpTw7jp85w8zAQAZ27WpIWroWKsRn777Ld2vW8OPWraSkpFDBy4sur75qKJMVtSpX5v2+fQn6+We+W7MGaysrKpYtyxutW1O8cOGcbpJInrhz/ionV+yi3Gv1DElLl4qlqNjNn4u/HObcpgOYW1ng5FGU0k2rY+/qZIh18SmNd6cGXP71CGfX78cqvx0l6vtQsmFlzB74HpkYnToKzMJWCyuKPA/MUu4fdykmacSIEQQFBWU4h6JkzrRp05g+fTpbt26lRAlN2Py4UlJSnolFGLZc/OPfC4nIv6qxZmdeV0HkmWHRsFFeV0HkmdDv5sa8roLIM+H7RsPzugo5zpS/Bwa4V8/rKpgk0+j+JiJPhWchYSkiIiIiIiIipk/Dw+WJCQ8PNyxk8yi2trYUKFDgCdToyYqIiCAhIeFfy1lZWeHk5JT7FRIRERERERERMVFKWsoT89prrxESEvKv5dq2bcu4ceOeQI2erMGDBxtWYn+U2rVrp1vlXERERERERETkeaI5LeWJOXjwIHFxcf9azs3NjTL3rXT6rDh69Ch37tz513IODg74+Pg8gRo9v0x5LhORp4nmtBTJOZrTUiRnaE5LkZyhOS2fLM1pmTH1tJQnpkaNGnldhTylRKSIiIiIiIiISOZoIR4RERERERERERExKUpaioiIiIiIiIiIiElR0lJERERERERERERMipKWIiIiIiIiIiIiYlKUtBQRERERERERERGToqSliIiIiIiIiIiImBQlLUVERERERERERMSkKGkpIiIiIiIiIiIiJkVJSxERERERERERETEpSlqKiIiIiIiIiIiISVHSUkREREREREREREyKZV5XQETkSZt3ZkteV0Hk2dAmIK9rIPLMqB2R1zUQeTbMPGqT11UQeTY0yusK5LzaESacAnPP6wqYJvW0FBEREREREREREZOipKWIiIiIiIiIiIiYFCUtRURERERERERExKQoaSkiIiIiIiIiIiImRUlLERERERERERERMSlKWoqIiIiIiIiIiIhJUdJSRERERERERERETIqSliIiIiIiIiIiImJSlLQUERERERERERERk6KkpYiIiIiIiIiIiJgUJS1FRERERERERETEpChpKSIiIiIiIiIiIibFMq8r8KSMGDGCoKAgtm7dSokSJbJ1rG7duhESEsK2bdtypG7ZPd769etZunQpJ06cIC4ujiJFitCgQQP69euHm5ubUdnk5GRCQ0Oz/BqsWrWKkSNHsmjRIurUqfPQcvv27aN79+6MHTuWdu3apfv58uXLNG7cmLfeeovBgwcb4i5dukTJkiWz1vBMSvvd38/KyopChQpRu3Zt+vXrR9myZY32Z/Q7+fbbb5k3bx537tyhe/fu9O3blxEjRrBnzx6srKxYuHAhFStWzJU2iDwNYsMjObvhd26fvQKAc/kSeDSvhXV+uxyJCz8ZwqVf/iIq5CaYmeFQ0pVSTarj4O5qVO7Q1z8SdflmuvMU8ilFxTcaZaeJIk/Eres32bBsDeeCTwPgXbkizTu1IZ9DgRyJO3v8FFuD1hN2KQRbO1t8alUloG0LrG1tUo9zI5xJw//3yHP1Gj4Ij/JlH1lGxBRdu3mTRUFB/H3qFADVK1WiW9u2OBZ49PWV2bhREyZw5uLFdPG1q1bl3d69c6gVIk/etTuRBO7dy9+hoQBUc3enW90XcLB79H1eZuNGrwri7PUb6eJre5Rm6MtNDD+fCLvCst9/58z16+S3saFmqVK8VrMmDna22W2iiJig5yZp+ayaPHkys2bN4qWXXmLQoEHY2tpy6tQpVqxYwbp161i2bBnu7u4AREVF0bNnTxo2bGiUMMxJXl5ejB8/nurVq2e439nZmfHjx+Pt7W3Y9vXXXxMUFMTmzZtzpU5pRo4cScGCBQGIiYnh4sWLrFy5kk2bNjF37lyjZOyAAQOIiYkx/BwcHMzYsWOpWrUqQ4YMoXz58syaNYtt27bRs2dPPD09KV26dK7WX8SUJUTHcXj+RlKSkinRwIeUlBQu7zzK3Su3qPpmS8wtLLIVF3HuCscWbsbezYnSL1cnJSmF0H3HOTx3A1X6NadAydTEZUpKCtHXblOoojuFKpUyOpetU77cfRFEckB01F0WjJ9BUlIi9Zv5k5KSzK6N27l6OZQBHw7DwjLjW7fMxp09fopvJn5N8VIlafpaK27fimDP5l8JOXeJPiPfxszMjHz589G+T5d050hISGDdd6vI55CfIiWL5+rrIJIbIu/e5b9Tp5KUlETrgACSk5P5cetWLoaG8n/vvYflQ66vzMalpKRw+epValauTJ0qVYyO4ersnOvtE8ktkbGxfPrTTyQlJ9OqShWSU1L46fBhLoWH81nbV7F8yH1eZuNSUlIIiYigZulS1PbwMDqGS4H8hn//HRrK2PUbsLe25tVqVTE3M2fDkSMcCw3lv6+2Ib+NTe69CCKSJ5S0fIqFhYUxd+5cunXrxpgxY4z2tWzZki5dujBp0iSmTJkCQEREBEeOHKFhw4a5VicXFxfatGnz0P329vbp9u/Zs4ekpKRcq1OagICAdD1Mu3XrRvv27XnnnXfYsmUL+fKlJjVefPFFo3InT54EoH///vj7+wOpCWMnJydGjhyZ63UXMXUhu44RdzuaGm+3wd7NCYACJVw5uuBnrv5xmqK1vLMVd3bdfmwc81F1YEssrFM/utyqe3FwchDnN/+Bb6+mAMTdiiI5PpFCFd0pXM0rdxstkgt2//wLt29F8Nb/huNWrAgAxT1KsfDLmfyxez+1GvplK27jD2twci5I7xGDsbK2AsDRuSA/Ba7g1NETlPOtgLWtDVX9aqU7x/qlq0hKSqJDv27Y5bPPjeaL5Kp127YRHhHBhJEjKVEk9TopU6oUn8+YwS/79hHwwP1fVuOuh4cTFxdHrcqVaVC79pNplMgTsP7wEcKj7vJFh/aUuNcJpIybK/+3bgM7Tp6kcYUK2Yq7HhlFXEIiNUuXpn65h/fi/3b3b5iZmfHfNq0p4ugIQK3SpRmxciWr/zhE17ov5GSzRcQEaE7Lp9hff/1FUlJSugQbQLVq1ahcuTJ//vnnk6/YU6Ro0aJ88MEHhIeHs3LlyoeWS0hIADAkNdO23f+zyPPs+uGzOHkUMSQeAQqWKYadqwPXD5/LVlxCTBx3w8Jx8S1tSFgCWOe3w9GjCHcuXjNsu3stAgA7F8ecaZjIE3Zk3x94eJcxJB4BylTyplARN47sO5StuIT4BPIVyE/Nhi8YEpYAHt6pCf4rF0Meevwrl0LZs2Un1evVpnQ5PRCQp9PuP/6gYtmyhsQjQOXy5Snq5sZvf/yR7bhLYWEAFC9cOBdqL5J3fjtzhorFihoSjwC+JUpQ1MmRPWfOZjvu8q1bABRzevj92/XISC6F36JB2bKGhCVA8YJOVHd359eTpx6rbSJi2pS0fMCGDRvo2rUrNWrUwMfHB39/f8aPH098fHy6stu2baNFixb4+vrSqlUr1q5dm67M6dOnGTRoEDVr1qRKlSp07tyZnTt35khd0xJmQUFBGdZv0aJF/PLLL0DqXJONGzcGYPr06Xh7e3P58mUALly4wAcffECDBg3w8fGhdu3aDBgwgFOn0v/hv3btGoMGDaJq1ar4+fnx6aefEhUVZdi/b98+vL29WbVqVYZ1vnz5Mt7e3kybNg0Af39/9u/fT0hIiGH7sGHD8PHx4c6dO0axkZGR+Pr68sUXX2TxlXq0Zs2aYW1tbfR76datm6FHZbdu3Qy9Kbt37463tzfe3t5G9R4xYoQhdtWqVbz66qv4+vrywgsvMGLECK5d+yepkvYafPvtt7z++uv4+PjQs2fPLMevXr2ayZMn06BBA3x9fenQoQN79+5N1741a9bQvn17qlatSoMGDfjoo48IDw83KvNv58yK0NBQBg8eTL169fD19eWVV15h7ty5JCcnG5U7dOgQ//nPf6hWrRrVqlWjV69eHD582LD/119/xdvbmyFDhhjFffjhh3h7e/Prr78+Vv0k5yXExBEbHkX+4oXS7ctftBBRoennl8xKnKWNFTWHtqP4i5XSHyM6FjPzfz7Koq+m3vTau6XezCbFJ2S9QSJ5JOZuNLeu36RY6fTzThdzL0HYxcvZirOytqLHsAE0bPmyUZmwe8lKJ5eHD1/dsmodVtZWNG77SqbbI2JKoqKjuXbjBp4ZzKHuUbIk5y5dynbcg0nL2Li4nKi6SJ6Kiovj2p1IPFxd0u0r7eLCuRvp56HMatyle99Nit9LbsYmpL9/C797F4CSGUy1UNjRgcjYWG7e971URJ4NGh5+n+XLlzNmzBj8/f157733SEhIYPPmzcyfPx+A4cOHG8pev36dt99+m44dO9K5c2fWrFnD+++/T2JiIu3atQNS50F84403cHFxoX///lhZWfHTTz/Rr18/vvzyS155JXs3/nXq1KFEiRJs2rSJgwcP8vLLL/Piiy9Sq1YtHB0dsba2NpT18vJi5MiRjB07liZNmtCkSROcnZ25ceMGHTt2JH/+/HTt2pWCBQty/PhxfvjhB44dO8a2bduwsvqnN8ZHH31EhQoVePfddzl58iTfffcdp06dYuHChZiZmWW5DaNGjeLLL7/k1q1bjBw5Em9vb0JDQ1m3bh1btmwxvJYAP//8M/Hx8bRq1Spbr9uDbGxscHd358SJExnuHzBgAB4eHixbtowBAwZQunRpzM3NmTVrlqHeafOGTp8+nWnTptG0aVM6duzI1atXCQwMZP/+/axYsQLn+z5kv/rqK/z9/WnVqhU29+ZfyWq8nZ0dvXr1IiEhgQULFtC/f39++eUXw9ydc+fOZeLEidSoUYNhw4Zx8+ZNFi5cyPHjx1m6dCmWlpZZOue/SUhIoE+fPsTGxtKzZ08cHBzYsWMHEydOJCkpiQEDBgCwe/du+vfvT/ny5RkyZAjx8fGsWrWKLl268M0331CzZk0aNGhA27ZtCQoKYufOndSvX59du3bxww8/0LlzZxo0aJC1X7Tkmvjb0QBYO6QfLmrtYEdSTAKJMfFY2lk/dpydi0O6MnevhHPnwjUKlv1nbr3oaxFY2Fhydv3vXD98juT4RGyd81OqSXXcqnhmq50iue3OrdsAOBR0SrevgJMDsdExxETHYGdvlyNxt26Ec+7EaTYuW41b8aJUqOabYb2uXAol+K9jvNi0EQ6P6AUjYsrCIyIAcHZM/x4u6OBAdEwMd6OjyWdv/9hxl8PCsLW1ZdGqVfx26BBxcXG4ubjQuWVLXqxRI8fbJPIk3LqXLHS2Tz/CrKC9PdFx8dyNiyPfA/NJZiXu8q1b2FpZsXjPHvacOUtcQiJuDgXoVKsWfmVSe/fb3Js7NiaDhGZkbCwAEdExFMqfP91+EXl6KWl5nwULFlCtWjW+/vprQwLujTfeoHHjxuzcudMoaRkfH89HH31Ely6pE9V36tSJNm3a8OWXX9K6dWssLS357LPPcHZ2JigoCPt7N0Bdu3alR48efP755wQEBBglFrPK2tqaefPmMWzYMP7++2+WLFnCkiVLsLCwoGbNmvTr14969eoBqXNNBgQEMHbsWLy9vQ3zSgYGBnL79m2WLFmCl9c/w73y5cvHnDlzOHnyJJUq/dO7ydvbm0WLFhkmHC9cuDDTpk1j+/bthp6JWREQEMDChQuJi4sz1MnLywsnJyc2bNhglLRcv349np6eubJCt4ODAxczWOkRUue3vHr1KsuWLcPPz8+wYM+KFSuM6n3p0iVmzJhBv379ePfddw3xLVq0oF27dsyaNYtRo0YZthctWpSJEyca3mtZjU9JSWHFihWG91bx4sUZOnQomzdvpmPHjty+fZtp06ZRv359Zs+ejcW9ia5LlCjBmDFj2L17N56enlk65785fvw4Z86c4auvvqJZs2YAdOjQgT59+nDuXOpQ3+TkZD7++GN8fX0JDAw01Ktr1668+uqrfPbZZ6xevRpIXTxp165dfPrppyxbtowPP/yQUqVK8cEHH2S6TpL70nozWlil/0gxv/e3IikhMV3S8nHj0mKDl6f2ji7R8J9Ey92rESTFJZIYG493h/okxsYT+tvfBC/7lZTkFM1zKSYt7t6XrvuHbqexvLctIT4+XfLxceKio+4aVgi3sramZZd2GcYD7N++CzNzc+o0rp/VJomYjLRejxnde1vfe0Afl5DAg+mVrMRdCgsjNjaWu7GxvNWtG3djYtjwyy9M/fZbkpKSNM+lPJXSkoTWGSxUZX3vPj4+MTFd0jIrcZdu3SI2IYHouHjebPQS0fHxbDxylGlbt5GUnEz9cmUpUbAgdtZW7D93jjZVqxi+Q8UnJnL4cuqIgfikxJxptIiYDA0Pv8/atWuZM2eOUY/Bmzdv4uDgQHR0tFFZBwcHOnXqZPjZ2tqaTp06cePGDY4ePcqtW7fYv38/DRs2JDY2lvDwcMLDw7lz5w5NmjThxo0bHDlyJNt19vDwYNWqVSxatIju3bvj5eVFUlIS+/bto3fv3syZM+eR8f369WP37t1GCcvY2FjM7w23fLDdPXv2NFpZsVu3bgCGYeg5wcrKiqZNm7Jnzx5u307tPRIeHs7evXtp0aJFjp3nfomJiY/VU/R+mzdvJjk5GX9/f8PvOzw8HBcXFypUqJDuNapZs6bRObMa37BhQ0PCEqB8+fJAai9ggN9++424uDi6dOliSAwCtG7dmlWrVlG7du0sn/PfuLm5YWZmxuzZs9m5cyfx8fGYmZkxf/58w7D+v//+m0uXLhEQEMDt27cN54yNjaVRo0YcP36cq1evAuDo6Mgnn3zChQsX6NChA1evXmXcuHFG7RYTkJKS+v+sXkKPGZcUn8ixxVu5G3aLEg19cfL4Z46xorXK4dW6DhXfaIRLpVIUqVGWKgNaYOucn3MbfiflgWkKREyJ4ZLI4ufR48SZmZnRcUAP2vfpgluxInwzcSbHDvyVrlxCfAJ/7jlA+ao+FHzE8HERU5dy70LJ+vWV+biAF1+kV4cOvNu7N7WrVKHRCy/w2bvv4ubiQuDq1emmyhF5GjyJa6dxhfL8p54fQ19uQm0PD17y9uZ/r7bBzaEA3+3dR3JyMpYWFrSo7Mu56zeYtm07F2/e5PyNG0zZvIW4ewlSC3OlN0SeNeppeR8rKyt+//13fvrpJ86ePcvFixe5eTN1TrXixYsblS1ZsqRR8i5tG0BISIgh6bd48WIWL16c4fnC7s17k11mZmbUqVPH0AMwNDSUlStXMnv2bL766ivatGlD4UdMCJ6QkMDkyZM5duwYFy9e5PLly4bVvB+8ufL0NB5e6ejoiKOjIyEhD5+8/3G0bt2aZcuWsWXLFtq3b8/GjRtJTEzM8aHhaSIiIrI0DDojaT01O3funOH++4fZA+nOl934tB4Aab+ztN9JqVKljMrZ2NgYes9m9Zz/pkiRIrz//vtMmjSJPn36YG9vT926dXnllVdo3rw5FhYWhnOOHz+e8ePHZ3ic0NBQw3s2ICCAl19+mZ9//pnXX3+d6tWrZ6lOkvssbFLfJ8kJSen2JSemPvG2tE3/XnqcuMSYeI4t2sKdC9coXLMspZsYvx+K1imf/jxWlrhV8+Li1r+IvhZBviJKvIhpsrFN7aWSkME81Yn3eibb2trmSJxdPnt8a1cDoFLNqkz7cBzrvw+iUs0qRuXOnjhFQlw8PrWqZrE1IqbF9l4vsIzmgY+/l/Cwz+D6ykpck3sjnO5nbWVFg1q1WLFhA5fCwij1wHcKEVNnd+/7QHxi+l6M8fe+M9pl0BM5K3FNMhhJZ21pSf2yZVl58A8u37qFe6FCtKtenbtx8Ww8epQ9p88AUL2UO62qVOH7/b+T/4HeniLy9FPS8j6ffvopgYGBVKxYkapVq9KmTRuqVavGp59+mi7BmNETo7SnSebm5oakX5cuXQgICMjwfGXKlMlWfRcvXkxcXBx9+vQx2l6sWDEGDx6MjY0NX375JX/++SdNmzbN8BgHDhygd+/e2Nvb4+fnR/v27alYsSIXL17kf//7X7ryD2v3/T35ckKNGjUoVqwYGzZsoH379mzYsAEfH590CbicEBUVxaVLl3jppZeydZy0ZOHMmTMz/FL5oAdfs6zGm//Lk8S04z3q6WZWz5kZvXv3pmXLlmzevJkdO3awe/dutm7dyurVq5k3b57hnEOGDKFq1aoZHuP+5Hh0dDR///03ALt27SI6Olo9LU2MjWPq3EHxkTHp9sXficHCzgqLDIadZjUuPiqGo99u5m5oOEVql6NMm7qZfupvlS91WGxSvIYNielyLJQ6H3Hk7ch0+yIj7mBrb4e1bfovZI8bl8bK2grvKpXYu+VX7kZGka/AP/OBnTz8NxaWlpSrXCHL7RExJS735vuOeGChR4Bbd+5gb2dnSFDmRNz9HAsUACAug8SniKlLmyMy4oEReAC3oqOxt7HGNoOODo8bdz9Hu9T7t9h7iU8zMzO6+9WlTdUqhN2+Q6H8+XAtUIBl+3/H3MwMF81nKfLMUdLynpCQEAIDA2nTpk263l83MlgRLSwsjJSUFKMvzOfPnwfA3d0dV1dXIDUx5efnZxR7+vRpLl++jJ2d8ZxUWbVlyxYOHz7MG2+8kWESp1y5ckDGvTLSTJ06FVtbW9atW2fUc2/WrFkZlg8JCaFs2bKGn9OGvKctRJNTzMzMeOWVV1i4cCGhoaEcPHjQaE7RnLRx40ZSUlIMq6s/rrTeuEWLFqVCBeMvdzt27CD/v3yIZjf+QUWLFgVSe1N6eHgYtsfHx/P+++/TqlWrHD9nREQEJ06coHr16nTt2pWuXbsSHR3NiBEj2LRpE8HBwYZzpiXK73f48GFu375t9J6dNGkSISEhDB8+nAkTJjBp0iTGjBmTpXpJ7rK0s8bGOX+Gq4RHhd2kQPH0q0ZmNS4xLsGQsCz2YkW8WqSfFyzu9l2OfPMzbpU9cPevarQv5kbqVBO2BXUzK6bLzt4OJxdnwi6kXyU89OJlipdOv3pxVuKuh11l0aTZ1GvuTx1/4x5hcbGxYGaG5QNzzF48fY7ipUtim817FpG8ls/eHtdChTh3Of11cu7SJbweci+b2bjwiAg+mzEDv+rVea15c6NyIfemvXEtVCi7zRB54vLZ2OBaoECGq4Sfv3EDz3vfex83LvzuXf5v3XrqennRvobxCJqQewthud1L/P92+gxO9nZULFYMx/u+/x4PC8PD1SXD+TNF5OmmSR/uSZs78cHejzt27OD8+fMkPtCt/ebNm2zdutXwc3R0NEuXLqV48eJUqFABNzc3fHx8CAoKMszPB6lDsUeNGsXbb7+d7phZ1apVK6Kjoxk3bly6YdzJycksX74cBwcHatWqBfzTs+/+smnDou9PWEZGRhIUFARg6DGaZvny5UY/p62snp2En7m5eYZz/LRq1YqEhAQmTJhASkoKzR+4AcwJ165dY+rUqRQuXDjbQ88bNWoEwOzZsw29biF1cZqBAweycOHCXI1/kJ+fH1ZWVvzwww9Gx9u4cSMbN27MlXPu3r2bHj16sG3bNsM2e3t7QwLdwsICHx8fXF1dWbx4MXfvrSoIqT1e33nnHUaOHGl4rx48eJDvvvuOjh070rt3b9q3b893333HgQMHslQvyX0ulUoRcSaU6OsRhm23TocSc/0OrpU9sh13Zu2e1ISlX4UME5YANo75SIqNJ+z3kyTG/tObJTYiiqsHT+HoVQTrAuqlK6atUo0qnPk7mOth/9w7nD4WzM0r1/Ct8/DpMTIT5+zmQmxMDL//8htJ992D3LoRzrEDf1Ha2wub+x4aJSUmcj30CkVLlcjJJorkmTpVqnAkONiQRAQ4fOIEYdeu4feI1b0zE+fs5ER0TAzbfvuN6Jh/RhDcCA/nl337qFSuHAUdHHKhVSK5r7ZHaY6GhBByK8Kw7cjly4RF3MbP6+GLHGYmzjlfPqLj49l24gTR9/VGvhEZxY7gk1QqXgynewnKdYcP882u30i677vjHxcuEnzlKi9XyvnFWkUk7z13jyImT55MvnwPrgsITZo0oVixYsyaNYu4uDiKFCnC4cOHCQoKwsbGxii5AqlzOQ4fPpwePXrg5OTEypUrCQsLY8aMGYZhu2PGjKFHjx60b9+e119/HScnJ9atW8dff/3Fu+++S8F7w00eV7t27di5cyfLli3j0KFDNGvWjCJFinDz5k02bNhAcHAwX375paEXppOTE+bm5mzdupVixYrx8ssv06BBA+bOncuQIUOoV68e169fZ8WKFYbepQ+2+8CBA7z55ps0bNiQP/74g9WrV9O8eXPq1q372O1wdnbm999/Z8GCBdSoUYMqVVLn0ypfvjxly5Zl/fr11KlT55HzcmbGli1bDK95XFwcZ8+eZfXq1cTFxTF37txsD48uV64c3bp1Y/HixURERBAQEEBERASBgYHky5ePIUOG5Gr8gwoVKsSgQYOYMmUKvXr1IiAggCtXrhAYGEidOnXw9/fH3Nw8R8/ZqFEjPDw8GD16NMeOHcPd3Z2zZ8/y3XffUbduXcNDgTFjxjB06FDatWvHa6+9ho2NDcuXLyc0NJSJEydiaWlJXFwco0ePxtnZmffeew+A9957jy1btjB69GjWrl2LjeatMRkl6vtw7dAZjszfRPF6PiQnJnJ551HyFy+EW9XUm9KY8EjuXLiGQyk37JwLZDou+loE1w6dxcLOivzFCnH10Jl0509bFdyr9QscD9zOX7PXU6RmOZLiEwjdcxwzc3PKtHrhCb0aIo+vfnN//vztd76ZMIMXmzYiMSGBXRu3U6x0Saq8kJocCb92g4unz+FexgNnN5dMx1lYWNDijXasnPcd88ZNo2rdmkTfjWbf1p2Ym5vT8o32RnWJuHmLpMQkHJ2zd78iYipaBwTw6/79fDptGi39/YlPSODHrVvxdHenfs2aAFy9cYPgs2fx9vSksItLpuMAenfsyMS5c/lw8mQa+/kRExvLpl9/xcLcnF4dOuRJm0VyQuuqVdh56hSfr1tHi8q+xCcm8dPhw3i4ulCvbOr9/dU7dzh55SrlihSm8L0EfWbiAP7z4otM+nkzH69ei3+F8sQkxPPz0b+xMDej54t+99WjKlM2b2H8xk3UKl2aG1GRrD98lMolS1Avm1OviYhpeu6Slj/99FOG2z09PZkzZw7jxo1j0aJFpKSk4O7uzqhRo0hMTOTzzz/n6NGj+Pj4AODl5UXXrl356quvCAsLo1y5csyePZv69esbjlmtWjWWLl3KtGnT+Oabb0hMTMTDw4Nx48bRtm3bbLfF3NycKVOmsGbNGtasWUNgYCCRkZE4OjpSo0YN/vvf/1K5cmVDeTs7O4YOHcr8+fP57LPPcHd3Z/DgwSQlJbF+/Xq2b9+Om5sbfn5+9OrVixYtWrB3716aNGliOMbkyZOZP38+n3/+OU5OTgwcOJBBgwZlqx19+vQhODiYSZMm0a5dO0PSElJ7W06aNImWLVtm6xwAY8eONfzbysqKwoUL4+/vT9++fY2GT2fH6NGj8fT05Pvvv+eLL76gQIEC1KxZkyFDhhit0J5b8Q8aOHAgrq6uLFq0iHHjxuHq6krHjh0ZPHiwIbmek+e0t7dnwYIFTJ06lR9//JEbN27g6urKG2+8wVtvvWUo16xZMxwdHZk5cyZff/015ubmlC1blpkzZxp6f06bNo1z584xYcIEHO7d+BQsWJD333+f0aNHM2XKFD744IMsvyaSO6zz21G5b3POrtvPhS2HsLC2pFAFdzya1cTcMrXn7J3zVzm5YhflXqtnSFpmJu72uSsAJMUkcHLFrgzPn5a0dKlYiord/Ln4y2HObTqAuZUFTh5FKd20OvauTrn8KohkXz6HAvQZ+TbrlwaxdfUGrK2tqVDNl6YdWmF5b+6v8yfPErRgCW17vWFIWmYmDqCqXy0srSz5df1WNixbjZWNDV4VyhLQrgUuRdyM6hJzN3UeMlu7nJnzWCSvORYowH/feYeFq1bxw/r12FhZUatyZbq0aWNYfPD4mTPMDAxkYNeuhqRlZuIAalWuzPt9+xL08898t2YN1lZWVCxbljdat6Z4Nh++i+QlBzs7Pm7dikW/7WH5gYPYWFpSs1QpurxQB6t7I6ROhF1h1i87GPBSQ0PSMjNxALU8SvNu0yasPvQnS/ftx8rSgopFi9K5dm2KF3QylKvj6cHgxv6s/fNPFu/Zi6OdHS2rVKZN1ar/Ot+/iDydzFLuHxMqYmLmzJnDtGnT2LVrF46OjnldHXlGdN6e8arlIpI1fbwyXmhORLKudsRz15dAJFck7die11UQeSYUHJy1UXdPgzuHD+d1FR7K4b4OZ/IPPY4QkxUfH8+qVasICAhQwlJERERERERE5DmiR7omJCkpifDw8EyVLVCgQLbnYDRVV69eZezYsZw+fZoLFy4wYcIEo/2xsbFERkZm6ljOzs6GRV3k8dy9e5fo6OhMlXV9yOqBIiIiIiIiIiJZoaSlCQkLC8v0Ktxjx46lXbt2uVyjvOHo6MiBAwdITEzk448/xtfX12j/+vXrGTlyZKaOtXXrVkqU0Kqn2bFgwQKmT5+eqbLBwcG5XBsREREREREReR4oaWlCXF1d+eabbzJVtswzvDqara0tu3ZlvNgGQL169TL9OqnnX/a9+uqr1KhRI6+rISIiIiIiIiLPESUtTYiNjQ1+fn55XQ2T5+bmhpub278XlBxRsmRJSpYsmdfVEBEREREREZHniBbiEREREREREREREZOipKWIiIiIiIiIiIiYFCUtRURERERERERExKQoaSkiIiIiIiIiIiImRUlLERERERERERERMSlKWoqIiIiIiIiIiIhJUdJSRERERERERERETIqSliIiIiIiIiIiImJSlLQUERERERERERERk6KkpYiIiIiIiIiIiJgUy7yugIjIkzanULO8roLIM6HfmY15XQWRZ4dXQF7XQOSZULtho7yugoiI5BD1tBQRERERERERERGToqSliIiIiIiIiIiImBQlLUVERERERERERMSkKGkpIiIiIiIiIiIiJkVJSxERERERERERETEpSlqKiIiIiIiIiIiISVHSUkREREREREREREyKkpYiIiIiIiIiIiJiUpS0FBEREREREREREZOipKWIiIiIiIiIiIiYFCUtRURERERERERExKQoaSkiIiIiIiIiIiImRUlLERERERERERERMSmWeV2BnDZixAiCgoLYunUrJUqUyNaxunXrRkhICNu2bcuRumX3eOvXr2fp0qWcOHGCuLg4ihQpQoMGDejXrx9ubm5GZZOTkwkNDc3ya7Bq1SpGjhzJokWLqFOnzkPL7du3j+7duzN27FjatWuX7ufLly/TuHFj3nrrLQYPHmyIu3TpEiVLlsxawzMp7Xd/PysrKwoVKkTt2rXp168fZcuWNdqf0e/k22+/Zd68edy5c4fu3bvTt29fRowYwZ49e7CysmLhwoVUrFgxV9og8iy4HRnJd2vWcOjYMeITE/EpW5bu7dpR2MUlx2JPnz/PD+vXE3zuHElJSZQqXpz2zZpRvVKlhx47/PZt3vu//6Omry9vdu2a7XaK5Lb4qBjObTzArZMhJCck4uhZFM8WtbFzLpBjsZktFxV6k3MbDxAZcgMzc3OcvUvg0awm1vntcrTNIjnp1vWbbFi2hnPBpwHwrlyR5p3akM/h0dfQ48St/nYZN69eo/cHg9PtO3v8FFuD1hN2KQRbO1t8alUloG0LrG1tstE6kbx37eZNFgUF8fepUwBUr1SJbm3b4ljg0ddYZuP+PH6cVRs3cvbSJczNzSlbujSdW7akbOnSudIeETE9z1zS8lk1efJkZs2axUsvvcSgQYOwtbXl1KlTrFixgnXr1rFs2TLc3d0BiIqKomfPnjRs2NAoYZiTvLy8GD9+PNWrV89wv7OzM+PHj8fb29uw7euvvyYoKIjNmzfnSp3SjBw5koIFCwIQExPDxYsXWblyJZs2bWLu3LlGydgBAwYQExNj+Dk4OJixY8dStWpVhgwZQvny5Zk1axbbtm2jZ8+eeHp6UlofkiIPlZCQwLhZswi9do2WjRphZ2vLT9u28d+vvuKLESMokC9ftmNDr17lk6lTccyfn7Yvv4y1lRW/7N3L+NmzGda7N7WrVMnw+PO+/5670dG50m6RnJacmMSxhVuIuXGb4vUqYWFjTciuoxyeu4Hqg9tgZf/wZEdmYzNbLvpaBH/NWY+1gz2l/KuRFBfP5d3HuHPxGtXfao2FtdUTeU1EsiI66i4Lxs8gKSmR+s38SUlJZtfG7Vy9HMqAD4dhYZnx16DHiTu4cy8Hf91DaW+vdPvOHj/FNxO/pnipkjR9rRW3b0WwZ/OvhJy7RJ+Rb2NmZpbjbRd5EiLv3uW/U6eSlJRE64AAkpOT+XHrVi6GhvJ/772H5UOusczG/X3qFONmzqREkSK83qoVSUlJbNq5k0+mTOG/77xDGX0nE3kuKGn5FAgLC2Pu3Ll069aNMWPGGO1r2bIlXbp0YdKkSUyZMgWAiIgIjhw5QsOGDXOtTi4uLrRp0+ah++3t7dPt37NnD0lJSblWpzQBAQHpeph269aN9u3b884777Blyxby3Ut+vPjii0blTp48CUD//v3x9/cHUhPGTk5OjBw5MtfrLvK027F/P2cvXmT0oEFULl8egGqVKvH+2LGs27aNzq1aZTv2u7VrsbCw4LP33qOggwMAAS++yHtjxxK4Zk2GSctf9+/nr+PHc7q5Irnm6qHTRIXcxKfXyxQsUwwAZ+/i/DF1DSG7jlH65YwfGmYlNrPlzm85hJm5OVX6Nse6gD0A+Yu7cGzhFq7+cYZiL5TPtddB5HHt/vkXbt+K4K3/DcetWBEAinuUYuGXM/lj935qNfTLdlxycjI7ftrMtjUbH1qPjT+swcm5IL1HDMbqXoLf0bkgPwWu4NTRE5TzrZBTTRZ5otZt20Z4RAQTRo6kRJHUa6VMqVJ8PmMGv+zbR8AD37OyGrdw1SoKOTnx+XvvYWNtDUCD2rUZ9vnnfP/TT4x5660n0EoRyWua0/Ip8Ndff5GUlJQuwQZQrVo1KleuzJ9//vnkK/YUKVq0KB988AHh4eGsXLnyoeUSEhIADEnNtG35HtE7TET+8dsff1DY1dWQdAQoXrgwPuXKsfuPP7Idm5KSwvHTp6lSvrwhYQlgbWVFDR8frl6/zu3ISKPj3rpzh29XrqRds2Y50USRJ+L64XPYFipgSCYC2Ls64eRVlOuHz+ZIbGbLmZub41bVy5CwBHD0KAzA3au3Hr+RIrnoyL4/8PAuY0g8ApSp5E2hIm4c2Xco23EJ8Ql8/clEtq3eQNW6NSlQ0DHdsRLiE8hXID81G75gSFgCeNzrkXnlYki22iiSl3b/8QcVy5Y1JB4BKpcvT1E3N357xD1fZuKioqO5EBLCC9WqGRKWAE4ODlQoU4bgc+dyoUUiYoqe26Tlhg0b6Nq1KzVq1MDHxwd/f3/Gjx9PfHx8urLbtm2jRYsW+Pr60qpVK9auXZuuzOnTpxk0aBA1a9akSpUqdO7cmZ07d+ZIXdMSZkFBQRnWb9GiRfzyyy9A6lyTjRs3BmD69Ol4e3tz+fJlAC5cuMAHH3xAgwYN8PHxoXbt2gwYMIBT9+YSud+1a9cYNGgQVatWxc/Pj08//ZSoqCjD/n379uHt7c2qVasyrPPly5fx9vZm2rRpAPj7+7N//35CQkIM24cNG4aPjw937twxio2MjMTX15cvvvgii6/UozVr1gxra2uj30u3bt0MPSq7detm6E3ZvXt3vL298fb2Nqr3iBEjDLGrVq3i1VdfxdfXlxdeeIERI0Zw7dq1dK/Bt99+y+uvv46Pjw89e/bMcvzq1auZPHkyDRo0wNfXlw4dOrB379507VuzZg3t27enatWqNGjQgI8++ojw8HCjMv92zqzw9vZmypQpDBgwAB8fH1q0aEFiYiIJCQnMnj2b1q1bU6VKFSpXrkzr1q1ZsWJFumPs2LGDrl27Uq1aNV588UWGDh1qeL+m2b59O507d6ZKlSrUqlWLwYMHc043Kibr3KVLeGQwl65HyZJcu3GDqEcMz85MrJmZGeOGD6fbq6+mKxd572+UhYWF0fZ533+PS8GCtAkIyGJrRPJOVOhN8hcrlG57vmKFiA2PIiEmLtuxmS1XvnNDyrR+wajM3bDUzxdbRz3UE9MTczeaW9dvUqx0+s+UYu4lCLt4OYOorMUlJiYSFxNLp4E9aN+nCxbmFulirKyt6DFsAA1bvmy0PexestLJxTlL7RIxFVHR0Vy7cQPPDNYq8ChZknOXLmUrzt7WlsljxtDi3ve0+0VGRWFh/tymMUSeO8/l1b58+XLeeecdChQowHvvvcfw4cMpXrw48+fPNwyxTnP9+nXefvtt6tSpw/Dhw7GxseH99983StYFBwfTqVMnTp8+Tf/+/Rk6dCiJiYn069eP9evXZ7u+derUoUSJEmzatIlGjRrx3//+ly1btnD79m0ArO97+uTl5WVIvDVp0oTx48fj7OzMjRs36NixIwcOHKBr1658/PHHtGzZkl27dtGrVy9DD8M0H330Ebdu3eLdd9+lcePGfPfdd7z55pukpKQ8VhtGjRqFp6cnBQsWZPz48TRp0oSWLVuSkJDAli1bjMr+/PPPxMfH0+oRw0gfh42NDe7u7pw4cSLD/QMGDKBTp06Gf48bN47x48cb1Ttt//Tp0xk5ciTu7u6MHDmSTp06sXnzZjp37pwuUfjVV19RrFgxRo0aZWhTVuM3b95Mr169ePvtt7l8+TL9+/fn1q1/erfMnTvX8P4cNmwYbdu2Ze3atfTv35/ExMQsnzOzFi5cSEJCAmPGjKFDhw5YWloycuRIpk6dSu3atRkzZgxvvfUW0dHRjB49mh07dhhi161bR//+/bl9+zaDBw+me/fu/Pbbb/Ts2dOQyF61ahUDBw7Ezs6O999/n549e3Lo0CE6duyoxKUJio2LIzomBmcnp3T7nO5NrH7jIe+1rMS6FSqEayHjREvEnTvsP3yYYoULk9/+n95gO3//nUN//83Arl0fOreSiKlJik8gKSYBawf7dPvSFr6Ji7ibrdjHPUfcnWhuHD3PiR9+xdrBjsI1y6YrI5LX7txKvUd2KOiUbl8BJwdio2OIiY5Jty8rcbZ2trwzbjQ+taplul63boTzx679rFuyCrfiRalQzTfTsSKmJDwiAgBnx/Q9jAs6OBAdE5PhPOKZjTM3N6eom1u6chdCQjh57hzenp7Zb4SIPBWey29wCxYsoFq1anz99deGya/feOMNGjduzM6dOxk+fLihbHx8PB999BFdunQBoFOnTrRp04Yvv/yS1q1bY2lpyWeffYazszNBQUHY3/uy3LVrV3r06MHnn39OQECAUWIxq6ytrZk3bx7Dhg3j77//ZsmSJSxZsgQLCwtq1qxJv379qFevHpA612RAQABjx47F29vbMK9kYGAgt2/fZsmSJXh5/TNJeL58+ZgzZw4nT56k0n2r7np7e7No0SLDl/zChQszbdo0tm/fbuiZmBUBAQEsXLiQuLg4Q528vLxwcnJiw4YNtGvXzlB2/fr1eHp65soK3Q4ODly8eDHDfS+++CJXr15l2bJl+Pn5GRbsWbFihVG9L126xIwZM+jXrx/vvvuuIb5Fixa0a9eOWbNmMWrUKMP2okWLMnHiRMN7LavxKSkprFixwvDeKl68OEOHDmXz5s107NiR27dvM23aNOrXr8/s2bMNvcxKlCjBmDFj2L17N56enlk6Z2ZZWloyY8YMbG1tgdQk/08//UTfvn2NzhMQEEDz5s3ZuXMnDRs2JDk5mbFjx1KuXDl++OEHQ7yvry//+c9/+PHHH2nTpg2ff/45r7zyCpMmTTIcq2PHjrRo0YKJEycyY8aMLNdZck90bCwANlbpF+VI+xsYl0Fv8ezGJiUlMWPxYuLi4ni1SRPD9oh7w8JbN26cYQ9OEVOVGJv6INHCKv1tWtq25PiEdPuyEvu45zg4eRVJcYlgboZ3h/paPVxMUty9zxSrDBaJsry3LSE+Hjt7u8eOMzMzS9ez/1Gio+4yafj/7h3fmpZd2mV4HpGnQWxcak/8jL7jWt+7l4tLSODBvviPG5cWO2PxYgCNnhF5jjyXPS3Xrl3LnDlzjFbru3nzJg4ODkQ/8ETIwcHB0LsOUv/AdurUiRs3bnD06FFu3brF/v37adiwIbGxsYSHhxMeHs6dO3do0qQJN27c4MiRI9mus4eHB6tWrWLRokV0794dLy8vkpKS2LdvH71792bOnDmPjO/Xrx+7d+82SljGxsZifq9r/YPt7tmzp1GvpG7dugEYhqHnBCsrK5o2bcqePXsMvUbDw8PZu3cvLVq0yLHz3C8xMTHbqzRu3ryZ5ORk/P39Db/v8PBwXFxcqFChQrrXqGbNmkbnzGp8w4YNDQlLgPL35vu7fv06AL/99htxcXF06dLF6Oa5devWrFq1itq1a2f5nJlVuXJlQ8IRwNXVlYMHD/Lmm28atqWkpBh6e969m9pr5+jRo1y/fp2OHTsaxfv5+bF8+XLatGnD7t27iYqKIiAgwKjOFhYWvPDCC+zatctwXDEtj7rG/u36y2pscnIy0xcv5vCJE/jVqEHDew8bAOb98AOOBQrQXnNZytPqUZfLv32WZTY2C+dITkrGq3VdynduiJNXUYKX/UrI7mOProdIHkgbGJTVe77HjcsMMzMzOg5IHUruVqwI30ycybEDf+X4eUSehLTRd1m/xh4vLi4+nvFz5nAhJIQ2TZpQsax6+Ys8L57LnpZWVlb8/vvv/PTTT5w9e5aLFy9y8+ZNILUX2/1KliyZbkhhyXtzcISEhBiSfosXL2bxvSc/DwoLC8uRepuZmVGnTh1DD8DQ0FBWrlzJ7Nmz+eqrr2jTpg2FCxd+aHxCQgKTJ0/m2LFjXLx4kcuXLxtW805OTjYq6/lAl3tHR0ccHR0JCcnZCcNbt27NsmXL2LJlC+3bt2fjxo0kJibm+NDwNBERETg7Z2/+oLSemp07d85wv9UDPcUePF9249OeTKb9ztJ+J6VKlTIqZ2NjY+g9m9VzZlZGr6W1tTVr165l165dnD9/ngsXLhiSlWk3Kg+rM6QmQu+v89ChQx96/vDwcNzc3B6r7pI98QkJ3I0xHlpne++9GZ+QvndW2ny8dvclqbMbm5CQwNRFi9j/559UrViRQV27GvbtPniQ3//6i+H9+hETF0dM3D/z/yUkJnInKgp7W1sNGZc8l5SQSFKscS9iC+t7PR0TkzIsD2Bhk/Hf7czGPs45zC3MKVwt9eGni29pDs/ZwPnNhyhcsxyWD6mPSF6wsbUBUntFPijxXg9i2ww+jx43LjPs8tnjWzt1KHmlmlWZ9uE41n8fRKWaVR7reCJ5ydYm9VrJaL2FtHs5+wyulceJuxsdzbjZszl59iyNXniBzi1bZq/yIvJUeS6/rX366acEBgZSsWJFqlatSps2bahWrRqffvppugRjRk+B0hIv5ubmhqRfly5dCHhIN/UyZcpkq76L7w177NOnj9H2YsWKMXjwYGxsbPjyyy/5888/adq0aYbHOHDgAL1798be3h4/Pz/at29PxYoVuXjxIv/73//SlX9Yu7MyDCYzatSoQbFixdiwYQPt27dnw4YN+Pj4ZJjMyq6oqCguXbrESy+9lK3jpCULZ86cmakb1wdfs6zGm//LRNNpx3vUE8usnjOzHmxbXFwcb7zxBsePH6dOnTrUrVuXnj17Urt2baPXPSt1/vTTTynxkKG9jhnMhyNPxm9//MHMwECjba81b469nR23HlhcCzBsK/iQ35m9nV2WYmPj4pg4dy5HgoOpXqkSw3r3NkpA/nX8OADjM+iF/tvBg/x28CAfvf02lfSkXvLYjSPnOblil9E298ZVsLCzIv5O+vnA4iNTHxZkNBclgKWtdaZiM1vuYczMzHDxKcWdC9eIuX6bAiVcHlpW5ElzLFQQgMjbken2RUbcwdbeDut7CcqciMsqK2srvKtUYu+WX7kbGUW+AvmzfUyRJ8mlYOq1EvGQ+zZ7OztDgjI7cbcjI/m/r7/m/OXLBLz4In06dcqVntAiYrqeu6RlSEgIgYGBtGnThvHjxxvtu3HjRrryYWFhpKSkGP1xPH/+PADu7u64uroCqckbPz8/o9jTp09z+fJl7OyyN9/Tli1bOHz4MG+88YbRMOE05cqVAx795Hfq1KnY2tqybt06o95xs2bNyrB8SEgIZe/7Mp825N3d3f1xm5EhMzMzXnnlFRYuXEhoaCgHDx40mlM0J23cuJGUlBTD6uqPK603btGiRalQoYLRvh07dpA//6NvPLMb/6CiRYsCqT0TPTw8DNvj4+N5//33adWqVY6f82E2bNjA0aNH+fzzz3nttdcM269evfrQOj9o5MiRVK9e3VBnZ2fndNfWvn37SE5OztZcsZI9lcuXZ/SgQUbbCru4cPzMmQxXjDx/+TKFXV2NFsl50MNWm3wwNikpiUnz53MkOJgXqlVjcPfu6XpMtg4IoF7NmumO9fmMGVQuX55WjRtT6oGe9SJ5walMMXx6Ga8sbOtcgNvnrxIVmn7hqrthN7EtVAAru4cnTvIXK5Sp2MyUS4yJ59DXP+LiUxqPpjWMyiXFpfaKMbfK2QeaItllZ2+Hk4szYRfSrxIeevEyxUunX7k4O3EPcz3sKosmzaZec3/q+Ncz2hcXGwtmZlhmMK+siKnLZ2+Pa6FCnLuc/lo5d+kSXg/5zpiVuJjYWEPC8pVGjehx3xoIIvL8eO7mtEybO/HB3o87duzg/Pnz6ebIu3nzJlu3bjX8HB0dzdKlSylevDgVKlTAzc0NHx8fgoKCjBIzCQkJjBo1irfffjvb8+61atWK6Ohoxo0bl24Yd3JyMsuXL8fBwYFatWoB//R+u79s2rDo+xOWkZGRBAUFARh6jKZZvny50c/z588HyFbCz9zcPF39IbV9CQkJTJgwgZSUFJo3b/7Y53iYa9euMXXqVAoXLpztoeeNGjUCYPbs2UarqR8/fpyBAweycOHCXI1/kJ+fH1ZWVvzwww9Gx9u4cSMbN27MlXM+TMS9FQEfvL4WLVoEYLgWfHx8cHZ2ZtWqVUbDQw4ePMiqVauIjo7Gz88PGxsb5s2bZ7S6/dWrV3nzzTeNFjeSJ8/Z0ZHK5csb/VfYxYU6VaoQevUqh0+cMJQNuXqVoydP8mL16o88ZmZjV27cyF/Hj1O7alWGPDD/bpoSRYqkq1/le/PBFrxX90clUEWeFBsHewqWKWb0n51zAVwqlSLm+m1unQ41lI2+HkHEmTBcK3s84ohkOjYz5SztrDG3tODqH6dJiPlnmoXEmHiuHDiFjXN+7N2csvsyiOS4SjWqcObvYK6H/XN/fvpYMDevXMO3zsM/jx43LiPObi7ExsTw+y+/kXTf94FbN8I5duAvSnt7YZODI2BEnqQ6VapwJDiYkPu+Ax8+cYKwa9fwq1Ej23Hzf/iB85cv0/yll5SwFHmOPbOP9iZPnky+fOnXHWvSpAnFihVj1qxZxMXFUaRIEQ4fPkxQUBA2NjaGuffSODo6Mnz4cHr06IGTkxMrV64kLCyMGTNmGIbtjhkzhh49etC+fXtef/11nJycWLduHX/99RfvvvsuBe91g39c7dq1Y+fOnSxbtoxDhw7RrFkzihQpws2bN9mwYQPBwcF8+eWXhl6YTk5OmJubs3XrVooVK8bLL79MgwYNmDt3LkOGDKFevXpcv36dFStWGHqXPtjuAwcO8Oabb9KwYUP++OMPVq9eTfPmzalbt+5jt8PZ2Znff/+dBQsWUKNGDapUSZ3Dp3z58pQtW5b169dTp06dR87LmRlbtmwxvOZxcXGcPXuW1atXExcXx9y5c7M9PLpcuXJ069aNxYsXExERQUBAABEREQQGBpIvXz6GDBmSq/EPKlSoEIMGDWLKlCn06tWLgIAArly5QmBgIHXq1MHf3x9zc/McPefD+Pn5YWlpyfDhw+nSpQuWlpZs376dXbt2YWVlZXifWVtbM2LECD744ANef/11Wrduzd27d1m0aBFeXl506NABe3t7hg0bxtixY+nUqROtW7cmMTGRJUuWEBcXxwcffJAjdZac5V+3Lht//ZXJCxbQqnFjbKyt+XHrVgo6OvLKveQ5pA4LOnziBKWKFzf0eMxMbOTdu6zduhVLCwt8y5Vj14ED6epQu0qVDIckiTxNitQsR+ieExxfup0S9X2wsLLk8s6jWDvYU/zFSoZy8VEx3DoVSv6iBclXxDlLsZkt59X6BY7M38Rfs9dTtFY5kpOSubI/mPjIGCr1DNADJDFJ9Zv78+dvv/PNhBm82LQRiQkJ7Nq4nWKlS1LlhdTESPi1G1w8fQ73Mh44u7lkOi6zLCwsaPFGO1bO+45546ZRtW5Nou9Gs2/rTszNzWn5Rvscb7fIk9I6IIBf9+/n02nTaOnvT3xCAj9u3Yqnuzv17412uXrjBsFnz+Lt6UlhF5dMx12+coWdv/+OvZ0dpUuU4Nf9+9Odv0Ht2k+usSKSZ57ZpOVPP/2U4XZPT0/mzJnDuHHjWLRoESkpKbi7uzNq1CgSExP5/PPPOXr0KD4+PgB4eXnRtWtXvvrqK8LCwihXrhyzZ8+mfv36hmNWq1aNpUuXMm3aNL755hsSExPx8PBg3LhxtG3bNtttMTc3Z8qUKaxZs4Y1a9YQGBhIZGQkjo6O1KhRg//+97+GxUsA7OzsGDp0KPPnz+ezzz7D3d2dwYMHk5SUxPr169m+fTtubm74+fnRq1cvWrRowd69e2nSpInhGJMnT2b+/Pl8/vnnODk5MXDgQAY9MBQ0q/r06UNwcDCTJk2iXbt2hqQlpPa2nDRpEi1zYGLlsWPHGv5tZWVF4cKF8ff3p2/fvkbDp7Nj9OjReHp68v333/PFF19QoEABatasyZAhQ4xWaM+t+AcNHDgQV1dXFi1axLhx43B1daVjx44MHjzYkFzP6XNmpFy5ckydOpXp06czadIk8uXLR9myZfnmm29YsmQJ+/fvJyEhASsrK9q0aUOBAgWYNWsWX375JQ4ODjRq1Ih3333XkIDv2bMnhQsX5ptvvmHy5MnY2tpSqVIlJkyYQI1HPMGVvGNlZcWHgwezOCiItVu2YG5uTsWyZeneti0F7nuQFHL1KjMWL+a15s0NScvMxJ6+cMHQ83b+Dz9kWIcKXl5KWspTz9zSAt/eTTm3/ncu/3oUMzMzHD2L4Nm8Flb2/7y/o69FcHL5TtwbVzEkLTMbm9lyTh5F8PlPEy5u/ZPzP/8BZmY4li5M+c4vaS5LMVn5HArQZ+TbrF8axNbVG7C2tqZCNV+admiF5b0FCM+fPEvQgiW07fWGIWmZmbisqOpXC0srS35dv5UNy1ZjZWODV4WyBLRrgUsRLSYoTy/HAgX47zvvsHDVKn5Yvx4bKytqVa5MlzZtDIt8Hj9zhpmBgQzs2tWQtMxU3OnTAETHxKSbQz2NkpYizwezlPvHiorkkTlz5jBt2jR27dqlxVUk1905fDivqyDyTOh3c2NeV0HkmdHHK+MFHUUka2pHPLP9ckSeKIf7OkY9K0z5e+Cz+HrnhOduTksxPfHx8axatYqAgAAlLEVERERERERE5NkdHm7KkpKSCA9Pv1pnRgoUKJDtORhN1dWrVxk7diynT5/mwoULTJgwwWh/bGwskZGRmTqWs7OzYQEieTx3794lOjo6U2VdXV1zuTYiIiIiIiIi8jxT0jIPhIWFZXoV7rFjx9LuGV0tzdHRkQMHDpCYmMjHH3+Mr6+v0f7169czcuTITB1r69atlChRIjeq+dxYsGAB06dPz1TZ4ODgXK6NiIiIiIiIiDzPlLTMA66urnzzzTeZKlumTJlcrk3esbW1ZdeuXQ/dX69evUy/Tur5l32vvvqqFrcREREREREREZOgpGUesLGxwc/PL6+rYfLc3Nxwc9Oqik9KyZIlKVmyZF5XQ0REREREREREC/GIiIiIiIiIiIiIaVHSUkREREREREREREyKkpYiIiIiIiIiIiJiUpS0FBEREREREREREZOipKWIiIiIiIiIiIiYFCUtRURERERERERExKQoaSkiIiIiIiIiIiImRUlLERERERERERERMSlKWoqIiIiIiIiIiIhJUdJSRERERERERERETIplXldARORJ63dzY15XQURExMi8M1vyugoizwavgLyugcgzQVeSmAL1tBQRERERERERERGToqSliIiIiIiIiIiImBQlLUVERERERERERMSkKGkpIiIiIiIiIiIiJkVJSxERERERERERETEpSlqKiIiIiIiIiIiISVHSUkREREREREREREyKkpYiIiIiIiIiIiJiUpS0FBEREREREREREZOipKWIiIiIiIiIiIiYFCUtRURERERERERExKQoaSkiIiIiIiIiIiImRUlLERERERERERERMSmWWSk8YsQIgoKC2Lp1KyVKlMjWibt160ZISAjbtm3L1nFy6njr169n6dKlnDhxgri4OIoUKUKDBg3o168fbm5uRmWTk5MJDQ3N8muwatUqRo4cyaJFi6hTp85Dy+3bt4/u3bszduxY2rVrl+7ny5cv07hxY9566y0GDx5siLt06RIlS5bMWsMzKe13fz8rKysKFSpE7dq16devH2XLljXan9Hv5Ntvv2XevHncuXOH7t2707dvX0aMGMGePXuwsrJi4cKFVKxYMVfaIP/uwIEDTJgwgZMnT1K8eHGGDBlCkyZN8rpa8pSJj4rh3MYD3DoZQnJCIo6eRfFsURs75wK5Envxl7+48vtJar/fId2+qNCbnNt4gMiQG5iZm+PsXQKPZjWxzm+XrTaK5KbY8EjObvid22evAOBcvgQezWv96/v2ceJOBf1GzI3bVO7bPN2+iDNhXNhyiKiwcCxtrXDxKU3pl6tjYW2VjdaJ5C1Tub5EngW3rt9kw7I1nAs+DYB35Yo079SGfA6PvufLbNzZ46fYGrSesEsh2NrZ4lOrKgFtW2Bta5M7DRIRk5OlpOWzavLkycyaNYuXXnqJQYMGYWtry6lTp1ixYgXr1q1j2bJluLu7AxAVFUXPnj1p2LChUcIwJ3l5eTF+/HiqV6+e4X5nZ2fGjx+Pt7e3YdvXX39NUFAQmzdvzpU6pRk5ciQFCxYEICYmhosXL7Jy5Uo2bdrE3LlzjZKxAwYMICYmxvBzcHAwY8eOpWrVqgwZMoTy5csza9Ystm3bRs+ePfH09KR06dK5Wn95uDNnztCrVy98fX0ZPnw469at4+2332bZsmVUrlw5r6snT4nkxCSOLdxCzI3bFK9XCQsba0J2HeXw3A1UH9wGK/uH32Q+Tmz4yRAubv0La4f0Xxqjr0Xw15z1WDvYU8q/Gklx8VzefYw7F69R/a3WSryISUqIjuPw/I2kJCVTooEPKSkpXN55lLtXblH1zZaYW1jkWNyVAye58vtJHD0Kp9sXcSaMIws2kb94ITya1SDudjShv/1NVMhNKvdrjpmZWY63XSS3mcr1JfIsiI66y4LxM0hKSqR+M39SUpLZtXE7Vy+HMuDDYVhYZpxqyGzc2eOn+Gbi1xQvVZKmr7Xi9q0I9mz+lZBzl+gz8m19Dok8J577pGVYWBhz586lW7dujBkzxmhfy5Yt6dKlC5MmTWLKlCkAREREcOTIERo2bJhrdXJxcaFNmzYP3W9vb59u/549e0hKSsq1OqUJCAhI18O0W7dutG/fnnfeeYctW7aQL18+AF588UWjcidPngSgf//++Pv7A6kJYycnJ0aOHJnrdZdHW7t2LXFxcUybNg1nZ2eaNGnCiy++yIYNG5S0lEy7eug0USE38en1MgXLFAPA2bs4f0xdQ8iuY5R+OeOHMY8TG7Y/mDM/7iMlKTnD453fcggzc3Oq9G2OdQF7APIXd+HYwi1c/eMMxV4onxNNFslRIbuOEXc7mhpvt8HezQmAAiVcObrgZ67+cZqitbyzHZeSnMylXw5zYeufD63H2Q2/Y+OUj8p9m2NhlXq7aOOYjzNr93LrVAjO5bI34kYkL5jK9SXyLNj98y/cvhXBW/8bjluxIgAU9yjFwi9n8sfu/dRq6JetuI0/rMHJuSC9RwzG6t6DZkfngvwUuIJTR09QzrfCE2iliOS1535Oy7/++oukpKR0CTaAatWqUblyZf78888nX7GnSNGiRfnggw8IDw9n5cqVDy2XkJAAYEhqpm27/2fJO2m9YkNCQgCIjY0FwNraOs/qJE+f64fPYVuogCHpCGDv6oSTV1GuHz6bY7FHFmzi9Oo9OHkVIV8x5wyPZ25ujltVL0PCEjD0eLl79VaW2ybyJFw/fBYnjyKGxAhAwTLFsHN14Prhc9mOS0pI5I/pP3Jhy5+p14ejfbpjJSUkYp3fliK1yhkSlnDf9RMWno0WiuQdU7i+RJ4VR/b9gYd3GUPiEaBMJW8KFXHjyL5D2YpLiE8gX4H81Gz4giFhCeDh7QXAlYshOd0cETFRuZK03LBhA127dqVGjRr4+Pjg7+/P+PHjiY+PT1d227ZttGjRAl9fX1q1asXatWvTlTl9+jSDBg2iZs2aVKlShc6dO7Nz584cqWtawiwoKCjD+i1atIhffvkFSJ1rsnHjxgBMnz4db29vLl++DMCFCxf44IMPaNCgAT4+PtSuXZsBAwZw6tSpdMe8du0agwYNomrVqvj5+fHpp58SFRVl2L9v3z68vb1ZtWpVhnW+fPky3t7eTJs2DQB/f3/2799PSEiIYfuwYcPw8fHhzp07RrGRkZH4+vryxRdfZPGVerRmzZphbW1t9Hvp1q2boUdlt27dDL0pu3fvjre3N97e3kb1HjFihCF21apVvPrqq/j6+vLCCy8wYsQIrl27lu41+Pbbb3n99dfx8fGhZ8+eWY5fvXo1kydPpkGDBvj6+tKhQwf27t2brn1r1qyhffv2VK1alQYNGvDRRx8RHm78pe3fzpkVoaGhDB48mHr16uHr68srr7zC3LlzSU427lF26NAh/vOf/1CtWjWqVatGr169OHz4sGH/r7/+ire3N0OGDDGK+/DDD/H29ubXX381bGvevLlh36VLl3jvvfewsbGhbdu26ern7+/PmDFjGDVqFJUrV6ZBgwaEh4eTkpLC0qVLee2116hWrRq+vr40a9aMOXPmkJKSYnSMv/76i759+1KzZk3q1KlDv379CA4OzlL7xPREhd4kf7FC6bbnK1aI2PAoEmLiciQ2NiIKr9YvUKlHEyxtMh7mXb5zQ8q0fsFoW1qyxdZRD0vE9CTExBEbHkX+4umvg/xFCxEVejPbcSmJySTFxVP+9YZ4d6iPmXn64XUWVpb49HwZ95eqGG1Pu35snPJnqV0ipsBUri+RZ0HM3WhuXb9JsdLpe90Xcy9B2MXL2Yqzsraix7ABNGz5slGZsHvJSieXjB9Yi8izJ8eTlsuXL+edd96hQIECvPfeewwfPpzixYszf/58wxDrNNevX+ftt9+mTp06DB8+HBsbG95//32jZF1wcDCdOnXi9OnT9O/fn6FDh5KYmEi/fv1Yv359tutbp04dSpQowaZNm2jUqBH//e9/2bJlC7dv3waMe5l5eXkZEm9NmjRh/PjxODs7c+PGDTp27MiBAwfo2rUrH3/8MS1btmTXrl306tXL0MMwzUcffcStW7d49913ady4Md999x1vvvlmuqROZo0aNQpPT08KFizI+PHjadKkCS1btiQhIYEtW7YYlf3555+Jj4+nVatWj3Wuh7GxscHd3Z0TJ05kuH/AgAF06tTJ8O9x48Yxfvx4o3qn7Z8+fTojR47E3d2dkSNH0qlTJzZv3kznzp3TJQq/+uorihUrxqhRowxtymr85s2b6dWrF2+//TaXL1+mf//+3Lr1Ty+suXPnGt6fw4YNo23btqxdu5b+/fuTmJiY5XP+m4SEBPr06cOxY8fo2bMnH374IR4eHkycOJE5c+YYyu3evZtu3boRGRnJkCFDGDhwIKGhoXTp0oUDBw4A0KBBA9q2bcvGjRsNCeVdu3bxww8/0LlzZxo0aGA4XrVq1ejatSvHjx/n5Zdf5vz588ycOfOh84yuW7eO4OBgRo0aRceOHXF2dmbKlCl88sknlClThpEjRzJs2DBsbGz48ssvWbJkiSH2wIEDdOnShTNnztCnTx8GDhzI6dOn6d69u+FBQGbaJ6YlKT6BpJgErB3S9yxJW6ggLuJujsTWGPIqxV4on+n5jOLuRHPj6HlO/PAr1g52FK5Z9t+DRJ6w+NvRABlfBw52JMUkkBiT/gFrVuIsbK2oOaw9rr4ema5X7K0orv5xmjM/7ce+sBOFKrpnOlbEVJjq9SXyNLpzK/W7skNBp3T7Cjg5EBsdQ0x0TLp9jxt360Y4f+zaz7olq3ArXpQK1Xyz1wAReWrk+JyWCxYsoFq1anz99deGL5NvvPEGjRs3ZufOnQwfPtxQNj4+no8++oguXboA0KlTJ9q0acOXX35J69atsbS05LPPPsPZ2ZmgoCDs7VNvFrp27UqPHj34/PPPCQgIyNbwVWtra+bNm8ewYcP4+++/WbJkCUuWLMHCwoKaNWvSr18/6tWrB6TONRkQEMDYsWPx9vY2zCsZGBjI7du3WbJkCV5eXoZj58uXjzlz5nDy5EkqVapk2O7t7c2iRYuwvDfJcOHChZk2bRrbt2839EzMioCAABYuXEhcXJyhTl5eXjg5ObFhwwbatWtnKLt+/Xo8PT1zZYVuBwcHLl68mOG+F198katXr7Js2TL8/PwMC/asWLHCqN6XLl1ixowZ9OvXj3fffdcQ36JFC9q1a8esWbMYNWqUYXvRokWZOHGi4b2W1fiUlBRWrFhheG8VL16coUOHsnnzZjp27Mjt27eZNm0a9evXZ/bs2Vjcm2i9RIkSjBkzht27d+Pp6Zmlc/6b48ePc+bMGb766iuaNWsGQIcOHejTpw/nzqUOQUpOTubjjz/G19eXwMBAQ726du3Kq6++ymeffcbq1auB1MWTdu3axaeffsqyZcv48MMPKVWqFB988IHReU+fPs3x48cNx3/zzTcznDYhTWxsLF9//TWFC6cOF0xISCAwMJAWLVowbtw4Q7kOHTpQt25ddu7cabjWv/jiC5ycnFi5cqVhYaeGDRvyyiuvsGTJEt57771Mt09MR2Js6gOa+4eTpknblhyfkG7f48Q+bLGEhzk4eRVJcYlgboZ3h/paPVxMUlL8w68D83v3DEkJiVjaWT92nJmZGWYWme/9lRAdx+8TVqQey9oCr1Z1MjyPiKkzxetL5GkVd28aKasMFjW0vLctIT4eO3u7bMdFR91l0vD/3YuzpmWXdhnGi8izKcd7Wq5du5Y5c+YY9X65efMmDg4OREdHG5V1cHAw9K6D1ARip06duHHjBkePHuXWrVvs37+fhg0bEhsbS3h4OOHh4dy5c4cmTZpw48YNjhw5ku06e3h4sGrVKhYtWkT37t3x8vIiKSmJffv20bt3b6PebRnp168fu3fvNkpYxsbGYm6e+vI+2O6ePXsaEpaQOnQaMAxDzwlWVlY0bdqUPXv2GHqNhoeHs3fvXlq0aJFj57lfYmJitldx27x5M8nJyfj7+xt+3+Hh4bi4uFChQoV0r1HNmjWNzpnV+IYNGxoSlgDly6cuzHH9+nUAfvvtN+Li4ujSpYshcQbQunVrVq1aRe3atbN8zn/j5uaGmZkZs2fPZufOncTHx2NmZsb8+fMNw/r//vtvLl26REBAALdv3zacMzY2lkaNGnH8+HGuXr0KgKOjI5988gkXLlygQ4cOXL16lXHjxhm1+6+//qJTp05cuHCB//u//6NAgQJMnjyZM2fOALB48WL+/vtvo3q6u7sbEpaQ+p777bff+N///mdU7tatW+TPn99wHdy8eZPDhw/TqlUrQ8ISUq/DlStX0rdv3yy1T0zQo/4M/NvfiOzEPkRyUjJeretSvnNDnLyKErzsV0J2H3usY4nkqrQRF1l9qz9uXGaYpU61UK5DfezdnDiy4GduHD2fCycSyWWmeH2JPKUMl0UW780eJ87MzIyOA3rQvk8X3IoV4ZuJMzl24K8snVdEnl45/qjcysqK33//nZ9++omzZ89y8eJFbt5MneulePHiRmVLlixplLxL2wapi4GkJf0WL17M4sWLMzxfWFhYjtTbzMyMOnXqGHoAhoaGsnLlSmbPns1XX31FmzZtjBI0D0pISGDy5MkcO3aMixcvcvnyZcNq3g/OQ+jp6Wn0s6OjI46OjoYFUHJK69atWbZsGVu2bKF9+/Zs3LiRxMTEHB8aniYiIgJn5+zNL5LWU7Nz584Z7reyMn6q9uD5shuf1ms37XeW9jspVaqUUTkbGxtD79msnvPfFClShPfff59JkybRp08f7O3tqVu3Lq+88grNmzfHwsLCcM7x48czfvz4DI8TGhpqeM8GBATw8ssv8/PPP/P6669Tvfo/qzAnJSUxYsQIUlJSWLRoEV5eXjg4OPDWW2/xzjvv8Pnnn/PZZ5/Ro0cPox66hQqln9vJysqKX375ha1bt3Lu3DkuXLhgSJqnTX/wsNcUMBx/z549WWqfPHlJCYkkxRoPo7OwvtcjMjEpw/IAFg+ZfzI7sf/G3MKcwtVSHyq5+Jbm8JwNnN98iMI1yz10PkyRvJD2Hk9OSH8dJN+bjsTSNv179nHjMsPKzgbXyqlDXV18SvHHV6s5s24/Lj6lH+t4InnFFK8vkaeVja0NkNor8kGJ93on29ra5kicXT57fGtXA6BSzapM+3Ac678PolLNKumOISLPnhxPWn766acEBgZSsWJFqlatSps2bahWrRqffvppugRjRk9Y0hIb5ubmhqRfly5dCAgIyPB8ZcqUyVZ9Fy9eTFxcHH369DHaXqxYMQYPHmyYj+/PP/+kadOmGR7jwIED9O7dG3t7e/z8/Gjfvj0VK1bk4sWL6XqdwcPbbZHF4Y7/pkaNGhQrVowNGzbQvn17NmzYgI+PT4bJouyKiori0qVLvPTSS9k6TlqycObMmRl+0D3owdcsq/FpifF/q8+jngZm9ZyZ0bt3b1q2bMnmzZvZsWMHu3fvZuvWraxevZp58+YZzjlkyBCqVq2a4THuT45HR0cbekru2rWL6OhoQ0/Lc+fOcfbsWTp16mToLdykSRN69uzJt99+S9++fQHSvf8ffO1TUlJ488032b59OzVq1KBatWp06tSJWrVq0aNHD0O5rLymmW2fPHk3jpzn5IpdRtvcG1fBws6K+DvR6crHR6bOT5TRnGAAlrbWjx2bFWZmZrj4lOLOhWvEXL9NgRIu2T6mSE6xcUxd4CbtPX+/+DsxWNhZYZHBkLjHjcsqCytLnMuXJPS34yTcjcUqX8585ok8CaZ+fYk8TRwLpY6WirwdmW5fZMQdbO3tsL6XoMyJuDRW1lZ4V6nE3i2/cjcyinwFtDCcyLMuR5OWISEhBAYG0qZNm3S9o27cuJGufFhYGCkpKUbJi/PnzwOpQ09dXV2B1OSIn5+fUezp06e5fPkydnbZm5dsy5YtHD58mDfeeMNouGyacuXKARk/KUozdepUbG1tWbdunVHPvVmzZmVYPiQkhLJl/1kEIm3Iu7t7zk5sb2ZmxiuvvMLChQsJDQ3l4MGDRnOK5qSNGzeSkpJiWF39caX1xi1atCgVKlQw2rdjxw7y53/0B1N24x9UtGhRILU3pYfHP5Oqx8fH8/7779OqVascP2dERAQnTpygevXqdO3ala5duxIdHc2IESPYtGkTwcHBhnOmJcrvd/jwYW7fvm30np00aRIhISEMHz6cCRMmMGnSJMaMGQMYPyi433vvvceff/7Jn3/+iY+PDzVq1HhkvQ8cOMD27dt58803jVYrT0xMJCIiwtCL+v7X9EETJkzA0dGRWrVqZal98uQ5lSmGTy/jFR1tnQtw+/xVokLTLz51N+wmtoUKYGX38BvR/MUKPXbsgxJj4jn09Y+4+JTGo6nxezcpLvVJvrlVzj4oEskuSztrbJzzZ7iKcVTYTQoUzzjJ/rhxDxN9PYKj326mRH1fir1Q3mhfUlwCmIGZpa4febqYyvUl8iyws7fDycWZsAvpVwkPvXiZ4qVLZivuethVFk2aTb3m/tTxr2dULi42FszMsNT8yiLPhRyd0zJtGOiDvR937NjB+fPnDSstp7l58yZbt241/BwdHc3SpUspXrw4FSpUwM3NDR8fH4KCgozmr0tISGDUqFG8/fbb6Y6ZVa1atSI6Oppx48alG8adnJzM8uXLcXBwMCRR0nqX3V82bVj0/QnLyMhIgoKCAAw9RtMsX77c6Of58+cDZCvhZ25unq7+kNq+hIQEJkyYQEpKCs2bN3/sczzMtWvXmDp1KoULF8720PNGjRoBMHv2bKPV1I8fP87AgQNZuHBhrsY/yM/PDysrK3744Qej423cuJGNGzfmyjl3795Njx492LZtm2Gbvb29IYFuYWGBj48Prq6uLF68mLt3/1lROSoqinfeeYeRI0ca3qsHDx7ku+++o2PHjvTu3Zv27dvz3XffGVbg9vDwwM3NjQ0bNhAREWE4VmRkJFFRUQAEBwf/64rdabEPXv8//PADMTExhmu1cOHClC9fnnXr1hmOD6mLKC1atIgbN25kqX2SN2wc7ClYppjRf3bOBXCpVIqY67e5dTrUUDb6egQRZ8IMQ0wfJjuxD7K0s8bc0oKrf5wmISbOsD0xJp4rB05h45wfezenLB1T5ElwqVSKiDOhRF+PMGy7dTqUmOt3HnkdPG5cRmydHUiMjSdsfzDJ993DxN6K4sbR8zh6FNHUCvJUMoXrS+RZUalGFc78Hcz1sH++p58+FszNK9fwrVM9W3HObi7ExsTw+y+/kXTf9/1bN8I5duAvSnt7YaMODCLPhcd6PDF58mTy5cuXbnuTJk0oVqwYs2bNIi4ujiJFinD48GGCgoKwsbExSj5A6lyOw4cPp0ePHoaVhMPCwpgxY4ah19eYMWPo0aMH7du35/XXX8fJyYl169bx119/8e677xot5PE42rVrx86dO1m2bBmHDh2iWbNmFClShJs3b7JhwwaCg4P58ssvDb0wnZycMDc3Z+vWrRQrVoyXX36ZBg0aMHfuXIYMGUK9evW4fv06K1asMPQufbDdBw4c4M0336Rhw4b88ccfrF69mubNm1O3bt3HboezszO///47CxYsoEaNGlSpkjrHR/ny5Slbtizr16+nTp062Z4DcMuWLYbXPC4ujrNnz7J69Wri4uKYO3dutnu/lStXjm7durF48WIiIiIICAggIiKCwMBA8uXLZ9SDLzfiH1SoUCEGDRrElClT6NWrFwEBAVy5coXAwEDq1KmDv78/5ubmOXrORo0a4eHhwejRozl27Bju7u6cPXuW7777jrp16xqSgmPGjGHo0KG0a9eO1157DRsbG5YvX05oaCgTJ07E0tKSuLg4Ro8ejbOzM++99x6Q2oNyy5YtjB49mrVr12JjY8OYMWMYMmQIr7/+Op06deLu3bssXbqUyMhIRo8ezdSpU+nXrx8zZ840zPv6oGrVqpE/f37Gjh1LSEgIjo6O7Nu3j/Xr16e7/keOHEmfPn1o3749HTp0wNzcnMDAQBwcHOjbty9WVlaZap+YniI1yxG65wTHl26nRH0fLKwsubzzKNYO9hR/sZKhXHxUDLdOhZK/aEHyFXHOUmxmebV+gSPzN/HX7PUUrVWO5KRkruwPJj4yhko9A7K9cJhIbihR34drh85wZP4mitfzITkxkcs7j5K/eCHcqqZO4RETHsmdC9dwKOWGnXOBTMdllrmFOV4tX+Dk8p0cnrMBt2peJEbHEbr3BJib4dUy488BEVNnCteXyLOifnN//vztd76ZMIMXmzYiMSGBXRu3U6x0Saq8kDrKJfzaDS6ePod7GQ+c3VwyHWdhYUGLN9qxct53zBs3jap1axJ9N5p9W3dibm5Oyzfa51m7ReTJeqxv/T/99FOG2z09PZkzZw7jxo1j0aJFpKSk4O7uzqhRo0hMTOTzzz/n6NGj+Pj4AODl5UXXrl356quvCAsLo1y5csyePZv69esbjlmtWjWWLl3KtGnT+Oabb0hMTMTDw4Nx48bRtm3bx6m+EXNzc6ZMmcKaNWtYs2YNgYGBREZG4ujoSI0aNfjvf/9L5cqVDeXt7OwYOnQo8+fP57PPPsPd3Z3BgweTlJTE+vXr2b59O25ubvj5+dGrVy9atGjB3r17adKkieEYkydPZv78+Xz++ec4OTkxcOBABg0alK129OnTh+DgYCZNmkS7du0MSUtI7W05adIkWrZsma1zAIwdO9bwbysrKwoXLoy/vz99+/Y1Gj6dHaNHj8bT05Pvv/+eL774ggIFClCzZk2GDBlitEJ7bsU/aODAgbi6urJo0SLGjRuHq6srHTt2ZPDgwYbkek6e097engULFjB16lR+/PFHbty4gaurK2+88QZvvfWWoVyzZs1wdHRk5syZfP3115ibm1O2bFlmzpxp6P05bdo0zp07x4QJE3BwcACgYMGCvP/++4wePZopU6bwwQcf0LRpU2bOnMnMmTOZNGkStra2vPDCC4b6V65cmdGjR1OkSJGH1tvFxYU5c+YwceJEZs6cibW1NR4eHkyaNInDhw8belG6uLjwwgsvsHDhQqZOncqMGTOwsbGhVq1avP/++4ZpITLTPjE95pYW+PZuyrn1v3P516OYmZnh6FkEz+a1sLL/Z3h39LUITi7fiXvjKoakZWZjM8vJowg+/2nCxa1/cv7nP8DMDMfShSnf+SXNZSkmyzq/HZX7Nufsuv1c2HIIC2tLClVwx6NZTczvDcm+c/4qJ1fsotxr9QxJlczEZUXhal6YW5pzaccRzq77HQtrS5y8ilKqSXXsXR1ztM0iT4qpXF8iz4J8DgXoM/Jt1i8NYuvqDVhbW1Ohmi9NO7TC8t5CpOdPniVowRLa9nrDkLTMTBxAVb9aWFpZ8uv6rWxYthorGxu8KpQloF0LXIq45UmbReTJM0u5fzyrPJPmzJnDtGnT2LVrF46O+qIhj+fB+WefZp23Z7wiuYiIiIg83fp4ZbyAq4hkTYD7w4f5P63uHD6c11V4KIf7OsvJP3J0TksxPfHx8axatYqAgAAlLCVbnpWEpYiIiIiIiIiYvmduUrikpCTCw9OvPpuRAgUKPLMrEF+9epWxY8dy+vRpLly4wIQJE4z2x8bGEhkZmaljOTs7a9GTbLp79y7R0dGZKps2PFpERERERERE5Hn1zCUtw8LCMr0K99ixY2nXrl0u1yhvODo6cuDAARITE/n444/x9fU12r9+/XpGjhyZqWNt3bqVEiVK5EY1nxsLFixg+vTpmSobHBycy7URERERERERETFtz1zS0tXVlW+++SZTZdNWYX4W2drasmvXrofur1evXqZfJ/X8y75XX32VGjVq5HU1RERERERERESeCs9c0tLGxgY/P7+8robJc3Nzw81Nq649KSVLlqRkyZJ5XQ0RERERERERkaeCFuIRERERERERERERk6KkpYiIiIiIiIiIiJgUJS1FRERERERERETEpChpKSIiIiIiIiIiIiZFSUsRERERERERERExKUpaioiIiIiIiIiIiElR0lJERERERERERERMipKWIiIiIiIiIiIiYlKUtBQRERERERERERGTYpnXFRAREREREREREXleNW7c+JH7t27d+oRqYlqUtBQRERERyWN9vALyugoiz4R5Z7bkdRVEngkB7tXzugoiSlqKiIiIiIiIiIjklee1J+W/0ZyWIiIiIiIiIiIiYlKUtBQRERERERERERGToqSliIiIiIiIiIiImBQlLUVERERERERERMSkKGkpIiIiIiIiIiIiJkVJSxERERERERERETEpSlqKiIiIiIiIiIiISVHSUkREREREREREREyKkpYiIiIiIiIiIiJiUpS0FBEREREREREREZOipKWIiIiIiIiIiIiYFCUtRURERERERERExKRY5nUF5Om3atUqRo4cydixY2nXrp1h+507d1i2bBnr16/n4sWLWFpa4uHhQfv27WnTpg3W1tZGxxkxYgRBQUHpjm9tbY2Liwt169Zl2LBhuLi4ZLmOGR3bysqKQoUKUbt2bfr160fZsmWN9nfr1o2QkBC2bdtm2Pbtt98yb9487ty5Q/fu3enbty8jRoxgz549WFlZsXDhQipWrJjl+ok8T2LDIzm74Xdun70CgHP5Eng0r4V1frtciRN52uT2NfI4xz8V9BsxN25TuW/z7DRNJE/cvRPJpuU/cvLw3yQkJOBZvizNO7+Ks9u/31M+TuyOn37mwI69vDvho3T7Lp+9wNbVG7h4+hzJSckUKVmMl1o3xbuy7h/l2aD7PBHJSUpaSq44deoUAwYM4OrVq7Rq1YpOnToRGxvL3r17+fDDD1m+fDkzZszA1dU1XezIkSMpWLCg4eeoqCj27NnDypUrOXr0KCtWrEiX8Mys+48dExPDxYsXWblyJZs2bWLu3LnUqVPHUHbAgAHExMQYfg4ODmbs2LFUrVqVIUOGUL58eWbNmsW2bdvo2bMnnp6elC5d+rHqJfK8SIiO4/D8jaQkJVOigQ8pKSlc3nmUu1duUfXNlphbWORonMjTJrevkcc5/pUDJ7ny+0kcPQrnattFckNiQgKLpszhxpVrvPjyS9jY2bJ703bmj5/OoE/exz5/vhyNPXXkONvXbqKAo2O6fTeuXGP+F9PJVyA/DVs0wdLaikO79hH41Vxef/M/VKxROUfbLvKk6T5PRHKakpaS4+7evUv//v2Ji4tjxYoVlC9f3rCvZ8+ebN++nXfeeYfBgwezZMkSzM2NZykICAigRIkSRtu6dOnCJ598wtKlS9myZQuvvPLKY9Uto2N369aN9u3b884777Blyxby5Uu9AX3xxReNyp08eRKA/v374+/vD8DkyZNxcnJi5MiRj1UfkedNyK5jxN2OpsbbbbB3cwKgQAlXji74mat/nKZoLe8cjRN52uT2NZKV46ckJ3Ppl8Nc2PpnbjVXJNcd+u13Qs9fose7AylTKfX9Xa5yRaZ/9AW7f/6FJu1a5Fjs77/8xrolK0lKTMrweJuW/4i5hTn9PxxKAUcHAGo19GP6R1+waflaJS3lqaf7PBHJaZrTUnLcvHnzCAkJ4f/+7/+MEpZpGjVqxKBBgzh06FCGw8Efpm3btgD89ddfOVZXgKJFi/LBBx8QHh7OypUrH1ouISEBwJDUTNt2/88i8mjXD5/FyaOI4YYUoGCZYti5OnD98LkcjxN52uT2NZLZckkJifwx/UcubPkTt6peWDva50j7RJ60I/sO4ezmYkg6ArgWLYxnhXIc2fdHjsV+O/Fr1i76AY/yZSlaqsSDhyIlJYXzJ89Q1qe8IWEJYGVthXeVSoRfu8HdO5GP20wRk6D7PBHJaUpaSo778ccfKV26NA0bNnxomS5dumBlZcWPP/6Y6ePa2aXOZ5KSkpLtOj6oWbNmWFtbs3PnTsO2bt26GXpUduvWzdCbsnv37nh7e+Pt7c3+/fsJCQnB29ubESNGGGJXrVrFq6++iq+vLy+88AIjRozg2rVrhv2XL1/G29ubb7/9ltdffx0fHx969uyZ5fjVq1czefJkGjRogK+vLx06dGDv3r3p2rdmzRrat29P1apVadCgAR999BHh4eFGZf7tnFkRGhrK4MGDqVevHr6+vrzyyivMnTuX5ORko3KHDh3iP//5D9WqVaNatWr06tWLw4cPG/b/+uuveHt7M2TIEKO4Dz/8EG9vb3799dfHqp/kjYSYOGLDo8hfvFC6ffmLFiIq9GaOxok8bXL7GsnK8VMSk0mKi6f86w3x7lAfM3Ozx22WSJ4Ku3g5wyRisVIluHX9JjF3o3MkNuLmLVp2fY3uQ/tjY2uTLsbMzIw3P3qXph3bpNsXHXUXQENg5amm+zwRyQ0aHi456tq1a1y6dMloQZ6M5MuXD19fXw4ePJjpY6clFHNjoRsbGxvc3d05ceJEhvsHDBiAh4cHy5YtY8CAAZQuXRpzc3NmzZrFrVu3GDlyJO7u7gBMnz6dadOm0bRpUzp27MjVq1cJDAxk//79rFixAmdnZ8Nxv/rqK/z9/WnVqhU2NjaPFW9nZ0evXr1ISEhgwYIF9O/fn19++cUwd+fcuXOZOHEiNWrUYNiwYdy8eZOFCxdy/Phxli5diqWlZZbO+W8SEhLo06cPsbGx9OzZEwcHB3bs2MHEiRNJSkpiwIABAOzevZv+/ftTvnx5hgwZQnx8PKtWraJLly5888031KxZkwYNGtC2bVuCgoLYuXMn9evXZ9euXfzwww907tyZBg0aZO0XLXkq/nbqlztrh/Q9tqwd7EiKSSAxJh5LO+sciRN52uT2NZKV41vYWlFzWHvMLfR8W55e8bFxxEbH4OCUfn7J/Pd6O0bcvIVdvvTXRFZjB3/6ARaWj/5qVdA1fVIm6nYkf/9xGJeibhnWQ+Rpofs8EckNSlpKjkrrmZeZFb5dXV2Jj48nIiICJycnw/Y7d+4Y9QKMiopi586dTJ8+HS8vL1q0ePjcQ9nh4ODAxYsXM9z34osvcvXqVZYtW4afn59hwZ4VK1YQFxdHmzapT80vXbrEjBkz6NevH++++64hvkWLFrRr145Zs2YxatQow/aiRYsyceJEzMzMHis+JSWFFStWYG+f+iFfvHhxhg4dyubNm+nYsSO3b99m2rRp1K9fn9mzZ2Nx7wl+iRIlGDNmDLt378bT0zNL5/w3x48f58yZM3z11Vc0a9YMgA4dOtCnTx/OnUsd3pGcnMzHH3+Mr68vgYGBhnp17dqVV199lc8++4zVq1cDqYsn7dq1i08//ZRly5bx4YcfUqpUKT744INM10lMQ1J86hQLFlbpP3rM733RS0pITHdT+rhxIk+b3L5GsnJ8MzMzzCzUu1KebrGxsQBY2aT/fLCytgIgPi4+R2L/LWGZkaSkJFbMCyQhLp4GrwRkOV7ElOg+T0Ryg5KWkmfSFuBJSjKerDxt7sr72dnZ0bhxY8aMGYOVlVWu1CcxMdGQPHxcmzdvJjk5GX9/f6PEq4uLCxUqVOCXX34xSgDWrFnT6JxZjW/YsKEhYQkY5hC9fv06AL/99htxcXF06dLFkBgEaN26NRUrVsTT05OlS5dm6Zz/xs3NDTMzM2bPnk2+fPmoU6cO1tbWzJ8/31Dm77//5tKlS7z++uvcvn3bKL5Ro0Z8++23XL16lcKFC+Po6Mgnn3zCoEGD6NChg6EX6P3tlqdE2tQOWb3MHjdO5GmT29eIriV5Tpk94k3/b7d+2Yl9lOTkZFbO/Y4zx4LxrV2dai/WfvyDiZgC3eeJSC5Q0lJylJubG/BP0uxRrl+/jqWlpVEvS4AJEybg4uJCQkICO3fu5LvvvqN58+Z88sknhiHUuSEiIiJLw6AzktZTs3PnzhnufzDh+uD5shtvbZ36BDJt7siQkBAASpUqZVTOxsaGSpUqPdY5/02RIkV4//33mTRpEn369MHe3p66devyyiuv0Lx5cywsLAznHD9+POPHj8/wOKGhoRQuXBhIXfX95Zdf5ueff+b111+nevXqWaqTmAYLm9T3UnJC+lVVkxMTAbC0Tf9+e9w4kadNbl8jibqW5BmWEJ9AbEyM0Tbre70kE+8tpvhgeQBbO9sMj5ed2H+TmJDA8jmL+fvgYcr6VqB9nzce6zgipkT3eSKSG5S0lBzl5uaGu7v7v85VGRMTw9GjR/H19TXqAQhQvXp1SpRInfS8YcOGlCpVis8++4yIiAi+/vrrbPeGzEhUVBSXLl3ipeEMupEAAJW9SURBVJdeytZx0pKFM2fOxNb2329kH2x7VuPTeqv+W30e9Zpl9ZyZ0bt3b1q2bMnmzZvZsWMHu3fvZuvWraxevZp58+YZzjlkyBCqVq2a4TE8PT0N/46Ojubvv/8GYNeuXURHR6un5VPIxjE/APGRMen2xd+JwcLOCgvr9Deljxsn8rTJ7WtE15I8y47sP0TQgiVG2xq1boqtvR2REbfTlU/bViCDOSsBbO3sHjv2UeJj41gyfT5n/j5JuSoVef3N/zzW0HIRU6P7PBHJDfqElBzXqlUrZsyYwbZt2wyrbwN88cUXeHh40L59e77//ntiY2Np3br1vx6vW7du7Nmzh61bt7Jw4UKjVbZzysaNG0lJSaFx48bZOk7x4sWB1LkqK1SoYLRvx44d5M+fP1fjH1S0aFEgtTelh4eHYXt8fDzvv/8+rVq1yvFzRkREcOLECapXr07Xrl3p2rUr0dHRjBgxgk2bNhEcHGw4p729PX5+fkbxhw8f5vbt20YJ1EmTJhESEsLw4cOZMGECkyZNYsyYMVmql+Q9SztrbJzzZ7gKZFTYTQoUz3gu3MeNE3na5PY1omtJnmVlfLzp8e5Ao23OroU4f/IsoRcvpysfdjEEZzeXRy5+U9S9xGPHZiQpKYmlX3/Dmb9PUqlWVTr07aqEpTwzdJ8nIrlBS0JKjuvTpw8lS5ZkzJgxRqtxh4eH88knn9ChQwcmTZpEuXLleO211zJ1zP/97384OjoyZcoULl26lKP1vXbtGlOnTqVw4cK0atUqW8dq1KgRALNnzyYlbX4WUhenGThwIAsXLszV+Af5+flhZWXFDz/8YHS8jRs3snHjxlw55+7du+nRowfbtm0zbLO3t6dcuXJAau9SHx8fXF1dWbx4MXfv3jWUi4qK4p133mHkyJGGXqgHDx7ku+++o2PHjvTu3Zv27dvz3XffceDAgSzVS0yDS6VSRJwJJfp6hGHbrdOhxFy/g2tljxyPE3na5PY1omtJnlUOTo6UqeRt9J+zmwuValTmRtg1Th8LNpS9HnaVs8dP4lv70dPNZCc2I7+s3cTpoyeoWKMyHft3V8JSnjm6zxORnKZPSslx9vb2zJ49mwEDBvDaa6/RqlUrqlSpQuXKlTl16hTHjh0DoH79+lhm8mbNxcWF9957jw8//JBPPvnEaFGXrNiyZQsFCxYEIC4ujrNnz7J69Wri4uKYO3dutodHlytXjm7durF48WIiIiIICAggIiKCwMBA8uXLx5AhQ3I1/kGFChVi0KBBTJkyhV69ehEQEMCVK1cIDAykTp06+Pv7Y25unqPnbNSoER4eHowePZpjx47h7u7O2bNn+e6776hbty5lypQBYMyYMQwdOpR27drx2muvYWNjw/LlywkNDWXixIlYWloSFxfH6NGjcXZ25r333gPgvffeY8uWLYwePZq1a9fm6jynkvNK1Pfh2qEzHJm/ieL1fEhOTOTyzqPkL14It6peAMSER3LnwjUcSrlh51wg03Eiz4LcvkZ0LcnzpkaDF9i7bSfLZn5LvWaNsLK2ZtfGbTg4OeH3ckNDuajbkZw+doIiJYtTpGSxLMVmRnTUXXZt3I6FpQWeFcpxeG/6qZQqVq+Mta3ua+Tppfs8EclpSlpKrvDy8mLVqlUsXbqUDRs2sGnTJiwsLChZsiTDhg0jKiqK+fPns2fPHiZPnkzp0qX/9ZgdOnRg9erV7Nq1i9WrV/Pqq69muV5jx441/NvKyorChQvj7+9P3759jYZPZ8fo0aPx9PTk+++/54svvqBAgQLUrFmTIUOG4OX17x+62Y1/0MCBA3F1dWXRokWMGzcOV1dXOnbsyODBgw1zYubkOe3t7VmwYAFTp07lxx9/5MaNG7i6uvLGG2/w1ltvGco1a9YMR0dHZs6cyddff425uTlly5Zl5syZht6f06ZN49y5c0yYMAEHBwcAChYsyPvvv8/o0aOZMmUKH3zwQZZfE8k71vntqNy3OWfX7efClkNYWFtSqII7Hs1qYm6Z2rv2zvmrnFyxi3Kv1TPczGYmTuRZkNvXiK4led5YWlnxn/cHsfH7NezcsA0zc3M8vMvQvFMb7PPnM5S7HnaFlfO+o1HrpoakZWZjM+PyuYuGRX1+ClyRYZlS472UtJSnmu7zRCSnmaXcPx5U5AkKDg7m22+/ZfTo0VmeN1EkOzpvz3jFchERkbzSxysgr6sg8kyYd2ZLXldB5JnwfaPheV2FHHfn8OG8rsJDOVSunNdVMEnqaSl5xtvb26jno4iIiIiIiIiICChpKU+p2NhYIiMjM1XW2dnZsKiLPJ67d+8SHR2dqbKurq65XBsRERERERERedYpaSlPpfXr1zNy5MhMld26dSslSpTI5Ro92xYsWMD06dMzVTY4OPjfC4mIiIiIiIiIPIKSlvJUqlevHt98802myqrnX/a9+uqr1KhRI6+rISIiIiIiIiLPCSUt5ank5uaGm5tbXlfjuVGyZElKliyZ19UQERERERERkeeEeV5XQEREREREREREROR+SlqKiIiIiIiIiIiISVHSUkREREREREREREyKkpYiIiIiIiIiIiJiUpS0FBEREREREREREZOipKWIiIiIiIiIiIiYFCUtRURERERERERExKQoaSkiIiIiIiIiIiImRUlLERERERERERERMSlKWoqIiIiIiIiIiIhJsczrCoiIiIiIPO/mndmS11UQERERMSnqaSkiIiIiIiIiIiImRUlLERERERERERERMSlKWoqIiIiIiIiI/D979x2f4/X/cfyVvackRhJEECoRW2mNprZaVaVVqkppS3VXdH6/Xb+iVPFF7dHaMWvUrBilLapUbTKQhCQi+874/ZG4KxKVhNRN38/Hw+NR13XOuc65e1/OdX3uM0TEpChoKSIiIiIiIiIiIiZFQUsRERERERERERExKQpaioiIiIiIiIiIiElR0FJERERERERERERMioKWIiIiIiIiIiIiYlIUtBQRERERERERERGToqCliIiIiIiIiIiImBQFLUVERERERERERMSkKGgpIiIiIiIiIiIiJkVBSxERERERERERETEplne7AnJvCAsLIzQ0lM8//5zHH3/ceDwpKYnFixezbt06IiIisLS0xM/Pj549e9KtWzesra0LlDNy5EhWrFhRqHxra2s8PDxo1qwZr7/+Oh4eHiWuY1FlW1lZUa5cOZo0acILL7xAjRo1Cpzv168f0dHRbN261Xhszpw5zJgxg6SkJPr378/gwYMZOXIke/bswcrKirlz5/LAAw+UuH4i/xaZyWmc2fALCcejyTFk4VKtItU6N8HO3emO5S1uuuTzlzmz4ReuRl/CzNwc9wAf/Do0wtrR7o62WeROSo+/yun1P3Pl9EUA3Gv54Nex8S2/t8XNV5ryT6zYTdqlK9Qd3PF2miZyV5hSv3S9jKRU9k9YiXttXwKeaHHb7RQpS6bYN6VcjOfA5LX4tg6iyqP1b6d5ImKiFLSUUjtx4gRDhw4lJiaGLl260Lt3b9LT0/npp594//33Wbp0KZMnT8bT07NQ3tDQUNzc3Ix/T05OZs+ePSxfvpzDhw+zbNmyQgHP4rq+7LS0NCIiIli+fDkbN25k+vTpNG3a1Jh26NChpKWlGf9+7NgxPv/8c+rVq8eIESOoVasWU6dOZevWrQwYMIBq1apRtWrVUtVL5N8gJyubI3M3k3bpCt4P18HCxpronYc5NH09DYZ3w8re5rbzFjddamwiv32zDmtne6qE1Cc7I5OoXUdIioilwbCuWFhb/SOfiUhJGFIzODRzA7nZOfi0DCQ3N5eo8MOkXEyg3kuPYW5hcVv5SlP+xV+Oc/Hn47j4lS/TtouUBVPql250ctVustIyy6TdIneSKfZNOdk5HFu2k9zsnDJtu4jcXQpaSqmkpKQwZMgQMjIyWLZsGbVq1TKeGzBgANu2bePVV19l+PDhfPfdd5ibF1yJoE2bNvj4+BQ41rdvXz766CMWLlzI5s2b6dSpU6nqVlTZ/fr1o2fPnrz66qts3rwZBwcHAB566KEC6Y4fPw7AkCFDCAkJAWD8+PG4uroSGhpaqvqI/JvEHDhJcvRlAge2w616JQDcA7zZ//UqonceoWq7Bredt7jpzm4+gJm5OcGDO2LtZA+Ao7cHR+ZuJmb/KSo9WKuIWojcXdE7j5BxJZWGr3TD3ssVACcfTw7P+oGY/Sep2DjgtvKVpPzcnBwitx/i3JaDZdVckTJnSv1SwbJPkXD8/J1urkiZMKW+6ZqoHw+RGpN4p5sqIiZGa1pKqcyYMYPo6Gg+++yzAgHLax555BFefvllDhw4UOR08Jvp0aMHAL/99tsdqytAxYoVeeedd4iPj2f58uU3TWcwGACMQc1rx67/u4jcXNyhM9iWczK+tAHYe7ri6l+RuEOn70je4qYzNzfHq56/MWAJGEeKpcQklL6RImUo7tBpXP0qGF/aANyqV8LO05m4Q2duO19x02Ubstg/aQ3nNh/Mu49c/rqPRO4lptQvXZN5NZXTa/dSOST4dpom8o8xlb7pmpSL8URsO6R7SORfQEFLKZU1a9ZQtWpVWrVqddM0ffv2xcrKijVr1hS7XDu7vDVLcnNzb7uON+rQoQPW1taEh4cbj/Xr1884orJfv37G0ZT9+/cnICCAgIAA9u3bR3R0NAEBAYwcOdKYNywsjO7duxMUFMSDDz7IyJEjiY2NNZ6PiooiICCAOXPm8NRTTxEYGMiAAQNKnH/lypWMHz+eli1bEhQURK9evfjpp58KtW/VqlX07NmTevXq0bJlSz744APi4+MLpLnVNUsiICCAr776iqFDhxIYGEjnzp3JysrCYDAwbdo0unbtSnBwMHXr1qVr164sW7asUBk//vgjzzzzDPXr1+ehhx7itddeIyoqqkCabdu20adPH4KDg2ncuDHDhw/nzJmbPxzJ3ZV8/jKOlcoVOu5QqRzp8ckY0jJuO29x09Xq04rqXR8skCblQt49YeuiHyLE9BjSMkiPT8bRu/D327FiOZLPX76tfCUpPzcrh+yMTGo91YqAXi0wMzcrbbNE7ipT6peuObFyDzauDvi0DCxpc0T+cabUN0HetPDjy3fhVqMSXvX8S9MkEbmHaHq4lFhsbCyRkZEFNuQpioODA0FBQfz666/FLvtaQLEsNrqxsbGhcuXK/Pnnn0WeHzp0KH5+fixevJihQ4dStWpVzM3NmTp1KgkJCYSGhlK5cmUAJk2axMSJE2nfvj1PPvkkMTExLFiwgH379rFs2TLc3d2N5U6YMIGQkBC6dOmCjY1NqfLb2dkxcOBADAYDs2bNYsiQIWzfvt24duf06dMZO3YsDRs25PXXX+fy5cvMnTuXo0ePsnDhQiwtLUt0zeKaO3cuDRo04L333iM9PR1LS0vefPNN1q9fz1NPPUW/fv1ISEhgyZIlvPvuu3h6ehoD3d9//z1vvPEGNWrUYPjw4ca2/f7774SFheHs7ExYWBijRo2iWbNmvPXWW1y5coWFCxfy5JNPsmTJEvz8/EpcZyk72ZkGstMMWDsXHpF1bRH1jMQUrOwKr+1V3LzmFualukZGUipXI2I5vf5nrJ3tKN+oRqH8Indb5pVUgKK/3852ZKcZyErLxNLOulT5SlK+ha0VjV7vibmFft+We5cp9kuxB0+RcDyKei/efB1AEVNiSn0TQFT476RdTuKBZ0LIzbnzA11ExLQoaCkldm1kXnF2+Pb09CQzM5PExERcXV2Nx5OSkgqMAkxOTiY8PJxJkybh7+9P586d73i9AZydnYmIiCjy3EMPPURMTAyLFy+mefPmxg17li1bRkZGBt26dQMgMjKSyZMn88ILL/DGG28Y83fu3JnHH3+cqVOnMmrUKOPxihUrMnbsWMzMzEqVPzc3l2XLlmFvn9eRe3t789prr7Fp0yaefPJJrly5wsSJE2nRogXTpk3DIv8B2MfHh/fee49du3ZRrVq1El2zuCwtLZk8eTK2trYAxMXFsXbtWgYPHlzgOm3atKFjx46Eh4fTqlUrcnJy+Pzzz6lZsyZLliwx5g8KCuK5555jzZo1dOvWjU8//ZROnToxbtw4Y1lPPvkknTt3ZuzYsUyePLnEdZayk5Wet7yChVXhruXasZxMw23lLe01fh0fRnZGFpibEdCrhXYPF5OUnXnz77e5Zd6xbENWoRfD4uYrSflmZmaYWWh0pdzbTK1fykxO49Taffi0CCpyZKaIKTKlviklJoGILb/h37UpNi4OpCckl7ZZInKPUNBSytS1DXiys7MLHL+2duX17OzsePTRR3nvvfewsiqbXX2zsrKMwcPS2rRpEzk5OYSEhBQIvHp4eFC7dm22b99eIADYqFGjAtcsaf5WrVoZA5aAcQ3RuLg4AHbv3k1GRgZ9+/Y1BiwBunbtygMPPEC1atVYuHBhia5ZXHXr1jUGHCEvSP3rr78W2HgpNzeXrKwsIG8DJ4DDhw8TFxfH0KFDC+Rv3rw5S5cupVq1auzatYvk5GTatGlToM4WFhY8+OCD/Pjjj2RlZWFpqX/GTM7f3WK3uv+Km7cE18jJzsG/azPMLcy5+OsJji3egSE5De+H6vx9XUT+adeWRilpN1XcfKUtX+ReZyL90slVe7BytNU6fHJvMZG+KTcnh+PLd+Jc1eumG/+IyP1Hb/tSYl5eXsBfQbO/ExcXh6WlZYFRlgBjxozBw8MDg8FAeHg43377LR07duSjjz4yTqEuC4mJiaWaBn29ayM1+/TpU+T5GwOuN17vdvNbW+f9ipmTkwNAdHQ0AFWqVCmQzsbGhjp16pTqmsVV1GdpbW3N6tWr2blzJ2fPnuXcuXPGYOW1tUpvVmfIC4ReX+fXXnvtptePj483fh/ln5VtyCI7PbPAMQvr/BElWdlFpgewsCn6u1bcvKW5hrmFOeXr56155BFUlUPfrOfspgOUb1QTy5vUR+RuuPbdzTEU/n7n5P/4Y2lb+Dtb3HxZpSxf5F5g6v1S7G+nuXwkggf6PUp2hoHsjL9GeOZm5WBIScfC1kpTxsXkmErfFBV+mJQLCQQP6YQhJR2ArPz1YrMzszCkpGNpb3PbA1Tk/pb947a7XYWby38PloIUtJQS8/LyonLlyrdcqzItLY3Dhw8TFBRUYAQgQIMGDfDx8QHyRhJWqVKFTz75hMTERP73v/+VSWeTnJxMZGQkrVu3vq1yrgULp0yZUmCU4M3c2PaS5r9+1OLf1efvPrOSXrO4bmxbRkYGTz/9NEePHqVp06Y0a9aMAQMG0KRJkwKfe0nq/PHHHxu/KzdycXG5zRZIaV36/SzHl+0scKzyo8FY2FmRmZRaKH3m1TSg6PWKACxtrYuVt7jpbsbMzAyPwCoknYslLe4KTj63XuZC5J9i4+II/PVdvl5mUhoWdlZYWBd+MSxuvtKWL3IvMPV+KSr8MAB/zN9SKF3coTPEHTpD0KD2uFar+HfNFPnHmUrflHA8mtzsHA7+b22hdNHhR4gOP0Ljt57A1s2xZA0UEZOmoKWUSpcuXZg8eTJbt2417r4N8MUXX+Dn50fPnj1ZtGgR6enpdO3a9Zbl9evXjz179rBlyxbmzp1bYJftO2XDhg3k5uby6KOP3lY53t7eQN5albVr1y5w7scff8TR8e87ytvNf6OKFfMebiMiIgpsTJOZmclbb71Fly5d7vg1b2b9+vUcPnyYTz/9lCeeeMJ4PCYm5qZ1vlFoaCgNGjQw1tnd3Z3mzZsXSLN3715ycnKMo07ln+davRKBA9sVOGbr7sSVszEkn48vlD7lwmVsyzkVudnBNY6VyhUrb3HSZaVlcuB/a/AIrIpf+4YF0l0b3WJupdEsYlos7ayxcXcscifW5AuXcfIuOshe3HylLV/kXmDq/ZJvy6Aidzo+POsHXGtUwqdFIA4Vb282kEhZMJW+ya9TY7LSCo6mNiSncWxJOF71q+FVvzpWjnducIaImAZtCSmlMmjQIHx9fXnvvfcK7MYdHx/PRx99RK9evRg3bhw1a9YsELz6O//9739xcXHhq6++IjIy8o7WNzY2lq+//pry5cvTpUuX2yrrkUceAWDatGnG6c4AR48e5cUXX2Tu3Lllmv9GzZs3x8rKiiVLlhQob8OGDWzYsKFMrnkziYmJAFSvXr3A8Xnz5gEY17YMDAzE3d2dsLAwMjP/evj49ddfCQsLIzU1lebNm2NjY8OMGTMwGP6aQhUTE8NLL71UYHMj+efZONvjVr1SgT927k541KlCWtwVEk6eN6ZNjUsk8dQFPOv+/W7vxc1bnHSWdtaYW1oQs/8khvypQwBZaZlc/OUENu6O2Hu53u7HIHLHedSpQuKp86TGJRqPJZw8T1pc0t/eQ8XNV9ryRUydqfdL9l6uhernVr0SANZOdrhVr/S3AVSRu8kU+iYnb49C949zlfJA3g8UbtUrFbmZj4jc23RXS6nY29szbdo0hg4dyhNPPEGXLl0IDg6mbt26nDhxgiNHjgDQokWLYm+U4uHhwZtvvsn777/PRx99xMyZM0tVt82bN+Pm5gbkTVc+ffo0K1euJCMjg+nTp9/29OiaNWvSr18/5s+fT2JiIm3atCExMZEFCxbg4ODAiBEjyjT/jcqVK8fLL7/MV199xcCBA2nTpg0XL15kwYIFNG3alJCQEMzNze/oNW+mefPmWFpa8vbbb9O3b18sLS3Ztm0bO3fuxMrKyri2pbW1NSNHjuSdd97hqaeeomvXrqSkpDBv3jz8/f3p1asX9vb2vP7663z++ef07t2brl27kpWVxXfffUdGRgbvvPPOHamz3FkVGtXk/J4/ObpwGz4tArGwsiQq/DDWzvYFNr7JTE4j4cR5HCu64VDBvUR5i5vOv+uD/D5zI79NW0fFxjXJyc7h4r5jZF5No86ANgp6i0nyaRFI7IFT/D5zI94PB5KTlUVU+GEcvcsZR2mlxV8l6VwszlW8sHN3Kna+kqQTuV+YUr8kcq9S3yQid4uCllJq/v7+hIWFsXDhQtavX8/GjRuxsLDA19eX119/neTkZGbOnMmePXsYP348VatWvWWZvXr1YuXKlezcuZOVK1fSvXv3Etfr888/N/63lZUV5cuXJyQkhMGDBxeYPn073n33XapVq8aiRYv44osvcHJyolGjRowYMQJ//1t3rLeb/0Yvvvginp6ezJs3j//7v//D09OTJ598kuHDhxvXxLzT1yxKzZo1+frrr5k0aRLjxo3DwcGBGjVqMHv2bL777jv27duHwWDAysqKbt264eTkxNSpU/nyyy9xdnbmkUce4Y033jDulj5gwADKly/P7NmzGT9+PLa2ttSpU4cxY8bQsGHDW9RG7gZzSwuCnm/PmXU/E7XjMGZmZrhUq0C1jo2xsv9rBElqbCLHl4ZT+dFg48thcfMWN52rXwUCn2tLxJaDnP1hP5iZ4VK1PLX6tNZalmKyrB3tqDu4I6e/38e5zQewsLakXO3K+HVohLll3pIGSWdjOL5sJzWfeNj4YlicfCVJJ3K/MKV+SeRepb5JRO4Ws9zr54qK3GHHjh1jzpw5vPvuu3ds3USR29Vn2+i7XQURERERERGTteiRt+92Fe64hIkT7nYVbspt+J2Z/Xi/0UhLKVMBAQEFRj6KiIiIiIiIiIjcioKWYrLS09O5evVqsdK6u7tjYaGpA7cjJSWF1NTUYqX19PQs49qIiIiIiIiIyL+ZgpZistatW0doaGix0m7ZsgUfH58yrtH9bdasWUyaNKlYaY8dO1bGtRERERERERGRfzMFLcVkPfzww8yePbtYaTXy7/Z1795dm9uIiIiIiIiIiElQ0FJMlpeXF15eXne7Gv8avr6++Pr63u1qiIiIiIiIiIhgfrcrICIiIiIiIiIiInI9BS1FRERERERERETEpChoKSIiIiIiIiIiIiZFQUsRERERERERERExKQpaioiIiIiIiIiIiElR0FJERERERERERERMioKWIiIiIiIiIiIiYlIUtBQRERERERERERGToqCliIiIiIiIiIiImBQFLUVERERERERERMSkKGgpIiIiIiIiIiIiJkVBSxERERERERERETEpClqKiIiIiIiIiIiISVHQUkREREREREREREyKgpYiIiIiIiIiIiJiUhS0FBEREREREREREZOioKWIiIiIiIiIiIiYFAUtRURERERERERExKQoaCkiIiIiIiIiIiImRUFLERERERERERERMSkKWoqIiIiIiIiIiIhJUdBSRERERERERERETIqCliIiIiIiIiIiImJSFLQUERERERERERERk2J5tysgecLCwggNDeXzzz/n8ccfNx5PSkpi8eLFrFu3joiICCwtLfHz86Nnz55069YNa2vrAuWMHDmSFStWFCrf2toaDw8PmjVrxuuvv46Hh0eJ61hU2VZWVpQrV44mTZrwwgsvUKNGjQLn+/XrR3R0NFu3bjUemzNnDjNmzCApKYn+/fszePBgRo4cyZ49e7CysmLu3Lk88MADJa6f3Bm//PILY8aM4fjx43h7ezNixAjatm17t6sl95DM5DTObPiFhOPR5BiycKlWkWqdm2Dn7nTH8hY3XfL5y5zZ8AtXoy9hZm6Oe4APfh0aYe1od0fbLHI3pMdf5fT6n7ly+iIA7rV88OvY+Jbf79LmE7lXqV8SuX1l3eeUpvyUi/EcmLwW39ZBVHm0/u00T0RMlIKWJuzEiRMMHTqUmJgYunTpQu/evUlPT+enn37i/fffZ+nSpUyePBlPT89CeUNDQ3FzczP+PTk5mT179rB8+XIOHz7MsmXLCgU8i+v6stPS0oiIiGD58uVs3LiR6dOn07RpU2PaoUOHkpaWZvz7sWPH+Pzzz6lXrx4jRoygVq1aTJ06la1btzJgwACqVatG1apVS1UvuX2nTp1i4MCBBAUF8fbbb/P999/zyiuvsHjxYurWrXu3qyf3gJysbI7M3UzapSt4P1wHCxtronce5tD09TQY3g0re5vbzlvcdKmxifz2zTqsne2pElKf7IxMonYdISkilgbDumJhbfWPfCYiZcGQmsGhmRvIzc7Bp2Ugubm5RIUfJuViAvVeegxzC4s7mk/kXqV+SeT2lXWfU5ryc7JzOLZsJ7nZOWXadhG5uxS0NFEpKSkMGTKEjIwMli1bRq1atYznBgwYwLZt23j11VcZPnw43333HebmBWf6t2nTBh8fnwLH+vbty0cffcTChQvZvHkznTp1KlXdiiq7X79+9OzZk1dffZXNmzfj4OAAwEMPPVQg3fHjxwEYMmQIISEhAIwfPx5XV1dCQ0NLVR+5c1avXk1GRgYTJ07E3d2dtm3b8tBDD7F+/XoFLaVYYg6cJDn6MoED2+FWvRIA7gHe7P96FdE7j1C1XYPbzlvcdGc3H8DM3JzgwR2xdrIHwNHbgyNzNxOz/xSVHqxVRC1E7g3RO4+QcSWVhq90w97LFQAnH08Oz/qBmP0nqdg44I7mE7lXqV8SuX1l3eeUpvyoHw+RGpN4p5sqIiZGa1qaqBkzZhAdHc1nn31WIGB5zSOPPMLLL7/MgQMHipwOfjM9evQA4LfffrtjdQWoWLEi77zzDvHx8Sxfvvym6QwGA4AxqHnt2PV/l7vn2qjY6OhoANLT0wFKPSpX/n3iDp3BtpyT8aUNwN7TFVf/isQdOn1H8hY3nbm5OV71/I0vhgAufuUBSIlJKH0jRUxA3KHTuPpVML7cAbhVr4SdpzNxh87c8Xwi9yr1SyK3r6z7nJKWn3Ixnohth6gcEnxb7RIR06egpYlas2YNVatWpVWrVjdN07dvX6ysrFizZk2xy7Wzy1sTJDc397breKMOHTpgbW1NeHi48Vi/fv2MIyr79etnHE3Zv39/AgICCAgIYN++fURHRxMQEMDIkSONecPCwujevTtBQUE8+OCDjBw5ktjYWOP5qKgoAgICmDNnDk899RSBgYEMGDCgxPlXrlzJ+PHjadmyJUFBQfTq1YuffvqpUPtWrVpFz549qVevHi1btuSDDz4gPj6+QJpbXbMkzp8/z/Dhw3n44YcJCgqiU6dOTJ8+nZycglMgDhw4wHPPPUf9+vWpX78+AwcO5NChQ8bzO3bsICAggBEjRhTI9/777xMQEMCOHTuMxzp27Gg8FxkZyZtvvomNjY0x2H29kJAQ3nvvPUaNGkXdunVp2bIl8fHx5ObmsnDhQp544gnq169PUFAQHTp04Jtvvin0vfvtt98YPHgwjRo1omnTprzwwgscO3asRO0T05J8/jKOlcoVOu5QqRzp8ckY0jJuO29x09Xq04rqXR8skCblQt49a+uiH0rk3mVIyyA9PhlH78L3gWPFciSfv3xH84ncy9Qvidyesu5zSlp+TnYOx5fvwq1GJbzq+ZemSSJyD9H0cBMUGxtLZGRkgQ15iuLg4EBQUBC//vprscu+FlAsi41ubGxsqFy5Mn/++WeR54cOHYqfnx+LFy9m6NChVK1aFXNzc6ZOnUpCQgKhoaFUrlwZgEmTJjFx4kTat2/Pk08+SUxMDAsWLGDfvn0sW7YMd3d3Y7kTJkwgJCSELl26YGNjU6r8dnZ2DBw4EIPBwKxZsxgyZAjbt283rt05ffp0xo4dS8OGDXn99de5fPkyc+fO5ejRoyxcuBBLS8sSXfNWDAYDgwYNIj09nQEDBuDs7MyPP/7I2LFjyc7OZujQoQDs2rWLIUOGUKtWLUaMGEFmZiZhYWH07duX2bNn06hRI1q2bEmPHj1YsWIF4eHhtGjRgp07d7JkyRL69OlDy5YtjdetX78+zzzzDAsWLKBdu3a4uLgwZcqUm64z+v3331OtWjVGjRrFpUuXcHd3Z/z48UydOpUePXrw5JNPkpKSwsqVK/nyyy9xcHCgb9++QN6GPwMGDMDLy4tBgwZha2vLvHnz6N+/P8uXL8fHx6dY7RPTkZ1pIDvNgLWzfaFz1xZRz0hMwcqu8Pphxc1rbmFeqmtkJKVyNSKW0+t/xtrZjvKNahTKL3KvyLySClD0feBsR3aagay0TCztrO9IPpF7lfolkdtX1n1OScuPCv+dtMtJPPBMCLk5d34gjoiYFgUtTdC1kXnF2eHb09OTzMxMEhMTcXV1NR5PSkoqMAowOTmZ8PBwJk2ahL+/P507d77j9QZwdnYmIiKiyHMPPfQQMTExLF68mObNmxs37Fm2bBkZGRl069YNgMjISCZPnswLL7zAG2+8YczfuXNnHn/8caZOncqoUaOMxytWrMjYsWMxMzMrVf7c3FyWLVuGvX1eR+nt7c1rr73Gpk2bePLJJ7ly5QoTJ06kRYsWTJs2DYv8haB9fHx477332LVrF9WqVSvRNW/l6NGjnDp1igkTJtChQwcAevXqxaBBgzhzJm+KRE5ODh9++CFBQUEsWLDAWK9nnnmG7t2788knn7By5Uogb/OknTt38vHHH7N48WLef/99qlSpwjvvvFPguidPnuTo0aPG8l966aVC65JeLz09nf/973+UL583tclgMLBgwQI6d+7M//3f/xnT9erVi2bNmhEeHm4MWn7xxRe4urqyfPlyY3C4VatWdOrUie+++44333yz2O0T05CVnrf8g4VV4a7l2rGcTMNt5S3tNX4dH0Z2RhaYmxHQq4V2aZV7Wnbmze8Dc8u8Y9mGrEIvkKXNJ3KvUr8kcvvKus8pSfkpMQlEbPkN/65NsXFxID0hubTNEpF7hIKW97hrG/BkZ2cXOF7UdF47OzseffRR3nvvPaysymZ3wqysLGPwsLQ2bdpETk4OISEhBQKvHh4e1K5dm+3btxcIADZq1KjANUuav1WrVsaAJWBcQzQuLg6A3bt3k5GRQd++fY2BM4CuXbvywAMPUK1aNRYuXFiia96Kl5cXZmZmTJs2DQcHB5o2bYq1tTUzZ840pvnjjz+IjIzkqaee4sqVKwXyP/LII8yZM4eYmBjKly+Pi4sLH330ES+//DK9evUyjgK9vt2//fYbAwcOxNbWls8++4zPP/+c8ePH89BDD+Hv78/8+fNp2LBhgVG6lStXNgYsAaysrNi9e7dx7dJrEhIScHR0JDU175fUy5cvc+jQIQYOHFhgl3s/Pz+WL19OxYoVS9Q+MTF/90/Arf59KG7eElwjJzsH/67NMLcw5+KvJzi2eAeG5DS8H6rz93URMVXXltooaXdb2nwi9zr1SyKlV9Z9TjHT5ebkcHz5TpyremnTOJF/EQUtTZCXlxfwV9Ds78TFxWFpaVlglCXAmDFj8PDwwGAwEB4ezrfffkvHjh356KOPjFOoy0JiYmKJpkEX5dpIzT59+hR5/saA643Xu9381zadubZ25LVNaapUqVIgnY2NDXXq1CnVNW+lQoUKvPXWW4wbN45BgwZhb29Ps2bN6NSpEx07dsTCwsJ4zdGjRzN69Ogiyzl//rwxqNemTRvatWvHDz/8wFNPPUWDBn/tlpmdnc3IkSPJzc1l3rx5+Pv74+zszLBhw3j11Vf59NNP+eSTT3j22WcLBC3LlSu89oyVlRXbt29ny5YtnDlzhnPnzhmDjtfWtLzZZwp/LV2wZ8+eErVP/lnZhiyy0zMLHLOwzh9RkpVdZHoAC5ui74Xi5i3NNcwtzClfP2/NI4+gqhz6Zj1nNx2gfKOaWN6kPiKm7Np3PMdQ+D7Iycq7DyxtC3+3S5tP5F6gfkmkbJR1n5NVzHRR4YdJuZBA8JBOGFLyNgvNyl8vNjszC0NKOpb2Nrc9gEZETIuClibIy8uLypUr33KtyrS0NA4fPkxQUFCBEYAADRo0wMfHB8gbSVilShU++eQTEhMT+d///lcm/5gnJycTGRlJ69atb6uca8HCKVOmYGtre8v0N7a9pPmvjVa9VX3+7jMr6TWL4/nnn+exxx5j06ZN/Pjjj+zatYstW7awcuVKZsyYYbzmiBEjqFevXpFlVKtWzfjfqamp/PHHHwDs3LmT1NRU40jLM2fOcPr0aXr37o2/f95DdNu2bRkwYABz5sxh8ODBALRv375A+Td+9rm5ubz00kts27aNhg0bUr9+fXr37k3jxo159tlnjelK8pkWt33yz7r0+1mOL9tZ4FjlR4OxsLMiMym1UPrMq3k70xe1XhGApa11sfIWN93NmJmZ4RFYhaRzsaTFXcHJ59bLcIiYGhsXR+Cv7/z1MpPSsLCzwsK68AtkafOJ3AvUL4mUjbLuc4qbLuF4NLnZORz839pC6aLDjxAdfoTGbz2BrZtjyRooIiZNQUsT1aVLFyZPnszWrVuNu29D3jqAfn5+9OzZk0WLFpGenk7Xrl1vWV6/fv3Ys2cPW7ZsYe7cuQV22b5TNmzYQG5uLo8++uhtlePt7Q3krVVZu3btAud+/PFHHB3/viO63fw3qlixIpA3mtLPz894PDMzk7feeosuXbrc8WsmJiby559/0qBBA5555hmeeeYZUlNTGTlyJBs3buTYsWPGa9rb29O8efMC+Q8dOsSVK1cKBFDHjRtHdHQ0b7/9NmPGjGHcuHG89957wF8jIG8M4L755pscPHiQgwcPEhgYSMOGDf+23r/88gvbtm3jpZdeKrBbeVZWFomJifj6+gIFP9MbjRkzBhcXFxo3blyi9sk/y7V6JQIHtitwzNbdiStnY0g+H18ofcqFy9iWcypys4NrHCuVK1be4qTLSsvkwP/W4BFYFb/2Bb+32Rl5yxeYW1kUKkPkXmBpZ42Nu2ORO7YmX7iMk3fRQY/S5hO5F6hfEikbZd3nFDedX6fGZKUVHE1tSE7j2JJwvOpXw6t+dawc9W4gcr/5+yFmctcMGjQIX19f3nvvvQK7ccfHx/PRRx/Rq1cvxo0bR82aNXniiSeKVeZ///tfXFxc+Oqrr4iMjLyj9Y2NjeXrr7+mfPnydOnS5bbKeuSRRwCYNm2aMZgGeZvTvPjii8ydO7dM89+oefPmWFlZsWTJkgLlbdiwgQ0bNpTJNXft2sWzzz7L1q1bjcfs7e2pWbMmkDfCMTAwEE9PT+bPn09KSooxXXJyMq+++iqhoaHGkZC//vor3377LU8++STPP/88PXv25Ntvv+WXX34B8taS9PLyYv369SQmJhrLunr1KsnJeQtcHzt2zJj+Zq7lrV69eoHjS5YsIS0tjaz8KR7ly5enVq1afP/998byIW8TpXnz5nHp0qUStU/+eTbO9rhVr1Tgj527Ex51qpAWd4WEk+eNaVPjEkk8dQHPun5/UyLFzlucdJZ21phbWhCz/ySG/KlDAFlpmVz85QQ27o7Ye7ne7scgctd41KlC4qnzpMYlGo8lnDxPWlzS395rpc0nYurUL4mUnbLuc4qTzsnbo9A97lwlb5koW3cn3KpXKnIzHxG5t+muNlH29vZMmzaNoUOH8sQTT9ClSxeCg4OpW7cuJ06c4MiRIwC0aNECS8vi/W/08PDgzTff5P333+ejjz4qsKlLSWzevNm4eUpGRganT59m5cqVZGRkMH369Nse/VazZk369evH/PnzSUxMpE2bNiQmJrJgwQIcHBwKjOAri/w3KleuHC+//DJfffUVAwcOpE2bNly8eJEFCxbQtGlTQkJCMDc3v6PXfOSRR/Dz8+Pdd9/lyJEjVK5cmdOnT/Ptt9/SrFkzY1Dwvffe47XXXuPxxx/niSeewMbGhqVLl3L+/HnGjh2LpaUlGRkZvPvuu7i7u/Pmm28CeSMoN2/ezLvvvsvq1auxsbHhvffeY8SIETz11FP07t2blJQUFi5cyNWrV3n33Xf5+uuveeGFF5gyZYpx5/cb1a9fH0dHRz7//HOio6NxcXFh7969rFu3DhsbmwLBx9DQUAYNGkTPnj3p1asX5ubmLFiwAGdnZwYPHoyVlVWx2iempUKjmpzf8ydHF27Dp0UgFlaWRIUfxtrZvsAGA5nJaSScOI9jRTccKriXKG9x0/l3fZDfZ27kt2nrqNi4JjnZOVzcd4zMq2nUGdBGax7JPc2nRSCxB07x+8yNeD8cSE5WFlHhh3H0LodXvbxlPtLir5J0LhbnKl7YuTsVO5/I/UT9ksjtK+s+R32TiNyM3vhNmL+/P2FhYSxcuJD169ezceNGLCws8PX15fXXXyc5OZmZM2eyZ88exo8fT9WqVW9ZZq9evVi5ciU7d+5k5cqVdO/evcT1+vzzz43/bWVlRfny5QkJCWHw4MEFpk/fjnfffZdq1aqxaNEivvjiC5ycnGjUqBEjRowwrrlYlvlv9OKLL+Lp6cm8efP4v//7Pzw9PXnyyScZPny4cUr1nbymvb09s2bN4uuvv2bNmjVcunQJT09Pnn76aYYNG2ZM16FDB1xcXJgyZQr/+9//MDc3p0aNGkyZMsU4+nPixImcOXOGMWPG4OzsDICbmxtvvfUW7777Ll999RXvvPMO7du3Z8qUKUyZMoVx48Zha2vLgw8+aKx/3bp1effdd6lQocJN6+3h4cE333zD2LFjmTJlCtbW1vj5+TFu3DgOHTpkHEXp4eHBgw8+yNy5c/n666+ZPHkyNjY2NG7cmLfeegtPT89it09Mi7mlBUHPt+fMup+J2nEYMzMzXKpVoFrHxljZ/zUFLzU2keNLw6n8aLDx5bC4eYubztWvAoHPtSViy0HO/rAfzMxwqVqeWn1aa80wuedZO9pRd3BHTn+/j3ObD2BhbUm52pXx69AIc8u8UehJZ2M4vmwnNZ942PgCWZx8IvcT9Usit6+s+xz1TSJyM2a5189llXvOsWPHmDNnDu+++26J100UKanc3Nz7YhRAn21F70YuIiIiIiIisOiRt+92Fe64hIkT7nYVbspteMlmZ/5baKTlPS4gIKDAyEeRsnQ/BCxFRERERERExPQpaPkvlp6eztWrV4uV1t3dXZue3KaUlBRSU1OLlfba9GgRERERERERkX8jBS3/xdatW0doaGix0m7ZsgUfH58yrtH9bdasWUyaNKlYaY8dO1bGtRERERERERERMV0KWv6LPfzww8yePbtYaTXy7/Z1796dhg0b3u1qiIiIiIiIiIiYPAUt/8W8vLzw8vK629X41/D19cXX1/duV0NERERERERExOSZ3+0KiIiIiIiIiIiIiFxPQUsRERERERERERExKQpaioiIiIiIiIiIiElR0FJERERERERERERMioKWIiIiIiIiIiIiYlIUtBQRERERERERERGToqCliIiIiIiIiIiImBQFLUVERERERERERMSkKGgpIiIiIiIiIiIiJkVBSxERERERERERETEplne7AiIi/7RB/m3udhVE7gszTm2+21UQuW98U67D3a6CyH3hhcsb7nYVRETkDtFISxERERERERERETEpClqKiIiIiIiIiIiISVHQUkREREREREREREyKgpYiIiIiIiIiIiJiUhS0FBEREREREREREZOioKWIiIiIiIiIiIiYFAUtRURERERERERExKQoaCkiIiIiIiIiIiImRUFLERERERERERERMSkKWoqIiIiIiIiIiIhJUdBSRERERERERERETIqCliIiIiIiIiIiImJSFLQUERERERERERERk2J5tysgcjdkZmYyZ84c1q5dS0REBObm5lStWpUOHTrw7LPPYmNjY0ybnJxMZmYm7u7uf1vmyJEjWbFiBceOHStRXfbu3Uv//v0LHTc3N8fZ2ZmAgAAGDx5MixYtSlTuNZmZmSQkJFC+fHkAwsLCCA0NZd68eTRt2rRUZYoUJSHuMusXr+LMsZMABNR9gI69u+Hg7PS3+c4dP82msLVEn4nEzsGO2vWDCOneEQcnxwLpos9GsmnZGiJOnsXM3IyqAf507N0djwpeBdKdPnqCLSvWcSEyGls7WwIb16NNj85Y29ogci9Ij7/K6fU/c+X0RQDca/ng17Ex1o52f5vvytkYzv6wn+ToS1jaWVOudmWqtKmPlYNtmaYTMVWxly8zb8UK/jhxAoAGderQr0cPXJz+vl/689QpFq5Zw6mICBzt7WlUty5PduqEs2PBfqk05Z+LjmbUmDF0b9eOXp063WYLRe6OEyt2k3bpCnUHd7xl2uL2acVNl3jqAuc2HyD5QjyWtlZ4BFalarsGWFhb3aHWiYgpUdBS/nWysrJ4/vnnOXjwIN27d6d3795kZ2fzyy+/MG7cOLZu3cq8efOwtrbm8OHDvPjii4wdO7bMA3xt27albdu2xr9nZ2dz+vRpvvvuO4YMGcL8+fNp2LBhicqMjo5m4MCBDBkyhMcffxyAxo0bM3r0aPz9/e9o/eXfLTU5hVmjJ5OdnUWLDiHk5uawc8M2YqLOM/T917GwLLq7OfPnCeaOm4qtnR2tHmuLmbkZe374kdN/nuCFUa9i52APwKWLscz8YiLW1ta07tIOgN0/bGf6ZxN4+b9v4+zqAuQFLGeP/R/eVXxp/0QXriQksmfTDqLPRDIo9BXMzMz+mQ9EpJQMqRkcmrmB3OwcfFoGkpubS1T4YVIuJlDvpccwt7AoMl/i6Qscnr0JSztrfFvXxczMjOjdf5B4+iLBQzthZWdTJulETNXVlBT+8/XXZGdn07VNG3JyclizZQsR58/z2ZtvYnmTfunIiRN8Nnky9nZ29GjXDnNzc9Zt28aR48f5+PXXcbS3L3X52dnZ/G/BArKys8u07SJl6eIvx7n483Fc/MrfMm1x+7Tipks8dYHfZ23E0bscfh0aknEllfO7/yA5+jJ1X+io5zyR+5CClvKvs379evbt28fEiRNp166d8Xj//v2ZMWMGY8aMYdmyZTz99NMcP36c2NjYf6ReAQEBdOvWrdDxtm3b0rt3b6ZOncr06dNLVGZUVBRnz54tcMzX1xdfX9/bqapIIbt+2M6VhESG/fdtvCpVAMDbrwpzv5zC/l37aNyqeZH51n4bhpmZOYNHjaBceU8AHmhQl8kfjubHtZvo0Dvvntj9w3YMGZkMDn2FipV9AKj2QE2mfTyO3Ru3G9NtWLIKV3c3nh85HKv8X9xd3N1Yu2AZJw7/Sc2g2mX6OYjcruidR8i4kkrDV7ph7+UKgJOPJ4dn/UDM/pNUbBxQZL5Ta/ZiZm5G8JBO2JVzBqBcncrs/3o1kdsPUa1j4zJJJ2Kqvt+6lfjERMaEhuJTIa9fql6lCp9Onsz2vXtp89BDReabvXQpZubmfPz661TwzOuXmgQH8/bnn7Ni40b69ehR6vJX/PADURculEVzRcpcbk4OkdsPcW7LwWLnKW6fVtx0p9f/jI2rA3UHd8TCKi+UYePiwKnVP5FwIhr3mj53rL0iYhq0pqX86xw4cACAh4p4mHz66aexsrLi4MGD/3Ctbi44OBg/Pz9+++23u10VkZv6fe9+/AKqGwOWANXrBFCughe/7z1QZJ6ES/HERl+gXvPGxoAlgGfF8gQE1+HArn3GY/Fxl7F3dDAGLAF8/Cpj52BPTHTeC6Ah04CDkyONWj1oDFgC+AXkjSq+GBF9ZxorUobiDp3G1a+C8aUNwK16Jew8nYk7dKbIPOkJyaTGJOJV398YYASw93TFvbYvMftPlkk6EVO2a/9+HqhRwxhQBKhbqxYVvbzYvX9/kXniLl8m8sIFWjVpYgxYAniXL0+DoCB+3PdXv1TS8s9FR7Ni40Ye79DhTjRP5B+Vbchi/6Q1nNt8EK96/li72BcrX3H7tOKkyzZkYe1oS4XGNY0BS8A44jPlQvxttFBETJWClvKv4+DgAMDixYsLnbO3t2f//v2MHj2aiRMnEhoaCuSNwgwJCTGmO3z4MAMHDqR+/fq0aNGCadOmkZubW2Z1trOzK1T+nj17GDRoEE2bNqVOnTq0aNGCDz74gKSkJCBv7cpra2WGhoYSEBBgPB4QEMDevXuNZaWlpfHll18SEhJCYGAgISEhjB07lrS0tFLVd9++ffTt25dGjRpRv359+vTpw9atWwulCwsLo3v37gQFBfHggw8ycuTIAiNbx44dS0BAAN9++63xWGZmJl26dKFp06bExMSUqn5yZ6WlpJIQd5lKVQv/ul2psg8XIqKKzJeUcAWA8j4VCp1z9/IgNTmFK/EJAJQr70lqSiopSVeNaVKTU0hPS8fJJS+oYmVtxbOvD6XVY+0KlHUhP1jp6vH369KK3G2GtAzS45Nx9C5X6JxjxXIkn79cZL7MpBQAHMq7FTpn5+5EVkoGGVdS7ng6EVOVnJpK7KVLVCtiZomfry9nIiOLzBd/Ja9f8q1YsdC5Ch4eXE1O5nJCQonLz87OZup331G3Vi1aNtYoZbn35GblkJ2RSa2nWhHQqwVm5reehl3cPq246SysLAkc0I7KrYMLpLkWrLRxdSyUX0TufQpayr9O165dsbKy4osvvuCxxx7jq6++Yu/evWRmZgJgbW0N/DUtG2Do0KGMGjUKgBMnTtCvXz9OnTrFSy+9xFNPPcWsWbP44YcfyqS+MTExHD9+nNq1/5rWunPnTgYOHEhaWhqvvPIK7777LnXr1mXx4sW8//77QN7alUOHDgWgd+/ejB49usjyMzMzee6555g+fToPPvggo0aNokmTJkyfPp2BAwdiMBhKVN/Tp08zZMgQcnNzee2113jzzTdJS0vjpZde4pdffjGmmzRpEqGhoVSuXJnQ0FB69+7Npk2b6NOnD/HxeQ8fw4cPx8/Pj6+++opLly4BMHnyZI4fP86HH35o3FxI7q5rwUdnN9dC55xcnUlPTSMttXAA3NombzRkRnpGoXOpyXkBkatX8oKULTo+ioubK0umzedi5HkuRp5nybR5WFhY0KxtyyLrlXApnv079/H9d2F4eVekdv2gUrVP5J+SeSUVAGvnwiNYrJ3tyE4zkJWWWeicef6Ik+yMwv9eG1Lz7q/Mq2l3PJ2IqYpPTATA3cWl0Dk3Z2dS09JISU0tdO7aM2BaRuF+6WpyMgCJSUklLn/V5s1ciI1lUP5zpci9xsLWikav98QzyK/YeYrbp5W270tPSCZm/0lOrd2HfXlXyj1Qudh1E5F7h9a0lH+dGjVqMGnSJEaNGsWJEyc4ceIEU6ZMwd7enpCQEIYNG4afnx+1atWiXr16LF68mObNmxs34pk4cSIAixYtomL+L/Ht27ene/fut1WvtLQ0Y7AOwGAwcOrUKcaOHUtOTg7Dhg0znpszZw4VK1Zk9uzZxgfsp59+mt69exMeHg7krV3ZvHlzpk6dSr169YpcLxNg+fLlHDhwgNDQUAYMGGAsq3r16owZM4YlS5bQt2/fYrdjy5YtpKamMmnSJOOO6506daJPnz4cPXqURo0aERkZyeTJk3nhhRd44403jHk7d+7M448/ztSpUxk1ahQ2NjZ89tln9O3bl9GjR/Pss88yY8YMOnfuTCftuGkyMtLTAQpMyb7GMv+YITMTO/uCuz96VaqAjZ0tf/x6iJad2hgXTzdkGjh55BgAWflBc9dybrR6rC1rv13G5A/zAvBm5ub0eem5AlPGr0lNTmHc2//Nr5c1j/V9vMj6iZiS7My87/v1096uMc/f1CPbkIWlnXWBc/blXbGwteLSkXP4tAoy3kvZhiwSTuSNNM4xZOFU2fOOphMxVen5Qcdrz0jXs7bK/8HMYMDhhnO+FSpgZ2vLvt9+o3vbtsbvfqbBwKE//zT+d3ZOTrHLj7xwgeXr1/Ncr16Uc3Mj7nLRI6ZFTJmZmRlmFiXb5Ka4fVpp+j5DagY/j1mWl8baAv8uTYvMLyL3Po20lH+l1q1bs23bNsaPH0+3bt3w9PQkNTWVtWvX0q1bN/Zdt2bR9XJycggPD6dVq1bGgCWAv78/Dz/88G3VaebMmTRr1sz4p2XLljz33HPGc02aNDGmnTZtGsuXLy/wsJyQkICjoyOpRYwc+Dtbt27F0dGxUGCyf//+ODo6Fjmt++9UyF/b6eOPP+bw4cMAuLm5sXHjRvr16wfApk2byMnJISQkhPj4eOMfDw8Pateuzfbt243lNWjQgH79+rF69WpeeeUV3N3d+fDDD0tUJylb11YuKOmOjRaWljRv15rzZyNZmj+C8kJEFIumzCYzI+8XdXPzvG5qc9g6Vs9bQuXqfjzxQj96DuqLj19llkydw58HDxcq28zMjCeHPkvPQX3xqlSB2WOncOQXrQsrJs54M5Usm7mFBd4P1SE5+jLHFu8g5WI8yecv8+fC7eRk5gUXzSzM73g6EVN1bUmdkvZLlpaWPBYSwumICL6eO5dz0dGciYpi/MyZpOfPyLGwsCh2+Tk5OUxZsIAAf/+bbvwjct8qbp9Wmr7PDGr1aUXNXi2w93Ll91k/cOnw2VJUUkRMnX6OkH8tGxsbOnXqZByxd+TIEWbNmsXatWv58MMPWb9+faE8iYmJpKamUrly4ekH1apVK3GA73rdunWje/fu5ObmcvbsWb755htsbW357LPPqFWrVoG0FhYWREZGMmHCBE6ePElERESp13eMiorC19cXK6uCo9Csra3x9fUlOrpkm5d06NCBTZs2sW7dOtatW4enpyetWrWiR48eNGrUCICIiAgA+vTpU2QZN9bltddeY+PGjURFRTF+/HhcipiOJXePja0NkDea8kZZ+b+e29raFpn3ka7tSU9NY8/mHfy+L2/jgoDgOrToEMKm5Wuxd3QgLTWNnRu24l21Ms+99bIxkBnUpD5TPx7HyjmLeXNMAJbXfW/sHOwJalIfgDqN6jHx/f9j3aIV1GkUXLgSIibCIn/JhBxDdqFzOVl5wUJL26JHDFcOCSYrPZPzu/8wblrgXtsHn5aBnN24H0s7mzJJJ2KKbG3yvp+ZRfRLmfkj+O1v0i/17NCBlLQ01m/fzu5ffwWgYWAgXdu0YeHq1Tja22PIvx9vVf7qLVs4Fx3Nf197jaT86eXJ+euFZ2RmkpScjJODQ4mDqyL3guL2aVml6Pus7GzwrJs3Vd0jsAr7J6zk1Pf78AisesfqLyKmQUFL+VdJTU1l2rRp1KlTh3btCm7WUadOHb788kuSkpLYsWMHCQkJNy0nPX867PVy8qcKlda16dyQt7N5q1at6NmzJ88++yyLFy+matWqxrQzZ85k9OjR+Pn50ahRI9q1a0dwcDDz589nzZo1Jbru320glJOTUyiAeCtWVlZ8/fXXHDt2jE2bNrFjxw7CwsJYtmwZb7zxBi+88ILxs5oyZcpNg1nXO3fuHJfzp1P98MMPmhpuYlzK5W3WcW39yetdTUzC1t4Oa9uiAxxmZmZ0eqoHLTu14XJMHM7urrh5uLMp7HvMzM1xcXcjJvoC2VlZBDWtbwxYQt5IzboPNuKHpauJuxBLxcreRV7DytqKgOA6/LR5BylXk3Fw0kLtYppsXPK+m0WtF5mZlIaFnRUWN1nmwMzMDP/OTfBtFUTapSRsXBywdXPk7A/7wdwMG1eHMkknYoo83PL6pcT8zQmvl5CUhL2dnTGweSMzMzOeffxxurVpw8W4OMq5uuJZrhyL1qzB3NwcD3d343rftyr/4B9/kJWdzaixYwulW7NlC2u2bGHSRx/hWa7wBiQi97ri9mm30/dB3rRy91q+nN99FENKOlYOt363EJF7h4KW8q9iY2PDzJkzqV+/fqGg5TXVq1cnPDy8yGCam5sbjo6OnDt3rtC5qKiid0guLR8fHz799FNefvllXn/9dZYsWYKlpSUZGRlMnDiRpk2bMmvWLCwt/7qNJ0yYUOLreHt7c/DgQQwGQ4EAZWZmJlFRUcbRkcV1/vx5zp8/T6NGjQgICGDYsGFcvHiRZ599lpkzZ/LCCy/g7Z0XXKpYsWKBDYYAfvzxRxwd/woqZWVlMWrUKFxdXenevTvTp0+nc+fOtG3btsRtlbJhZ2+Hq4c7F84VvgfOR0ThXbXw7qrXHNq7HycXJ/xq1cDRxcl4/OyxU1Sq4oOVtZXxO56TUzjAnmv8sSCXuAsxzBs3jYc7htA0pOByDRnp6WBmhqXWOxITZmlnjY27Y5G7hCdfuIyTt8dN88b+dhprJztcq1XE2vGv9WOvnL2Io3c541pfdzqdiClysLfHs1w5zhTxbHYmMhL/ImbMXLPr119xdXamTo0auDo7G4//cfIk1Xx9sbaywtrKqljl9+vRo9CGP1euXmXSvHm0aNyYlk2a4HLdNUTuJ8Xt04qbLjUukcNzNuHTIohKDxachZadYQAzMLO0KIOWiMjdpAWJ5F/FwsKCTp06sW/fPlatWlXofGJiIhs3bqR58+bY2dkZR3VdGxloZmZG27ZtCQ8P58SJE8Z8UVFRBdZhvFPatGnDY489Zpy6DnmjPNPS0qhatWqBgOXRo0eNa3Fm5U+lsLCwKFD/ooSEhJCcnMy3335b4Ph3331HSkoKrVu3LlGdp06dyoABAwpMV69QoQJeXl7Gz/ORRx4B8tbmvH6k59GjR3nxxReZO3eu8djMmTM5cuQIoaGhjBgxAn9/f/7zn/+QmL9zp5iGOg2DOfXHMeIu/PX//eSRY1y+GEtQ0wY3zbd743bWLFhOdvZfU4KO/XaEiBOnjYFHL+8KOLk6c2DnXgyZf+1mbMg0cHD3z9g7OuBVqQLuXh6kp6Xx8/bdZGf9tUlIwqV4jvzyG1UD/LEpxshekbvJo04VEk+dJzUu0Xgs4eR50uKSjFPhihK96win1uwlJ/uvf+8v/xlJ0tlYKjWtVWbpRExV0+Bgfj92jOjrnkcO/fknF2Jjad6w4U3zfb91K7OWLi3QL/16+DDHTp+mXYsWJSrfv3Jl6taqVeBPrWrVACjv4UHdWrWMG/eI3I+K26cVJ52tuzNZ6Zlc2HeMnOvuz/SEZC4dPouLXwUsbXQ/idxv9DO5/OuMHDmSQ4cO8fbbb7N69WpatGiBo6MjERERhIWFYTAY+OCDDwCMu18vXLiQS5cu0aVLF0aMGMH27dt55plnGDBgABYWFsyfPx8HB4ci1za6XaGhoYSHhzN58mQ6dOhA5cqVCQ4OJiwsDEdHR/z8/Dhx4gRLly41BgVTUlJwcXHBLX961OrVq8nNzaVHjx6Fyu/VqxcrVqzg//7v/zh+/DiBgYEcPnyYsLAw6tWrR69evUpU3759+7Jq1Sr69u1L7969cXFx4aeffmLfvn288sorANSsWZN+/foxf/58EhMTadOmDYmJiSxYsAAHBwdGjBgBwKlTp5g0aRIPP/wwnTt3BuDDDz+kf//+fPrpp4wZM6bUn6vcWS06hnBw98/MHjOZh9o/QpbBwM4N26hU1ZfgB/Ne3uJjLxFx8gyVq/vh7pX3q3mLTo+y6H+zWTBhOg80qEvi5Xh2bdxO9cBaBDfLG+Vrbm7OY32fYOH/ZjPtk/E0aNGU3Jwcfg3fS9zFWJ4Y1BeL/AB+56cfZ/mMb5nxfxOp16wRqSmp7N0SnlfG0z3vzocjUgI+LQKJPXCK32duxPvhQHKysogKP4yjdzm86vkDkBZ/laRzsThX8cLOPW+Esm/LII5+t50/5m+m3ANVSE9MJnrnEdxqVsKrXjVj+Xc6nYip6tqmDTv27ePjiRN5LCSETIOBNVu2UK1yZVrkzyKJuXSJY6dPE1CtGuU98vqlbm3bMm7mTL6YNo0mwcHExcezdutWgmvXpkXjxiUqX+TfpKi+qTh9WnHTmVuY4//YgxxfGs6hb9bjVd+frNQMzv/0J5ib4f9Y07vSbhEpW2a5f7egnch9KjU1lTlz5rBlyxYiIiJIS0vDy8uL1q1bM3ToULy8vAAwGAy89dZbbNu2DRsbG8LDw7GxseHMmTOMHj2affv2YW1tbQzsTZs2jWPHjpWoLnv37qV///4MGzaM4cOHF5lm6dKlvPfeezRr1ow5c+Zw4cIFPv/8c/bu3UtmZibe3t507twZf39/hg8fztdff0379u0B+OSTTwgLCyM3N5dVq1bxyy+/EBoayrx582jaNK9zT05OZvLkyaxfv55Lly5RoUIFOnfuzIsvvlisNSdvtH//fiZPnswff/xBcnIyVatWpXfv3vTt29e42Hxubi4LFy5k0aJFnDlzBicnJxo0aMCIESOoUaMGOTk5PP300/zxxx+sXbu2wOZHb7/9NqtWrWLatGklHgkKsDlif4nzyK1duhjLuoUrOHv8FNbW1tSs+wDte3XBwTnvwXX/zn2smPUdPQY+TYOHmxjzHdq7n/B1m7kccwkHZ0eCH2xEy85tsLaxLlD+6aMn2LZ6A9FnIgGoWMWHVo+1pWZQwSUGDv98gB3rthAbfQErGxv8a9egzeOd8ajgVcafwL/PjFOb73YV7kupcVc4/f0+rpyNwcLaErea3vh1aGScph2z/yTHl+2k5hMPU75BdWO+2N9OE7Xjd9IuJ2HlaIdXcDV8W9XFwrrgb9R3Op3cGd+U63C3q3DfOR8Tw9ywMI6eOoWNlRX169Shb7duuDjl9Uvb9+5lyoIFvPjMM7Ru+lfAY9evv7Jq0yYuxMXh4uREi0aN6N6uHTbW1iUqvyhxly8z7KOPeKJjR3ppje4y8cLlDXe7Cve9fWOWYuvqSN3BHY3HbtY33apPK2m6uN/PEPnj76TGJGJhbYmrf0WqtG2Avac26rzTFj3y9t2uwh2XMLHky6n9U9yGj7jbVTBJClqKyL+OgpYid4aCliJ3joKWIneGgpYid4aClv8sBS2LpjUtRURERERERERExKRofo9IGYiLiytWOnt7exwcHMq4NrcvMTERg8Fwy3RWVla4urqWfYVERERERERE5L6moKVIGXj44YeLle7v1rE0JcOHDzfuTP53mjRpwvz58/+BGomIiIiIiIjI/UxBS5EyMHv27GKl8/X1LeOa3BnvvPMOSUlJt0zn7Oz8D9RGRERERERERO53ClqKlIHmzZvf7SrcUYGBgXe7CiIiIiIiIiLyL6KNeERERERERERERMSkKGgpIiIiIiIiIiIiJkVBSxERERERERERETEpClqKiIiIiIiIiIiISVHQUkREREREREREREyKgpYiIiIiIiIiIiJiUhS0FBEREREREREREZOioKWIiIiIiIiIiIiYFAUtRURERERERERExKQoaCkiIiIiIiIiIiImxfJuV0BERERE5N9un2vW3a6CyH3hGzrc7SqIiMgdopGWIiIiIiIiIiIiYlIUtBQRERERERERERGToqCliIiIiIiIiIiImBQFLUVERERERERERMSkKGgpIiIiIiIiIiIiJkVBSxERERERERERETEpClqKiIiIiIiIiIiISVHQUkREREREREREREyKgpYiIiIiIiIiIiJiUhS0FBEREREREREREZOioKWIiIiIiIiIiIiYFAUtRURERERERERExKQoaCkiIiIiIiIiIiImxfJuV0CkrGRmZjJnzhzWrl1LREQE5ubmVK1alQ4dOvDss89iY2NjTJucnExmZibu7u5/W+bIkSNZsWIFx44dK1Fd9u7dS//+/QsdNzc3x9nZmYCAAAYPHkyLFi1KVO41mZmZJCQkUL58eQDCwsIIDQ1l3rx5NG3atFRlityOlXMWczkmluffGX7LtAlxl1m/eBVnjp0EIKDuA3Ts3Q0HZ6cC6U78fpTtazdx/mwkZuZm+FarSpvHO+HrX/WmZV+MPM/Uj7+kZac2hHTveFttEvmnpMdf5fT6n7ly+iIA7rV88OvYGGtHu7/Nd+VsDGd/2E9y9CUs7awpV7syVdrUx8rBtlTprpdyMZ4Dk9fi2zqIKo/Wv/1GivwDitu/3Ojc8dNsCltL9JlI7BzsqF0/iJDuHXFwcswr91I8497+79+WMfDtl/GrVQOAmKgLbFy6mrPHT2FtbY1/nQDaPN4ZN4+/f+4UMVXfLFzI+dhYPhox4pZpYy9fZt6KFfxx4gQADerUoV+PHrg4FbwPr1y9yqI1a/jl99/JzMrCz8eHvt26UaNq1QLpRo0Zw6mIiELXaVKvHm88/3zpGyUiJklBS7kvZWVl8fzzz3Pw4EG6d+9O7969yc7O5pdffmHcuHFs3bqVefPmYW1tzeHDh3nxxRcZO3ZsmQf42rZtS9u2bY1/z87O5vTp03z33XcMGTKE+fPn07BhwxKVGR0dzcCBAxkyZAiPP/44AI0bN2b06NH4+/vf0fqLFMev4T/x6449VA249fcvNTmFWaMnk52dRYsOIeTm5rBzwzZios4z9P3XsbDM66bOHDvJvK++watSBdr27Ex2dg77tu5k5hcTGTTyFXyqVSlUdnZ2Nstnfkt2VvYdb6NIWTGkZnBo5gZys3PwaRlIbm4uUeGHSbmYQL2XHsPcwqLIfImnL3B49iYs7azxbV0XMzMzonf/QeLpiwQP7YSVnU2J0l0vJzuHY8t2kpudU6ZtF7mTitu/3OjMnyeYO24qtnZ2tHqsLWbmZuz54UdO/3mCF0a9ip2DPQ6ODvQc1LdQXoPBwPffhuHg7EgFX28A4i7EMP3zCeTk5NCsbSvs7O34eftuvvn0K14YNQI3z3Jl+jmI3Glb9+xhy+7d1K5e/ZZpr6ak8J+vvyY7O5uubdqQk5PDmi1biDh/ns/efBPL/PswLT2djyZMIOHKFTo/8ggO9vZs2LGD/3z9NZ+9+SaVK1UCyOsTY2JoVLcuTYODC1zL8xaDT0Tk3qSgpdyX1q9fz759+5g4cSLt2rUzHu/fvz8zZsxgzJgxLFu2jKeffprjx48TGxv7j9QrICCAbt26FTretm1bevfuzdSpU5k+fXqJyoyKiuLs2bMFjvn6+uLr63s7VRUpsZycHH5cu4mtqzYUO8+uH7ZzJSGRYf99G69KFQDw9qvC3C+nsH/XPhq3ag7AuoUrcHFzZch7r2FtYw1A/eaNmfDe52wO+54Bb75UqOwd328m7vzFO9AykX9O9M4jZFxJpeEr3bD3cgXAyceTw7N+IGb/SSo2Digy36k1ezEzNyN4SCfsyjkDUK5OZfZ/vZrI7Yeo1rFxidJdL+rHQ6TGJN75xoqUoeL2Lzda+20YZmbmDB41gnLlPQF4oEFdJn84mh/XbqJD725Y29pQr3nhe2XdwjCys7Pp9UI/7BzsAdiwZBUZ6RkMGvkKVWr4Afn917ufs2HJKp56eWBZNF/kjsvJySFs40aWrV9f7Dzfb91KfGIiY0JD8amQdx9Wr1KFTydPZvvevbR56CEAVm3axIXYWD4YPpwHauSNUG7WoAHDP/qI1Zs3Myx/xlpcfDwZGRk0rluXlk2a3OEWiogp0pqWcl86cOAAAA/ld4TXe/rpp7GysuLgwYP/cK1uLjg4GD8/P3777be7XRWRUjFkGvjfR2PZunI99Zo1wsnNpVj5ft+7H7+A6sYXSoDqdQIoV8GL3/fm3cdpKalcjDxPYON6xoAlgKOLE1Vr+hNx8myhci9GnufHtT/Qukv722uYyD8s7tBpXP0qGAOWAG7VK2Hn6UzcoTNF5klPSCY1JhGv+v7GQCSAvacr7rV9idl/skTprpdyMZ6IbYeoHBJc6JyIKStO/3KjhEvxxEZfoF7zxsaAJYBnxfIEBNfhwK59N73excjz7NkcToOHm1C1Zt5Mg+ysLE4dOYb/AzWNAUsAB2cn6j/UhKMHDpOWmna7TRUpc5kGA+988QVL162jRePGuLu6Fivfrv37eaBGDWPAEqBurVpU9PJi9/79QN7oyR/37aP+Aw8YA5YAbs7O9O/Rg1rXzRyLvHABAO/8JbFE5P6noKXclxwcHABYvHhxoXP29vbs37+f0aNHM3HiREJDQ4G8UZghISHGdIcPH2bgwIHUr1+fFi1aMG3aNHJzc8usznZ2doXK37NnD4MGDaJp06bUqVOHFi1a8MEHH5CUlATkrV15ba3M0NBQAgICjMcDAgLYu3evsay0tDS+/PJLQkJCCAwMJCQkhLFjx5KWVvKH5b179xIQEMCKFSvo0qULQUFBxs8xLi6O//znPzz66KMEBgbSsGFD+vfvz6+//lqgjNzcXObNm8djjz1G3bp1i6xPTk4Os2bNokOHDgQGBtKiRQs++eQTkpOTS1xnKVtZWVlkpKXT+8Vn6TmoLxbmRU9hvV5aSioJcZepVNWn0LlKlX24EBEFgI2dLSM+G0Xz9q0LpUtNTsHcomBXlp2dzYrZC/GvE0Bws0ala5DIXWBIyyA9PhlH78LTRR0rliP5/OUi82UmpQDgUN6t0Dk7dyeyUjLIuJJS7HTX5GTncHz5LtxqVMKrnpYbkXtHcfuXGyUlXAGgvE+FQufcvTxITU7hSnxCkXk3h32PlbUVj/boZDyWcjWZ7KxsKvhUKrK83JwcYqLOF6tNIneTwWAgNT2dV597jpf79cPc/NZhhOTUVGIvXaJaEbO//Hx9ORMZCeSNnoxPTKRurVpA3jtCekYGAO1atDCOxoTCQctr6UTk/qXp4XJf6tq1K7Nnz+aLL74gLCyMNm3a0KxZM+rXr4+1tTXW1nmjtdq2bUtcXByLFy9m6NChBAUFAXDixAn69euHs7MzL730EgaDgVmzZpGZmVkm9Y2JieH48eM0aNDAeGznzp0MHjyYBg0a8Morr2BmZsauXbtYvHgxV65cYcKECTRu3JihQ4cydepUevfufdP1MDMzM3nuuec4ePAgjz/+OIGBgRw6dIjp06fz66+/Mm/ePKysrEpc7//+9788/vjj9OrVi0qVKpGenk7fvn25evUqffv2pXz58pw9e5aFCxcyaNAgNm/eTLlyeS/j//nPf1i4cCGPPPIITz31FGfOnGHWrFmcPXuWSZMmAfDuu++yatUqunfvzoABAzh16hQLFy5k//79LFy4sMBmSnJ32drZ8ur/vYvFTdbbK8q1l0NnN9dC55xcnUlPTSMtNQ07ezs8rhvxcs3FyPNEnDxDjcBaBY7vXL+FyzFxPD1sIDk5ZfdDg8idlnklFQBrZ/tC56yd7chOM5CVlomlnXWBc+ZWeY9z2RmGQvkMqXkvdJlX04qdzsYl74e/qPDfSbucxAPPhJCre0nuISXpX65nbZP3LJSRXjgQkpqcF9C/euUqLu4FA/8XI89z7LcjPNT+EZxd/5ppYJX/nFJUeWkpefd78pWk4jZL5K6xt7Pj6w8+KNFzXnxiIgDuLoVn37g5O5OalkZKaioX8pfpcnZyYv6KFWzZvZu09HTKe3rybI8eNMx/PwOIunABW1tb5oWFsfvAATIyMvDy8KDPY4/xUAn3BRCRe4OClnJfqlGjBpMmTWLUqFGcOHGCEydOMGXKFOzt7QkJCWHYsGH4+flRq1Yt6tWrx+LFi2nevLlxI56JEycCsGjRIipWrAhA+/bt6d69+23VKy0tjfj4eOPfDQYDp06dYuzYseTk5DBs2DDjuTlz5lCxYkVmz55tDLI+/fTT9O7dm/DwcCBv7crmzZszdepU6tWrV+R6mQDLly/nwIEDhIaGMmDAAGNZ1atXZ8yYMSxZsoS+fQsvKH8rDRs25P333zf+fd26dZw7d44ZM2YU2And19eXDz/8kF9//ZV27dpx8uRJFi1axJNPPsnHH39sTOfg4MDUqVM5efIkly9fJiwsjP/85z/06dPHmKZVq1Y8//zzLFq0iGeffbbEdZayYWZmVqIHWYCM9HQArKwLB8wt848ZMjMLvVQCZKZnsHzGAgBadHrUeDw2+gLbVm+kc9+euLi7kXApvlBeEVOVnZkXTLSwKvx4Zp6/WUG2IatQ0NK+vCsWtlZcOnIOn1ZBmJmZGdMmnIgGIMeQhVNlz2KlA0iJSSBiy2/4d22KjYsD6Qka4S73jtL2L16VKmBjZ8sfvx6iZac2xnvEkGng5JFjAGQZCgf9923biZm5OU0fbVHguJ29HeUqeHH89z/IzMgssMTJnwcO55eXVdpmivxjSvOcd20U5LX3mOtZ5w+WyDAYSM2fZbX4+++xtLBgwBNPYG5mxpotWxgzfTqjXnrJOAoz8sIF0tPTSUlPZ1i/fqSkpbF++3a+njOH7OxsrXMpch/S9HC5b7Vu3Zpt27Yxfvx4unXrhqenJ6mpqaxdu5Zu3bqxb1/R6xLl5OQQHh5Oq1atjAFLAH9/fx5++OHbqtPMmTNp1qyZ8U/Lli157rnnjOeaXNfRTps2jeXLlxfo6BMSEnB0dCQ1NbVE1926dSuOjo6FApP9+/fH0dGRrVu3lqo9jRsXXIS+U6dO7Nmzp8DndP3o1Gv13r59O7m5ufTr169A/ueff57Vq1dTuXJlfvjhB8zMzGjVqhXx8fHGPw888ACenp5s3769VHUW03FtNYRrL4XFlZmRyYKvZ3Ax8jwtOz2KX0De7pU5OTmEzVxI5erVbrrBgohJM94UJctmbmGB90N1SI6+zLHFO0i5GE/y+cv8uXA7OZl5AREzC/Nip8vNyeH48p04V/W66cY/IqastP2LhaUlzdu15vzZSJZOm8/FyPNciIhi0ZTZZGbkPc/cOC3WkGng4J5fqFUvEDePwrsXt+zUhqT4RL6bOIOoMxHEnr/IitkLuRx3Ka+8EgaCRO4V15a9utV9aMjK639S09L472uv0bppU1o2acJHI0bgYG/PojVrjGnbPPQQA3v14o3nn6dJcDCPPPggn7zxBl4eHixYuZKcnJyya5CI3BUaaSn3NRsbGzp16kSnTnnrCx05coRZs2axdu1aPvzwQ9YXsftdYmIiqampVK5cudC5atWqlTrAB9CtWze6d+9Obm4uZ8+e5ZtvvsHW1pbPPvuMWrUKTnG1sLAgMjKSCRMmcPLkSSIiIoiJiSnVdaOiovD19S00Bdza2hpfX1+io6NLVa67e+GHczMzM7755hsOHDhAREQEERERGPJHJVx7kLh2vapVqxbI6+zsjLNz3uYQERER5Obm0rp16yKvfW3dUrl32djmTZszFLHsQlb+iDNbW9sCx9NS01jw1TdEnDxDgxZNafN4Z+O5neu3cjEqmkGhI0i5mjcqLD0/UJ6ZaSDlajL2jg4lfokV+adY5E9NzTFkFzqXk/9SZ2lb9FIelUOCyUrP5PzuP4wb9rjX9sGnZSBnN+7H0s6m2Omiwg+TciGB4CGdMKTkjVjLSssbMZOdmYUhJR1LexvdS2KyStO/XPNI1/akp6axZ/MOft+Xt1FIQHAdWnQIYdPytdg7Fnz+OP3nCQwZmQQ2rldkeQ0ebkLylSS2rtrAtI/HAVC5uh/te3Vh1ZzFRc4mELkf2OYvj1DU8lqZ+e8G9ra22OQP0GgaHIyj/V/LozjY29MwMJAd+/aRnpGBrY0NbYsYQGJtZUXLxo1Ztn49kRcuUMXbuyyaIyJ3iYKWct9JTU1l2rRp1KlTh3bt2hU4V6dOHb788kuSkpLYsWMHCQlFL6YOkJ4/teh6t/vr3bXp3JC3s3mrVq3o2bMnzz77LIsXLy4QxJs5cyajR4/Gz8+PRo0a0a5dO4KDg5k/fz5rrvvFsTj+bgOhnJycUq1nCRSaJnL69GmeeuopDAYDDz/8MJ06daJ27drk5uby8ssvG9NlZxd+IS+qXg4ODsb1LW+k9SzvfS7l8tYEu3rlaqFzVxOTsLW3w9r2r//PKUlXmTNuKhcjomnUqjld+/cqEDQ5cfgo2VnZxpfC6+3asJVdG7by+ugPihwJI2IKbFwcgbx1JW+UmZSGhZ0VFkVMd4W8H4z8OzfBt1UQaZeSsHFxwNbNkbM/7AdzM2xcHYqdLuF4NLnZORz839pC14kOP0J0+BEav/UEtm6Od7D1IndOSfuX65mZmdHpqR607NSGyzFxOLu74ubhzqaw7zEzNy+0nuXxQ39gYWlJzbq1b1qflp3b0PiRh4iNuoCDsyMeFbz4+cfdALh5eZS2mSImzcMt715JTCq8bmtCUhL2dnbY2tgYdyJ3dizcp7g4OZGbm0taftDyZlycnADIKKP9B0Tk7lHQUu47NjY2zJw5k/r16xcKWl5TvXp1wsPDi/yV3c3NDUdHR86dO1foXFRU0btNlpaPjw+ffvopL7/8Mq+//jpLlizB0tKSjIwMJk6cSNOmTZk1axaWln/dqhMmTCjxdby9vTl48CAGg6FAgDIzM5OoqCgaNbozOyxPnz6dpKQk1q9fXyAAe2OQtVKlvF00IyMj8ff/a0famJgYPv/8c5555hm8vb3ZuXMngYGBxtGX12zYsKHIkbByb7Gzt8PVw50L5wrfV+cjovCu+tdukxnp6caAZbO2rej0VI9CeTr07m7c2OCalKSrLJu+gOBmjajXvDGOzk53viEid4ilnTU27o5F7hKefOEyTt43D27E/nYaayc7XKtVxNrxr5FbV85exNG7nHGdzOKk8+vUmKy0gi9+huQ0ji0Jx6t+NbzqV8fKsehRaiKmoCT9y40O7d2Pk4sTfrVq4OjyV59x9tgpKlXxKbROZsTJM3hX9cXWrugRk8d+OwLkjdasUrOa8fi546dxcHainIKWcp9ysLfHs1w5zhTx/nQmMhL//Gd534oVsbS0JPLixULpYi9fxsrKChdHR+ITE/lk8mSaN2jAEx07FkgXnT8bzTN/w08RuX9oTUu571hYWNCpUyf27dvHqlWrCp1PTExk48aNNG/eHDs7O+PaRNdGUZqZmdG2bVvCw8M5ceKEMV9UVFSZrKPYpk0bHnvsMePUdcgb5ZmWlkbVqlULBCyPHj1qXIszK3+q4LXRjn83CjQkJITk5GS+/fbbAse/++47UlJSbjoFu6QSExOxs7MzBiUhLzC6aNEi4K8Rlq1atQJg4cKFBfKHhYWxfv16HB0dCQkJAWDKlCkF0mzdupURI0aUeLSpmKY6DYM59ccx4i78tfTBySPHuHwxlqCmDYzH1sxflh+wbFlkwBLAu6ov1esEFPhTuUbeC6K7Zzmq1wkoclMGEVPiUacKiafOkxqXaDyWcPI8aXFJeNb1u2m+6F1HOLVmLznZf/UFl/+MJOlsLJWa1ipROidvD9yqVyrwx7lKeQBs3Z1wq16pyM2CRExJcfuXG+3euJ01C5YXmBVy7LcjRJw4TdOQglNTs7OyiDt/kYpVfG5a3oHdPxM28zvj5kAA589FcvjngzQNeVjLLMh9rWlwML8fO2YMKgIc+vNPLsTG0jx/t29bGxsaBQVx4PBhIi9cMKaLvXyZX37/nUZBQZibm+Pu6kpqWhpbd+82bt4DcCk+nu1791KnZk3cbhjoICL3Pj1xyn1p5MiRHDp0iLfffpvVq1fTokULHB0diYiIICwsDIPBwAcffAD8tS7jwoULuXTpEl26dGHEiBFs376dZ555hgEDBmBhYcH8+fNxcHAocl2W2xUaGkp4eDiTJ0+mQ4cOVK5cmeDgYMLCwnB0dMTPz48TJ06wdOlSY5A1JSUFFxcX3PKnXqxevZrc3Fx69Cgc0OnVqxcrVqzg//7v/zh+/DiBgYEcPnyYsLAw6tWrR69eve5IO1q2bMnWrVsZMmQIHTp04OrVq6xcuZKIiAhjnQFq165Nr169mD9/PrGxsTRr1sy4o3j37t2pVasWAQEBPProo8yaNYvo6GiaNWtGdHQ03377LZUqVeL555+/I3WWf0587CUiTp6hcnU/3PNHlrToGMLB3T8ze8xkHmr/CFkGAzs3bKNSVV+CH8x7mI09f5Hf9vyCrb0dFXx9OLj750Jl12veuNAxkXuRT4tAYg+c4veZG/F+OJCcrCyiwg/j6F0Or3p5I9PT4q+SdC4W5ype2LnnjQTzbRnE0e+288f8zZR7oArpiclE7zyCW81KeNX7a3RXcdOJ3OuK078U2S91epRF/5vNggnTeaBBXRIvx7Nr43aqB9YiuFnBmSmJlxPIzsouNGX8eg+1a83R/YeYPeZ/1H+oCWkpqez6YTuelcrTvF2rsvsARP5hMZcucez0aQKqVaO8R9791LVNG3bs28fHEyfyWEgImQYDa7ZsoVrlyrS4bqbXM9268ceJE/z366/p2Lo1lhYWrP/xR6ytrHiqSxdjuueffJKx06fz/vjxPNq8OWnp6WzcsQMLc3MG3qH3GRExLQpayn3J3d2dsLAw5syZw5YtW5g8eTJpaWl4eXnRrl07hg4dipeXFwDNmjWjY8eObNu2jZ9++ol27dpRsWJFFi5cyOjRo5kxYwbW1tbGwN60adPueH09PDx46623eO+99/jggw+YM2cOEyZM4PPPP2f58uVkZmbi7e3NCy+8gL+/P8OHD+enn36iffv2+Pv7069fP8LCwvj9999p2rRpofKtra2ZM2cOkydPZv369axevZoKFSowZMgQXnzxxVKvaXmjPn36kJSUxNKlS/nkk0/w8PCgXr16TJo0iT59+vDTTz8xYMAAAP773/9StWpVli5dytatW6lUqRIvv/wygwYNAvJGvE6YMIEZM2awcuVKtm7diru7O+3atWPEiBF4eGg61b3m7PHTrJj1HT0GPm18OXRwdmJQ6CusW7iCLSvXY21tTe36QbTv1QXL/O/l2WOnAEhPTWPFrO+KLFtBS7lfWDvaUXdwR05/v49zmw9gYW1JudqV8evQCHPLvJH1SWdjOL5sJzWfeNgYtPQIrEpA75ZE7fid0+v2YeVoh0+LQHxb1cXsut2Oi5tO5F5XrP6liH6pTqNgeg3pT/i6zaxftBIHZ0ce7hBCy85tCu0cfm1JElu7my+X4OtflX6vDmHLinVsXLoaOwd7gh9sSEi3DtjcZDMgkXvR0VOnmLJgAS8+84wxaOni5MR/Xn2VuWFhLFm3DhsrKxrXrUvfbt0KvH94livHJ2+8wberVrFmyxZyc3Op7e9P3+7djWUBNK5bl7cGD2bFDz/w7apVWFtZ8UCNGjzdtSve5cv/420WkbJnlvt3O3SIiNyHNkfsv9tVELkvzDi1+W5XQeS+Mci/zd2ugsh9oUmixuWI3AnOdeve7SrccQkTS74/xD/FbfiIu10Fk6Sf1EVERERERERERMSk6GcokVKKi4srVjp7e3scHBzKuDa3LzExEYPBcMt0VlZWuLq6ln2FRERERERERORfS0FLkVJ6+OGHb50IGDZsGMOHDy/j2ty+4cOHG3cm/ztNmjRh/vz5/0CNREREREREROTfSkFLkVKaPXt2sdL5+vqWcU3ujHfeeYekpKRbpnN2dv4HaiMiIiIiIiIi/2YKWoqUUvPmze92Fe6owMDAu10FERERERERERFAG/GIiIiIiIiIiIiIiVHQUkREREREREREREyKgpYiIiIiIiIiIiJiUhS0FBEREREREREREZOioKWIiIiIiIiIiIiYFAUtRURERERERERExKQoaCkiIiIiIiIiIiImRUFLERERERERERERMSkKWoqIiIiIiIiIiIhJUdBSRERERERERERETIrl3a6AiMg/bcapzXe7CiL3hUH+be52FURERERE5D6lkZYiIiIiIiIiIiJiUhS0FBEREREREREREZOioKWIiIiIiIiIiIiYFAUtRURERERERERExKQoaCkiIiIiIiIiIiImRUFLERERERERERERMSkKWoqIiIiIiIiIiIhJUdBSRERERERERERETIqCliIiIiIiIiIiImJSFLQUERERERERERERk6KgpYiIiIiIiIiIiJgUBS1FRERERERERETEpChoKSIiIiIiIiIiIibF8m5XQO5dmZmZzJkzh7Vr1xIREYG5uTlVq1alQ4cOPPvss9jY2BjTJicnk5mZibu7+9+WOXLkSFasWMGxY8dKVJe9e/fSv3//QsfNzc1xdnYmICCAwYMH06JFixKVe01mZiYJCQmUL18egLCwMEJDQ5k3bx5NmzYtVZmmavHixcyaNYvY2FgCAwN5//33qVmz5t2ultxjTqzYTdqlK9Qd3PGWadPjr3J6/c9cOX0RAPdaPvh1bIy1o12J0qUnJPPzmGV/e62gQe1xrVaxNE0S+cckxF1m/eJVnDl2EoCAug/QsXc3HJyd/jbfueOn2RS2lugzkdg52FG7fhAh3Tvi4ORYIF302Ug2LVtDxMmzmJmbUTXAn469u+NRwatAutNHT7BlxTouREZja2dLYON6tOnRGWtbG0TuBaZyL13vYuR5pn78JS07tSGk+637SBFT9M3ChZyPjeWjESNumTb28mXmrVjBHydOANCgTh369eiBi1PB+/DK1assWrOGX37/ncysLPx8fOjbrRs1qlYtkG7UmDGciogodJ0m9erxxvPPl75RImKSFLSUUsnKyuL555/n4MGDdO/end69e5Odnc0vv/zCuHHj2Lp1K/PmzcPa2prDhw/z4osvMnbs2DIP8LVt25a2bdsa/56dnc3p06f57rvvGDJkCPPnz6dhw4YlKjM6OpqBAwcyZMgQHn/8cQAaN27M6NGj8ff3v6P1v9vCwsL44IMP6NmzJw888AAzZszg+eefZ/369Tg6Ot66ABHg4i/HufjzcVz8yt8yrSE1g0MzN5CbnYNPy0Byc3OJCj9MysUE6r30GOYWFsVOZ+VgQ81ehX+YyMnK4tSavVg52OJQ8e9/OBG521KTU5g1ejLZ2Vm06BBCbm4OOzdsIybqPEPffx0Ly6If3c78eYK546Zia2dHq8faYmZuxp4ffuT0nyd4YdSr2DnYA3DpYiwzv5iItbU1rbu0A2D3D9uZ/tkEXv7v2zi7ugB5AcvZY/+HdxVf2j/RhSsJiezZtIPoM5EMCn0FMzOzf+YDESklU7mXrpednc3ymd+SnZVddg0XKWNb9+xhy+7d1K5e/ZZpr6ak8J+vvyY7O5uubdqQk5PDmi1biDh/ns/efBPL/PswLT2djyZMIOHKFTo/8ggO9vZs2LGD/3z9NZ+9+SaVK1UCyHv+i4mhUd26NA0OLnAtz1sMjhGRe5OCllIq69evZ9++fUycOJF27doZj/fv358ZM2YwZswYli1bxtNPP83x48eJjY39R+oVEBBAt27dCh1v27YtvXv3ZurUqUyfPr1EZUZFRXH27NkCx3x9ffH19b2dqpqkJUuWUL16dT777DMA3N3dee211/jll19o3br13a2cmLzcnBwitx/i3JaDxc4TvfMIGVdSafhKN+y9XAFw8vHk8KwfiNl/koqNA4qdzsLaivL1C/+QcGrtXnKzc6j1ZEus7DRCTEzbrh+2cyUhkWH/fRuvShUA8Parwtwvp7B/1z4at2peZL6134ZhZmbO4FEjKFfeE4AHGtRl8oej+XHtJjr0zusbd/+wHUNGJoNDX6FiZR8Aqj1Qk2kfj2P3xu3GdBuWrMLV3Y3nRw7HytoKABd3N9YuWMaJw39SM6h2mX4OIrfLVO6l6+34fjNx5y+WRXNFylxOTg5hGzeybP36Yuf5futW4hMTGRMaik+FvPuwepUqfDp5Mtv37qXNQw8BsGrTJi7ExvLB8OE8UKMGAM0aNGD4Rx+xevNmhuXPqIuLjycjI4PGdevSskmTO9xCETFFWtNSSuXAgQMAPJTf0Vzv6aefxsrKioMHD/7Dtbq54OBg/Pz8+O233+52VUxaeno68fHxpKWlGf8OYGVldTerJfeAbEMW+yet4dzmg3jV88faxb5Y+eIOncbVr4IxEAngVr0Sdp7OxB06U+J0N0q5GM/5PUcp37AGLn4VStwukX/a73v34xdQ3RhkAaheJ4ByFbz4fe+BIvMkXIonNvoC9Zo3NgZZADwrlicguA4Hdu0zHouPu4y9o4MxyALg41cZOwd7YqIvAGDINODg5EijVg8aA5YAfgF5PwpcjIi+M40VKUOmcC9d72LkeX5c+wOtu7S/E80T+UdlGgy888UXLF23jhaNG+Pu6lqsfLv27+eBGjWMAUuAurVqUdHLi9379wN5oyd/3LeP+g88YAxYArg5O9O/Rw9qXTezLfJC3r3lXf7Ws3lE5P6goKWUioODA5C3/uGN7O3t2b9/P6NHj2bixImEhoYCeaMwQ0JCjOkOHz7MwIEDqV+/Pi1atGDatGnk5uaWWZ3t7OwKlb9nzx4GDRpE06ZNqVOnDi1atOCDDz4gKSkJyJsufW2tzNDQUAICAozHAwIC2Lt3r7GstLQ0vvzyS0JCQggMDCQkJISxY8caA4AltW/fPvr27UujRo2oX78+ffr0YevWrYXShYWF0b17d4KCgnjwwQcZOXJkgZGtY8eOJSAggG+//dZ4LDMzky5dutC0aVNiYmKMxzt27Eh8fDyff/45hw4d4ssvv6RatWqFpvVHRUUREBDAnDlzeOqppwgMDGTAgAFA3vqlX375JR06dCAoKIj69evz5JNPsmXLlkJ1X7VqFT179qRevXq0bNmSDz74gPj4+BK1T0xDblYO2RmZ1HqqFQG9WmBmfuupo4a0DNLjk3H0LlfonGPFciSfv1yidEU5u2k/5laWVGlTvwStEbk70lJSSYi7TKWqPoXOVarsw4WIqCLzJSVcAaC8T+HAvLuXB6nJKVyJTwCgXHlPUlNSSUm6akyTmpxCelo6Ti7OAFhZW/Hs60Np9Vi7AmVdyA9WunpoCp6YNlO5l67Jzs5mxeyF+NcJILhZo1K3S+RuMRgMpKan8+pzz/Fyv36Ym986jJCcmkrspUtUK2J2mp+vL2ciI4G80ZPxiYnUrVULyAtipmdkANCuRQvjaEwoHLS8lk5E7l+aHi6l0rVrV2bPns0XX3xBWFgYbdq0oVmzZtSvXx9ra2usra2BvGnZcXFxLF68mKFDhxIUFATAiRMn6NevH87Ozrz00ksYDAZmzZpFZmZmmdQ3JiaG48eP06BBA+OxnTt3MnjwYBo0aMArr+Stz7Vr1y4WL17MlStXmDBhAo0bN2bo0KFMnTqV3r1733Q9zMzMTJ577jkOHjzI448/TmBgIIcOHWL69On8+uuvzJs3r0SjFU+fPs2QIUOoXbs2r732GpA3dfull15iwYIFNGqU98A7adIkJk6cSPv27XnyySeJiYlhwYIF7Nu3j2XLluHu7s7w4cPZvHkzX331Fe3bt8fDw4PJkydz/Phxxo8fb9xcCOC5555j48aNLF68mKVLl1KjRg2mTJliXG/mRhMmTCAkJIQuXbpgY2NDbm4uQ4YM4Y8//uCZZ56hcuXKXLx4kUWLFjFs2DBWrlxpDPxOnz6dsWPH0rBhQ15//XUuX77M3LlzOXr0KAsXLsTS0rJY7RPTYGFrRaPXe2JuUfzfwjKvpAJg7Vx4VKa1sx3ZaQay0jKLnc7SzrrAuZSL8cQfjcK7RR1sisgrYmquBUyc3VwLnXNydSY9NY201DTs7AtuUmVtk9e/ZKQXfnlLTU4B4OqVq7i4u9Gi46McO3iEJdPm07FPdyBvKriFhQXN2rYssl4Jl+I58+dJNixeiZd3RWrXDyptE0X+EaZ2L+1cv4XLMXE8PWwgOTll9wO9SFmxt7Pj6w8+wCJ/rfHiiE9MBMDdpfD6rm7OzqSmpZGSmsqF/MEIzk5OzF+xgi27d5OWnk55T0+e7dGDhkF/9TlRFy5ga2vLvLAwdh84QEZGBl4eHvR57DEeKuG+BSJyb1DQUkqlRo0aTJo0iVGjRnHixAlOnDjBlClTsLe3JyQkhGHDhuHn50etWrWoV68eixcvpnnz5sYRexMnTgRg0aJFVKyYt5Nv+/bt6d69+23VKy0trcBIPYPBwKlTpxg7diw5OTkMGzbMeG7OnDlUrFiR2bNnG4OsTz/9NL179yY8PBzIW7uyefPmTJ06lXr16hW5XibA8uXLOXDgAKGhocYRh08//TTVq1dnzJgxLFmyhL59+xa7HVu2bCE1NZVJkyYZA3OdOnWiT58+HD16lEaNGhEZGcnkyZN54YUXeOONN4x5O3fuzOOPP87UqVMZNWoUNjY2fPbZZ/Tt25fRo0fz7LPPMmPGDDp37kynTp0KXHfXrl0k5j9g5ObmMnr0aLy9vW9az4oVKzJ27Fjjhgy//fYbv/zyC//5z3/o06ePMV29evUYNGgQu3fvJiAggCtXrjBx4kTjCNtrD0A+Pj6899577Nq1i2rVqhWrfWIazMzMMLMo2cYc2ZkGACysCndF5vmB8mxDVrHT3Ri0PL/3GJibUelBrb0n94aMa0tyWBf+kcsy/5ghM7NQoMWrUgVs7Gz549dDtOzUxvhvsiHTwMkjxwDIMuTdR67l3Gj1WFvWfruMyR+OBsDM3Jw+Lz1XYJrrNanJKYx7+7/59bLmsb6PF1k/EVNiSvdSbPQFtq3eSOe+PXFxdyPhUsEZJSL3AjMzsxIFLOGvUZDX3rOuZ50/mCPDYCA1f1ba4u+/x9LCggFPPIG5mRlrtmxhzPTpjHrpJeMozMgLF0hPTyclPZ1h/fqRkpbG+u3b+XrOHLKzs7XOpch9SNPDpdRat27Ntm3bGD9+PN26dcPT05PU1FTWrl1Lt27d2LdvX5H5cnJyCA8Pp1WrVsaAJYC/vz8PP/zwbdVp5syZNGvWzPinZcuWPPfcc8ZzTa7ryKZNm8by5csLdKQJCQk4OjqSmppaoutu3boVR0fHQoHJ/v374+joWOS07r9TIX/dl48//pjDhw8D4ObmxsaNG+nXrx8AmzZtIicnh5CQEOLj441/PDw8qF27Ntu3bzeW16BBA/r168fq1at55ZVXcHd358MPPyxwze+++44XX3wRNzc3Ro0aRW5uLm+99Rbp6enExMSwaNEiLlwouEZTo0aNCuwgGxwczM8//2zcZR3ypkTl5OQAkJKSN0ph9+7dZGRk0Ldv3wIPQF27diUsLIwmTZqUqH1yj7q2XMOtYp3FTXedbEMWsQdOUa62L7ZujqWqnsg/zfhVL+HO3BaWljRv15rzZyNZOm0+FyPPcyEiikVTZpOZkTeD4dpUvs1h61g9bwmVq/vxxAv96DmoLz5+lVkydQ5/HjxcqGwzMzOeHPosPQf1xatSBWaPncKRX7Q+tJg2U7mXcnJyCJu5kMrVq9104x+R+9W1ZbludR8asrIASE1L47+vvUbrpk1p2aQJH40YgYO9PYvWrDGmbfPQQwzs1Ys3nn+eJsHBPPLgg3zyxht4eXiwYOVK4zuHiNw/NNJSbouNjQ2dOnUyjtg7cuQIs2bNYu3atXz44YesL2J3ucTERFJTU6lcuXKhc9WqVStxgO963bp1o3v37uTm5nL27Fm++eYbbG1t+eyzz6iV/wvdNRYWFkRGRjJhwgROnjxJREREgfUdSyIqKgpfX99CU8Ctra3x9fUlOrpkmxZ06NCBTZs2sW7dOtatW4enpyetWrWiR48exqnhERERAAVGNF7vxrq89tprbNy4kaioKMaPH4/LdVM1IiMjjZ/R/Pnzsbe3JzIykvnz5/PJJ59Qq1YtPv74YyZPnlwg0FzU9GxLS0sWLVrEvn37OHfuHBEREcYNfa49vFz7PKpUqVIgr42NDXXq1ClV++TeY5E/DS/HkF3oXE7+A6ylrRVZxUx3vSunL5KTmYVHYNU7WWWRMmVjm7e7vaGIpVKy8kcc29raFpn3ka7tSU9NY8/mHfy+L29zg4DgOrToEMKm5Wuxd3QgLTWNnRu24l21Ms+99bIx+BLUpD5TPx7HyjmLeXNMAJbX/ftq52BPUJO8NWHrNKrHxPf/j3WLVlCnUfCda7jIHWYq99LuH37kYlQ0g0JHkHI1GYD0/B/GMzMNpFxNxt7RocTBVZF7ga1N3n1Y1PJfmfkjlu1tbbHJH0DSNDgYR/u/lvNxsLenYWAgO/btIz0jA1sbG9oWMcDF2sqKlo0bs2z9eiIvXKDK38wSE5F7j4KWUmKpqalMmzaNOnXq0K5dwUX669Spw5dffklSUhI7duwgISHhpuVcC2Rd73Z/Hbs2nRvydjZv1aoVPXv25Nlnn2Xx4sVUrVrVmHbmzJmMHj0aPz8/GjVqRLt27QgODmb+/Pmsue4XveL4uw2EcnJyShxgs7Ky4uuvv+bYsWNs2rSJHTt2EBYWxrJly3jjjTd44YUXjJ/VlClTbvrgfb1z585x+XLehiU//PBDganhO3bswGAwMGjQIOzzHxbefvttDh06xNKlS3F1dcXJyanQbvE3ThOJj4+nV69exMbG8tBDDxESEkKtWrXw9vamV69eBT4T+PtfXkvaPrn32LjkjYDMvFp4s6rMpDQs7KywsLYqdrrrxR+LwszSHPeAwtNdRUyVSzk3IG/NvBtdTUzC1t4O6/xgzI3MzMzo9FQPWnZqw+WYOJzdXXHzcGdT2PeYmZvj4u5GTPQFsrOyCGpav8AmChaWltR9sBE/LF1N3IVYKlYu+oXPytqKgOA6/LR5BylXk3Fw0ihmMU2mci+dOHyU7Kxspn08rtB1dm3Yyq4NW3l99Ae4aXMruQ95uOXdh4n5G5xeLyEpCXs7O2xtbIw7kTs7Fu5TXJycyM3NJS0/aHkzLk5OAGSU0f4IInL3KGgpJWZjY8PMmTOpX79+oaDlNdWrVyc8PLzIYJObmxuOjo6cO3eu0LmoqKJ3cywtHx8fPv30U15++WVef/11lixZgqWlJRkZGUycOJGmTZsya9asAhvNTJgwocTX8fb25uDBgxgMhgIByszMTKKiooyjI4vr/PnznD9/nkaNGhEQEMCwYcO4ePEizz77LDNnzuSFF14wrjVZsWJFatcuuGbfjz/+iON1HX9WVhajRo3C1dWV7t27M336dDp37kzbtm0L5Lv+wdva2pqvvvqKHj16kJiYyPPPP4+dXcG1n2703XffERUVxZw5c2jWrJnx+P79+wukuzZaMyIiAj8/P+PxzMxM3nrrLbp06VKi9sm9ydLOGht3xyJ3/06+cBknb48SpbteUkQsTt4eWNoWXkdJxFTZ2dvh6uHOhXOF+8LzEVF4Vy28A+s1h/bux8nFCb9aNXB0cTIeP3vsFJWq+GBlbWXs64raCCTX+KNhLnEXYpg3bhoPdwyhaUjBUS0Z6elgZoZlEWvMipgKU7mXOvTuTlpKwSWHUpKusmz6AoKbNaJe88Y4OjsVKkPkfuBgb49nuXKcKeL97kxkJP75s+58K1bE0tKSyIsXC6WLvXwZKysrXBwdiU9M5JPJk2neoAFPdOxYIF10/mw5z3LlyqAlInI3aU1LKTELCws6derEvn37WLVqVaHziYmJbNy4kebNm2NnZ2cMhF0/uq5t27aEh4dz4sQJY76oqKgyWaewTZs2PPbYY8ap65A3yjMtLY2qVasWCFgePXrUuBZnVv6002ujCf9uFGhISAjJycl8++23BY5/9913pKSk0Lp16xLVeerUqQwYMKDAdPUKFSrg5eVl/DwfeeQRIG9tzutHeh49epQXX3yRuXPnGo/NnDmTI0eOEBoayogRI/D39+c///mPcdOdxo0bY25uzuLFiwu089KlS2TkL6K9fv1640jNm7lWXvXq1Y3HcnNzWbBgAfDXZ9q8eXOsrKxYsmRJgbpv2LCBDRs2lLh9cu/yqFOFxFPnSY1LNB5LOHmetLgkPOv6lTgdQE52NqkxiThU0sgVuffUaRjMqT+OEXfhr3//Tx45xuWLsQQ1bXDTfLs3bmfNguVkZ/+1jMKx344QceK0MfDo5V0BJ1dnDuzciyF/iizkbTJycPfP2Ds64FWpAu5eHqSnpfHz9t1k5/+7DXm7iB/55TeqBvhjoxHwYuJM4V7yrupL9ToBBf5UrlENAHfPclSvE6CNreS+1jQ4mN+PHTMGFQEO/fknF2JjaZ6/27etjQ2NgoI4cPgwkdetnx97+TK//P47jYKCMDc3x93VldS0NLbu3m3cvAfgUnw82/fupU7Nmrg5O/9zjRORf4R+JpdSGTlyJIcOHeLtt99m9erVtGjRAkdHRyIiIggLC8NgMPDBBx8Af617uHDhQi5dukSXLl0YMWIE27dv55lnnmHAgAFYWFgwf/58HBwcilz35HaFhoYSHh7O5MmT6dChA5UrVyY4OJiwsDAcHR3x8/PjxIkTLF261BgUTElJwcXFBbf8qQ2rV68mNzeXHj16FCq/V69erFixgv/7v//j+PHjBAYGcvjwYcLCwqhXr16BqdHF0bdvX1atWkXfvn3p3bs3Li4u/PTTT+zbt49XXnkFgJo1a9KvXz/mz59PYmIibdq0ITExkQULFuDg4MCIESMAOHXqFJMmTeLhhx+mc+fOAHz44Yf079+fTz/9lDFjxlCzZk369u3L/PnzGTx4MI8++iinT59myZIleHl58eSTT/Lll1/yzDPPMGfOnJvWu2XLlsyfP58hQ4bwxBNPYDAYWL9+PYcPH8bc3Ny4EU+5cuV4+eWX+eqrrxg4cCBt/r+9uw2K6srzOP6jocH1AZQowRAiSrB9QB2lpdHVlQBGDRriTGYwdspKGad8GDtqKmqRhHJLU+WWbiWlRkeiAjHOqpHI4kYdTQgzmKzQElCc+DjabAxRFFFRcZRA7wtDJz1GBB+wSb6fd33POfeec6v6Rf/63P9NSNCZM2e0YcMGWSwWxcXFyWAwNGl9aD2uVV1W9f+dlX+3IP1L4M2dJY8Pj9TZkhM6uG6XQoZFqv677/TNnr+pfcgjCvpVuGtsU/tJ0vWLV+Wsq1ebAHbjovUZPiZO+/93nzKWrtS/jnpK39XW6vM/5+mxsFANiLn5A6/qbKW+/rtDTzzZXYFBN3caD38mXptWZWjDsjXqM6i/Lp6v0he7/qInI3tpwJCbu/0NBoPGWp/XxlUZSnvrHQ0abpGzvl5f7inUuTNn9fwUq7y//yMvceKv9dHaP2ntf6zQr4aYVXO1RoW5e26eY+JvHs7NAZrBU75LwC9FRWWljp48KVOPHnq0883v07MJCcq327VoxQqNjYvTjdpa/U9urno88YSG/+hJtBeTknTo+HEtXL5cY2Jj5ePtrZ1//at8jUa9MG6cq9/Lv/ud/nPNGqW+847ihw7VtX/8Q7vy8+VtMGhyM39vAWgdvJyNFeMDGlFTU6PMzEzl5ubq66+/1rVr1xQUFKTY2FhNmzZNQUFBkqTa2lrNnTtXeXl58vPz0549e+Tn5yeHw6ElS5bIbrfL19fXFeylpaXp6NGjzZpLYWGhJk2apJkzZ8pms/1kny1btujNN9/UkCFDlJmZqdOnT2vx4sUqLCzUjRs3FBISosTERIWHh8tms2n58uUaNWqUJOmtt97S1q1b5XQ6lZOTo6KiIqWkpGj9+vWyWCySpCtXrmjlypXauXOnKisrFRwcrMTERE2fPv2uajIWFxdr5cqVOnTokK5cuaKwsDAlJyfLarW6akE6nU5t3LhRmzZtksPhUIcOHTRo0CDNmjVLERERqq+v18SJE3Xo0CF9/PHHbi8/mjdvnnJycpSWlqbY2FjV19crMzNTmzdvVnl5uR555BE9/fTTmjlzpgICArR582Zt27ZN69atU2VlpeLj43/yfm/ZskXp6ekqLy9XQECA+vbtK5vNptTUVNXW1rrVC83KytL69evlcDjUpUsXjRw5UjabzfXo953Wd7cm5C2567FoGvvSLWrTsb36//6Hx3cqiv+uY1mfq+fzw/TooB9249acu6ST2+26VFYhb18fdeoZou6jzfJt716OoKn9Lp86p/1/3K4nnxuirtGmB7vQX7gp4QkPewo/S5VnzmrHxmyVHTshX19f9ezfR6N+O07tvn+MtPhzu7LT/0vjJ0/UoGHRrnGlhcXas+NTna+oVDv/9hoQY9a/JSbI18+9TMLJw8eVt+3PKneckiR17fa4RowdqZ793Etx/G1fifJ35Ops+WkZ/fwU3jtCCb9OVOfgoAd8B4D7w1O+Sz92obJKb89bqKeeHaW458bcth/uXvRFAuMH7Q8LFqhLYKD+/UebCP5SWKg/btig6S++qNjvfx9J0rcVFXp/61YdPnFCfkajBvbtK2tSkqsOZYOKykr9KSdHB48eldPpVO/wcFmfe06PBwe79SsqLVX27t0qKy+Xr9GoPhERmvjsswp59NEHu+hfIP/+/R/2FO67CyuaXwqupXSysSnnpxBaAmgyp9P5s3jDJaElcH8QWgIAPA2hJXB/EFq2LELLn0ZNSwBN9nMILAEAAAAAgOfjbyh4rHPnzjWpX9u2bdWuXbsHPJt7d/HiRdXW1t6xn9FoVMeOHR/8hAAAAAAAADwUoSU81rBhw5rUr7E6lp7EZrO53kzemOjoaH3wwQctMCMAAAAAAADPRGgJj5WRkdGkfqGhoQ94JvfH/PnzVV1dfcd+/v7+LTAbAAAAAAAAz0VoCY81dOjQhz2F+yoyMvJhTwEAAAAAAKBV4EU8AAAAAAAAADwKoSUAAAAAAAAAj0JoCQAAAAAAAMCjEFoCAAAAAAAArczs2bNlMpl04cKFW9rmz58vk8mk6dOn39J29epV9enTR6+++mpLTFOSdOrUqWaPIbQEAAAAAAAAWpnBgwdLkkpLS29pKywslNFo1L59+1RXV+fWVlpaqrq6OlkslhaZ56pVqzR58uRmjyO0BAAAAAAAAFqZ24WWZWVlOn36tMaOHavLly/rq6++cmsvLi6WJEVHR7fIPPfu3XtLcNoUhJYAAAAAAABAKxMREaGOHTvqwIEDbscLCgpkMBg0bdo0eXl5ae/evW7tJSUlCgoKUvfu3Vtyus1GaAkAAAAAAAC0Ml5eXjKbzTp48KDb8YKCAvXq1UthYWEymUwqKChwtTmdTpWWlrp2WdbV1Wnt2rUaNWqUIiMjNWzYMC1YsEBVVVWuMYWFhTKZTMrOzta4cePUr18/paSkSJLsdrusVqvMZrMGDhyoCRMm6LPPPnONjYuLk91uV3l5uUwmk1asWNHk9RFaAgAAAAAAAK3Q4MGDdfHiRZWVlUm6GUra7XZXvcqYmBgVFxfrxo0bkqQTJ07o0qVLiomJkSTNmTNHS5cuVc+ePZWSkqLRo0crKytLL7zwgqqrq92utXDhQkVHR2vu3LmKj4/XyZMnNXXqVDmdTs2ZM0evvfaarl27phkzZqioqEiS9Prrr6tHjx7q1KmTlixZopEjRzZ5bT73enMAAAAAAAAA3J34+PhG23Nzc2/b1rBj8sCBAwoLC9OxY8d0/vx5VyhpsViUmZmp4uJixcTEqKSkxDUuPz9fu3bt0qRJk/TGG2+4zhkVFaXZs2dr9erVmjdvntvx1NRU1+c1a9aopqZG7777rgIDAyVJzzzzjCZMmKDDhw/LbDYrISFB77//vq5fv66kpKRm3RdCSwC/OJuemnfnTgAAAGh9nnjYEwDgqTrZZj3sKdzef2+766G9evVShw4dVFpaqqSkJBUUFMjb21tms1nSzZ2Y3t7estvtrl2XwcHB6tatmzIyMiRJU6dOdTvnmDFjtGzZMuXm5rqFlg0v/mkQHBwsSVq0aJFefvllRUZGqlOnTtq1a9ddr+fHCC0BAAAAAACAh6SxnZR3YjAYFBUV5XoZT0FBgSIjI9W+fXtJUocOHdS7d299+eWXkqT9+/e7Hh3/5ptv5O/vr86dO99y3vDwcOXn57sda9hN2WD06NH65JNPtGPHDu3YsUNdunTRiBEjNH78eFdoei+oaQkAAAAAAAC0UmazWUeOHNH169dVVFTkejS8gcViUWlpqaqqquRwOFyPlDudztues76+Xkaj0e2Yt7e322ej0ajly5dr27Ztstlseuyxx7R161ZZrVa9995797wuQksAAAAAAACglYqOjlZtba127typ6upq107KBjExMaqpqdH27dvldDpd7SEhIaqurlZlZeUt53Q4HOratWuj1/32229VVFQkk8mkmTNn6sMPP1ReXp7CwsK0bt26e14XoSUAAAAAAADQSvXt21dt27bVpk2bZDQaFRUV5dYeFRUlHx8fZWdnKyQkRKGhoZKkuLg4SVJaWppb/08//VQOh0OxsbGNXnf16tV66aWXVFFR4ToWHBysoKAgGQw/RI4Gg0H19fXNXhc1LQEAAAAAAIBWysfHRwMHDtQXX3whs9msNm3auLW3a9dO/fr1U0lJicaPH+86PmLECMXHx2v9+vWqqKiQxWJRWVmZNm7cqNDQ0Fte0PPPrFarcnJyZLValZycrICAABUUFMhut+uVV15x9QsMDNS+ffuUnp6uqKgoDRgwoEnrYqclAAAAAAAA0Io1vNn7n+tZNmh4JLyhnqUkeXl5admyZZo1a5aOHDmixYsXa/fu3UpOTlZWVpb8/f0bvabJZFJGRoa6deum9PR0LVq0SMePH1dqaqpmzJjh6jdlyhSFhYXp7bff1kcffdTkNXk5G6u6CQAAAAAAAAAtjJ2WAAAAAAAAADwKoSUAAAAAAAAAj0JoCQAAAAAAAMCjEFoCAAAAAAAA8CiElgAAAAAAAAA8CqElAAAAAAAAAI9CaAkAAAAAAADAoxBaAgAAAAAAAPAohJYAAAAAAAAAPAqhJQAAAAAAAACPQmgJAAAAAAAAwKMQWgIAAAAAAADwKISWAAAAAAAAADzK/wNUT9I/xVLOXQAAAABJRU5ErkJggg==" + "image/png": "iVBORw0KGgoAAAANSUhEUgAABS0AAAN2CAYAAAAc7KxxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3QU5dfA8W/appdN75UQSgo19F6liPQmRVFAQUARVFRAUKQIiogCgiBNQOmE3qt0CC2QBFIJKaSQXjb7/hF3JCQo+qqgv/s5x6PuzszObnZ2Zu5zn3v1tFqtFiGEEEIIIYQQQgghhHhG6D/tHRBCCCGEEEIIIYQQQoiHSdBSCCGEEEIIIYQQQgjxTJGgpRBCCCGEEEIIIYQQ4pkiQUshhBBCCCGEEEIIIcQzRYKWQgghhBBCCCGEEEKIZ4oELYUQQgghhBBCCCGEEM8UCVoKIYQQQgghhBBCCCGeKRK0FEIIIYQQQgghhBBCPFMkaCmEEEIIIYQQQgghhHimSNBSCCGEEEIIIYQQQgjxTJGgpRBCCCGEEEIIIYQQ4pkiQUshhBBCCCGEEH8prVb7h9cpLS0FQKPR/Kn1hRBC/LfoaeVsIIQQQgghhBDiTygtLSUiIoLz58+jp6eHsbExc+bMYd26dfj6+j52HT09PfT09H5z20VFRahUqr9jt4UQQvwLSKalEEII8T9Ao9FQUlLytHdDCCHEv1hycjI7duygqKhIeWzv3r0MGDCAZcuWcefOHapWrcrYsWOxtbUtt+7DuTL6+voVApaFhYXs3buX6Oho5s+fT7169ZgwYQIpKSl/75sSQgjxzJJMSyGEEOIZlZycTG5uLhEREWzcuJFly5Y97V0SQgjxP2zx4sV89913/PTTT3h4eADQoUMHcnNz+fzzz/H398fCwgI9PT0MDAyU9UpLS9HXL8uXSUlJITo6GoD69etjaGgIwK1btxgwYADm5ub4+/vj6elJvXr1aN68ORYWFv/wOxVCCPEsMHzaOyCEEEL8r8vNzcXc3Fz5/1OnTvHJJ58QFRXFSy+9hI2NDQYGBmRmZmJjY6Msp9VqlSl2upvBR+Xn51NQUMD169dZt24dNWvWZODAgVhaWv7db0sIIcR/TM+ePWnZsiWOjo5oNBoMDAwwMTHBzc2N+vXrl1tWN7Vbq9Wir6/PnTt3mDlzJidPnsTIyAhTU1OqVavGyJEjqV+/PpaWljRr1oxdu3YxcOBAhg8fjlar/d0p5EIIIf67JGgphBBCPEUfffQRmzZtYtu2bXh5eaHValmyZAmpqalMnjyZli1bYmFhQe/evbGysiq37qOZLA8ePCi3zLlz53jvvfdwcnLCzMyMuLg4fH19JWAphBDid2m1WiXgqGNvb4+9vX255by9vbly5Qqff/45fn5+1K1blxkzZpCZmcnixYuxsLAgOTmZd955h7S0NKZMmYK7uztXrlxhw4YNTJ8+ncWLF2NnZ4darcbU1JTatWsDSMBSCCH+x0nQUgghhHgKdFPlunXrRuPGjZUMytTUVO7fv0+tWrXo27dvuaDko7Kysvjuu+/YtWsXGRkZ+Pv706lTJzp16oStrS22trY4ODhw4cIFevXqxccff6xMwxNCCCF+S2WNcjQaDZcuXSIjI4NatWrx8ccfs2fPHoyMjFi8eDF9+vShbt26mJubExERQW5uLhYWFpw4cYKbN2+yYsUKJSDZsGFDmjVrxgsvvMDGjRsZPXo0Hh4eFBUVSbBSCCEEIEFLIYQQ4qnQZa6EhISUuzlzdHTE29ube/fukZSUhEajwc3NjXnz5pGTk8O0adPQaDQUFRXx2WefsW/fPjp37oyTkxOnT5/mk08+4dKlS3z22Wc4OjpiZWWFSqXilVdewdHR8Wm9XSGeGbrssSfpXCzEf42urIhWq8XAwKDcMfDwVOzc3FwiIyNJSUnBx8cHf39/ADIzM5k1axZxcXHs27ePjh07Ym9vz+rVqxk7diyDBw/GyMiIKlWqsHv3bjIzM7G3t+fs2bNYWVlRu3Zt4uPjuXnzJleuXCEyMhKA48ePM3LkSDw9PSktLZXmO0IIIQAJWgohhBB/O41GA1Aua/LRoElqaipqtZrPP/+cc+fO8eDBA9q2bUv16tXZvHkzx48fJz4+nmnTpmFgYMDZs2f58ccf+eSTT2jXrh1WVlYMHz6c5cuXM2vWLLp160azZs1wc3OjoKBAybCU+mDi3yonJ4fU1FR8fHzKNfX4PRqNplzdVwlWin+zI0eOsHbtWoYOHUqjRo0eeyw87rf+0bIijy5fVFTE7NmzCQsLIy8vD0tLS0xMTOjduzcjRozA0tKS2rVrEx0dTXFxMR06dKBatWqsXr0aQKnP7O7uTlFREfHx8QQEBJCWlkZqaiq1a9cmPz8fMzMzXFxc8PT0ZOLEiVStWhVDQ0McHR2xsLDg9u3bf+g4F0II8d8kQUshhBDi/0mXuQVUeoP18A1iVlYWBgYGSifUnJwc+vfvT1FREXv27CE1NRV3d3euXr3K2LFjadKkCQC1a9fm1q1bFBQUYGJiwoYNG/Dz86Nnz55AWVZMfHy88jpbt26lSZMm+Pj4AJCYmIirq6sELcW/0v379xkwYAAODg6sXr26wnGmyx4DKgRkHv3/6Oho7ty5g7m5OY0aNfp7d1yIJ/Dw73JKSgrXrl0jJiYGtVpN06ZNsbe3V5ZJS0vjyJEjNGzYsNz3V3cM6OvrlwvMP/qbHxkZyZEjRzh37hwajYYGDRrQp08frKys0Gq1rF27lo0bNzJ8+HDq1KlDTk4OixYtYtWqVfTp0we1Wo2Liwu5ubkkJCRga2uLk5MTNjY23Llzh+zsbCwtLXF0dMTU1JTo6Gjatm2LnZ0dKpWKIUOG0K5dO8zMzLC2tsbW1pb4+HhSU1PRaDTY2dnh6OhIVFQUJSUlqFSqf/aPIYQQ4pkiQUshhBD/0+7evcvPP/9MvXr18PT0/FNBvd/L3NqwYQNbt27l5s2bWFpaUqdOHV5++WVq1qyJhYUFLi4uXL9+ndzcXKZPn86hQ4cYP348Li4uBAcHA+Dq6grAzZs3CQkJISUlhdTUVIYMGUJ8fDwpKSnKDV+jRo1o0KAB+vr6uLi4AHDt2jXq16+vBFeF+Dexs7Pjk08+wdTUtNLnH5c9BnDs2DFOnjxJx44d+eGHH9i5cycajQYLCwuGDh3KwIEDKzS5EuKfpKenR3Z2Nl9++SW7du2iuLgYU1NT8vLysLa2ZsiQIbz44osA1KxZE1NT03KDVLpt6I6BnJwckpOTMTU1Vc4dUDZ49e6775KXl4eXlxelpaXMmzePkydPsmDBAszNzdm0aRMNGjRg6NChyvFWt25dEhMTlSxKNzc39PX1iYyMJDg4GFNTU7y8vIiLi+PBgwdYWlqiVqtxdHRUpn8HBwezZcsW7O3tqVmzZrl9//777zl9+jQLFizAwcEBHx8f4uLiyMvLk6ClEEL8j5OgpRBCiP+80tJS4uPj0Wq1eHt7A79mnxw/fpzJkycza9YsPD09y62n0WiU5X6rIc6dO3cIDw/nwYMH1KxZkzp16ijP7dy5ky+//JLatWszZswYkpKSWLVqFYmJicyfPx8nJyc8PDz4+eefuX37NkFBQXh6emJlZUV0dDRFRUWoVCrc3d0BuH79OiEhIXh4eBAeHo6RkRF9+vTBy8sLDw8P7O3t0dPTo7CwEAAXFxfUajXh4eHK+xbi36hevXqVPl5SUsLNmzc5e/YsKSkp1KpViyZNmigBlsuXL7Np0ya2bt1KlSpVWLBgAXp6eixbtoyFCxfi6elJ586dZSqq+EdoNJoK55OUlBRGjx7NnTt3eOmll2jYsCFmZmbEx8ezePFi5syZQ0FBAa+88goeHh6Ym5sTFxcH/JrdHxsby8qVKzlw4ACpqakYGRlRo0YNRo0aRYMGDTA0NGTWrFlkZGTwySefUK1aNczMzFi6dCkXL14kLS0Nc3NznJycOH78OPPmzaNZs2ZotVplsE3HwcEBtVrNjRs3lMf8/f05duwY6enpuLm5YWVlhbu7O3fu3EGj0dCwYUOqV6/OmjVrCAoKonr16uTn57N//35Wr15Nq1at8Pb2Ji8vDwcHB/bv38/9+/eVJnVCCCH+N0nQUgghxH+SRqNh06ZN/Pjjj0RERGBkZIStrS2NGjVi8ODBVKlSBYCgoCD09fXJyMgAKJcx+eiN5aM3mzk5OUyZMoVjx46hUqnQarVoNBpGjhxJ7969MTc3Z/ny5QQEBPDBBx9gb2+PgYEBoaGh3LlzR3ktXY2+qKgogoKClOzLqKgoiouLUalUuLi4YGFhwZUrV+jfvz9Vq1Zl586ddO/enc6dO1NSUqLUrVy6dCnh4eHMmzcPe3t7XFxclGwXmRounlW6Mgu/FTi8ffs2ZmZmODs7K9NhFy1axMqVK7GwsEBPT4+VK1dSv359xo0bR0hICEFBQUBZtuaMGTOUAQBbW1sGDBjAiRMn6Ny58z/yHsX/tp9//pmVK1fy9ddflwuSf/3111y7do3Vq1crnbUBqlWrRt26denatSvbtm1jwIABSmDx3r17ZGRkoFarycrKYvbs2cTExNCtWzd8fHy4desWq1evZs6cOXz++ef4+PiQlJSEo6MjTk5OqNVqAEaNGlVuH9966y1mz57NqlWrWLVqFVBWp9Le3p4ePXowYsQI7OzscHJy4tatW8p61atXZ8uWLaSmpgJgZmaGt7c3u3fvJiUlBV9fX95++21ef/11hg4dSrNmzSgtLeXatWs0aNCADz/8UFmvY8eOeHt74+Tk9Pf9MYQQQvwrSNBSCCHEf05OTg5fffUVmzdvpmnTpvTs2RMjIyMuXLjAhg0bOH36NF9//TV+fn64uLhgbGxMbGysktWo28bx48c5ePCgcmPWunVrevfurUy5nj9/PocPH2bcuHE0bNiQ/Px8Zs+ezdatW2nWrBl+fn6YmJgQGxvL1atXadq0KUVFRdSvX59WrVop++vj44NKpeLmzZsAWFhY4OXlRUREBHl5ecpNqm4aOUDTpk358ssv2b59O507d1YCltevX2fhwoX4+PhgaGiIjY0Nbm5u7Nu3D6gYiBXin/Jw3Uld3b2HPVxmITk5mZycHNzd3TE2NgZg//79jB49mqFDh/Luu++ip6fHunXr+Oqrr+jXrx/9+/fHxMSEEydOMG3aNPLy8li/fj2+vr4YGBhgZGSkNAdRqVQ4Ozvj4eFBVFSU8vpC/F20Wi0nTpzg4MGD5ObmKpnAycnJbN++neeff57AwEBlWT09PUpKSrC1tWXNmjXKLAEAX19fjh8/TkJCAmq1mjVr1nDgwAGmTp1Kv379lAE2MzMzvvnmGyIjI/Hx8aFdu3bMmzePwYMHU61aNQwMDPD19aVu3boEBQXh5ORE9erV+eqrr0hPT+fKlSskJCSQkZHBsWPH+O677wgJCaFOnTq4u7tz6dIl5XiqWrUqJSUlJCcnA2BqaoqPjw/379/n7t27uLi40KRJEzZt2sRPP/3ExYsXMTExoX///rRv377cNPYGDRrQoEGDf+6PI4QQ4pklQUshhBD/ORs3bmTFihVMnDiRXr16KfXqevToQePGjXnrrbeYPHky8+fPVzIR4+LiyMnJwdbWltLSUpYuXcrOnTtxdXWlRo0a3L59m6+//pr4+HimTJmCSqXiypUrNGnShEGDBimv/d1335GZmYmjoyMAL774IpMmTWLUqFFYWVlhaGiIj48PgYGBNG/enCZNmuDi4oK1tTXR0dHArxkqR44c4cGDBzg4OGBnZ4e7uzunT58GICAggNdee42vvvqKAQMG0L59e/T19dm8eTP29vZMmjQJAJVKRUBAAImJiWRlZWFtbf1P/imEUPxemYX4+Hi++OILTpw4oUwRbd68OYMGDcLX1xd3d3clwwzKptSuXLmSGjVqMHXqVGU7Xl5e5OTkMH/+fPbu3UurVq1wdXUlKysLQBmYsLe3x9nZmVu3blFYWKgER4X4/6isKZQuq9Le3h6AjIwMJWh5/PhxcnNzadmyJUZGRuUyMHWDUbqAZXFxMUZGRvj7+7Nnzx5iYmIICgrC2dmZESNG0L17dwCl3mRERAT6+vrcvn0bgH79+qFWq9mzZw8ZGRncu3ePI0eOsHz5cmrVqsV3332HiYkJ+fn5WFtb06lTJ+V9NW/enJdeeomUlBRUKhU+Pj4cPnyY+/fvK13AAW7duqVk/js5OWFtbU1BQYHy2fj5+TFx4kQZJBDPDI1GQ35+vtIg8Y+sp6+v/7szBIQQ/z8StBRCCPGfkpmZyeLFi2nevDkvv/yy8rjuRrJTp05KlpXuBrJKlSrcvHmT1NRUbG1t2bRpE4sWLeKll15i6NChmJubU1xczBdffMHevXuJjIykdu3a1KhRg7Vr1zJ27FgaN26MVqvFycmJkJAQ5XXbtm2Lk5MT165d4/bt28TExJCYmMjq1as5cOAAGzduxM3NDXt7e6WxgomJCV5eXuTl5ZGcnKxkbHp7e3Po0CHS09OxtbVl9OjRWFlZsX37dr7++muKi4sJDg5m7Nix5er/jR49mtGjR/9DfwHxv+a3Onc/LD4+nvPnz3Pz5k2srKxo1aoV1apVA8oym+fMmUN4eDgjRozAwcGBs2fP8sMPP2BgYMAHH3yAq6srarVaCcAYGBgQGxvLkCFDlP2AsuBo27ZtWbBgAZcuXaJ9+/a4u7sTFxdHWloa9vb2Siaam5sb58+fJy4uDn9//7/zYxL/IyoLzuvr63Pv3j3Onz8PQNeuXXF0dGTp0qXk5eUBZQGQ36MLjAQEBCi1mqFsQA7KGq5t2rSJc+fOkZCQgIODA/r6+sTGxgJgaWlJ79696d27N4mJiWg0GlQqFcuXL2flypUcP36cunXr0qdPH9q1a8cbb7xBaWkpqampbN68GUDJBrW3t6eoqIhbt27h4uKCra0tTZo0wdvbW/k9aN26tTLQpvtsHv63EE9DeHg4hw4dIiYmhsGDBzNo0CAmTpzIoEGDKnw3dWVLgAqBSd1xrlvn/v37mJiYKAMSQoi/hgQthRBC/Ks8PL30YbrpdPv27SM9PZ3nnnsOQMn4ePhGsm3btuXWrVatmtJAAMo6iteqVYuxY8diYmKiLGdra0teXh5xcXHUrl2bYcOGcffuXY4cOcKhQ4coKioCwMnJiS5dujBhwgQMDAwIDg6mVq1a5bK5lixZwrx587h+/TqNGjXCzc2NU6dOkZqaioODA05OTpiYmBAdHU2DBg0wMDBQMkZv3rxJo0aNKC0tZfDgwXTq1AmNRiP1v8Tf6nHByUeDNLrporpjElAaXmm1WqysrEhJSWHt2rV89NFHtG7dmuTkZPbt28eMGTN44YUX0NPTo0uXLoSGhuLg4ACAlZUVzs7OXL58mezsbPT09DA1NUVfX79caQcoC6jY29srU1V9fHzYv38/d+7cKRe09PHxoaSkhKioKPz9/cvtsxAPKy0tVb4fj8uq0mg0SlOo2NhYPD09ad26NZ6enly9epU7d+5gaGiIh4cHEydOxMXFRTnH5Obm/u4+6I4zX19fVCqV0owHYPv27SxYsAAzMzMaNmxIy5YtadSoEY0bN+bu3bsAFBQUsHPnTqpXr06NGjWUdevXr8/333+PSqXCzs6OwMBAvv/+e8LDw3F1dSUxMZGEhASmTJmiZFTqmsv5+voCYGRkxLJlyyrdXyGehoyMDDZu3EidOnWURlK3bt1i/PjxFBYWEhISgo2NDV988QVVqlSp9Lf/4bIlD9Nqtezfv5/c3Fw0Gg2ffPIJNjY2TJkyhRYtWsi5RIi/kAQthRBC/G00Gg0RERF4eXk98bSb32vGoXu8tLSUpKQkrKyssLS0pKSkBCMjI+XGz9TUtNzyv6VatWrk5+crAY433niDMWPGkJyczK5duzh58iTHjx8nMzMTfX19kpKSAHBzc2PhwoXk5ORw9epVkpOTKSoq4qeffmLZsmX07NkTCwsLZs+ezfPPP0/z5s2BsqBObm4u+vr6GBkZAeDu7k5WVhYRERE4ODhgZWWFiYkJd+/eVQIs3bt3p02bNkoTId1702WMCvFXqazD8eOmdyckJPDDDz9w9OhR8vLyCAkJoXfv3jRq1AiA7Oxs3nnnHWrUqMHo0aOxtbUlIyODcePGcebMGVq0aKEEOXft2oWTkxNVq1YlOzubli1blsta8fT05Pjx48TGxlK1alUcHR2JjY1VSjvoBikKCgqUDGkADw8PoOyGtX79+sr2fH19MTEx4ebNmzz33HNyoymUhmr6+vrlzh8P/7dWq1XOOQ9/Z9asWcM333yDtbU1JiYmbN26lS1btvDJJ5/Qtm1bHBwcePfddzE0NKRp06YASmMoXWDxcd8/jUZDWloaarUaDw8P1Go1CQkJaDQaSktLWbBgARYWFsyZMwc/Pz9lPZVKRUJCAmlpaRgaGjJz5kzs7e0ZMWIE3t7e3L17l6+++gpvb2/l3DJz5kzatm3L3r17SU5OpmrVqowcOZLGjRsrU9YDAwOVrEshnkXx8fFs3boVe3t7goODMTQ05McffyQ+Pp7p06fTuXNnjIyM8PHxKbfew8d0dHQ0V65cIS8vjwYNGijHVnFxMfv27WPbtm0EBQXRt29fgoKClCC+nEeE+OtI0FIIIcRfIiEhgejoaK5du8bZs2e5desWWVlZlJSU8M0339CqVatyF4KPCw48PKpd2TL79+9n0aJF3Lx5E3Nzc6pXr06fPn3KBRwMDQ2VG6vHBS0frhumu2BNTExU9uHOnTt89tlnxMXF4eLiwssvv0zHjh3p1asX8fHxFBQUYGJiQkREBJ6enjRp0kTZtomJCe+++y6JiYnUqlWLS5cusW/fPvr06UPVqlW5desWu3btolevXgQEBABlU9Rr1KihvF9/f38OHDhQLmDj7OyMs7PzH/zLCPHbKstefjQ4efv2bSwsLNi1axe7du3C2dmZL774goyMDGbMmMGtW7do0KABVlZW7Nu3j507dzJ37lw6depETEwMmZmZdO/eXSmd4OHhwfbt25Xvt4eHB6+++irffvstR48eBcDa2hoPDw9CQkLo27cvVatWxdPTE61Wy61btwgMDCQoKIhjx44p2ce64z4hIYGoqCgaNmwIlAU7raysiIyMLPe+nJ2dyc/P59q1a3/DJyv+KYmJiVy7do1Lly5x48YNLl68yMKFC2nSpEm53/onoTuHPCo8PJxVq1Zx/vx5DA0Nady4MT179lS601++fJlPP/2UgQMH0r9/f0xNTbl+/TrTp0/n0qVL1KxZkxo1auDt7c2ZM2eU7VavXh2AiIgI5fUro6uzPHv2bAICAnB1dSUpKYm0tDRKSkpIT0+nc+fOSlClpKSE7777jtTUVCwtLbl9+zahoaF88MEHLF26lM8++4ySkhLy8vIICgpi0qRJuLu7o9FoMDMz4/nnn+f5559/4s9NiGdNtWrVWLx4MZaWlspjNjY2GBoaEhwcjJmZmfJ4Wloa5ubmmJqaoqenR25uLjNnzmTnzp2oVCoMDQ2ZP38+ffr0Yfz48RgYGFC/fn22bduGg4MD77zzztN4i0L8T5CgpRBCiD+loKCAxYsXs2HDBnJycigsLFSeq1mzJoMGDcLFxQUHBwelbl1paWmFGkAP31Dm5uZy48YNEhMT8fLyolatWuVe89ixY0ydOpWAgAA++OADsrOzCQsL46233kJfX58OHTpgYWGBRqMhOzv7N/f/4ZtYZ2dnbGxslGY8FhYWjB8/nnv37imdwZ2dncnJycHKyoqEhATy8vKIiYlh5MiRtG3blldeeQUjIyPS0tLYuHEj9vb2ShboF198wZo1azh48CCbNm3C2tqaF154gaFDhyoX0y+88AIvvPCCsk8qlarcdFchdBISErh+/Tq3b9+mpKSE+vXr/2anXV32cmXT3B7Nas7MzMTGxoYlS5bg7OxM165dyczMpFOnTrRq1YqEhAR8fHyoWrUqpaWlrFq1ilOnTjFt2jRat26NSqXinXfe4ZVXXmHu3LlUq1YNb29vfH19ee+999i/fz+enp4YGBhQs2ZNQkJCUKvV6Ovr89prr9G+fXtiYmKIiIggPj6ehIQE1qxZw4MHD5QMMmNjY65fv06PHj3o0qULYWFhfPHFF1hbW2NlZUV8fDyzZ8/G1tZWCbq4urpSWFjI5cuXgV8bnPj5+bFx40Yl202aKfw7XLt2jfXr13PmzBkSExMpLi7G3NwcV1dXfH196d+/vzLA83B2/sP/D+UHxoqLi4mOjsbc3Jy1a9dy/PhxmjVrxsSJE7l27RpTpkyhtLSUDh06UFBQwK5du9i+fTtLliyhbt26REdHo6+vT69evZTAoaurK02aNFEy/42MjHBzcyM3N1epTWxjY0OtWrU4fvw4iYmJuLm5ldsvXemDa9eucfPmTWU2gY+PD9evXycpKYnAwEB8fX1Zs2YNRkZGVKlShdOnT3PkyBFq167N+fPn2bBhA6GhoXTr1o2GDRty4cIFjI2N8ff3VzKRtVqtTOkW/0q68g36+vrKsaNSqcp1pYeyAaySkhK++OIL3Nzc6NatG1euXGHatGksX76cRo0aUVxczMyZM9m2bRvjxo0jNDSUBw8esGfPHr799ls8PDzo06ePsu2qVav+4+9XiP8lErQUQgjxp+jp6WFtbU2rVq2oUaMGgYGBnDhxgvnz59O+fXtGjBhRYYrpw51Uo6KiyMvLUwKTmzdvZsGCBdy/fx8LCwuKi4tp3rw5M2bMQKVSUVRUxMKFC3F3d2fGjBlK/cZXXnmFnj17snDhQpo3b46vry9GRkZERUX9ZkfgdevWce7cOcaMGYOnpydubm7ExsZSVFREeHg4d+7c4bXXXqNPnz7KOhcuXODu3btYWlqSkpJCtWrV6NKlC8uXL+f06dO4uLgQExODoaEhkyZNIiQkBI1GQ2BgIB999BFpaWk4ODgoU8KF+D35+fls2rSJS5cucfHiRe7du0dJSQkWFhZYW1uTmprKmjVr6NevH2PHjq10G7+Vvaynp0d4eDiLFi3i9OnTWFlZMXz4cObNm0ebNm1o3rw5arWamjVrcujQISZMmMCAAQOAsuDPnj176NixI127dgXKAiyZmZm4urpy/PhxDh48yKuvvsqECRNYtmwZ586d4+jRo+Tk5ABlQZ1Ro0bRs2dPDA0N8ff3JygoSNmeVqtl+PDhnD17Fq1Wi7u7O2q1Wmks0rhxY2bNmsXkyZN58cUX8fT0JCUlBRsbG2bOnElwcLDyOsuWLVNuMh/uzqwbVBHPPt0gV0xMDBs2bMDLy4tZs2Zhbm6Ok5MTarUac3NzjI2NK/zO6v7mGo2GhIQE9PX1lWAdwPnz5xk6dCgdOnTg9u3bhISE4OPjg1arZeHChWRlZfHFF1/g7++PiYkJEyZM4IUXXuCzzz5jxYoV1KhRA1NTU15++WVatmyJjY0N5ubm1K5dm6CgIMzNzcu95q1bt5RM4N69e3P16lVWrVrF6NGjy5VTUalUXL16lZ9//pm2bdsqAdGaNWuydetWbt68Sa1atRg9ejSLFy9m8eLFQNlg3KBBg+jUqRNRUVG4uLgo23RyclLqPj9MprSKf6vHDThdv36dffv20aNHD/bv38+sWbMwMDDg559/pmHDhhgZGeHi4oKBgQEZGRkA3Lt3jx07djB+/HgGDx6sbKtRo0ZKg7hOnTrh4eGBqakpGo2mQl1lIcRfR4KWQggh/hRjY2MGDBiAVqvF0NAQAwMDzM3NmT9/vlLz8eGLyJSUFD7++GO6du3K4sWLuXHjBs2aNWPRokXs37+fKVOm0K5dO3r27ImBgQHnzp1jwYIFmJub895775GVlcWlS5eYN28eTk5O5OfnExkZSUJCAgUFBURHRxMREUFQUBDu7u78/PPP9O3bV5lO+nA2jZGREdeuXWP37t307NkTT09PqlatyvHjx3nw4AHm5uZYW1tz8OBBGjZsiKmpKadPn2bFihWYmZlx69YtduzYQbVq1Rg9ejTNmjUjLCyMkpISGjduTJMmTZROxLpAbWUj/kL8npKSEqZPnw7ASy+9hJeXF+7u7kpX4PT0dD788EO++eYbOnbsqJQb0AV3dAMEt27dwtjYmJYtW5YL5sTHx/PJJ5+QlpbGiBEjyM/PZ+3atQAUFhaSlZWFjY0NHh4eXLt2jdq1aytZY7dv30ar1RIREcH48eOVrK+CggLs7OyoVauWUm+1efPmNG/enMzMTG7evElpaSn37t1j5syZfPvtt/Ts2ZM9e/bw448/Mn36dLy8vCgsLCQqKop79+6hVqvR09PDyckJCwsLwsPDgbLj6vnnn6dOnTqEhYWRnp5OQEAAoaGhSvakzqOZ2+LfR/c7Xq1aNWxsbFCr1XTq1OmJ1r148SJfffUVZ86cwcjICAcHB9q3b8+oUaMwMTHBx8cHMzMz9uzZw+LFiwkNDcXIyIiMjAwOHz7MRx99pATBc3JySE9Px8nJibNnz3Lt2jXq1KnDu+++y4YNGzh58iRZWVnk5+cDZZlYkyZNomHDhsp54MqVK0rQskuXLly5coUVK1agp6fHyy+/rDSYCg8PZ/78+Wg0Grp164a1tTVQljFWWFiolDVp3rw5gYGBJCcn4+Ligo2NjfLedc2shPg3eVzzt0elpKRw5coV4uLicHBwoGPHjko2/ZkzZ/jmm28IDQ2lWbNmeHl5MWbMGOrXr89HH32Eo6MjUDaApRsMu3r1Kvn5+QQEBBAdHc358+cJDw8nPj6e6OhojIyMSEhIwMvLCycnJ6VkkAQthfh7SNBSCCHE79JoNMq0m4cDkY9eoOmCBHfu3AHKZ23o6+uzd+9eTp8+Tf369Xn99dextbUFYNmyZdSqVYtPPvlE6aTaoEED0tLS2LJlC/3791embX/55Zd89tlnpKSkUFpaipWVFYGBgTRs2BAzMzMMDQ3p0KED33zzDcePH2fAgAHlpqUbGRlx79499u/fT82aNalduzZQ1lRg165dJCQk0LRpU1566SW++OILXn75ZSwtLSkqKqJt27a89NJLLF26VCm2bm5uTuPGjWncuPHf8dGL/5j4+HhKS0vx8vJ6ouUtLS0JDg4mNjaWoUOHVtohfvTo0bz//vvs3LkTHx8fVCoV+vr6XL9+nZkzZ3Lp0iXMzc3RaDS4u7vz7rvvEhoaCsCWLVu4du0as2bNonPnzkBZAOXdd9/l9u3bpKen4+Xlha+vL8bGxkqGJJTdRFpbW3P58mVcXV1p0aIF1apVw9PTEwcHB0pLS5WaYWlpaVy9epWWLVuWm8p+5MgRTp06hVarxcnJiTNnzjB06FA6d+6Mvr4+58+fJz8/XwncqlQqmjVrRnZ2Nvn5+UoA1d3dnREjRvyJv4h4lummfELZ9013TnFycsLBwYHbt28Dv5ZA0C37aIfviIgIpk6dSn5+PuPHj8fGxoYDBw7w7bffkpaWxrvvvqtsU9dMSvfdun79OmZmZuzevZu9e/cSGRlJamoqpaWleHp60rBhQ+X80qtXL3r16kVycjJ37tzByMiIixcv8tlnn7FhwwYaNmyIi4sL9vb2Sh1VXX3ksWPHYmxszPLly9m8eTOBgYHk5OQQFRWFq6srn332Ga1atVKaTdWrV48jR46U+02wtbVVzqtCPC26geLY2Fjee+89AgICmDJlivLdfVRpaWml5Usebf6mG3R+2PLly1m5ciW5ubnY2NiQnp7OypUrWbx4MWq1mipVqmBiYkJSUhL16tWjSpUqeHl5cf/+fWVf1Go19vb2yu9JZmYmxsbGDBkyBAMDA2XgzsfHh6lTp+Lm5oabmxsGBgZ4e3srpYWsrKykmZsQfwMJWgohxH9YYWEhP/zwA+fPn2fBggV/ejsPXzQ+7oJMq9VibGyMk5MTiYmJ3L9/Hzs7O2V5tVpNUFAQV65c4bXXXqNmzZoApKamEhsbS58+fSgoKODixYtcuXKFO3fucOzYMfLz87l+/To1atTA3NyckpISBg8ejLOzMx4eHtjb26NSqUhPT1em1HXp0oVTp04xZ84cnJ2dad26NVqtlqKiIpKSkvj888/JyMhgwoQJSpDU29ubgoICIiMjadq0KYMHD6Zq1aqEh4djZ2dHSEgIfn5+6Ovr8/HHH//pz1L8b3m4Zmt6ejqdOnVi8ODBvPnmmxVu3nQBGl3ARVdewcPDg/DwcJKTk3FyclI6G+uC8dWqVcPJyYmEhAQlKyUuLo5JkyZRUFDAzJkzcXd3JyIiglWrVvHRRx8p9SavXbuGr6+vErCEsjqPAwcO5L333iM1NRWAgIAACgsLyczMVJazs7NDrVZjaWnJzJkzlSm5ut+HmTNnolKpeOutt9ixYwczZ85kypQp1K9fHz09Pc6fP8+hQ4fo3LkzxcXFhIaGsnz5ctavX8++ffsoKioiKCiI4cOHK53IAd5+++1KP+uHs3Iermsm/h10g2MPBycfN+XTwsICd3d3IiMjldqQv/X3/v7774mOjmbp0qVKduMLL7zA5MmT2bBhA61ataJ9+/a4u7sr56+HMxVtbGwIDw+nTZs2hISEEBAQgJubGzY2NhQXFyvLRkdHk5KSQqNGjZRgor+/P1u3biU5ORkAR0dHfH19OXHiBIsWLcLHx4cOHTqgVquVKed79+4lJiYGDw8P+vbtS2hoqFLrUve7YWRkVOkghhB/p4evAWNjY7l48SLXrl3DyMiIJk2a0LhxY+V5ExMT4uPjyw086LbxcD1l3b8fvb6MjY0lLCyMo0ePkpWVhb+/PwMHDqRevXoYGBhw5swZFi5cSKdOnejVqxcmJibs3r2bNWvWcPLkSTp37oy9vT0WFhZERkYq54eqVavy888/k5CQgK2tLebm5nh5eRETE0NBQQFOTk7o6+vTvn17Jk2apBzjlpaWZGRkcP78ebKysnB3d8fX15fLly8rZVHkvCPEX0+ClkII8S/0pCO5usCGWq2uUG9HFyD5rYBkcnIyjo6O/Pzzz6xatYro6Gjc3d155ZVXqF+/frmgi0ajwdDQULkYTExMLBe0NDAwwM3NjZiYGDQajbLe3bt3UavVLFq0iG+//RYDAwMcHR3x9PSkZ8+eeHl50ahRI0pLS7GxscHU1JShQ4eW29e7d+/y3nvv0aJFC0aNGoWfnx/Tp0/n7bff5vXXXyc0NJTQ0FAKCgo4ffo0d+7cYcKECUrdPCjLtPzwww9p2bIlUDbC36hRo3LBEiH+iOTkZE6dOqXUt1Or1SxfvhwnJ6dKp7o9LkATEBBAWFgYERERyvTUR4//9PR0ACUIf+zYMRISEvjuu++UdYKDg6lRowb9+vUjLCwMf39/UlNTlW09XIO2fv36aLVapdSDro7e3bt3lde0sLCgefPmHDx4kC1btjBo0CDluXPnzrFixQoGDhxIaWkpffr04ciRI8yYMQNvb28lANqqVSvefvttVCoVpaWlNGrUiJCQEIyNjX9zOmBJSUm54JbuM5EmIv+83Nxcvv32WwICAnjuuef+UKbRw8tW9re7desWe/bsIT4+nlq1avH8888rg1Pe3t4AREZGUrNmTc6ePcv169eJiIjg+PHjzJgxg+eee46srCxu3LhBaGgoderUAX7N2Hr++efZvXs3hw4don379lStWpWrV6+WC867urpiYmKCo6MjM2fOpKioCENDQ/T19UlLS2PevHnUqVOHAQMG8O2337J9+3Y+//xzqlSpojTsiY6OZsKECUDZVO3XXnuN999/n8WLF9OxY0c6dOgAlE1RrV69utJR/FESEBH/pMqOZd3/L1myhB9//JGioiLUajU5OTl8//33hIaGMnfuXGxtbXFycsLPz4/Y2Fjl/PJoU7ikpCRiYmLQ19dXsvB1g8zz5s3j+vXr1K5dG7Vazb59+xg2bBjffPMNzZo148SJE1hYWNCjRw/lPFe1alX69u2LnZ0dUDbg4OrqSmRkJEVFRRgbGxMcHMyuXbu4d+8ewcHBqFQq/Pz82LVrF6mpqfj7+2Nra0tKSorS0Evn7NmzvPnmm0ydOpXevXtTtWpV8vLylAE+IcRfT4KWQgjxLxIeHk5UVBQ9evR4ouWNjIzo168fGo2mXMDy0Y7BOTk55Ofnl6t7dejQIV577TWGDBlCYmIihYWF1KlTh2PHjjFq1Cjmzp1Lq1atymWSQVnw79ixY8THxxMcHKyMsANUqVKFI0eOKN1PAaytrTE2NsbFxYXPP/8cMzMzZeRbX1+fK1eu8ODBAwICAmjXrh1fffUV69evp2/fvmg0GrKyslixYgXh4eGMGzdO2a6/vz8LFy4kLCyM48ePs23bNkpKSqhWrRovv/wybdq0KTfNyNramoEDBz7ZH0L8T/qtxk4P0x0Tixcv5sCBA/j6+iqZWPXq1at0ndzcXC5evMj58+cpKCigefPmyhRuXcDw1q1bwK/BTQMDA3Jzc/npp5/Iy8tTMsgKCgq4fv06JiYm1KxZk8uXLxMREcG1a9e4ceMGJSUlnDp1ivHjx2NhYUFcXJyyPSj7fXB2dlayZIqKinB1dcXS0pK4uLhy07K7d+9OWFgYM2bM4MaNGzRq1Ijs7GylhMLgwYPR19fHzMyMr7/+msOHD3P9+nXUajW1atWiRo0amJiYlPtN0k0p/616ZpVNMRRPh5GREYsWLaJjx44899xz5YIcpaWlyvHwaFBeF7woKiqiqKiIo0ePcuDAAYqKihgwYABubm4sWLBA+c5t27aNxMREXnvtNSXT0tDQkGHDhqHRaDAxMcHJyQl/f3969+6tlGC4f/8+BQUFmJmZKcFx3ffH1dUVHx8f5dgKCAggKyuLlJQUZT9dXFxo2rQpK1eu5NChQ7Rq1QooC/Lv2rWLHTt20LRpU6CsVEN4eDjvvPMOXl5epKWlodVqefnll3nppZeAXwfENm3aVC6bU4inLTMzU6kV7uTk9NiyN+PHj2fnzp0MHDiQTp064ejoiEajYceOHXzzzTcMHz6chQsX4uTkhIuLC5cvXyY+Ph5vb2/09PR48OAB33//PRs3biQlJQU9PT0l+Dh48GBcXFzYuHEjJ0+eZOLEiXTr1g2VSkXnzp1Zv349xcXFAPj4+JCZmcnUqVPp1KkTFhYWmJqaEhwcrGQhm5mZ4enpSXh4OHl5eVhaWhIUFASg1IM1MDCgSpUqZGZmkpiYSIMGDejZsydffvkln3/+uXJtGBERwcyZM1Gr1crsBBcXFwoLC7l9+zbNmzeXgQUh/gZyxSeEEP8iX3/9NWlpaXTp0qVCEPJx0yJ1AYCH6enpERMTw7fffsuhQ4coLCzEx8eH5557jq5du+Lo6IilpSU1a9bk+++/p1+/frz++us4Ojpy7NgxRo8ezY4dO2jVqlWFaXyBgYHAr3UtHxYQEEB+fn65G0JHR0d8fHxISEjA2dm53Kh2dnY248aNo0GDBsydO5cXX3yRQ4cOMWXKFI4dO0ZgYCC3b99m3759vPTSS9SvX7/c6+nq3PXv3x9zc3PJwhJ/yunTpxk5ciTjxo1jyJAhlS7zcE0uXaDe0dGR1NRU5VjVarUUFxdz/fp1XFxclJuq7Oxs5syZw86dO5UOvz/88AOdO3fmk08+wc/PDwMDA2JiYoCyzqa3b98mOjqac+fOcfbsWV599VV69+4NlDXJysrKIi0tjZCQECXbWtdwql+/fri5uQHg6+vLmTNniI2NVYI8enp6xMXFKXXAsrOzsbOzw9PTk8TERLKzszE1NaWkpARjY2MmT57M2rVrOX78ODt27MDAwIC6desyduzYcrU7TU1Nee655564a7FkTj77dANirq6uZGRkkJWVhbW1dbkyB7pzgy6AaWhoqDz/5ptvkpSURGhoKCdPnsTU1JSoqCguXbqEVqulXr16zJ8/HwMDA+bOncvmzZtp2rQpjRo1wtPTEyMjI6pUqcLMmTOBspIFutrGuu+UhYUFlpaWSr26h7O8rK2tMTExUZ6rUqUKUD6j2NTUlMGDB7Nnzx7Gjx9P3759qVmzJrdv32bFihW0adNGyZR0d3dn3bp17Nmzh6SkJFxdXaldu7ZSA/lhErAU/7RHMycvXLjA7t27OXfuHDExMeTl5WFiYoJaraagoIB69erx6aeflutm/9NPPxEWFsbkyZMZMGBAue2PGjWK+/fvs2/fPu7du4eTkxPe3t4UFxcTHR2t/PfSpUv56aefeOGFFwgNDSU7O5vNmzezfPlyPD096d+/P3l5eeTk5JQbZAgKClIyKgE6dOhAdnY2CxYsYNGiReTl5QFl58Dq1auzcOFC1Go13t7eHDhwgKysLGVgAyAhIQEoC1p6eXmh1Wq5e/cuenp6DBs2jEuXLvHtt99y4MABbGxsuHv3Lubm5sybN0+5tg4ICGD+/PnUrVtXApZC/E0kaCmEEP8iH3zwQbmmMjq/dXOfnJzMZ599hp+fHyNHjgTKpuNMnTqVqKgoevXqhY2NDYcOHWLOnDlERkby6aef4u7ujpmZGY6OjgwZMkTpsFijRg3q1avH9evXy10A6/6t616sC7A8nF2ju3HTTTmFsqBqr169CAsL4+OPP+bDDz/ExMSE+/fvs2jRItLS0ujVqxdQdpM3b948Nm3axJEjRzh9+jTu7u689tprDBgwoEKBdh0rK6sn/5CF+IXu++3t7c1HH31UYcrmw9//yqZ2m5iYUFpayqRJk3B3d2fy5MmcO3eOcePGMX36dHr37k1RURHffvstGzZsYMyYMXTq1AmNRsPatWtZu3Yt3bt3p3bt2jg4OHDmzBnq169PdnY2KpWKoqIiAIYOHcobb7wB/JrlaW1tjaGhIe+99x4NGzbE1NQUS0tLLC0tuXXrFvfv3wegffv2ys3ie++9h7GxMSUlJaxbt47MzEwePHig1Kd1c3Pj+PHjStkI3VQ/f39/Jk+eTHR0NHp6enh5ef1mJqSuPMSjzVLEv4fue6Y77/j4+HDnzh3S0tKwtrZWjotz586xdu1aLl68iEqlomXLlnTr1o0aNWoAZecL3ZTM4cOH07lzZ06fPs20adMAGDFihDINvEePHuzevZvo6GgaNWqEt7c35ubm5OXlKdnIlVGr1fj7+xMWFkZSUpIyMABljdTu3r2Lk5MTRUVFeHp6Ym5uTlJSklJSRavV4urqypw5c1i7di07d+5k1apVWFhY0LFjR8aOHatkHkPZ+UY3gCDE03bv3j0ePHiAp6enUj5Ed+7asWMHa9eupWHDhowZMwZ3d3fUajWGhobs3buXFStW8N133zFixAhllkFYWBg+Pj40b94c+LWsiK7JztixY5k8ebLy+j4+PhgYGBAREUGbNm24dOkSS5YsoWvXrkycOFFZLjg4mK5du3Lp0iX69+9P06ZN2bRpE1OmTGHFihXo6enh4eGhXIM2adIEU1NTBg0axIABA7hx4wbx8fHk5uZy69YtVq5cyaJFi3j//ffx8vIiPz+fpKQk/P39sba2xtramsTERPLy8pRrXX19fW7cuKE0x/rqq684fPgwhw4doqioiA4dOtC4ceNyvzc2NjbKoIUQ4u8hQUshhHhGVVZzUted+2FarZbbt29z/Phxrly5gpGRkXJhpVKpyMnJ4eLFi9y9e1cJWm7fvp2ff/6ZmTNn0rVrVwwMDBg6dCizZs3i+++/p0mTJnTu3BlHR0eioqKws7NTblItLS3x8fHh3LlzZGRkKJ1KdTepuil78fHxFTo9Ojk5YWVlRVxcnHJRqNVqadSoEa+88grff/89V69eJSAggIyMDGJjY5kwYYKSQanrujxmzBiGDRsmwUjxt9Ld2Dk5OdG1a9fH1vZKTEzkzp07mJiYKA0Czp07x8yZMzEwMCAlJYVatWqhp6eHv78/BgYG5WrmrVu3jjZt2vD6668rj7399tt069aNqlWrYmBggLu7O8nJybz++uvUr18fa2trYmJi+P7779m9ezcGBgYMGzZMOR5r1qzJxo0blVpdD1u+fDnnz59n4cKFNGrUiMGDB7NkyRJu3rxJmzZtiI6O5ubNm9SoUYM7d+7w4MEDAFq1aoWNjQ329vbl3r/uv3VZarrP7tEyFDqSPfns051/HtfQ6OHmUra2toSEhHD69Gnu3bunfN/OnTundAzu1KkTqamprF27lh07dvDxxx/TqlUratWqBUD16tXp27cvgFLX9Pz58zg7OyvBEN2ggS47ysnJCVdXV65fv/6b70V3Tty0aRNz587l008/xcjIiOzsbLZu3Up8fDzDhg1DpVKhUqmwsrLi0qVLZGZm4ujoiJ6eHqWlpdSrV4+aNWuSkJCAhYVFueCnEM+K/Px8duzYwc6dO7l8+TJQllHs4+NDt27d6NixoxKArFmzJgYGBjRv3pyhQ4eW205wcDCRkZHs37+fLl264OvrS0REBFFRUYSGhuLu7l5uEF03UGVtbQ2gHLeenp5YWFgoJRicnZ15++23ad++PVBWGiUiIoJNmzZRWlqqzNIJCAhgwYIFbN68maSkJOLj4wkPD+fUqVN88803LF26lCZNmpCSkkJ2djaBgYHKTB+AnTt3kp6eTklJCa6urpibmxMbG0tJSQlGRkY4Ojpy+fJlUlJS8Pb2xtramtDQUBwcHJTfN5VKRfv27ZV9FUI8HRK0FEKIv9DDU0T/vyq72c/Ly+PQoUOYm5srDWMuX77M+++/T3FxMc7OzmRlZbFt2zb69evHhx9+iK2tLYGBgYSHh6PVasnOzubgwYP4+vrywgsvlHu9UaNGsWbNGvbt20fXrl3x8vIiLCyMzMxMJUCoUqnw8PCgsLBQ6bz48PvX19fHy8uLxMREUlJSlI6nuppF3t7eJCQkkJWVpWSiGRgY8Oabb9K8eXPCwsKIi4sjMDCQUaNG0aBBA+Vi+OFafhKwFH+lx3UufrhpQHZ2tlJrFWD//v18+eWX3L59Wyk/UK9ePebMmUNQUBDr16/nxRdfJDAwkLFjxyr1W83MzIiJiaGwsJDk5GSKiooIDQ1Vfj+0Wq1Sl0vH19eXc+fOERgYSN26ddFoNFSpUoU6deowadIkli1bRm5uLmPGjMHW1pYGDRpQq1YtvvnmGxwcHAgNDSU3N5ddu3axefNmXnjhBWWK3PDhw3F0dGTjxo0sXLgQBwcHXn/9dczMzHjrrbeUjM7u3bvTvXv33/wcH/68ZKrcP6ukpIT79+8rgbY/4uHyIg//uzJarZYffviBZcuWkZycTLt27ZTmNDExMTRp0kRpUJORkcF3332Hl5cXpqamvPrqq/Tv359Zs2bRqlUrJdCtm36q1WoxMTHB19eXffv2kZeXh1qtBsoa2JiamhIfH68Menl4eBAeHk5iYqJS8qAyLVq0oG/fvqxfv56oqCiaNGlCVlYW+/bto3PnzuUypbp3764cpzq63wJTU1PluBHiaYqLi2Pp0qWEhobSpUsXAB48eMCCBQvYvXs3wcHBvPXWW9ja2hITE0NYWBiTJk0iIyNDCVC6uLigUqmU8ghQdi7UZcH7+fkRFRWlBDmLi4vJyMhQSqA8XLP8UbrfEFdXV2xtbYmPjwfAw8ODV155heTkZGbNmsWZM2e4d+8e7u7uuLm5kZSUpBzffn5+vP322+Tk5FBUVIStrS3nzp1j1KhRbNmyhaZNmzJlyhRu3brFzJkzqVKlCllZWezcuZO0tDRCQ0MxNDTEwsKCkpISLl68SK9evTAyMqJHjx6kp6cr15J2dnYsW7bsr/0jCSH+EhK0FEKIPykhIYGrV69y+fJlrl+/TkpKCtbW1jRt2pSOHTuWyzrS0dX0+r1abffv3+fSpUvExMTg6elJixYtUKlUJCYmMnHiRIKDg2nZsiXp6enMnTsXfX195s+fj52dHTk5OSxZskQpMG5lZYWbmxv79u0jJSUFJycnkpOTK2SJaLVarKyscHd3V24KddPy7ty5g6enpxKQcHFxQV9fn6ioqHKBFV3QskaNGuzatUu5kXx4NN7Ozo7z58+TkZGhdFHWBYt0Xb6F+D0Pd7p+Ur/V1fjRbWVlZXH06FGlw/yyZcuYM2cO27dvx9/fn7i4OD755BOqVKnCG2+8gaWlJXv37mXt2rW0adOGTp06ERISgo+PDykpKUrjAF0DkdjYWAoKCsjLy0OlUpGdna3c5OkCl7pAqaWlpTKdNjIykqZNmyr1MW1tbZk2bRqzZ89m3bp1aDQapk+fjp+fH2PGjGHixImMGzeOkJAQAKKjo2nVqlW5aXkWFha8+OKLdO7cGSsrK+Wz2LJlCyUlJeUGJirr2v0wCVT+Mx4+/1y9epU7d+5QVFSEtbU1bdq0oX///nh5eZVrlKYLzFd2/nm0Mdvp06e5ceMGVlZWtG7dGnd3d2XdnTt3MnfuXOrWrcuoUaO4desWGzdupKSkRKkFmZWVxYULFxg5ciTVqlVTtu3v78/QoUP56quvuHTpErVq1cLU1JTMzEyl0ZWenp4y2BUTE4Obm5tyvHt5eZGQkEBaWhru7u5KzdSbN28q55rHNfwZP348tWrVYseOHWzduhW1Ws3AgQPp37+/EhgFGDNmTKWfuXy3xT8tISEBGxsbLCwslO+x7jv+008/sWHDBqUJFJSdp9atW8frr79Ov379yv2eDx48mLfeeotZs2bh6+tL8+bNcXJywtHRkZs3byrb0C0fFxfHqVOn8PHxUQYEHB0dKSkpIT8/v9yyldEdh1ZWVri6unL16lVycnKwsLDg4sWLTJ06lQcPHtC6dWsaNmxIu3btmDx5Mps2bSI+Ph5/f3+2bNlCdnY2L774ojKw4eTkhJGRkTKo8PzzzzNv3jzGjBlDlSpVyM3N5e7du7z88svK+dvV1ZW5c+fi5eWlrKdrjCWEePZJ0FIIIf6gmJgYXn31VeLj47G2tlYayVStWpX4+Hi++uor1q1bx9SpU2nbtm25m6jKOqg+6uTJk0ybNo2MjAzUajUpKSmEhISwYMECPDw8CAwMJCcnByibhnP58mV69OiBr68vxsbGODo6Kk0JoOyi0sPDA41Gw+3bt3FycsLExIT8/HySk5OVZiAajQZDQ0NcXV2Ji4sjOzsbNzc3jI2NuXnzJi1atCg3XdbW1rbche7DfHx8KCkp4ebNmxWCkB988AGGhobK64LcDIonV1xczOuvv05sbCy7du363cDlw8ef7ntWWfBy//79bNy4kfj4eJo1awaUTaMODAzEx8dHaZoRGxuLv78/R48eJTc3lzfeeEMJ3Dds2JBu3brh7u6ubL9q1aocP36cu3fvKtOq/f39OXv2LBkZGVhbW5c7lrRarXIsnj17lmXLljFlyhQl8KObYqenp6dkIDs6OvLWW29x9+5dfvzxRwoKCvj0009p3LgxP/74I5s2beLSpUtYWlrSpUsXmjdvXi4QGR4ezurVq3njjTdQq9UUFRWRmprKunXrcHZ2xsHBQVlWunY/XZWdf3x9falfvz76+vqcPXuWFStWkJiYWKGBxm8dK/Hx8YwZM4ahQ4dy8eJFDh48iKGhIUlJSaxfv55ly5bh7OxMQUEBixYtwt3dnXnz5inbb968OcOGDSMxMRGNRkNCQgL6+voEBgYqx5vu34GBgahUKq5du0atWrXw8fEhMTGR9PR0ZTDN2dlZOfc0adJEGfiqXr06Bw8eJCUlBXd3d6VO8pUrV2jdunWlQUvda1tZWdG9e3c6dOhQaYM6IZ4ln3/+OYsXL6Zjx45MnjwZW1tbJXgfHx/Pzp07admypTJ1+fr166xcuZIWLVrw2muvlduWRqPBwsKCqVOncvToURo2bAj8WmIhIiKCgoIC8vPzuX37NuHh4Rw5coT4+Hg+/vhjZTtOTk5YWlqWq/lameLiYuLj4zEyMsLDwwNPT09OnTrF7du3CQ4OZt26dSQkJPDNN9+Uu0YsLi6mpKSEyMhI/P39OXbsGGFhYdy4cYO2bdtSWFjIhg0bKCkpoV27dgB06tSJGjVqsH37dmJjY3FzcyM0NJTatWsrx7mlpSVt27b96/44Qoh/lFx5CiHEH6TrjFq9enU+++wzLCwsMDMzQ6VSYWxszNWrVxk5ciTTp0/H29tbybjUaDT8/PPP7Nu3T8lc7N27N0FBQUqAIzo6mtGjR+Pt7c17772Hu7s7ly5d4v3332f27NlMmzYNZ2dnTp06RWpqqjLtc926dURERODh4aFMrdN1VzUzM1NGpm/evEmjRo0IDAxk3759xMfH4+TkpARJACVbx9zcHBsbG5ycnJRAiY6trS1WVlacOXOm3OO6m8WuXbvi7OxMixYtgPI3y781hU+I32NoaIi+vj7JyclkZmZiZ2f3m8vrvpOZmZncu3cPOzu7ckE4gH379jF16lRcXV1p3Lgxx48fVzKV4+Li8PHxwdnZGTMzM65fv07btm1RqVQUFxfz5Zdf0rt3b9RqNaWlpVSvXh1ra2tlum1wcDA7duwgKSlJCW5Wr16dXbt2kZSURL169ahduzbHjh3j5s2bBAQEKMfipUuXOHPmDPr6+ri7u2NpaUlsbGy596Xj6urKl19+yYgRI3jw4AGZmZnY29vj4uLCqFGjfvMzMjMzY9u2bRw/fpw+ffpgZmam1CecMGHC737G4p9T2fnH3NxcqcdYUFDAtGnT2LFjB4cOHVIyjbKysjhz5gzHjh0jOjoac3NzOnbsSJcuXVCpVDg4OHDjxg0WLlyIkZER06dPx8vLixMnTjB9+nSWLVvGhAkTyMvL486dO4wcOVIJWBYXF9O4cWOqV69OYmIiOTk5qFQq5Th9dIDAysoKlUpFSkoKUFa7bv/+/eVmADg4OGBvb68E83XbCAkJYfPmzcTFxVGnTh1l8OvChQvA46e1P7wPErAU/wZDhgyhpKSEZcuWYWJiwrRp05Qg4fHjx0lISOD9999Xlr9+/Tr5+flK2Z+HA/i6GS0uLi707NlTqTWuy/z/+eefadGiBQ8ePMDAwAA7OzucnJwwNDRk2LBhvP3223Tt2hUTExOqV6/OpUuXiI+Px8/Pr9JBwDNnzjBt2jR69erFq6++iqenpzJwHhwcTHp6Os7Oznh6egJlpY8OHz7M0aNHgbKBtE6dOjFu3DjUajWHDh1i37595OfnU6VKFaZNm6YMLgJ4e3srzeiEEP89ErQUQog/yNLSEgcHB5KSkvDx8alwkxQYGMicOXN46aWXWLlypdIFdceOHXzxxReo1WpcXV05ceIEP/74I5MmTWLAgAEYGhqyfv16ioqKmD9/Ph4eHgD4+fnh6OioXNy5u7uTl5dHTEwMDg4OTJs2jW+//ZbLly9z/vx50tLSlBp0r776KuPHj8fFxQW1Ws2NGzeAsoYau3fvZuPGjUrjEICtW7dy4cIFJXBhYWGBg4MD58+fB3698VOr1bRq1YqSkpIKmaRQVrNIt/9C/JV0mVpHjhwhISHhdwNqW7ZsYcmSJcTExGBiYkLVqlXp3bs3zz33HGZmZqSnp/PFF1/g5OTE3LlzcXZ2BuCLL77gu+++4/Lly7Ro0QI7O7ty0+g6dOhAYmIiixcv5vjx40BZvVddPcm33noLJycnZVq3rp4XlAVpiouLSUhIoFGjRvTv35/Nmzcza9Ys3nrrLSwsLAgPD+fbb7+lYcOG5bKSL168qNT7epS9vT0bN26s9HN4uDTFw81VSktLqVKlCt9//z0bN24kLCyM/Px8/P39mThxIh07dnzSP434B/ze+cfY2Jh+/fqxadMmrl+/TteuXSkqKmLu3Ln8/PPP2NraYmtry9WrVzl69CjZ2dn0798fExMTJct+586dSgajt7c369at4/z58+Tk5JCSkoJKpcLS0lJ5Td13KTg4mKNHj5KWloaLiwt2dnZcvXpVmfatGxwrLi5WatRBWTMQXbMNXWMeW1tb3NzcuHLlSrnXCAgIAH7tQB8UFMTmzZuV8410oxf/Fba2towcOZKUlBS2bNmCSqVi2rRpSgmg4OBgWrVqpSwfHh6OoaGh0riwsoxjKGtMVVRUhJ6eHkZGRkq5n9atW9OlSxccHR2VaeVZWVl8+OGHSn30Nm3a0Lp1a86cOcPRo0fx8/MrN2Vdl3159+5dYmNjKSwsBMDT0xOVSqUMgDds2JA5c+bwwQcf0Lp1a2JjYzlx4gTVqlUjPz+fjRs3Mnz4cDw8PPjggw/o3r270ohR6pkL8b9HgpZCCPEHGRoa4uHhwaVLl0hMTKwQnNN1w65atSp79+5l7NixZGdnM3nyZNq2bcvrr7+OWq3G3NycDz74gNmzZ+Pn50eTJk2IiIjA19dXybTSTQVq1qyZcpOmqzMZGRlJ/fr1cXJyUjq0RkdHo9Vqyc3NZeHChWzevJl27drh5eWFq6sr0dHRADRt2pQXX3yR5cuXExsbS/v27UlLS2Pnzp3UrVtXqfVjY2NDvXr1SEhIKDcVyMLCggkTJvwTH7cQFei6CEdFRSm1Giuzfft2pkyZQp06dRg1ahSZmZls3LiR999/n/v37zN8+HDOnTtHdHQ0U6ZMKVe3tVu3boSFhXHx4kWgLFDv7u7OnTt30Gq1WFtb88Ybb9C/f38iIyOJjIzk/v37xMbGsnXrViwtLfnggw+UIIsuqwzAy8tLmXpbWlpKcHAw77//PosWLWLEiBGYm5uTm5tLnTp1yk3N++yzz7CxsVGaIlRGN7380bqTjytNoXusQYMGhISEoNFoMDc3f5I/g3gKKjv/PJzppKenh5WVFSYmJso5Y+HChWzYsIF33nmH9u3bY2pqSnFxMS+//DLbtm2jdevWeHh44OPjQ0ZGhhJM1AXHq1evzuHDh7l//z7m5uZYWlqWy77XNePw9fVl/fr1JCQk0KJFCxo2bMju3bvp2LEjLVq0UM5rJ06cAFBq8T1cb1XH0tISDw8PsrKyygXpa9euTUREhLKcbv+E+C+ytLTk008/JTs7mw0bNuDg4ICXlxcpKSmMHz8e+LXcyb1799DT0yMvL0/p4A1lx/GlS5c4f/48ERERxMbGcvfuXebOnUuLFi1wd3dHo9Hg5uZGkyZNyr2+vb09r7zyCqNHj+bw4cO0adOGli1bsm/fPtauXUtQUBD16tUr1207JyeHLVu24OzsrDS48vHxQa1Wc/36dQB69OhBdnY2W7du5eLFizg6OtK+fXv69++vNL3SlTDRarXUrFnzb/+shRDPLglaCiHEn1CjRg22bdtGfHx8haClrvZWkyZNWL58OcnJyezZswdzc3OmTJlSbpT4ueeeY+fOnezatYsmTZqgVqvJzMxUbjYfnlat+28/Pz9MTEyUm8b79+9z8eJFAgMDlQAJlNUYO3/+PObm5hgbG+Pr68vhw4fJzc3FysqKcePG4eTkxPbt25UpgS1atGDo0KFKcwNjY2PefPPNv+dDFOJP8vb2xsjIqFzw4lFpaWksXboUT09PFi5ciKmpKXp6enTo0IHRo0ezZs0aunbtqgTidVPGdcevm5sbderUUUogWFtb4+Xlxblz58jMzFRqPxoaGtKsWbNyU9WaNWtGdHQ0hYWFWFpaolarOXr0KKGhoVSrVg07OztUKhWXL18mJycHKysrBg0aRKNGjTh8+DAFBQUEBQVRu3Zt5fdCq9Uq5RZ+y8O1Lv+oyrI3xbNHd/6Ji4tTgpY6enp6yndIF8w7ffo07dq1q9B4wsPDg2vXrpGUlISHhwdVq1blzJkzpKenA78GtIODg9m2bZuSGVylShWuXr2q1ETWTTXVarVotVpu375NixYtGDx4MIcPH+btt99myJAhVKlShbNnz7J+/Xr69u2r1LKrUqUKVlZW5aZtm5qa8vHHH0u9Y/E/z9DQkJkzZzJ69GiWLVuGoaEhAQEBNG7cGChrjmZkZISFhQWlpaUkJibi4uJCSUkJhoaGnD9/nlmzZpGdnU2tWrVwcXHh1q1bREVF0aJFC1xdXbGxsVGuKXXHsUajwcjICC8vL6UDOZSdf0ePHs2IESOYPHky77zzDu7u7hgYGBATE8P333/PxYsXee211/D39wd+rYWpa+CjVqsZN24c/fv3x97e/jfr7cpvgBBCgpZCCPEn6IKDt27dUi4cH6W7WDtx4oSSpbhu3Tri4+O5du0aiYmJ5ObmYmhoiIWFBdnZ2Xh7eys3jbrRbwMDAzIyMliyZAnVq1enZcuWWFtbK1kpiYmJjB07ltatW/Pqq69iYmLC9evX+fbbb6lRowa+vr7o6elhY2NDeno6qampSiBz6NChdO3aFWNj43ING4R4ltnb22NnZ1eh1iqUzzq5efMmI0aMwMzMTJkabWtry0svvcTYsWM5efIkrq6uQFk2Cvw6OGBhYYGbmxv379+nqKgIExMT3N3dKSgoICEhAbVazfTp05U6gA4ODmRkZHDx4kVSU1N58cUXlaDPwIEDWbFiBaNHj6Zfv35MmDCBvn37lgv4QFnwRlcD91EPT+eWKbD/23Tnn5iYGJo0aaJ8H3Jycjh16hQ//PAD9erVUzIZv//+e4yNjUlMTOTs2bOcPHmSkydPkpaWhq2trVK/NSgoiOLiYuX/dd85XZZTTEwMrVq1olu3bkycOJFVq1bx9ttvU1JSQlRUFD/88AMWFhbK+jVr1mTBggWsWLGCNWvWkJ2djbW1NUOHDmX06NHKd9/U1LRCfeSHX1+I/2UajQYbGxvmzJnDRx99xOHDh2natGm5AS2AatWqsXPnTiIjI6lXr57yeJ06dViyZAlGRkbY2dlx8eJFLl++rJw/nZyccHJyIjo6ulyWvu53xcLCgrS0NBo0aKDsU6NGjVi6dCnvvvsuo0aNwtvbGz09PeXc+N577zFo0CBleWNjY9avX19hYOzh0idCCPE4ErQUQog/wd3dHTMzs0q7Z+tutHQNZ65du0bNmjW5d+8eq1atwsPDg6CgIHr27Imvry+2trZYWlpiYWFBvXr1WLx4MRcuXCA4OLjc6PPatWsZPnw4VlZWuLm5kZycjFarpXbt2owcOZINGzYwfvx4ioqKyMvLo27duuUyVYYOHcqQIUMqXCRKkw3xb2NhYYGzszMxMTFKvTwd3ff94c7aQLm6q1WrVlWmZwcFBaFSqYiOjlYGF3Q3bg8ePADg9u3bVKtWDScnJwwMDIiMjCQoKIg6deqwd+9e+vbtS8OGDSkqKuL8+fO0b9+eF154QQnKDB06VOnWWrNmTUxNTXnnnXcqfW9arbZc7clHScBS6Joy7d+/n7y8PC5dukR0dDRpaWnk5OQQGhrKjBkzcHBwoLS0FGNjY65du8aCBQu4e/cuDg4OvPHGG7i7uzNs2DCSk5MBlPqrCQkJwK/HkG4ALi4uDoAuXbpw5MgRli5dytWrVwkODubixYv4+fmRkJDArVu3yMvLw8zMjNDQUGrUqEFCQgI2NjZKzVghxJPRXQfa2dlhY2MDwKZNm7C0tOTVV19Vznl169ZFT0+PEydO0L9/f+VxU1NTTE1Nle35+/vj4ODAnTt3lO26ublx6tQpZWBBdx15584dFi5cCECfPn3K7VdoaChhYWGcPHmS8PBwTE1NqVq1KsHBwdjb21d4H5LJL4T4syRoKYQQf4KtrS2Ojo6VZnrpLhR1N2cGBgaYm5ujp6fHlClTaNSoEUZGRhgZGSlT+fbu3ctrr71G48aN8fLy4ttvv6V27do4OzuTk5PD119/TWFhodIUw9LSkjNnzhAXF4eXlxfjxo2jVatWXL16FQsLC6pXr46/v3+5TBVd8EaIfztDQ0M8PT25fPkyqampuLu7V7qMqakpqampSjBSl4VpYmKCtbU12dnZVK1alerVq7Nt2zZ69OiBh4cHBgYG5OTkKMd3REQE1apVw9HREVNTUy5dukSPHj3o3bs3fn5+bNmyhRs3bqBWqxk2bBgdO3YsNzigG5B4lG763sP09PR+c6qcEGq1Gi8vL06dOsW9e/fw8fGhadOm3Lhxg+vXr1OzZk0ly0pfX5+0tDSGDRuGpaUlo0aNIjg4GE9PT5KSkoBfg5Te3t4YGBiQkJCgBO61Wi0WFhbK9NCcnBwsLCyUWrHbtm1j06ZNVK9enalTpxIfH4+jo2O5qd4WFhZUq1btn/+ghPgP0J23IiIi2L9/P40aNSIrK4vPP/8cGxsbevfuDZRlYLdp04bDhw9z7tw56tWrpxzHD7t37x4ZGRk8ePCAoqIizMzM8PT05NChQ2zbtg2VSkVUVBS3b98mLi4OjUbD9OnTlXIODzM1NaVNmza0adPmH/kshBD/myRoKYQQf4KpqSmurq5cu3ZNuYnT0QUKS0pKgLIpnzVq1EBfX59Tp07Rtm3bctuaMWMGWVlZSm2fWbNmMXHiRF588UUCAgIoKioiIyODOXPm4OPjA0CvXr1o3ry5UqgcypoZ/FZTEiH+Sx6u61dZ0NLZ2RlnZ2cuXbpEenp6uQyv2NhY7t+/rzQrGDJkCB999BGvvfYaAwYMwNHRkR9++IGEhAQMDAy4ePEiL7zwAmq1msDAwHKNaurUqUOdOnV+d391QaSHBxL+bO1J8b/NzMwMa2trLCwsWLJkCY6OjhgaGlJQUMCWLVuYPn06e/bsYf78+QQFBXHhwgUyMzOZM2dOudqrhw4dQl9fXwliqNVqPDw8iIuLIyMjA3t7e4qLi1GpVDg6OnL//n3lfGdlZcXAgQPp3bu3UhcWfq0NK4T4a+jOGT/99BM5OTlMnjyZ0tJShgwZwrRp07CxsaFdu3ZYWFgwcuRIzp8/z6RJk5gxY4YyWFZSUkJWVhanT59m8eLFpKWl8d577ymvYWlpiVarZcaMGRgZGeHq6kpAQABDhgyhQYMGVKlSRco1CCGeGrlaFkKIP0FfXx8fHx9OnjxJUlIS/v7+5Tq4Ahw8eBAoC2rUqlWLZs2asWbNGoyMjGjevDkqlYo1a9YQFxfHp59+ir29PVqtllq1arFmzRr27t3L5cuXcXd3p0mTJoSEhChTQ1u1avVU3rcQz4pH68pqNJoKdbhat27NsmXL2LdvH4MGDaKoqIicnBxWrVqFiYmJEmzs1KkTRkZGfPPNN3z66acUFxfTuHFjPvjgA7777jtlWqyXlxcrVqyodH90jQt0+/DoDZ7c8Im/ir6+Pt7e3pw4cYLi4mKlPIK5uTkDBw6kuLiYOXPm8MYbb7B69WqMjIwwNDTk9OnTuLi4KBn+S5YswcDAgEuXLnHx4kVat26No6Mj0dHRZGVlYW9vrwTWV69eXWnd44cDlkKIv0dSUhJhYWG0a9cOV1dXjI2NmTVrFu+++y4TJ05k0aJF1K9fn8DAQD788EO++OILRo4cSfXq1alduzbGxsbcvHmTCxcu4OLiwuLFi2nRogWlpaVAWVPI0NBQ3N3dcXFxecrvVgghypOgpRBC/EmBgYFAWdbWw1OxS0tLuXfvHj/88APBwcFKY42pU6fy9ddfs2XLFjZt2kRJSQmmpqZMnDiRLl26AL8GNhwcHBg4cCADBw58Cu9MiGefrq5sZGQkQLkpcAUFBejp6dGtWzeioqL45JNPOHDgALVq1eLixYvcunWLN998k4YNGyqDDe3ataN58+ZcuXIFNzc3XFxcKC0t5fPPP1emuuoCOJVNufv/dO0W4o/SnX8iIyPx9fUFfs3mHTp0KPn5+cyfP5+3336bSZMm0a1bN5YuXcrOnTsxNjbmwYMHDBs2DB8fH3766Sfl3DN//nysra3L1YAFpFGbEE+B7vy0evVqcnNz6dWrF8bGxhQXF9OkSRPee+89pkyZwpgxY/jyyy9p0KABnTp1IiAggAMHDnD58mUOHjxITk4Orq6uDBkyhFatWinXpbrj29fXV/kdEUKIZ41cXQshxJ/k5+eHvr4+V65coUGDBqSkpJCSkkJERAQbN25Eo9Hw5ptvYmdnh1arxdnZmY8++ohevXoRFxeHi4sL1apVKzfVVAjxZHR1ZW/cuEF0dDT37t3j7t273L17l9u3b5OTk8PQoUOZPXs2GzduJCwsjE2bNuHr68s777zDc889B/w6ULBt2zbMzc2V2lxarZYbN24QGxtboQGB1JwUT5vu/BMVFUWHDh2Asu+yLnA5bNgwioqK+Oabb5gzZw4TJkygSZMmnD9/Hi8vL+rUqUNAQABGRka0a9cOKPvOq9Xqp/aehBDl6enpkZqayp49ewgODqZu3boASpO3Tp06UVJSwsSJE3nrrbf47LPPaNSoEX5+fvj5+ZGTk4OhoaE0wRFC/KvpaXVXN0IIIf6QlJQUevToQUFBAVWqVCE2NpbMzEylY+qwYcMqbb4hhPj/Ky0tZfjw4Rw/fhxXV1fS0tIoKioCwNjYGG9vb9555x0aN24MoDTjeZQuk6V///5cvHiRV199lVq1apGSksKKFStQqVR8/fXXeHh4/KPvT4jfkpKSQqdOnQgJCWHZsmXlntN9p3Nycrh+/To+Pj5Sa1KIf6nly5cza9YsPvjgA1588UVKS0uVDEkoO7fFxMRgbW1drgGcEEL8V0impRBC/ElWVlYEBgaSlZVF1apV6dWrF0FBQfj7+5e7oBRC/PX09fXx9PTE29sbb29vevToQVBQENWrV8fR0bHC8rru4boaXo9mS06fPp3ly5ezZ88eVq9eDUD9+vV56623JGApnjnW1tbUrFkTBweHCvWUdf9tYWFRacdfIcS/Q1FRESdOnKBdu3a0bt0aoML1pUqlomrVqk9j94QQ4h8hmZZCCCGE+M95tDHPb9EFfYqKioiOjlYyNWXwQQghhBBCiKdHgpZCCCGE+NcqLS1Vsif19fUl0CiEEEIIIcR/hAQthRBCCCGEEEIIIYQQzxRJRxBCCCGEEEIIIYQQQjxTJGgphBBCCCGEEEIIIYR4pkjQUgghhBBCCCGEEEII8UyRoKUQQgghhBBCCCGEEOKZIkFLIYQQQgghhBBCCCHEM0WClkIIIYQQQgghhBBCiGeKBC2FEEI8c9q0aUObNm2e9m4I8a8nx5IQfw05loT4a8ixJIT4IyRoKYQQQgghhBBCCCGEeKYYPu0dEEIIIYQQQgghhBBC/HHvvvsumzdvLveYkZERjo6OtGrVijFjxmBtbf23vHZRUREZGRk4OTn9LduXoKUQQgghhBBCCCGEEP9i7733Hmq1GoDCwkKioqJYv349V65c4YcffsDAwOAvfb3ExERefvllRowYQY8ePf7SbetI0FIIIYQQQgghhBBCiH+xtm3b4u7uXu4xb29vPvroI44ePUqrVq3+0tdLSEggJibmL93mo6SmpRBCCCGEEEIIIYQQ/zENGjQAIDIy8invyZ8jQUshhBBCCCGEEEIIIf5j7t27B4Cnp6fyWFRUFKNGjaJevXqEhITQr18/jh07Vm69oqIiPvnkE9q0aUNgYCAtWrTgo48+IisrC4BNmzYxePBgoGxaekBAwN+y/zI9XAghhBBCCCGEEEKIp6RNmza/+fyBAwd+dxsPHjwgPT0dgOLiYqKjo/n444+pWbMmrVu3BuDmzZsMGDAAe3t7RowYgZGRETt27GD48OHMnTuXTp06ATBt2jR27NjB4MGD8fDwIDIykjVr1hAbG8t3331H/fr1GTlyJIsWLaJv377UrVv3//kJVE5Pq9Vq/5YtCyHEM2p/3IWnvQtC/CfU3Xrs9xcSQjyR1wILn/YuCPGfsMSu49PeBSH+E6yCg5/2Lvzl+h2a/bR34bFSP97zm8//VtCysu7hOiYmJqxcuZKQkBAABg0axL1799i6dStmZmYAlJSUMGTIEGJiYjh06BAqlYqQkBB69uzJ5MmTlW198cUXHDt2jJUrV2Jubs7p06cZPHgwn376qTTiEUIIIYQQQgghhBDiv+ZJMil/z5w5c7C3twfKMi0TExNZs2YNAwcOZMmSJVSvXp0zZ84waNAgCgoKKCgoUNZt164dn376KVeuXKFu3bo4Ozuzc+dOAgMDadu2LVZWVowbN45x48b9v/fzj5CgpRBCCCGEEEIIIYQQ/2J16tSp0D38ueeeo3379kyfPp1Zs2YBsGrVKlatWlXpNpKSkgCYOnUq48aN47333uPDDz+kVq1atGvXjp49e2Jpafn3vpGHSNBSCCGEEEIIIYQQQoj/GLVaTYMGDdi3bx8ajQaAgQMH0rZt20qXr1KlCgCNGjXi0KFDyj8nTpzg008/ZcWKFWzatAlbW9t/ZP8laCmEEEIIIYQQQgghxH9QaWkpAI6OjgAYGBjQuHHjcstERUWRkJCAqakpRUVF3LhxA2dnZzp37kznzp0pLS1l+fLlzJ49m7CwMAYNGvSP7Lv+P/IqQgghhBBCCCGEEEKIf0xaWho///wz1atXx83NjcDAQDZv3kxycrKyTHFxMZMmTWLMmDGUlJSQkZFB3759Wbx4sbKMvr4+QUFByn9DWfATfg2K/h0k01IIIYQQQgghhBBCiH+x/fv3o1arAdBqtdy7d48NGzaQn5/Pm2++CcAHH3zAkCFD6NmzJ/3798fGxoawsDAuX77M+PHjlfW7du3K2rVryc/Pp3bt2mRmZrJ69Wrs7e157rnnAJRlt23bhlarpXv37hga/rVhRglaCiGEEEIIIYQQQgjxL/bpp58q/21gYIC1tTVBQUF88sknNGrUCIDatWvzww8/sGDBApYvX05JSQk+Pj7MnDmT7t27K+tPnz4dDw8PwsLCCAsLw9TUlEaNGvHmm28q9Sz9/PwYNGgQmzZt4sqVKzRo0ABPT8+/9D3pabVa7V+6RSGEeMbtj7vwtHdBiP+EuluPPe1dEOI/47XAwqe9C0L8Jyyx6/i0d0GI/wSr4OCnvQt/uX6HZj/tXXisda0mPu1deCZJTUshhBBCCCGEEEIIIcQzRYKWQgghhBBCCCGEEEKIZ4oELYUQQgghhBBCCCGEEM8UCVoKIYQQQgghhBBCCCGeKdI9XAghxF8iI/U+u9Zv5c7NKAACgmvwXN9umFtZPvE2tqxYz/3kFIa980aF527fiOTA5p0kxSdiYmpCYP1atO3eGZWJcbnlch9ks29jGBGXrlJcXIyrlzvte3XFw8/7//X+hPinpDzIZvXPP3P97l0Aant6MqhRQ6xMTZ94G98ePUZSZiaTn++qPJaanc2Ytet+c70Pu3amhqtrhcczcnOZ8ONP1PXy4rVWLZ94P4R4mgrSs7m96yxZt+8BYFvNHZ/n6qOy+O1j6UnXy4pJJmbvBXIS0zA0VWFX3ROvtrUxMjcpt1z6rUTiD18mJ/E+6Olh5eGAV7s6WHk6/IXvVoi/V8r9+6zcvJnrkZEA1KlZk0Hdu2Nt+eTXeUt++IG7KSlMHTu2wnOT5swhOi6uwuOhtWoxftiwSrcXm5jIpDlzeKF9e3p36vTE+yGE+PeQoOU/5N1332Xz5s2/uUybNm34+uuv/6E9qqh169a4ubmxatUqAAYNGkRiYiIHDx78x/bhr3jNPXv2sGHDBq5evUpBQQEuLi40bdqUIUOG4OHh8UTb0P29bt68+Zcs90clJCTQpk2bJ1r2wIEDAJUub2RkhK2tLU2aNGHs2LE4Ozv/5vb19PSwtLTE19eXgQMH8vzzz/8/3oX4X5KXk8t3sxei0ZTQrGNrtNpSju8+RHLCXUZ++BYGhr9/ujl/7GfOHz2Fd4Bfhedu34hk+Wdf4+blQYdeXcnKyOTUvqMk3onnlffGoKenB0BhQQFLZy0gO/MBjdu1wMTcjNMHjvHd7IWM/PAtnNxd/vL3LsRfKbuggOk7dqApLaVrSAilWi07wsOJT0/n4+4vYGhg8LvbOBRxk4M3Iqju4lzucUsTE15v1bLC8kWaEr4/cQpLUxM87ewq3ebSY8fJLSz6M29JiKeiOK+Q8GW70WpKcW8eiFarJeHYVXLvZVDr9S7oP+ZYetL1Mm8ncXX5PgxNVXi0DEZPT4/Ek9fJvH2PkJGdMDItG1DLvHOPa9/vw8zRBu/2ddBqtNw9fYPwb3cRMvw5LD0kcCmefdm5uXz05ZdoNBqeb9uW0tJSth84QNzdu8x4+20Mn+A67+CpUxw4eZLqVapUeE6r1ZKQnEy94GAahISUe87B1rbS7Wk0Gr5evZoSjebPvSkhxL+CBC3/Ye+99x5qtbrS51xcnq2b6ZEjR5Kfn/+0d+OJFRUV8c4777Bz506Cg4N55ZVXsLa2JjIyks2bN7Nx40bmzJlD27Ztn/au/i5bW1tmz55d7rFPP/0UKPsOPbpseno6APXq1aNPnz7KcyUlJURFRbFmzRpOnTrFtm3bsLKyUp5/dHmtVkt8fDzr1q1jwoQJGBgY0Llz57/8/Yn/nhN7D5OVkcnoaRNxdC0LlLj5ePH93G+4cOIM9Vs0fuy6paWlHNmxj4Nbdz92md0btmJjq2bYu29gpDICwNpWzY7VPxF5NYKqQdUBOLrzAGn3Unl54ih8AsouioNCazNv4nSO7TpAr1df/KveshB/i53hV0jPyWVW7564/3K9UMXRgRlhuzhy6xZtqld/7LqlpaVsvniJjefPV/q8iZERzar6V3j8+5OnKCnVMLp1KyyMjSs8f+xWJOEJCX/yHQnxdCQev0ZhVh51x3TDzNEGAEt3B65+t5fkC1G41A/4f60Xvf00evp6hIzohKld2bWVXU1PLny5jfjD4fg+Vx+A22FnMLY2p9ZrXTBQld16Odbx4/znm4nZd4Gglzv8jZ+CEH+NsIMHSc/MZM577+H+SxJEFS8vPlm4kMOnT9O2SZPHrltaWsqmPXv4adeuxy6Tmp5OYWEh9YODaR4a+kT7tHnvXhKSkv7YGxFC/OtI0PIf1rZtW9zd3Z/2bjyRJr9x8nkWzZ49m507dzJhwgReeeWVcs+NHDmSV155hXHjxrFx40YCAiq/UH1WmJmZ0a1bt3KPzZ8/H6DC44AStPTw8Kj0eQ8PDz766CPWrVvH8OHDyz1e2fI9evSgU6dOLFy4UIKW4olcOX0Bn4AqSsASoErNAOycHbly+uJjg5bFRcUs/vhzkhPuUqtxfaJv3Kp0GXNLC2rWDVYClgA+v2Rk3otLpGpQdbRaLRdPnKFqcHUlYAlgaW1Fx77d0DeQMs7i2XcyOpoari5KwBIgyN0dFxtrTkXffmzQsqikhA+3bCXufjrNqvpzLTHxiV4v7v599ly9SouAqlSvZPA0My+P70+epHud2vx4tvJgqBDPotTw29j4OCuBRwB1FVdMHaxIDb/z2KDlk6xXkJFDXnImzqFVlYAlgJmDDbbVPUi+EIXvc/Upzi8kNykdt6Y1lYAlgMrCFGsfZzKinuw4FeJpO3HhAjX8/ZWAJUBwtWq4ODpy8sKFxwYti4qLef+zz4i7e5fmoaFcvVXxOg8g/pfgo5uT0xPtT2xiIpv37KFHx45sCAv7g+9GCPFvIndw4j/hzp07rF69ms6dO1cIWALY2dkxf/589PT0+Pjjj5/CHj5dnX6p8XLhwoUnWt7NzY369esTHR1NTk7O37lr4j8gPzePjNT7uHpXHJBx9XQnKe7xGVolJSUU5hfQ97Uh9HxlIAb6FafrGamMGPLWSFp0aV/u8aS4sps9G/uyaUOZaelkZ2RRpWY1oCxzuKigEIAGrZv+ZranEM+CnMJCUh5k4+NgX+E5b3t77qSlPXbdYo2GvKIixrZtw+utWqKv/2SXeOvPnkNlaEifevUqfX7psePYW1jw/CPT9YR4lhXnF1KQnoOFW8VyBxYuduTcvf//Wq/oQS4A5k4VZ0+Z2lpSkltIYVYuhsZG1HuzB25NalZ8rbwC9J7wOBXiacrJyyMlLQ3fSsps+Xh4cCc+/rHrFhcXk1dQwLiXXmLUoEGPPTc9GrQsKCx87DY1Gg2L1q4luFo1mtev/0feihDiX0gyLZ9Ru3btYvHixdy+fRtPT0/Gjx/P6tWrKSoqUmpOPlqDUufRx7VaLevWrWPjxo1ER0dTUlKCm5sbPXr04NVXX1VqwT3q4fqSv1djcfTo0bzxRlnjjKioKD7//HNOnz5NcXEx1atXZ9SoUTRr1qzcOidPnuTLL78kIiICe3t7RowY8ac/r61bt6LVahk4cOBjl/H09KRt27bs2rWLe/fuKfUdr169yrx587h48SIWFha8+OKLaLXaCus/yXJarZaFCxeyfft27t69i6WlJU2aNOGtt956qtP/dRcImj9Q88XMzAyg0s/i9+zZs4clS5Zw+/Zt9PX1CQ4OZvTo0dStW1dZprS0lBUrVrBhwwYSEhJQq9V06NCBcePGYWFhAcCbb77Jzp07WbJkCS1atAAgMzOTLl26YGpqytatW5X9FE/Pg4wsAKzUNhWes7SxoiAvn/y8fEzNKjY+MDE1YdzM9zF4gjp9Ohlp6dyJiGL3+i04urlQvXYQAPeTUwEwt7Rg9/qtnDt6isL8Amwd7Xmu3wtUqxX4J96dEP+cjNyyQIitmXmF59RmZuQVFpFbWIh5JVO4zVQqvujXF4M/EASJu3+fC7FxdA4OQm1e8TWPR0ZyKS7uiWtpCvGsKMrKA0BlVfEaQWVliia/mJL8IgxNVX9qPX2jslsoTWFxheWK88qCLUXZ+Rhbm2Nqb1Vhmdx76TyITUHt7/YH35kQ/7z0zEwAbK2tKzyntrIiLz+f3Lw8zCu5JjczNeXLyZN/9zovISkJExMTVm7axMmLFyksLMTR3p5+XbrQ5KH7B4Ct+/eTlJLC26+8Qmlp6Z9/Y0KIfwUJWv7DHjx4oEzlfZS1tTUGBgZs2bKFd955h6CgICZMmMDt27cZM2YMtra2eHp6/uHX/OKLL1i0aBHdu3enT58+5ObmsmXLFubOnYu5uflvBvp0KquxCLBgwQLu3bunBCRv3rzJgAEDlCCkkZERO3bsYPjw4cydO1fJ+Dt58iSvvvoq3t7ejBs3jvT0dD755BP09PQeW/Pzt1y6dAlDQ0OCgoJ+c7mGDRuyc+dOzp8/T+fOnYmMjGTQoEFYWVnx+uuvU1xczHfffUdRUflmA0+63KJFi1i4cCEDBw4kICCAhIQEVq5cydWrV9mxY8cfCsz8lU6dOgVAjRo1nmj5/Px8zp49i7u7O5Z/oCMgwJkzZ3jzzTdp3rw5vXv3Jj8/n9WrV/PSSy8RFhamNEN6//332bp1Ky+88AJDhw4lOjqaH374gQsXLvDDDz9gbGzMhx9+yKlTp5g2bRphYWGYmJgwffp00tPTWb16tQQsnxGFBQUA5aZu6xj+8lhxUVGlQUs9Pb0/dFzk5eQyb+K0X15PRZeBPZTXLfilBu+BzTsxMDCgU/8e6OvrcXz3IdYsWMaQt0ZSpeazXRpC/G/LLy4LgKgqaWig+uU4KSopqTRoqaenh8FjBiEfZ9/1G+jr6dEhsGIWWFZeHt+fPEXXkBC87StmfgrxLNMUlR1LBkYVjyX9X44vTXFJhaDlk65n5mSDgYkRaddicW8RpCQAaIpLyIgsmwVQWlzy2H27+eMxANxb/PZ1qxDPAl3Wo0qlqvCcyqjsGqywuJiKQ19Pfp0Xn5REQUEBuQUFjB40iNz8fHYdPsyXK1ag0WiUOpfxSUls3LWLl3r3xk6tJvV+5VnTQoj/Dgla/sO6d+/+2Oe2bNlC1apVmT17Nr6+vqxdu1Y5Ofj6+vLxxx//4aBlcXGxMm165syZyuO9e/emUaNGHDt27ImClpXVWFy6dCnx8fFMnjyZWrVqAfDxxx9ja2vL5s2blYDSiy++yJAhQ/jkk09o27YtKpWKzz77DAcHB9avX69k1TVu3JghQ4b8qaBlamoq1tbWlZ5MH+bo6AhASkoKUBZ0BVi3bp2SCdmhQwdeeOGFcus96XLbt2+nefPmfPDBB8pjLi4u/PDDDyQmJv6poPMfUVRUVC4onpWVxcWLF/nss88wNzenf//+v7l8SUkJ8fHxfP3116Snp/Puu+/+4X3YuXMnJiYmfPPNN8pFfOPGjRkzZgzXrl3Dw8OD06dPs2nTJj766CP69eunrNuiRQuGDRvGunXrGDJkCLa2tkyePJk333yTxYsXExgYqATB69Sp84f3Tfw9dMm4j8va/ivp6enRZ+QQNCUl/Lz/GMs/+4a+I4dQs14IJb/cIBbk5TPu0/cxNS/7DQqoFcjn70xn/8YwCVqKZ5ous/2fOJaKSko4FhlJXW8vHCoZnFp2/ATWpqb0qCu/teJfSDkx/T3r6RsY4NakJnEHLnFz/VE8WgahLdUSu/8ipUVl5yK9Suooa4pKuLbqALlJGbi3DMLGx7nCMkI8a/6Jc1PbJk0oLS2lQ/PmymNN6tZl/IwZrN6yhaa/lDD5ZvVqAvz8frPxjxDiv0WClv+wOXPmYP+YjAVPT0+uXLnC/fv3GT58eLkAXN++fZXA2R9hZGTEyZMnKS4uP30lIyMDCwsL8vLy/vA2AY4dO8a8efPo1q2bEvTMyMjgzJkzDBo0iIKCAgp+yb4CaNeuHZ9++ilXrlzB29uba9eu8corrygBSyjLggwICPhTNRS1Wu0TjeIZ/jJKrtVqKS0t5dixY7Ro0aLc1G0/Pz+aNm3KwYMHAZ54OQBnZ2dOnz7N999/T+fOnbG3t6dfv37lAnN/p7CwMMIqKUbt7+/P1KlTlSnxv7e8r68v8+bN+1NNeJydncnNzeXjjz9mwIAB+Pn5ERAQwJ49e5Rl9u7di56eHi1atCgXNK1RowYODg4cPnyYIUOGAGX1OMPCwli2bBlWVlZUq1ZNKUUgng3GJmVZX8WPZB4DlPyStWJiYvKXvJapuRlBobUBqFmvFgs+nMnOdZupWS8Eo19+M2vUDVEClgCmZqZUqxXIxZNnKSooRGVSMUtNiGeB6S8ZK0UlFTO0in4p72H6O4NzT+ra3bsUFpfQ0Ne3wnMno6I5eyeGtzu2J7+omHx+vYYoLi3lQX4BZiojmTIunlkGxmXHUmlxxbI4pb8cX4YmFWcH/JH1PFuHUFJQxN2T10kNvwOAbXV33JsHErPnAoam5c81JflFXFu5nwexKTjV88e7nQwIiH8Hk1+y+x+dYQZljXYAzP6f13ntmjat8JjKyIjm9evz065dxCclcfH6dWITE5n25ps8+OV+MeeXWTaFRUU8yMnB0tz8Hxn4E0L8cyRo+Q+rU6fOb3YPv3v3LoAyhVZHpVJVeOxJGRkZcfjwYQ4cOMCdO3eIjY0lK6usBt2fqVcYExPDW2+9hb+/P9OmTVMej/+lCPOqVasq1NnUSUpKwuiXm7LKsg59fX0JDw//w/vk6OhIfHw8JSUlSmCyMroMS0dHRzIzM8nLy3vsfuiCkU+6HMDEiRN57bXXmDFjBp9++ik1a9akdevW9OnTBwcHhz/8vv6opk2bMmzYMKBsNFSlUuHi4oKrq+vvLn/v3j2WLl3KgwcPmDp1Kg0aNPhT+/Diiy9y/PhxVq9ezerVq3F3d6dVq1b06tWLatXKGqTExcWh1Wpp2bJlpdswf6S22tSpU2nfvj2pqal8/fXXv5tRK/5Z1nZl2dHZWdkVnsvOfICJmenfEig0UhkREFKTn/cfJTc7Byt1Wa0lc0uLCsuaW1mAVkthoQQtxbPL7peBvMxKBhQz8vIwM1ZhYlQx0PJnXIqLx8jAgFqeFa8tLv9yPv9s994Kz52KiuZUVDQfdu1MjcecW4R42oyty46louz8Cs8VPcjHwNQIg0pKmvyR9fT09PDrHIpHiyDy0x5gbG2OidqCmL0XQF8PY5tfr2WKcvK5umIfuXfTcQ6tSpVujSSwIv417H+ZBZf54EGF5zIePMDM1FQJbP7VrH+ZCVBYVMSl69cp0WiY9NlnFZbbfuAA2w8c4KupU3Gwq9hISwjx7yVBy2dUZcFE4yc8GTzcbEWr1fL6669z6NAh6tatS+3atenbty/169dXMtn+iJycHEaNGoWenh5fffVVuewp3esOHDiQtm3bVrp+lSpVSE5OBiiXianzZ4sp16tXj1OnThEeHv6b04bPnTuHnp4etWvXVh570v14kuWqVavGnj17OHbsGIcOHeLYsWN8+eWXLF++nPXr1+Pn5/dH3tYf5uDgQOPGT94h+dHl27RpQ+/evXn11VdZvnx5ucY5T8rCwoLVq1dz6dIl9u/fz9GjR1m1ahVr1qxh9uzZdO3aldLSUszNzfnqq68q3caj3/Xr168rWcF79uwhODj4D++X+PuYmpliY29LUmzFLuF34xJw8/5zAy46qUnJrJy3mKbPtaZB6/Ij8YUFBaCnh6GRIU5uLhgYGpJy916FbWSkpWNoZFRpQFOIZ4W5sTEOlpaVdgmPSUvD9y8c/LqZnIyPgz1mlQwCda0VQlP/KhUenxG2iyB3N7qGBOMpN4XiGWZoqsLY1qLSLuE5SfexdKt81tMfWS/l8m1UlqbY+Lqgsvi1ZnNWzD0s3OyUupglhcVKwNK1SQ38Oof+f9+eEP8oczMzHOzsuJNQ8TrvTnw8fv/P8lfpmZl8vHAhjevUoddzz5V7LvGX+0YHOzsGde9O7iODelnZ2Xy1ciXN6teneWgo1lYVG18JIf7dnrzFpPhHeHt7A2XZjI/SZTLq6OvrV0jTLykpISMjQ/n/c+fOcejQIV5//XXWrl3LpEmT6NWrF25ubmT+0gnuSWm1WiZMmEB0dDRz5sypkPnp5lbWAdHAwIDGjRuX+8fR0ZGioiJMTU1xc3NDT0+P2NjYCq+RUMnJ8El06dIFAwMDvvvuu8cuc+/ePXbv3k3dunVxc3NDrVZjYWHxu/vxpMtpNBquXbtGUlISbdq04eOPP+bIkSN8/vnnZGdn8+OPP/6p9/ZPsra2Zu7cuWg0GsaPH/+npurfuXOH8PBwatWqxdtvv822bdsICwvDysqK5cuXA2XfldzcXAIDAyt8Vx48eICp6a8X/zk5OUyePJmqVavSs2dPli9f/qeyccXfq2bdEKKv3yQ1KVl5LOraTe7fSyGowf9vCpytoz0F+fmcPXwSzUPTZjPS0rl27jLeAX4Ym5igMjGmWu1AboVfIyUx6dflUu8TcfEq1WoHov8HOisL8TSE+nhzNTGRxIxM5bErCQkkZWbR+C8a+CrRaEjMyMDHvvLAo7taTZC7e4V/oKyLeZC7OxZ/U1aNEH8V+5peZEbfJS81U3ksI+ou+akPcAj2+X+vl3jiGtHbT1Oq+XUA+35EPA9iUnBtUE15LHrbqbKAZePqErAU/1oNQkK4cvOmEkQECI+IICklhcZ/IsnhYbY2NuTl53Pw5Eny8n/Nck5LT+fw6dPUrFoVtZUVfp6eBFerVu6far+UOHGytye4WjWlMZAQ4r9D7t6eMdWqVcPT05N169aVqze5e/duZWqzjr29PXfu3CmXAXjw4EEKf+nwBiiBySpVymdMbNiwgfz8fEoqqZv1OPPnz+fgwYOMHj2aFi1aVHje0dGRwMBANm/erGRTQlkzoEmTJjFmzBhKSkqwtbWlfv36bNu2jbSHskkuXrzItWvXnnh/Hubt7c1LL73Evn37+Oabbyo8n5mZyZgxYyguLubDDz8Eyqb1tGvXjmPHjhEZGaksm5CQwOHDh5X/f9LlNBoNgwcPZsaMGeVeOyQkBOBfEywJCgpi2LBhJCUlMWfOnD+8/scff8zrr79Obm6u8pivry9WVlbKZ9C6dWuACn+rgwcPMnbsWLZv3648Nnv2bJKTk/noo4+YOHEi1tbWvP/++5XW1RFPT7PnWmNqZsbyOQs5secQR3bsZf03K3D19iCkYdnFbHpKGpdOniU9pWIW2W8xMDCg84AeJCfcZenMBZw+cIxD2/awePo89PX16TKgp7Ls/7F333FVlu8Dxz+HvVEEkiEiqOAAt7ktoSz3HiGZX0empTZMW36tLMtVas5My5GjFBzgSJGk9Os2HOVEGTKUqcyzfn8AJ/GAAg6O/q736+WreJ77fs79HM7hOed6rvu6uw7shYWlJStnLeL3HXuI2hnB918twNTMlBf6VbxGqxCPW6+mTbA2N+eLsDDCoqMJOXGSb/fuo46Toy77MTkri6gLF0kuZapeedy8fRuVWqObji7E08i9Y2NMLM05/cNu4v84S2zkX/y9fj82bjVwblp4AyA37RbJJy+Tm3arQv0AanXyIyc5g3Nr9pJ45Dwxe47z98/7qV7fFeemhYGUnJQMUk5ewdjSFBvXGiSfvKz3T4gnQa/AQKwtLfl84UJ2RESwZfduvlm5Ei8PDzoWLZKTfPMmB44cIbmU2QL3M3LQIFIzMvjkm28Ij4xk865dfDhnDsZGRvxn4MCHfTpCiCeITA9/zPbu3XvP1bF79+7N9OnTGTNmDIMHD6Z///7cvHmTNWvW6GpBFuvRoweff/45o0aNolevXly7do1NmzbpMh4BmjVrho2NDTNnziQhIQF7e3sOHz5MeHg45ubmJQJL9xIZGcnSpUvx9vamfv36bN++vcTUaEdHR9q3b8/HH3/M8OHD6d+/P0OHDqVatWqEhYXx119/8e677+rOfcqUKQQFBTFo0CCCgoLIzc3lxx9/rNTK4cXefvttMjMz+fbbb9m/fz9du3bFzs6OK1euEBoaSl5eHnPnztXVVQSYOHEikZGRDBs2jNdeew1jY2PWrFmDtbV1iaBYedqZmZkRHBzMkiVLGD9+PB07diQvL4+NGzdiaWlJ//799cZsqMaNG8fOnTvZuHEjvXr1qtA08REjRjB69GiCgoLo06cP5ubm7N27l9jYWL7++mugcJXwgIAAVq5cSUJCAm3btiUhIYF169bh6uqqq7N56NAhNm3axKBBg3TT/t9//32mTp3K4sWLmTRp0kM/d1E51na2jPpgAuHrQ9gXuhMzMzMaNPOj68CemBT97bp64QohK3+m739ewcG59Kl5ZWnarhUmpiYcCN/Hzo2hmJqb492gHoH9uuNY01nXrrqjA2M+msSeX7fzx679aLVaatf3ouvAXhV+TCGqgp2lJf/t1ZPVBw/xy7HjmJuY0LJ2bYLaPItp0cI3/yQmsTTyd8Y+15lnKjEV7nbRzU1LU6kPLJ5eZjaW+I9+mSthR7i29yTGZibUaOBBnZdaYmRS+F7KuprMhV//oP6ADlg62Ja7H4BjY098Bnci/sBproQfwdTGEveOjanV2R9F0U3azJjCciXqXCUXfv2j1HE+0+zRlg4S4mGwt7Xl00mT+GnLFjaFh2Nuakorf3+CevfWfUf9+/JllqxdyxvDhvFMGQvPlqWVvz+TR48mZM8e1m3dipmpKQ3r1eOVXr1we+aZR3FKQognhEJbmZVYRIVNnTqVkJCQ+7Y7f/48AIcPH2bevHmcO3cOV1dXJk6cyJw5c3Bzc9MtcqPRaFi8eDG//vorqamp+Pr68t5777Fy5UpycnJ07Y4fP86cOXP4559/MDMzo06dOrz66qtER0ezevVqDhw4gKOjI126dClx/ODgYBISEoiIiGDhwoVl1h8EaN26ta7f2bNnWbhwIceOHUOlUuker2/fviX6REdHM3fuXKKjo7Gzs2PEiBGcOXOGEydOlFjcpqIOHDjAunXrOHfuHFlZWdSsWZNOnToRHBxc6mI6MTExzJo1iyNHjmBmZsbAort5y5Yt0/0+yttOo9GwevVqNm/eTHx8PMbGxjRv3pwJEybQuHHjSp8T/JudWNpzEx8fT0BAAH379uWrr76677HK0/7gwYOMGDECb29vQkNDK7T4TWRkJMuWLePy5cvk5+dTr149RowYUWI1cqVSyYoVKwgNDSUhIQEHBwfatm3LxIkTcXV1JTc3l549e5KTk8POnTuxt7fX9R02bBinTp3il19+oUGDBuUeV7G9sScq3EcIoa/F1qiqHoIQT403Guffv5EQ4r6W13ipqocgxFPB7ilcR2DI/llVPYQybXj+/aoegkGSoOUT5O6gohCiciRoKcTDIUFLIR4eCVoK8XBI0FKIh0OClo+XBC1L92QU2RNCCCGEEEIIIYQQQvy/ITUthUFSq9WkpaWVq62trS0WFhaPeEQPR1paGmq1+r7tLCwssLW1fQwjKp8nddxCCCGEEEIIIYR4MknQUhikxMREAgICytV25syZ9OvX7xGP6OEYMGAACQkJ921X3tqUj8uTOm4hhBBCCCGEEEI8mSRo+QR5kMVpnjROTk6sWrWqXG3r1q37iEfz8MyePZv8/PvXrHJ2dr5vm8fpSR23EEIIIYQQQgghnkwStBQGydzcnHbt2lX1MB66Fi1aVPUQKuVJHbcQQgghhBBCCCGeTLIQjxBCCCGEEEIIIYQQwqBI0FIIIYQQQgghhBBCCGFQJGgphBBCCCGEEEIIIYQwKBK0FEIIIYQQQgghhBBCGBQJWgohhBBCCCGEEEIIIQyKBC2FEEIIIYQQQgghhBAGRYKWQgghhBBCCCGEEEIIgyJBSyGEEEIIIYQQQgghhEGRoKUQQgghhBBCCCGEEMKgSNBSCCGEEEIIIYQQQghhUEyqegBCCPG4rbi8t6qHIMRToXXnl6p6CEI8PVJ3VfUIhHgqHKmmquohCPFUCKzqAQiBZFoKIYQQQgghhBBCCCEMjAQthRBCCCGEEEIIIYQQBkWClkIIIYQQQgghhBBCCIMiQUshhBBCCCGEEEIIIYRBkaClEEIIIYQQQgghhBDCoEjQUgghhBBCCCGEEEIIYVAkaCmEEEIIIYQQQgghhDAoErQUQgghhBBCCCGEEEIYFAlaCiGEEEIIIYQQQgghDIoELYUQQgghhBBCCCGEEAZFgpZCCCGEEEIIIYQQQgiDIkFLIYQQQgghhBBCCCGEQTGp6gEIIYR4OuSl3eLKzqNkXkkCwMHXnTovt8LMxrLcx7gYcpDcm5n4j35Zb9/Jxdu5HZ+qt71G49o0fOV53c+ZV5O5uucEtxNuYmJpRo0GHtQObIaptUUlzkqIxy8lNZXVISGcu3gRgOaNGhHcty/2trb37Hfq77/ZsmsXV+LiMDIyop6nJ0N69KCep2eJdpm3brFh+3aOnT5NgUpFHXd3gnr31mt3OTaW9du2cT4mBiMjIxp6exPcty+uzzzzME9XiEfmUV+XCm7ncnXPCdL+iUOjVGHjWgPPri2x83Aq83jZSWmcXLSDWs/5UTugWcVPSogqkH4jlZ0btxJz/hIAPv4NeXlwb6zt7n1dulPojxtJTU5h5JS3/j3uzTTmvf/ZPfv95/3x1PGtB0D8lWvsC91J7KUYNGoNNWu58lyvrvj4N6zEWQkhngQStHyIpk6dSkhIyD3bBAQEsHjx4sc0In1dunTBzc2NNWvWABAcHExCQgIRERGPbQwP4zF3797Npk2bOHPmDHl5ebi4uNChQweGDx9OrVq1ynWM4t/X+fPnH0q7ioqPjycgIKBcbfft2wdQantTU1McHBxo3749EydOpGbNmvc8vkKhwNbWFi8vL4KCgujVq9cDnIUQhZQ5+UT/sAutWoN7p8ZotVrio86QnZRO03E9MDI2vu8xko5dIOnoBezr6AdEtFotOSmZ1GjoQY1GtUvss6hmrfv/jCuJnFn1GyaWZtR6zh+FQkHCwXNkXEmiydhumFqaP/jJCvEI3crO5tMFC1Cr1fQKDESj0bB93z5ir1/ny/few8Sk9I9u5y5e5KslS3CvWZOhPXuiVqvZHRXF9G+/5dNJk6hbFJDMzctj+vz5pGdm0v3557G2smLXgQN8umABX773Hh6urgBcT07m0wULMDc1pf9LLwEQFhHBtG+/ZdbUqTjY2z+W50OIynrU1yVVvpLo73dRcCsHt/YNMbEw5/r//ub0D7to+kYPrGtW1+ujUWs4/+sfaNWah3KOQjwOObezWTlrEWq1io4vdUGr1fDHrv0kx19n7CfvYFzGdelOx6P+x/EDh/D08S6x3drGmv6jgvTaK5VKwtZtwdrOhpq13AC4mZTCD19/h7WtDZ27v4CJmSkn/zjM2vnfM3TcCBq28H84JyyEMCgStHwEPvjgA6pX1/+gAuDi4vKYR3NvY8eOJTc3t6qHUW4FBQVMmTKF8PBw/P39GTVqFPb29ly8eJGQkBA2b97M7NmzCQwMrOqh3peDgwOzZs0qsW3mzJlA4Wvo7rZpaWkAtGzZkkGDBun2qVQqLl26xLp16zh06BDbtm3Dzs5Ot//u9lqtlri4ODZs2MDkyZMxNjame/fuD/38xP8vCX+cJT8zhxYTemPlXA0AW3cnzqzcQ/KJS7i08imzr1ajIS4ymmv7TpXZJj/9NpoCFTUaevBMM+8y213efhiFkYImr3fDskbh+6BGIw9OLNhGXGQ0Xi+3qtT5CfG4hEVEkJaRwewPPsC96CZU3dq1+WLRIiIPHyawfftS+/20ZQs1qlXji/few9zMDIBOrVvzzhdfsGHHDj5+800Atv72G4kpKUx76y0a1ivMXGnbvDlvTZ/Otr17efPVVwvHERlJfn4+n06aRB13dwD86tfnwzlzCIuIILhv30f6PAjxoB71dSn+99Pk3szEb9RLVKtT+F518vfk6JzNxEedxmdgp1L6RJOTnPEgpyXEY/fnnkgy0zN487P3cXYtfK271anNT3OXcOLPI7Tq3K7MvhqNht93/EbE1l2l7jezMKdpO/3PZuHrt6BWqxk4JhhLaysAdv+yHSNjI17/5G1s7Qs/47Xq3I7vpn3N7l+2SdBSiKeUBC0fgcDAQNyLPuAbuvZlfPkxVLNmzSI8PJzJkyczatSoEvvGjh3LqFGjmDRpEps3b8bHp+wPo4bAysqK3r17l9g2f/58AL3tgC5oWatWrVL316pVi08//ZQNGzYwZsyYEttLa9+vXz+6devGokWLJGgpHtiN6CtUq1NT98UQoHpdVyyd7LgRHVPml0O1UsWpJWHkJKXj3MybjCuJpbbLTskAwNKx7OyuvPTb5CRnULN1fV3AEsDKqRoODWqRfOKSBC2FwfvzxAka1qunC1gC+Pv64uLszMETJ0oNWt7OyeFaQgLdn39eF7AEqGZnR4O6dYn+5x+g8KbV70eO0KxhQ13AEqC6nR2v9u2LkdG/pc5Tbt7E1sZGF7AE8K5dGxtra+ISS3+fCmFIHuV1SavVknzyEg4+7rqAJYCZrRV1Xm6Fwlih1yc7KY3Y/dF4dGnCtd9OPvgJCvGYnD58gjo+dXUBS4C6jXyoUdOZ04dPlhm0VBYoWTbjG5Ljr9O0XSsu/32hXI+XFHedQ3ujaN6hNZ71C29Ua7Varl64TL3GvrqAJYCpmSk+TRpx6Lffyc66VaHp6kKIJ4MsxCOeGDExMaxdu5bu3bvrBSwBatSowfz581EoFMyYMaMKRli1unXrBsCJEyfK1d7NzY1WrVpx+fJlbt++/SiHJp5yytx88tJuY+NWQ2+fjUsNbl/Xr0NZTKvSoM4vwHdoZ3wGdkRhpP9FDyAnOR0AK+fCoKW6QKnXpiArGwDrZ/Qz3S0dbFFl55OfmX3/ExKiitzOySHl5k28SilzUqdWLWLi4krtZ2VhwTcff0z3Ll309t26fRvjomDkjbQ00jIy8Pf1BQq/BObl5wPwYseOJQKiNZ2cuJ2dTeatW/8eKzubnNxcqt2RzS+EIXrU16X89NsUZOZQrW5hOQWtVqu7Lrm28dULiGrUGi5s/pPq9Vxxblr2bAEhDE1udg7pN1Jx9dRPyHH1cCcxNr7MviqVivzcPAa/MZz+o4IwNrp/SQaAvVvCMDUzJaBvN902hULBuGnv0nWQfiJGzu3Cz3blKfkghHjySKZlFdq5cyfLli3jypUreHh48O6777J27VoKCgp0NSfvrkFZ7O7tWq2WDRs2sHnzZi5fvoxKpcLNzY1+/foxevRoFIrSAwF31pe8X43FN998k7feKiycfOnSJb755hsOHz6MUqmkQYMGjB8/no4dO5boc/DgQRYsWMA///yDo6Mjr7/+eqWfr61bt6LVagkK0q97UszDw4PAwEB27txJUlKSrr7jmTNnmDdvHidPnsTGxoZhw4ah1Wr1+pennVarZdGiRWzfvp3r169ja2tL+/bteeedd6p0+n9xhoxarS53HyurwukWpT0X97JlyxY++OADFixYwNdff01qaiqjRo3irbfe4tq1ayxevJhDhw6RlpaGlZUVzZs3591336XeHZk9BQUFLFu2jO3bt5OUlISLiwv9+/dn5MiRGBd96MjPz2fx4sVs376dlJQUnnnmGXr16sUbb7yB2R3ZRKJqFWTmAGBmZ6W3z8zOEnWuElVuASaW+r8zYwtTWr7THyPje99Dy0nJwNjchCvhR7kRHYOmQIWFgw21X2iOcxMvAIxMCy9p6nz9gKYypzAwU3ArF3N7a739QhiCtIwMgFLrRVa3syMnN5fsnBysrUq+14yMjHBxdtbrcy0hgQsxMTRp0ACAxJQUAOxsbVkTEsK+gwfJzcvjGScnhvftSws/P13f3oGBnDhzhgU//cSrRVPB14aGYmxszMvPPfcwTleIR+ZRX5dyU7MAMLW24MrOoyQdvYA6T4lFDVu8urWmRoOSNx7io06Tm5pFw2Fd0Goq9plLiKqUlZ4JgF31anr7bKvZkZeTS25OLpZW+otbWVhaMOmrj3Sf68sjKe465/86S/uuz2NXreS1sLqT/k2I25m3OHciGkcXZ900ciHE00WClo9AVlaWbirv3ezt7TE2NiY0NJQpU6bg5+fH5MmTuXLlChMmTMDBwQEPD48KP+a3337L0qVL6du3L4MGDSI7O5vQ0FDmzp2LtbX1PQN9xUqrsQiwcOFCkpKSdAHJ8+fP88orr+iCkKampuzYsYMxY8Ywd+5cXcbfwYMHGT16NJ6enkyaNIm0tDS++OILFApFmTU/7+XUqVOYmJjgd8eXqtK0adOG8PBwjh8/Tvfu3bl48SLBwcHY2dkxbtw4lEolK1eupKCgoES/8rZbunQpixYtIigoCB8fH+Lj41m9ejVnzpxhx44dFbowP0yHDh0CoGHD8q2el5uby9GjR3F3d8f2PivSluWjjz5i2LBh2NjY0LRpU27evMmgQYN0Ad/q1avz999/s2nTJs6ePUtERASmpqYAjB8/ngMHDtCzZ09GjBhBdHQ0c+fOJTU1lQ8++AC1Ws3rr7/OiRMnGDRoEN7e3pw5c4alS5fy999/s2TJkjKD8eLxKs4uMTbVv6QYFRVnVytVpX45VCgUpU6ju1t2cgbqfBWqvAJ8BnZElVfA9YPnOL/xAFqNlmeaeWP1TDWMLUy5efYa7p39dK8PtVJF+sUEADRKVaXPU4hHrTjrsbSbMmZFfzvzlUrKE3bPy89nUdGNzd5FdZ5zimpYbwwLw8TYmNcGDMBIoWD7vn3M/v57Phw3TpeF6ejgQN+uXVn5yy+8/9VXQGFw9J2RI0tMGRfCED3q65Iqr/Cz4bW9J1EYG+Hd41lQKIiPOsO5tftoPOJFqhdlYWYnpxO77y+8ez2Lub01eekyu0U8OfLz8oDCadh3MynapiwoKDVoqVAoKvy96Mj+P1AYGfFsQMf7tlWr1fy6Yi3K/AI6dTP89QyEEJUjQctHoO89itOHhoZSv359Zs2ahZeXFz///LPuy4mXlxczZsyocNBSqVTqpk1/VfTFAmDgwIG0bduWqKiocgUtS6uxuGLFCuLi4pg2bRpNmzYFYMaMGTg4OBASEqLL1Bs2bBjDhw/niy++IDAwEDMzM+bMmYOTkxMbN27ExsYGgHbt2jF8+PBKBS1v3LiBvb39fTPsnIuyTVKKMkoWLlwIwIYNG3SZkF27dqVPnz4l+pW33fbt2+nUqRMff/yxbpuLiwvr168nISGhUkHniigoKCgRFM/MzOTkyZPMmTMHa2trhg4des/2KpWKuLg4Fi9eTFpaGlOnTq30WLp3786kSZN0Py9fvpzMzEx+/vlnvL3/nf5kbW3N8uXLuXDhAo0aNeL333/nwIEDvP3224wdOxaAoUOHolQqWbduHePHj2fv3r0cOnSIFStWlMjg9ff3Z9q0aezbt++JWHDp/4XiTN1HGEN2aVUfrVaLa5sGum1O/nU4MT+UmJ1HcW5SByNjY9zaNyJ23ynObzxAref80Gq0XNt7Ek1BYbBScZ+MTiGqUnHW+4PekMkvKGDW8uVcS0igz4sv6upXKlWF74Oc3Fy+/eQTbIqu4S0aN2bCZ5+xYft2XdBy444dbNm9mwZ16xLYvj0ajYY9f/zBtytX8s7IkSWyMoUwOI/4uqRRFa7+rcoroOU7/TC1NAeghm8tjs7dzNU9x6le1xWtRsOFzX9g5+l8z4V/hDBUurfSY0gUUBYoOXXoGL5NG1Pd0eGebTUaDZu/X8fls+fxa92cZu1bP/LxCSGqhgQtH4HZs2fj6OhY6j4PDw9Onz5NamoqY8aMKRGAGzx4sC5wVhGmpqYcPHgQpbLklMj09HRsbGzIycmp8DEBoqKimDdvHr1799YFPdPT0zly5AjBwcHk5eWRV3T3DeCFF15g5syZnD59Gk9PT86ePcuoUaN0AUsozIL08fGpVA1FrVZbrrt1JkV30LVaLRqNhqioKDp37lxi6ra3tzcdOnQgIiICoNztAGrWrMnhw4f56aef6N69O46OjgwZMoQhQ4ZU+JwqIywsjLCwML3t9erVY/r06bop8fdr7+Xlxbx58x5oEZ5WrUouajJmzBj69+9PjRr/Tt/Iy8vTTV0vfi1GRkZiZGTEsGHDSvSfMmUKb7zxBtbW1uzZswcHBwcaNWpUIujauXNnjI2NiYyMlKClgTA2L7zTrlHqlybQFAVJTCz079BXhMuzvvqPa2qCczNvYvf9RU5KBtY1HfDo0kSXhXkjOgYAhwbuuHdqzNXdJzAp+mIphCGyMC98fd6d4Q9QUHSNt7KwuOcxsnNy+GrZMi5cucLzbdowpEcP3b7iRXqebdJEF7AEsLayokXjxhw4coS8/HzUajXb9u3D28ODaW+9pfsb3q55cz6cM4dl69ezyNdXlzkvhKF51NclY9PCz6OOjWrrApYAJpZmOPi6k3LyMuoCJdcP/U12YjpNXu+GMrvwM7MqtzCjWl2gQpmdh4mVucwcEQbL3KLw9a0s5bqkKspotrjPdam8rvxzEWV+AY1bNb1nO5VSyS/L13DueDT1/BrQf9QrD+XxhRCGSYKWj0Dz5s3vuXr49evXgcJVne9kZmamt628TE1NiYyMZN++fcTExHDt2jUyMwtrkFS0XiHA1atXeeedd6hXrx6fffaZbntc0SIAa9as0auzWSwxMVH3Raa0rEMvLy+io6MrPCZnZ2fi4uJQqVS6wGRpijMsnZ2dycjIICcnp8xxFAcjy9sO4P333+eNN97gyy+/ZObMmTRq1IguXbowaNAgnJycKnxeFdWhQwdGjhwJFN71NDMzw8XFBVdX1/u2T0pKYsWKFWRlZTF9+nSeffbZBxrLncHJYkqlkm+++YazZ88SGxtLfHy8rs6mRlOYmZCQkECNGjVKBLQBnJycdM9hbGwsaWlptG3bttTHTpTVaw2GuX3h77HgVq7evoKsXIwtTTEuZVrRw2BqXTgdSV2cSalQ4N29NbU6+5F7Mwtze2ssqttwdc8JMFJgXk3qWQrD5Vg0CyEjK0tvX3pWFlaWlrrAZmkyb93iy8WLuRofT2D79owaPLhEMMShWjUA7O762wtgb2uLVqslNz+ftPR0VCoV7Vq0KLGiuImJCR1atmTd1q0kJCfjKdPEhYF61NclM7vCa4mptX6wxszGErSF9ZXTLySgVWs4tXiHXruEqLMkRJ2l1eQBWFTXf08KYQjsaxRel25l3tLbdysjCwsrS8wsHs4N4QvR5zA2MaG+f4My2xTk5fPzdz9w+dwF6jdpyNBxIzC+x/dCIcSTT97hVai0YKL5Pb6M3OnOxVa0Wi3jxo1j//79tGjRgmbNmjF48GBatWrF8OHDKzyu27dvM378eBQKBd99912Ju2fFjxsUFFRmllvdunVJTk4GKJGJWaw4cFVRLVu25NChQ0RHR9O8efMy2x07dgyFQkGzZs1028o7jvK08/X1Zffu3URFRbF//36ioqJYsGABq1atYuPGjSWmRT8KTk5OtGvXrtLtAwICGDhwIKNHj2bVqlW0aNGi0mO588ssFD73I0eOxMrKinbt2tG/f38aNmxIbGxsieB3eRYLUqvVeHp68t///rfU/Xayeq3BMLE0w9zBptTVWG8npmLrVnrmeXnlZ2ZzetUenP3r4NGlaYl9uTcLb84Uf+FL+esKZraWVPNyKfziWCTzahI2bjVKrW8mhKGwtrLCqUYNYuL1V2ONiYvD+x7lR3Lz8nQBy27PP8/wfv302tRyccHExIS4pCS9fSmpqZiammJvY0NW0YrhpV0nNUWfXWQpEWHIHvV1ybpmNRQmRuSkZOjty0u/jZGpMabWFtTp1gpVbskMNeXtXM5visK5mRfOzepiavNwstSEeBQsrSyp5uhA4jX969L12HjcPCuXcFOa2EsxuHnWwsJSvz4mFH43WL94FZfPXaBRq6YMHD1MApZC/D8gxb2qgKenJ1CYzXi34kzGYkZGRnrTxFQqFenp6bqfjx07xv79+xk3bhw///wzH374IQMGDMDNzY2MopVIy0ur1TJ58mQuX77M7Nmz9TI/3dzcADA2NqZdu3Yl/jk7O1NQUIClpSVubm4oFAquXbum9xjxpXwZK48ePXpgbGzMypUry2yTlJTErl27aNGiBW5ublSvXh0bG5v7jqO87dRqNWfPniUxMZGAgABmzJjB77//zjfffMOtW7f45ZdfKnVuj5O9vT1z585FrVbz7rvvVmqqflkWLFiAhYUFYWFhzJ07l9dff52OHTty61bJu7Ourq6kpqaSnZ1dYvvZs2d59913uXTpEu7u7mRkZNCmTZsSr7NWrVqRkZGhq6cqDINjo9pkXL5Ozo0M3bb0S9fJvZGFk3+dBzq2ub016rwCEo9e0C1+AJCXcZvk4xex966JmW3h6yHhz7Nc3n4YjfrfYEvqP3FkXU3BtZQp5kIYmmebNOH0+fMkFN38A4j+5x8SU1Jod4+bTD9s2sTV+Hhefu65UgOWUDj9vKWfHyfPnCHujmz1lNRUjp0+TUs/P4yMjKjl4kJ1e3siDx/WTUuHwinqB44cwdbGhlp3lSIRwtA8yuuSsZkpNRp4kPZPPNnJ/34mz0u7RerfsTg0qIXCyAhbN0eq13Ut8c+u9jMAWDjYUr2uq9xMEwavUYsmXD53nhuJ/16XLp09T2pSCn7Plp1IUhFqlYob15NwqV12Bn/ktt1cOvMPDVv4M+j1VyVgKcT/ExK0rAK+vr54eHiwYcOGEvUmd+3apZvaXMzR0ZGYmJgSGYARERHkF60wCugCk3Xr1i3Rd9OmTeTm5qJSlX+13Pnz5xMREcGbb75J586d9fY7OzvTuHFjQkJCdNmUUDgl+MMPP2TChAmoVCocHBxo1aoV27Zt4+bNm7p2J0+e5OzZs+Uez508PT0ZMWIEv/32G0uWLNHbn5GRwYQJE1AqlXzyySdA4VTRF154gaioKC5evKhrGx8fT2RkpO7n8rZTq9W8+uqrfPnllyUeu0mTJoB+5qGh8vPzY+TIkSQmJjJ79uyHdtyMjAwcHBxwcPi3ePatW7cICQkB/s2w7Ny5MxqNRi/Iu379enbu3ImjoyNdunQhIyOD9evXl2izYcMG3n77bd1q6cIwuHdsjImlOad/2E38H2eJjfyLv9fvx8atBs5NC7OPc9NukXzyMrlp+lOM7se7VxsKMnP4a1k4CX+eI3b/X5xavAOFkRF1e7bRtavVyY+c5AzOrdlL4pHzxOw5zt8/76d6fVecm3o9tPMV4lHpFRiItaUlny9cyI6ICLbs3s03K1fi5eFBx5YtAUi+eZMDR46QXHR9jU9KIuroUawsLfF0d+fAkSN6/4oN690bK0tLPluwgC27d7Nt717+++23mJmaMrRnT6DwWvafgQO5npzMR3PmEB4ZyY6ICD6YPZvryckM79fvnmVahDAEj/q6VOellphYmnH6h93ERv5F/IEz/PX9ToxMjfF8sfKzWIQwNB1f7oKllRWrZi/iz937+X3HHjYu+RFXz1o0aVP4Wk9Lucmpg0dJS7l5n6OVLiM1HbVKjb1D6Yu15tzO5o9d+zE2McarQX2i/3ecUwePlvhXkJdfal8hxJNNPnE+Anv37r3n6ti9e/dm+vTpjBkzhsGDB9O/f39u3rzJmjVr9Ira9+jRg88//5xRo0bRq1cvrl27xqZNm3QZjwDNmjXDxsaGmTNnkpCQgL29PYcPHyY8PBxzc3O9bLayREZGsnTpUry9valfvz7bt28vMTXM0dGR9u3b8/HHHzN8+HD69+/P0KFDqVatGmFhYfz111+8++67unOfMmUKQUFBDBo0iKCgIHJzc/nxxx8rtXJ4sbfffpvMzEy+/fZb9u/fT9euXbGzs+PKlSuEhoaSl5fH3Llz8fX9N6Nq4sSJREZGMmzYMF577TWMjY1Zs2YN1tbWJbJYy9POzMyM4OBglixZwvjx4+nYsSN5eXls3LgRS0tL+vfvX+lze9zGjRvHzp072bhxI7169XqgaeLFOnXqxPfff8/EiRPp0KEDN27c4Ndff9UFrotfi126dKFDhw589dVXXLx4ET8/P06ePEloaCjjx4+nWrVqDBw4kJCQED7//HPOnj2Lv78/Fy5cYOPGjTRq1Ih+ZWQSiaphZmOJ/+iXuRJ2hGt7T2JsZkKNBh7UeaklRiaFCxZkXU3mwq9/UH9ABywdbCt0fMeGtWkY3IXYyGhidh/DyNSYanVc8OzaHCunav+2a+yJz+BOxB84zZXwI5jaWOLesTG1OvujeEJuKoj/3+xtbfl00iR+2rKFTeHhmJua0srfn6DevXWfEf6+fJkla9fyxrBhPOPoyN+XLgGFq4IvWbu21ON2al24sqpTjRrMePdd1m3dyvZ9+9BqtTTw9iaoTx+euWMRwdZNmvDxm2/y686drN++HYA67u5MGTuWZg0bPsqnQIiH4lFflyyq29BkbHeu7jpGfNQZ0IK95zPUeallhY8lhCGztrNl1AcTCF8fwr7QnZiZmdGgmR9dB/bEpOi6dPXCFUJW/kzf/7yCg3PFyy/kZhcm8lhYll4uIT4mFlVR5v+Otb+W2qb2LO+HVl9TCGE4FNrKrNIiSjV16lRdRtm9nD9/HoDDhw8zb948zp07h6urKxMnTmTOnDm4ubnpFrnRaDQsXryYX3/9ldTUVHx9fXnvvfdYuXIlOTk5unbHjx9nzpw5/PPPP5iZmVGnTh1effVVoqOjWb16NQcOHNBlr915/ODgYBISEoiIiGDhwoV89913ZY67devWun5nz55l4cKFHDt2DJVKpXu8vn37lugTHR3N3LlziY6Oxs7OjhEjRnDmzBlOnDhRYnGbijpw4ADr1q3j3LlzZGVlUbNmTTp16kRwcHCpi+nExMQwa9Ysjhw5gpmZGQMHDgRg2bJlut9HedtpNBpWr17N5s2biY+Px9jYmObNmzNhwgQaN25c6XOCwmAeUOpzEx8fT0BAAH379uWrr76677HK0/7gwYOMGDECb29vQkNDS6xmfy9btmzhgw8+YPXq1SUW88nPz+fbb78lPDyc9PR0nJ2dadOmDf/5z3/o3r07r7zyii4LNj8/n0WLFrF9+3Zu3ryJh4cHr7zyCkOHDtVlrN6+fZtFixaxe/duUlJScHZ2pkuXLowfP/6Bgt9D9s+qdF8hxL+W13ipqocgxFNjTOquqh6CEE+FUd6l190XQlRMoMfDmf5vSAz5e+CG59+v6iEYJAlaGpi7g4pCiIfPkC9WQjxJJGgpxMMjQUshHg4JWgrxcEjQ8vGSoGXpZK6cEEIIIYQQQgghhBDCoEhNS1Fl1Go1aWlp5Wpra2uLhUXpNU4MTVpamm7BmXuxsLDA1tZwah49qeMWQgghhBBCCCHE00eClqLKJCYmEhAQUK62M2fOfGIWXhkwYAAJCQn3bVfe2pSPy5M6biGEEEIIIYQQQjx9JGhpYB5kcZonjZOTE6tWrSpX27p16z7i0Tw8s2fPJj8//77tnJ2dH8Noyu9JHbcQQgghhBBCCCGePhK0FFXG3Nycdu3aVfUwHroWLVpU9RAq5UkdtxBCCCGEEEIIIZ4+shCPEEIIIYQQQgghhBDCoEjQUgghhBBCCCGEEEIIYVAkaCmEEEIIIYQQQgghhDAoErQUQgghhBBCCCGEEEIYFAlaCiGEEEIIIYQQQgghDIoELYUQQgghhBBCCCGEEAZFgpZCCCGEEEIIIYQQQgiDIkFLIYQQQgghhBBCCCGEQZGgpRBCCCGEEEIIIYQQwqBI0FIIIYQQQgghhBBCCGFQTKp6AEIIIYR4Mql/31/VQxDiqTGqd2BVD0GIp0LrDPmKK8RD4VHVAxBCMi2FEEIIIYQQQgghhBAGRoKWQgghhBBCCCGEEEIIgyJBSyGEEEIIIYQQQgghhEGRoKUQQgghhBBCCCGEEMKgSNBSCCGEEEIIIYQQQghhUCRoKYQQQgghhBBCCCGEMCgStBRCCCGEEEIIIYQQQhgUCVoKIYQQQgghhBBCCCEMigQthRBCCCGEEEIIIYQQBkWClkIIIYQQQgghhBBCCIMiQUshhBBCCCGEEEIIIYRBkaClEEIIIYQQQgghhBDCoJhU9QCEEEI8HfLSbnFl51EyryQB4ODrTp2XW2FmY1nuY1wMOUjuzUz8R798z3bZSWmcXLSDWs/5UTugWYl9Jxdv53Z8ql6fGo1r0/CV58s9FiGqSkrWLdb+73+cu34dgGYeHgS3bYOd5b3fS3/FxRFy4iRXbt7ESKGgnrMzg1q1pN4zz5RodzbhOpuOHeNaaipWZmY86+XF4FYtsTA1BeDGrVtM+HnDPR/rk57daejq+gBnKcSjl34jlZ0btxJz/hIAPv4NeXlwb6ztbMt9jNAfN5KanMLIKW/p7Vv62TwSrsbqbW/Ywp+h4/+j+/nK3xfZFxJOYlwCFpYWNG7VlMC+3TGzMK/EWQlRNVJSU1kdEsK5ixcBaN6oEcF9+2JvW/730/L167meksL0iRP19mXeusWG7ds5dvo0BSoVddzdCerdm3qenmUe71pCAh/Onk2fF19kYLduFT4nIYThe6KCllOnTiUkJOSebQICAli8ePFjGpG+Ll264Obmxpo1awAIDg4mISGBiIiIxzaGh/GYu3fvZtOmTZw5c4a8vDxcXFzo0KEDw4cPp1atWuU6RvHv6/z58w+lXUXFx8cTEBBQrrb79u0DKLW9qakpDg4OtG/fnokTJ1KzZs17Hl+hUGBra4uXlxdBQUH06tXrAc7i8VKr1Xz//fds2rSJrKwsWrZsybRp03CVL6biPpQ5+UT/sAutWoN7p8ZotVrio86QnZRO03E9MDI2vu8xko5dIOnoBezrPHPPdhq1hvO//oFWrdHbp9VqyUnJpEZDD2o0ql1in0U164qdlBBV4FZeHp/v2IFao6FnkyZotFp2REcTl5bGjL59MCnjvXTueiJf79yFe/XqDGnVCrVWw56z5/hs+w7+26sndZ2dgcKA5RdhYdRxdOSVZ1uTejubnWfOcOXGDab36ll4DbOwYNzzz+k9RoFaxU9/HsLW0gKPGjUe4bMgxIPLuZ3NylmLUKtVdHypC1qthj927Sc5/jpjP3kHY5P7fw06HvU/jh84hKePt94+rVZLSmISvs38aNTCv8S+ao4Ouv+/8vdFVs1ZjFvtWnQd0JPM9AwO/XaAhJg4Rn0wAYVC8eAnK8Qjdis7m08XLECtVtMrMBCNRsP2ffuIvX6dL997D5NyvJ8iDh1i38GDNKhbV29fbl4e0+fPJz0zk+7PP4+1lRW7Dhzg0wUL+PK99/Ao5buIWq1m8dq1qNTqh3KOQgjD9EQFLYt98MEHVK9evdR9Li4uj3k09zZ27Fhyc3OrehjlVlBQwJQpUwgPD8ff359Ro0Zhb2/PxYsXCQkJYfPmzcyePZvAwMCqHup9OTg4MGvWrBLbZs6cCRS+hu5um5aWBkDLli0ZNGiQbp9KpeLSpUusW7eOQ4cOsW3bNuzs7HT7726v1WqJi4tjw4YNTJ48GWNjY7p37/7Qz+9RWLx4MYsWLWLEiBE4OTmxdOlS3njjDbZs2YJxOYJO4v+vhD/Okp+ZQ4sJvbFyrgaArbsTZ1buIfnEJVxa+ZTZV6vREBcZzbV9p8r1WPG/R5OTnFHqvvz022gKVNRo6MEzzfS/ZAph6MKjT5N2O5uvB/bHveizTl1nJ74M28nvFy4Q0KBBqf1WHzqEg7U1n/fpg7lp4ce7TvXq8e6mX9h49BgfdS/MQFn7v/9Rw8aG//bqiVnRl0xHGxtW/vEnf8XF09SjFhampnSsX0/vMX46eAiVRs2bXZ7HxlwyxIRh+3NPJJnpGbz52fs4uxbecHarU5uf5i7hxJ9HaNW5XZl9NRoNv+/4jYitu8psk3EzDWV+AQ2a+dG0Xasy2+3atJVqDtUZOfUtTM0Ks5ntHaqzY+2vXDzzD/X9Sn9PC2FIwiIiSMvIYPYHH+BelMBRt3Ztvli0iMjDhwls377MvhqNhi27d/Przp1lttn6228kpqQw7a23aFiv8PrTtnlz3po+nW179/Lmq6/q9QnZs4f4xMQHPDMhhKF7IoOWgYGBuLu7V/UwyqX9Pf6AG6JZs2YRHh7O5MmTGTVqVIl9Y8eOZdSoUUyaNInNmzfj41N2EMIQWFlZ0bt37xLb5s+fD6C3HdAFLWvVqlXq/lq1avHpp5+yYcMGxowZU2J7ae379etHt27dWLRo0RMTtNy0aROdOnViypQpQGHAdu7cuVy5coV69fS/wApR7Eb0FarVqakLWAJUr+uKpZMdN6JjygxaqpUqTi0JIycpHedm3mRcufeHz+ykNGL3R+PRpQnXfjupvz8lAwBLR/tKn4sQVeng5cs0dHXRBSwB/Nzdcalmz6HLV0oNWt7Ozyc2NZVufn66gCWAvZUVDVxciI5PAKBApcLO0pLWderoApYADYpu+F5LTaWpR+mzKWJTU9l95gydferr2gthyE4fPkEdn7q6gCVA3UY+1KjpzOnDJ8sMWioLlCyb8Q3J8ddp2q4Vl/++UGq7lOuFpVCcXJzLHIOyQIm1rQ2NWvjrApYAdYoyN5NiEyRoKZ4If544QcN69XQBSwB/X19cnJ05eOJEmUHLAqWSj+bMIfb6dTq1bs2ZC/rvJ61Wy+9HjtCsYUNdwBKgup0dr/bti5GR/jIc1xISCNm9m34vvcSmsLCHcIZCCEMlC/EInZiYGNauXUv37t31ApYANWrUYP78+SgUCmbMmFEFI6xa3YrqpJw4caJc7d3c3GjVqhWXL1/m9u3bj3JoD01eXh6JiYlotVoA8vPzgcIp8kKURZmbT17abWzc9KeL2rjU4PZ1/fqSxbQqDer8AnyHdsZnYEcURmVPk9OoNVzY/CfV67ni3LT0LMqc5HQArJwLg5bqAmVFTkWIKnU7P5+UrFvUcXLU2+fp6EjMzZul9rMyNWXu4EF09/fT23crLw/joveVmYkJH3R7mb7NS9aBvZpaeFyne9Ql23j0GGYmJgxq2bLc5yNEVcnNziH9RiqunvpJDq4e7iTGxpfZV6VSkZ+bx+A3htN/VBDGRqXPNEmOL7zJ5uRaWNKkIC9fr42pmSnD3xlL5x4vltieGFt4I+HOaeRCGKrbOTmk3LyJVyklwurUqkVMXFyZfZVKJTl5eUwaMYLxwcGlBiBvpKWRlpGBv68vUBjEzCv6DvJix456AVG1Ws3Sn3/G39eXTq3KznIWQjwdnshMy/LauXMny5Yt48qVK3h4ePDuu++ydu1aCgoKdDUn765BWezu7Vqtlg0bNrB582YuX76MSqXCzc2Nfv36MXr06DLr0dxZX/J+NRbffPNN3nqrsMj3pUuX+Oabbzh8+DBKpZIGDRowfvx4OnbsWKLPwYMHWbBgAf/88w+Ojo68/vrrlX6+tm7dilarJSgoqMw2Hh4eBAYGsnPnTpKSknT1Hc+cOcO8efM4efIkNjY2DBs2TBf4ulN52mm1WhYtWsT27du5fv06tra2tG/fnnfeeadKp/8XX2TVFaibYmVlBVDqc3E/u3fvZvny5Vy5cgUjIyP8/f158803adGiha6NRqPhxx9/ZNOmTcTHx1O9enW6du3KpEmTsLGxAeDtt98mPDyc5cuX07lzZwAyMjLo0aMHlpaWbN26VTfOl19+mY0bN7J8+XJ8fX1ZuXIlbdu2xfOuAtiHDx/m1Vdf5auvvmLlypVcvXqVHj16MHPmTG7cuMHixYs5cOAAycnJmJub06hRIyZOnFhi7FqtljVr1rBp0yZiY2NxdHSkW7dujB8/HsuixSbKc36i6hVk5gBgZmelt8/MzhJ1rhJVbgEmlmZ6+40tTGn5Tn+MjO9/Dy0+6jS5qVk0HNYFrab091ROSgbG5iZcCT/KjegYNAUqLBxsqP1Cc5ybeFXwzIR4vNKzswFwsNKvv1rdyoqc/AKy8/OxvmtqtpGRES72+tnFsampXEhOxr+M2Sk3bt3i3PVE1v7vf9RyqE5Lz9qltotNTeXEtVi6+/tR3VpqwwrDl5WeCYBd9Wp6+2yr2ZGXk0tuTi6WVvqLW1lYWjDpq4/uWxYn5XoSZhbm7NwQyukjJ1HmF1DdqQaB/brj/2zzUvuk30wj5p9L7NoYirObCw2a6d9oEMLQpGVkAOBQynWmup0dObm5ZOfkYG2l/znQytKSBdOm3fP9lJiSAoCdrS1rQkLYd/AguXl5POPkxPC+fWnhV/J9snXvXhJTUnhv1Cg0Gv365kKIp8sTGbTMysrSTeW9m729PcbGxoSGhjJlyhT8/PyYPHkyV65cYcKECTg4OODh4VHhx/z2229ZunQpffv2ZdCgQWRnZxMaGsrcuXOxtra+Z6CvWGk1FgEWLlxIUlKSLiB5/vx5XnnlFV0Q0tTUlB07djBmzBjmzp2ry/g7ePAgo0ePxtPTk0mTJpGWlsYXX3yBQqEos+bnvZw6dQoTExP8/O79AapNmzaEh4dz/PhxunfvzsWLFwkODsbOzo5x48ahVCpZuXIlBQUFJfqVt93SpUtZtGgRQUFB+Pj4EB8fz+rVqzlz5gw7duyostqKhw4dAqBhw4blap+bm8vRo0dxd3fHtgKr6gEcOXKEt99+m06dOjFw4EByc3NZu3YtI0aMICwsTLcY0kcffcTWrVvp06cPr732GpcvX2b9+vWcOHGC9evXY25uzieffMKhQ4f47LPPCAsLw8LCgs8//5y0tDTWrl2rC1gCvPPOO0RFRfHNN9+g1Wpp3bq1bkp9aT777DP69evHwIEDcXV1JS8vj6CgIG7dukVQUBDPPPMMV69eZf369YwaNYq9e/dSo2jxhk8//ZT169fz/PPPM3ToUGJiYnQB0O+++67c5yeqXnE2o7Gp/iXFqGgKqlqpKjVoqVAoUBjffxGC7OR0Yvf9hXevZzG3tyYvvfTs5ezkDNT5KlR5BfgM7Igqr4DrB89xfuMBtBqt1LkUBi1XWfheMitlQQOzomtfgUqlF7QsTZ5SyeL9kQD0atpUb/+tvDzdCuFmJia81r5dqY8L8Nu5vzFSKOjauFF5TkOIKpeflwdQYkp2MZOibcqCglKDlgqFolyfNZMTEinIyycvJ5cBo4aRl5vLod9+55dlq9Go1Xp1LnNuZzPv/c+KxmVGj6B+pY5PCENTnPVoZqb/Oc6saDZWvlJJabe0yvN+yila/2FjWBgmxsa8NmAARgoF2/ftY/b33/PhuHG6LMy4xEQ279zJiIEDqVG9OjdSy57NI4R4OjyRQcu+ffuWuS80NJT69esza9YsvLy8+Pnnn3V/YL28vJgxY0aFg5ZKpVI3bfqrr77SbR84cCBt27YlKiqqXEHL0mosrlixgri4OKZNm0bToi8VM2bMwMHBgZCQEF1AadiwYQwfPpwvvviCwMBAzMzMmDNnDk5OTmzcuFGXddauXTuGDx9eqaDljRs3sLe3L/WCdCfnohVIU4ruii1cuBCADRs26DIhu3btSp8+fUr0K2+77du306lTJz7++GPdNhcXF9avX09CQkKlgs4VUVBQUCIonpmZycmTJ5kzZw7W1tYMHTr0nu1VKhVxcXEsXryYtLQ0pk6dWuExhIeHY2FhwZIlS3RZvO3atWPChAmcPXuWWrVqcfjwYbZs2cKnn37KkCFDdH07d+7MyJEj2bBhA8OHD8fBwYFp06bx9ttvs2zZMho3bqwLgjdvXjITICIigpycHLRaLZaWlsybNw/7Uu6qFmvRogWffPJJiXFfu3aNFStWlMgKrlWrFv/97385fvw4L774IpcuXWLDhg0MGjSIzz//XNfO2tqapUuXcunSJVJTU8t1fsIAFGcSP6IFULUaDRc2/4Gdp/M9F/QBcGlVH61Wi2ubf2uEOfnX4cT8UGJ2HsW5SR0UpUxNEsIQFGflP+hqwvlKFXN27+Faahq9mzWhoav+LAWFQsGEwC6o1Bp2nTnDFzvCmRAYwLNedUq0K1CpiLp4kRaete85fVwIQ6K7LD3ClblbdW6HVqPh2YB/P+/4tW7Owk++Ytembfi3aVFiKqxCoWDQ2OGoVSr+tzeKVXOWMHjscBq1bPLIxijEw/Cwrk1lUapUQGHw8ttPPsGm6Ptvi8aNmfDZZ2zYvh1/X180Gg1L1q7Fx9v7ngv/CCGeLk9k0HL27Nk4OurXe4LC6cunT58mNTWVMWPGlAjADR48WBc4qwhTU1MOHjyIUlmyNlp6ejo2Njbk5ORU+JgAUVFRzJs3j969e+uCnunp6Rw5coTg4GDy8vLIK7pTDPDCCy8wc+ZMTp8+jaenJ2fPnmXUqFElpsm2adMGHx+fStVQ1Gq15bqzbFKUiaHVatFoNERFRdG5c+cSU7e9vb3p0KEDERERAOVuB1CzZk0OHz7MTz/9RPfu3XF0dGTIkCElAlePUlhYGGGlFHSuV68e06dP102Jv197Ly8v5s2bV6lFeGrWrEl2djYzZszglVdewdvbGx8fH3bv3q1rs2fPHhQKBZ07dy4RNG3YsCFOTk5ERkbqgnrdunUjLCyMH374ATs7O3x9fXWlCIrNmTOH77//no4dO+Ln58fixYuZMmUKK1as4PLly5w5c4bOnTvj4PBv/aVWd9WR6datG23atCkRNL8zk7b4vRIZGYlWqyU4OLhE/5EjR9KtWzc8PDxYv359uc9PVC1j88K77BqlfukETdEHUROLymeTxEedITsxnSavd0OZXfg3UZVbeNdfXaBCmZ2HiZU5CoUCl2d99cdnaoJzM29i9/1FTkoG1jWlhpgwTJZFGSsFRe+bOxUUlSaxvM+Nxez8fGbt2s2FpGSe863P4DLqfdmYm9PWuzDz+FmvOkz+5VdWHzqkF7Q8e/06+UoVbbykvIJ4cphbFGYjK++azQOgKpodYGFh8UCP0fp5/aCJqZkpTdu2ZP+23aQkJFGzlqtun6W1FX6tC+vJNmrZlIWffEX4hhAJWgqDZ1GU3X/37DgoXGgHwOoB3k/mRde1Z5s00QUsAaytrGjRuDEHjhwhLz+fXQcOcC0hgc/efpusou+6t4uyNPMLCsi6fRtba+tHerNCCPH4PZFBy+bNm99z9fDr168D6KbQFjMzM9PbVl6mpqZERkayb98+YmJiuHbtGpmZhfVyKlOv8OrVq7zzzjvUq1ePzz77TLc9rqiQ8Zo1a/TqbBZLTEzULYxSWtahl5cX0dHRFR6Ts7MzcXFxqFQqXWCyNMUZls7OzmRkZJCTk1PmOIqDkeVtB/D+++/zxhtv8OWXXzJz5kwaNWpEly5dGDRoEE5OThU+r4rq0KEDI0eOBArvKJqZmeHi4oKrq+t92yclJbFixQqysrKYPn06zz77bKXGMGzYMP744w/Wrl3L2rVrcXd35/nnn2fAgAH4Fk2PiI2NRavV8txzz5V6DOu76o5Nnz6dF198UVdz8s6A/vHjx3UBy2XLlmFsbMz58+fZt28fy5YtIysri5UrV7J169YSQcs7/7+YQqFg+fLlnDx5ktjYWGJjY3UB/+K6MwkJhQXo766VaWdnh52dXaXOT1Qdc/vCGycFt3L19hVk5WJsaYrxA0yBS7+QgFat4dTiHXr7EqLOkhB1llaTB2BRvew6p6bWhVMA1QX6wSAhDEWNopuQGaXcDE3PycHK3AyLeyyMlpWby5fhO7l2M5WABr6M7NihXF/ezExMaObhwe4zZ8nKzcPO8t8vn6di4zA1Ni5zVXEhDJF9jcKbp7cyb+ntu5WRhYWVJWYWj6bEjLVdYUZyQb7+wjzFTM1M8WnSiP/tPUD2rdtY20qdbmG4HIuSETKysvT2pWdlYWVpqQtsVoZDtWoA2JVSr97e1hatVktufj6nzp1DpVbz4Zw5eu2279vH9n37+G76dJxq6C8MKYR4cj2RQcvyKi2YWN4aeHcutqLVahk3bhz79++nRYsWNGvWjMGDB9OqVatKZXrdvn2b8ePHo1Ao+O6770rc6S1+3KCgIAIDA0vtX7duXZKTkwFKZGIWq2xB4pYtW3Lo0CGio6P1pg3f6dixYygUCpo1+3f10fKOozztfH192b17N1FRUezfv5+oqCgWLFjAqlWr2LhxI97ej7YmnZOTE+3atat0+4CAAAYOHMjo0aNZtWpVicVnysvGxoa1a9dy6tQp9u7dy4EDB1izZg3r1q1j1qxZ9OzZE41Gg7W1ta7+493ufq2fO3dOl+m4e/du/P39dfv27dsHwPjx43XZtl999RV9+/Zl4cKFWFlZ4enpqQuYFrs7M/fKlSsMHToUpVJJhw4d6NatGw0aNECr1TJ+/Hhdu/IsZlTR8xNVx8TSDHMHm1JXCb+dmIqtW+mZ8eVVp1srVLkl7+4rb+dyflMUzs28cG5WF1MbC/Izszm9ag/O/nXw6NK0RPvcm4U3me4V2BSiqlmbm+Nka1vqKuFXb97E6x437nILCnQBy5f9GvNqu7Z6bRLSM/hq5056NWnCC41K1mfOUypRKMD0rkWxzicnU8fJEav7ZHgKYUgsrSyp5uhA4jX9VcKvx8bj5vlgQfis9Ax+nLMEv2eb83yvriX23UwqvLlf3akGNxKTWT1vGR1e7sKzXTqUaJeflwcKBSal1IMWwpBYW1nhVKMGMfH676eYuDi8H7B0Vy0XF0xMTIhLStLbl5KaiqmpKfY2NgT37Uv2XTf1Mm/d4rvVq+nYqhWdWrfGvij5QQjx9HgqC3sVZ29dvXpVb19xJmMxIyMjvVR3lUpFenq67udjx46xf/9+xo0bx88//8yHH37IgAEDcHNzI6NoNbXy0mq1TJ48mcuXLzN79my9zE83NzegMBjUrl27Ev+cnZ0pKCjA0tISNzc3FAoF165d03uM+FIuKOXRo0cPjI2NWblyZZltkpKS2LVrFy1atMDNzY3q1atjY2Nz33GUt51arebs2bMkJiYSEBDAjBkz+P333/nmm2+4desWv/zyS6XO7XGyt7dn7ty5qNVq3n333UpN1Y+JiSE6OpqmTZvy3nvvsW3bNsLCwrCzs2PVqlVA4WslOzubxo0b671WsrKydCtwQ2GgfNq0adSvX5/+/fuzatWqEtm4xQH+O4OQdnZ2zJ8/HyMjI27dusWrr75633F///33ZGVlsWXLFhYsWMCbb75JQEAAubklM/CKs1bvfj8mJyczadIkjh07VqHzE1XPsVFtMi5fJ+dGhm5b+qXr5N7Iwsm/Ttkdy8HWzZHqdV1L/LOr/QwAFg62VK/rirGpCeb21qjzCkg8egFV3r9/1/MybpN8/CL23jUxs9Vf2VIIQ9K6jidnEhJISM/QbTsdH09iRibt7nHTbuUff3LtZiovlRGwBKhpb0dOQQF7//4b1R03j27cusXhKzE0cHEpMf1cpVaTkJ5OHUfJWhFPnkYtmnD53HluJCbrtl06e57UpBT8yljdu7zsqlcjLzeXYwcOkXfHZ5yM1HRO/HGYOr71sLW3w8HZkbzcXI5GHkR9R9mH9JtpnD32F54+3pg/4DR1IR6HZ5s04fT58yQk//t+iv7nHxJTUmhXiQSNO1mYm9PSz4+TZ84Ql5io256Smsqx06dp6eeHkZER3h4e+Pv6lvjnW1S65BlHR/x9fXULAwkhnh5PZdDS19cXDw8PNmzYUKLe5K5du3RTm4s5OjoSExNTIgMwIiKC/DumdBQHJuvWrVui76ZNm8jNzUVVSu2pssyfP5+IiAjefPNNOnfurLff2dmZxo0bExISosumhMLFgD788EMmTJiASqXCwcGBVq1asW3bNm7ekZFx8uRJzp49W+7x3MnT05MRI0bw22+/sWTJEr39GRkZTJgwAaVSqVt8RaFQ8MILLxAVFcXFixd1bePj44mMjNT9XN52arWaV199lS+//LLEYzdpUljvx+gJWUDDz8+PkSNHkpiYyOzZsyvcf8aMGYwbN47s7GzdNi8vL+zs7HTPQZcuXQD0flcRERFMnDiR7du367bNmjWL5ORkPv30U95//33s7e356KOPdAH7Nm3aALB+/foSx0pJSdFlRW7evFkv+Hi3jIwMLC0tS0ylLygoYMOGwhVqi49V/Nq/+/G2bNnCzp07sbGxqdD5iarn3rExJpbmnP5hN/F/nCU28i/+Xr8fG7caODctDLTkpt0i+eRlctP0p+s9LN692lCQmcNfy8JJ+PMcsfv/4tTiHSiMjKjbs80je1whHpZeTZtgbW7OF2FhhEVHE3LiJN/u3UcdJ0c61Cv8HJKclUXUhYskF03Vi09P54+Ll7AyN8OzRg2iLlzU+wdgbGTEa+3aEZuaxqfbd7Dn7Fk2Hz/BxyGhGBkpeK19yVkGN2/fRqXW6KatC/Ek6fhyFyytrFg1exF/7t7P7zv2sHHJj7h61qJJm8IgS1rKTU4dPEpain528/30GDaQrLQMln8xn4O//U7k9j0s/XweRsbG9BjWHyi8Gdz9lX4kx19nxVcLObwviv3bdrPs83kYGRnR45X+D/WchXhUegUGYm1pyecLF7IjIoItu3fzzcqVeHl40LFlSwCSb97kwJEjJJcyW+B+hvXujZWlJZ8tWMCW3bvZtncv//32W8xMTRnas+fDPh0hxBPkiZyPsHfv3nuujt27d2+mT5/OmDFjGDx4MP379+fmzZusWbNGVwuyWI8ePfj8888ZNWoUvXr14tq1a2zatEmX8QjQrFkzbGxsmDlzJgkJCdjb23P48GHCw8MxNzcvEVi6l8jISJYuXYq3tzf169dn+/btJaZGOzo60r59ez7++GOGDx9O//79GTp0KNWqVSMsLIy//vqLd999V3fuU6ZMISgoiEGDBhEUFERubi4//vhjpVYOL/b222+TmZnJt99+y/79++natSt2dnZcuXKF0NBQ8vLymDt3bolpwhMnTiQyMpJhw4bx2muvYWxszJo1a7C2ti6RxVqedmZmZgQHB7NkyRLGjx9Px44dycvLY+PGjVhaWtK//5Pz4W7cuHHs3LmTjRs30qtXrwpNEx8xYgSjR48mKCiIPn36YG5uzt69e4mNjeXrr78GCgN/AQEBrFy5koSEBNq2bUtCQgLr1q3D1dVVV2fz0KFDbNq0iUGDBumm/b///vtMnTqVxYsXM2nSJDp37kyXLl3YsmUL+fn5tG7dmr/++outW7fSsGFDnn32WX744Qf+85//8P3335c57k6dOhEREcHrr7/OSy+9xK1btwgNDSU2NhZA915p0KABAwcOZM2aNaSkpNC2bVvdiuJ9+vTB19cXHx+fcp2fMAxmNpb4j36ZK2FHuLb3JMZmJtRo4EGdl1piZFKYwZt1NZkLv/5B/QEdsHR4NKsQOzasTcPgLsRGRhOz+xhGpsZUq+OCZ9fmWDlVeySPKcTDZGdpyX979WT1wUP8cuw45iYmtKxdm6A2z2JalA3/T2ISSyN/Z+xznXnGzo6/izJTcvILWBr5e6nH7Vi/nu6/psbGbD11ijWH/oe5iQmN3dwY1KolrkV1xYrdLrqBa2kqU8PFk8fazpZRH0wgfH0I+0J3YmZmRoNmfnQd2BOTou8DVy9cIWTlz/T9zys4OFeslEnD5n688tZIft/xG3t+2Y6pmSmePnV5cUAPnFye0bVr2q4VJqYmHAjfx86NoZiam+PdoB6B/brjWNP5oZ6zEI+Kva0tn06axE9btrApPBxzU1Na+fsT1Lu37vv135cvs2TtWt4YNoxnylg0tyxONWow4913Wbd1K9v37UOr1dLA25ugPn0qfCwhxNNFoa3MKjJVZOrUqYSEhNy33fnz5wE4fPgw8+bN49y5c7i6ujJx4kTmzJmDm5ubbpEbjUbD4sWL+fXXX0lNTcXX15f33nuPlStXkpOTo2t3/Phx5syZwz///IOZmRl16tTh1VdfJTo6mtWrV3PgwAEcHR3p0qVLieMHBweTkJBAREQECxcuLLM+H0Dr1q11/c6ePcvChQs5duwYKpVK93h9+/Yt0Sc6Opq5c+cSHR2NnZ0dI0aM4MyZM5w4caLE4jYVdeDAAdatW8e5c+fIysqiZs2adOrUieDg4FIX04mJiWHWrFkcOXIEMzMzBg4cCMCyZct0v4/yttNoNKxevZrNmzcTHx+PsbExzZs3Z8KECTRu3LjS5wT/ZieW9tzEx8cTEBBA3759+eqrr+57rPK0P3jwICNGjMDb25vQ0NASi9/cT2RkJMuWLePy5cvk5+dTr149RowYUWI1cqVSyYoVKwgNDSUhIQEHBwfatm3LxIkTcXV1JTc3l549e5KTk8POnTuxt7fX9R02bBinTp3il19+oUGDBuTn57N48WK2bdvGjRs3cHFxoVevXowePRoLCwvmz5/PpUuXmD9/PkePHuXVV19l5syZ9OvXT3dMrVbL8uXL+eWXX0hOTsbR0ZGmTZsyceJEhgwZQtOmTVm6dClQ+HteuXIlv/zyCwkJCbi6utKnTx9GjRqle57ud36VNWT/rEr3FUL8a8kZqS0rxMNyvHfHqh6CEE+F1hlPZF6OEAbH7o41EJ4Whvw9cMPz71f1EAzSExW0fBjuDioKIcpPq9WWayVaQ2fIFyshniQStBTi4ZGgpRAPhwQthXg4JGj5eEnQsnRPRoFAIYRBeBoClkIIIYQQQgghhDB8chvqKaZWq0lLSytXW1tbWyyekNUL09LSdAu63IuFhQW2to+mbl5lPKnjFkIIIYQQQgghhHjcJGj5FEtMTCQgIKBcbe+uTWjIBgwYQEJCwn3blbc25ePypI5bCCGEEEIIIYQQ4nH7fxe0fJDFaZ40Tk5OrFq1qlxt69at+4hH8/DMnj2b/KIVTe/F2dmwVmR8UscthBBCCCGEEEII8bj9vwta/n9ibm5Ou3btqnoYD12LFi2qegiV8qSOWwghhBBCCCGEEOJxk4V4hBBCCCGEEEIIIYQQBkWClkIIIYQQQgghhBBCCIMiQUshhBBCCCGEEEIIIYRBkaClEEIIIYQQQgghhBDCoEjQUgghhBBCCCGEEEIIYVAkaCmEEEIIIYQQQgghhDAoErQUQgghhBBCCCGEEEIYFAlaCiGEEEIIIYQQQgghDIoELYUQQgghhBBCCCGEEAZFgpZCCCGEEEIIIYQQQgiDYlLVAxBCiMdtyRnzqh6CEE8F487PV/UQhHhqrLi8q6qHIMTTwTuwqkcgxFNB3knCEEimpRBCCCGEEEIIIYQQwqBI0FIIIYQQQgghhBBCCGFQJGgphBBCCCGEEEIIIYQwKBK0FEIIIYQQQgghhBBCGBQJWgohhBBCCCGEEEIIIQyKBC2FEEIIIYQQQgghhBAGRYKWQgghhBBCCCGEEEIIgyJBSyGEEEIIIYQQQgghhEGRoKUQQgghhBBCCCGEEMKgSNBSCCGEEEIIIYQQQghhUCRoKYQQQgghhBBCCCGEMCgStBRCCCGEEEIIIYQQQhgUk6oewP8XU6dOJSQk5J5tAgICWLx48WMakb4uXbrg5ubGmjVrAAgODiYhIYGIiIjHNoaH8Zi7d+9m06ZNnDlzhry8PFxcXOjQoQPDhw+nVq1a5TpG8e/r/PnzD6VdZfn4+Nxzf/FrJj4+noCAAL39pqamODg40L59eyZOnEjNmjUBymyvUCiwtbXFy8uLoKAgevXq9XBORPy/kJJ1i7X/+x/nrl8HoJmHB8Ft22BnaVnuY3x/IIrEjAym9eqpt++jLSFcuXFTb3vrOp68/eILup+v3LjB+iNHuZCUjJFCQQOXmgxr2wbXatUqflJCVIGU1FRWh4Rw7uJFAJo3akRw377Y29qW+xjL16/nekoK0ydOfCjHv9fxhDBUeWm3uLLzKJlXkgBw8HWnzsutMLO593Xpfv3y0m9zdPav9zyG36iuVPNyAeDv9ZHcPH1Vr42NWw2ajde/3glhiNJvpLJz41Zizl8CwMe/IS8P7o213b2vTeXtl3A1jt9+3U7spasojBR4+njz8uA+ONZ0LtHu4um/idzxG9evxqEwUlDLy5PAft2o5e358E5WCGEwJGj5mH3wwQdUr1691H0uLi6PeTT3NnbsWHJzc6t6GOVWUFDAlClTCA8Px9/fn1GjRmFvb8/FixcJCQlh8+bNzJ49m8DAwKoeaoV4eXkxduzYUvfd/Zpp2bIlgwYN0v2sUqm4dOkS69at49ChQ2zbtg07O7sy22u1WuLi4tiwYQOTJ0/G2NiY7t27P+QzEk+jW3l5fL5jB2qNhp5NmqDRatkRHU1cWhoz+vbBxNj4vsfY/895Iv7+hwYuNfX2abVaEjIyaOlZm9Z16pTY52hro/v/6xkZfLZ9B+YmJvRr3gyA8NOnmb51O18P6Ed1a+sHPFMhHq1b2dl8umABarWaXoGBaDQatu/bR+z163z53nuYmNz/o1vEoUPsO3iQBnXrPpTj3+t4QhgqZU4+0T/sQqvW4N6pMVqtlvioM2QnpdN0XA+MyrgulaefqbU59Qd21OurUam4vP0wptYWWLs46LZnJ6djV9uZmq1L3ow2tTZ/uCctxCOSczublbMWoVar6PhSF7RaDX/s2k9y/HXGfvIOxmVcm8rb72ZSCj98vRAzMzOe6/kiAAf3RPL9l/MZ/9n72FWzByDm/CVWf7scZ9eavNC/O2q1hiMRf/DD1wsZNXUC7l61H88TIoR4bCRo+ZgFBgbi7u5e1cMol/bt21f1ECpk1qxZhIeHM3nyZEaNGlVi39ixYxk1ahSTJk1i8+bN981gNCSOjo707t27XG1r1apVattatWrx6aefsmHDBsaMGXPf9v369aNbt24sWrRIgpaiXMKjT5N2O5uvB/bHvejGTF1nJ74M28nvFy4Q0KBBmX01Gg0hJ0+x+fjxMtvcuHWbfKWKlp6edKxfr8x2O0+fIV+pYnqvnng6OgLQ2M2Nj0NCCYs+zbC2bSp5hkI8HmEREaRlZDD7gw9wL8qOr1u7Nl8sWkTk4cME3uParNFo2LJ7N7/u3PlQjl+e4wlhqBL+OEt+Zg4tJvTGyrkaALbuTpxZuYfkE5dwaVX6Z8Hy9DM2M+WZZt56fS/vOIxWrcF3UCdMLQsDkhq1mrzUWzg951lqHyGeBH/uiSQzPYM3P3sfZ9fCa4dbndr8NHcJJ/48QqvO7R6o38E9kSjzCxj9wQRcPAq/K3s1rM+yz+dxcHckLw0u/L4Svj4E++rVeP3jtzEzNwOgWbtWzP94Jnu3hPHae+Me6fMghHj8pKaleCrExMSwdu1aunfvrhewBKhRowbz589HoVAwY8aMKhhh1erWrRsAJ06cKFd7Nzc3WrVqxeXLl7l9+/ajHJp4Shy8fJmGri66gCWAn7s7LtXsOXT5Spn9ClQqPtgSwq/HjtOhXj0crK1KbRefng6Aa9Gd9rIkZ2Vha2GhC1gCeDs7YWNhTlzRMYQwZH+eOEHDevV0AUUAf19fXJydOXiPv+EFSiVTvv6aX8LD6diqFQ5llEMo7/HLezwhDNWN6CtUq1NTF3gEqF7XFUsnO25Exzz0ftlJaVw/9DfPtKiHfZ1/31+5N7LQqjVYOVUrs68Qhu704RPU8amrCzwC1G3kQ42azpw+fPKB+6XdSMXKxloXsARwr+OBpbUVyQmJAORm55AUd53GrZrqApYANva2eNb3JvbS1YdxqkIIAyNBSwO1c+dO+vTpg7+/Pz169GD//v2MHDmS4OBgXZsuXbqU+Lms7VqtlvXr1zNgwACaNWuGn58fL730EsuXL0er1ZY5huDgYLp06QIU1kD08fEp89/ChQt1/S5dusT48eNp2bIlTZo0YciQIURFRekd/+DBgwwZMoSmTZsSGBjIL7/8UqnnCmDr1q1otVqCgoLKbOPh4UFgYCBHjx4lKSlJt/3MmTP85z//oVmzZnTs2JFly5aV+ryUp51Wq+W7776ja9eu+Pn50a5dOyZPnkxiYmKlz+1hMDIqfKur1epy97GyKgwe3es1Upbdu3fTv39/mjVrRosWLRgxYgTH78qi02g0rFy5kpdeeonGjRvTsWNHZsyYUSJI+vbbb+Pj48Pvv/+u25aRkUGHDh144YUXyMnJqfDYxMN3Oz+flKxb1HFy1Nvn6ehIzE39OpTFlGo1OQUFTAwMYNzzz+leq3eLS0sDwK0oKJqnVJbazsXentv5eWTdUdriVl4eOfkFVKtAbU0hqsLtnBxSbt7Eq5T6y3Vq1SImLq7Mvkqlkpy8PCaNGMH44OBS30sVOX55jieEoVLm5pOXdhsbtxp6+2xcanD7eupD7Qdw9bcTGJmaUDuwWYntOSkZAFg5F950UxeUfv0SwlDlZueQfiMVV0/92YKuHu4kxsY/cL8azziRk51DdtYt3bac29nk5eZha19Y2src0oKJX35Iu67P6R0v53Y2RsZynRLiaSTTwx+zrKws0oq+fN/N3t4eY2NjQkNDmTJlCn5+fkyePJkrV64wYcIEHBwc8PDwqPBjfvvttyxdupS+ffsyaNAgsrOzCQ0NZe7cuVhbW98z0FfMwcGBWbNm6W1fuHAhSUlJdOxYWNfn/PnzvPLKKzg6OvL6669jamrKjh07GDNmDHPnztVl/B08eJDRo0fj6enJpEmTSEtL44svvkChUJRZ8/NeTp06hYmJCX5+fvds16ZNG8LDwzl+/Djdu3fn4sWLBAcHY2dnx7hx41AqlaxcuZKCgoIS/crbbunSpSxatIigoCB8fHyIj49n9erVnDlzhh07dmBcjrp+d1MqlaW+ZkxNTbEt56IMhw4dAqBhw4blap+bm8vRo0dxd3cv92MUO3LkCG+//TadOnVi4MCB5ObmsnbtWkaMGEFYWJhuMaSPPvqIrVu30qdPH1577TUuX77M+vXrOXHiBOvXr8fc3JxPPvmEQ4cO8dlnnxEWFoaFhQWff/45aWlprF27VhdYFVUrPTsbAAcr/XqR1a2syMkvIDs/H2tz/dpdVmZmfDtkMMb3CYjEp6djYWrKmkOHOHT5CvlKFc52tgxu1Yp2df+dbtezSROOX7vGwn0RBBdNBV/7v8MYGxvxsl/jBzlNIR65tIwMABzs9TOKq9vZkZObS3ZODtal/O2zsrRkwbRp97zOVOT45TmeEIaqILPwpqaZnf57xczOEnWuElVuASaWZg+lX3ZSGml/x+PWsRHmd/XNTi7M8k88coEb0TGocvIxtbWkVmc/3NqV73OZEFUpKz0TALvq1fT22VazIy8nl9ycXCytLCvdr+PLAZw/dZZNy9bw8pA+AOzatBVjY2PavtAJKEzCcHzGSe9YSXHXib0UQ73Gvg9wlkIIQyVBy8esb9++Ze4LDQ2lfv36zJo1Cy8vL37++WfMzAo/FHl5eTFjxowKBy2VSqVu2vRXX32l2z5w4EDatm1LVFRUuYKWVlZWerUPV6xYQVxcHNOmTaNp06YAzJgxAwcHB0JCQnQBpWHDhjF8+HC++OILAgMDMTMzY86cOTg5ObFx40ZsbAoX0WjXrh3Dhw+vVNDyxo0b2Nvb656vsjg7F64+l5KSAqDLEN2wYYNuUZuuXbvSp0+fEv3K22779u106tSJjz/+WLfNxcWF9evXk5CQUKmg88mTJ2nbtq3e9tatW+tWei9WUFBQIsCZmZnJyZMnmTNnDtbW1gwdOvSe7VUqFXFxcSxevJi0tDSmTp1a4fGGh4djYWHBkiVLUCgUQOHvdsKECZw9e5ZatWpx+PBhtmzZwqeffsqQIUN0fTt37szIkSPZsGEDw4cPx8HBgWnTpvH222+zbNkyGjdurAuCN2/evMJjE49GblHWo1kpRdjNigIeBSpVqUFLhUKBcdHr5F7i0tPJUyrJyS9g3PPPkVNQwK7TZ1i4LwK1RqOrc+loa0OfZs348c8/mfLrFgCMFAomvRBYYsq4EIYoLz8foNRrmZmpKQD5SiWlLSelUCjuG2CsyPHLczwhDFVxNqOxqf51yajoWqVWqvSCj5Xtd/3weTBS4NpGv35zcaZlzo0M6vZqg0atIfnERa7sOII6X4nH800qeHZCPF75eXkAmJqZ6u0zKdqmLCjQC1pWpF+1GtXp3OMFdqz7lUX/LUyUURgZMWTciBJTxu9WkJfP5hVrAejYLaCipyaEeAJI0PIxmz17No5lfHH28PDg9OnTpKamMmbMmBJfKgYPHlxiCnZ5mZqacvDgQZR3TaVMT0/Hxsam0tNro6KimDdvHr1799YFPdPT0zly5AjBwcHk5eWRV3ShAnjhhReYOXMmp0+fxtPTk7NnzzJq1ChdwBIKsyB9fHwqVUNRq9WW68tV8aqoWq0WjUZDVFQUnTt3LrEKt7e3Nx06dCAiIgKg3O0AatasyeHDh/npp5/o3r07jo6ODBkypERgrqJ8fHxKDR7euQp4sbCwMMLCwvS216tXj+nTp1OzZs1ytffy8mLevHmVWoSnZs2aZGdnM2PGDF555RW8vb3x8fFh9+7dujZ79uxBoVDQuXPnEkHThg0b4uTkRGRkJMOHDwcK63GGhYXxww8/YGdnh6+vL2+99VaFxyUeneISAopyBB8rK6CBL1qtlhcbNdJta+ftzeRffmXd/w7Tvq43RkZGbDp6jJATJ2ngUpOABg3QaLX8du4cC/btY9ILgbSoLatKCsP1qN9Lj+O9KoRBKC5tU9GXeiX6qZUqUk5epkaDWlhUt9Hb79jYE1s3R9w7++nee85NvYhevpPY/X/h0toHU2uLCg5UiMdH97ao4LWjIv32bgnn9x178PTxpmXndmg1Go7s/5NNS39kyLgR+DbVny1TkF/A2gUrSIq7TqfugdTxqVuh8QkhngwStHzMmjdvfs/Vw69fvw6gm0JbzMzMTG9beZmamhIZGcm+ffuIiYnh2rVrZGYWputXpl7h1atXeeedd6hXrx6fffaZbntcUS2sNWvW6GUAFktMTMS0KJujtKxDLy8voqOjKzwmZ2dn4uLiUKlUusBkaYozLJ2dncnIyCAnJ6fMcRQHI8vbDuD999/njTfe4Msvv2TmzJk0atSILl26MGjQIJyc9KczlIe9vT3t2pW+It/dOnTowMiRI4HCDwhmZma4uLjg6up63/ZJSUmsWLGCrKwspk+fzrPPPlup8Q4bNow//viDtWvXsnbtWtzd3Xn++ecZMGAAvr6F0zZiY2PRarU899xzpR7D2rpkHtH06dN58cUXuXHjBosXL75vRq14vCyL3tMFKpXevoKiOqqWD/g7e6GU0gZmJiZ0rFePzcdPEJ+eTg0bG3b8FY2XkyMf9+iuq8HX1tuLj0NC+f73KPyD3DGV7DFhoCyKspHvLj0ChQvjAFhZVD648aiPL4ShMDYvvC5plPq1vDVF1yoTC/3sr8r0y7yShKZAhWNjz1LH4tzES2+bQqGgZqv6ZF1LISv2BjUaVO4zvhCPg7lF4bVDWcq1Q1WUnWxRyrWjvP1yc3L5Y1cEbp4ejJg8Xvf5za91M5Z+Po/QHzfy3mwfTEz/fe/l5uSy9tvlxF6KoXnHZwnsV/FECyHEk0GClgaqtGCieSlTK0tz52IrWq2WcePGsX//flq0aEGzZs0YPHgwrVq10mWyVcTt27cZP348CoWC7777rsQFqvhxg4KCCAwMLLV/3bp1SU5OBiiRiVlMo9FUeEwALVu25NChQ0RHR99z2vCxY8dQKBQ0a/ZvkfTyjqM87Xx9fdm9ezdRUVHs37+fqKgoFixYwKpVq9i4cSPe3t56x3iYnJycyh3gLK19QEAAAwcOZPTo0axatYoWLVpUeAw2NjasXbuWU6dOsXfvXg4cOMCaNWtYt24ds2bNomfPnmg0Gqytrfnuu+9KPcbdr/Vz587psoJ3796Nv79/hcclHp0aRRnTGaVkbqfn5GBlboaFqf6Xw4fBvmhxnTyViqTMLJRqNe2Ksi6LmRgb075eXX7+3xGuZ2RQu4b+AgtCGALHovIoGVlZevvSs7KwsrTUBR4N8fhCGApz+8LrUsGtXL19BVm5GFuaYlzKlNXK9Es7H4/CxAgHn7KTEkpTnF0pC/MIQ2dfo/DacSvzlt6+WxlZWFhZYmahf+0ob7/4mFjUKhV+zzYr8fnN2MQE/zYt2fPLNm4kpuDi4QZAdtYtfpy3lKTYBFp2bkevVwfKDAIhnmKyxJaB8fT0BAqzGe8Wd9eqoUZGRnrZEiqVivT0dN3Px44dY//+/YwbN46ff/6ZDz/8kAEDBuDm5kZGUUH+8tJqtUyePJnLly8ze/ZsvcxPN7fCC4mxsTHt2rUr8c/Z2ZmCggIsLS1xc3NDoVBw7do1vceIjy999bn76dGjB8bGxqxcubLMNklJSezatYsWLVrg5uZG9erVsbGxue84yttOrVZz9uxZEhMTCQgIYMaMGfz+++9888033Lp164FWR39c7O3tmTt3Lmq1mnfffbdSU/VjYmKIjo6madOmvPfee2zbto2wsDDs7OxYtWoVUPhayc7OpnHjxnqvlaysLCzvWOX59u3bTJs2jfr169O/f39WrVpVqWxc8ehYm5vjZGtb6irhV2/exKuSWcbF0rKzeW/TL2w+fkJvX0LR3zFnW1tMi1aN1JRy00ejKdxWmexyIR4XaysrnGrUIKaUa2FMXBzelaiL/DiPL4ShMLE0w9zBptTVvm8npmLrVnqppsr0y4pNwdbNERML/RkFGrWaE99t42LIQb19OTcKZz1ZVK/YgodCPG6WVpZUc3Qg8Zr+teN6bDxunqVnCpe3X/EsueLPanfS6hJECvfl5+XpApZtX+hM7+GDJGApxFNOgpYGxtfXFw8PDzZs2FCi3uSuXbt0U5uLOTo6EhMTUyIDMCIigvyiQvuALjBZt27JGh+bNm0iNzcXVSnTOcsyf/58IiIiePPNN+ncubPefmdnZxo3bkxISIgumxIKFwP68MMPmTBhAiqVCgcHB1q1asW2bdu4eUeQ4+TJk5w9e7bc47mTp6cnI0aM4LfffmPJkiV6+zMyMpgwYQJKpZJPPvkEKJya88ILLxAVFcXFixd1bePj44mMjNT9XN52arWaV199lS+//LLEYzdpUlhg3eg+qyMbCj8/P0aOHEliYiKzZ8+ucP8ZM2Ywbtw4sotWlIbCafR2dna656BLly4Aer+riIgIJk6cyPbt23XbZs2aRXJyMp9++invv/8+9vb2fPTRR6VObxRVp3UdT84kJJCQnqHbdjo+nsSMTNo9YIaxg7U1OQUFRPzzDzl3/N5v3rrN7+cv0MjNlWpWVrhXr051ayt+P3+hxFT1ApWKqIsXsbWwwL0SC30J8Tg926QJp8+fJ+GO62j0P/+QmJJCu0pkvz/u4wthKBwb1Sbj8nVybmTotqVfuk7ujSyc/Os8lH4atZqc5AysXR1KPZaRsTHGpiak/HWFvIx/bwSrcgu4fvAcFjVssa0li8QJw9eoRRMunzvPjcR/rx2Xzp4nNSkFv2fLnuVWnn7ObjWxrWbHyT8Oo7wj81hZoOTUwaNY2Vjj7FpYl3/7ml+LApad6Da07AVuhRBPD5ke/pjt3bv3nqtj9+7dm+nTpzNmzBgGDx5M//79uXnzJmvWrNHVgizWo0cPPv/8c0aNGkWvXr24du0amzZt0mU8AjRr1gwbGxtmzpxJQkIC9vb2HD58mPDwcMzNzUsElu4lMjKSpUuX4u3tTf369dm+fXuJqdGOjo60b9+ejz/+mOHDh9O/f3+GDh1KtWrVCAsL46+//uLdd9/VnfuUKVMICgpi0KBBBAUFkZuby48//liplcOLvf3222RmZvLtt9+yf/9+unbtip2dHVeuXCE0NJS8vDzmzp2rq6sIMHHiRCIjIxk2bBivvfYaxsbGrFmzBmtr6xJBsfK0MzMzIzg4mCVLljB+/Hg6duxIXl4eGzduxNLSkv79+1f63B63cePGsXPnTjZu3EivXr0qNE18xIgRjB49mqCgIPr06YO5uTl79+4lNjaWr7/+GihcJTwgIICVK1eSkJBA27ZtSUhIYN26dbi6uurqbB46dIhNmzYxaNAg3bT/999/n6lTp7J48WImTZr00M9dVE6vpk2IuniRL8LC6O7vR4FKzY7oaOo4OdKhXuFNk+SsLC4kJVO/5jM8U8pCUvcyon175u35jf+GbqNLA19ylQXsOXMOYyMFr7UvLHFgZGTEa+3b8e1ve/kkdCvP+fig0WqI/OcC1zMyGPf8c5hIPUth4HoFBnLgyBE+X7iQHl26UKBUsn3fPrw8POjYsiUAyTdvcv7KFXy8vHimjMX9HuT4QjwN3Ds2JuXkZU7/sBu3Do3RqFTER53Bxq0Gzk0Lb6blpt0i61oKdrWdsXSwLXe/YvkZ2WjVGizs9RfgKebVvTV/LQvnr2XhuLUtrM+cePQ8BbdzaTziRckSE0+Eji934dTBo6yavYj2XZ9HpVTyx679uHrWokmbwu8JaSk3ib0Ug0fdOjg4O5a7n5GRET2CBrB+8SqWzfiG5h2fRavRcDzqMDeSUhgwKghjExNSrifx16FjWFhZUrOWO6cOHtUbZ9N2rR7fkyKEeCwUWpkr91hMnTqVkJCQ+7Y7f/48AIcPH2bevHmcO3cOV1dXJk6cyJw5c3Bzc9MtcqPRaFi8eDG//vorqamp+Pr68t5777Fy5UpycnJ07Y4fP86cOXP4559/MDMzo06dOrz66qtER0ezevVqDhw4gKOjI126dClx/ODgYBISEoiIiGDhwoVl1h8EaN26ta7f2bNnWbhwIceOHUOlUuker2/fknfDoqOjmTt3LtHR0djZ2TFixAjOnDnDiRMnSixuU1EHDhxg3bp1nDt3jqysLGrWrEmnTp0IDg4udTGdmJgYZs2axZEjRzAzM2PgwIEALFu2TPf7KG87jUbD6tWr2bx5M/Hx8RgbG9O8eXMmTJhA48b6q97dj4+PT4nntizx8fEEBATQt29fvvrqq/setzztDx48yIgRI/D29iY0NLRCi99ERkaybNkyLl++TH5+PvXq1WPEiBElViNXKpWsWLGC0NBQEhIScHBwoG3btkycOBFXV1dyc3Pp2bMnOTk57Ny5E3t7e13fYcOGcerUKX755RcaNGhQ7nEVS184v8J9xP1dz8hg9cFD/JOUhLmJCU1r1SKozbPYFU33//38BZZG/s7Y5zrT2ad+qcd46+f1ONnYMK1XT719x65eJfTkKWJT0zA1MaahiwtDWrfGrXq1Eu3OJlxn8/HjXL5RmMldx7EGfZo1o6mHLHTwsBl3fr6qh/BUup6czE9btvD35cuYm5rSrFEjgnr3xt62MKgSefgwS9au5Y1hw3iujEXTxv/3vzg5ODB94sQKH7+ixxMPx5jUXVU9hKdOzo1MroQdIfNqMsZmJlSv70adl1piZlN4XUo+cYkLv/5B/QEdeKZ53XL3K3Yr7ganloRRt09bXFr7lDmOzKvJXNt3kltxNwAFdh5O1A5sjp3Hg5VPEaUb5V16bX3xYG4mpRC+PoSrFy5jZmZGff+GdB3YE2u7wmvHiT+OELLyZ/r+5xWad2hd7n7Frvx9kf3bdpEQU1gSzaW2O517vEB9v8LP+kf2/8n2Nfcut/X5ym8f4hmLQI+ys2ifVEP2z6rqIZRpw/PvV/UQDJIELZ8gdwcVhRCVI0FLIR4OCVoK8fBI0FKIh0OClkI8HBK0fLwkaFm6J6PInhBCCCGEEEIIIYQQ4v8NqWkpDJJarSYtLa1cbW1tbbGwsHjEI3o40tLSUKvV921nYWGB7T2m6T1uT+q4hRBCCCGEEEII8WSSoKUwSImJiQQEBJSr7cyZM+nXr98jHtHDMWDAABISEu7brry1KR+XJ3XcQgghhBBCCCGEeDJJ0PIJ8iCL0zxpnJycWLVqVbna1q1b9/6NDMTs2bPJz8+/bztnZ+fHMJrye1LHLYQQQgghhBBCiCeTBC2FQTI3N6ddu3ZVPYyHrkWLFlU9hEp5UscthBBCCCGEEEKIJ5MsxCOEEEIIIYQQQgghhDAoErQUQgghhBBCCCGEEEIYFAlaCiGEEEIIIYQQQgghDIoELYUQQgghhBBCCCGEEAZFgpZCCCGEEEIIIYQQQgiDIkFLIYQQQgghhBBCCCGEQZGgpRBCCCGEEEIIIYQQwqBI0FIIIYQQQgghhBBCCGFQJGgphBBCCCGEEEIIIYQwKBK0FEIIIYQQQgghhBBCGBQJWgohhBBCCCGEEEIIIQyKSVUPQAghHrfjvTtW9RCEeCq0zqjqEQjx9BjlHVjVQxDiqbDi8t6qHoIQT4VAj+ZVPQQhJNNSCCGEEEIIIYQQQghhWCRoKYQQQgghhBBCCCGEMCgStBRCCCGEEEIIIYQQQhgUCVoKIYQQQgghhBBCCCEMigQthRBCCCGEEEIIIYQQBkWClkIIIYQQQgghhBBCCIMiQUshhBBCCCGEEEIIIYRBkaClEEIIIYQQQgghhBDCoEjQUgghhBBCCCGEEEIIYVAkaCmEEEIIIYQQQgghhDAoErQUQgghhBBCCCGEEEIYFAlaCiGEEEIIIYQQQgghDIpJVQ/gaTJ16lRCQkLu2SYgIIDFixc/phHp69KlC25ubqxZswaA4OBgEhISiIiIeGxjeBiPuXv3bjZt2sSZM2fIy8vDxcWFDh06MHz4cGrVqlWuYxT/vs6fP/9Q2lWWj4/PPfcXv2bi4+MJCAjQ229qaoqDgwPt27dn4sSJ1KxZE6DM9gqFAltbW7y8vAgKCqJXr14P50TE/3vpN1LZuXErMecvAeDj35CXB/fG2s623McI/XEjqckpjJzylt6+i6f/JnLHb1y/GofCSEEtL08C+3WjlrdniXYJV+P47dftxF66isJIgaePNy8P7oNjTecHOj8hHpeU1FRWh4Rw7uJFAJo3akRw377Y25b/vbR8/Xqup6QwfeJEvX0fzp7N5dhYve2tmzbl3ZEjdT9n3rrFhu3bOXb6NAUqFXXc3Qnq3Zt6np4VPykhqoChXJeys27x2+Yw/jl1BqVSiWttd14c0FOvnRCGLC/tFld2HiXzShIADr7u1Hm5FWY2luU+xsWQg+TezMR/9MuVPn7ahQTiIv/idkIqKBTY1XKi9gvNsfNweoCzE0IYKglaPgIffPAB1atXL3Wfi4vLYx7NvY0dO5bc3NyqHka5FRQUMGXKFMLDw/H392fUqFHY29tz8eJFQkJC2Lx5M7NnzyYwMLCqh1ohXl5ejB07ttR9d79mWrZsyaBBg3Q/q1QqLl26xLp16zh06BDbtm3Dzs6uzPZarZa4uDg2bNjA5MmTMTY2pnv37g/5jMT/Nzm3s1k5axFqtYqOL3VBq9Xwx679JMdfZ+wn72Bscv/LzfGo/3H8wCE8fbz19sWcv8Tqb5fj7FqTF/p3R63WcCTiD374eiGjpk7A3as2ADeTUvjh64WYmZnxXM8XATi4J5Lvv5zP+M/ex66a/cM9cSEeslvZ2Xy6YAFqtZpegYFoNBq279tH7PXrfPnee5iU470UcegQ+w4epEHdunr7tFot8cnJtPT359kmTUrsc3Jw0P1/bl4e0+fPJz0zk+7PP4+1lRW7Dhzg0wUL+PK99/BwdX3wkxXiETKU61J+Xh4rvl7IrYws2r3QGQtrKw7vi2LlrEWM/eQdnnE3rO8GQpRGmZNP9A+70Ko1uHdqXHgtiTpDdlI6Tcf1wMjY+L7HSDp2gaSjF7Cv80ylj58Rk8TZn37Dyrkani82R6vWcv3w30R/v5MmY17GtpYELoV42kjQ8hEIDAzE3d29qodRLu3bt6/qIVTIrFmzCA8PZ/LkyYwaNarEvrFjxzJq1CgmTZrE5s2b75vBaEgcHR3p3bt3udrWqlWr1La1atXi008/ZcOGDYwZM+a+7fv160e3bt1YtGiRBC3FA/tzTySZ6Rm8+dn7OLsWZvu61anNT3OXcOLPI7Tq3K7MvhqNht93/EbE1l1ltglfH4J99Wq8/vHbmJmbAdCsXSvmfzyTvVvCeO29cUBhgFKZX8DoDybg4lH4d9irYX2WfT6Pg7sjeWlw+d5nQlSVsIgI0jIymP3BB7gXZc7XrV2bLxYtIvLwYQLvcd3WaDRs2b2bX3fuLLPNjbQ08vPzaeXvT6fWrctst/W330hMSWHaW2/RsF49ANo2b85b06ezbe9e3nz11UqeoRCPh6Fclw6E7+Nm0g3+8/546vgU3kjwa92Mee9/TtTOfQwYPexhnbIQj0zCH2fJz8yhxYTeWDlXA8DW3YkzK/eQfOISLq3K/t6l1WiIi4zm2r5TD3z8K2FHMLe3pukbPTA2KwxlODf35vg3IVz97QR+/+n6UM5XCGE4pKaleGLExMSwdu1aunfvrhewBKhRowbz589HoVAwY8aMKhhh1erWrRsAJ06cKFd7Nzc3WrVqxeXLl7l9+/ajHJr4f+D04RPU8amr+2IIULeRDzVqOnP68Mky+ykLlCyePoeI0J00bdsS2+r6mZC52TkkxV2ncaumui+GADb2tnjW9yb20lXdtrQbqVjZWOsClgDudTywtLYiOSHxAc9SiEfvzxMnaFivni5gCeDv64uLszMH7/H3vUCpZMrXX/NLeDgdW7XCoVq1UtvFJRa+D9ye0c90KabVavn9yBGaNWyoC1gCVLez49W+ffH11s86E8LQGMJ1SavVcvLPI9T3b6ALWALY2tvx0uDe1K7v9RDOVIhH70b0FarVqakLKAJUr+uKpZMdN6JjyuynVqo48d12ru09hXNTb8zsrSp9fGVuPtmJaTj6eeoClgBmNpbY16lJVmzKg52kEMIgSdCyCu3cuZM+ffrg7+9Pjx492L9/PyNHjiQ4OFjXpkuXLiV+Lmu7Vqtl/fr1DBgwgGbNmuHn58dLL73E8uXL0Wq1ZY4hODiYLl26AIU1EH18fMr8t3DhQl2/S5cuMX78eFq2bEmTJk0YMmQIUVFResc/ePAgQ4YMoWnTpgQGBvLLL79U6rkC2Lp1K1qtlqCgoDLbeHh4EBgYyNGjR0lKStJtP3PmDP/5z39o1qwZHTt2ZNmyZaU+L+Vpp9Vq+e677+jatSt+fn60a9eOyZMnk5hYtQERI6PCt7NarS53Hyurwg8O93qNlGbLli34+Piwe/duunTpQpMmTXSvj2vXrjFlyhQ6depE48aNad26NWPHjuViUW22YgUFBSxcuJAXX3wRf39/unbtyvLly0uMPz8/n2+++YYuXbrQuHFjAgICmD9/PgUFBRUar3i0crNzSL+Riqunfoa5q4c7ibHxZfZVqVTk5+Yx+I3h9B8VhLGR/vQic0sLJn75Ie26Pqe3L+d2NkbG/17KajzjRE52DtlZt0q0ycvNw9beTq+/EIbkdk4OKTdv4lVKbeY6tWoRExdXZl+lUklOXh6TRoxgfHCw7ppwt7uDlnn5+XptbqSlkZaRgb+vL1B4jShu92LHjvfM9hTCEBjKdSnjZhq30jOp2+jf91JBXuF76dkuHe6Z7SmEoVDm5pOXdhsbtxp6+2xcanD7emqZfbUqDer8AnyHdsZnYEcURopKH9/E3JSWb/fDrX0j/WPk5KEo47onhHiyyfTwRyArK4u0tLRS99nb22NsbExoaChTpkzBz8+PyZMnc+XKFSZMmICDgwMeHh4Vfsxvv/2WpUuX0rdvXwYNGkR2djahoaHMnTsXa2vrewb6ijk4ODBr1iy97QsXLiQpKYmOHTsCcP78eV555RUcHR15/fXXMTU1ZceOHYwZM4a5c+fqMv4OHjzI6NGj8fT0ZNKkSaSlpfHFF1+gUCjKrPl5L6dOncLExAQ/P797tmvTpg3h4eEcP36c7t27c/HiRYKDg7Gzs2PcuHEolUpWrlypF/gqb7ulS5eyaNEigoKC8PHxIT4+ntWrV3PmzBl27NiBcTlqutxNqVSW+poxNTXFtpwLLxw6dAiAhg0blqt9bm4uR48exd3dvdyPcbePPvqIYcOGYWNjQ9OmTbl58yaDBg3CxsaGYcOGUb16df7++282bdrE2bNniYiIwNTUFIDx48dz4MABevbsyYgRI4iOjmbu3LmkpqbywQcfoFaref311zlx4gSDBg3C29ubM2fOsHTpUv7++2+WLFmCQqH/wUc8flnpmQDYVa+mt8+2mh15Obnk5uRiaaVfqN3C0oJJX310z/eNkZERjs/o1yhKirtO7KUY6jX21W3r+HIA50+dZdOyNbw8pA8AuzZtxdjYmLYvdKrgmQnxeKVlZADgYK+f2VXdzo6c3Fyyc3KwttLPVLGytGTBtGn3vQbFJyZiYWHB6i1bOHjyJPn5+Tg7OjKkRw/at2gBQGJKYbaKna0ta0JC2HfwILl5eTzj5MTwvn1pcZ/rsBBVzVCuS6nJNwCwtrVh18atHDtwiPzcPBycHXl5SB98mzauzOkJ8VgVZOYAYGanf+0xs7NEnatElVuAiaWZ3n5jC1NavtO/xA3mBzm+paP+DejspDSyrqVQvZ5buc9JCPHkkKDlI9C3b98y94WGhlK/fn1mzZqFl5cXP//8M2ZmhX/gvby8mDFjRoWDlkqlUjdt+quvvtJtHzhwIG3btiUqKqpcQUsrKyu92ocrVqwgLi6OadOm0bRpUwBmzJiBg4MDISEhuky9YcOGMXz4cL744gsCAwMxMzNjzpw5ODk5sXHjRmxsbABo164dw4cPr1TQ8saNG9jb2+uer7I4OxeuEJxS9KWrOANww4YNukVtunbtSp8+fUr0K2+77du306lTJz7++GPdNhcXF9avX09CQkKlgs4nT56kbdu2ettbt26tW+m9WEFBQYkAZ2ZmJidPnmTOnDlYW1szdOjQe7ZXqVTExcWxePFi0tLSmDp1aoXHW6x79+5MmjRJ9/Py5cvJzMzk559/xvuO6YPW1tYsX76cCxcu0KhRI37//XcOHDjA22+/rVuAaOjQoSiVStatW8f48ePZu3cvhw4dYsWKFbqAOYC/vz/Tpk1j3759T9yCS0+r/Lw8AEzNTPX2mRRtUxYUlPrlUKFQVCrQX5CXz+YVawHo2C1At71ajep07vECO9b9yqL/Ft6EURgZMWTciBJTxoUwRMXZjKVd58yKbvjkK5VYl9K3vO+luMRE8vLyyM7L483gYLJzc9kZGcmCH39ErVbTqXVrcooW6NsYFoaJsTGvDRiAkULB9n37mP3993w4bpwuC1MIQ2Qo16W8ovfSvpBwjI2N6Ta0H0ZGCv7YtZ91C39g+DtjqdvoyanBLv5/UhcoATA21Q8dGBUtaKVWqkoNWioUChTG904yeJDjqwuUnP+lcLafe2e5oSbE00iClo/A7NmzcXR0LHWfh4cHp0+fJjU1lTFjxpT4YjJ48OASU7DLy9TUlIMHD6JUKktsT09Px8bGhpycnAofEyAqKop58+bRu3dvTnM2ugABAABJREFUXdAzPT2dI0eOEBwcTF5eHnlFHwoBXnjhBWbOnMnp06fx9PTk7NmzjBo1ShewhMIsSB8fn0rVUNRqteX6EFm8sqpWq0Wj0RAVFUXnzp1LrMLt7e1Nhw4diIiIACh3O4CaNWty+PBhfvrpJ7p3746joyNDhgxhyJAhFT6nYj4+PqUGD+9cBbxYWFgYYWFhetvr1avH9OnTqXlHHbR7tffy8mLevHkPtAhPq1atSvw8ZswY+vfvT40a/07vyMvL001TLH4tRkZGYmRkxLBhJYvPT5kyhTfeeANra2v27NmDg4MDjRo1KhF07dy5M8bGxkRGRkrQ0kAUVxd4XJmvBfkFrF2wgqS463TqHliiTtjeLeH8vmMPnj7etOzcDq1Gw5H9f7Jp6Y8MGTdCslqEQSsu1fEo30uB7duj0Wjo2unfzOP2LVrw7pdfsjY0lA4tW6JUqQDIyc3l208+waboBmWLxo2Z8NlnbNi+XYKWwqAZynVJpSx8L+Xl5DJp5kdYWhe+l3yaNuabKZ+zd3OYBC2F4dO9oQzr+OoCFWfX7CM7MR335/yoVqfm/TsJIZ44ErR8BJo3b37P1cOvX78OFK7qfCczMzO9beVlampKZGQk+/btIyYmhmvXrpGZWTg1pqL1CgGuXr3KO++8Q7169fjss8902+OK6mmtWbNGLwOwWGJiom4KcGlZh15eXkRHR1d4TM7OzsTFxaFSqXSBydIUZ1g6OzuTkZFBTk5OmeMoDkaWtx3A+++/zxtvvMGXX37JzJkzadSoEV26dGHQoEE4OelPFSoPe3t72rUrX12jDh06MHLkSKDww7iZmRkuLi64urret31SUhIrVqwgKyuL6dOn8+yzz1ZqvP/H3n1HRXW0ARz+Lb2DiKigCKJioSlgVwxi19iioojGWFKMLeWLphiNiSZGk9g1RjRRgxUsETv2HjWxxN4ogqiASF9gvz8WVldQwaCgeZ9zPEfunZmdu+zl3n3vOzP5Hg5O5lMqlfz444+cPXuWyMhIoqOjNfNU5ubmAhATE0P58uW1AtoAFSpU0LyHkZGRJCQkFJqBCpT6HKLiAUMjQ0CdtfKo7Lyn50ZGRiXyWulp6Sz76WciL1+jQYtG+PfopLVv/5YI7B0dGPTxcE2w3K1hfeZP+oF1S1by0fcu6OkXzLwRoiwwMlSfS4XN25uV92DS5F+eS22aNy+wzUBfn5Y+PqzZvJmo2FgM8x6oNvLw0AQsAUxNTPBydWXv0aNkZGZq+itEWVNWrkv6eedSXS8PTcASwNjEmNqerpw8eIysjEwMjORcEmWXrqH6vilXWXDe/Ny8h1x6Rs9+b/Us7WenZ3H2tx0k34inondNHNs0eObXF0KUbRK0LEWFBRMNi/gF4OHFSlQqFe+99x67du3Cy8uL+vXr06dPH3x8fBg4cGCx+5WSksLw4cNRKBTMnj1b66Yu/3UDAwMfm+VWo0YNbt26BaCViZkvP3BVXN7e3hw6dIhTp07RoMHjL0x//vknCoWC+vXra7YVtR9FKVe7dm22bt3Kvn372LVrF/v27WPmzJksXryYlStXag2Lfh4qVKhQ5ABnYeVbt25Nr169GDp0KIsXL8Yrbw6zZ/HoQg9//vkngwcPxsTEhKZNm9KzZ0/q1q1LZGSkVvC7KIsF5eTk4OjoyJdfflno/sKyUEXpsCyvnu7h/r37BfbdT0rGyMS4RL6QpSbfZ8kP84mLjMHbtymvD+illUVz99ZtcrKzcWtUX+uzqaunh3tjb7at3sDt2HgqO8icR6JsssmbOiUpObnAvsTkZEyMjZ9boNAyb27jzKwszcrjFo88WMovp1KpSJegpSjDysp1ySJv5XFT84LnkqmFGahUZGZK0FKUbYaW6s9v1v30AvuyktPRNdZHt5CpGJ5X+1kp6ZxZsp3UmwlUaliLGl2byDz3osiGOMtIvZeNBC1LgaOjI6DOZnxUVFSUZj+og0KPZlxkZ2eTmJioyQr8888/2bVrF++99x6jRo3SKpeUlFSs7E2VSsXHH3/MlStXWLBgQYG69vbqL/u6uroFAmeXL18mOjoaY2Nj7O3tUSgU3Lhxo8BrREc/fsXGJ+ncuTNz584lODj4sUHLuLg4tmzZgpeXF/b29qhUKszMzJ7aj3LlyhWpXE5ODufPn8fMzIzWrVvTurV6zqLw8HDGjBnD6tWr/9UckS+CpaUl06dPJyAggA8//JA//vijQMbjs5o5cyZGRkZs2rQJa2trzfb58+drlbOzs+PgwYOkpqZiavpgdrazZ88SHBzMu+++S5UqVThz5gyNGzfWCkAplUq2b99eYBi8KD3GJsZY2VgTe6PguX0zMhp7x2fLIH9YZkaG5othkza+dOxbcO7g/Azs3NyCD4RUmocPxc88F+JFMTUxoUL58lwr5Dp5LSoK52eYM/lhCUlJfD1nDk0bNOCNDh209sXkPWysUL48xoaG6OnpERUXV6CN+Lt30dfXx7KErhtCPA9l5bpU0b4yunp6xN8seC4l3klAT1+/0ICmEGWJnrEBhtZmha4SnhJ7F3P7wqdFex7tZ2cqNQFLu2Z1ce7U8F+9thCi7Hv8Ml7iualduzYODg6sWLFCa77JLVu2aIY257OxseHatWtaGYARERFk5k3WD+qhzaDOcHzYqlWrSE9PJzsvrb4oZsyYQUREBO+//z6+vr4F9tva2uLq6kpYWJgmmxLUgaRPP/2UkSNHkp2djbW1NT4+PmzYsIE7d+5oyp08eZKzZ88WuT8Pc3R0ZNCgQWzfvp158+YV2J+UlMTIkSNRKpV88cUXgHr4dJs2bdi3bx+XLl3SlI2Ojmb37t2an4taLicnhwEDBjB58mSt1/bw8AAKZh6WVW5ubgwePJjY2Fi+//77Ems3KSkJa2trrYDl/fv3CQsLAx5kWPr6+pKbm8vq1au16oeEhLB582ZsbGzw8/MjKSmJkJAQrTIrVqxgzJgxmtXSRdlQz8uDK/9c4Hbsg78Ll89e4G5cPG6N/v2QnY1L1+R9MWxZ6BdDAFv7SphbWXBy/xGUWQ/m+FVmKfnr4DFMzEyxtZNgtyjbGnl4cPrCBU0QEeDU+fPExsfT9F9kxgNYW1mRlp5OxMGDmsV2AO4kJLD7yBHq1apFOQsLjAwN8XZz4+SZM0Q9NBVH/N27/Hn6NN5ubi/N9U78d5WF65KBkSG167ty8dRZ4mMenEuJt+9y/uQZatd3lXNJvBRs6lUj6cpN0m4nabYlXr5J+u1kKrg7vbD2r2w4pA5YNq0jAUsh/iMk0/I52LFjxxNXx+7atSsTJkxg2LBh9OnTh549e3Lnzh2WLl2qmQsyX+fOnZk0aRJDhgzh9ddf58aNG6xatUqT8QhQv359zMzMmDJlCjExMVhaWnLkyBHCw8MxNDQkNTW1SP3evXs38+fPx9nZmVq1arFx40atodE2NjY0a9aMzz//nIEDB9KzZ0/69u2LlZUVmzZt4u+//+bDDz/UHPsnn3xCYGAgvXv3JjAwkPT0dJYsWfJMK4fnGzNmDPfu3eOnn35i165dtGvXDgsLC65evcq6devIyMhg+vTp1H5ogYBRo0axe/du+vfvz5tvvomuri5Lly7F1NRUK4u1KOUMDAwICgpi3rx5DB8+nBYtWpCRkcHKlSsxNjamZ8+ez3xsL9p7773H5s2bWblyJa+//vq/Giaer2XLlixcuJBRo0bRvHlzbt++zZo1azSB6/zPop+fH82bN+fbb7/l0qVLuLm5cfLkSdatW8fw4cOxsrKiV69ehIWFMWnSJM6ePYu7uzsXL15k5cqV1KtXjx49evzr/oqS06KDH38dPMbi7+fQrN1rZCuV7N+yCzvHqng0Vn+2EuLvEHn5Gg41nLC2LfpT+fibcfx96E+MTIypVLUKfx08VqCMZ1MfdHR06Bz4BiFzF7Pg6x9p0KIRqtxcju87wu24eN4YEojuE+bDFaIseN3fn71HjzJp1iw6+/mRpVSycedOqjs40MLbG4Bbd+5w4epVXKpXp+JjFv57nMG9ezNt4UK++PFHWjdtSnpGBlv37kVXR4e3evXSlOvftSv/XLrEVzNn0qFVK/R0ddm8Zw8G+vr07dKlRI9ZiOehLFyXANr1ep3r5y8TPHUOTdq0REdXj0M79qBvoE+bHs++GKIQL1KVFq7En7zC6UVbsW/uSm52NtH7zmBmXx5bT/XUWOkJ90m+EY9FNVuMrc1LvP20+CTiT15F11gfM7vy3Dp5pUA7Fes/32m6hBAvnnx7ew6mTJnyxP1du3alWbNmBAcH88MPPzB9+nTs7OyYMmUK06ZN0yrbr18/kpKSWLNmDZMmTaJ27drMnj2b4OBgTZamjY0NP//8M9OmTWPevHkYGBjg5OTEDz/8wKlTp/jtt9+4c+fOY1c0z3f69GlUKhVXrlxhxIgRBfY3bNiQZs2aUb9+fUJCQpg1axaLFy8mOzsbJycnvv32W7p3f/Ck2dXVlaVLlzJ9+nRmz56NhYUF77//PmfOnOHEiRNFfTu16Onp8fXXX9O2bVuWL1/OkiVLSE5OplKlSnTu3JmgoKACi+lUrlyZkJAQpk6dyi+//IKBgQG98r6YLViwoNjlRo4ciZWVFWvXruW7775DV1eXBg0a8P333z/3+SxLkpGRERMnTmTQoEF88cUXrFu3Tms1+2cxYsQIcnJyCA8PZ9euXdja2tK0aVPeeustOnXqxOHDh2nTpg06OjrMnTuXOXPmsHHjRjZs2ICDgwPjx4+nb9++gDpAvGTJEubMmcPWrVvZsGEDtra29O3bl+HDh2NsbFwSb4MoIaYW5gwZN5LwkDB2rtuMgYEBdeq70a5XF83CN9cvXiUs+He6v9WvWF8Or19Q35RmpKUTFvx7oWXyvxzW9XJn0EfvsWvDFnas3QRA5WpVCBo9jFpudf7NIQrxQliamzNx9Gh+DQ1lVXg4hvr6+Li7E9i1q+bB5rkrV5i3bBnv9u9f7KClj7s7Hw8dSti2bSxfvx4DfX3q1qxJv9dfx75iRU25CuXL8/WHH7J8/Xo27tyJSqWijrMzgd26Ffs1hSgNZeW6VM7GmmGfjWbbmo3s37ILlUpFtVrVadfr9WK9phClycDMGPehHbi66Sg3dpxE10CP8nUccGrvjY6eLgDJ129xcc1+ar3RvNhBy6K0f++aepqFnHQlF9fsL7QdCVoK8epRqJ5laWnx3Pj5+WFvb//YlbmFEP/ejshnC5oLIbQ1TJJnn0KUlKNWRZ/ORwjxeL9c2VHaXRDilbDitf+VdhdKXFn+Hujv8O+nLnkVySQqQgghhBBCCCGEEEKIMkVSJESpycnJISEhoUhlzc3NMTIyes49KhkJCQmaBWeexMjICHPz4g2deJ5e1n4LIYQQQgghhBDi1SNBS1FqYmNjad26dZHKTpky5aVZeOWNN94gJibmqeW6d+/Ot99++wJ6VDQva7+FEEIIIYQQQgjx6pGgZRkTERFR2l14YSpUqMDixYuLVLZGjRrPuTcl5/vvvyczM/Op5WxtbV9Ab4ruZe23EEIIIYQQQgghXj0StBSlxtDQkKZNm5Z2N0qcl5dXaXfhmbys/RZCCCGEEEIIIcSrRxbiEUIIIYQQQgghhBBClCkStBRCCCGEEEIIIYQQQpQpErQUQgghhBBCCCGEEEKUKRK0FEIIIYQQQgghhBBClCkStBRCCCGEEEIIIYQQQpQpErQUQgghhBBCCCGEEEKUKRK0FEIIIYQQQgghhBBClCkStBRCCCGEEEIIIYQQQpQpErQUQgghhBBCCCGEEEKUKRK0FEIIIYQQQgghhBBClCkStBRCCCGEEEIIIYQQQpQpeqXdASGEeNEaJsmfPiGEEEIIIYQQoiyTTEshhBBCCCGEEEIIIUSZIkFLIYQQQgghhBBCCCFEmSJBSyGEEEIIIYQQQgghRJkiQUshhBBCCCGEEEIIIUSZIkFLIYQQQgghhBBCCCFEmSJBSyGEEEIIIYQQQgghRJkiQUshhBBCCCGEEEIIIUSZIkFLIYQQQgghhBBCCCFEmSJBSyGEEEIIIYQQQgghRJkiQUshhBBCCCGEEEIIIUSZIkFLIYQQQgghhBBCCCFEmSJBSyGEEEIIIYQQQgghRJmiV9odKI6xY8cSFhb2xDKtW7dm7ty5L6hHBfn5+WFvb8/SpUsBCAoKIiYmhoiIiBfWh5J4za1bt7Jq1SrOnDlDRkYGlStXpnnz5gwcOJCqVasWqY3839eFCxdKpNyzcnFxeeL+/M9MdHQ0rVu3LrBfX18fa2trmjVrxqhRo6hUqRLAY8srFArMzc2pXr06gYGBvP766yVzIC9ATk4OCxcuZNWqVSQnJ+Pt7c348eOxs7Mr7a6Jl0D83bv8FhbGP5cuAdCgXj2CunfH0ty8yG38HBLCzfh4JowaVWDflchIQjZs4MK1a+jo6FDX2Zmg7t2xq1gRgNt37/L+hAlPbH/8yJHUq1mz6AclRCmQc0mIkpF4+y6bV67n2oXLALi416VDn66YWhT9XFq3ZCV3b8Uz+JMRTywXF3WT+ZOm07KjP37dOqhf/04CP/zvqyfWe+t/w3GqLeeSKPsyEu5zdfMx7l2NA8C6dhWcOvhgYGZc5DYuhR0k/c493Id2KLAv4WIMUbv/JiXmLigUWFStQLU2DbBwqKBV7t71W1zfdoKUmDvoGRtQvo4D1fzro29q9O8OUAhRJr1UQct848aNo1y5coXuq1y58gvuzZO98847pKenl3Y3iiwrK4tPPvmE8PBw3N3dGTJkCJaWlly6dImwsDDWrl3L999/j7+/f2l3tViqV6/OO++8U+i+Rz8z3t7e9O7dW/NzdnY2ly9fZvny5Rw6dIgNGzZgYWHx2PIqlYqoqChWrFjBxx9/jK6uLp06dSrhI3o+5s6dy5w5cxg0aBAVKlRg/vz5vPvuu4SGhqKrq1va3RNl2P3UVCbOnElOTg6v+/uTm5vLxp07ibx5k8kffYSe3tMvNxGHDrHz4EHq1KhRYN/NW7eYOHMmhvr69GzfHoBNERGM/+knpo4di7WlJeZmZgwPCipQN0upZPGaNViamVHN3v7fH6wQz5GcS0KUjLSUVIKnziEnJ5sW7f1QqXLZv2UXt6Jv8s4XH6BbhHPp+L7DHN97CEcX5yeWy8nJYe2i5eRk52htNzUzpeeQwALllUolm5aHYmphRqWqci6Jsk+ZlsmpRVtQ5eRSpaUrKpWK6H1nSI1LxPO9zugU4XtC3J8XiTt2EUunigX2JV2L4+yv2zGxtcKxbQNUOSpuHjnHqYWb8RjWAfOq6sBl0tVYzizejp6xAVVbuaNQKIg5+A9JV+PweKcj+saGJX7sQojS9VIGLf39/alSpUppd6NImjVrVtpdKJapU6cSHh7Oxx9/zJAhQ7T2vfPOOwwZMoTRo0ezdu3ap2YwliU2NjZ07dq1SGWrVq1aaNmqVasyceJEVqxYwbBhw55avkePHnTs2JE5c+a8NEHLVatW0bJlSz755BNAHbCdPn06V69epaZk1Ign2BQRQUJSEt+PG0eVvGzkGtWq8c2cOew+cgT/J/wtzM3NJXTrVtZs3vz49nfvJjMzk4mjR+OU9/ffrVYtPp02jU0REQR1746RoSEtGzYsUHfJ2rXk5OQwYuBAzExM/uWRCvF8ybkkRMk4sG039xKTeP+r/2Frpz6X7J2q8ev0eZw4cBQf36aPrZubm8ueP7YTsX5LkV5r76Yd3L4ZV2C7gZEhnk19CmwPDwklJyeHXsOCMDaVc0mUfTH7z5J5Lw2vkV0xsbUCwLxKBc4Eb+PWictU9nn890JVbi5Ru09xY+dfjy1zddNRDC1N8Xy3M7oG6hCFbQNnjv8YxvXtJ3B7qx0AVzYeQaGjwOPtjhiXVyeRlK/nwImZG4jafYrqHQqeb0KIl5vMaSk0rl27xrJly+jUqVOBgCVA+fLlmTFjBgqFgq+//roUeli6OnbsCMCJEyeKVN7e3h4fHx+uXLlCSkrK8+xaicnIyCA2NhaVSgVAZmYmoB4iL8STHDhxgro1a2qCLADutWtT2daWg084Z7KUSj757jtWh4fTwscHayurQsvF37mDuZmZJsgC4FytGmampkTFxj62/RsxMWzZs4dWjRoVmnUmRFkj55IQJeP0kRM4udTQBCwBatRzoXwlW04fOfnYesosJXMnTCNi3WY8m3hjXs7yia8TF3WTPX9so1WXdkXqV1zUTQ7t2EeD5g1xrPXkDE4hyorbp65i5VRJE7AEKFfDDuMKFtw+de2x9XKU2ZyYvZEbO/7C1tMZA8uCQXpleiapsQnYuDlqApYABmbGWDpVIjkyHoCMxBTSbiVhW99ZE7AEMKlghXWdqtw6cbkEjlQIUda80kHLzZs3061bN9zd3encuTO7du1i8ODBBD005MnPz0/r58dtV6lUhISE8MYbb1C/fn3c3Nxo3749P//8sybAU5igoCD8/PwA9RyILi4uj/03a9YsTb3Lly8zfPhwvL298fDwICAggH379hVo/+DBgwQEBODp6Ym/vz+rV69+pvcKYP369ahUKgIDCw5jyefg4IC/vz/Hjh0jLu7BE+UzZ87w1ltvUb9+fVq0aMGCBQsKfV+KUk6lUjF79mzatWuHm5sbTZs25eOPPyb2CV+mXgQdHfXpkpOT85SSD5jkZaI86TPyOFu3bqVnz57Ur18fLy8vBg0axPHjx7XK5ObmEhwcTPv27XF1daVFixZ8/fXXWkHSMWPG4OLiwp49ezTbkpKSaN68OW3atCEtLU2zvUOHDly8eJGff/6ZPXv2EBwcTJMmTXB0dNR63SNHjuDi4kJYWBhdunTBzc2NcePGAXD79m0mTpxI69atcXV1xcvLiwEDBhTou0ql4rfffqNz5864u7vj5+fHtGnTtKZTKMrxidKXkpZG/J07VC9kvlunqlW5FhX12LpKpZK0jAxGDxrE8KAgzXn2qEoVKpCSmsq9+/c12+6nppKWno7VQ9M1PGrlH39gYGBA786di3FEQpQOOZeEKBnpqWkk3r6LnWPBkVl2DlWIjYx+bN3s7Gwy0zPo8+5Aeg4JRFfn8cNec3JyCFscgnM9FzyaeBepbztCN6FvoE/r7h2LVF6I0qZMzyQjIQUz+/IF9plVLk/KzbuPravKziUnM4vafX1x6dUChY6iQBk9Q328x/TAvlm9gq+dloEi73qWlZwKgGnFgtPEGVubk52aSea91CIflxDi5fBSDg9PTk4mISGh0H2Wlpbo6uqybt06PvnkE9zc3Pj444+5evUqI0eOxNraGgcHh2K/5k8//cT8+fPp3r07vXv3JjU1lXXr1jF9+nRMTU2fGOjLZ21tzdSpUwtsnzVrFnFxcbRo0QKACxcu0K9fP2xsbHj77bfR19fnjz/+YNiwYUyfPl2T8Xfw4EGGDh2Ko6Mjo0ePJiEhgW+++QaFQvHYOT+f5K+//kJPTw83N7cnlmvcuDHh4eEcP36cTp06cenSJYKCgrCwsOC9995DqVQSHBxMVlaWVr2ilps/fz5z5swhMDAQFxcXoqOj+e233zhz5gx//PHHM82tqFQqC/3M6OvrY17EhQ0OHToEQN26dYtUPj09nWPHjlGlSpUiv0a+o0ePMmbMGFq2bEmvXr1IT09n2bJlDBo0iE2bNmkWQ/rss89Yv3493bp148033+TKlSuEhIRw4sQJQkJCMDQ05IsvvuDQoUN89dVXbNq0CSMjIyZNmkRCQgLLli3TBFYBPvjgA/bt28ePP/6ISqWiYcOGzJgx47H9/Oqrr+jRowe9evXCzs6OjIwMAgMDuX//PoGBgVSsWJHr168TEhLCkCFD2LFjB+XLq294Jk6cSEhICK+99hp9+/bl2rVrBAcHc/36dWbPnl3k4xOlLyEpCQBry4LZKOUsLEhLTyc1LQ3TQoaTmhgbM3P8+Kee1139/Tlx5gwzf/2VAd27A7Bs3Tp0dXXp0KpVoXVuxMRw/MwZOvv5Fdo3IcoaOZeEKBnJifcAsChnVWCfuZUFGWnppKelY2xScAERI2MjRn/7WZHuN/dv3sndW7fp9/5b5OY+/QF1XNRNLvx9lmbtXsPCSs4l8XLIuqdOcDCwKHjtMbAwJiddSXZ6FnrGBgX26xrp4/1BT3R0H58rpdDRwdim4EOz1LgEkm/EU66met5XHX116CInU1mgrDJNPTos6346hpamRTgqIcTL4qUMWnbPu8kuzLp166hVqxZTp06levXq/P777xgYqP+AVq9ena+//rrYQUulUqkZNv3tt99qtvfq1YsmTZqwb9++IgUtTUxMCsx9+MsvvxAVFcX48ePx9PQE4Ouvv8ba2pqwsDBNQKl///4MHDiQb775Bn9/fwwMDJg2bRoVKlRg5cqVmJmZAdC0aVMGDhz4TEHL27dvY2lpqXm/HsfW1haA+Hh1qn5+huiKFSs0i9q0a9eObt26adUrarmNGzfSsmVLPv/8c822ypUrExISQkxMzDMFnU+ePEmTJk0KbG/YsKFmpfd8WVlZWgHOe/fucfLkSaZNm4apqSl9+/Z9Yvns7GyioqKYO3cuCQkJjB07ttj9DQ8Px8jIiHnz5qFQqJ9INm3alJEjR3L27FmqVq3KkSNHCA0NZeLEiQQEBGjq+vr6MnjwYFasWMHAgQOxtrZm/PjxjBkzhgULFuDq6qoJgjdo0EDrdSMiIkhLS0OlUmFsbMwPP/yA5RO+oHp5efHFF19o9fvGjRv88ssvmiA8qOf9/PLLLzl+/Dht27bl8uXLrFixgt69ezNp0iRNOVNTU+bPn8/ly5e5e/dukY5PlL6MvGkECvvbYZA3tUCmUklht5AKhaJIXwxtrK3p3q4dwatX87+8v8M6Ojp8MHiw1jDXh23bvx8dHR3at2xZxCMRonTJuSREycjMyABA36Dg9DZ6eduUWVmFBi2Lei7Fx8Sya8NWOgX2xNK6HIl3Ck+oeNjRXftR6OjQqHWLp5YVoqzIyVIHCXX1C4YOdPIWtMpRZhcatFQoFCh0C2ZXFuU1L6xWjzKs4qtOqDGpaIWukT53zt6giq+b5jtSjjKbxEsxAOQqs4v9WkKIsu2lDFp+//332NjYFLrPwcGB06dPc/fuXYYNG6Z149+nTx+tIdhFpa+vz8GDB1EqtZ/qJCYmYmZmpjW8tjj27dvHDz/8QNeuXTVBz8TERI4ePUpQUBAZGRlk5N10AbRp04YpU6Zw+vRpHB0dOXv2LEOGDNEELEGdBeni4vJMw2dVKlWRbtLyVy5VqVTk5uayb98+fH19tVbhdnZ2pnnz5kRERAAUuRxApUqVOHLkCL/++iudOnXCxsaGgIAArcBVcbm4uBQaPLQoZCjcpk2b2LRpU4HtNWvWZMKECVR6aJ6xJ5WvXr06P/zwwzMtwlOpUiVSU1P5+uuv6devH87Ozri4uLB161ZNmW3btqFQKPD19dUKmtatW5cKFSqwe/duTVCvY8eObNq0iUWLFmFhYUHt2rUZMWKE1mtOmzaNhQsX0qJFC9zc3Jg7dy6ffPIJv/zyC1euXOHMmTP4+vpibW2tqePjoz3ZdceOHWncuLFW0PzhTNr8c2X37t2oVKoCUzMMHjyYjh074uDgQEhISJGPT5Su/OkP8m8en4eVf/xB6Nat1KlRA/9mzcjNzWXb/v38FBzMB4MH4/VIhniWUsm+Y8fwcnOjQvmCw5mEKIvkXBKiZOTPyvO8zqXc3FxCF4XgUKP6Exf0eZgyS8lfh/6ktqcr5Wysn15BiLJCc0K9mJfLycrm7NKdpMYmUqWVG1ZO6u9eOrq62DerR+TOv7iwci9VW7mhylVxY8dJcrPUwUrFEzI6hRAvp5cyaNmgQYMnrh5+8+ZNAM0Q2nwGBgYFthWVvr4+u3fvZufOnVy7do0bN25w75566MmzzFd4/fp1PvjgA2rWrMlXX32l2R6VN1/V0qVLC2QA5ouNjdUsjFJY1mH16tU5depUsftka2tLVFQU2dnZmsBkYfIzLG1tbUlKSiItLe2x/cgPRha1HMD//vc/3n33XSZPnsyUKVOoV68efn5+9O7dmwoVKhT7uEA9bUDTpkW7qWzevDmDBw8G1De7BgYGVK5cGTs7u6eWj4uL45dffiE5OZkJEybQqFGjZ+pv//792b9/P8uWLWPZsmVUqVKF1157jTfeeIPatWsDEBkZiUqlotVjhvOZmmrn4kyYMIG2bdty+/Zt5s6dqxXQP378uCZguWDBAnR1dblw4QI7d+5kwYIFJCcnExwczPr167WClg//P59CoeDnn3/m5MmTREZGEhkZqQn45+bmAhATo34a+uhcmRYWFppAcnGPT5Qeo7xh+o9O9QDqgAeAiZHRM7efmpbGhp07cXZwYPyIEZq5+po2aMCn06axICSEObVray0YdebiRTIzM2lSv/4zv64QL5qcS0KUDEMj9bmkLORcys7LGjP6F+fS/s0RxEXHMGTcKFLvqxMFMvIezGZlKUm9n4KJmalW0PTq+UsoM7Nw9fF85tcVojToGqqvCbnKgvP652arg4V6RiWzaGd2ehZnf9tB8o14KnrXxLGN9qgwBz8PsjOyuHnwH80CQNZ1qlClpSvXt55Az1imjhLiVfNSBi2LqrBgYlHnwHt4sRWVSsV7773Hrl278PLyon79+vTp0wcfH59nyvRKSUlh+PDhKBQKZs+erXXTlP+6gYGB+Pv7F1q/Ro0a3Lp1C0ArEzNffmCouLy9vTl06BCnTp0qMGz4YX/++ScKhYL6D32BKWo/ilKudu3abN26lX379rFr1y727dvHzJkzWbx4MStXrsTZ+fmutFihQoUiBzgLK9+6dWt69erF0KFDWbx4MV5eXsXug5mZGcuWLeOvv/5ix44d7N27l6VLl7J8+XKmTp1Kly5dyM3NxdTUVDP/46Me/az/888/mkzHrVu34u7urtm3c+dOAIYPH67Jtv3222/p3r07s2bNwsTEBEdHR03ANN+jmblXr16lb9++KJVKmjdvTseOHalTpw4qlYrhw4dryhVlMaPiHp8oPTZ5mbVJyckF9iUmJ2NibKwJxjyLuNu3yc7OpqmXl9biInp6ejT39mb5+vXE3LqF40MPs06ePYuenh71izgHrRBlgZxLQpQMy/Lqc+n+vfsF9t1PSsbIxBgDo2c/ly6dOUdOdg4LJv1QYN+BLREc2BLBB1PHa2VUXjz1D7p6etRyr/PMrytEaTC0VI/qy7qfXmBfVnI6usb66BYyFUNxZaWkc2bJdlJvJlCpYS1qdG1SIFtaoVDg3KkhVX3dSL+TjKGlKUblzLi+7QToKDC0kqQGIV41r2TQMj976/r16wX2RUVFaWV36ejoFMhoyM7OJjExUZMV+Oeff7Jr1y7ee+89Ro0apVUuKSmpWNmbKpWKjz/+mCtXrrBgwYICde3t1RMN6+rqFgicXb58mejoaIyNjbG3t0ehUHDjxo0CrxEd/fgVEZ+kc+fOzJ07l+Dg4McGLePi4tiyZQteXl7Y29ujUqkwMzN7aj/KlStXpHI5OTmcP38eMzMzWrduTevWrQH1XIljxoxh9erVzzRH5ItkaWnJ9OnTCQgI4MMPP+SPP/7QGsJfFNeuXeP+/ft4enri6enJRx99xOXLlwkMDGTx4sV06dIFe3t79u/fj6ura4Fh7lu2bNHKak1JSWH8+PHUqlULNzc3Fi9eTLt27TSBy/wA/8NBSAsLC2bMmEFAQAD3799nzJgxT+33woULSU5OZvPmzVrn2caNG7XK5WetRkVFaQWhb926xZQpU+jfv3+xjk+ULlMTEyqUL8+1Qv72XIuKwvlf/q7yM78LexCSm/fZffQR1cVr16ju4ICJccH5yoQoq+RcEqJkGJsYY2VjTeyNgufSzcho7B2fbeRVvvZ9upGeqj09VGryfdYsXIZHE288m/pgZqG9CGPk5WvYO1bFSM4l8ZLRMzbA0Nqs0FXCU2LvYm5f+LRtxZGdqdQELO2a1cW5U8NCy8X/fRUDc2OsqlfGwOzBuXTvehxm9uULnXdTCPFyeyUnfahduzYODg6sWLFCa77JLVu2aIY257OxseHatWtaGYARERFk5k2GD+qhzaDOcHzYqlWrSE9PJzu76BP+zpgxg4iICN5//318fX0L7Le1tcXV1ZWwsDBNNiWoFwP69NNPGTlyJNnZ2VhbW+Pj48OGDRu4c+eOptzJkyc5e/ZskfvzMEdHRwYNGsT27duZN29egf1JSUmMHDkSpVKpWXxFoVDQpk0b9u3bx6VLlzRlo6Oj2b17t+bnopbLyclhwIABTJ48Weu1PTw8ALQyQ8oyNzc3Bg8eTGxsLN9//32x63/99de89957pKamarZVr14dCwsLzXvg5+cHUOB3FRERwahRo7QChVOnTuXWrVtMnDiR//3vf1haWvLZZ59pAvaNGzcGICQkRKut+Ph4TVbk2rVrSU8v+IT1YUlJSRgbG2sNpc/KymLFihXAgwzL/M/+o68XGhrK5s2bMTMzK9bxidLXyMOD0xcuEPPQ361T588TGx9P02fINn5Y1cqVKWdpye4jRzRDZEE9XHbv0aOYm5lR9aG5ZrOzs4mOjX3soiJClGVyLglRMup5eXDlnwvcjn1wLl0+e4G7cfG4NXr8iKKisHesSo16Llr/HGpWB8C6Qnlq1HPRWgQoJzub2zfjqFxNziXxcrKpV42kKzdJu52k2ZZ4+Sbpt5Op4O70r9u/suGQOmDZtM5jA5YAMQfOcmXjEXJzHjx8u3s+iuTr8dg1qv3YekKIl9dL+Shix44dT1wdu2vXrkyYMIFhw4bRp08fevbsyZ07d1i6dKnWPE2gzi6cNGkSQ4YM4fXXX+fGjRusWrVKk/EIUL9+fczMzJgyZQoxMTFYWlpy5MgRwsPDMTQ01AosPcnu3buZP38+zs7O1KpVi40bN2plO9jY2NCsWTM+//xzBg4cSM+ePenbty9WVlZs2rSJv//+mw8//FBz7J988gmBgYH07t2bwMBA0tPTWbJkyTOtHJ5vzJgx3Lt3j59++oldu3bRrl07LCwsuHr1KuvWrSMjI4Pp06drDRMeNWoUu3fvpn///rz55pvo6uqydOlSTE1NtbJYi1LOwMCAoKAg5s2bx/Dhw2nRogUZGRmsXLkSY2Njevbs+czH9qK99957bN68mZUrV/L6668Xa5j4oEGDGDp0KIGBgXTr1g1DQ0N27NhBZGQk3333HaAO/LVu3Zrg4GBiYmJo0qQJMTExLF++HDs7O808m4cOHWLVqlX07t1bk0H7v//9j7FjxzJ37lxGjx6Nr68vfn5+hIaGkpmZScOGDfn7779Zv349devWpVGjRixatIi33nqLhQsXPrbfLVu2JCIigrfffpv27dtz//591q1bR2RkJIDmXKlTpw69evVi6dKlxMfH06RJE82K4t26daN27dq4uLgU6fhE2fC6vz97jx5l0qxZdPbzI0upZOPOnVR3cKCFtzcAt+7c4cLVq7hUr07FxyymVhgdHR3e6tWLHxYt4rNp03itSRNyc3PZdfgwN2/dYnhQkNY8vHcSE8nOydEMtRXiZSLnkhAlo0UHP/46eIzF38+hWbvXyFYq2b9lF3aOVfForL4nS4i/Q+TlazjUcMLa9t9niz1O0t1EcrJzsLSWc0m8nKq0cCX+5BVOL9qKfXNXcrOzid53BjP78th6qkdNpSfcJ/lGPBbVbDG2Nn9Kiw+kxScRf/Iqusb6mNmV59bJKwXKVKyvfo2qLd049/tu/lm6g/J1q5GRlELM/rOUq2WHrWf1kjlYIUSZ8lIGLadMmfLE/V27dqVZs2YEBwfzww8/MH36dOzs7JgyZQrTpk3TKtuvXz+SkpJYs2YNkyZNonbt2syePZvg4GBNlqaNjQ0///wz06ZNY968eRgYGODk5MQPP/zAqVOn+O2337hz585jVzTPd/r0aVQqFVeuXCmwcjNAw4YNadasGfXr1yckJIRZs2axePFisrOzcXJy0swxmM/V1ZWlS5cyffp0Zs+ejYWFBe+//z5nzpzhxIkTRX07tejp6fH111/Ttm1bli9fzpIlS0hOTqZSpUp07tyZoKCgAsNyK1euTEhICFOnTuWXX37BwMCAXr16AbBgwYJilxs5ciRWVlasXbuW7777Dl1dXRo0aMD333//3OezLElGRkZMnDiRQYMG8cUXX7Bu3TqtxW+epHnz5sybN48FCxYwd+5cMjMzqVmzptZq5AqFghkzZvDLL7+wbt06IiIisLa2pm3btowaNQobGxvS09P54osvsLa25sMPP9S03717d9auXcsvv/xCu3btqFOnDj/99BNz585lw4YNbNu2jcqVK/Puu+8ydOhQjIyMMDQ05PLly5iYmDy23wEBASQnJ7N69Wq+/vprbGxs8PT0ZPbs2QQEBHD48GHefPNNAL766iscHR1ZvXo1ERER2NnZMXz4cIYMGVLk4xNlh6W5ORNHj+bX0FBWhYdjqK+Pj7s7gV27ah4WnbtyhXnLlvFu//7FCrQANPTw4PP332fN5s2E5GXZOlWpwifvvFNgrr2UvOC4DGcVLyM5l4QoGaYW5gwZN5LwkDB2rtuMgYEBdeq70a5XF/TyzqXrF68SFvw73d/q91yDlvlDyY2Mn33xHyFKk4GZMe5DO3B101Fu7DiJroEe5es44NTeGx099fRSyddvcXHNfmq90bxYQct71+IAyElXcnHN/kLL5ActbVwdcenTkui9p7kafhR9M2OqtHClqq87ipdkRJ4QongUqmdZ+vol5ufnh729/WNX5hZCPJ5KpSowIfbLKPnUqdLughBCCKHlqFXRpxsSQjzeL1d2lHYXhHglrHjtf6XdhRK3I/LZkrteBH+Hfzd1yatKHkcIIYrsVQhYCiGEEEIIIYQQoux7KYeHi6LJyckhISGhSGXNzc0xMno5hqwkJCRoFnR5EiMjI8zNiz404Xl7WfsthBBCCCGEEEII8aJJ0PIVFhsbS+vWrYtUdsqUKfTo0eM596hkvPHGG8TExDy1XPfu3fn2229fQI+K5mXttxBCCCGEEEIIIcSL9p8LWkZERJR2F16YChUqsHjx4iKVrVGjxnPuTcn5/vvvyczMfGo5W1vbF9CbontZ+y2EEEIIIYQQQgjxov3ngpb/JYaGhjRt2rS0u1HivLy8SrsLz+Rl7bcQQgghhBBCCCHEiyYL8QghhBBCCCGEEEIIIcoUCVoKIYQQQgghhBBCCCHKFAlaCiGEEEIIIYQQQgghyhQJWgohhBBCCCGEEEIIIcoUCVoKIYQQQgghhBBCCCHKFAlaCiGEEEIIIYQQQgghyhQJWgohhBBCCCGEEEIIIcoUCVoKIYQQQgghhBBCCCHKFAlaCiGEEEIIIYQQQgghyhQJWgohhBBCCCGEEEIIIcoUvdLugBBCCCGEEEIIIYQQ/1WtW7d+4v6dO3e+oJ6ULRK0FEL85+Ts2VXaXRDilaDr+1ppd0GIV8YvV3aUdheEeCUMcfYv7S4IIYQoIRK0FEIIIYQQQgghhBCilPxXMymfRua0FEIIIYQQQgghhBBClCkStBRCCCGEEEIIIYQQQpQpErQUQgghhBBCCCGEEEKUKRK0FEIIIYQQQgghhBBClCkStBRCCCGEEEIIIYQQQpQpErQUQgghhBBCCCGEEEKUKRK0FEIIIYQQQgghhBBClCkStBRCCCGEEEIIIYQQQpQpErQUQgghhBBCCCGEEEKUKRK0FEIIIYQQQgghhBBClCkStBRCCCGEEEIIIYQQQpQpeqXdAVF6xo4dS1hYmNY2fX19ypcvT8OGDRk2bBg1a9bU7AsKCiImJoaIiIgX3dUSlZWVRWJiIhUrVnxur+Hn5wfwUr9Xubm53Lx5kypVqpR2V8RLaOHefcQmJTH+9S5PLftZaBhXb98psL2hkyNj2rbR/Hz19m1Cjh7jYtwtdBQK6lSuRP8mjbGzsnqm9oR4GfwcEsLN+HgmjBr11LKffv89VyIjC2xv6OnJh4MHc/vuXd6fMOGJbYwfOZJ6D13784Vu3crOgweZM3FikfsuRFlzKewg6Xfu4T60w1PLJl2J5caOk6TEJqBnpI+NqyOObRuga6CvVS4rJZ3r206QcD6KXGU2ZnblcWznjYVDBa1y92PucH3rcZIj41EoFFg6VcKpgw8mFSxL9BiFeBHWLVnJ3VvxDP5kRLHqxUXdZP6k6bTs6I9fN+3zMOZ6FNvXbCTy8nUUOgocXZzp0KcbNpVstcpdPXeJnWHhxEbFYGRshKuPJ/7dO2FgZPivj0sIUfZI0FIwbtw4ypUrB0B6ejqRkZGsXbuWrVu3snDhQho1agTAO++8Q3p6eml29V+LiYnhrbfe4u2336ZHjx6l3Z0yKyUlhTfffBNfX19GjCjezYgQu85fIOLceepUrvTUsiqVipikJLwdq9HQyUlrn425meb/N5OS+GrjHxjq6dGjQX0Awk+fZsL6jXz3Rg/KmZoWqz0hXgYRhw6x8+BB6tSo8dSyKpWK6Fu38HZ3p5GHh9a+CtbWAJibmTE8KKhA3SylksVr1mBpZkY1e/sC+/86d461mzdjZSnBFfHyivvzInHHLmLp9PSH1klXYjkdvBUz+/I4tfci814aNw/+Q0rMXdyHdUChUACQnank1MItZN1Pw75ZXfSMDLl5+BynF23B893OmFZS31+n3b7HqYVb0DXQw+E19fkZc+Af/v45nAYjumJoYfL8DlyIEnZ832GO7z2Eo4tzserl5OSwdtFycrJzCuy7ExfPou9mYWBgQKsubQE4uG03CyfPYPhX/8PCSn39uXruEounzcW+WlXavdGFe4lJHNq+l5hrUQwZN1JzbgohXh0StBT4+/sXyKYLCgqiZ8+ejB49mh07dmBqakqzZs1KqYclJzo6muvXr5d2N8q8pKQkTp8+ja+vb2l3RbxEcnNzCTv5F2uPHy9yndv3U8hUZuPt6EiLWgWzu/JtPn2GTGU2E17vgqONDQCu9vZ8HraOTadO079J42K1J0RZlpubS+jWrazZvLnIdW4nJJCZmYmPuzstGzYstIyRoWGh+5asXUtOTg4jBg7EzEQ7eLLjwAEWr15Ndk7BL5lCvAxUublE7T7FjZ1/FbnO1c3HMLQyxX1oB3T11V+XDC1NubLhMImXYrCupb5vjt5zmvQ793Ab0h4rJ/WDugrujhybtpbofadx6dUSgJiD/5CblY3HsA6Y2ZUHwMrZjr/m/kHMgbNU7+BTgkcsxPORm5vLnj+2E7F+yzPV37tpB7dvxhW67+C23Sgzsxg6biSVHdTnV/W6tVgw6QcObt1N+z5dAdiyaj1W1uUYPHYE+nlZz5bW5fhj2RounTlPLbc6z9Q3IUTZJXNaikJVrlyZTz75hISEBNauXVva3RFClHFZ2dmMCw1jzZ/HaV6zJtamRcsaiU5MBMDO6skZXLeSkzE3MtIELAGcbStgZmRIVF4bxWlPiLIqS6nkk+++Y3V4OC18fLB+ZPqDx4mKjQXAvphTn9yIiWHLnj20atSoQEbn17Nns3DFCurVqoVT1arFaleIsiBHmc2J2Ru5seMvbD2dMbB8+rUpR5mNgZkRlXxqaQKWgCZDMzU2AVBnN986eRlrlyqagCWAgbkJTh18sHB8cC5mJNxHz9RQE7AEMK9ig56JIWm3HlzDhCirlFlK5k6YRsS6zXg28ca8XPHus+KibrLnj2206tKu0P0Jt+9iYmaqCVgCVHFywNjUhFsxsZo+mJqb4e3bWBOwBHDKy/iMi4wp7mEJIV4CErQUj9W+fXsMDAzYt28foM6+zJ+rEdRzQ37zzTe0bt0aV1dXfH19mThxIvfu3dOUGTt2LG3atOHkyZP06NEDd3d32rdvT0hISIHXO3ToEEOGDKFRo0bUq1ePFi1aMH78eJKTk7Xaa9++PcuXL8fHxwcfHx/27t1bpPqhoaEMGDAAUA+Jd3Fx0bR77949Jk2aRIsWLXB1daVDhw78+uuvqFSqEnkvQ0NDcXFx4fz584wcOZL69evTuHFjvvvuO3JycggLC6Ndu3Z4enoSEBDA+fPnNXVnzZpF3bp1uXr1KkFBQXh4eODn58fcuXPJeSTz5ezZs4wYMYKmTZtSr149mjRpwocffkhcnPZTzZSUFCZPnkyrVq3w8PCgS5curF69GoAjR47QunVrAGbPno2LiwvR0dHFOt6jR48SGBiIt7c39evXJyAgoND5PUNDQ+nWrRtubm40btyYsWPHEh8fr9k/bdo0XFxcWL58uWZbVlYWXbp0oVGjRty6datY/RLPjzInh7SsLEb5t+a911qho1O0y0tUgvrLn33eFBUZSmWh5SpbWpKSmUHyQ1NU3M/IIC0zCytj42K3J0RZpVQqScvIYPSgQQwPCir6ufRI0DIjM7NI9Vb+8QcGBgb07ty5wL7bCQkM7t2bce++i5GhzBUmXj6q7FxyMrOo3dcXl14tUOg8feiorr4erm+2xaGV9jQL+cFKQyv1VCOZiSlk3UvDqoad+rVUKnKy1Nccu8a1qezz4D7TuLwF2WmZZKU8uIYp0zLJzshC3+zBNUyIsio7O5vM9Az6vDuQnkMC0dXRLXLdnJwcwhaH4FzPBY8m3oWWKV+xAmmpaaQm39dsS0tJJSM9A3NLCwD0DfQZ+ME7+HZuq1U3Ni9YaWVjXdzDEkK8BGR4uHgsQ0NDHBwctAJoD/vqq6/4448/GDBgAFWrVuXSpUssX76cGzduEBwcrCmXlJTEkCFD8PX1pUePHmzbto0JEyaQnJzM22+/DcD+/fsZOnQoDRo0YORI9XwkBw4cYOXKldy7d48ZM2Zo2ouNjWXevHm8//77xMfH4+npWaT6Pj4+vPPOO8yfP58+ffrg5eUFQFpaGv379yc2NpZ+/fpRqVIlDh8+zOTJk7l+/Tpffvllib2nw4YNw8vLi7Fjx7Jt2zaCg4O5ePEiFy5cYODAgahUKubNm8fIkSMJDw9HT099iqpUKgYNGkTNmjX5+OOPOXLkCDNmzCAuLo6vvvoKgAsXLtCvXz+qVavGsGHDMDY25sSJE6xfv54bN26wZs0aQB30CwwM5NKlS/Tu3ZvatWuzZ88ePv/8c9LT0+nYsSPjxo1jypQptGnThjZt2mBtXfSbgKtXr/L2229Tp04dxowZA8CqVat47733WLZsGd7e6puV2bNnM2vWLNq1a0fv3r25desWy5Yt4+jRo6xZswZra2tGjBjBjh07+Omnn2jXrh02NjbMmTOHixcv8uOPPz7XxZRE8ZgYGPBTQB90ixhgyRedmIiRvj5LDx3i0JWrZCqzsbUwp4+PD01rPJgrqYuHB8dv3GDWzgiC8oaCLzt8BF1dHTq4uRa7PSHKKhNjY2aOH4+ubtG/EAJEx8ZiZGTEb6GhHDx5kszMTGxtbAjo3Jlmede7R92IieH4mTN09vPDupD5Kqd/+qnmOiTEy0jXSB/vD3qio/vseRoZiSncuxbH1fBjmFS0onxdBwDS76ofiuubGnF18zHijl0kJ0OJUXlzqndsSPk6D7KTq7R0JeF8FBdW7qV6J/VQ8Kub/0RHVwf7pnX/xREK8WIYGRsx+tvPin1tAti/eSd3b92m3/tvkZtbeEJIiw6tufDXWVYtWEqHgG6Aeii4rq4uTdq0LLRO4p0Erp2/zJaV67C1r0yd+m7F7psQouyTO1HxRBYWFkQWshIpwMaNG+nZsycffPCBZpuJiQn79u0jNTUV07yFMZKTkxkwYACfffYZAH379mXgwIHMnTuXgIAALC0tWbJkCZUrV2bx4sUYGBgA0K9fP/r06aPJ9MyXkZHBlClT6Nixo2ZbUepXrVqVpk2bMn/+fDw9PenaVT03yqJFi7h27Rpr167VZF/269ePH374gQULFtCnTx9q1679r99LAE9PT3788UcAOnbsSJMmTTh48CAbNmzQrNSemprK/PnziY6OxtHREVDPIePq6srs2bNRKBT079+fjz76iFWrVjFw4ECcnZ35/fffUSgU/Pbbb1jlDSfs06cPSqWSTZs2kZSUhJWVFWvWrOH8+fNMmzaNLl26aMr179+fn3/+mf79++Pv78+UKVNwcXHRvE9FtXPnTtLS0pg9e7Ym2NmxY0cCAgI4d+4c3t7eREVFMWfOHIYNG8aHH36oqdupUyd69OjB/Pnz+fTTTzE0NGTy5MkEBgYydepUBg4cyC+//EKnTp20fv+i9CkUCnSfYfLzqMREMpRK0jKzeO+1VqRlZbHl9Blm7YwgJzdXMy+ljbkZ3erXZ8mBA3yyJhQAHYWC0W38tYaMF7U9IcoqhULxTF8Ko2JjycjIIDUjg/eDgkhNT2fz7t3MXLKEnJycQuey3LZ/Pzo6OrRvWfgXQglYipedQqFAofvsC3Mo0zI59r36oa+OgS7OXRpphoxnZ2QBcGPHSRS6Ojh3bgQKBdH7zvDPsp24DmpLubwsTCMrM6q2cufKxsOcmLlB3biOgjr9WmkNGReirHrWa1N8TCy7NmylU2BPLK3LkXgnodByVuXL4du5DX8sX8OcL6eqX1NHh4D3BmkNGc+XlpLKD/9TJ27oGxjQObCH1pBxIcSrQ+5GxRNlZ2c/dhW2SpUqER4ejqurK/7+/lhYWDB69GhGjx5doGx+RiWArq4uAwYMYMSIERw8eJAOHTqwYMECkpOTNQFHgMTERMzMzEhLSyvQXn62Xr7i1n/Ytm3bqFWrFhUqVCAh4cGF1N/fnwULFrBr164SC1r6+/tr/m9ubo61tTWmpqaagCWgWRTp9u3bmqAlqLM0H/5dDBo0iI0bN7Jr1y6cnZ2ZMGECo0aN0gQsQT0M3DBvSF9aWhpWVlbs3r0ba2trOj80FFChUDB16tQn/r6LqlIl9bxOkyZNYvDgwbi6ulKuXDm2bt2qKbN9+3Zyc3Px8/PTes9tbGyoU6cOu3fv5tNPPwWgQYMGBAUF8dtvv3H8+HGsra1LNPtVlK7WdWqjUqloW6+eZltTZ2c+Xr2G5YeP0KyGMzo6Oqw69idhJ05Sp3IlWtepQ65KxfZ//mHmzp2MbuOPV7VqxWpPiFeNf7Nm5Obm0u6hAGQzLy8+nDyZZevW0dzbW+uzn6VUsu/YMbzc3KhQXoImQhRKAbUDfMnNyeXmoX84HbyNOgG+2Lg6kpudC6iDl94f9EDfWH2/Vb52VY5NX8v1bcc1Qcvr208QtesUlk4VqdTQBVWuitgj5zkfsoc6/V7TysoU4lWRm5tL6KIQHGpUx8e36RPL7ggNZ88f23B0ccbbtymq3FyO7jrAqvlLCHhvELU9XbXKKxQKer8zkJzsbA7v2MfiafPo885A6nl7POYVhBAvKwlaiidKSkp67NDgCRMmMHr0aMaNG8cXX3yBp6cnbdq0oWfPnpibm2vKWVlZYfNQJhRAtbwAQ0yMeg4SXV1doqKimDFjBpcvXyYyMvKJ8xWWf+QLVnHrPywyMpKMjAyaNGlS6P7YvHnCSsKj74Oenl6hxwLqC/3DnJ21h7Y++h4qFAoSExNZsGABFy5cIDIykps3b2rm5cxvLyYmBgcHhwLBSXt7+39zaBrt27dn+/bthIeHEx4eToUKFfD19aV79+6aYHN+9m5AQEChbejraz8pHTNmDFu3biU6Opoff/wRy0KGMYqXU5u6BYfFGejp0aJmTdYeP0F0YiLlzcz44+9TVK9gw+edO2kCL02cq/N52DoW7tmHe2AV9HV1i9SegwRoxCuoTfPmBbYZ6OvT0seHNZs3ExUbS7WH/s6fuXiRzMxMmtSv/yK7KcRLRd/YkAruTgDYuFbjxIx1XNl0FBtXR3T11fdrNvWqaQKWAHrGBljXrkL8ySvkZClR5aiI3ncGsyrlcRvcDkXeNayCuyN/zf2DS2EHKFezFzp6xc9iE6Is2785grjoGIaMG0Xq/RQAMvKSSbKylKTeT8HEzJSM9Az2b4nA3tGBQR8P19znuTWsz/xJP7BuyUo++t4FvYe+HxibmuDWUH39quftyawvviV8RZgELYV4BUnQUjxWSkoKUVFRtGrVqtD9TZo0YdeuXZp/Bw4cYMqUKSxZsoTQ0FBNsPPRABQ8CKDlB+gWLVrE1KlTcXJywtvbm7Zt2+Lh4cHSpUvZuHFjgfqPDk8obv2H5eTk4OXlxfvvv1/ofltb2yfWL47ChlUUNbPx0ffx0fcwPDycjz76CFtbWxo3bkzLli1xdXVl//79LFiwQFMvJyfnX2dTPq2fM2fO5MKFC2zfvp29e/cSGhrKmjVr+PDDDxk2bJim7/PmzcPIyOipbd64cYO7d+8C6sxYGRr+6rPMW1wnIzubuHvJKHNyaPpIlqSeri7Natbg98NHuZmURLUnBCMfbk+I/xLLvIeImVlZWttPnj2Lnp4e9QsJ9AshCtLV18O6dlVuHjyHMjUDAwv1NEj6pgXvYwzMjEEFOZlKMu+locrOpYJ7dU3AEkBHVxdbD2eubfmTtNv3MKssi4iIV8ulM+fIyc5hwaQfCuw7sCWCA1si+GDqeFLvp5CTnY1bo/pa93m6enq4N/Zm2+oN3I6Np7JD4QkW+gb6uHjU4/COvaTeT8HU3Oy5HZMQ4sWToKV4rC1btqBSqTQrST8sKyuLc+fOUalSJTp16kSnTp3Izc1l8eLFTJ06lU2bNhEUFATAnTt3tOa4BLh+/TqgzhbMzMxk1qxZNGrUiODgYK05tB5egOdx/m19e3t7UlNTadpUe9jCvXv3OHTokCajsbRFRUVRo0YNzc8Pv4cA06dPp1q1aqxduxYTExNNuUeDtnZ2dly4cKFA+3v27CE8PJyPP/74X/Xz5s2b3Lx5E29vb1xcXHj//feJi4tj4MCBLFq0iGHDhmmyOitXrkydOnUK9MPM7MHNRnZ2Np9++ilWVlZ069aNhQsX0qlTJ9q0afOv+ilKX0JqKpM3hdPE2ZmeXg209sUkJQFga26uWTE8V1Vw8vb8Cd1VKlWR2xPiVZOQlMTXc+bQtEED3ujQQWtfTN6og0eHgF+8do3qDg6YGMvKxUI8LO12EmeWbKdKCzfsGmtPD5STqQQFKPR0Ma1khUJPh7T4pAJtZCSmoKOvi76pEcrUDPXGQhYgUaly8/9T0ochRKlr36cb6ana03SlJt9nzcJleDTxxrOpD2YW5mSmq8+RwhbpUWlGnqm4HXuL335YQPMOfjTy0x5dkJmRAQoFevoS3hDiVSMTe4lCxcfHM3PmTCpWrKhZrOVhiYmJ9OnTRyuDT0dHBzc3N83/86lUKpYvX675OTs7m19//RVzc3OaNGlCRkYG6enpODo6agUcz507x9GjRzV1Hqc49Qsbeu3n58f58+fZs2ePVrvz5s1j1KhRXLp06bGv/SItXbpU6+fFixejp6eHn58foB7Kb2dnpxWwjI2NZdu2bYA6wxKgZcuW3Llzh+3bt2u19+uvv7J7927KlSv32CHqRTF//nzefPNNreH5lSpVwtbWVvO5eO211wD1XKSqh27Uz507x7vvvsuvv/6q2bZo0SLOnj3LuHHjGDVqFM7OzkycOJGkvCCUeHlZm5qSlpVFxPnzpD2UBXbnfgp7Llyknr0dViYmVClXjnKmJuy5cJGsh/4WZGVns+/SJcyNjKhSrlyR2xPiVWNtZUVaejoRBw+SlhfkB7iTkMDuI0eoV6sW5SwsNNuzs7OJjo3FqUrBxQ2E+K8zsrYgOyOL2KMXyM27dwJ1IPLOmetYOlVCz1AfXQN9ytdxIOF8NKm3Eh+US7jP3XORWNepikJHBxNbKwwsjIk7cYkc5YNrWI4ym1snr6BnaohJRasXeYhCvBD2jlWpUc9F659DzeoAWFcoT416Lugb6GNrXwlzKwtO7j+CMkupqa/MUvLXwWOYmJlia1cJa1sbMtLTObb7IDkP3Q8m3kng7J9/4+jijGERRnAJIV4u8ihCsGPHDsqVKweosxavXr3KunXryMzMZOHChYUO380PZv7++++kp6dTv359kpKSWLZsGTY2NnR4JNNj7ty5xMTEULNmTTZv3szJkyf55ptvMDY2xtjYGA8PD0JDQzEzM8PJyYlLly6xevVqTZArNTX1sfMYWlpaFrl+/nFu2LABlUpF9+7defvtt9m2bRvDhw8nICCAmjVrcvz4cdavX0/Lli1p+ZhVVV+0sLAwUlJSaNCgAfv27WPXrl0MHz5ck7XYsmVLwsPDGT9+PG5ubkRHR7Nq1SrS877ApqamAup5JNeuXcuYMWMIDAzEycmJ3bt3c+DAASZPnoyuri5WVlbo6Oiwc+dO7OzsaNu2bZHnkQwMDGT9+vUEBgbSp08fLC0tOXz4MEePHmXkyJEA1KpVi6CgIJYuXUpSUhL+/v6az4+pqSmjRo0C4MqVK8yePZvmzZvTqVMnAL788ksGDBjAN998w/fff1+i77F4vm4lJ3Mx7ha1KlWkYl4AZVCzZvywbTtfrtuAX53apCuz2HbmH3R1FLzZTJ39rKOjw5vNmvLT9h18sW49rVxcyFXlsvv8RW4mJfHea63Qywu0F6U9IV52t+7c4cLVq7hUr07FvLmSB/fuzbSFC/nixx9p3bQp6RkZbN27F10dHd7q1Uur/p3ERLJzcrDJuyYK8V+WnnCf5BvxWFSzxdjaHB1dHZw7N+bi6n2c+nkztvWdyU7L5Obh86CjUK8SnsepvTf3rsVxetFW7JrWQUdHl5hD/6Cjr4tjWy9AvQKyc5fGnPt9F3/N20Qlr5qoVCpuHb9E+u17uPRqgc4zrMosRFmTEH+HyMvXcKjhhLWtzdMr5NHR0aFz4BuEzF3Mgq9/pEGLRqhyczm+7wi34+J5Y0ggunmJKZ369WDtL8v55dtZeDbxJi01jSM796nb6NfzeR2aEKIUSdBSMGXKFM3/9fX1qVixIn5+fgwdOhQnJ6fH1ps0aRJVq1Zl06ZNbNq0CWNjY5o0acKYMWMKLN6zaNEiJkyYQFhYGDVq1GD27Nlaw3tnzJjBlClTWLt2LVlZWdjb2zNs2DCcnZ0ZMWIEhw8fpl27do/tS1HrOzs7ExQURGhoKKdPn6ZRo0Y4ODiwcuVKZs6cyZYtW1i5ciV2dna89957DBs2rMysNDx79mzmzJnDtm3bqFq1KpMmTaJ3796a/RMmTMDExISIiAjWr19PpUqV6NatG23atKFv374cPnyYunXrYmRkxNKlS/npp5/YtGkT9+/fx9nZmZ9++kkTbDY2NmbMmDEsWrSIr7/+GgcHBxo1avS4rmlxcXFh8eLFzJkzh+DgYFJSUnB0dOSLL74gMDBQU+6zzz6jevXqrFixgu+++w5zc3O8vb012ZS5ubl89tlnKBQKrdXCGzVqRNeuXVm/fj2dOnV67Jyrouw5HxvH/N17eKeVryZo6ePkyIft2rDu5F+EHDmKvp4udStXJqBhQ+zLWWnqNnRy4rNOnVh7/Dgrjh4DwMmmPP9r3x5Phwerrha1PSFeZueuXGHesmW827+/Jmjp4+7Ox0OHErZtG8vXr8dAX5+6NWvS7/XXsa9YUat+St5DLBkaLgQkX7/FxTX7qfVGc4yt1VOIVKzvjI6eDlF7TnN10zF0DfSwcq5MtTYNMKnw4CGuUTkzPN7pxPUtfxK97wyowNKxIk7tvTVtgXqxHre32hEZ8RfXtx8HwMyuPPUG+mNdSzKexavh+sWrhAX/Tve3+hUraAlQ18udQR+9x64NW9ixdhMAlatVIWj0MGq5PZhKyrOpD3r6euwN38nmlevQNzTEuU5N/Ht0wqZSya1DIIQoOxQqlUyiIp6fsWPHEhYWVugciqJoZs2axezZs9m5cydVZChfiUic9fS5ToUQT6fr+1ppd0GIV8awu1tKuwtCvBKGOPuXdheEeCX4OzR4eqGXzI7IE6Xdhcd6Fd/vklA2UsiEEEIIIYQQQgghhBAijwwPF6IIEhISNAvZPImRkRHmr+DqxElJSSiVyqeW09fXx8rK6vl3SAghhBBCCCGEEK80CVoKUQRvvPEGMTExTy3XvXt3vv322xfQoxdrxIgRmpXYn6Rhw4YFVjkXQgghhBBCCCGEKC6Z01KIIjh+/DiZmZlPLWdra0uNGjVeQI9erDNnzpCcnPzUchYWFri6ur6AHv07MqelECVD5rQUouTInJZClAyZ01KIkvEqzrEoc1q+fCTTUogi8PLyKu0ulKqXIRAphBBCCCGEEEKIV4csxCOEEEIIIYQQQgghhChTJGgphBBCCCGEEEIIIYQoUyRoKYQQQgghhBBCCCGEKFMkaCmEEEIIIYQQQgghhChTJGgphBBCCCGEEEIIIYQoUyRoKYQQQgghhBBCCCGEKFMkaCmEEEIIIYQQQgghhChTJGgphBBCCCGEEEIIIYQoUyRoKYQQQgghhBBCCCGEKFMkaCmEEEIIIYQQQgghhChTJGgphBBCCCGEEEIIIYQoU/RKuwNCCPGiveuaWdpdEOKVMG/PrtLughCvjJ9925d2F4R4JRwlu7S7IIQQooRIpqUQQgghhBBCCCGEEKJMkaClEEIIIYQQQgghhBCiTJGgpRBCCCGEEEIIIYQQokyRoKUQQgghhBBCCCGEEKJMkaClEEIIIYQQQgghhBCiTJGgpRBCCCGEEEIIIYQQokyRoKUQQgghhBBCCCGEEKJMkaClEEIIIYQQQgghhBCiTJGgpRBCCCGEEEIIIYQQokyRoKUQQgghhBBCCCGEEKJMkaClEEIIIYQQQgghhBCiTJGgpRBCCCGEEEIIIYQQokzRK+0OiOdr7NixhIWFaW3T19enfPnyNGzYkGHDhlGzZk3NvqCgIGJiYoiIiHjRXS1RWVlZJCYmUrFixef2Gn5+fgAv9XuVm5vLzZs3qVKlSml3RbxiLoUdJP3OPdyHdnhq2ZNzN5ISfbfA9vKu1ajb7zXNz0lXYrmx4yQpsQnoGelj4+qIY9sG6BroP1N7QrwMFu7dR2xSEuNf7/LUsudj41h57BhXbt/GzNAQ72rVeMPbGwtjo2dq/++oKMJOnOTqnTvoKBTUtLWlt483NZ/jtVWI5+nnkBBuxsczYdSop5a9d/8+KzZu5M/Tp8nKzsapShUCu3alpqPjM7X/6fffcyUyssD2hp6efDh4cLGOQ4jStm7JSu7eimfwJyOeWnb+Vz8Qc73gZ7+ulzt9h79F4p0EfvjfV09s463/Dceptvo7a1ZGJhHrt3D62EnSU9KwtavEa93a4+Je99kORghRpknQ8j9i3LhxlCtXDoD09HQiIyNZu3YtW7duZeHChTRq1AiAd955h/T09NLs6r8WExPDW2+9xdtvv02PHj1KuztlVkpKCm+++Sa+vr6MGPH0Gw4hiiruz4vEHbuIpdPTAxsqlYq0+HuUr+tA+XrVtPYZWZlq/p90JZbTwVsxsy+PU3svMu+lcfPgP6TE3MV9WAcUCkWx2hPiZbDr/AUizp2nTuVKTy37z82bTAnfjImBAd3qe6Kj0GHz6dOcvXmTid26YmZoWKz2/7kZy3ebt1ClXDkCfHzIUeWy7ew/fLXxD758vQs1bG1L5BiFeFEiDh1i58GD1KlR46ll0zMymDBjBon37tHptdcwNTFhy969TJw5k8kffYSDnV2x2lepVETfuoW3uzuNPDy09lWwtn72gxKiFBzfd5jjew/h6OL81LIqlYr42Dhq13ejnpe71j4rG/Vn39TMlJ5DAgvUVSqVbFoeiqmFGZWq2gPqhIulM34m6sp1GrduiZVNOU4eOMayGQsZ+ME71KjnUgJHKIQoSyRo+R/h7+9fIJsuKCiInj17Mnr0aHbs2IGpqSnNmjUrpR6WnOjoaK5fv17a3SjzkpKSOH36NL6+vqXdFfGKUOXmErX7FDd2/lXkOpmJKeRmZVO+rgMV6z/+5vfq5mMYWpniPrQDuvrqS5ehpSlXNhwm8VIM1rWqFKs9Icqy3Nxcwk7+xdrjx4tcZ8mBgygUCiZ2fZ1KlpYA+Dg6MnbtWtadOEn/Jo2L1f5vhw5hbWrKpG7dMMw751rWrMmHq1az8tiffNap4zMenRAvVm5uLqFbt7Jm8+Yi11m/fTux8fGMHzGCunkjkpo0aMCICRPYsGMH7w8YUKz2byckkJmZiY+7Oy0bNnz2gxGiFOXm5rLnj+1ErN9S5DpJdxJQZmZRp74bnk19Ci1jYGRY6L7wkFBycnLoNSwIY1MTAE7sP8L1C1foOSRQU8erRRN+HDuJ3Ru3StBSiFeQzGn5H1a5cmU++eQTEhISWLt2bWl3RwjxEstRZnNi9kZu7PgLW09nDCxNilQvNT4JAGMbyye2bWBmRCWfWpqAJaDJ5EyNTShWe0KUZVnZ2YwLDWPNn8dpXrMm1qZPP5du379PVEIiLWvW1AQsAezLWdHAwYG9Fy8Vq/2UzEwi796lcfXqmoAlgKWJCXUqV+Zi3K1/eZRCvBhZSiWffPcdq8PDaeHjg7WV1VPrqFQq9hw9Sv26dTUBS4ByFhYM6N6d2s4PHogVtf2o2FgA7GVqBfGSUmYpmTthGhHrNuPZxBvzckW7z4q/GQdAhcrFy86Pi7rJoR37aNC8IY61HpxzJ/cfpWIVO60gp76BPu37dMPFw7VYryGEeDlI0PI/rn379hgYGLBv3z5AnX2ZP1cjqOeG/Oabb2jdujWurq74+voyceJE7t27pykzduxY2rRpw8mTJ+nRowfu7u60b9+ekJCQAq936NAhhgwZQqNGjahXrx4tWrRg/PjxJCcna7XXvn17li9fjo+PDz4+Puzdu7dI9UNDQxmQ9/R73LhxuLg8eNp27949Jk2aRIsWLXB1daVDhw78+uuvqFSqEnkvQ0NDcXFx4fz584wcOZL69evTuHFjvvvuO3JycggLC6Ndu3Z4enoSEBDA+fPnNXVnzZpF3bp1uXr1KkFBQXh4eODn58fcuXPJycnRep2zZ88yYsQImjZtSr169WjSpAkffvghcXFxWuVSUlKYPHkyrVq1wsPDgy5durB69WoAjhw5QuvWrQGYPXs2Li4uREdHF/lYjxw5gouLC2FhYXTp0gU3NzfGjRsHwO3bt5k4caLmM+Pl5cWAAQM4/khGj0ql4rfffqNz5864u7vj5+fHtGnTtKYnyM3NJTg4mPbt2+Pq6kqLFi34+uuvSUlJKXJfxYuhys4lJzOL2n19cenVAoWOokj10m4lAmBiq775zclSFiijq6+H65ttcWilPaQuP1hpaGVWrPaEKMuUOTmkZWUxyr81773WCh2dp9+qJaSmAlC1kGGmFS0tuJ+Rwd28v5tFad9EX5/pfXrTyd2twL77GRnoFvH8FqK0KZVK0jIyGD1oEMODgop0Pt1OSCAhKQn32rUB9f1KRmYmAG1btMD/oVFJRW3/0aBlfntCvCyys7PJTM+gz7sD6TkkEF0d3SLVuxWt/uxXsFN/9rMyivbZ3xG6CX0DfVp3f5DVn5OdTfS1G1Sv8+BhQn577o0a0KKDX4F2hBAvPxke/h9naGiIg4ODVgDtYV999RV//PEHAwYMoGrVqly6dInly5dz48YNgoODNeWSkpIYMmQIvr6+9OjRg23btjFhwgSSk5N5++23Adi/fz9Dhw6lQYMGjBw5EoVCwYEDB1i5ciX37t1jxowZmvZiY2OZN28e77//PvHx8Xh6ehapvo+PD++88w7z58+nT58+eHl5AZCWlkb//v2JjY2lX79+VKpUicOHDzN58mSuX7/Ol19+WWLv6bBhw/Dy8mLs2LFs27aN4OBgLl68yIULFxg4cCAqlYp58+YxcuRIwsPD0dNTn4YqlYpBgwZRs2ZNPv74Y44cOcKMGTOIi4vjq6/Uk1NfuHCBfv36Ua1aNYYNG4axsTEnTpxg/fr13LhxgzVr1gDqYHNgYCCXLl2id+/e1K5dmz179vD555+Tnp5Ox44dGTduHFOmTKFNmza0adMG62eYU+mrr76iR48e9OrVCzs7OzIyMggMDOT+/fsEBgZSsWJFrl+/TkhICEOGDGHHjh2UL18egIkTJxISEsJrr71G3759uXbtGsHBwVy/fp3Zs2cD8Nlnn7F+/Xq6devGm2++yZUrVwgJCeHEiROEhIRgWMgcbaJ06Brp4/1BT3R0i/csLC0+CV1DPa6GH+P2qWvkZmVjZG1GtTYNsPWoXmidjMQU7l2L42r4MUwqWlG+rsO/ak+IssTEwICfAvqgW4TgSj7DvOtIurJgkP5+RgYASWnplDczK1L7Ojo6VLYsmEUTefcuF2/dwl0WbxMvCRNjY2aOH4+ubtECLACx8fEAWJibszQsjJ0HD5KekUHFChUY2L07Xm4PgvlFbT86NhYjIyN+Cw3l4MmTZGZmYmtjQ0DnzjTLu1cVoiwzMjZi9LefFetcAnWmpYGRIZtXrOP00ZMoM7MoV6E8/j064d6oQaF14qJucuHvszRr9xoWVg+uRYl3EsjNycXS2oo9m7ZzaNseUu+nYG5lQevuHfFq0bjQ9oQQLzcJWgosLCyILGQ1Q4CNGzfSs2dPPvjgA802ExMT9u3bR2pqKqam6oUtkpOTGTBgAJ999hkAffv2ZeDAgcydO5eAgAAsLS1ZsmQJlStXZvHixRgYGADQr18/+vTpo8n0zJeRkcGUKVPo2PHB07Wi1K9atSpNmzZl/vz5eHp60rVrVwAWLVrEtWvXWLt2rSb7sl+/fvzwww8sWLCAPn36UDvvifq/5enpyY8//ghAx44dadKkCQcPHmTDhg2aldpTU1OZP38+0dHROOatQpmbm4urqyuzZ89GoVDQv39/PvroI1atWsXAgQNxdnbm999/R6FQ8Ntvv2GVNwSpT58+6omqN20iKSkJKysr1qxZw/nz55k2bRpdunTRlOvfvz8///wz/fv3x9/fnylTpuDi4qJ5n4rLy8uLL774QvNzeHg4N27c4JdffqFFixaa7VWrVuXLL7/k+PHjtG3blsuXL7NixQp69+7NpEmTNOVMTU2ZP38+ly9f5u7du4SGhjJx4kQCAgI0ZXx9fRk8eDArVqxg4MCBz9RvUfIUCgUK3eJnX6XeSiInM5vsjCxcerUgOyOLmwf/4cLKvahyVQXmpVSmZXLse3VwXsdAF+cujbSGjBe3PSHKGoVCga6ieOdSlXLlMDbQ5+i1a3T19NAsTJWVnc2p6Bj1/3Oyn7l9gAylkrm7dgPwuqdnsesLURoUCkWxgyxpeSM+Vm7ahJ6uLm++8QY6CgUbd+7k+4UL+fS99zRZmEVtPyo2loyMDFIzMng/KIjU9HQ2797NzCVLyMnJkXkuRZn3LOcSwK2YWLIyMslIS+eNIf3JSE/n0PY9rF7wG7k5OYXOZXl0134UOjo0at1Ca3tGWnre/gMolUpe69oeY1MTju0+wLrFKwAkcCnEK0iCloLs7GzNF5xHVapUifDwcFxdXfH398fCwoLRo0czevToAmXzMyoBdHV1GTBgACNGjODgwYN06NCBBQsWkJycrAk4AiQmJmJmZkZaWlqB9ry9vbV+Lm79h23bto1atWpRoUIFEhIezH/n7+/PggUL2LVrV4kFLf39/TX/Nzc3x9raGlNTU03AEtAsinT79m1N0BLUWZoP/y4GDRrExo0b2bVrF87OzkyYMIFRo0ZpApagHgaen3GYlpaGlZUVu3fvxtrams6dO2vKKRQKpk6d+sTfd3H5+GjfaHTs2JHGjRtrVqoHddZnvvzf0+7du1GpVAQFBWnVHzx4MB07dsTBwYGQkBAUCgW+vr5av7O6detSoUIFdu/eLUHLV0Bln1qoVCrsGtfRbKvg7sSJGeu4tvkYth5OKB7OCFNA7QBfcnNyuXnoH04Hb6NOgC82ro7P1p4QrwA9XV06ubux5s8TzIrYRTdPD3JVKlYd+5PMvOzL4mRuPipTmc20rdu4cTeBrvU9qGtXuaS6LkSZo8xWB/jT0tP56YsvMDNRz/vq5erKyK++YsXGjZqgZVH5N2tGbm4u7Vq21Gxr5uXFh5Mns2zdOpp7exdp6LoQLxsf36aocnO1ApBuDRsw64tv2bJqA+6NvbQ++8osJX8d+pPanq6Us9EeBZadd27eS0hkxKSxlK9YAYB63h7M+uI7tq/dRIPmjUrse44QomyQoKUgKSnpsUODJ0yYwOjRoxk3bhxffPEFnp6etGnThp49e2Jubq4pZ2VlhY2NjVbdatWqARATo87y0NXVJSoqihkzZnD58mUiIyO5devxk/nnDyPOV9z6D4uMjCQjI4MmTZoUuj82b66hkvDo+6Cnp1fosYA6u/Jhzs7aWWCPvocKhYLExEQWLFjAhQsXiIyM5ObNm5p5OfPbi4mJwcHBocBF297e/t8cWgGFfW4UCgU///wzJ0+eJDIyksjISJR5X5of7h+gFbAFddavhYUFoP6dqVQqWrVqVehr52f5ipdb5UYFv/jp6uthW9+ZyJ1/kxafhGmlB58zfWNDKrg7AWDjWo0TM9ZxZdPRB0HLYrYnxKuiR4MGpGZmseXMGQ5dvgJAg2oOdPHwYMXRY5g943QaqZmZTN2ylYtxt2hVuxZ9fApf/VWIV4Vh3sPxRh4emoAlgKmJCV6uruw9epSMzEyMinFOtWnevMA2A319Wvr4sGbzZqJiY6lWwvdoQpQFDV9rVmCbvoE+nk282bVhK/ExcVSqaqfZd/X8JZSZWbj6eBaoZ2CoPjcdXWpoApag/l7l3qgBu9Zv4fbNOGzt5cGaEK8SCVr+x6WkpBAVFfXYwFCTJk3YtWuX5t+BAweYMmUKS5YsITQ0VBO00tfXL1A3P0CVH6BbtGgRU6dOxcnJCW9vb9q2bYuHhwdLly5l48aNBeo/OgShuPUflpOTg5eXF++//36h+21ti7ei3ZMUNnSiqE/8Hn0fH30Pw8PD+eijj7C1taVx48a0bNkSV1dX9u/fz4IFCzT1cnJyXshTxkeP9erVq/Tt2xelUknz5s3p2LEjderUQaVSMXz4cK3+PU1ubi6mpqaa+S0fJfNZvtr0TY0ByMnKfmwZXX09rGtX5ebBcyhTM9A3NfpX7QnxMlMoFAxo2oSunh7E3kumvJkpFczNWXn0GDoKBTZmZk9v5BHJ6elMDt/MjTt3aV2nNoNbNJcMFvHKy18B3KKQc8bS3ByVSkV6MYOWj2OZlwCQ+dCoFCH+C0wt1J/9rEcWpbp46h909fSo5V6nQB2LvHPTzMK8wD5Tc/X5mlnEhX6EEC8PCVr+x23ZsgWVSqVZSfphWVlZnDt3jkqVKtGpUyc6depEbm4uixcvZurUqWzatEkzvPfOnTtac1wCXL9+HVBnC2ZmZjJr1iwaNWpEcHCwZvEZQGsBnsf5t/Xt7e1JTU2ladOmWtvv3bvHoUOHNBmNpS0qKooaNWpofn74PQSYPn061apVY+3atZg89PT/0aCtnZ0dFy5cKND+nj17CA8P5+OPP34OvYeFCxeSnJzM5s2btbIoC+sfqI/34ezSW7duMWXKFPr374+9vT379+/H1dVVk32Zb8uWLTg4OCBebpn3Ujm9eBu27k44+Hlq7Uu/cw8Ao3JmpN1O4syS7VRp4YZdY+1MypxMJShAoadb5PaEeBUdvHwFKxNj6trZYfnQ9eFcbCxOFWww0CveLV96VpYmYNnBzZUBTQsfqSDEq6Zq5cro6ekRFRdXYF/83bvo6+tjWYyHAAlJSXw9Zw5NGzTgjQ4dtPbF5I0YqvDIiBwhXgXJiUksmTYPt0YNeO31dlr77sSpF7wqV0H7sx95+Rr2jlUxMjYu0J6ZpTnm5Sy5FVNwhFziHfVUUpblyxXYJ4R4ucnkKf9h8fHxzJw5k4oVK2oWa3lYYmIiffr00crg09HRwS1v1cSH5x9RqVQsX75c83N2dja//vor5ubmNGnShIyMDNLT03F0dNQKOJ47d46jR49q6jxOceoXNvTaz8+P8+fPs2fPHq12582bx6hRo7h06dJjX/tFWrp0qdbPixcvRk9PDz8/P0A9lN/Ozk4rYBkbG8u2bduABxmMLVu25M6dO2zfvl2rvV9//ZXdu3dTrly5xw5R/zeSkpIwNjbWBCVBHfxesWKFVv98fX0BCAkJ0aofGhrK5s2bMTMz0xzzvHnztMpEREQwatSop2bXirLP0NKUnIwsYo9dJDvjQZZJRlIKt45fwtK5EgbmJhhZW5CdkUXs0QvkPpSlm5GYwp0z17F0qoSeoX6R2xPiVbTp1CkW7z9IzkN/00/ciORC3C3a1qtb7PaC9x/gxp27tJeApfiPMTI0xNvNjZNnzhD10PRB8Xfv8ufp03i7uRVr/klrKyvS0tOJOHhQs8gPwJ2EBHYfOUK9WrUo98jDWSFeBRblrMhIT+fPvYfIeOizn3Q3kRP7j+BUuybmlg8++znZ2dy+GUflalUe26Z7Iy/iImO4fOa8Zlt6Wjp/HThKlerVtFYbF0K8GiTT8j9ix44dmsVRMjMzuXr1KuvWrSMzM5OFCxdiZFRwWGV+MPP3338nPT2d+vXrk5SUxLJly7CxsaHDI0+L586dS0xMDDVr1mTz5s2cPHmSb775BmNjY4yNjfHw8CA0NBQzMzOcnJy4dOkSq1ev1tz4paamYmlZ+IXG0tKyyPXzj3PDhg2oVCq6d+/O22+/zbZt2xg+fDgBAQHUrFmT48ePs379elq2bEnLhyZGL01hYWGkpKTQoEED9u3bx65duxg+fLhmLsqWLVsSHh7O+PHjcXNzIzo6mlWrVpGedyOQmpoKQEBAAGvXrmXMmDEEBgbi5OTE7t27OXDgAJMnT0ZXVxcrKyt0dHTYuXMndnZ2tG3b9rHvf1G1bNmSiIgI3n77bdq3b8/9+/dZt26dZnX6/P7VqVOHXr16sXTpUuLj42nSpIlmRfFu3bpRu3ZtXFxcaN26NcHBwcTExNCkSRNiYmJYvnw5dnZ2DB48+F/1Vbx46Qn3Sb4Rj0U1W4yt1UN7nF9vzLllu/h7QTiVvGuRk6Xk5qFzKHR0qNFFvQKkjq4Ozp0bc3H1Pk79vBnb+s5kp2Vy8/B50FHg3LmR5jWK0p4QL7tbyclcjLtFrUoVqZgX7Hjd05Oftu9g6pat+Dg6ciflPuGnzuBetQrNH8rgL4roxET2X7qMiaEBjuXLs+9iwQd7LWrVLKSmEC+fW3fucOHqVVyqV6di3rzk/bt25Z9Ll/hq5kw6tGqFnq4um/fswUBfn76FPOh/msG9ezNt4UK++PFHWjdtSnpGBlv37kVXR4e3evUq6UMSolQkxN8h8vI1HGo4YW2rPpc69+9FyOxF/PzNDLx9m5CVkcnhnfvQ0dWlc/+eWvWT7iaSk52DpfXjsyV9O7fh/MnT/D4nmCZtfDE1N+PP3QfJSM+gQ0C353l4QohSIkHL/4gpU6Zo/q+vr0/FihXx8/Nj6NChODk5PbbepEmTqFq1Kps2bWLTpk0YGxvTpEkTxowZU2ARlkWLFjFhwgTCwsKoUaMGs2fPpk2bNpr9M2bMYMqUKaxdu5asrCzs7e0ZNmwYzs7OjBgxgsOHD9OuXbtHu1Ds+s7OzgQFBREaGsrp06dp1KgRDg4OrFy5kpkzZ7JlyxZWrlyJnZ0d7733HsOGDSszKzbOnj2bOXPmsG3bNqpWrcqkSZPo3bu3Zv+ECRMwMTEhIiKC9evXU6lSJbp160abNm3o27cvhw8fpm7duhgZGbF06VJ++uknNm3axP3793F2duann37SBJuNjY0ZM2YMixYt4uuvv8bBwYFGjRo9rmtFEhAQQHJyMqtXr+brr7/GxsYGT09PZs+eTUBAAIcPH+bNN98E4KuvvsLR0ZHVq1cTERGBnZ0dw4cPZ8iQIYB6frYZM2bwyy+/sG7dOiIiIrC2tqZt27aMGjWqwIJHouxLvn6Li2v2U+uN5pqgpU3datQN8iNy9ymubf0THX1drJwq49iuASYVrDR1K9Z3RkdPh6g9p7m66Ri6BnpYOVemWpsGmFR4EGwvantCvMzOx8Yxf/ce3mnlqwlaNqruxIjWfmz46y+WHjqMpbExnT3c6erpWexr3Lm87LK0zCzm795TaBkJWopXxbkrV5i3bBnv9u+vCVpWKF+erz/8kOXr17Nx505UKhV1nJ0J7NZNU6Y4fNzd+XjoUMK2bWP5+vUY6OtTt2ZN+r3+OvYVK5b0IQlRKq5fvEpY8O90f6ufJmhZt4Eb/UYMZs8f29m2eiP6Bvo4utSg7RudqVBZ+7OfnpoGgJHx4+coNzYxZui4kWxb+wd/7j6IUqnE3rEqXd8MwKHG47/TCiFeXgpV/rLDQjyjsWPHEhYWVugciqJoZs2axezZs9m5cydVqjx+SIQoGQG7ppZ2F4R4Jcw7IwtiCVFSdH1fK+0uCPFKOGoli+4JURL8HRqUdhdK3I7IE6Xdhcd6Fd/vklA20suEEEIIIYQQQgghhBAijwwPFyJPQkKCZqGYJzEyMsLc3PwF9OjFSkpKQqlUPrWcvr4+VlZWz79DQgghhBBCCCGE+M+SoKUQed544w1iYmKeWq579+58++23L6BHL9aIESM0K7E/ScOGDQusci6EEEIIIYQQQghRkmROSyHyHD9+nMzMzKeWs7W1pUYxV2J9GZw5c4bk5OSnlrOwsMDV1fUF9Oj5kTkthSgZMqelECVH5rQUomTInJZClIxXcY5FmdPy5SOZlkLk8fLyKu0ulKqXPRAphBBCCCGEEEKIV4csxCOEEEIIIYQQQgghhChTJGgphBBCCCGEEEIIIYQoUyRoKYQQQgghhBBCCCGEKFMkaCmEEEIIIYQQQgghhChTJGgphBBCCCGEEEIIIYQoUyRoKYQQQgghhBBCCCGEKFMkaCmEEEIIIYQQQgghhChTJGgphBBCCCGEEEIIIYQoUyRoKYQQQgghhBBCCCGEKFMkaCmEEEIIIYQQQgghhChTJGgphBBCCCGEEEIIIYQoU/RKuwNCCCGEeDnp+r5W2l0Q4pVx1Cq7tLsgxCvhlys7SrsLQrwS/B0alHYXhJBMSyGEEEIIIYQQQgghRNkiQUshhBBCCCGEEEIIIUSZIkFLIYQQQgghhBBCCCFEmSJBSyGEEEIIIYQQQgghRJkiQUshhBBCCCGEEEIIIUSZIkFLIYQQQgghhBBCCCFEmSJBSyGEEEIIIYQQQgghRJkiQUshhBBCCCGEEEIIIUSZIkFLIYQQQgghhBBCCCFEmSJBSyGEEEIIIYQQQgghRJkiQUshhBBCCCGEEEIIIUSZIkFLIYQQQgghhBBCCCFEmaJX2h142Y0dO5awsDCtbfr6+pQvX56GDRsybNgwatasqdkXFBRETEwMERERL7qrJSorK4vExEQqVqz43F7Dz88P4KV+r3Jzc7l58yZVqlQp7a4U2cqVKwkODiY+Ph5XV1e++OILatWqVdrdEi+ZS2EHSb9zD/ehHZ5aNislnevbTpBwPopcZTZmduVxbOeNhUMFrXIJF2OI2v03KTF3QaHAomoFqrVpUKDc/Zg7XN96nOTIeBQKBZZOlXDq4INJBcsSPUYhXoSfQ0K4GR/PhFGjnlr2/JUrhGzcyJXISMxMTPB2d6d3x45YmJlplYu/e5ffwsL459IlABrUq0dQ9+5Ymptrlfvr3DlCt2zhalQUOjo61HR0JKBzZ2o6OpbY8QnxIq1bspK7t+IZ/MmIp5ZNTb7P9rWbOP/XGZRKJXbVqtD2jS5UdXZ8bJ24qJvMnzSdlh398eumff2b/9UPxFyPLFCnrpc7fYe/VexjEaKseR73fklXYrmx4yQpsQnoGelj4+qIY9sG6BroP6/DEEKUMZJpWULGjRvH1KlTmTp1Kp9//jmdOnVi79699OzZkyNHjmjKvfPOO3z66ael2NN/LyYmhi5dunDgwIHS7kqZlpKSQu/evQsEtcuy0NBQxo8fj5eXFx9++CFRUVEMHjyYlJSU0u6aeInE/XmRuGMXi1Q2O1PJqYVbuHPmOpUbuVDNvwGZyWmcXrSF1LhETbmka3Gc/XU72elZOLZtQDU/T9ITkjm1cDP3o25ryqXdvsepheq6Dq95ULWVO/ej7/D3z+FkJqeV+LEK8TxFHDrEzoMHi1T27KVLTJo1i5u3btG9bVvatWzJkZMn+fKnn0hJe/DZv5+aysSZM7l8/Tqv+/vT2c+P42fO8M2cOWRnZ2vK/XPpEt/Om0daejp9u3Thjfbtibt9mwk//cTl69dL+lCFeO6O7zvM8b2HilQ2MyODX76bxZk//6Lha81o3b0jyYn3CJ46h1vRsYXWycnJYe2i5eRk5xTYp1KpiI+No3Z9N3oOCdT616SN7786LiHKgudy73clltPBW8nNycGpvRe29WsQd+wiZxZvR6VSPa9DEUKUMZJpWUL8/f0LZNMFBQXRs2dPRo8ezY4dOzA1NaVZs2al1MOSEx0dzXX5wvJUSUlJnD59Gl/fl+dmdNWqVdSoUYPJkycDYG1tzZgxY/jzzz9p1apV6XZOlHmq3Fyidp/ixs6/ilwnes9p0u/cw21Ie6ycKgFQwd2RY9PWEr3vNC69WgJwddNRDC1N8Xy3M7oG6kuXbQNnjv8YxvXtJ3B7qx0AMQf/ITcrG49hHTCzKw+AlbMdf839g5gDZ6newacEj1iI5yM3N5fQrVtZs3lzkessXr0ahY4Okz74gEoV1JkqDT08+N+UKYRt3UpQ9+4AbIqIICEpie/HjaNKJfU5V6NaNb6ZM4fdR47gn3ef8mtoKOWtrPjmo48wNDAAoGXDhnzwzTes+OMPPn///ZI8ZCGem9zcXPb8sZ2I9VuKXGdv+E7uxN3mrf8Nx8mlBgBuDevzw/8msW/zTt4Y2r9gnU07uH0zrtD2ku4koMzMok59NzybynVIvDqe673f5mMYWpniPrQDuvrqez9DS1OubDhM4qUYrGu9PCPZhBDPTjItn6PKlSvzySefkJCQwNq1a0u7O0I8VUZGBgkJCaSnp2t+BvWUB0I8SY4ymxOzN3Jjx1/YejpjYGny1DoqlYpbJy9j7VJFc9MKYGBuglMHHywc1dNPKNMzSY1NwMbNUROwBDAwM8bSqRLJkfGabRkJ99EzNdQELAHMq9igZ2JI2q0HT++FKKuylEo++e47VoeH08LHB2srq6fWuX33LlGxsfg2bKgJWALYV6xIAzc39hw9qtl24MQJ6tasqQlYArjXrk1lW1sOnjgBQEpaGjdiYmhcv74mYAlgZWFBnRo1uHDtWgkcqRDPnzJLydwJ04hYtxnPJt6Yl3v6NCEqlYqTB45Sy72OJmAJYG5pQfs+XalWq3qBOnFRN9nzxzZadWlXaJvxecHMCpVtn/FIhCh7nue9X44yGwMzIyr51NIELAEsndT7U2MTSvhohBBllQQtn7P27dtjYGDAvn37AHX2Zf5cjaCeG/Kbb76hdevWuLq64uvry8SJE7l3756mzNixY2nTpg0nT56kR48euLu70759e0JCQgq83qFDhxgyZAiNGjWiXr16tGjRgvHjx5OcnKzVXvv27Vm+fDk+Pj74+Piwd+/eItUPDQ1lwIABgHpIvIuLi6bde/fuMWnSJFq0aIGrqysdOnTg119/LbH0/dDQUFxcXDh//jwjR46kfv36NG7cmO+++46cnBzCwsJo164dnp6eBAQEcP78eU3dWbNmUbduXa5evUpQUBAeHh74+fkxd+5ccnK0h/GcPXuWESNG0LRpU+rVq0eTJk348MMPiYvTfnqekpLC5MmTadWqFR4eHnTp0oXVq1cDcOTIEVq3bg3A7NmzcXFxITo6uljHe/ToUQIDA/H29qZ+/foEBAQUOr9naGgo3bp1w83NjcaNGzN27Fji4x8EcaZNm4aLiwvLly/XbMvKyqJLly40atSIW7duabZ36NCBhIQEpkyZwqlTp5g+fTrVq1enUaNGWq8ZHR2Ni4sLS5YsoW/fvri6uvLmm29q3pfp06fTvn173NzcqF+/Pr1792bnzp0F+r5+/Xp69uyJp6cnLVu2ZPz48SQkaN+EPO34RNmgys4lJzOL2n19cenVAoWO4ql1MhNTyLqXhlUNO3UbKhU5WUoA7BrXprKP+u+LnqE+3mN6YN+sXoE2lGkZKHQeXMqMy1uQnZZJVkr6Q2Uyyc7IQt/M+F8doxAvglKpJC0jg9GDBjE8KAgdnaffqiXk3TNUrVy5wL5KNjbcT0nhbmIiKWlpxN+5Q/WqVQuUc6palWtRUQCYGBnx4+ef0+mh+5V891NS0C1Cn4QoC7Kzs8lMz6DPuwPpOSQQXR3dp9ZJupPA/cR71KhXG1Bfm7IyMgFo5NccH9+mWuVzcnIIWxyCcz0XPJp4F9pm/pDyCnbqgEt+e0K8zJ7nvZ+uvh6ub7bFoZWHVv38YKWhlfZczUKIV5cMD3/ODA0NcXBw0AqgPeyrr77ijz/+YMCAAVStWpVLly6xfPlybty4QXBwsKZcUlISQ4YMwdfXlx49erBt2zYmTJhAcnIyb7/9NgD79+9n6NChNGjQgJEjR6JQKDhw4AArV67k3r17zJgxQ9NebGws8+bN4/333yc+Ph5PT88i1ffx8eGdd95h/vz59OnTBy8vLwDS0tLo378/sbGx9OvXj0qVKnH48GEmT57M9evX+fLLL0vsPR02bBheXl6MHTuWbdu2ERwczMWLF7lw4QIDBw5EpVIxb948Ro4cSXh4OHp66o+5SqVi0KBB1KxZk48//pgjR44wY8YM4uLi+OqrrwC4cOEC/fr1o1q1agwbNgxjY2NOnDjB+vXruXHjBmvWrAHUQb/AwEAuXbpE7969qV27Nnv27OHzzz8nPT2djh07Mm7cOKZMmUKbNm1o06YN1tbWRT7Gq1ev8vbbb1OnTh3GjBkDqIduv/feeyxbtgxvb/VN8ezZs5k1axbt2rWjd+/e3Lp1i2XLlnH06FHWrFmDtbU1I0aMYMeOHfz000+0a9cOGxsb5syZw8WLF/nxxx+1FlMaNGgQW7duZeXKlaxevZqaNWsyb948zXv4qBkzZuDn50eXLl0wNDREpVLx9ttv888//9C/f38cHByIi4tjxYoVvP/++6xbt04T6F64cCHTpk3Dy8uLDz74gLt37/Lrr79y7tw5QkJC0NPTK9LxibJB10gf7w96oqNb9GBG+l31wxB9UyOubj5G3LGL5GQoMSpvTvWODSlfRx1YUejoYGxjUaB+alwCyTfiKVfTXrOtSktXEs5HcWHlXqp3Ug/Bu7r5T3R0dbBvWvffHKIQL4SJsTEzx49HV/fpwZV8BnnZkOmZBQMh9/PmJE5KTtZkzVtbFsw2K2dhQVp6OqlpaZiamFDZtmBG2I2YGC5eu4ZHnTpF7psQpcnI2IjR335WrPPp7i31PMmm5mZsWbmeP/ceIjM9A2tbGzoEdKO2p6tW+f2bd3L31m36vf8WubmFP6iPvxmHgZEhm1es4/TRkygzsyhXoTz+PTrh3qjBsx+gEKXoed77PSojMYV71+K4Gn4Mk4pWlK/rUCLHIIQo+yRo+QJYWFgQGVlwtUCAjRs30rNnTz744APNNhMTE/bt20dqaiqmpqYAJCcnM2DAAD777DMA+vbty8CBA5k7dy4BAQFYWlqyZMkSKleuzOLFizVfYPr160efPn00mZ75MjIymDJlCh07dtRsK0r9qlWr0rRpU+bPn4+npyddu3YFYNGiRVy7do21a9dqglL9+vXjhx9+YMGCBfTp04fatWv/6/cSwNPTkx9//BGAjh070qRJEw4ePMiGDRs0K7WnpqYyf/58oqOjccxb5TQ3NxdXV1dmz56NQqGgf//+fPTRR6xatYqBAwfi7OzM77//jkKh4LfffsMqb0henz59UCqVbNq0iaSkJKysrFizZg3nz59n2rRpdOnSRVOuf//+/Pzzz/Tv3x9/f3+mTJmCi4uL5n0qqp07d5KWlsbs2bM1gbmOHTsSEBDAuXPn8Pb2Jioqijlz5jBs2DA+/PBDTd1OnTrRo0cP5s+fz6effoqhoSGTJ08mMDCQqVOnMnDgQH755Rc6deqk9fsHOHDgAElJSYA6yDt16lTs7e15nMqVKzNt2jQUCvWT1b///ps///yTiRMnEhAQoPU7GzJkCAcPHsTFxYV79+4xa9YsWrRowYIFCzRfJqpUqcLnn3/OgQMHqF69epGOT5QNCoUChe7Tn7A/LDsjC4AbO06i0NXBuXMjUCiI3neGf5btxHVQW8rlPYl/VE6Wkgur1X+Xqvi6abYbWZlRtZU7VzYe5sTMDeqNOgrq9GulNWRciLJKoVAUK8ACULVSJYyNjDj69990a9NG8zc5S6nkVN5D0yylkpzcXOBBkPNhBnkBzUylEtNCXiMjM5M5S5cC0NXfv1j9E6K0PMv5lJE3Rc7OsHB0dXXp2LcHOjoK9m/ZxfJZixj4wTvUqKe+142PiWXXhq10CuyJpXU5Eu8UPmT1VkwsWRmZZKSl88aQ/mSkp3No+x5WL/iN3JwcmedSvJRe1L2fMi2TY9+rE0d0DHRx7tJIa8i4EOLVJuN7XoDs7GzNF4hHVapUifDwcEJDQzVDsEePHs3atWs1Act8+RmVALq6ugwYMICMjAwO5q0sumDBAtauXav1ZSQxMREzMzPS0gqumpufrZevuPUftm3bNmrVqkWFChVISEjQ/PPP+2Kza9euJ9YvDv+HviyZm5tjbW2No6OjJmAJaBZFun37tlbdYcOGaf0uBg0ahEql0vRvwoQJREREaAKWoB7ubGhoCKB5H3bv3o21tTWdO3fWlFMoFEydOpXly5c/9vddVJXy5hqbNGkSZ86cAaBcuXJs3bqVoKAgALZv305ubi5+fn5a77mNjQ116tRh9+7dmvYaNGhAUFAQGzZsYOTIkVhbWxfIfv3999959913KVeuHJ9++ikqlYqPP/6YjIwMbt26xYoVK4iN1V4x09vbW+tYPTw8OHbsGD169NBsy8nJITfvi3JqaioABw8eJDMzk8DAQK0vE6+//jqhoaE0bNiwWMcnXk652erPRXZGFh5vd6RigxpUrO+Mx9AO6Bkbcn3b8ULr5WRlc3bpTlJjE6ni66Y1J9L17Se4vO4QFg62uPRpSa1eLTCvYsP5kD3cPRf1Qo5LiBdNT0+Pzn5+XI2MZOavv3IjJoZr0dH8uGgRGVnqL4i6urqa6VqKe43KzMpi6s8/cyMmhq5t2lD3oeutEK+abGU2ABlp/2fvzuNqyv8Hjr+6dVu1SCUhKmQpRETISPZtMJaxf+0zxhizGGG2nzGMfR373jC2woyYsW9jZ4Qhu7QolWjvtvz+qO64iikVl3k/H495jM75vM/5fG73dM99n8+SzLAJY6jXtCF1PRswZPxojIyN2LdtF5CzYNbKjdhXccwzZPxZDZp70rFvd94fNZia9WtTr6kHwyeOpbR1GfZs3qm+TxLibfdS9346UL13c6r1aIaxjQWXVv1B9OW7r7biQojXRh5RvAJxcXHPHcb67bff8sknn+Dr68tXX31F3bp1adWqFd27d8fU1FRdzsLCAisrK43YSpUqARAWFgZkfyG5f/8+8+bN4+bNm4SEhGjMV/isMmU0ex0VNv5pISEhpKSk0Lhx43z3P5vsKopnXwc9Pb182wLkuQl0cnLS+PnZ11BHR4dHjx6xdOlSgoODCQkJITw8XP1FL/d4YWFh2Nvb5/ni96JeiYXRtm1b9u7dS2BgIIGBgVhbW9O8eXO6du2qTjbn9t59ukfj055dPGfs2LH8/vvvhIaGMmfOHMyfGh54//59fvjhB6pXr8769esxNjbm/v37rF+/nu+//57q1aszefJkFi1aRLmn5kzL732tp6fHL7/8wunTp7l37576vQGoX8fc1zv39c9lYGBArVq1Xqp94s2jq8y+Tq1qVUJpZKDermekj2X1CkRduEVGmgpd/X9+1+nJaVxZt48n96Io616Vyq3qaewLPXqZUhXK4DqkjXquS+valfnrp9+4EXCc0lV7oNArXK8bId4E3du2JTE5md2HDvHnuewvffVdXOjs48PGnTspZWyMKj07GZOWk8h8Wpoqe04xY0NDje2JSUlMW7qU67dv06JRI3o/9bBOiLeRMufhfc36dTAy+WdhESNjI6rXdeHCn2dIS0nl5P6jPAgNY6jvGBLjs6dhSMl5uJ2WpiIxPgHjUibo6OjQsEWTfM6jpG5jdw7u/J2osAfYVsx/ZIEQb5OXufdTGhlgXdshO86lEufnbefWrtNYuVR+pXUXQrwekrQsYQkJCdy/f5933nkn3/2NGzfm4MGD6v+OHz/O1KlTWbNmDf7+/uqkUH4JmtwEWm6CbuXKlUyfPh0HBwfc3d1p3bo1derUYf369fz666954p8dLlPY+KdlZGRQv359Pvroo3z32+QzN9bLym+YT0F7jTz7Oj77GgYGBvL5559jY2NDo0aN8PLywsXFhWPHjrF06VJ1XEZGRpF7U/5bPefPn09wcDB79+7lyJEj+Pv7s3XrVj777DOGDx+urvvixYsxfOZLZn7u3btHTEwMkN0z9umh4UeOHEGlUjF06FCMjbNv0MeNG0dQUBBbtmzBwsICU1NTmjTRvOl+9ncRGxtLjx49iIqKokmTJnh7e1O9enXKly9Pjx491OVy6/6i17Cw7RNvHn2z7N7kSpO8v1/9UkaQBRmp/9y4piUkc3nNXhLDY7FtWI0qXRprvIeSY56QlZ6JdW1HjcV5FLq62NRx4s6esyQ9fEypcjIXqnj76OjoMLBbN7r4+PDg4UPKWFhgXaYMv/z6KwqFAitLS1Q5icm4pxbny/XoyROMjYwwNPjnS+Tj+Hh++Okn7oaG4tOkCUN79SrRzz4htIFZzgrjJqZ5F/owMSsFWVmkpqZy4/JVMtIzWDp5dp5yx/cc4PieA3w6/WtKWz3/M8fELLuDQlo+89EK8TYq7L3fs3SVelhWr0j4n1dRJabkexwhxNtFkpYlbM+ePWRlZalXkn5aWloaV69exdbWlg4dOtChQwcyMzNZvXo106dPZ9euXeqhwNHR0RpzXALcvXsXyO6tlpqayoIFC/Dw8GDVqlUaC6c8vQDP8xQ1vnz58iQmJuLpqTk85vHjx5w4cSJPj7rX5f79+1SpUkX989OvIcCsWbOoVKkS27ZtUyfvgDxJWzs7O4KDg/Mc//DhwwQGBvLFF18UqZ7h4eGEh4fj7u6Os7MzH330EQ8ePGDgwIGsXLmS4cOHq3t1litXjhrPLIpw+PBhSpX652Y7PT2dCRMmYGFhwbvvvsvy5cvp0KEDrVq10oh7epVafX195s6dS9euXYmLi2PIkCEYGb149eUNGzYQGhrKmjVrNHrdnj9/XqNcbm/NkJAQHBwc1NvT0tL44osv6NSpU6HaJ95MJrYW6OgpSIqKy7Mv5VECCqWu+mY0PVWlTljaNamJU4eGeWIUejnv33wWQsjKysz9R7HVXwhtcvzcOSzMzKhVtSoWZv8sXPX3zZs4VqyIvlKJvlKJdZky3AkNzRN/5/59nOz/WdggOSVFnbBs36IFA5+a9kOIt1nZ8uXQ1dMjKvxBnn2PomPRUyoxMS1F217vkpyoOX1S4pN4ti73o05jd+p6NqCUmSlPHsWxZuZiXD3q0aJzG43y0Q+iAChtLXMui/+Ggt77JT2M4/KavVRo5opdI811ETJSVaADOjJyRoj/BJnTsgRFRUUxf/58ypYtq16s5WmPHj2iV69eGj34FAoFrq6u6n/nysrK4ueff1b/nJ6eztq1azE1NaVx48akpKSQnJxM5cqVNRKOV69e5fTp0+qY5ylMfH5Dr729vbl27RqHDx/WOO7ixYsZM2YMN27ceO65X6X1OYsI5Fq9ejV6enp4e3sD2UP57ezsNBKWERER/PHHH0B2D0sALy8voqOj2bt3r8bx1q5dy6FDhyhduvRzh6gXxJIlSxg0aJDG8HxbW1tsbGzU74sWLVoA2XORZj2ViLl69SoffPABa9euVW9buXIlV65cwdfXlzFjxuDk5MR3332nXnSnQYMGKBQKNm3apFHf6OhoUnOe/u/evVvdU/N5co/3dGI4KysLPz8/4J/3kKenJ0qlks2bN2vUfc+ePezZs6fQ7RNvJl19JWVq2BN7LZTEyEfq7Smx8cRcDcGyRkV1j8lbO09kJyw9a+SbsAQwtrFA38yIB+dvkKH65+9dhiqdyAu30DMxwLisRYm2SYjXZdeBA6zaskX9OQVw7vJlgm/fpnWzZuptHnXqcCk4mLCnPl+Crl0jIioKz/r11dtWbt7M3dBQ2r3zjiQsxX+KvqEB1d1cuB50haiwf6Y3evQwhmsXLlPdzQWFQkH5yhWpUstZ4z/7qo4AWFqXoUotZ5T6SsxKW5CSnMzZIyfUi/wAxMU84vyxUzhUr4qpuVmeegjxNirovZ+hpRnpKWlEnA4m86nPtZRHCURfvou5gy16BjJVlBD/BdLTspjs27eP0qVLA9m9Fm/fvs327dtJTU1l+fLl+Q5vzU1mbtiwgeTkZNzc3IiLi8PPzw8rKyvatWunUf6nn34iLCyMqlWrsnv3bi5cuMCUKVMwMjLCyMiIOnXq4O/vT6lSpXBwcODGjRts2bJFneRKTEzUmMfwaebm5gWOz23nzp07ycrKomvXrowYMYI//viDUaNG0bt3b6pWrcq5c+fYsWMHXl5eeHl5FdtrXRQBAQEkJCRQr149jh49ysGDBxk1apS6V5+XlxeBgYF8/fXXuLq6EhoayubNm0nOucnMXUimd+/ebNu2jbFjx9K3b18cHBw4dOgQx48f54cffkBXVxcLCwsUCgX79+/Hzs6O1q1bP/f1f1bfvn3ZsWMHffv2pVevXpibm3Py5ElOnz7Nxx9/DEC1atXo378/69evJy4uDh8fH/X7x8TEhDFjxgBw69YtFi5cSNOmTenQoQMA33zzDQMGDGDKlCnMmDGDatWq0bdvX9avX8+wYcNo2bIlt2/fZvPmzdjY2NCzZ09mzZpFv379WLNmzXPr7eXlxfr16xkxYgTvvfceKpWK3bt3c/nyZRQKhfr1K1OmDKNGjWLu3LkMHjwYHx8fHjx4gJ+fHx4eHnh7e6NQKArUPvHmSI6N58m9KMwq2WBkmT0kzqGtO4/vPODSyt+x86yBQqFL2Im/USh1qdw6O4GSFBVH1IXb6BopKWVXhsgLt/Icu6ybEzoKBU6dGnF1w0H+WrwL2/pVycrKIvLcDZIfPsa5RzMUhVxFVghtFBkdTfDt2zg7OlI2Z57nLq1aMXvlSn5cupSGderwMDaW3w4coE6NGjRr8M/KxJ19fDhy+jSTFyygo7c3aSoVv+7fj6O9Pc1y5kwOffCAo2fOYGxkROUKFTiS8/DyaV4N8394IMSbJjYqmpCbd7Cv4oClTfb11KZHZ+5eu8mq6Yto3MoLha4eJ/YdRqmvpFW3DoU+R8d+Pdi4cCXLpszDvXlj9ZyYCl1dOvbrXtxNEkJrvOy9n0JXgVPHRlzfcpSgZbuxcXMiPSmV8JPXQKGTveq4EOI/QZKWxWTq1KnqfyuVSsqWLYu3tzfDhg3TGP76rMmTJ1OxYkV27drFrl27MDIyonHjxowdOzbPIicrV67k22+/JSAggCpVqrBw4UKN4b3z5s1j6tSpbNu2jbS0NMqXL8/w4cNxcnJi9OjRnDx5kjZt2jxbhULHOzk50b9/f/z9/bl06RIeHh7Y29uzadMm5s+fz549e9i0aRN2dnZ8+OGHDB8+XKPX6Ou0cOFCFi1axB9//EHFihWZPHkyPXv2VO//9ttvMTY25sCBA+zYsQNbW1veffddWrVqxfvvv8/JkyepWbMmhoaGrF+/nrlz57Jr1y7i4+NxcnJi7ty56mSzkZERY8eOZeXKlXz//ffY29vj4VGwD1hnZ2dWr17NokWLWLVqFQkJCVSuXJmvvvqKvn37qstNnDgRR0dHfvnlF3788UdMTU1xd3dX96bMzMxk4sSJ6OjoaKwW7uHhQZcuXdixYwcdOnTgnXfeYcKECdjZ2bFp0yZ++OEHypQpQ69evfjoo48wNzfH3NycnTt3Ym5uTnR0dL719vLy4vvvv2fVqlVMmzYNc3NzatWqxaZNm/jqq684deqUuuwHH3yAtbU169atY9q0aVhbW9OzZ09Gjx6tfr/8W/vEm+XJ3Uiubz1Gtfeaqm9cDUuXos7IDtzdc5bQo5chC8wrl8Whrbu6zOM72UP0MpJVXN96LN9jl3XLfj9Y1aqE6+A2hBz4i7t7sxcjKWVXhloDfbCsVqGkmyjEK3H11i0W+/nxQb9+6qSlR926fDxoEDv27mWtvz/mpqZ0btmSd1u31vgMNjc15btPPmGtvz+bAwMxUCppULs2fbt0Uc/7fPXmTQCSkpNZnNNT/lmStBRvi7vXbxOwagNdB/dRJy1LW1kyfOIn/LH1V47tOUhWVhaVqjnSpkdndZnCqFnPlT6jh3D4t738seVXlPpKKjtXofV7HbEuV7a4mySE1njZez/IvrdT6Cm4f/gSt3edQVdfDwunclRqVQ9j64J1BBFCvPl0srJkgi9tN378eAICAvKdQ1EUzIIFC1i4cCH79++nQgVJXLysrKyst2IRht4Hp7/uKgjxVlhWpu3rroIQb43TFs+fxkcIUXArbu173VUQ4q3wS4txr7sKxW5fyPl/L/Sa+NjXe91V0Era0f1NCPFGeBsSlkIIIYQQQgghhNB+MjxcvDKxsbEaCwQ8j6GhIaampv9a7k0TFxeHSqX613JKpRILC4uSr5AQQgghhBBCCCGElpKkpXhl3nvvPcLCwv61XNeuXZk2bdorqNGrNXr0aPVK7C/SsGHDPKucCyGEEEIIIYQQQvyXyJyW4pU5d+4cqamp/1rOxsaGKlWqvIIavVqXL1/myZMn/1rOzMwMFxeXV1Cj/y6Z01KI4iFzWgpRfGROSyGKh8xpKUTxkDktXy2Z0zJ/0tNSvDL169d/3VV4rSQRKYQQQgghhBBCCFEwshCPEEIIIYQQQgghhBBCq0jSUgghhBBCCCGEEEIIoVUkaSmEEEIIIYQQQgghhNAqkrQUQgghhBBCCCGEEEJoFUlaCiGEEEIIIYQQQgghtIokLYUQQgghhBBCCCGEEFpFkpZCCCGEEEIIIYQQQgitIklLIYQQQgghhBBCCCGEVpGkpRBCCCGEEEIIIYQQQqtI0lIIIYQQQgghhBBCCKFVJGkphBBCCCGEEEIIIYTQKnqvuwJCCCGEeDOdtkh/3VUQ4q3RME5uy4UoDvUvG7zuKgjxdmjxuitQ/LT6s9b+dVdAO0lPSyGEEEIIIYQQQgghhFaRpKUQQgghhBBCCCGEEEKrSNJSCCGEEEIIIYQQQgihVSRpKYQQQgghhBBCCCGE0CqStBRCCCGEEEIIIYQQQmgVSVoKIYQQQgghhBBCCCG0iiQthRBCCCGEEEIIIYQQWkWSlkIIIYQQQgghhBBCCK0iSUshhBBCCCGEEEIIIYRWkaSlEEIIIYQQQgghhBBCq0jSUgghhBBCCCGEEEIIoVUkaSmEEEIIIYQQQgghhNAqeq+7Aq/K+PHjCQgIYP/+/VSoUKFIx+rfvz9hYWEcOHCgWOpW1OMFBgayceNGrl27RmpqKra2tnh5eTF8+HBsbGw0ymZmZhIeHl7o18Df3x9fX1/WrVuHh4fHc8udOnWKAQMGMHXqVLp165bn59DQUFq2bMlHH33E6NGj1XH379+nYsWKhWt4AeX+7p+mVCopU6YMDRs2ZPjw4VStWlVjf36/kzVr1rBixQqePHnCgAEDGDZsGOPHj+fEiRMolUrWrl1LzZo1S6QNQrwJUmLjub37DI9vPwDAsnoFHNo1QL+UUbHExV4P4/6hiySExYCODmYVranUqh5m9tYa5S789CsJoTF5zlPGpRI1+7QoShOFeCUePYxh96Yd3Am+CYBz7Zq069UFEzPTYom7ffUG+wMCibgfhqGRIS4N6uLTtQP6hgbZx4mOZfa4/3vhuQaPG4VD9aovLCOENoqKiWFdQAB/37gBQL1atejftSvmpi++vgoaN2HGDG6FhOSJb1i3Lp8NGVJMrRBCO0Q9icfv5En+Dg8HwM3env6NG2Fm9OJ7v4LGPUlO5pfTZzh37x5p6Rk4WJXhfY+GVC1btmQaJITQOv+ZpOXbas6cOSxZsoR33nmHUaNGYWhoyI0bN9i6dSu7du1i06ZN2NvbA5CQkMCgQYNo3ry5RsKwODk5OTF9+nTq1auX735LS0umT5+Os7OzettPP/1EQEAAe/fuLZE65fL19aV06dIAJCcnExISwrZt2/j9999Zvny5RjJ25MiRJCcnq38ODg5m6tSp1K1blzFjxlC9enWWLFnCgQMHGDRoEI6OjlSuXLlE6y+ENlMlpRK0cg9ZGZlU8HIhKyuL0KOXSXzwiLofdkShq1ukuLg7D7iydi/GNhZUbl2PrIwswk9dJWj5buoMb4dpxezEZVZWFklRjylT054ytSppnMvQwqRkXwQhikFSQiKrpi8iIyOdZm29ycrK5Nieg0SGhjPyq0/R1cv/1q2gcbev3mD1zJ8oX6kibd7rxONHcZzYe4SwO/cZ6vsxOjo6mJQyofvQvnnOoVKp2PWzPyZmpbCtWL5EXwchSkJ8YiLfzZ9PRkYGnX18yMzM5Nf9+wkJD+eHzz9H7znXV0HjsrKyCI2MxL12bTzq1NE4hrWlZYm3T4hXKT4lhcm//UZGZiad6tQhMyuL34KCuB8by/dd30XvOfd+BY1LTkvju52/8igpifaurpgYGPD7lStM/m0XU7q+S0W5poT4T5Ck5RssIiKC5cuX079/fyZNmqSxr2PHjvTt25fZs2czd+5cAOLi4rh06RLNmzcvsTpZWVnRpUuX5+43NjbOs//EiRNkZGSUWJ1y+fj45Olh2r9/f7p3784nn3zCvn37MDHJTmo0adJEo9z169cBGDFiBN7e3kB2wtjCwgJfX98Sr7sQ2i7s2BVSHydR/+MuGNtYAGBawZrLq/4g8vxNyjVwLlLc7V2nMTA3oe4HHdHVz/7osqnnxLk5Adzdex7XwW0ASH2UQGZaOmVq2lPWzalkGy1ECTj+xyEeP4rjo/8bh42dLQDlHSqxdtZizh8/TYPmnkWK27N5BxaWpRkyfjRKfSUA5pal+c1vKzcuX6Oaaw30DQ2o69kgzzkCN/qTkZFBj+H9MTIxLonmC1Gidh04QGxcHDN8falgm32dVKlUiSmLFnHo1Cl8nrn/K2zcw9hYUlNTaVC7Nl4NG76aRgnxmgQGXSI2IZEfe3SnQk7HkCo21vywazeHr1+nZY0aRYrb+ddFIh4/ZlLHjtS0KwdAYydHPt74Czv/usgobxk9I8R/gcxp+Qa7ePEiGRkZeRJsAG5ubtSuXZu//vrr1VfsDVKuXDm+/PJLYmNj2bZt23PLqVQqAHVSM3fb0z8L8V/2MOg2Fg626sQjQOkqdhhZm/Ew6E6R4lTJqSRGxGLlWlmdsATQL2WEuYMtT0Ki1NsSo+IAMLIyL56GCfGKXTp1HgfnKurEI0CVWs6UsbXh0qkLRYpTpakwMS2Fe/NG6oQlgINzdoL/QUjYc4//4H44J/YdpV7ThlSuJg8ExJvp+Pnz1KxaVZ14BKhdvTrlbGz48/z5Isfdj4gAoLwMXRX/AX/eukVNu3LqxCOAa4UKlLMw58St20WKy8rK4sj169StWFGdsASwMDamf6NGVC9nm+e4Qoi3kyQtn7F792769etH/fr1cXFxwdvbm+nTp5OWlpan7IEDB+jQoQOurq506tSJnTt35ilz8+ZNRo0ahbu7O3Xq1KF3794cPXq0WOqamzALCAjIt37r1q3j0KFDQPZcky1btgRg4cKFODs7ExoaCsC9e/f48ssv8fLywsXFhYYNGzJy5Ehu5MzZ87SoqChGjRpF3bp18fT0ZPLkySQkJKj3nzp1CmdnZ/z9/fOtc2hoKM7OzixYsAAAb29vTp8+TVhYmHr7p59+iouLC0+ePNGIjY+Px9XVlR9//LGQr9SLtW3bFn19fY3fS//+/dU9Kvv376/uTTlgwACcnZ1xdnbWqPf48ePVsf7+/rz77ru4urrSqFEjxo8fT1TUP0mV3NdgzZo1vP/++7i4uDBo0KBCx2/fvp05c+bg5eWFq6srPXr04OTJk3nat2PHDrp3707dunXx8vLi66+/JjY2VqPMv52zMMLDwxk9ejRNmzbF1dWV9u3bs3z5cjIzMzXKXbhwgf/973+4ubnh5ubG4MGDCQoKUu8/cuQIzs7OjBkzRiPuq6++wtnZmSNHjrxU/UTxUyWnkhKbQKnyZfLsK1WuDAnheeeXLEycnoES97HdKN+kVt5jJKWgo/jnoywp8hEAxjbZScuMNFXhGyTEa5KcmMSjhzHYVc4777SdfQUiQkKLFKfUVzLw05E079hao0xETrLSwur5Q+32+e9Cqa+kZdf2BW6PENokISmJqOhoHPOZQ92hYkXu3L9f5Lhnk5YpqanFUXUhtE5CaipRT+JxsLbKs6+ylRV3oqOLFPcwPoHYxCRq54ySy8rKIiWnE0mrWjWf24tTCPH2keHhT9myZQuTJk3C29ubzz//HJVKxd69e1m5ciUA48aNU5d9+PAhH3/8MT179qR3797s2LGDL774gvT0dLp16wZkz4PYp08frKysGDFiBEqlkt9++43hw4cza9Ys2rcv2o2/h4cHFSpU4Pfff+fcuXO0bt2aJk2a0KBBA8zNzdHX11eXdXJywtfXl6lTp9KqVStatWqFpaUl0dHR9OzZk1KlStGvXz9Kly7N1atX2bx5M1euXOHAgQMolf/0xvj666+pUaMGn332GdevX+fnn3/mxo0brF27Fh0dnUK3YcKECcyaNYtHjx7h6+uLs7Mz4eHh7Nq1i3379qlfS4A//viDtLQ0OnXqVKTX7VkGBgbY29tz7dq1fPePHDkSBwcHNm3axMiRI6lcuTIKhYIlS5ao6507b+jChQtZsGABbdq0oWfPnkRGRuLn58fp06fZunUrlk/NvTJv3jy8vb3p1KkTBgYGLxVvZGTE4MGDUalUrFq1ihEjRnDo0CH13J3Lly9n5syZ1K9fn08//ZSYmBjWrl3L1atX2bhxI3p6eoU6579RqVQMHTqUlJQUBg0ahJmZGYcPH2bmzJlkZGQwcuRIAI4fP86IESOoXr06Y8aMIS0tDX9/f/r27cvq1atxd3fHy8uLrl27EhAQwNGjR2nWrBnHjh1j8+bN9O7dGy8vr8L9okWJSXucBIC+Wd7hovpmRmQkq0hPTkPPSP+l44yszPKUSXwQy5N7UZSu+s/ceklRcega6HE78AwPg+6QmZaOoWUpKrWqh00dxyK1U4iS9uTRYwDMSlvk2WdqYUZKUjLJSckYGRsVS9yj6FjuXLvJnk3bsSlfjhpurvnW68H9cIIvXqFJmxaYWUgvZvFmio2LA8DSPO97uLSZGUnJySQmJWFibPzScaERERgaGrLO358/L1wgNTUVGysrenfsSJP69Yu9TUK8Lo8SEwGwNM476qy0sTFJqWkkpqZikvMdp7BxDx7nfK4ZGeF34iQHrl0jOU1FWXMz+jduRP1KlfLECyHeTpK0fMqqVatwc3Pjp59+Uifg+vTpQ8uWLTl69KhG0jItLY2vv/6avn2zJ6rv1asXXbp0YdasWXTu3Bk9PT2+//57LC0tCQgIwDjnBqhfv34MHDiQKVOm4OPjo5FYLCx9fX1WrFjBp59+yt9//82GDRvYsGEDurq6uLu7M3z4cJo2bQpkzzXp4+PD1KlTcXZ2Vs8r6efnx+PHj9mwYQNOTv8M9zIxMWHZsmVcv36dWrX+6d3k7OzMunXr1BOOly1blgULFnDw4EF1z8TC8PHxYe3ataSmpqrr5OTkhIWFBbt379ZIWgYGBuLo6FgiK3SbmZkRks9Kj5A9v2VkZCSbNm3C09NTvWDP1q1bNep9//59Fi1axPDhw/nss8/U8R06dKBbt24sWbKECRMmqLeXK1eOmTNnqt9rhY3Pyspi69at6vdW+fLlGTt2LHv37qVnz548fvyYBQsW0KxZM5YuXYpuzqTWFSpUYNKkSRw/fhxHR8dCnfPfXL16lVu3bjFv3jzatm0LQI8ePRg6dCh37mQP9c3MzOSbb77B1dUVPz8/db369evHu+++y/fff8/27duB7MWTjh07xuTJk9m0aRNfffUVlSpV4ssvvyxwnUTJy+3NqKvM+5GiyPlbkaFKz5O0fNm43NjgLdm9oys0/yfRkhgZR0ZqOukpaTj3aEZ6Shrhf/5N8KYjZGVmyTyXQqulpqQAaAzdzqWXs02VlpYn+fgycUkJieoVwpX6+nTs2y3feIDTB4+ho1Dg0bJZYZskhNbI7fWY3723fs4D+lSVimdTKYWJux8RQUpKCokpKXzUvz+JycnsPnSI+WvWkJGRIfNcirdGck6vR/18Fq/Sz7m3T0tPz5O0LGhcUs4ows1nz6KnUDDQ0xOFjg6/BQUx6/c/8G3fDtcKeUcXCCHePjI8/Ck7d+5k2bJlGj0GY2JiMDMzIykpSaOsmZkZvXr1Uv+sr69Pr169iI6O5vLlyzx69IjTp0/TvHlzUlJSiI2NJTY2lidPntCqVSuio6O5dOlSkevs4OCAv78/69atY8CAATg5OZGRkcGpU6cYMmQIy5Yte2H88OHDOX78uEbCMiUlBUXOcMtn2z1o0CCNlRX79+8PoB6GXhyUSiVt2rThxIkTPM55yhYbG8vJkyfp0KFDsZ3naenp6S/VU/Rpe/fuJTMzE29vb/XvOzY2FisrK2rUqJHnNXJ3d9c4Z2Hjmzdvrk5YAlSvXh3I7gUM8Oeff5Kamkrfvn3ViUGAzp074+/vT8OGDQt9zn9jY2ODjo4OS5cu5ejRo6SlpaGjo8PKlSvVw/r//vtv7t+/j4+PD48fP1afMyUlhRYtWnD16lUiIyMBMDc359tvv+XevXv06NGDyMhIpk2bptFuoQWysrL/X9hL6CXjMtLSubJ+P4kRj6jQ3BULh3/mNSrXoBpOnT2o2acFVrUqYVu/KnVGdsDQshR3dp8h65lpCoTQJupLopCfRy8Tp6OjQ8+RA+k+tC82drasnrmYK2cv5imnSlPx14mzVK/rQukXDB8XQttl5Vwohb++Ch7n06QJg3v04LMhQ2hYpw4tGjXi+88+w8bKCr/t2/NMlSPEm6qkrydVziKtSalpfNulM82dq9GsWlW+7tQREwMDfjl95iVqLYR4E0lPy6colUrOnDnDb7/9xu3btwkJCSEmJntOtfLly2uUrVixokbyLncbQFhYmDrpt379etavX5/v+SJy5r0pKh0dHTw8PNQ9AMPDw9m2bRtLly5l3rx5dOnShbIvmBBcpVIxZ84crly5QkhICKGhoerVvJ+9uXJ01BxeaW5ujrm5OWFhz5+8/2V07tyZTZs2sW/fPrp3786ePXtIT08v9qHhueLi4go1DDo/uT01e/fune/+p4fZA3nOV9T43B4Aub+z3N9JpWeGTxgYGKh7zxb2nP/G1taWL774gtmzZzN06FCMjY1p3Lgx7du3p127dujq6qrPOX36dKZPn57vccLDw9XvWR8fH1q3bs0ff/zB+++/T7169QpVJ1HydA2y3yeZqow8+zLT0wHQM8z7XnqZuPTkNK6s28eTe1GUda9K5Vaa74dyHtXznkeph42bEyH7L5IUFYeJrSRehHYyMMzukaLKZ57q9JyeyYaGhsUSZ2RijGtDNwBquddlwVfTCPwlgFrudTTK3b52A1VqGi4N6hayNUJoF8OcHl/5zQOfltP7yzif66swca1yRjg9TV+pxKtBA7bu3s39iAgqPfOdQog3kVHOd4S0nPu1p6XlfI80yqd3ckHjcntiNnSoTKmnemuaGBhQz96eozdukKJSYVjI7ypCiDePJC2fMnnyZPz8/KhZsyZ169alS5cuuLm5MXny5DwJxvyeDuU+OVIoFOqkX9++ffHx8cn3fFWqVClSfdevX09qaipDhw7V2G5nZ8fo0aMxMDBg1qxZ/PXXX7Rp0ybfY5w9e5YhQ4ZgbGyMp6cn3bt3p2bNmoSEhPB///d/eco/r91P9+QrDvXr18fOzo7du3fTvXt3du/ejYuLS54EXHFISEjg/v37vPPOO0U6Tm6ycPHixfl+qXzWs69ZYeMVihd3lM493oueZBb2nAUxZMgQOnbsyN69ezl8+DDHjx9n//79bN++nRUrVqjPOWbMGOrWrZvvMZ5OjiclJfH3338DcOzYMZKSkqSnpZYxMC8FQFp8cp59aU+S0TVSopvPsNPCxqUlJHN5zV4Sw2OxbViNKl0aF/gJv9Ike1hsRlrem2QhtIV5mez5iOMfx+fZFx/3BENjI/QNDfLse9m4XEp9Jc51anFy3xES4xMwMS2l3nc96G909fSoVlsWPRBvNquc+b7jnlnoEeDRkycYGxmpE5TFEfc0c1NTAFLzSXwK8SYqUyr7cyLumVF5AI+SkjA20M83oVjQOEuT7Ht9MyOjPOXMjY3IykKSlkL8R0jSMkdYWBh+fn506dIlT++v6HxWP4uIiCArK0vjC/Pdu3cBsLe3x9raGshOTHl6emrE3rx5k9DQUIzy+SNcGPv27SMoKIg+ffrkm8SpVq0akH+vjFzz58/H0NCQXbt2afTcW7JkSb7lw8LCqFq1qvrn3CHvuQvRFBcdHR3at2/P2rVrCQ8P59y5cxpzihanPXv2kJWVpV5d/WXl9sYtV64cNZ5Z0e7w4cOUKlUqv7Bii39WuXLlgOzelA4ODurtaWlpfPHFF3Tq1KnYzxkXF8e1a9eoV68e/fr1o1+/fiQlJTF+/Hh+//13goOD1efMTZQ/LSgoiMePH2u8Z2fPnk1YWBjjxo1jxowZzJ49m0mTJhWqXqJk6RnpY2BZKt9VwhMiYjAtn3eFyMLGpaeq1AlLuyY1ceqQd16w1MeJXFr9Bza1HbD3rquxLzk6e6oJw9KFe08L8SoZGRthYWVJxL28q4SHh4RSvnLe1YsLE/cwIpJ1s5fStJ03Ht6aPcJSU1JARwe9Z+aYDbl5h/KVK2JYxHsWIV43E2NjrMuU4U5o3uvkzv37OD3nXragcbFxcXy/aBGe9erxXrt2GuXCcqa9sS5TpqjNEEIrmBgYYG1qmu8q4Xejo3HM+S78snEVLS1R6uoS+uhRnnIPn8Sj1NPFrJg6XAghtJvMaZkjd+7EZ3s/Hj58mLt375L+TBf2mJgY9u/fr/45KSmJjRs3Ur58eWrUqIGNjQ0uLi4EBASo5+eD7KHYEyZM4OOPP85zzMLq1KkTSUlJTJs2Lc8w7szMTLZs2YKZmRkNGjQA/unZ93TZ3GHRTycs4+PjCQgIAFD3GM21ZcsWjZ9zV1YvSsJPoVDkO8dPp06dUKlUzJgxg6ysLNo9cwNYHKKiopg/fz5ly5Yt8tDzFi1aALB06VJ1r1vIXpzmgw8+YO3atSUa/yxPT0+USiWbN2/WON6ePXvYs2dPiZzz+PHjDBw4kAMHDqi3GRsbqxPourq6uLi4YG1tzfr160nMWUEQsnu8fvLJJ/j6+qrfq+fOnePnn3+mZ8+eDBkyhO7du/Pzzz9z9uzZQtVLlDyrWpWIuxVO0sM49bZHN8NJfvgE69oORY67tfNEdsLSs0a+CUsAA3MTMlLSiDhznfSUf3qzpMQlEHnuBuZOtuibSi9dod1q1a/Drb+DeRjxz73DzSvBxDyIwtXj+dNjFCTO0saKlORkzhz6k4yn7kEeRcdy5exFKjs7YfDUl8CM9HQehj+gXCVZ7EC8HTzq1OFScLA6iQgQdO0aEVFReL5gde+CxFlaWJCUnMyBP/8kKfmfEQTRsbEcOnWKWtWqUdrMrARaJcTr0dChMpfDwgh7FKfedik0lIi4x3g6PX/hw4LEGSqV1K9kz4WQEEJj/0lcRj2J59y9ENwrVfrXUWdCiLfDf66n5Zw5czAxeXZdQGjVqhV2dnYsWbKE1NRUbG1tCQoKIiAgAAMDA43kCmTP5Thu3DgGDhyIhYUF27ZtIyIigkWLFqn/gE6aNImBAwfSvXt33n//fSwsLNi1axcXL17ks88+o3TOcJOX1a1bN44ePcqmTZu4cOECbdu2xdbWlpiYGHbv3k1wcDCzZs1S98K0sLBAoVCwf/9+7OzsaN26NV5eXixfvpwxY8bQtGlTHj58yNatW9W9S59t99mzZ/nwww9p3rw558+fZ/v27bRr147GjRu/dDssLS05c+YMq1aton79+tSpkz2fVvXq1alatSqBgYF4eHi8cF7Ogti3b5/6NU9NTeX27dts376d1NRUli9fXuTh0dWqVaN///6sX7+euLg4fHx8iIuLw8/PDxMTE8aMGVOi8c8qU6YMo0aNYu7cuQwePBgfHx8ePHiAn58fHh4eeHt7o1AoivWcLVq0wMHBgYkTJ3LlyhXs7e25ffs2P//8M40bN1Y/FJg0aRJjx46lW7duvPfeexgYGLBlyxbCw8OZOXMmenp6pKamMnHiRCwtLfn8888B+Pzzz9m3bx8TJ05k586dGPzLcCzx6lRo5kLUhVtcWvk75Zu6kJmeTujRy5QqXwabutk3oMmx8Ty5F4VZJRuMLE0LHJcUFUfUhdvoGikpZVeGyAu38pw/d1Vwp86NuOp3kItLA7F1r0ZGmorwE1fRUSio0qnRK3o1hHh5zdp589efZ1g9YxFN2rQgXaXi2J6D2FWuSJ1G2cmR2KhoQm7ewb6KA5Y2VgWO09XVpUOfbmxb8TMrpi2gbmN3khKTOLX/KAqFgo59umvUJS7mERnpGZhbFu1+RQht0dnHhyOnTzN5wQI6enuTplLx6/79ONrb08zdHYDI6GiCb9/G2dGRslZWBY4DGNKzJzOXL+erOXNo6elJckoKvx85gq5CweAePV5Lm4UoKZ3r1uHojRtM2bWLDrVdSUvP4LegIBysrWhaNfueP/LJE64/iKSabVnK5iTtCxIH0KeRB39HRDD5t99o6+KCnq6CPZcuo9TTpVfDBq+lzUKIV+8/l7T87bff8t3u6OjIsmXLmDZtGuvWrSMrKwt7e3smTJhAeno6U6ZM4fLly7i4uADg5OREv379mDdvHhEREVSrVo2lS5fSrFkz9THd3NzYuHEjCxYsYPXq1aSnp+Pg4MC0adPo2rVrkduiUCiYO3cuO3bsYMeOHfj5+REfH4+5uTn169fnu+++o3bt2uryRkZGjB07lpUrV/L9999jb2/P6NGjycjIIDAwkIMHD2JjY4OnpyeDBw+mQ4cOnDx5klatWqmPMWfOHFauXMmUKVOwsLDggw8+YNSoUUVqx9ChQwkODmb27Nl069ZNnbSE7N6Ws2fPpmPHjkU6B8DUqVPV/1YqlZQtWxZvb2+GDRumMXy6KCZOnIijoyO//PILP/74I6ampri7uzNmzBiNFdpLKv5ZH3zwAdbW1qxbt45p06ZhbW1Nz549GT16tDq5XpznNDY2ZtWqVcyfP59ff/2V6OhorK2t6dOnDx999JG6XNu2bTE3N2fx4sX89NNPKBQKqlatyuLFi9W9PxcsWMCdO3eYMWMGZjk3OaVLl+aLL75g4sSJzJ07ly+//LLQr4koGfqljKg9rB23d53m3r4L6OrrUaaGPQ5t3VHoZfecfXI3kutbj1HtvabqpGVB4h7feQBARrKK61uP5Xv+3KSlVc1K1OzvTcihIO78fhaFUhcLh3JUblMPY2uLEn4VhCg6EzNThvp+TODGAPZv342+vj413Fxp06MTejlzd929fpuAVRvoOriPOmlZkDiAup4N0FPqcSRwP7s3bUdpYIBTjar4dOuAla2NRl2SE7PnHDM0kiF44u1gbmrKd598wlp/fzYHBmKgVNKgdm36dumiXnzw6q1bLPbz44N+/dRJy4LEATSoXZsvhg0j4I8/+HnHDvSVSmpWrUqfzp0pX8SH70JoGzMjI77p3Il1f55gy9lzGOjp4V6pEn0beaDMGTV1LeIBSw4dZuQ7zdVJy4LEAVibmvJ/73Zh46nT/BYURFZWFtVtbenTyEN9LCHE208n6+kxoUJomWXLlrFgwQKOHTuGubn5666OeEv0Ppj/quVCiMIZ6pT/QnNCiMJrGPef60sgRInIOHzwdVdBiLdC6dGFG3X3JngSFPS6q/BcZk91OBP/kIkghNZKS0vD398fHx8fSVgKIYQQQgghhBBC/IfII10tkpGRQWxsbIHKmpqaFnkORm0VGRnJ1KlTuXnzJvfu3WPGjBka+1NSUoiPjy/QsSwtLdWLuoiXk5iYSFJSUoHKWj9npUAhhBBCCCGEEEKIwpCkpRaJiIgo8CrcU6dOpVu3biVco9fD3Nycs2fPkp6ezjfffIOrq6vG/sDAQHx9fQt0rP3791Ohgqx6WhSrVq1i4cKFBSobHBxcwrURQgghhBBCCCHEf4EkLbWItbU1q1evLlDZ3FWY30aGhoYcO5b/YhsATZs2LfDrJD3/iu7dd9+lfv36r7saQgghhBBCCCGE+A+RpKUWMTAwwNPT83VXQ+vZ2NhgY2Pz7wVFsahYsSIVK1Z83dUQQgghhBBCCCHEf4gsxCOEEEIIIYQQQgghhNAqkrQUQgghhBBCCCGEEEJoFUlaCiGEEEIIIYQQQgghtIokLYUQQgghhBBCCCGEEFpFkpZCCCGEEEIIIYQQQgitIklLIYQQQgghhBBCCCGEVpGkpRBCCCGEEEIIIYQQQqtI0lIIIYQQQgghhBBCCKFVJGkphBBCCCGEEEIIIYTQKpK0FEIIIYQQQgghhBBCaBW9110BIYR41ZaVafu6qyDEW2H4rT2vuwpCvD2cfF53DYR4KzRs3uJ1V0EIIUQxkZ6WQgghhBBCCCGEEEIIrSJJSyGEEEIIIYQQQgghhFaRpKUQQgghhBBCCCGEEEKrSNJSCCGEEEIIIYQQQgihVSRpKYQQQgghhBBCCCGE0CqStBRCCCGEEEIIIYQQQmgVSVoKIYQQQgghhBBCCCG0iiQthRBCCCGEEEIIIYQQWkWSlkIIIYQQQgghhBBCCK0iSUshhBBCCCGEEEIIIYRWkaSlEEIIIYQQQgghhBBCq0jSUgghhBBCCCGEEEIIoVUkaSmEEEIIIYQQQgghhNAqeq+7AsVt/PjxBAQEsH//fipUqFCkY/Xv35+wsDAOHDhQLHUr6vECAwPZuHEj165dIzU1FVtbW7y8vBg+fDg2NjYaZTMzMwkPDy/0a+Dv74+vry/r1q3Dw8PjueVOnTrFgAEDmDp1Kt26dcvzc2hoKC1btuSjjz5i9OjR6rj79+9TsWLFwjW8gHJ/909TKpWUKVOGhg0bMnz4cKpWraqxP7/fyZo1a1ixYgVPnjxhwIABDBs2jPHjx3PixAmUSiVr166lZs2aJdIGId4Gj+Pj+XnHDi5cuUJaejouVasyoFs3ylpZFVvszbt32RwYSPCdO2RkZFCpfHm6t21LvVq1nnvs2MeP+fyHH3B3deXDfv2K3E4hSlpaQjJ39pzl0fUwMlXpmDuWw7FDQ4wsTYsttqDlEsJjuLPnLPFh0egoFFg6V8ChrTv6pYyKtc1CFKdHD2PYvWkHd4JvAuBcuybtenXBxOzF19DLxG1fs4mYyCiGfDk6z77bV2+wPyCQiPthGBoZ4tKgLj5dO6BvaFCE1gnxakXFxLAuIIC/b9wAoF6tWvTv2hVz0xdfTwWN++vqVfz37OH2/fsoFAqqVq5M744dqVq5ska5y9evs2nXLu6FhWFsaEgjNzd6d+yIoYFcT0K8jaSn5Rtizpw5jB07FmNjY0aNGsWECRNo1qwZW7dupUuXLoSEhKjLJiQk0LNnzzwJvOLk5OTE9OnTadCgQb77LS0tmT59Oq1atVJv++mnnxg8eHCJ1SmXr68v06dPZ/r06UyaNIkOHTpw5MgRunfvzqlTpzTKjhw5kgkTJqh/Dg4OZurUqZQvX56vvvqKNm3asGTJEg4cOECvXr34/PPPqfzMB6cQ4h8qlYppS5Zw6uJFWjdrRo927bgVEsJ38+YRn5hYLLHhkZF8O38+YQ8e0LV1a/p07oxKpWL60qWcvnjxucdf8csvJCYlFVtbhShJmekZXFm7j5gr9yjn4Yx9SzcSwqIJWr4bVVJqscQWtFxSVBwXlwWSEpdAJW83yjeuQczVEC4uCyQjTVVir4EQRZGUkMiq6YsIvX2XZm29adrmHYIvXmHNrMVkpKcXa9y5oyc5d+REvvtuX73B6pk/kZGeQZv3OlHXswFnDp1g7ewlZGVlFUtbhShp8YmJfDd/Pjfv3qWzjw8dvb05d/kyUxYtIv0F11NB4/6+cYNpixeTlJzM+5068V7btjx4+JBv587l5t276nKXr1/n+4ULyUhPp2/nzng1bMi+48eZ8tNPcj0J8ZZ663pavo0iIiJYvnw5/fv3Z9KkSRr7OnbsSN++fZk9ezZz584FIC4ujkuXLtG8efMSq5OVlRVdunR57n5jY+M8+0+cOEFGRkaJ1SmXj49Pnh6m/fv3p3v37nzyySfs27cPExMTAJo0aaJR7vr16wCMGDECb29vIDthbGFhga+vb4nXXYg33eHTp7kdEsLEUaOoXb06AG61avHF1KnsOnCA3p06FTn255070dXV5fvPP6e0mRkAPk2a8PnUqfjt2EHDOnXyHPvI6dNcvHq1uJsrRImJvHCThLAYXAa3pnQVOwAsnctzfv4Owo5doXLrekWOLWi5u/suoKNQUGdYO/RNjQEoVd6KK2v3EXn+FnaNqpfY6yDEyzr+xyEeP4rjo/8bh42dLQDlHSqxdtZizh8/TYPmnkWOy8zM5PBvezmwY89z67Fn8w4sLEszZPxolPpKAMwtS/Ob31ZuXL5GNdcaxdVkIUrMrgMHiI2LY4avLxVss6+LKpUqMWXRIg6dOoXPM9+pChu31t+fMhYWTPn8cwz09QHwatiQT6dM4ZfffmPSRx8B4Ld9O2VKl+bbTz5BX5l9PVmVLs3KzZv56+pV3GQ0nBBvHelp+Qa4ePEiGRkZeRJsAG5ubtSuXZu//vrr1VfsDVKuXDm+/PJLYmNj2bZt23PLqVTZPUZyk5q5257+WQjxfH+eP09Za2t10hGgfNmyuFSrxvHz54scm5WVxdWbN6lTvbo6YQmgr1RS38WFyIcPeRwfr3HcR0+esGbbNrq1bVscTRTilXgYdAfDMqbqZCKAsbUFFk7leBh0u1hiC1pOoVBgU9dJnbAEMHcoC0Bi5KOXb6QQJejSqfM4OFdRJx4BqtRypoytDZdOXShynCpNxU/fzuTA9t3UbeyOaWnzPMdSpakwMS2Fe/NG6oQlgIOzEwAPQsKK1EYhXpXj589Ts2pVdeIRoHb16pSzseHPF9zfFSQuISmJe2FhNHJzUycsASzMzKhRpQrBd+4AkKZSYVaqFC09PdUJS4AaVaoAcC9Mrich3kb/2aTl7t276devH/Xr18fFxQVvb2+mT59OWlpanrIHDhygQ4cOuLq60qlTJ3bu3JmnzM2bNxk1ahTu7u7UqVOH3r17c/To0WKpa27CLCAgIN/6rVu3jkOHDgHZc022bNkSgIULF+Ls7ExoaCgA9+7d48svv8TLywsXFxcaNmzIyJEjuZEzv8jToqKiGDVqFHXr1sXT05PJkyeTkJCg3n/q1CmcnZ3x9/fPt86hoaE4OzuzYMECALy9vTl9+jRhYWHq7Z9++ikuLi48efJEIzY+Ph5XV1d+/PHHQr5SL9a2bVv09fU1fi/9+/dX96js37+/ujflgAEDcHZ2xtnZWaPe48ePV8f6+/vz7rvv4urqSqNGjRg/fjxRUVF5XoM1a9bw/vvv4+LiwqBBgwodv337dubMmYOXlxeurq706NGDkydP5mnfjh076N69O3Xr1sXLy4uvv/6a2NhYjTL/ds7CcHZ2Zu7cuYwcORIXFxc6dOhAeno6KpWKpUuX0rlzZ+rUqUPt2rXp3LkzW7duzXOMw4cP069fP9zc3GjSpAljx45Vv19zHTx4kN69e1OnTh0aNGjA6NGjuZNz8yK0z53793HIZy5dh4oViYqOJuEFw7MLEqujo8O0cePo/+67ecrF5/yN0tXV1di+4pdfsCpdmi4+PoVsjRCvT0J4DKXsyuTZbmJXhpTYBFTJzx8iXtDYgpar3rs5VTo30iiTGJH9+WJoLg/1hPZJTkzi0cMY7Crn/Uyxs69AREhoPlGFi0tPTyc1OYVeHwyk+9C+6Cp088Qo9ZUM/HQkzTu21tgekZOstLCyLFS7hHgdEpKSiIqOxjGfdQkcKlbkzv37RYozNjRkzqRJdMj5Tva0+IQEdBXZKQt9pZIJH35ItzZtNMrczfnuYG0p15MQb6P/ZNJyy5YtfPLJJ5iamvL5558zbtw4ypcvz8qVK9VDrHM9fPiQjz/+GA8PD8aNG4eBgQFffPGFRrIuODiYXr16cfPmTUaMGMHYsWNJT09n+PDhBAYGFrm+Hh4eVKhQgd9//50WLVrw3XffsW/fPh4/fgyA/lNPpJycnNSJt1atWjF9+nQsLS2Jjo6mZ8+enD17ln79+vHNN9/QsWNHjh07xuDBg9U9DHN9/fXXPHr0iM8++4yWLVvy888/8+GHH770XCETJkzA0dGR0qVLq+e67NixIyqVin379mmU/eOPP0hLS6PTC4aRvgwDAwPs7e25du1avvtHjhxJr1691P+eNm0a06dP16h37v6FCxfi6+uLvb09vr6+9OrVi71799K7d+88icJ58+ZhZ2fHhAkT1G0qbPzevXsZPHgwH3/8MaGhoYwYMYJHj/7p3bJ8+XL1+/PTTz+la9eu7Ny5kxEjRqjniynMOQtq7dq1qFQqJk2aRI8ePdDT08PX15f58+fTsGFDJk2axEcffURSUhITJ07k8OHD6thdu3YxYsQIHj9+zOjRoxkwYAB//vkngwYNUiey/f39+eCDDzAyMuKLL75g0KBBXLhwgZ49e0riUgulpKaSlJyMpYVFnn0WOZOtRz/nvVaYWJsyZbAuo5loiXvyhNNBQdiVLUsp4396gx09c4YLf//NB/36oacnM6KIN0NGmoqMZBX6ZsZ59uUufJMal/8csQWNfdlzpD5JIvryXa5tPoK+mRFl3avmKSPE6/bkUfY9sllpizz7TC3MSElKJjkpuUhxhkaGfDJtIi4N3Apcr0fRsZw/dppdG/yxKV+OGm6uBY4V4nWJjYsDwNI8b2/i0mZmJCUn5ztneEHjFAoF5Wxs8pS7FxbG9Tt3cHZ0zLdeD2NiOHTqFGu2baNiuXI0qF27kC0TQrwJ/pPf4FatWoWbmxs//fQTOjo6APTp04eWLVty9OhRxo0bpy6blpbG119/Td++fQHo1asXXbp0YdasWXTu3Bk9PT2+//57LC0tCQgIwDjny3K/fv0YOHAgU6ZMwcfHRyOxWFj6+vqsWLGCTz/9lL///psNGzawYcMGdHV1cXd3Z/jw4TRt2hTInmvSx8eHqVOn4uzsrJ5X0s/Pj8ePH7NhwwacnJzUxzYxMWHZsmVcv36dWk+tuuvs7My6devUX/LLli3LggULOHjwoLpnYmH4+Piwdu1aUlNT1XVycnLCwsKC3bt3061bN3XZwMBAHB0dS2SFbjMzM41Fi57WpEkTIiMj2bRpE56enurV07du3apR7/v377No0SKGDx/OZ599po7v0KED3bp1Y8mSJRqL+5QrV46ZM2eq32uFjc/KymLr1q3q91b58uUZO3Yse/fupWfPnjx+/JgFCxbQrFkzli5dqu5lVqFCBSZNmsTx48dxdHQs1DkLSk9Pj0WLFmFoaAhkJ/l/++03hg0bpnEeHx8f2rVrx9GjR2nevDmZmZlMnTqVatWqsXnzZnW8q6sr//vf//j111/p0qULU6ZMoX379syePVt9rJ49e9KhQwdmzpzJokWLCl1nUXKSUlIAMHhqyE6u3L+Bqfn0Fi9qbEZGBovWryc1NZV3n1r8Ky5nWHjnli3z7cEphLZKT8l+kKirzHublrst8zkL4BQ09mXPcW6OPxmp6aDQwblHM1k9XGil1JzPlKeHZOfSy9mmSkvDyNjopeN0dHTy9Ox/kaSERGaP+7+c4+vTsW+3fM8jhLZJSc3udZ/f99ncYdqpKhXP9rt/2bjc2EXr1wPkO1ImPjGRj779Vn38//XooTFkXAjx9vhP9rTcuXMny5YtUyeRAGJiYjAzMyPpmadEZmZm6t51kP1HsVevXkRHR3P58mUePXrE6dOnad68OSkpKcTGxhIbG8uTJ09o1aoV0dHRXLp0qch1dnBwwN/fn3Xr1jFgwACcnJzIyMjg1KlTDBkyhGXLlr0wfvjw4Rw/flwjYZmSkoIip7v9s+0eNGiQRq+k/v37A6iHoRcHpVJJmzZtOHHihLrXaGxsLCdPnqRDhw7Fdp6npaena/zeX8bevXvJzMzE29tb/fuOjY3FysqKGjVq5HmN3N3dNc5Z2PjmzZurE5YA1XPm+3v48CEAf/75J6mpqfTt21fj5rlz5874+/vTsGHDQp+zoGrXrq1OOAJYW1tz7tw5PvzwQ/W2rKwsdW/PxJwVoC9fvszDhw/p2bOnRrynpydbtmyhS5cuHD9+nISEBHx8fDTqrKurS6NGjTh27NgLVysUr8+LrrF/u/4KG5uZmcnC9esJunYNz/r1aZ7zsAFgxebNmJua0l3mshRvqhddLv/2WVbQ2EKcIzMjE6fOjaneuzkWTuUI3nSEsONXXlwPIV6D3IFBhb3ne9m4gtDR0aHnyOyh5DZ2tqyeuZgrZy8W+3mEKG65I+0Kfz29XFxqWhrTly3jXlgYXVq1ombVvD36dXR0GPO//zGqf38q2try/cKFnJI1HoR4K/0ne1oqlUrOnDnDb7/9xu3btwkJCSEmJgbI7sX2tIoVK+YZUlgxZ16OsLAwddJv/fr1rM95GvSsiIiIYqm3jo4OHh4e6h6A4eHhbNu2jaVLlzJv3jy6dOlC2bJlnxuvUqmYM2cOV65cISQkhNDQUPVq3pmZmRplHZ/phm9ubo65uTlhxTzBcefOndm0aRP79u2je/fu7Nmzh/T09GIfGp4rLi4OyyLOd5LbU7N379757lc+85Tv2fMVNT73aWXu7yz3d1KpUiWNcgYGBures4U9Z0Hl91rq6+uzc+dOjh07xt27d7l37546WZl78/K8OkN2IvTpOo8dO/a554+NjcXGxual6i6KJk2lIjFZc2idYc57M02Vt3dW7ny8Rk8lqYsaq1KpmL9uHaf/+ou6NWsyql8/9b7j585x5uJFxg0fTnJqKsmp/8z/p0pP50lCAsaGhjJkXLx2Gap0MlI0exHr6uf0dEzPyLc8gK5B/n+3Cxr7MudQ6Coo65b98NPKtTJBy3Zzd+8FyrpXQ+859RHidTAwNACye0U+Kz2nB7FhPp9HLxtXEEYmxrg2zB5KXsu9Lgu+mkbgLwHUcq/zUscT4lUxNMi+LvJbWyH3vs04n+viZeISk5KYtnQp12/fpkWjRvTu2DHfOpUyNsazXj0AGrm58dkPP7B22zY86tYtYKuEEG+K/+S3tcmTJ+Pn50fNmjWpW7cuXbp0wc3NjcmTJ+dJMOb3ZCg38aJQKNRJv759++LznEUequSsaPay1ucMexw6dKjGdjs7O0aPHo2BgQGzZs3ir7/+os0zExPnOnv2LEOGDMHY2BhPT0+6d+9OzZo1CQkJ4f/+7//ylH9euwszDKYg6tevj52dHbt376Z79+7s3r0bFxeXfJNZRZWQkMD9+/d55513inSc3GTh4sWLC3Tj+uxrVtj43MT4v9XnRU8xC3vOgnq2bampqfTp04erV6/i4eFB48aNGTRoEA0bNtR43QtT58mTJ1PhOUN7zfOZI0e8Gn+eP89iPz+Nbe+1a4exkRGPnllcC1BvK/2c35mxkVGhYlNSU5m5fDmXgoOpV6sWnw4ZopGAvHj1KgDT8+mF/ue5c/x57hxff/wxtfJ5ei/EqxR96S7Xtx7T2Gbfsg66RkrSnuSdIywtPvthQX5zUQLoGeoXKLag5Z5HR0cHK5dKPLkXRfLDx5hWsHpuWSFeNfMypQGIfxyfZ1983BMMjY3Qz0lQFkdcYSn1lTjXqcXJfUdIjE/AxLRUkY8pREmxKp19XcQ95x7N2MhInaAsStzj+Hh++Okn7oaG4tOkCUN79SpQL019pZJ6tWqx5/BhniQkYFZKrich3ib/uaRlWFgYfn5+dOnShenTp2vsi46OzlM+IiKCrKwsjT+Yd+/eBcDe3h5ra2sgO3nj6empEXvz5k1CQ0MxMirafE/79u0jKCiIPn36aAwTzlWtWjXgxU9+58+fj6GhIbt27dLoHbdkyZJ8y4eFhVH1qS/zuUPe7e3tX7YZ+dLR0aF9+/asXbuW8PBwzp07pzGnaHHas2cPWVlZ6tXVX1Zub9xy5cpRo0YNjX2HDx+m1L98UBY1/lnlypUDsnsmOjg4qLenpaXxxRdf0KlTp2I/5/Ps3r2by5cvM2XKFN577z319sjIyOfW+Vm+vr7Uq1dPXWdLS8s819apU6fIzMws0lyxomhqV6/OxFGjNLaVtbLi6q1b+a4ieTc0lLLW1hqL5DzreStQPhubkZHB7JUruRQcTCM3N0YPGJCnx2RnHx+aurvnOdaURYuoXb06nVq2pNIzPeuFeB0sqtjhMlhzZWFDS1Me340kITzvwlWJETEYljFFafT8xEkpuzIFii1IufTkNC789CtWLpVxaFNfo1xGanZPGYWyeB9oClFURsZGWFhZEnEv7yrh4SGhlK+cdzXjosQ9z8OISNbNXkrTdt54eDfV2JeakgI6OujlM6+sENrExNgY6zJluBOa97q4c/8+Ts/5fliYuOSUFHXCsn2LFgx8ar2DXGGRkfzw00908fGhdbNmGvtSUlPR0dFBKSNohHjr/OfmtMydO/HZ3o+HDx/m7t27eebIi4mJYf/+/eqfk5KS2LhxI+XLl6dGjRrY2Njg4uJCQECARmJGpVIxYcIEPv744yLPu9epUyeSkpKYNm1anmHcmZmZbNmyBTMzMxo0aAD80/vt6bK5w6KfTljGx8cTEBAAoO4xmmvLli0aP69cuRKgSAk/hUKRp/6Q3T6VSsWMGTPIysqiXbt2L32O54mKimL+/PmULVu2yEPPW7RoAcDSpUs1VlO/evUqH3zwAWvXri3R+Gd5enqiVCrZvHmzxvH27NnDnj17SuSczxOXs0rgs9fXunXrANTXgouLC5aWlvj7+2sMGTl37hz+/v4kJSXh6emJgYEBK1as0FjdPjIykg8//FBjcSPx6lmam1O7enWN/8paWeFRpw7hkZEEXbumLhsWGcnl69dpkjOM53kKGrttzx4uXr1Kw7p1GfPM/Lu5Ktja5qlf7Zz5YEvn1P1FCVQhXhUDM2NKV7HT+M/I0hSrWpVIfviYRzfD1WWTHsYRdysC69oOLzgiBY4tSDk9I30UerpEnr+JKvmfaRbSk9N4cPYGBpalMLaxKOrLIESxq1W/Drf+DuZhxD/35zevBBPzIApXj+d/Hr1sXH4sbaxISU7mzKE/yXjq+8Cj6FiunL1IZWcnDIpxBIwQJcWjTh0uBQcT9tT33aBr14iIisKzfv0ix63cvJm7oaG0e+edfBOWALZWViQlJ7P3mXntH8bEcPKvv6hRpcpzpyESQry53tpHEXPmzMHEJO9aZK1atcLOzo4lS5aQmpqKra0tQUFBBAQEYGBgoJ57L5e5uTnjxo1j4MCBWFhYsG3bNiIiIli0aJF62O6kSZMYOHAg3bt35/3338fCwoJdu3Zx8eJFPvvsM0rndI1/Wd26dePo0aNs2rSJCxcu0LZtW2xtbYmJiWH37t0EBwcza9YsdS9MCwsLFAoF+/fvx87OjtatW+Pl5cXy5csZM2YMTZs25eHDh2zdulXdu/TZdp89e5YPP/yQ5s2bc/78ebZv3067du1o3LjxS7fD0tKSM2fOsGrVKurXr0+dOtlz+FSvXp2qVasSGBiIh4fHC+flLIh9+/apX/PU1FRu377N9u3bSU1NZfny5UUeHl2tWjX69+/P+vXriYuLw8fHh7i4OPz8/DAxMWHMmDElGv+sMmXKMGrUKObOncvgwYPx8fHhwYMH+Pn54eHhgbe3NwqFoljP+Tyenp7o6ekxbtw4+vbti56eHgcPHuTYsWMolUr1+0xfX5/x48fz5Zdf8v7779O5c2cSExNZt24dTk5O9OjRA2NjYz799FOmTp1Kr1696Ny5M+np6WzYsIHU1FS+/PLLYqmzKF7ejRuz58gR5qxaRaeWLTHQ1+fX/fspbW5O+5zkOWQPFQq6do1K5curezwWJDY+MZGd+/ejp6uLa7VqHDt7Nk8dGtapk+8wJSHeJLbu1Qg/cY2rGw9SoZkLuko9Qo9eRt/MmPJNaqnLpSUk8+hGOKXKlcbE1rJQsQUt59S5EZdW/s7FpYGUa1CNzIxMHpwOJi0+mVqDfOQBktBKzdp589efZ1g9YxFN2rQgXaXi2J6D2FWuSJ1G2cmS2KhoQm7ewb6KA5Y2VgWOKyhdXV069OnGthU/s2LaAuo2dicpMYlT+4+iUCjo2Kd7sbdbiJLQ2ceHI6dPM3nBAjp6e5OmUvHr/v042tvTLGdkS2R0NMG3b+Ps6EhZK6sCx4U+eMDRM2cwNjKicoUKHDl9Os/5vRo2RFdXl/+99x6L1q/nm3nz8GrQgPjERH4/cgSFjg7/e2qUlxDi7fHWJi1/++23fLc7OjqybNkypk2bxrp168jKysLe3p4JEyaQnp7OlClTuHz5Mi4uLgA4OTnRr18/5s2bR0REBNWqVWPp0qU0e6pLupubGxs3bmTBggWsXr2a9PR0HBwcmDZtGl27di1yWxQKBXPnzmXHjh3s2LEDPz8/4uPjMTc3p379+nz33XfqxUsAjIyMGDt2LCtXruT777/H3t6e0aNHk5GRQWBgIAcPHsTGxgZPT08GDx5Mhw4dOHnyJK1atVIfY86cOaxcuZIpU6ZgYWHBBx98wKhnhoIW1tChQwkODmb27Nl069ZNnbSE7N6Ws2fPpuNzJlsujKlTp6r/rVQqKVu2LN7e3gwbNkxj+HRRTJw4EUdHR3755Rd+/PFHTE1NcXd3Z8yYMRortJdU/LM++OADrK2tWbduHdOmTcPa2pqePXsyevRodXK9uM+Zn2rVqjF//nwWLlzI7NmzMTExoWrVqqxevZoNGzZw+vRpVCoVSqWSLl26YGpqypIlS5g1axZmZma0aNGCzz77TJ2AHzRoEGXLlmX16tXMmTMHQ0NDatWqxYwZM6j/gqe64vVRKpV8NXo06wMC2LlvHwqFgppVqzKga1dMn3qQFBYZyaL163mvXTt10rIgsTfv3VP3vF25eXO+dajh5CRJS/HGU+jp4jqkDXcCzxB65DI6OjqYO9ri2K4BSuN/3t9JUXFc33IU+5Z11EnLgsYWtJyFgy0u/2tFyP6/uPvHedDRwbxyWar3fkfmshRay8TMlKG+HxO4MYD923ejr69PDTdX2vTohF7OAoR3r98mYNUGug7uo05aFiSuMOp6NkBPqceRwP3s3rQdpYEBTjWq4tOtA1a2spigeDOYm5ry3SefsNbfn82BgRgolTSoXZu+XbqoF/S8eusWi/38+KBfP3XSskBxN28CkJScnGe+9FxeDRuq/6/U02PHvn2s8/fHwMAAl2rV6N2xI3ZF7PgihNBOOllPjxUV4jVZtmwZCxYs4NixY7K4iihxT4KCXncVhHgrDI/Z87qrIMRbY6hT/gs6CiEKp2HcW9svR4hXyuypjlFvC23+Hvg2vt7F4T83p6XQPmlpafj7++Pj4yMJSyGEEEIIIYQQQgjx9g4P12YZGRnExuZdrTM/pqamRZ6DUVtFRkYydepUbt68yb1795gxY4bG/pSUFOLj4wt0LEtLS/UCROLlJCYmkpSUVKCy1tbWJVwbIYQQQgghhBBC/JdJ0vI1iIiIKPAq3FOnTqXbc1ZQe9OZm5tz9uxZ0tPT+eabb3B1ddXYHxgYiK+vb4GOtX//fipUqFAS1fzPWLVqFQsXLixQ2eDg4BKujRBCCCGEEEIIIf7LJGn5GlhbW7N69eoCla1SpUoJ1+b1MTQ05NixY8/d37Rp0wK/TtLzr+jeffddWdxGCCGEEEIIIYQQWkGSlq+BgYEBnp6er7saWs/GxgYbG1lV8VWpWLEiFStWfN3VEEIIIYQQQgghhJCFeIQQQgghhBBCCCGEENpFkpZCCCGEEEIIIYQQQgitIklLIYQQQgghhBBCCCGEVpGkpRBCCCGEEEIIIYQQQqtI0lIIIYQQQgghhBBCCKFVJGkphBBCCCGEEEIIIYTQKpK0FEIIIYQQQgghhBBCaBVJWgohhBBCCCGEEEIIIbSKJC2FEEIIIYQQQgghhBBaRZKWQgghhBBCCCGEEEIIraL3uisghBCv2vCYPa+7CkIIIYSGFbf2ve4qCPF2cPJ53TUQ4q0gV5LQBtLTUgghhBBCCCGEEEIIoVUkaSmEEEIIIYQQQgghhNAqkrQUQgghhBBCCCGEEEJoFUlaCiGEEEIIIYQQQgghtIokLYUQQgghhBBCCCGEEFpFkpZCCCGEEEIIIYQQQgitIklLIYQQQgghhBBCCCGEVpGkpRBCCCGEEEIIIYQQQqtI0lIIIYQQQgghhBBCCKFVJGkphBBCCCGEEEIIIYTQKpK0FEIIIYQQQgghhBBCaBVJWgohhBBCCCGEEEIIIbSKJC2FEEIIIYQQQgghhBBaRa8whcePH09AQAD79++nQoUKRTpx//79CQsL48CBA0U6TnEdLzAwkI0bN3Lt2jVSU1OxtbXFy8uL4cOHY2Njo1E2MzOT8PDwQr8G/v7++Pr6sm7dOjw8PJ5b7tSpUwwYMICpU6fSrVu3PD+HhobSsmVLPvroI0aPHq2Ou3//PhUrVixcwwso93f/NKVSSZkyZWjYsCHDhw+natWqGvvz+52sWbOGFStW8OTJEwYMGMCwYcMYP348J06cQKlUsnbtWmrWrFkibRD/7uzZs8yYMYPr169Tvnx5xowZQ6tWrV53tcQbJi0hmTt7zvLoehiZqnTMHcvh2KEhRpamJRIbcugiD85cp+EXPfLsSwiP4c6es8SHRaOjUGDpXAGHtu7olzIqUhuFKEkpsfHc3n2Gx7cfAGBZvQIO7Rr86/v2ZeJuBPxJcvRjag9rl2df3K0I7u27QEJELHqGSqxcKlO5dT109ZVFaJ0Qr5e2XF9CvGkePYxh96Yd3Am+CYBz7Zq069UFE7MX398VNO721RvsDwgk4n4YhkaGuDSoi0/XDugbGmiUu3HpKod+20v43fvoKHSo6FgZn27tqehUufgaK4TQGoVKWr6t5syZw5IlS3jnnXcYNWoUhoaG3Lhxg61bt7Jr1y42bdqEvb09AAkJCQwaNIjmzZtrJAyLk5OTE9OnT6devXr57re0tGT69Ok4Ozurt/30008EBASwd+/eEqlTLl9fX0qXLg1AcnIyISEhbNu2jd9//53ly5drJGNHjhxJcnKy+ufg4GCmTp1K3bp1GTNmDNWrV2fJkiUcOHCAQYMG4ejoSOXKlUu0/uL5bt26xeDBg3F1dWXcuHHs2rWLjz/+mE2bNlG7du3XXT3xhshMz+DK2n0kRz+mfNNa6BroE3bsMkHLd1NvdBeUxgbFGht7PYyQ/RfRN8v7pTEpKo6LywLRNzOmkrcbGalphB6/wpOQKOp91FkSL0IrqZJSCVq5h6yMTCp4uZCVlUXo0cskPnhE3Q87otDVLba4B2ev8+DMdcwdyubZF3crgkurfqdU+TI4tK1P6uMkwv/8m4SwGGoPb4eOjk6xt12IkqYt15cQb5qkhERWTV9ERkY6zdp6k5WVybE9B4kMDWfkV5+iq5d/WqGgcbev3mD1zJ8oX6kibd7rxONHcZzYe4SwO/cZ6vux+jPnTvBN1s1dho2dLa26dyAjI5PTB46x8scFDB3/MRUcK72y10QI8Wr855OWERERLF++nP79+zNp0iSNfR07dqRv377Mnj2buXPnAhAXF8elS5do3rx5idXJysqKLl26PHe/sbFxnv0nTpwgIyOjxOqUy8fHJ08P0/79+9O9e3c++eQT9u3bh4mJCQBNmjTRKHf9+nUARowYgbe3N5CdMLawsMDX17fE6y5ebOfOnaSmprJgwQIsLS1p1aoVTZo0Yffu3ZK0FAUWeeEmCWExuAxuTekqdgBYOpfn/PwdhB27QuXW+T+MeZnYiNPB3Pr1FFkZmfke7+6+C+goFNQZ1g59U2MASpW34srafUSev4Vdo+rF0WQhilXYsSukPk6i/sddMLaxAMC0gjWXV/1B5PmblGvgXOS4rMxM7h8K4t7+v55bj9u7z2BgYULtYe3QVWbfLhqYm3Br50ke3QjDslrRRtwI8Tpoy/UlxJvm+B+HePwojo/+bxw2drYAlHeoxNpZizl//DQNmnsWKW7P5h1YWJZmyPjRKHMeKptbluY3v63cuHyNaq41AAjcGIB5aQtGTBqLvoE+AG6eDZg3aSr7/Hcx6PMPS/R1EEK8ev/5OS0vXrxIRkZGngQbgJubG7Vr1+avv/569RV7g5QrV44vv/yS2NhYtm3b9txyKpUKQJ3UzN329M/i9cntFRsWFgZASkoKAPr6+q+tTuLN8zDoDoZlTNVJRwBjawssnMrxMOh2scVeWvU7N7efwMLJFhM7y3yPp1AosKnrpE5YAuoeL4mRjwrdNiFehYdBt7FwsFUnRgBKV7HDyNqMh0F3ihyXoUrn/MJfubfvr+zrw9w4z7EyVOnolzLEtkE1dcISnrp+ImKL0EIhXh9tuL6EeBNdOnUeB+cq6sQjQJVazpSxteHSqQtFilOlqTAxLYV780bqhCWAg7MTAA9Csr+bJCcm8eB+OC4N6qoTlgClzE2pXM2JkJt3i6WtQgjtUiJJy927d9OvXz/q16+Pi4sL3t7eTJ8+nbS0tDxlDxw4QIcOHXB1daVTp07s3LkzT5mbN28yatQo3N3dqVOnDr179+bo0aPFUtfchFlAQEC+9Vu3bh2HDh0CsueabNmyJQALFy7E2dmZ0NBQAO7du8eXX36Jl5cXLi4uNGzYkJEjR3Ljxo08x4yKimLUqFHUrVsXT09PJk+eTEJCgnr/qVOncHZ2xt/fP986h4aG4uzszIIFCwDw9vbm9OnThIWFqbd/+umnuLi48OTJE43Y+Ph4XF1d+fHHHwv5Sr1Y27Zt0dfX1/i99O/fX92jsn///urelAMGDMDZ2RlnZ2eNeo8fP14d6+/vz7vvvourqyuNGjVi/PjxREVF5XkN1qxZw/vvv4+LiwuDBg0qdPz27duZM2cOXl5euLq60qNHD06ePJmnfTt27KB79+7UrVsXLy8vvv76a2JjNb+0/ds5CyM8PJzRo0fTtGlTXF1dad++PcuXLyczU7NH2YULF/jf//6Hm5sbbm5uDB48mKCgIPX+I0eO4OzszJgxYzTivvrqK5ydnTly5Ih6W7t27dT77t+/z+eff46BgQFdu3bNUz9vb28mTZrEhAkTqF27Nl5eXsTGxpKVlcXGjRt57733cHNzw9XVlbZt27Js2TKysrI0jnHx4kWGDRuGu7s7Hh4eDB8+nODg4EK1T2ifhPAYStmVybPdxK4MKbEJqJJTiyU2JS4Bp86NqDWwFXoG+Q/zrt67OVU6N9LYlptsMTSXhyVC+6iSU0mJTaBU+bzXQalyZUgIjylyXFZ6JhmpaVR/vznOPZqho8g7zFtXqYfLoNbYv1NHY3vu9WNgUapQ7RJCG2jL9SXEmyY5MYlHD2Owq5y3h72dfQUiQkKLFKfUVzLw05E079hao0xETrLSwir74bSBkSFjfpiAZ5t38hwvKSERhe5/vj+WEG+lYh8evmXLFiZNmoS3tzeff/45KpWKvXv3snLlSgDGjRunLvvw4UM+/vhjevbsSe/evdmxYwdffPEF6enpdOvWDcieB7FPnz5YWVkxYsQIlEolv/32G8OHD2fWrFm0b9++SPX18PCgQoUK/P7775w7d47WrVvTpEkTGjRogLm5uUYvMycnJ3x9fZk6dSqtWrWiVatWWFpaEh0dTc+ePSlVqhT9+vWjdOnSXL16lc2bN3PlyhUOHDiAUvnPl+qvv/6aGjVq8Nlnn3H9+nV+/vlnbty4wdq1a19qjqgJEyYwa9YsHj16hK+vL87OzoSHh7Nr1y727dunfi0B/vjjD9LS0ujUqVORXrdnGRgYYG9vz7Vr1/LdP3LkSBwcHNi0aRMjR46kcuXKKBQKlixZoq537ryhCxcuZMGCBbRp04aePXsSGRmJn58fp0+fZuvWrVha/tOrat68eXh7e9OpUycMDAxeKt7IyIjBgwejUqlYtWoVI0aM4NChQ+q5O5cvX87MmTOpX78+n376KTExMaxdu5arV6+yceNG9PT0CnXOf6NSqRg6dCgpKSkMGjQIMzMzDh8+zMyZM8nIyGDkyJEAHD9+nBEjRlC9enXGjBlDWloa/v7+9O3bl9WrV+Pu7o6Xlxddu3YlICCAo0eP0qxZM44dO8bmzZvp3bs3Xl5e6vO6ubnRr18//Pz8aN26Nebm5ixevPi584zu2rULR0dHJkyYQHR0NJaWlur5Ybt27UrPnj1JTExk+/btzJo1CxMTE/r27QtkL/gzaNAgbGxsGDp0KIaGhqxbt44BAwawbds2KlSoUKD2Ce2SkaYiI1mFvlneniW5CxWkxiWiNMo7N2VhY+uPefe5c4/lJ/VJEvEhUdzefQZ9MyPKulf99yAhXrG0x0kA+V8HZkZkJKtIT05Dz0j/peN0DZW4f9q9UF/uUh4l8PjOA24HnsG4rAVlatoXpllCaAVtvb6E0HZPHj0GwKy0RZ59phZmpCQlk5yUjJGxUbHEPYqO5c61m+zZtB2b8uWo4eYKZI+gsSprnedYD+6HE3LzDlVdZNofId5GxZ60XLVqFW5ubvz000/qBFyfPn1o2bIlR48e1UhapqWl8fXXX6sTGb169aJLly7MmjWLzp07o6enx/fff4+lpSUBAQEYG2ffLPTr14+BAwcyZcoUfHx8ijR8VV9fnxUrVvDpp5/y999/s2HDBjZs2ICuri7u7u4MHz6cpk2bAtlzTfr4+DB16lScnZ3V80r6+fnx+PFjNmzYgJOTk/rYJiYmLFu2jOvXr1OrVi31dmdnZ9atW4dezsTDZcuWZcGCBRw8eFDdM7EwfHx8WLt2Lampqeo6OTk5YWFhwe7duzWSloGBgTg6OpbICt1mZmaEhITku69JkyZERkayadMmPD091Qv2bN26VaPe9+/fZ9GiRQwfPpzPPvtMHd+hQwe6devGkiVLmDBhgnp7uXLlmDlzpvq9Vtj4rKwstm7dqn5vlS9fnrFjx7J371569uzJ48ePWbBgAc2aNWPp0qXo5iRJKlSowKRJkzh+/DiOjo6FOue/uXr1Krdu3WLevHm0bdsWgB49ejB06FDu3MkegpSZmck333yDq6srfn5+6nr169ePd999l++//57t27cD2YsnHTt2jMmTJ7Np0ya++uorKlWqxJdffqlx3ps3b3L16lX18T/88MN8p03IlZKSwk8//UTZstnDBVUqFX5+fnTo0IFp06apy/Xo0YPGjRtz9OhR9bX+448/YmFhwbZt29TJ4ebNm9O+fXs2bNjA559/XuD2Ce2RnpI9BcTTw0lz5W7LTFMVS2xhEpYA5+b4k5GaDgodnHs0k9XDhVbKSHv+daDIuWfIUKXnSaoUJk5HRwcd3YI/IFUlpXJmxtbsY+nr4tTJI9/zCKHttPH6EuJNkJozZZQynwUM9XK2qdLS8iQfXyYuKSGR2eP+LydOn459u+UbnystJZVtK/wAaNa+ZYHbJIR4cxT7Y8CdO3eybNkyjR6DMTExmJmZkZSUpFHWzMyMXr16qX/W19enV69eREdHc/nyZR49esTp06dp3rw5KSkpxMbGEhsby5MnT2jVqhXR0dFcunSpyHV2cHDA399f3dPLycmJjIwMTp06xZAhQ1i2bNkL44cPH87x48c1EpYpKSkoFNkv77PtHjRokDphCdlDpwH1MPTioFQqadOmDSdOnODx4+ynXLGxsZw8eZIOHToU23melp6eXuTVRPfu3UtmZibe3t7q33dsbCxWVlbUqFEjz2vk7u6ucc7Cxjdv3lydsASoXj37Cd3Dhw8B+PPPP0lNTaVv377qxBlA586d8ff3p2HDhoU+57+xsbFBR0eHpUuXcvToUdLS0tDR0WHlypXqYf1///039+/fx8fHh8ePH6vPmZKSQosWLbh69SqRkZEAmJub8+2333Lv3j169OhBZGQk06ZN02j3xYsX6dWrF/fu3eOHH37A1NSUOXPmcOvWLQDWr1/P33//rVFPe3t7dcISst9zf/75J//3f/+nUe7Ro0eUKlVKfR3ExMQQFBREp06d1AlLyL4Ot23bxrBhwwrVPqGFXvRn4N/+RhQl9jkyMzJx6tyY6r2bY+FUjuBNRwg7fuWljiVEicqdRqOwb/WXjSsIneypFqr1aIaxjQWXVv1B9OW7JXAiIUqYNl5fQrwB1JdAIe/DXiZOR0eHniMH0n1oX2zsbFk9czFXzl7Mt2xaahp+81fw4H44Xu1b4uBcpVD1E0K8GYr9UblSqeTMmTP89ttv3L59m5CQEGJisud6KV++vEbZihUraiTvcrdB9mIguUm/9evXs379+nzPFxERUSz11tHRwcPDQ90DMDw8nG3btrF06VLmzZtHly5dNBI0z1KpVMyZM4crV64QEhJCaGioejXvZ+chdHR01PjZ3Nwcc3Nz9QIoxaVz585s2rSJffv20b17d/bs2UN6enqxDw3PFRcXV6hh0PnJ7anZu3fvfPc/PcweyHO+osbn9trN/Z3l/k4qVaqkUc7AwEDde7aw5/w3tra2fPHFF8yePZuhQ4dibGxM48aNad++Pe3atUNXV1d9zunTpzN9+vR8jxMeHq5+z/r4+NC6dWv++OMP3n//ferV+2cV5oyMDMaPH09WVhbr1q3DyckJMzMzPvroIz755BOmTJnC999/z8CBAzV66JYpk3duJ6VSyaFDh9i/fz937tzh3r176qR57pyWz3tNAfXxT5w4Uaj2iVcvQ5VORormPMC6+jk9ItMz8i0PoPuc+SeLEvtvFLoKyrplP1Sycq1M0LLd3N17gbLu1Z47H6YQr0PuezxTlfc6yEzPvg70DPO+Z182riCURgZY13YAwMqlEufnbefWrtNYuVR+qeMJ8bpo4/UlxJvAwDB7ah5VPus/pOf0RDY0NCyWOCMTY1wbugFQy70uC76aRuAvAdRy15xjOTkpGb+5ywi5eYd6zTzw6VYynXKEEK9fsSctJ0+ejJ+fHzVr1qRu3bp06dIFNzc3Jk+enCfBmN9Tl9zEhkKhUCf9+vbti4+PT77nq1KlaE9U1q9fT2pqKkOHDtXYbmdnx+jRozEwMGDWrFn89ddftGnTJt9jnD17liFDhmBsbIynpyfdu3enZs2ahISE5Ol1Bs9vt24hhzv+m/r162NnZ8fu3bvp3r07u3fvxsXFJd9kUVElJCRw//593nnnnSIdJzdZuHjx4nw//J717GtW2PjcxPi/1edFTwgLe86CGDJkCB07dmTv3r0cPnyY48ePs3//frZv386KFSvU5xwzZgx169bN9xhPJ8eTkpLUPSWPHTtGUlKSuqflnTt3uH37Nr169VL3Fm7VqhWDBg1izZo1DBs2DCDP+//Z1z4rK4sPP/yQgwcPUr9+fdzc3OjVqxcNGjRg4MCB6nKFeU0L2j7x6kVfusv1rcc0ttm3rIOukZK0J0l5yqfFZ69On9+cYAB6hvovHVsYOjo6WLlU4sm9KJIfPsa0glWRjylEcTEwz17gJvc9/7S0J8noGinRzWeY3MvGFZauUg/L6hUJ//MqqsQUlCbF85knxKug7deXENrKvEz2yKj4x/F59sXHPcHQ2Ah9w7zzlb9sXC6lvhLnOrU4ue8IifEJmJhmX4uJT+JZM3sJD0LCcG/uSecBPYo82k8Iob2KNWkZFhaGn58fXbp0ydM7Kjo6Ok/5iIgIsrKyNP7I3L17F8geemptnT3Rrq6uLp6enhqxN2/eJDQ0FCOjos1Ltm/fPoKCgujTp4/GcNlc1apVA/J/epRr/vz5GBoasmvXLo2ee0uWLMm3fFhYGFWr/rMIRO6Q99yFaIqLjo4O7du3Z+3atYSHh3Pu3DmNOUWL0549e8jKylKvrv6ycnvjlitXjho1amjsO3z4MKVKvXjF0qLGP6tcuXJAdm9KBwcH9fa0tDS++OILOnXqVOznjIuL49q1a9SrV49+/frRr18/kpKSGD9+PL///jvBwcHqc+Ymyp8WFBTE48ePNd6zs2fPJiwsjHHjxjFjxgxmz57NpEmTAM0HBU/7/PPP+euvv/jrr79wcXGhfv36L6z32bNnOXjwIB9++KHGauXp6enExcWpe1E//Zo+a8aMGZibm9OgQYNCtU+8ehZV7HAZrLnKo6GlKY/vRpIQHpunfGJEDIZlTPNdhCdXKbsyLx37rPTkNC789CtWLpVxaKP53s1IzX66r1AW74MiIYpKz0gfA8tS+a5inBARg2n5/JPsLxv3PEkP47i8Zi8Vmrli10hzYYOMVBXogI6eXD/izaIt15cQbxojYyMsrCyJuJd3lfDwkFDKV65YpLiHEZGsm72Upu288fBuqlEuNSUFdHTQy5lTNjUlRZ2wbNyqOe3f71rU5gkhtFyxzmmZOwz02d6Phw8f5u7du6TnDKHIFRMTw/79+9U/JyUlsXHjRsqXL0+NGjWwsbHBxcWFgIAAjfnrVCoVEyZM4OOPP85zzMLq1KkTSUlJTJs2Lc8w7szMTLZs2YKZmZk6iZLbu+zpsrnDop9OWMbHxxMQEACg7jGaa8uWLRo/566sXpSEn0KhyFN/yG6fSqVixowZZGVl0a5du5c+x/NERUUxf/58ypYtW+Sh5y1atABg6dKl6mQaZC9O88EHH7B27doSjX+Wp6cnSqWSzZs3axxvz5497Nmzp0TOefz4cQYOHMiBAwfU24yNjdUJdF1dXVxcXLC2tmb9+vUkJiaqyyUkJPDJJ5/g6+urfq+eO3eOn3/+mZ49ezJkyBC6d+/Ozz//zNmzZ4HsuSRtbGzYvXs3cXFx6mPFx8eTkJAAQHBwsLr88+TGPnv9b968meTkZPW1WrZsWapXr86uXbvUx4fsRZTWrVtHdHR0odonXg8DM2NKV7HT+M/I0hSrWpVIfviYRzfD1WWTHsYRdytCPcT0eYoS+yw9I30UerpEnr+JKjlVvT09OY0HZ29gYFkKYxuLQh1TiFfBqlYl4m6Fk/QwTr3t0c1wkh8+eeF18LJx+TG0NCM9JY2I08FkPnUPk/IogejLdzF3sJWpFcQbSRuuLyHeRLXq1+HW38E8jPjnO/nNK8HEPIjC1aNekeIsbaxISU7mzKE/yXjqu/2j6FiunL1IZWcnDHI6K/y6fmtOwtJLEpZC/Ee8VE/LOXPmYGJikmd7q1atsLOzY8mSJaSmpmJra0tQUBABAQEYGBhoJB8gey7HcePGMXDgQPVKwhERESxatEjd62vSpEkMHDiQ7t278/7772NhYcGuXbu4ePEin332mcZCHi+jW7duHD16lE2bNnHhwgXatm2Lra0tMTEx7N69m+DgYGbNmqXuhWlhYYFCoWD//v3Y2dnRunVrvLy8WL58OWPGjKFp06Y8fPiQrVu3qnuXPtvus2fP8uGHH9K8eXPOnz/P9u3badeuHY0bN37pdlhaWnLmzBlWrVpF/fr1qVMne96P6tWrU7VqVQIDA/Hw8CjyHID79u1Tv+apqancvn2b7du3k5qayvLly4vc+61atWr079+f9evXExcXh4+PD3Fxcfj5+WFiYqLRg68k4p9VpkwZRo0axdy5cxk8eDA+Pj48ePAAPz8/PDw88Pb2RqFQFOs5W7RogYODAxMnTuTKlSvY29tz+/Ztfv75Zxo3bqxOCk6aNImxY8fSrVs33nvvPQwMDNiyZQvh4eHMnDkTPT09UlNTmThxIpaWlnz++edAdg/Kffv2MXHiRHbu3ImBgQGTJk1izJgxvP/++/Tq1YvExEQ2btxIfHw8EydOZP78+QwfPpzFixer5319lpubG6VKlWLq1KmEhYVhbm7OqVOnCAwMzHP9+/r6MnToULp3706PHj1QKBT4+flhZmbGsGHDUCqVBWqf0D627tUIP3GNqxsPUqGZC7pKPUKPXkbfzJjyTWqpy6UlJPPoRjilypXGxNayULEF5dS5EZdW/s7FpYGUa1CNzIxMHpwOJi0+mVqDfGQokdBKFZq5EHXhFpdW/k75pi5kpqcTevQypcqXwaZu9hQeybHxPLkXhVklG4wsTQscV1AKXQVOHRtxfctRgpbtxsbNifSkVMJPXgOFDk4d8/8cEELbacP1JcSbqFk7b/768wyrZyyiSZsWpKtUHNtzELvKFanTKHtES2xUNCE372BfxQFLG6sCx+nq6tKhTze2rfiZFdMWULexO0mJSZzafxSFQkHHPt0BiAp/wMUTZzE0NsK2YgX++vNMnnrW9Wzwil4RIcSr8lLf+n/77bd8tzs6OrJs2TKmTZvGunXryMrKwt7engkTJpCens6UKVO4fPkyLi4uADg5OdGvXz/mzZtHREQE1apVY+nSpTRr1kx9TDc3NzZu3MiCBQtYvXo16enpODg4MG3aNLp2LfrTFYVCwdy5c9mxYwc7duzAz8+P+Ph4zM3NqV+/Pt999x21a9dWlzcyMmLs2LGsXLmS77//Hnt7e0aPHk1GRgaBgYEcPHgQGxsbPD09GTx4MB06dODkyZO0atVKfYw5c+awcuVKpkyZgoWFBR988AGjRo0qUjuGDh1KcHAws2fPplu3buqkJWT3tpw9ezYdO3Ys0jkApk6dqv63UqmkbNmyeHt7M2zYMI3h00UxceJEHB0d+eWXX/jxxx8xNTXF3d2dMWPGaKzQXlLxz/rggw+wtrZm3bp1TJs2DWtra3r27Mno0aPVyfXiPKexsTGrVq1i/vz5/Prrr0RHR2NtbU2fPn346KOP1OXatm2Lubk5ixcv5qeffkKhUFC1alUWL16s7v25YMEC7ty5w4wZMzAzMwOgdOnSfPHFF0ycOJG5c+fy5Zdf0qZNGxYvXszixYuZPXs2hoaGNGrUSF3/2rVrM3HiRGxtbZ9bbysrK5YtW8bMmTNZvHgx+vr6ODg4MHv2bIKCgtS9KK2srGjUqBFr165l/vz5LFq0CAMDAxo0aMAXX3yhnhaiIO0T2kehp4vrkDbcCTxD6JHL6OjoYO5oi2O7BiiN/xnenRQVx/UtR7FvWUedtCxobEFZONji8r9WhOz/i7t/nAcdHcwrl6V673dkLkuhtfRLGVF7WDtu7zrNvX0X0NXXo0wNexzauqPIGZL95G4k17ceo9p7TdVJlYLEFUZZNycUegruH77E7V1n0NXXw8KpHJVa1cPY2rxY2yzEq6It15cQbxoTM1OG+n5M4MYA9m/fjb6+PjXcXGnToxN6OYuO3r1+m4BVG+g6uI86aVmQOMhONuop9TgSuJ/dm7ajNDDAqUZVfLp1wMrWJvv4wbcASElKJmDVhnzrKUlLId4+OllPj2cVb6Vly5axYMECjh07hrm5fNEQL+fZ+WffZL0P5r8iuRBCCCGEeLMNdcp/AVchROH42D9/6P+b6klQ0OuuwnOZPdVZTvyjWOe0FNonLS0Nf39/fHx8JGEpiuRtSVgKIYQQQgghhBBC+711k8JlZGQQG5t39dn8mJqavrUrEEdGRjJ16lRu3rzJvXv3mDFjhsb+lJQU4uPjC3QsS0tLWfSkiBITE0lKSipQ2dzh0UIIIYQQQgghhBD/VW9d0jIiIqLAq3BPnTqVbt26lXCNXg9zc3POnj1Leno633zzDa6urhr7AwMD8fX1LdCx9u/fT4UKFUqimv8Zq1atYuHChQUqGxwcXMK1EUIIIYQQQgghhNBub13S0tramtWrVxeobO4qzG8jQ0NDjh079tz9TZs2LfDrJD3/iu7dd9+lfv36r7saQgghhBBCCCGEEG+Ety5paWBggKen5+uuhtazsbHBxsbmdVfjP6NixYpUrFjxdVdDCCGEEEIIIYQQ4o0gC/EIIYQQQgghhBBCCCG0iiQthRBCCCGEEEIIIYQQWkWSlkIIIYQQQgghhBBCCK0iSUshhBBCCCGEEEIIIYRWkaSlEEIIIYQQQgghhBBCq0jSUgghhBBCCCGEEEIIoVUkaSmEEEIIIYQQQgghhNAqkrQUQgghhBBCCCGEEEJoFUlaCiGEEEIIIYQQQgghtIre666AEEIIIYQQQgghhBD/VS1btnzh/v3797+immgXSVoKIYQQQgjxmg118nndVRDirbDi1r7XXQUh3go+9vVedxWEkKSlEEIIIYQQQgghhBCvy3+1J+W/kTkthRBCCCGEEEIIIYQQWkWSlkIIIYQQQgghhBBCCK0iSUshhBBCCCGEEEIIIYRWkaSlEEIIIYQQQgghhBBCq0jSUgghhBBCCCGEEEIIoVUkaSmEEEIIIYQQQgghhNAqkrQUQgghhBBCCCGEEEJoFUlaCiGEEEIIIYQQQgghtIokLYUQQgghhBBCCCGEEFpFkpZCCCGEEEIIIYQQQgitIklLIYQQQgghhBBCCCGEVpGkpRBCCCGEEEIIIYQQQqvove4KiDefv78/vr6+TJ06lW7duqm3P3nyhE2bNhEYGEhISAh6eno4ODjQvXt3unTpgr6+vsZxxo8fT0BAQJ7j6+vrY2VlRePGjfn000+xsrIqdB3zO7ZSqaRMmTI0bNiQ4cOHU7VqVY39/fv3JywsjAMHDqi3rVmzhhUrVvDkyRMGDBjAsGHDGD9+PCdOnECpVLJ27Vpq1qxZ6PoJ8V+SEhvP7d1neHz7AQCW1Svg0K4B+qWMSiROiDdNSV8jL3P8GwF/khz9mNrD2hWlaUK8FolP4vl9y69cD/oblUqFY/WqtOv9LpY2/35P+TKxh3/7g7OHT/LZjK/z7Au9fY/923cTcvMOmRmZ2Fa0453ObXCuLfePQvulJSRzZ89ZHl0PI1OVjrljORw7NMTI0rTYYl/mHCGHLvLgzHUaftGjyG0UQmgXSVqKEnHjxg1GjhxJZGQknTp1olevXqSkpHDy5Em++uortmzZwqJFi7C2ts4T6+vrS+nSpdU/JyQkcOLECbZt28bly5fZunVrnoRnQT197OTkZEJCQti2bRu///47y5cvx8PDQ1125MiRJCcnq38ODg5m6tSp1K1blzFjxlC9enWWLFnCgQMHGDRoEI6OjlSuXPml6iXEf4UqKZWglXvIysikgpcLWVlZhB69TOKDR9T9sCMKXd1ijRPiTVPS18jLHP/B2es8OHMdc4eyJdp2IUpCukrFurnLiH4QRZPW72BgZMjx3w+ycvpCRn37BcalTDWW/wgAAJ/nSURBVIo19salqxzc+Tum5uZ59kU/iGLljwsxMS1F8w6t0NNXcuHYKfzmLef9D/9Hzfq1i7XtQhSnzPQMrqzdR3L0Y8o3rYWugT5hxy4TtHw39UZ3QWlsUOTYlzlH7PUwQvZfRN9MHmIL8TaSpKUodomJiYwYMYLU1FS2bt1K9erV1fsGDRrEwYMH+eSTTxg9ejQbNmxAodCcpcDHx4cKFSpobOvbty/ffvstGzduZN++fbRv3/6l6pbfsfv370/37t355JNP2LdvHyYm2TegTZo00Sh3/fp1AEaMGIG3tzcAc+bMwcLCAl9f35eqjxD/NWHHrpD6OIn6H3fB2MYCANMK1lxe9QeR529SroFzscYJ8aYp6WukMMfPyszk/qEg7u3/q6SaK0SJu/DnGcLv3mfgZx9QpVb2+7ta7Zos/PpHjv9xiFbdOhRb7JlDf7JrwzYy0jPyPd7vW35FoatgxFdjMTU3A6BBc08Wfv0jv2/ZKUlLodUiL9wkISwGl8GtKV3FDgBL5/Kcn7+DsGNXqNy6XpFjC3uOiNPB3Pr1FFkZmSXRZCGEFpA5LUWxW7FiBWFhYfzwww8aCctcLVq0YNSoUVy4cCHf4eDP07VrVwAuXrxYbHUFKFeuHF9++SWxsbFs27btueVUKhWAOqmZu+3pn4UQL/Yw6DYWDrbqZAlA6Sp2GFmb8TDoTrHHCfGmKelrpKDlMlTpnF/4K/f2/YVNXSf0zY2LpX1CvGqXTl3A0sZKnXQEsC5XFsca1bh06nyxxa6Z+RM7123GoXpVylWq8OyhyMrK4u71W1R1qa5OWAIo9ZU416lFbFQ0iU/iX7aZQpS4h0F3MCxjqk4mAhhbW2DhVI6HQbeLJbYw57i06ndubj+BhZMtJnaWRW2eEEJLSdJSFLtff/2VypUr07x58+eW6du3L0qlkl9//bXAxzUyyu7yn5WVVeQ6Pqtt27bo6+tz9OhR9bb+/fure1T2799f3ZtywIABODs74+zszOnTpwkLC8PZ2Znx48erY/39/Xn33XdxdXWlUaNGjB8/nqioKPX+0NBQnJ2dWbNmDe+//z4uLi4MGjSo0PHbt29nzpw5eHl54erqSo8ePTh58mSe9u3YsYPu3btTt25dvLy8+Prrr4mNjdUo82/nLIzw8HBGjx5N06ZNcXV1pX379ixfvpzMTM2noBcuXOB///sfbm5uuLm5MXjwYIKCgtT7jxw5grOzM2PGjNGI++qrr3B2dubIkSMvVT/xeqiSU0mJTaBU+TJ59pUqV4aE8JhijRPiTVPS10hhjp+VnklGahrV32+Oc49m6Ch0XrZZQrxWESGh+SYR7SpV4NHDGJITk4olNi7mER37vceAsSMwMMw7hFVHR4cPv/6MNj275NmXlJAIIFOdCK2WEB5DKbu8nx8mdmVIiU1AlZxa5NjCnCMlLgGnzo2oNbAVegbKl2mSEOINIMPDRbGKiori/v37Ggvy5MfExARXV1fOnTtX4GPnJhRLYqEbAwMD7O3tuXbtWr77R44ciYODA5s2bWLkyJFUrlwZhULBkiVLePToEb6+vtjb2wOwcOFCFixYQJs2bejZsyeRkZH4+flx+vRptm7diqXlP08C582bh7e3N506dcLAwOCl4o2MjBg8eDAqlYpVq1YxYsQIDh06pJ67c/ny5cycOZP69evz6aefEhMTw9q1a7l69SobN25ET0+vUOf8NyqViqFDh5KSksKgQYMwMzPj8OHDzJw5k4yMDEaOHAnA8ePHGTFiBNWrV2fMmDGkpaXh7+9P3759Wb16Ne7u7nh5edG1a1cCAgI4evQozZo149ixY2zevJnevXvj5eVVuF+0eK3SHmd/udM3y9tjS9/MiIxkFenJaegZ6RdLnBBvmpK+RgpzfF1DJe6fdkehK8+3xZsrLSWVlKRkzCzyzi9ZKqe3Y1zMI4xM8l4ThY0dPflLdPVe/NWqtHXeZEzC43j+Ph+EVTmbfOshhDbISFORkazK//MjZxG31LhElEZ5E/YFjVXoKgp1jvpj3pVEvxD/AZK0FMUqt2deQVb4tra2Ji0tjbi4OCwsLNTbnzx5otELMCEhgaNHj7Jw4UKcnJzo0OH5cw8VhZmZGSEhIfnua9KkCZGRkWzatAlPT0/1gj1bt24lNTWVLl2yn5rfv3+fRYsWMXz4cD777DN1fIcOHejWrRtLlixhwoQJ6u3lypVj5syZ6OjovFR8VlYWW7duxdg4+8O9fPnyjB07lr1799KzZ08eP37MggULaNasGUuXLkU354O9QoUKTJo0iePHj+Po6Fioc/6bq1evcuvWLebNm0fbtm0B6NGjB0OHDuXOneyhh5mZmXzzzTe4urri5+enrle/fv149913+f7779m+fTuQvXjSsWPHmDx5Mps2beKrr76iUqVKfPnllwWuk9AOGWnZUyzoKvN+9ChyvuhlqNLzJGReNk6IN01JXyOFOb6Ojg46utK7UrzZUlJSAFAa5P18UOpn98xKS00rlth/S1jmJyMjg60r/FClpuHV3qfQ8UK8Kukpz//8yN2WmfMZ87KxhT2HJCyF+G+QpKV4bXIX4MnI0JysPHfuyqcZGRnRsmVLJk2ahFJZMt3/09PT1cnDl7V3714yMzPx9vbWSLxaWVlRo0YNDh06pJEAdHd31zhnYeObN2+uTlgC6jlEHz58CMCff/5Jamoqffv2VScGATp37kzNmjVxdPx/9u47vsbz/+P4K3tKIpJYSYggVGKr0oZKbTVKlVKqSulQbb8dUtr69tdvB6q1itqrdihq1GxjlLaoUrWCREISkojsk/H7I5yKRCWRcPB+Ph4ej7rvz3Xd1316btc5n3ONaixevLhI17wVDw8PzMzMmD59Og4ODjRt2hRra2tmzZpljPnrr7+IiIjg2Wef5fLly3nKt2rVirlz5xIdHU358uVxdnZm9OjRvPrqq/Ts2dM4CvT6+5Z7xLWlHYr6mBW3nMi9prSfET1L8oAy+5c3/a0++t1O2X+TnZ3NyhmLOHXkGAEPN6TBow8XvzKRO+Xf3vO3fpgKV/Z2riEi9x0lLaVEeXh4AP8kzf5NbGwslpaWeUZZAowdOxY3NzcMBgOhoaEsWrSIDh06MHr0aOMU6tKQkJBQpGnQBbk2UrN3794Fnr8x4Xrj9W63vLV17miAa2tHRkZGAlClSpU8cTY2NtSpU6dY17yVChUq8M477zB+/HgGDRqEvb09zZo1o2PHjnTo0AELCwvjNceMGcOYMWMKrCcqKory5csDubu+t23blh9//JFnn32Whg1vvjuhmC6Lq+sNZRvy76qanZkJgKVt/vdbccuJ3GtK+xnJ1LMk9zFDhoG01NQ8x6yvjpLMNOQfAWa4OmLL1s62wPpup+ytZBoMLP92AX/9fogaAbXpMahPseoRKQ1Zhkyy0vKOQLawvjrSMTN//5FlyO0/LG6yrmRhy97ONUTk/qWkpZQoDw8PvL29b7lWZWpqKocPHyYgICDPCECAhg0b4umZu+h5y5YtqVKlCp988gkJCQl88803tz0asiBJSUlERETw+OOP31Y915KFU6dOxdb21h9kb7z3opa/Nlr1Vu35t9esqNcsjBdffJEnn3ySzZs389NPP7Fr1y62bt3K6tWrmTlzpvGaw4cPp379+gXWUa1aNeN/p6Sk8NdffwGwc+dOUlJSNNLyHmTj7AhAxpXUfOcyElOxsLPCwjr/h9HilhO515T2M6JnSe5nf+47wKrZ3+U51qpLO2zt7biScDlf/LVjZQpYsxLA1s6u2GX/TUZaOt9NnsWpv45Ts95DPPvKC8WaWi5SWi7+eYbjK3bmOeb9RD0s7KzISMy/cdW1PqWgtSgBLG2tC1W2sHEi8mBRDyklrnPnzkyZMoVt27YZd98G+OKLL/Dx8aFHjx4sWbKEtLQ0unTpcsv6+vXrx549e9i6dSvz5s3Ls8t2Sdm4cSM5OTk88cQTt1VP5cqVgdy1KmvXrp3n3E8//YSjo2Oplr9RxYoVgdzRlD4+PsbjGRkZvPPOO3Tu3LnEr5mQkMDff/9Nw4YNee6553juuedISUlhxIgRbNq0iWPHjhmvaW9vT/PmzfOUP3ToEJcvX86TQB0/fjyRkZG8++67jB07lvHjxzNq1KgitUvuPks7a2xcHQvcATnp/CXKVC54LdzilhO515T2M6JnSe5n1f39eP4/L+c55upejjPHw4gKP5cv/nx4JK4ebv+6+U1Fb89ily1IVlYWi7+Zw6m/jlOnSX16Dn5OCUsxOS7VK+E/sG2eY7auZbh8JpqkqLh88cnnL2FbrkyBm/Bc41ipXKHKFjZORB4c2hJSStygQYPw8vJi1KhReXbjjouLY/To0fTs2ZPx48dTs2ZNnn766ULV+fHHH+Ps7MzXX39NREREibY3JiaGiRMnUr58eTp37nxbdbVq1QqA6dOnk3Nt7TByN6d5+eWXmTdvXqmWv1Hz5s2xsrJi2bJleerbuHEjGzduLJVr7tq1i+eff55t27YZj9nb21OzZk0gd3Spv78/7u7uLFiwgOTkZGNcUlISb7zxBsHBwcZRqL///juLFi3imWee4cUXX6RHjx4sWrSI3377rUjtEtPgVqcKCaeiSIlNMB6LPxlFamwi7nV9SrycyL2mtJ8RPUtyv3JycaZ6Hb88f1w93KjTqC4Xz8dw8sgxY2zs+WjCjh4n4OF/X27mdsoWZMeaTZw8/DcPNarLM0P6K2EpJsnGyZ6y1Svl+WPnWga3OlVIjb1M/MkoY2xKbAIJp87fsv8obNnbuYaI3J/UU0qJs7e3Z/r06QwdOpSnn36azp07U69ePerWrcuJEyc4cuQIAIGBgVgW8sOam5sbb7/9Nh988AGjR4/Os6lLUWzZsoWyZcsCkJ6eTlhYGKtXryY9PZ0ZM2bc9vTomjVr0q9fPxYsWEBCQgKtW7cmISGBhQsX4uDgwPDhw0u1/I3KlSvHq6++ytdff83AgQNp3bo1Fy5cYOHChTRt2pSgoCDMzc1L9JqtWrXCx8eHkSNHcuTIEby9vQkLC2PRokU0a9aM6tWrAzBq1CjefPNNunfvztNPP42NjQ3Lly8nKiqKcePGYWlpSXp6OiNHjsTV1ZW3334bgLfffpstW7YwcuRI1qxZU6rrnErJ8wz0J+bAKf6ctYnKj/mTnZnJudDDOFYuh0d9XwBS466QeDYGpyoe2LmWKXQ5kftBaT8jepbkQdOoxSP8si2UpVPn8lj7VlhZW7Nz4zacXFxo3ralMS7p8hVOHvmbCl6VqeBVqUhlCyMlKZmdG7djYWlBtdo1OfRL/qWUHmpYF2tbfa4R01ShcU2i9vzN0cXb8Qz0x8LKknOhh7F2sqfyo3WMcRlJqcSfiMKxYlkcKrgWqWxh40TkwaGkpZQKX19fQkJCWLx4MRs2bGDTpk1YWFjg5eXFW2+9RVJSErNmzWLPnj189dVXVK1a9ZZ19uzZk9WrV7Nz505Wr15Nt27dityuzz77zPjfVlZWlC9fnqCgIAYPHpxn+vTtGDlyJNWqVWPJkiV88cUXlClThsaNGzN8+HB8fW/9hfB2y9/o5Zdfxt3dnfnz5/P555/j7u7OM888w7Bhw4xrYpbkNe3t7Zk9ezYTJ05k7dq1XLx4EXd3d/r06cNrr71mjGvfvj3Ozs5MnTqVb775BnNzc2rUqMHUqVONoz8nTZrE6dOnGTt2LE5OTgCULVuWd955h5EjR/L111/z3nvvFfk1kbvH2tGOuoM7EPbDPs5uOYCFtSXlanvj074x5pa5o2sTz0RzfMVOaj79mDEhU5hyIveD0n5G9CzJg8bSyooX3nmVjUu+J3TDNszMzfHxq06HXl2xd3QwxsWev8DKmYto1aWdMWlZ2LKFce50uHFTn3ULVxQYU2WMr5KWYrLMLS0IeLEdp9f/yrmfD2NmZoZztQpU69AEK/t/3rcpMQkcXx6K9xP1jEnLwpYtbJyIPDjMcq6fDypyBx07doy5c+cycuTIIq+bKHI7em8veMdyERGRu2WQb+u73QSR+8LMU1vudhNE7gtLWr17t5tQ4hIPHbrbTbgpp7p173YTTJJGWspd4+fnl2fko4iIiIiIiIiICChpKfeotLQ0rly5UqhYV1dX46YuUjzJycmkpKQUKtbd3b2UWyMiIiIiIiIi9zslLeWetH79eoKDgwsVu3XrVjw9PUu5Rfe32bNnM3ny5ELFHjt27NZBIiIiIiIiIiL/QklLuSc99thjzJkzp1CxGvl3+7p160ajRo3udjNERERERERE5AGhpKXckzw8PPDw8LjbzXhgeHl54eXldbebISIiIiIiIiIPCPO73QARERERERERERGR6ylpKSIiIiIiIiIiIiZFSUsRERERERERERExKUpaioiIiIiIiIiIiElR0lJERERERERERERMipKWIiIiIiIiIiIiYlKUtBQRERERERERERGToqSliIiIiIiIiIiImBQlLUVERERERERERMSkKGkpIiIiIiIiIiIiJsXybjdARERERORBN/PUlrvdBBERERGTopGWIiIiIiIiIiIiYlKUtBQRERERERERERGToqSliIiIiIiIiIiImBQlLUVERERERERERMSkKGkpIiIiIiIiIiIiJkVJSxERERERERERETEpSlqKiIiIiIiIiIiISVHSUkREREREREREREyKkpYiIiIiIiIiIiJiUpS0FBEREREREREREZOipKWIiIiIiIiIiIiYFCUtRURERERERERExKQoaSkiIiIiIiIiIiImxfJuN0DuDSEhIQQHB/PZZ5/RvXt34/HExESWLl3K+vXrCQ8Px9LSEh8fH3r06EHXrl2xtrbOU8+IESNYtWpVvvqtra1xc3OjWbNmvPXWW7i5uRW5jQXVbWVlRbly5Xj44Yd56aWXqFGjRp7z/fr1IzIykm3bthmPzZ07l5kzZ5KYmEj//v0ZPHgwI0aMYM+ePVhZWTFv3jweeuihIrdP5EGRkZTK6Y2/EX88kmxDJs7VKlKt08PYuZYpsbKFjUuKusTpjb9xJfIiZubmuPp54tO+MdaOdiV6zyIlKS3uCmEbfuVy2AUAXGt54tOhyS3ft4UtV5z6T6zaTerFy9Qd3OF2bk3krjClful66Ykp7J+wGtfaXvg9HXjb9ylSmkylb0o4dZ6zWw6QdD4OS1sr3PyrUrVtQyysrUrqVkXEhChpKcV24sQJhg4dSnR0NJ07d6ZXr16kpaXxyy+/8MEHH7B8+XKmTJmCu7t7vrLBwcGULVvW+PekpCT27NnDypUrOXz4MCtWrMiX8Cys6+tOTU0lPDyclStXsmnTJmbMmEHTpk2NsUOHDiU1NdX492PHjvHZZ59Rv359hg8fTq1atZg2bRrbtm1jwIABVKtWjapVqxarXSIPguzMLI7M20LqxctUfqwOFjbWRO48zKEZG2g4rCtW9ja3XbawcSkxCfzx7XqsneypEtSArPQMzu06QmJ4DA1f66IPt2KSDCnpHJq1kZysbDxb+JOTk8O50MMkX4in/itPYm5hcVvlilP/hd+Oc+HX4zj7lC/VexcpDabUL93o5Pe7yUzNKJX7FilJptI3JZw6z5+zN+FYuRw+7RuRfjmFqN1/kRR5ibovdcDMzOyOvSYicmcoaSnFkpyczJAhQ0hPT2fFihXUqlXLeG7AgAFs376dN954g2HDhvHdd99hbp53JYLWrVvj6emZ51jfvn0ZPXo0ixcvZsuWLXTs2LFYbSuo7n79+tGjRw/eeOMNtmzZgoODAwCPPvponrjjx48DMGTIEIKCggD46quvcHFxITg4uFjtEXmQRB84SVLkJfwHtqVs9UoAuPpVZv/E74nceYSqbRvedtnCxp3ZcgAzc3PqDe6AdRl7ABwru3Fk3hai95+i0iO1CmiFyN0VufMI6ZdTaPR6V+w9XAAo4+nO4dk/Er3/JBWb+N1WuaLUn5OdTcSOQ5zderC0blek1JlSv5S37lPEH48q6dsVKRWm0jeFbfgVGxcH6g7ugIVVbirDxtmBU2t+If5EJK41PfO1QUTubVrTUopl5syZREZG8umnn+ZJWF7TqlUrXn31VQ4cOFDgdPCbeeqppwD4448/SqytABUrVuS9994jLi6OlStX3jTOYDAAGJOa145d/3cRubnYQ6exLVfG+KUNwN7dBRffisQeCiuRsoWNMzc3x6O+rzFhCRhHiiVHxxf/JkVKUeyhMFx8Khi/tAGUrV4JO3cnYg+dvu1yhY3LMmSyf/Jazm45mPscOf/zHIncS0ypX7om40oKYev24h1U73ZuTeSOMYW+KcuQibWjLRWa1DQmLOG6z3bn427zLkXEFClpKcWydu1aqlatSsuWLW8a07dvX6ysrFi7dm2h67Wzy12zJCcn57bbeKP27dtjbW1NaGio8Vi/fv2MIyr79etnHE3Zv39//Pz88PPzY9++fURGRuLn58eIESOMZUNCQujWrRsBAQE88sgjjBgxgpiYGOP5c+fO4efnx9y5c3n22Wfx9/dnwIABRS6/evVqvvrqK1q0aEFAQAA9e/bkl19+yXd/33//PT169KB+/fq0aNGCDz/8kLi4vJ33ra5ZFH5+fnz99dcMHToUf39/OnXqRGZmJgaDgenTp9OlSxfq1atH3bp16dKlCytWrMhXx08//cRzzz1HgwYNePTRR3nzzTc5d+5cnpjt27fTu3dv6tWrR5MmTRg2bBinT9/8w5HcXUlRl3CsVC7fcYdK5UiLS8KQmn7bZQsbV6t3S6p3eSRPzLUPtLbO+iFCTI8hNZ20uCQcK+d/fztWLEdS1KXbKleU+nMys8lKz6DWsy3x6xmImbmm3Mm9yZT6pWtOrN6DjYsDni38i3o7InecqfRNFlaW+A9oi/fjeZP91z7b2bg4Fu3GROSeoOnhUmQxMTFERETk2ZCnIA4ODgQEBPD7778Xuu5rCcXS2OjGxsYGb29v/v777wLPDx06FB8fH5YuXcrQoUOpWrUq5ubmTJs2jfj4eIKDg/H29gZg8uTJTJo0iXbt2vHMM88QHR3NwoUL2bdvHytWrMDV1dVY74QJEwgKCqJz587Y2NgUq7ydnR0DBw7EYDAwe/ZshgwZwo4dO4xrd86YMYNx48bRqFEj3nrrLS5dusS8efM4evQoixcvxtLSskjXLKx58+bRsGFDRo0aRVpaGpaWlrz99tts2LCBZ599ln79+hEfH8+yZcsYOXIk7u7uxkT3Dz/8wH/+8x9q1KjBsGHDjPf2559/EhISgpOTEyEhIbz//vs0a9aMd955h8uXL7N48WKeeeYZli1bho+PT5HbLKUnK8NAVqoBa6f8I7KuLaKenpCMlV3+tb0KW9bcwrxY10hPTOFKeAxhG37F2smO8o1r5CsvcrdlXE4BKPj97WRHVqqBzNQMLO2si1WuKPVb2FrR+K0emFvo9225d5livxRz8BTxx89R/+WbrwMoYkpMqW+6Xlp8EpdPXyBs/a/Yl3eh3EPexbtBETFpSlpKkV0bmVeYHb7d3d3JyMggISEBFxcX4/HExMQ8owCTkpIIDQ1l8uTJ+Pr60qlTpxJvN4CTkxPh4eEFnnv00UeJjo5m6dKlNG/e3Lhhz4oVK0hPT6dr164AREREMGXKFF566SX+85//GMt36tSJ7t27M23aNN5//33j8YoVKzJu3DjjwtBFLZ+Tk8OKFSuwt8/tyCtXrsybb77J5s2beeaZZ7h8+TKTJk0iMDCQ6dOnY3H1A7CnpyejRo1i165dVKtWrUjXLCxLS0umTJmCra0tALGxsaxbt47BgwfnuU7r1q3p0KEDoaGhtGzZkuzsbD777DNq1qzJsmXLjOUDAgJ44YUXWLt2LV27duV///sfHTt2ZPz48ca6nnnmGTp16sS4ceOYMmVKkdsspSczLXd5heun7Fxz7Vh2huG2yhb3Gr9/FUJWeiaYm+HXM1C7h4tJysq4+fvb3DL3WJYhM98Xt8KWK0r9ZmZmmFlodKXc20ytX8pISuXUun14BgYUODJTxBSZUt90jSElnV/H5s7iMre2wLdz0wLLi8i9T0+2lKprG/BkZWXlOX5t7crr2dnZ8cQTTzBq1CisrEpnV9/MzMzb3lVu8+bNZGdnExQUlCfx6ubmRu3atdmxY0eeBGDjxo3zXLOo5Vu2bGlMWALGNURjY2MB2L17N+np6fTt29eYsATo0qULDz30ENWqVWPx4sVFumZh1a1b15hwhNwk9e+//55n46WcnBwyMzOB3A2cAA4fPkxsbCxDhw7NU7558+YsX76catWqsWvXLpKSkmjdunWeNltYWPDII4/w008/kZmZiaWl/hkzOf/2iN3q+Sts2SJcIzsrG98uzTC3MOfC7yc4tvRnDEmpVH60zr+3ReROu7Y0SlG7qcKWK279Ivc6E+mXTn6/BytHW61lKfcWU+ybzHKXAcrOyiZqz1/8OftHavduiZt/1SI2UkRMnb7tS5F5eHgA/yTN/k1sbCyWlpZ5RlkCjB07Fjc3NwwGA6GhoSxatIgOHTowevRo4xTq0pCQkFCsadDXuzZSs3fv3gWevzHheuP1bre8tXXur4zZ2dkAREZGAlClSpU8cTY2NtSpU6dY1yysgl5La2tr1qxZw86dOzlz5gxnz541JiuvrVV6szZDbiL0+ja/+eabN71+XFyc8f0od1aWIZOstIw8xyysr44oycwqMB7Awqbg91phyxbnGuYW5pRv4AuAW0BVDn27gTObD1C+cU0sb9Iekbvh2ns325D//Z199ccfS9v879nClsssZv0i9wJT75di/gjj0pFwHur3BFnpBrLS/xnhmZOZjSE5DQtbK00ZF5Njin2TlZ0N7nVzl4ly86/C/gmrOfXDPiUt5Zayftp+t5twc1e/B0teSlpKkXl4eODt7X3LtSpTU1M5fPgwAQEBeUYAAjRs2BBPT08gdyRhlSpV+OSTT0hISOCbb7657dGQBUlKSiIiIoLHH3/8tuq5liycOnVqnlGCN3PjvRe1/PWjFv+tPf/2mhX1moV1472lp6fTp08fjh49StOmTWnWrBkDBgzg4YcfzvO6F6XN//d//2d8r9zI2dn5Nu9Aiuvin2c4vmJnnmPeT9TDws6KjMSUfPEZV1KBgtcrArC0tS5U2cLG3YyZmRlu/lVIPBtDauxlynjeepkLkTvFxjl3E4Fr7+XrZSSmYmFnhYV1/i+GhS1X3PpF7gWm3i+dCz0MwF8LtuaLiz10mthDpwkY1A6XahX/7TZF7jhT75ssrCxxreVF1O6jGJLTsHIoue86InL3KWkpxdK5c2emTJnCtm3bjLtvA3zxxRf4+PjQo0cPlixZQlpaGl26dLllff369WPPnj1s3bqVefPm5dllu6Rs3LiRnJwcnnjiiduqp3LlykDuWpW1a9fOc+6nn37C0fHfd6673fI3qlgx98NteHh4no1pMjIyeOedd+jcuXOJX/NmNmzYwOHDh/nf//7H008/bTweHR190zbfKDg4mIYNGxrb7OrqSvPmzfPE7N27l+zsbOOoU7nzXKpXwn9g2zzHbF3LcPlMNElRcfnik89fwrZcmQI3O7jGsVK5QpUtTFxmagYHvlmLm39VfNo1yhN3bXSLuZVGs4hpsbSzxsbVscCdWJPOX6JM5YKT7IUtV9z6Re4Fpt4vebUIwKO+b76Yw7N/xKVGJTwD/XGoeHuzgURKg6n0TSmxCRyeuxnPwAAqPVIrT1xWugHMwMxSn+1E7jfaElKKZdCgQXh5eTFq1Kg8u3HHxcUxevRoevbsyfjx46lZs2ae5NW/+fjjj3F2dubrr78mIiKiRNsbExPDxIkTKV++PJ07d76tulq1agXA9OnTjdOdAY4ePcrLL7/MvHnzSrX8jZo3b46VlRXLli3LU9/GjRvZuHFjqVzzZhISEgCoXr16nuPz588HMK5t6e/vj6urKyEhIWRk/DOV6/fffyckJISUlBSaN2+OjY0NM2fOxGD4ZwpVdHQ0r7zySp7NjeTOs3Gyp2z1Snn+2LmWwa1OFVJjLxN/MsoYmxKbQMKp88ZpPDdT2LKFibO0s8bc0oLo/ScxpKYb4zJTM7jw2wlsXB2x93C53ZdBpMS51alCwqkoUmITjMfiT0aRGpv4r89QYcsVt34RU2fq/ZK9h0u+9pWtXgkA6zJ2lK1e6V8TqCJ3kyn0TbauTmSmZXB+3zGyr9svIS0+iYuHz+DsU0HL/ojchzTSUorF3t6e6dOnM3ToUJ5++mk6d+5MvXr1qFu3LidOnODIkSMABAYGFnqjFDc3N95++20++OADRo8ezaxZs4rVti1btlC2bFkgd7pyWFgYq1evJj09nRkzZtz29OiaNWvSr18/FixYQEJCAq1btyYhIYGFCxfi4ODA8OHDS7X8jcqVK8err77K119/zcCBA2ndujUXLlxg4cKFNG3alKCgIMzNzUv0mjfTvHlzLC0teffdd+nbty+WlpZs376dnTt3YmVlZVzb0tramhEjRvDee+/x7LPP0qVLF5KTk5k/fz6+vr707NkTe3t73nrrLT777DN69epFly5dyMzM5LvvviM9PZ333nuvRNosJatC45pE7fmbo4u34xnoj4WVJedCD2PtZJ9n45uMpFTiT0ThWLEsDhVci1S2sHG+XR7hz1mb+GP6eio2qUl2VjYX9h0j40oqdQa0VtJbTJJnoD8xB07x56xNVH7Mn+zMTM6FHsaxcjnjKK3UuCskno3BqYoHdq5lCl2uKHEi9wtT6pdE7lWm0DeZW5jj++QjHF8eyqFvN+DRwJfMlHSifvkbzM3wfbLpnX9hRKTUKWkpxebr60tISAiLFy9mw4YNbNq0CQsLC7y8vHjrrbdISkpi1qxZ7Nmzh6+++oqqVavess6ePXuyevVqdu7cyerVq+nWrVuR2/XZZ58Z/9vKyory5csTFBTE4MGD80yfvh0jR46kWrVqLFmyhC+++IIyZcrQuHFjhg8fjq/vrb/03W75G7388su4u7szf/58Pv/8c9zd3XnmmWcYNmyYcU3Mkr5mQWrWrMnEiROZPHky48ePx8HBgRo1ajBnzhy+++479u3bh8FgwMrKiq5du1KmTBmmTZvGl19+iZOTE61ateI///mPcbf0AQMGUL58eebMmcNXX32Fra0tderUYezYsTRq1OgWrZG7wdzSgoAX23F6/a+c+/kwZmZmOFerQLUOTbCy/2cESUpMAseXh+L9RD3jl8PCli1snItPBfxfaEP41oOc+XE/mJnhXLU8tXo/rrUsxWRZO9pRd3AHwn7Yx9ktB7CwtqRcbW982jfG/Oq0t8Qz0RxfsZOaTz9m/GJYmHJFiRO5X5hSvyRyrzKVvql8A1/MLc2J+OlPwn74FQtrS1x8K1KlTUPs3bXWvcj9yCzn+rmiIiXs2LFjzJ07l5EjR5bYuokit6v39jF3uwkiIiIiIiIma0mrd+92E0pc/KQJd7sJN1V2WMnMfrzfaKSllCo/P788Ix9FRERERERERERuRUlLMVlpaWlcuXKlULGurq5YWGha2+1ITk4mJSWlULHu7u6l3BoREREREREReZApaSkma/369QQHBxcqduvWrXh6epZyi+5vs2fPZvLkyYWKPXbsWCm3RkREREREREQeZEpaisl67LHHmDNnTqFiNfLv9nXr1k2b24iIiIiIiIiISVDSUkyWh4cHHh4ed7sZDwwvLy+8vLzudjNERERERERERDC/2w0QERERERERERERuZ6SliIiIiIiIiIiImJSlLQUERERERERERERk6KkpYiIiIiIiIiIiJgUJS1FRERERERERETEpChpKSIiIiIiIiIiIiZFSUsRERERERERERExKUpaioiIiIiIiIiIiElR0lJERERERERERERMipKWIiIiIiIiIiIiYlKUtBQRERERERERERGToqSliIiIiIiIiIiImBQlLUVERERERERERMSkKGkpIiIiIiIiIiIiJkVJSxERERERERERETEpSlqKiIiIiIiIiIiISVHSUkREREREREREREyKkpYiIiIiIiIiIiJiUpS0FBEREREREREREZOipKWIiIiIiIiIiIiYFCUtRURERERERERExKQoaSkiIiIiIiIiIiImRUlLERERERERERERMSlKWoqIiIiIiIiIiIhJsbzbDZBcISEhBAcH89lnn9G9e3fj8cTERJYuXcr69esJDw/H0tISHx8fevToQdeuXbG2ts5Tz4gRI1i1alW++q2trXFzc6NZs2a89dZbuLm5FbmNBdVtZWVFuXLlePjhh3nppZeoUaNGnvP9+vUjMjKSbdu2GY/NnTuXmTNnkpiYSP/+/Rk8eDAjRoxgz549WFlZMW/ePB566KEit09Kxm+//cbYsWM5fvw4lStXZvjw4bRp0+ZuN0vuIRlJqZze+BvxxyPJNmTiXK0i1To9jJ1rmRIrW9i4pKhLnN74G1ciL2Jmbo6rnyc+7Rtj7WhXovcscjekxV0hbMOvXA67AIBrLU98OjS55fu7uOVE7lXql0RuX2n3OYWNSzh1nrNbDpB0Pg5LWyvc/KtStW1DLKytSupWRcSEKGlpwk6cOMHQoUOJjo6mc+fO9OrVi7S0NH755Rc++OADli9fzpQpU3B3d89XNjg4mLJlyxr/npSUxJ49e1i5ciWHDx9mxYoV+RKehXV93ampqYSHh7Ny5Uo2bdrEjBkzaNq0qTF26NChpKamGv9+7NgxPvvsM+rXr8/w4cOpVasW06ZNY9u2bQwYMIBq1apRtWrVYrVLbt+pU6cYOHAgAQEBvPvuu/zwww+8/vrrLF26lLp1697t5sk9IDsziyPztpB68TKVH6uDhY01kTsPc2jGBhoO64qVvc1tly1sXEpMAn98ux5rJ3uqBDUgKz2Dc7uOkBgeQ8PXuujDrdzTDCnpHJq1kZysbDxb+JOTk8O50MMkX4in/itPYm5hUaLlRO5V6pdEbl9p9zmFjUs4dZ4/Z2/CsXI5fNo3Iv1yClG7/yIp8hJ1X+qAmZnZHXtNROTOUNLSRCUnJzNkyBDS09NZsWIFtWrVMp4bMGAA27dv54033mDYsGF89913mJvnnenfunVrPD098xzr27cvo0ePZvHixWzZsoWOHTsWq20F1d2vXz969OjBG2+8wZYtW3BwcADg0UcfzRN3/PhxAIYMGUJQUBAAX331FS4uLgQHBxerPVJy1qxZQ3p6OpMmTcLV1ZU2bdrw6KOPsmHDBiUtpVCiD5wkKfIS/gPbUrZ6JQBc/Sqzf+L3RO48QtW2DW+7bGHjzmw5gJm5OfUGd8C6jD0AjpXdODJvC9H7T1HpkVoFtELk3hC58wjpl1No9HpX7D1cACjj6c7h2T8Svf8kFZv4lWg5kXuV+iWR21fafU5h48I2/IqNiwN1B3fAwio3lWHj7MCpNb8QfyIS15qe+dogIvc2rWlpombOnElkZCSffvppnoTlNa1ateLVV1/lwIEDBU4Hv5mnnnoKgD/++KPE2gpQsWJF3nvvPeLi4li5cuVN4wwGA4AxqXnt2PV/l7vn2qjYyMhIANLS0gCKPSpXHjyxh05jW66M8UsbgL27Cy6+FYk9FFYiZQsbZ25ujkd9X+MXQwBnn/IAJEfHF/8mRUxA7KEwXHwqGL/cAZStXgk7dydiD50u8XIi9yr1SyK3r7T7nMLEZRkysXa0pUKTmsaEJVz3DJ2Pu827FBFTpKSliVq7di1Vq1alZcuWN43p27cvVlZWrF27ttD12tnlrgmSk5Nz2228Ufv27bG2tiY0NNR4rF+/fsYRlf369TOOpuzfvz9+fn74+fmxb98+IiMj8fPzY8SIEcayISEhdOvWjYCAAB555BFGjBhBTEyM8fy5c+fw8/Nj7ty5PPvss/j7+zNgwIAil1+9ejVfffUVLVq0ICAggJ49e/LLL7/ku7/vv/+eHj16UL9+fVq0aMGHH35IXFzezvFW1yyKqKgohg0bxmOPPUZAQAAdO3ZkxowZZGdn54k7cOAAL7zwAg0aNKBBgwYMHDiQQ4cOGc///PPP+Pn5MXz48DzlPvjgA/z8/Pj555+Nxzp06GA8FxERwdtvv42NjY0x2X29oKAgRo0axfvvv0/dunVp0aIFcXFx5OTksHjxYp5++mkaNGhAQEAA7du359tvv833vvvjjz8YPHgwjRs3pmnTprz00kscO3asSPcnpiUp6hKOlcrlO+5QqRxpcUkYUtNvu2xh42r1bkn1Lo/kibn2gdbWWT+UyL3LkJpOWlwSjpXzPweOFcuRFHWpRMuJ3MvUL4ncntLucwobZ2Flif+Atng/Xi9PzLVnyMbFsWg3JiL3BE0PN0ExMTFERETk2ZCnIA4ODgQEBPD7778Xuu5rCcXS2OjGxsYGb29v/v777wLPDx06FB8fH5YuXcrQoUOpWrUq5ubmTJs2jfj4eIKDg/H29gZg8uTJTJo0iXbt2vHMM88QHR3NwoUL2bdvHytWrMDV1dVY74QJEwgKCqJz587Y2NgUq7ydnR0DBw7EYDAwe/ZshgwZwo4dO4xrd86YMYNx48bRqFEj3nrrLS5dusS8efM4evQoixcvxtLSskjXvBWDwcCgQYNIS0tjwIABODk58dNPPzFu3DiysrIYOnQoALt27WLIkCHUqlWL4cOHk5GRQUhICH379mXOnDk0btyYFi1a8NRTT7Fq1SpCQ0MJDAxk586dLFu2jN69e9OiRQvjdRs0aMBzzz3HwoULadu2Lc7OzkydOvWm64z+8MMPVKtWjffff5+LFy/i6urKV199xbRp03jqqad45plnSE5OZvXq1Xz55Zc4ODjQt29fIHfDnwEDBuDh4cGgQYOwtbVl/vz59O/fn5UrV+Lp6Vmo+xPTkZVhICvVgLWTfb5z1xZRT09Ixsou//phhS1rbmFerGukJ6ZwJTyGsA2/Yu1kR/nGNfKVF7lXZFxOASj4OXCyIyvVQGZqBpZ21iVSTuRepX5J5PaVdp9T3PrT4pO4fPoCYet/xb68C+Ue8i7eDYqISVPS0gRdG5lXmB2+3d3dycjIICEhARcXF+PxxMTEPKMAk5KSCA0NZfLkyfj6+tKpU6cSbzeAk5MT4eHhBZ579NFHiY6OZunSpTRv3ty4Yc+KFStIT0+na9euAERERDBlyhReeukl/vOf/xjLd+rUie7duzNt2jTef/994/GKFSsybtw448LLRS2fk5PDihUrsLfP7SgrV67Mm2++yebNm3nmmWe4fPkykyZNIjAwkOnTp2NxdSFoT09PRo0axa5du6hWrVqRrnkrR48e5dSpU0yYMIH27dsD0LNnTwYNGsTp07lTJLKzs/noo48ICAhg4cKFxnY999xzdOvWjU8++YTVq1cDuZsn7dy5k//7v/9j6dKlfPDBB1SpUoX33nsvz3VPnjzJ0aNHjfW/8sor+dYlvV5aWhrffPMN5cvnTsswGAwsXLiQTp068fnnnxvjevbsSbNmzQgNDTUmLb/44gtcXFxYuXKlMTncsmVLOnbsyHfffcfbb79d6PsT05CZlrv8w/VTdq65diw7w3BbZYt7jd+/CiErPRPMzfDrGahdWuWelpVx8+fA3DL3WJYhM98XvOKWE7lXqV8SuX2l3ecUp35DSjq/jl2RG2NtgW/npgWWF5F7n57se9y1DXiysrLyHC9oOq+dnR1PPPEEo0aNwsqqdHYnzMzMvO1d2zZv3kx2djZBQUF5Eq9ubm7Url2bHTt25EkANm7cOM81i1q+ZcuWxoQlYFxDNDY2FoDdu3eTnp5O3759jYkzgC5duvDQQw9RrVo1Fi9eXKRr3oqHhwdmZmZMnz4dBwcHmjZtirW1NbNmzTLG/PXXX0RERPDss89y+fLlPOVbtWrF3LlziY6Opnz58jg7OzN69GheffVVevbsaRwFev19//HHHwwcOBBbW1s+/fRTPvvsM7766iseffRRfH19WbBgAY0aNcozStfb29uYsASwsrJi9+7dxrVLr4mPj8fR0ZGUlNxfUi9dusShQ4cYOHBgnl3ufXx8WLlyJRUrVizS/YmJ+bd/Am7170NhyxbhGtlZ2fh2aYa5hTkXfj/BsaU/Y0hKpfKjdf69LSKm6tpSG0XtbotbTuRep35JpPhKu88pTv1mucstZGdlE7XnL/6c/SO1e7fEzb9qERspIqZOSUsT5OHhAfyTNPs3sbGxWFpa5hllCTB27Fjc3NwwGAyEhoayaNEiOnTowOjRo41TqEtDQkJCkaZBF+TaSM3evXsXeP7GhOuN17vd8tc2nbm2duS1TWmqVKmSJ87GxoY6deoU65q3UqFCBd555x3Gjx/PoEGDsLe3p1mzZnTs2JEOHTpgYWFhvOaYMWMYM2ZMgfVERUUZk3qtW7embdu2/Pjjjzz77LM0bPjPbplZWVmMGDGCnJwc5s+fj6+vL05OTrz22mu88cYb/O9//+OTTz7h+eefz5O0LFcu/9ozVlZW7Nixg61bt3L69GnOnj1rTDpeW9PyZq8p/LN0wZ49e4p0f3JnZRkyyUrLyHPMwvrqiJLMrALjASxsCn4WClu2ONcwtzCnfANfANwCqnLo2w2c2XyA8o1rYnmT9oiYsmvv8WxD/ucgOzP3ObC0zf/eLm45kXuB+iWR0lHafU5mMeq3srPBva4PAG7+Vdg/YTWnftinpKXIfUhJSxPk4eGBt7f3LdeqTE1N5fDhwwQEBOQZAQjQsGFDPD09gdyRhFWqVOGTTz4hISGBb7755rZHQxYkKSmJiIgIHn/88duq51qycOrUqdja2t4y/sZ7L2r5a6NVb9Wef3vNinrNwnjxxRd58skn2bx5Mz/99BO7du1i69atrF69mpkzZxqvOXz4cOrXr19gHdWqVTP+d0pKCn/99RcAO3fuJCUlxTjS8vTp04SFhdGrVy98fXM/RLdp04YBAwYwd+5cBg8eDEC7du3y1H/ja5+Tk8Mrr7zC9u3badSoEQ0aNKBXr140adKE559/3hhXlNe0sPcnd9bFP89wfMXOPMe8n6iHhZ0VGYkp+eIzruTuTF/QekUAlrbWhSpb2LibMTMzw82/ColnY0iNvUwZz1svwyFiamycczcbuPaev15GYioWdlZYWOf/AlncciL3AvVLIqWjtPuc2+2bLKwsca3lRdTuoxiS07ByKJnvYiJiGpS0NFGdO3dmypQpbNu2zbj7NuSuA+jj40OPHj1YsmQJaWlpdOnS5Zb19evXjz179rB161bmzZuXZ5ftkrJx40ZycnJ44oknbqueypUrA7lrVdauXTvPuZ9++glHx3/fGe52y9+oYsWKQO5oSh8fH+PxjIwM3nnnHTp37lzi10xISODvv/+mYcOGPPfcczz33HOkpKQwYsQINm3axLFjx4zXtLe3p3nz5nnKHzp0iMuXL+dJoI4fP57IyEjeffddxo4dy/jx4xk1ahTwzwjIGxO4b7/9NgcPHuTgwYP4+/vTqFGjf233b7/9xvbt23nllVfy7FaemZlJQkICXl5eQN7X9EZjx47F2dmZJk2aFOn+5M5yqV4J/4Ft8xyzdS3D5TPRJEXF5YtPPn8J23JlCtzs4BrHSuUKVbYwcZmpGRz4Zi1u/lXxaZf3fZuVnrt8gbmVRb46RO4FlnbW2Lg6Frhja9L5S5SpXHDSo7jlRO4F6pdESkdp9zmFjUuJTeDw3M14BgZQ6ZFaeeKy0g1gBmaWeoZE7jf/PsRM7ppBgwbh5eXFqFGj8uzGHRcXx+jRo+nZsyfjx4+nZs2aPP3004Wq8+OPP8bZ2Zmvv/6aiIiIEm1vTEwMEydOpHz58nTu3Pm26mrVqhUA06dPNybTIHdzmpdffpl58+aVavkbNW/eHCsrK5YtW5anvo0bN7Jx48ZSueauXbt4/vnn2bZtm/GYvb09NWvWBHJHOPr7++Pu7s6CBQtITk42xiUlJfHGG28QHBxsHAn5+++/s2jRIp555hlefPFFevTowaJFi/jtt9+A3LUkPTw82LBhAwkJCca6rly5QlJSEgDHjh0zxt/MtbLVq1fPc3zZsmWkpqaSeXWKR/ny5alVqxY//PCDsX7I3URp/vz5XLx4sUj3J3eejZM9ZatXyvPHzrUMbnWqkBp7mfiTUcbYlNgEEk6dN07juZnCli1MnKWdNeaWFkTvP4khNd0Yl5mawYXfTmDj6oi9h8vtvgwid41bnSoknIoiJTbBeCz+ZBSpsYn/+qwVt5yIqVO/JFJ6SrvPKUycrasTmWkZnN93jOzr9nNIi0/i4uEzOPtU0PIKIvchjbQ0Ufb29kyfPp2hQ4fy9NNP07lzZ+rVq0fdunU5ceIER44cASAwMBBLy8L9b3Rzc+Ptt9/mgw8+YPTo0Xk2dSmKLVu2GDdPSU9PJywsjNWrV5Oens6MGTNue/RbzZo16devHwsWLCAhIYHWrVuTkJDAwoULcXBwyDOCrzTK36hcuXK8+uqrfP311wwcOJDWrVtz4cIFFi5cSNOmTQkKCsLc3LxEr9mqVSt8fHwYOXIkR44cwdvbm7CwMBYtWkSzZs2MScFRo0bx5ptv0r17d55++mlsbGxYvnw5UVFRjBs3DktLS9LT0xk5ciSurq68/fbbQO4Iyi1btjBy5EjWrFmDjY0No0aNYvjw4Tz77LP06tWL5ORkFi9ezJUrVxg5ciQTJ07kpZdeYurUqcad32/UoEEDHB0d+eyzz4iMjMTZ2Zm9e/eyfv16bGxs8iQfg4ODGTRoED169KBnz56Ym5uzcOFCnJycGDx4MFZWVoW6PzEtFRrXJGrP3xxdvB3PQH8srCw5F3oYayf7PBsMZCSlEn8iCseKZXGo4FqksoWN8+3yCH/O2sQf09dTsUlNsrOyubDvGBlXUqkzoHWpLJMhcqd4BvoTc+AUf87aROXH/MnOzORc6GEcK5fDo37uMh+pcVdIPBuDUxUP7FzLFLqcyP1E/ZLI7SvtPqcwceYW5vg++QjHl4dy6NsNeDTwJTMlnahf/gZzM3yfLPj7iYjc2/SN34T5+voSEhLC4sWL2bBhA5s2bcLCwgIvLy/eeustkpKSmDVrFnv27OGrr76iatWqt6yzZ8+erF69mp07d7J69Wq6detW5HZ99tlnxv+2srKifPnyBAUFMXjw4DzTp2/HyJEjqVatGkuWLOGLL76gTJkyNG7cmOHDhxvXXCzN8jd6+eWXcXd3Z/78+Xz++ee4u7vzzDPPMGzYMOOU6pK8pr29PbNnz2bixImsXbuWixcv4u7uTp8+fXjttdeMce3bt8fZ2ZmpU6fyzTffYG5uTo0aNZg6dapx9OekSZM4ffo0Y8eOxcnJCYCyZcvyzjvvMHLkSL7++mvee+892rVrx9SpU5k6dSrjx4/H1taWRx55xNj+unXrMnLkSCpUqHDTdru5ufHtt98ybtw4pk6dirW1NT4+PowfP55Dhw4ZR1G6ubnxyCOPMG/ePCZOnMiUKVOwsbGhSZMmvPPOO7i7uxf6/sS0mFtaEPBiO06v/5VzPx/GzMwM52oVqNahCVb2/0zBS4lJ4PjyULyfqGf8cljYsoWNc/GpgP8LbQjfepAzP+4HMzOcq5anVu/HtWaY3POsHe2oO7gDYT/s4+yWA1hYW1Kutjc+7RtjfnV6XOKZaI6v2EnNpx8zfoEsTDmR+4n6JZHbV9p9TmHjyjfwxdzSnIif/iTsh1+xsLbExbciVdo0xN7d+c6+KCJyR5jlXD+XVe45x44dY+7cuYwcObLI6yaKFFVOTs59MQqg9/aCdyMXERERERERWNLq3bvdhBIXP2nC3W7CTZUdVrTZmQ8KjbS8x/n5+eUZ+ShSmu6HhKWIiIiIiIiImD4lLR9gaWlpXLlypVCxrq6u2vTkNiUnJ5OSklKo2GvTo0VEREREREREHkRKWj7A1q9fT3BwcKFit27diqenZym36P42e/ZsJk+eXKjYY8eOlXJrRERERERERERMl5KWD7DHHnuMOXPmFCpWI/9uX7du3WjUqNHdboaIiIiIiIiIiMlT0vIB5uHhgYeHx91uxgPDy8sLLy+vu90MERERERERERGTZ363GyAiIiIiIiIiIiJyPSUtRURERERERERExKQoaSkiIiIiIiIiIiImRUlLERERERERERERMSlKWoqIiIiIiIiIiIhJUdJSRERERERERERETIqSliIiIiIiIiIiImJSlLQUERERERERERERk6KkpYiIiIiIiIiIiJgUJS1FRERERERERETEpFje7QaIiNxpg3xb3+0miNwXZp7acrebIHLf+LZc+7vdBJH7wkuXNt7tJoiISAnRSEsRERERERERERExKUpaioiIiIiIiIiIiElR0lJERERERERERERMipKWIiIiIiIiIiIiYlKUtBQRERERERERERGToqSliIiIiIiIiIiImBQlLUVERERERERERMSkKGkpIiIiIiIiIiIiJkVJSxERERERERERETEpSlqKiIiIiIiIiIiISVHSUkREREREREREREyKkpYiIiIiIiIiIiJiUpS0FBEREREREREREZNiebcbIHI3ZGRkMHfuXNatW0d4eDjm5uZUrVqV9u3b8/zzz2NjY2OMTUpKIiMjA1dX13+tc8SIEaxatYpjx44VqS179+6lf//++Y6bm5vj5OSEn58fgwcPJjAwsEj1XpORkUF8fDzly5cHICQkhODgYObPn0/Tpk2LVadIQeJjL7Fh6fecPnYSAL+6D9GhV1ccnMr8a7mzx8PYHLKOyNMR2DnYUbtBAEHdOuBQxjFPXOSZCDavWEv4yTOYmZtR1c+XDr264VbBI09c2NETbF21nvMRkdja2eLfpD6tn+qEta0NIveCtLgrhG34lcthFwBwreWJT4cmWDva/Wu5y2eiOfPjfpIiL2JpZ0252t5Uad0AKwfbUo0TMVUxly4xf9Uq/jpxAoCGderQ76mncC7z7/3S36dOsXjtWk6Fh+Nob0/junV5pmNHnBzz9kvFqf9sZCTvjx1Lt7Zt6dmx423eocjdcWLVblIvXqbu4A63jC1sn1acvi/5QhwHpqzD6/EAqjzR4DbuSERMlZKW8sDJzMzkxRdf5ODBg3Tr1o1evXqRlZXFb7/9xvjx49m2bRvz58/H2tqaw4cP8/LLLzNu3LhST/C1adOGNm3aGP+elZVFWFgY3333HUOGDGHBggU0atSoSHVGRkYycOBAhgwZQvfu3QFo0qQJY8aMwdfXt0TbLw+2lKRkZo+ZQlZWJoHtg8jJyWbnxu1En4ti6AdvYWFZcHdz+u8TzBs/DVs7O1o+2QYzczP2/PgTYX+f4KX338DOwR6AixdimPXFJKytrXm8c1sAdv+4gxmfTuDVj9/FycUZyE1Yzhn3DZWreNHu6c5cjk9gz+afiTwdwaDg1zEzM7szL4hIMRlS0jk0ayM5Wdl4tvAnJyeHc6GHSb4QT/1XnsTcwqLAcglh5zk8ZzOWdtZ4PV4XMzMzInf/RULYBeoN7YiVnU2pxImYqivJyfx34kSysrLo0ro12dnZrN26lfCoKD59+20sb9IvHTlxgk+nTMHezo6n2rbF3Nyc9du3c+T4cf7vrbdwtLcvdv1ZWVl8s3AhmVlZpXrvIqXpwm/HufDrcZx9yt8ytrB9WnH6vuysbI6t2ElOVnaJ36OImA4lLeWBs2HDBvbt28ekSZNo27at8Xj//v2ZOXMmY8eOZcWKFfTp04fjx48TExNzR9rl5+dH165d8x1v06YNvXr1Ytq0acyYMaNIdZ47d44zZ87kOebl5YWXl9ftNFUkn10/7uByfAKvffwuHpUqAFDZpwrzvpzK/l37aNKyeYHl1i0KwczMnMHvD6dceXcAHmpYlykfjeGndZtp3yv3mdj94w4M6RkMDn6dit6eAFR7qCbT/288uzftMMZtXPY9Lq5leXHEMKysrQBwdi3LuoUrOHH4b2oG1C7V10HkdkXuPEL65RQavd4Vew8XAMp4unN49o9E7z9JxSZ+BZY7tXYvZuZm1BvSEbtyTgCUq+PN/olriNhxiGodmpRKnIip+mHbNuISEhgbHIxnhdx+qXqVKvxvyhR27N1L60cfLbDcnOXLMTM35//eeosK7rn90sP16vHuZ5+xatMm+j31VLHrX/Xjj5w7f740blek1OVkZxOx4xBntx4sdJnC9mnF6fvO/XSIlOiE27wrETF1WtNSHjgHDhwA4NECPkz26dMHKysrDh48eIdbdXP16tXDx8eHP/744243ReSm/ty7Hx+/6saEJUD1On6Uq+DBn3sPFFgm/mIcMZHnqd+8iTFhCeBesTx+9epwYNc+47G42EvYOzoYE5YAnj7e2DnYEx2Z+wXQkGHAoYwjjVs+YkxYAvj45Y4qvhAeWTI3K1KKYg+F4eJTwfilDaBs9UrYuTsRe+h0gWXS4pNIiU7Ao4GvMcEIYO/ugmttL6L3nyyVOBFTtmv/fh6qUcOYUASoW6sWFT082L1/f4FlYi9dIuL8eVo+/LAxYQlQuXx5GgYE8NO+f/qlotZ/NjKSVZs20b19+5K4PZE7KsuQyf7Jazm75SAe9X2xdrYvVLnC9mlF7fuSL8QRvv0Q3kH1in1PInJvUNJSHjgODg4ALF26NN85e3t79u/fz5gxY5g0aRLBwcFA7ijMoKAgY9zhw4cZOHAgDRo0IDAwkOnTp5OTk1Nqbbazs8tX/549exg0aBBNmzalTp06BAYG8uGHH5KYmAjkrl15ba3M4OBg/Pz8jMf9/PzYu3evsa7U1FS+/PJLgoKC8Pf3JygoiHHjxpGamlqs9u7bt4++ffvSuHFjGjRoQO/evdm2bVu+uJCQELp160ZAQACPPPIII0aMyDOyddy4cfj5+bFo0SLjsYyMDDp37kzTpk2Jjo4uVvukZKUmpxAfe4lKVT3znavk7cn58HMFlkuMvwxAec8K+c65eriRkpTM5bh4AMqVdyclOYXkxCvGmJSkZNJS0yjjnJtUsbK24vm3htLyybZ56jp/NVnp4vbv69KK3G2G1HTS4pJwrFwu3znHiuVIirpUYLmMxGQAHMqXzXfOzrUMmcnppF9OLvE4EVOVlJJCzMWLVCtgZomPlxenIyIKLBd3Obdf8qpYMd+5Cm5uXElK4lJ8fJHrz8rKYtp331G3Vi1aNNEoZbn35GRmk5WeQa1nW+LXMxAz81svt1PYPq2ofV92VjbHV+6ibI1KeNTXclci9zslLeWB06VLF6ysrPjiiy948skn+frrr9m7dy8ZGRkAWFtbA/9MywYYOnQo77//PgAnTpygX79+nDp1ildeeYVnn32W2bNn8+OPP5ZKe6Ojozl+/Di1a/8zrXXnzp0MHDiQ1NRUXn/9dUaOHEndunVZunQpH3zwAZC7duXQoUMB6NWrF2PGjCmw/oyMDF544QVmzJjBI488wvvvv8/DDz/MjBkzGDhwIAaDoUjtDQsLY8iQIeTk5PDmm2/y9ttvk5qayiuvvMJvv/1mjJs8eTLBwcF4e3sTHBxMr1692Lx5M7179yYuLg6AYcOG4ePjw9dff83FixcBmDJlCsePH+ejjz4ybi4kd9e15KNTWZd858q4OJGWkkpqSv4EuLVN7mjI9LT0fOdSknITIlcu5yYpAzs8gXNZF5ZNX8CFiCguRESxbPp8LCwsaNamRYHtir8Yx/6d+/jhuxA8KlekdoOAYt2fyJ2ScTkFAGun/CNYrJ3syEo1kJmake+cuVXuaj9Z6fn/vTak5D5fGVdSSzxOxFTFJSQA4OrsnO9cWScnUlJTSU5JyXfu2mfA1PT8/dKVpCQAEhITi1z/91u2cD4mhkFXP1eK3GssbK1o/FYP3AN8Cl2msH1aUfu+c6F/knopkepdmxX1NkTkHqSkpTxwatSoweTJkylXrhwnTpxg6tSp9O/fn6ZNm/Kf//yH06dzpyDUqlWL+vXrA9C8eXNat24NwKRJkwBYsmQJgwcP5pVXXuG7774jMzPzttqVmppKXFyc8U90dDS7d+/m5ZdfJjs7m9dee80YO3fuXCpWrMicOXPo27cvffr0YcqUKdSvX5/Q0FAgd+3K5s1z1xGsX79+getlAqxcuZIDBw4wYsQIPv30U/r06cPnn3/OO++8w/79+1m2bFmR7mPr1q2kpKQwefJk+vbtS9++fZk7dy5VqlTh6NGjAERERDBlyhReeuklJk6cSJ8+fXjzzTdZvHgxMTExTJs2DQAbGxs+/fRTkpKSGDNmDEeOHGHmzJl06tSJjtpx02Skp6UB5JmSfY3l1WOGjPyJFo9KFbCxs+Wv3w/lGUlsyDBw8sgxADKvJs1dypWl5ZNtOHP8JFM+GsOUj8YQdvQEPYf0zzNl/JqUpGTGv/sxq2Z/R6Yhkyf7di+wfSKmJCsj9/1uYZV/yXHzq5t6ZBny9zX25V2wsLXi4pGzeZ6lLEMm8SdyRxpnGzJLPE7EVKVdTTpeS0Jez9rq6g9mBfwo61WhAna2tuz744887/0Mg4FDf/9t/O+i1B9x/jwrN2zguW7dKFc2/+hlkXuBmZkZ5hZFSx0Utk8rSt+XHB1P+NY/8OnQGBtnhyK1R0TuTUpaygPp8ccfZ/v27Xz11Vd07doVd3d3UlJSWLduHV27dmXfdWsWXS87O5vQ0FBatmxJxeumDvn6+vLYY4/dVptmzZpFs2bNjH9atGjBCy+8YDz38MMPG2OnT5/OypUr83xYjo+Px9HRkZQCRg78m23btuHo6Ejfvn3zHO/fvz+Ojo4FTuv+NxWuru30f//3fxw+fBiAsmXLsmnTJvr16wfA5s2byc7OJigoKE+i1s3Njdq1a7Njxw5jfQ0bNqRfv36sWbOG119/HVdXVz766KMitUlK17XvdUXdmdvC0pLmbR8n6kwEy6+OoDwffo4lU+eQkZ6b5DQ3z+2mtoSsZ838ZXhX9+Hpl/rRY1BfPH28WTZtLn8fPJyvbjMzM54Z+jw9BvXFo1IF5oybypHftC6smDjjw1S0YuYWFlR+tA5JkZc4tvRnki/EkRR1ib8X7yA7I/eLnpmFeYnHiZiqawnHovZLlpaWPBkURFh4OBPnzeNsZCSnz53jq1mzSLv645uFhUWh68/OzmbqwoX4+fredOMfkftWYfu0QsblZGdzfOVOnKp63HRTOhG5/2j3cHlg2djY0LFjR+OIvSNHjjB79mzWrVvHRx99xIYNG/KVSUhIICUlBW9v73znqlWrVuQE3/W6du1Kt27dyMnJ4cyZM3z77bfY2try6aefUqtWrTyxFhYWREREMGHCBE6ePEl4eHix13c8d+4cXl5eWFnlHYVmbW2Nl5cXkZFF27ykffv2bN68mfXr17N+/Xrc3d1p2bIlTz31FI0bNwYgPDwcgN69exdYx41tefPNN9m0aRPnzp3jq6++wrmA6Vhy99jY2gAFj6bMvPrrua2tbYFlW3VpR1pKKnu2/Myf+3I3LvCrV4fA9kFsXrkOe0cHUlNS2blxG5WrevPCO68aE5kBDzdg2v+NZ/Xcpbw91g/L6943dg72BDzcAIA6jesz6YPPWb9kFXUaa8F2MV0WV5dMyDZk5TuXfXU0v6VtwSOGvYPqkZmWQdTuv4ybFrjW9sSzhT9nNu3H0s6mVOJETJGtTe77M6OAfinj6ghI+5v0Sz3atyc5NZUNO3aw+/ffAWjk70+X1q1ZvGYNjvb2GK4+j7eqf83WrZyNjOTjN98k8er08qSr64WnZ2SQmJREGQeHIidXRe4Fhe3TMgsZdy70MMnn46k3pCOG5NxZPpmpuaOeszIyMSSnYWlvo+dJ5D6jpKU8UFJSUpg+fTp16tShbdu8m3XUqVOHL7/8ksTERH7++Wfi4+NvWk/a1emw18vOzr6ttl0/nfvRRx+lZcuW9OjRg+eff56lS5dStWpVY+ysWbMYM2YMPj4+NG7cmLZt21KvXj0WLFjA2rVri3Tdf9tAKDs7O18C8VasrKyYOHEix44dY/Pmzfz888+EhISwYsUK/vOf//DSSy8ZX6upU6feNJl1vbNnz3LpUu4i3D/++KOmhpsY53K5092urT95vSsJidja22FtW3CCw8zMjI7PPkWLjq25FB2Lk6sLZd1c2RzyA2bm5ji7liU68jxZmZkENG1gTFhC7kjNuo805sfla4g9H0NF78oFXsPK2gq/enX4ZcvPJF9JwqGMYwnctUjJs3HOfW8WtF5kRmIqFnZWWNxkmQMzMzN8Oz2MV8sAUi8mYuPsgG1ZR878uB/MzbBxcSiVOBFT5HZ1GnbC1c0JrxefmIi9nZ0xsXkjMzMznu/ena6tW3MhNpZyLi64lyvHkrVrMTc3x83V1bje963qP/jXX2RmZfH+uHH54tZu3crarVuZPHo07uXyb0Aicq8rbJ9W2Lj445HkZGVz8Jt1+eIiQ48QGXqEJu88jW1Zfc4TuZ8oaSkPFBsbG2bNmkWDBg3yJS2vqV69OqGhoQUm08qWLYujoyNnz57Nd+7cuYJ3SC4uT09P/ve///Hqq6/y1ltvsWzZMiwtLUlPT2fSpEk0bdqU2bNnY2n5z2M8YcKEIl+ncuXKHDx4EIPBkCdBmZGRwblz54yjIwsrKiqKqKgoGjdujJ+fH6+99hoXLlzg+eefZ9asWbz00ktUrpybXKpYsWKeDYYAfvrpJxwd//mwkZmZyfvvv4+LiwvdunVjxowZdOrUiTZt2hT5XqV02Nnb4eLmyvmz+Z+BqPBzVK6af3fVaw7t3U8Z5zL41KqBo3MZ4/Ezx05RqYonVtZWxvd4dnb+BHuO8ceCHGLPRzN//HQe6xBE06C8yzWkp6WBmRmWBayXJGIqLO2ssXF1LHCX8KTzlyhT2e2mZWP+CMO6jB0u1Spi7WhnPH75zAUcK5czrhVW0nEipsjB3h73cuU4XcBns9MREfgWMGPmml2//46LkxN1atTAxcnJePyvkyep5uWFtZUV1lZWhaq/31NP5dvw5/KVK0yeP5/AJk1o8fDDOF93DZH7SWH7tMLG+XRskm8zOkNSKseWheLRoBoeDapj5XjrwRAicm/RgkTyQLGwsKBjx47s27eP77//Pt/5hIQENm3aRPPmzbGzszOO6ro2MtDMzIw2bdoQGhrKiRMnjOXOnTuXZx3GktK6dWuefPJJ49R1yB3lmZqaStWqVfMkLI8ePWpci/PapkAWFhZ52l+QoKAgkpKSWLRoUZ7j3333HcnJyTz++ONFavO0adMYMGBAnunqFSpUwMPDw/h6tmrVCshdm/P6kZ5Hjx7l5ZdfZt68ecZjs2bN4siRIwQHBzN8+HB8fX3573//S8LVnTvFNNRpVI9Tfx0j9vw//99PHjnGpQsxBDRteNNyuzftYO3ClWRl/TMl6NgfRwg/EWZMPHpUrkAZFycO7NyLIeOfjRMMGQYO7v4Ve0cHPCpVwNXDjbTUVH7dsZus6zbGir8Yx5Hf/qCqny82hRjZK3I3udWpQsKpKFJiE4zH4k9GkRqbiHvdm+/aGrnrCKfW7iU7659/7y/9HUHimRgqNa1VanEipqppvXr8eewYkdd9Hjn099+cj4mheaNGNy33w7ZtzF6+PE+/9PvhwxwLC6NtYGCR6vf19qZurVp5/tSqVg2A8m5u1K1Vy7hxj8j9qLB9WmHiylR2o2z1Snn+OFUpD4CtaxnKVq+kH9RE7kN6quWBM2LECA4dOsS7777LmjVrCAwMxNHRkfDwcEJCQjAYDHz44YcAuLq6ArB48WIuXrxI586dGT58ODt27OC5555jwIABWFhYsGDBAhwcHApc2+h2BQcHExoaypQpU2jfvj3e3t7Uq1ePkJAQHB0d8fHx4cSJEyxfvtyYFExOTsbZ2ZmyV6dHrVmzhpycHJ566ql89ffs2ZNVq1bx+eefc/z4cfz9/Tl8+DAhISHUr1+fnj17Fqm9ffv25fvvv6dv37706tULZ2dnfvnlF/bt28frr78OQM2aNenXrx8LFiwgISGB1q1bk5CQwMKFC3FwcGD48OEAnDp1ismTJ/PYY4/RqVMnAD766CP69+/P//73P8aOHVvs11VKVmCHIA7u/pU5Y6fwaLtWZBoM7Ny4nUpVvaj3SO6Xt7iYi4SfPI13dR9cPXJ/NQ/s+ARLvpnDwgkzeKhhXRIuxbFr0w6q+9eiXrPcUb7m5uY82fdpFn8zh+mffEXDwKbkZGfze+heYi/E8PSgvlhcTeB36tOdlTMXMfPzSdRv1piU5BT2bg3NraNPj7vz4ogUgWegPzEHTvHnrE1Ufsyf7MxMzoUexrFyOTzq+wKQGneFxLMxOFXxwM41d4SyV4sAjn63g78WbKHcQ1VIS0gicucRytashEf9asb6SzpOxFR1ad2an/ft4/8mTeLJoCAyDAbWbt1KNW9vAq/OIom+eJFjYWH4VatGebfcfqlrmzaMnzWLL6ZP5+F69YiNi2Pdtm3Uq12bwCZNilS/yIOkoL6pMH1aUeJE5MFjlvNvC9qJ3KdSUlKYO3cuW7duJTw8nNTUVDw8PHj88ccZOnQoHh4eABgMBt555x22b9+OjY0NoaGh2NjYcPr0acaMGcO+ffuwtrY2JvamT5/OsWPHitSWvXv30r9/f1577TWGDRtWYMzy5csZNWoUzZo1Y+7cuZw/f57PPvuMvXv3kpGRQeXKlenUqRO+vr4MGzaMiRMn0q5dOwA++eQTQkJCyMnJ4fvvv+e3334jODiY+fPn07RpUwCSkpKYMmUKGzZs4OLFi1SoUIFOnTrx8ssvF2rNyRvt37+fKVOm8Ndff5GUlETVqlXp1asXffv2NS6OnZOTw+LFi1myZAmnT5+mTJkyNGzYkOHDh1OjRg2ys7Pp06cPf/31F+vWrcuz+dG7777L999/z/Tp04s8EhRgS/j+IpeRW7t4IYb1i1dx5vgprK2tqVn3Idr17IyDU+4H1/0797Fq9nc8NbAPDR972Fju0N79hK7fwqXoizg4OVLvkca06NQaaxvrPPWHHT3B9jUbiTwdAUDFKp60fLINNQPyLjFw+NcD/Lx+KzGR57GyscG3dg1ad++EWwWPUn4FHjwzT2252024L6XEXibsh31cPhONhbUlZWtWxqd9Y+M07ej9Jzm+Yic1n36M8g2rG8vF/BHGuZ//JPVSIlaOdnjUq4ZXy7pYWOf9jbqk46RkfFuu/d1uwn0nKjqaeSEhHD11ChsrKxrUqUPfrl1xLpPbL+3Yu5epCxfy8nPP8fjVz0SQO0X8+82bOR8bi3OZMgQ2bky3tm2xsbYuUv0Fib10iddGj+bpDh3oqTW6S8VLlzbe7Sbc9/aNXY6tiyN1B3cwHrtZ33SrPq2ocddLi0/i17Er8H6iHlWeaFDyN/qAW9Lq3bvdhBIXP6noy6ndKWWHDb/bTTBJSlqKyANHSUuRkqGkpUjJUdJSpGQoaSlSMpS0vLOUtCyY1rQUERERERERERERk6L5PSKlIDY2tlBx9vb2ODg4lHJrbl9CQgIGg+GWcVZWVri4uJR+g0RERERERETkvqakpUgpeOyxxwoV92/rWJqSYcOGGXcm/zcPP/wwCxYsuAMtEhEREREREZH7mZKWIqVgzpw5hYrz8vIq5ZaUjPfee4/ExMRbxjk5Od2B1oiIiIiIiIjI/U5JS5FS0Lx587vdhBLl7+9/t5sgIiIiIiIiIg8QbcQjIiIiIiIiIiIiJkVJSxERERERERERETEpSlqKiIiIiIiIiIiISVHSUkREREREREREREyKkpYiIiIiIiIiIiJiUpS0FBEREREREREREZOipKWIiIiIiIiIiIiYFCUtRURERERERERExKQoaSkiIiIiIiIiIiImRUlLERERERERERERMSmWd7sBIiIiIiIPun0umXe7CSL3hW9pf7ebICIiJUQjLUVERERERERERMSkKGkpIiIiIiIiIiIiJkVJSxERERERERERETEpSlqKiIiIiIiIiIiISVHSUkREREREREREREyKkpYiIiIiIiIiIiJiUpS0FBEREREREREREZOipKWIiIiIiIiIiIiYFCUtRURERERERERExKQoaSkiIiIiIiIiIiImRUlLERERERERERERMSlKWoqIiIiIiIiIiIhJUdJSRERERERERERETIrl3W6ASGnJyMhg7ty5rFu3jvDwcMzNzalatSrt27fn+eefx8bGxhiblJRERkYGrq6u/1rniBEjWLVqFceOHStSW/bu3Uv//v3zHTc3N8fJyQk/Pz8GDx5MYGBgkeq9JiMjg/j4eMqXLw9ASEgIwcHBzJ8/n6ZNmxarTpHbsXruUi5Fx/Die8NuGRsfe4kNS7/n9LGTAPjVfYgOvbri4FQmT9yJP4+yY91mos5EYGZuhle1qrTu3hEv36o3rftCRBTT/u9LWnRsTVC3Drd1TyJ3SlrcFcI2/MrlsAsAuNbyxKdDE6wd7f613OUz0Zz5cT9JkRextLOmXG1vqrRugJWDbbHirpd8IY4DU9bh9XgAVZ5ocPs3KXIHFLZ/udHZ42FsDllH5OkI7BzsqN0ggKBuHXAo45hb78U4xr/78b/WMfDdV/GpVQOA6HPn2bR8DWeOn8La2hrfOn607t6Jsm7//rlTxFR9u3gxUTExjB4+/JaxMZcuMX/VKv46cQKAhnXq0O+pp3Auk/c5vHzlCkvWruW3P/8kIzMTH09P+nbtSo2qVfPEHTx6lJCNGwmLiMDc3JwaVavS+8kn88WJyP1BSUu5L2VmZvLiiy9y8OBBunXrRq9evcjKyuK3335j/PjxbNu2jfnz52Ntbc3hw4d5+eWXGTduXKkn+Nq0aUObNm2Mf8/KyiIsLIzvvvuOIUOGsGDBAho1alSkOiMjIxk4cCBDhgyhe/fuADRp0oQxY8bg6+tbou0XKYzfQ3/h95/3UNXv1u+/lKRkZo+ZQlZWJoHtg8jJyWbnxu1En4ti6AdvYWGZ202dPnaS+V9/i0elCrTp0YmsrGz2bdvJrC8mMWjE63hWq5Kv7qysLFbOWkRWZlaJ36NIaTGkpHNo1kZysrLxbOFPTk4O50IPk3whnvqvPIm5hUWB5RLCznN4zmYs7azxerwuZmZmRO7+i4SwC9Qb2hErO5sixV0vOyubYyt2kpOVXar3LlKSCtu/3Oj03yeYN34atnZ2tHyyDWbmZuz58SfC/j7BS++/gZ2DPQ6ODvQY1DdfWYPBwA+LQnBwcqSCV2UAYs9HM+OzCWRnZ9OsTUvs7O34dcduvv3f17z0/nDKupcr1ddBpKRt27OHrbt3U7t69VvGXklO5r8TJ5KVlUWX1q3Jzs5m7dathEdF8enbb2N59TlMTUtj9IQJxF++TKdWrXCwt2fjzz/z34kT+fTtt/GuVAmAv06c4POpU/GsUIFnO3cmKyuLTaGhjP76a/77xhtUV+JS5L6jpKXclzZs2MC+ffuYNGkSbdu2NR7v378/M2fOZOzYsaxYsYI+ffpw/PhxYmJi7ki7/Pz86Nq1a77jbdq0oVevXkybNo0ZM2YUqc5z585x5syZPMe8vLzw8vK6naaKFFl2djY/rdvMtu83FrrMrh93cDk+gdc+fhePShUAqOxThXlfTmX/rn00adkcgPWLV+Fc1oUho97E2sYagAbNmzBh1GdsCfmBAW+/kq/un3/YQmzUhRK4M5E7J3LnEdIvp9Do9a7Ye7gAUMbTncOzfyR6/0kqNvErsNyptXsxMzej3pCO2JVzAqBcHW/2T1xDxI5DVOvQpEhx1zv30yFSohNK/mZFSlFh+5cbrVsUgpmZOYPfH0658u4APNSwLlM+GsNP6zbTvldXrG1tqN88/7OyfnEIWVlZ9HypH3YO9gBsXPY96WnpDBrxOlVq+ABX+6+Rn7Fx2fc8++rA0rh9kRKXnZ1NyKZNrNiwodBlfti2jbiEBMYGB+NZIfc5rF6lCv+bMoUde/fS+tFHAfh+82bOx8Tw4bBhPFQjd4Rys4YNGTZ6NGu2bOG1qzPW5oWEUM7Fhf+9/TY21rmfB1s8/DBv/e9/LFm3jlGvvVaStywiJkBrWsp96cCBAwA8erUjvF6fPn2wsrLi4MGDd7hVN1evXj18fHz4448/7nZTRIrFkGHgm9Hj2LZ6A/WbNaZMWedClftz7358/Kobv1ACVK/jR7kKHvy5N/c5Tk1O4UJEFP5N6hsTlgCOzmWoWtOX8JNn8tV7ISKKn9b9yOOd293ejYncYbGHwnDxqWBMWAKUrV4JO3cnYg+dLrBMWnwSKdEJeDTwNSYiAezdXXCt7UX0/pNFirte8oU4wrcfwjuoXgndocidUZj+5UbxF+OIiTxP/eZNjAlLAPeK5fGrV4cDu/bd9HoXIqLYsyWUho89TNWauTMNsjIzOXXkGL4P1TQmLAEcnMrQ4NGHOXrgMKkpqbd7qyKlLsNg4L0vvmD5+vUENmmCq4tLocrt2r+fh2rUMCYsAerWqkVFDw92798PQE5ODj/t20eDhx4yJiwByjo50f+pp6h1deZYUkoKZyMjeaRBA2PCEsDFyYna1atz7HTBfaSI3NuUtJT7koODAwBLly7Nd87e3p79+/czZswYJk2aRHBwMJA7CjMoKMgYd/jwYQYOHEiDBg0IDAxk+vTp5OTklFqb7ezs8tW/Z88eBg0aRNOmTalTpw6BgYF8+OGHJCYmArlrV15bKzM4OBg/Pz/jcT8/P/bu3WusKzU1lS+//JKgoCD8/f0JCgpi3LhxpKYW/cPy3r178fPzY9WqVXTu3JmAgADj6xgbG8t///tfnnjiCfz9/WnUqBH9+/fn999/z1NHTk4O8+fP58knn6Ru3boFtic7O5vZs2fTvn17/P39CQwM5JNPPiEpKanIbZbSlZmZSXpqGr1efp4eg/piYV7wFNbrpSanEB97iUpVPfOdq+TtyfnwcwDY2Nky/NP3ad7u8XxxKUnJmFvk7cqysrJYNWcxvnX8qNescfFuSOQuMKSmkxaXhGPl/NNFHSuWIynqUoHlMhKTAXAoXzbfOTvXMmQmp5N+ObnQcddkZ2VzfOUuytaohEd9LTci947C9i83Soy/DEB5zwr5zrl6uJGSlMzluPgCy24J+QErayueeKqj8VjylSSyMrOo4FmpwPpysrOJPhdVqHsSuZsMBgMpaWm88cILvNqvH+bmt04jJKWkEHPxItUKmP3l4+XF6YgIAGLj4ohLSKBurVpA7neEtPR0ANoGBhpHY9rb2vLVqFF0uu772jVXkpKwKESbROTeo+nhcl/q0qULc+bM4YsvviAkJITWrVvTrFkzGjRogLW1NdZXf51r06YNsbGxLF26lKFDhxIQEADAiRMn6NevH05OTrzyyisYDAZmz55NRkZGqbQ3Ojqa48eP07BhQ+OxnTt3MnjwYBo2bMjrr7+OmZkZu3btYunSpVy+fJkJEybQpEkThg4dyrRp0+jVq9dN18PMyMjghRde4ODBg3Tv3h1/f38OHTrEjBkz+P3335k/fz5WVlZFbvfHH39M9+7d6dmzJ5UqVSItLY2+ffty5coV+vbtS/ny5Tlz5gyLFy9m0KBBbNmyhXLlcr+M//e//2Xx4sW0atWKZ599ltOnTzN79mzOnDnD5MmTARg5ciTff/893bp1Y8CAAZw6dYrFixezf/9+Fi9enGczJbm7bO1seePzkVjcZL29glz7cuhU1iXfuTIuTqSlpJKakoqdvR1u1414ueZCRBThJ09Tw79WnuM7N2zlUnQsfV4bSHZ26f3QIFLSMi6nAGDtZJ/vnLWTHVmpBjJTM7C0s85zztwq9+NcVrohXzlDSu4Xv4wrqYWOs3HO/eHvXOifpF5K5KHngsjRsyT3kKL0L9eztsn9LJSelp6vXEpSbkL/yuUrOLvmTfxfiIji2B9HeLRdK5xc/plpYHX1c0pB9aUm5z7vSZcTC3tbIneNvZ0dEz/8sEif8+ISEgBwdc4/+6askxMpqakkp6Rw/uoyXU5lyrBg1Sq27t5Naloa5d3def6pp2h09fuZubk5FT088tV1NjKS46dPU6927WLcmYiYOiUt5b5Uo0YNJk+ezPvvv8+JEyc4ceIEU6dOxd7enqCgIF577TV8fHyoVasW9evXZ+nSpTRv3ty4Ec+kSZMAWLJkCRUrVgSgXbt2dOvW7bbalZqaSlxcnPHvBoOBU6dOMW7cOLKzs3ntunVY5s6dS8WKFZkzZ44xydqnTx969epFaGgokLt2ZfPmzZk2bRr169cvcL1MgJUrV3LgwAGCg4MZMGCAsa7q1aszduxYli1bRt+++ReUv5VGjRrxwQcfGP++fv16zp49y8yZM/PshO7l5cVHH33E77//Ttu2bTl58iRLlizhmWee4f/+7/+McQ4ODkybNo2TJ09y6dIlQkJC+O9//0vv3r2NMS1btuTFF19kyZIlPP/880Vus5QOMzOzIn2QBUhPSwPAyjp/wtzy6jFDRka+L5UAGWnprJy5EIDAjk8Yj8dEnmf7mk106tsDZ9eyxF+My1dWxFRlZeQmEy2s8n88M7+6WUGWITNf0tK+vAsWtlZcPHIWz5YBmJmZGWPjT0QCkG3IpIy3e6HiAJKj4wnf+ge+XZpi4+xAWrxGuMu9o7j9i0elCtjY2fLX74do0bG18RkxZBg4eeQYAJmG/En/fdt3YmZuTtMnAvMct7O3o1wFD47/+RcZ6Rl5ljj5+8Dhq/VlFvc2Re6Y4nzOuzZa0traOt8566uDJdINBlKuzrJa+sMPWFpYMODppzE3M2Pt1q2MnTGD9195xTgKs6BrTFmwAICurVsXqX0icm/QGGq5bz3++ONs376dr776iq5du+Lu7k5KSgrr1q2ja9eu7NtX8LpE2dnZhIaG0rJlS2PCEsDX15fHHnvstto0a9YsmjVrZvzTokULXnjhBeO5hx9+2Bg7ffp0Vq5cmaejj4+Px9HRkZSUlCJdd9u2bTg6OuZLTPbv3x9HR0e2bdtWrPtp0iTvIvQdO3Zkz549eV6n60enXmv3jh07yMnJoV+/fnnKv/jii6xZswZvb29+/PFHzMzMaNmyJXFxccY/Dz30EO7u7uzYsaNYbRbTcW01hGtfCgsrIz2DhRNnciEiihYdn8DHL3f3yuzsbEJmLca7erWbbrAgYtKMD0XRiplbWFD50TokRV7i2NKfSb4QR1LUJf5evIPsjNyEiJmFeaHjcrKzOb5yJ05VPW668Y+IKStu/2JhaUnzto8TdSaC5dMXcCEiivPh51gydQ4Z6bmfZ26cFmvIMHBwz2/Uqu9PWTfXfHW26NiaxLgEvps0k3Onw4mJusCqOYu5FHsxt74iJoJE7hXXlr261XNoyMztf1JSU/n4zTd5vGlTWjz8MKOHD8fB3p4la9cWWC49I4Mx337L2chIurZpk2c9TBG5f2ikpdzXbGxs6NixIx075q4vdOTIEWbPns26dev46KOP2FDA7ncJCQmkpKTg7e2d71y1atWKneAD6Nq1K926dSMnJ4czZ87w7bffYmtry6effkqtG35BtLCwICIiggkTJnDy5EnCw8OJjo4u1nXPnTuHl5dXving1tbWeHl5ERkZWax6XV3zfzg3MzPj22+/5cCBA4SHhxMeHo7h6qiE7OxsAOP1qlatmqesk5MTTk65m0OEh4eTk5PD448/XuC1r61bKvcuG9vcaXOGApZdyLw64szW1jbP8dSUVBZ+/S3hJ0/TMLAprbt3Mp7buWEbF85FMih4OMlXckeFpV1NlGdkGEi+koS9o0ORv8SK3CkWV6emZhuy8p3LvvqlztK24KU8vIPqkZmWQdTuv4wb9rjW9sSzhT9nNu3H0s6m0HHnQg+TfD6eekM6YkjOHbGWmZo7YiYrIxNDchqW9jZ6lsRkFad/uaZVl3akpaSyZ8vP/Lkvd6MQv3p1CGwfxOaV67B3zPv5I+zvExjSM/BvUr/A+ho+9jBJlxPZ9v1Gpv/feAC8q/vQrmdnvp+7tMDZBCL3A9uryyMUtLxWxtXvBva2tsZNdZrWq4ej/T/LozjY29PI35+f9+0jLT3dWB9AckoKn0+fzvGwMFo98gi9n3yyNG9FRO4iJS3lvpOSksL06dOpU6cObdu2zXOuTp06fPnllyQmJvLzzz8TH1/wYuoAaVenFl3vWtKtuK5N54bcnc1btmxJjx49eP7551m6dGmeJN6sWbMYM2YMPj4+NG7cmLZt21KvXj0WLFjA2pv84ngz/7aBUHZ2drHWswTyTRMJCwvj2WefxWAw8Nhjj9GxY0dq165NTk4Or776qjEuKyv/F/KC2uXg4GBc3/JGWs/y3udcLndNsCuXr+Q7dyUhEVt7O6xtr/uAmniFueOncSE8ksYtm9Olf888SZMTh4+SlZll/FJ4vV0bt7Fr4zbeGvNhgSNhREyBjbMjkLuu5I0yElOxsLPCooDprpD7g5Fvp4fxahlA6sVEbJwdsC3ryJkf94O5GTYuDoWOiz8eSU5WNge/WZfvOpGhR4gMPUKTd57GtqxjCd69SMkpav9yPTMzMzo++xQtOrbmUnQsTq4ulHVzZXPID5iZm+dbz/L4ob+wsLSkZt2br6fXolNrmrR6lJhz53FwcsStgge//rQbgLIebsW9TRGT5lY291lJSMy/bmt8YiL2dnbY2tgYdyJ3cszfpziXKUNOTg6p1yUtL1+5wqfffMOZc+do/eijDOrVSz+iidzHlLSU+46NjQ2zZs2iQYMG+ZKW11SvXp3Q0NACf2UvW7Ysjo6OnD17Nt+5c+cK3m2yuDw9Pfnf//7Hq6++yltvvcWyZcuwtLQkPT2dSZMm0bRpU2bPno2l5T+P6oQJE4p8ncqVK3Pw4EEMBkOeBGVGRgbnzp2jceOS2WF5xowZJCYmsmHDhjwJ2BuTrJUq5e6iGRERga/vPzvSRkdH89lnn/Hcc89RuXJldu7cib+/v3H05TUbN24scCSs3Fvs7O1wcXPl/Nn8z1VU+DkqV/1nt8n0tDRjwrJZm5Z0fPapfGXa9+pm3NjgmuTEK6yYsZB6zRpTv3kTHJ3KlPyNiJQQSztrbFwdC9wlPOn8JcpUvnlyI+aPMKzL2OFSrSLWjv+M3Lp85gKOlcsZ18ksTJxPxyZkpuYdGWNISuXYslA8GlTDo0F1rBwLHqUmYgqK0r/c6NDe/ZRxLoNPrRo4Ov/TZ5w5dopKVTzzrZMZfvI0lat6YWtX8IjJY38cAXJHa1apWc14/OzxMBycylBOSUu5TznY2+NerhynC/j+dDoiAt+rn+W9KlbE0tKSiAsX8sXFXLqElZUVzlcTmqlpacaEZcdWrXi+e/fSvQkRueu0pqXcdywsLOjYsSP79u3j+++/z3c+ISGBTZs20bx5c+zs7IxrE10bRWlmZkabNm0IDQ3lxIkTxnLnzp0rlXUUW7duzZNPPmmcug65ozxTU1OpWrVqnoTl0aNHjWtxZl6dKnhttOO/jQINCgoiKSmJRYsW5Tn+3XffkZycfNMp2EWVkJCAnZ2dMSkJuYnRJUuWAP+MsGzZsiUAixcvzlM+JCSEDRs24OjoSFBQEABTp07NE7Nt2zaGDx9e5NGmYprqNKrHqb+OEXv+n6UPTh45xqULMQQ0bWg8tnbBiqsJyxYFJiwBKlf1onodvzx/vGvkfkF0dS9H9Tp+BW7KIGJK3OpUIeFUFCmxCcZj8SejSI1NxL2uz03LRe46wqm1e8nO+qcvuPR3BIlnYqjUtFaR4spUdqNs9Up5/jhVKQ+ArWsZylavVOBmQSKmpLD9y412b9rB2oUr88wKOfbHEcJPhNE0KO/a5lmZmcRGXaBiFc+b1ndg96+EzPrOuDkQQNTZCA7/epCmQY9phJjc15rWq8efx44Red0SV4f+/pvzMTE0b9QIyJ1G3jgggAOHDxNx/rwxLubSJX77808aBwQYv6/NWraMM+fO0eHxx5WwFHlA6BOn3JdGjBjBoUOHePfdd1mzZg2BgYE4OjoSHh5OSEgIBoOBDz/8EPhnXcbFixdz8eJFOnfuzPDhw9mxYwfPPfccAwYMwMLCggULFuDg4FDguiy3Kzg4mNDQUKZMmUL79u3x9vamXr16hISE4OjoiI+PDydOnGD58uXGTjs5ORlnZ2fKXp16sWbNGnJycnjqqfwJnZ49e7Jq1So+//xzjh8/jr+/P4cPHyYkJIT69evTs2fPErmPFi1asG3bNoYMGUL79u25cuUKq1evJjw83NhmgNq1a9OzZ08WLFhATEwMzZo1M+4o3q1bN2rVqoWfnx9PPPEEs2fPJjIykmbNmhEZGcmiRYuoVKkSL774Yom0We6cuJiLhJ88jXd1H1yvjiwJ7BDEwd2/MmfsFB5t14pMg4GdG7dTqaoX9R7J/TAbE3WBP/b8hq29HRW8PDm4+9d8dddv3iTfMZF7kWegPzEHTvHnrE1Ufsyf7MxMzoUexrFyOTzq545MT427QuLZGJyqeGDnmjsSzKtFAEe/28FfC7ZQ7qEqpCUkEbnzCGVrVsKj/j+juwobJ3KvK0z/UmC/1PEJlnwzh4UTZvBQw7okXIpj16YdVPevRb1meWemJFyKJyszK9+U8es92vZxju4/xJyx39Dg0YdJTU5h1487cK9UnuZtW5beCyByh0VfvMixsDD8qlWjvFvu89SldWt+3reP/5s0iSeDgsgwGFi7dSvVvL0JvG6m13Ndu/LXiRN8PHEiHR5/HEsLCzb89BPWVlY827kzAOcuXCD011+xt7OjqqcnPxewqWqL6zY1FZH7g5KWcl9ydXUlJCSEuXPnsnXrVqZMmUJqaioeHh60bduWoUOH4uHhAUCzZs3o0KED27dv55dffqFt27ZUrFiRxYsXM2bMGGbOnIm1tbUxsTd9+vQSb6+bmxvvvPMOo0aN4sMPP2Tu3LlMmDCBzz77jJUrV5KRkUHlypV56aWX8PX1ZdiwYfzyyy+0a9cOX19f+vXrR0hICH/++SdNmzbNV7+1tTVz585lypQpbNiwgTVr1lChQgWGDBnCyy+/XOw1LW/Uu3dvEhMTWb58OZ988glubm7Ur1+fyZMn07t3b3755RcGDBgAwMcff0zVqlVZvnw527Zto1KlSrz66qsMGjQIyB3xOmHCBGbOnMnq1avZtm0brq6utG3bluHDh+PmpulU95ozx8NYNfs7nhrYx/jl0MGpDIOCX2f94lVsXb0Ba2trajcIoF3PzlhefV+eOXYKgLSUVFbN/q7AupW0lPuFtaMddQd3IOyHfZzdcgALa0vK1fbGp31jzC1zR9Ynnonm+Iqd1Hz6MWPS0s2/Kn69WnDu5z8JW78PK0c7PAP98WpZF7PrdjsubJzIva5Q/UsB/VKdxvXoOaQ/oeu3sGHJahycHHmsfRAtOrXOt3P4tSVJbO1uvlyCl29V+r0xhK2r1rNp+RrsHOyp90gjgrq2x+YmmwGJ3IuOnjrF1IULefm554xJS+cyZfjvG28wLySEZevXY2NlRZO6denbtWue7x/u5crxyX/+w6Lvv2ft1q3k5ORQ29eXvt26Ges6evIkkLvL+NSFCwtsg5KWIvcfs5x/26FDROQ+tCV8/91ugsh9YeapLXe7CSL3jUG+re92E0TuCw8naFyOSElwqlv3bjehxMVPKvr+EHdK2WHD73YTTJJ+UhcRERERERERERGTop+hRIopNja2UHH29vY4ODiUcmtuX0JCAgaD4ZZxVlZWuLi4lH6DREREREREROSBpaSlSDE99thjtw4CXnvtNYYNG1bKrbl9w4YNM+5M/m8efvhhFixYcAdaJCIiIiIiIiIPKiUtRYppzpw5hYrz8vIq5ZaUjPfee4/ExMRbxjk5Od2B1oiIiIiIiIjIg0xJS5Fiat68+d1uQony9/e/200QEREREREREQG0EY+IiIiIiIiIiIiYGCUtRURERERERERExKQoaSkiIiIiIiIiIiImRUlLERERERERERERMSlKWoqIiIiIiIiIiIhJUdJSRERERERERERETIqSliIiIiIiIiIiImJSlLQUERERERERERERk6KkpYiIiIiIiIiIiJgUJS1FRERERERERETEpFje7QaIiNxpM09tudtNELkvDPJtfbebICIiIiIi9ymNtBQRERERERERERGToqSliIiIiIiIiIiImBQlLUVERERERERERMSkKGkpIiIiIiIiIiIiJkVJSxERERERERERETEpSlqKiIiIiIiIiIiISVHSUkREREREREREREyKkpYiIiIiIiIiIiJiUpS0FBEREREREREREZOipKWIiIiIiIiIiIiYFCUtRURERERERERExKQoaSkiIiIiIiIiIiImRUlLERERERERERERMSmWd7sBcu/KyMhg7ty5rFu3jvDwcMzNzalatSrt27fn+eefx8bGxhiblJRERkYGrq6u/1rniBEjWLVqFceOHStSW/bu3Uv//v3zHTc3N8fJyQk/Pz8GDx5MYGBgkeq9JiMjg/j4eMqXLw9ASEgIwcHBzJ8/n6ZNmxarTlO1dOlSZs+eTUxMDP7+/nzwwQfUrFnzbjdL7jEnVu0m9eJl6g7ucMvYtLgrhG34lcthFwBwreWJT4cmWDvaFSkuLT6JX8eu+NdrBQxqh0u1isW5JZE7Jj72EhuWfs/pYycB8Kv7EB16dcXBqcy/ljt7PIzNIeuIPB2BnYMdtRsEENStAw5lHPPERZ6JYPOKtYSfPIOZuRlV/Xzp0KsbbhU88sSFHT3B1lXrOR8Ria2dLf5N6tP6qU5Y29ogci8wlWfpehciopj2f1/SomNrgrrduo8UuVd8u3gxUTExjB4+/JaxMZcuMX/VKv46cQKAhnXq0O+pp3Auk/fZvHzlCkvWruW3P/8kIzMTH09P+nbtSo2qVUvjFkTEBClpKcWSmZnJiy++yMGDB+nWrRu9evUiKyuL3377jfHjx7Nt2zbmz5+PtbU1hw8f5uWXX2bcuHGlnuBr06YNbdq0Mf49KyuLsLAwvvvuO4YMGcKCBQto1KhRkeqMjIxk4MCBDBkyhO7duwPQpEkTxowZg6+vb4m2/24LCQnhww8/pEePHjz00EPMnDmTF198kQ0bNuDo6HjrCkSAC78d58Kvx3H2KX/LWENKOodmbSQnKxvPFv7k5ORwLvQwyRfiqf/Kk5hbWBQ6zsrBhpo98/8wkZ2Zyam1e7FysMWh4r//cCJyt6UkJTN7zBSysjIJbB9ETk42OzduJ/pcFEM/eAsLy4I/up3++wTzxk/D1s6Olk+2wczcjD0//kTY3yd46f03sHOwB+DihRhmfTEJa2trHu/cFoDdP+5gxqcTePXjd3FycQZyE5Zzxn1D5SpetHu6M5fjE9iz+WciT0cwKPh1zMzM7swLIlJMpvIsXS8rK4uVsxaRlZlVejcuchds27OHrbt3U7t69VvGXklO5r8TJ5KVlUWX1q3Jzs5m7dathEdF8enbb2N59dlMTUtj9IQJxF++TKdWrXCwt2fjzz/z34kT+fTtt/GuVKm0b0tETICSllIsGzZsYN++fUyaNIm2bdsaj/fv35+ZM2cyduxYVqxYQZ8+fTh+/DgxMTF3pF1+fn507do13/E2bdrQq1cvpk2bxowZM4pU57lz5zhz5kyeY15eXnh5ed1OU03SsmXLqF69Op9++ikArq6uvPnmm/z22288/vjjd7dxYvJysrOJ2HGIs1sPFrpM5M4jpF9OodHrXbH3cAGgjKc7h2f/SPT+k1Rs4lfoOAtrK8o3yP9Dwql1e8nJyqbWMy2wstMIMTFtu37cweX4BF77+F08KlUAoLJPFeZ9OZX9u/bRpGXzAsutWxSCmZk5g98fTrny7gA81LAuUz4aw0/rNtO+V27fuPvHHRjSMxgc/DoVvT0BqPZQTab/33h2b9phjNu47HtcXMvy4ohhWFlbAeDsWpZ1C1dw4vDf1AyoXaqvg8jtMpVn6Xo//7CF2KgLpXG7IndFdnY2IZs2sWLDhkKX+WHbNuISEhgbHIxnhdxns3qVKvxvyhR27N1L60cfBeD7zZs5HxPDh8OG8VCNGgA0a9iQYaNHs2bLFl4rYJadiNx/tKalFMuBAwcAePRqp3K9Pn36YGVlxcGDB+9wq26uXr16+Pj48Mcff9ztppi0tLQ04uLiSE1NNf4dwMrK6m42S+4BWYZM9k9ey9ktB/Go74u1s32hysUeCsPFp4IxEQlQtnol7NydiD10ushxN0q+EEfUnqOUb1QDZ58KRb4vkTvtz7378fGrbkyyAFSv40e5Ch78ufdAgWXiL8YRE3me+s2bGJMsAO4Vy+NXrw4Hdu0zHouLvYS9o4MxyQLg6eONnYM90ZHnATBkGHAo40jjlo8YE5YAPn65PwpcCI8smZsVKUWm8Cxd70JEFD+t+5HHO7cridsTuesyDAbe++ILlq9fT2CTJri6uBSq3K79+3moRg1jwhKgbq1aVPTwYPf+/QDk5OTw0759NHjoIWPCEqCskxP9n3qKWvfZbDcRuTklLaVYHBwcgNz1D29kb2/P/v37GTNmDJMmTSI4OBjIHYUZFBRkjDt8+DADBw6kQYMGBAYGMn36dHJyckqtzXZ2dvnq37NnD4MGDaJp06bUqVOHwMBAPvzwQxITE4Hc6dLX1soMDg7Gz8/PeNzPz4+9e/ca60pNTeXLL78kKCgIf39/goKCGDdunDEBWFT79u2jb9++NG7cmAYNGtC7d2+2bduWLy4kJIRu3boREBDAI488wogRI/KMbB03bhx+fn4sWrTIeCwjI4POnTvTtGlToqOjjcc7dOhAXFwcn332GYcOHeLLL7+kWrVq+ab1nzt3Dj8/P+bOncuzzz6Lv78/AwYMAHLXL/3yyy9p3749AQEBNGjQgGeeeYatW7fma/v3339Pjx49qF+/Pi1atODDDz8kLi6uSPcnpiEnM5us9AxqPdsSv56BmJnfeuqoITWdtLgkHCuXy3fOsWI5kqIuFSmuIGc278fcypIqrRsU4W5E7o7U5BTiYy9RqapnvnOVvD05H36uwHKJ8ZcBKO+ZPzHv6uFGSlIyl+PiAShX3p2U5BSSE68YY1KSkklLTaOMsxMAVtZWPP/WUFo+2TZPXeevJitd3LTMgpg2U3mWrsnKymLVnMX41vGjXrPGxb4vEVNiMBhISUvjjRde4NV+/TA3v3VqISklhZiLF6lWwIw1Hy8vTkdEABAbF0dcQgJ1a9UCcpOYaenpALQNDDSOxhSR+5+mh0uxdOnShTlz5vDFF18QEhJC69atadasGQ0aNMDa2hpra2sgd1p2bGwsS5cuZejQoQQEBABw4sQJ+vXrh5OTE6+88goGg4HZs2eTkZFRKu2Njo7m+PHjNGzY0Hhs586dDB48mIYNG/L667nrc+3atYulS5dy+fJlJkyYQJMmTRg6dCjTpk2jV69eN10PMyMjgxdeeIGDBw/SvXt3/P39OXToEDNmzOD3339n/vz5RRqtGBYWxpAhQ6hduzZvvvkmkDt1+5VXXmHhwoU0bpz7gXfy5MlMmjSJdu3a8cwzzxAdHc3ChQvZt28fK1aswNXVlWHDhrFlyxa+/vpr2rVrh5ubG1OmTOH48eN89dVXxs2FAF544QU2bdrE0qVLWb58OTVq1GDq1KnGtWVuNGHCBIKCgujcuTM2Njbk5OQwZMgQ/vrrL5577jm8vb25cOECS5Ys4bXXXmP16tXGxO+MGTMYN24cjRo14q233uLSpUvMmzePo0ePsnjxYiwtLQt1f2IaLGytaPxWD8wtCv9bWMblFACsnfKPyrR2siMr1UBmakah4yztrPOcS74QR9zRc1QOrINNAWVFTM21hIlTWZd858q4OJGWkkpqSip29nk3qbK2ye1f0tPS85VLSUoG4MrlKzi7liWwwxMcO3iEZdMX0KF3NyB3KriFhQXN2rQosF3xF+M4/fdJNi5djUflitRuEFDcWxS5I0ztWdq5YSuXomPp89pAsrNL7wd6kTvJ3s6OiR9+iMXV9ccLIy4hAQBX5/xrvpZ1ciIlNZXklBTOXx2g4FSmDAtWrWLr7t2kpqVR3t2d5596ikYB6odEHhRKWkqx1KhRg8mTJ/P+++9z4sQJTpw4wdSpU7G3tycoKIjXXnsNHx8fatWqRf369Vm6dCnNmzc3jtibNGkSAEuWLKFixdydfNu1a0e3bt1uq12pqal5RuoZDAZOnTrFuHHjyM7O5rXXXjOemzt3LhUrVmTOnDnGJGufPn3o1asXoaGhQO7alc2bN2fatGnUr1+/wPUyAVauXMmBAwcIDg42jjjs06cP1atXZ+zYsSxbtoy+ffsW+j62bt1KSkoKkydPNibmOnbsSO/evTl69CiNGzcmIiKCKVOm8NJLL/Gf//zHWLZTp050796dadOm8f7772NjY8Onn35K3759GTNmDM8//zwzZ86kU6dOdOzYMc91d+3aRcLVDxM5OTmMGTOGypUr37SdFStWZNy4ccYNGf744w9+++03/vvf/9K7d29jXP369Rk0aBC7d+/Gz8+Py5cvM2nSJOMI22sfdjw9PRk1ahS7du2iWrVqhbo/MQ1mZmaYWRRtY46sDAMAFlb5uyLzq4nyLENmoeNuTFpG7T0G5mZUekRr78m9If3akhzW+X/ksrx6zJCRkS/R4lGpAjZ2tvz1+yFadGxt/DfZkGHg5JFjAGQacp8jl3JlaflkG9YtWsGUj8YAYGZuTu9XXsgzzfWalKRkxr/78dV2WfNk3+4Ftk/ElJjSsxQTeZ7tazbRqW8PnF3LEn8x74wSkXuVmZlZkRKWgHG05LXvXtezvjrAI91gIOXqTLWlP/yApYUFA55+GnMzM9Zu3crYGTN4///bu/e4qsp8j+Mf7shFBJWDEYqiooGRgqCOF8JrXkJPOVaoOeVklkg2o43OOJ7Jmnrp6aJmSYWSmHfxSOYl8xJ0ga2DhpqaKQp4QVEJFQSEff5AduxAAzPd5Pf9evEHaz1r7edZLxZ779/6Pb/nuedMWZgi8vum6eFy08LDw9m+fTtvvfUWkZGRNG3alMLCQtavX09kZCQGg6HG48rLy0lJSaFXr16mgCWAn58f3bt3/1V9iouLo2vXrqafnj178qc//cm0LzQ01NQ2NjaWNWvWmL1pXrhwARcXFwoLC+v0utu2bcPFxaVaYHL06NG4uLjUOK37Rryu1XiZOXMm+/btA8Dd3Z3NmzczatQoALZs2UJ5eTkRERGcP3/e9NOkSRPat2/Pjh07TOfr1KkTo0aNIikpiYkTJ+Lh4cGMGTPMXnPp0qWMHz8ed3d3pk2bhtFoZPLkyVy5coXc3FyWL1/OqVPmNZpCQkLMVpANCgpi586dplXWoWJKVHl5OQCXL1dkKXz99dcUFxcTFRVl9mHn4YcfJjExkdDQ0DqNT+qpynINvxTrrG27KspKr3Jm9xEat/fB0d3lproncruZ/tTruDK3ja0t3fqFc/JYNqtiEzidfZJTWTksf28RJcUVMxgqp+19nriBpMUrad66JY8+M4pHxkZxb8vmrFwQz8E9+6qd28rKij8++ySPjI3C8x4vFv3ve+zfpfrQYtks5V4qLy8nMW4ZzVu3uu7CPyJ3k8pSXb90b5ZevQpAYVERL0+aRHhYGD1DQ/mfmBicnZxY/sknv3lfRcQyKNNSfhUHBwcGDhxoytjbv38/CxcuZP369cyYMYONNawkl5+fT2FhIc2bN6+2r1WrVnUO8FUVGRnJ0KFDMRqNHDt2jPfffx9HR0f+/e9/0+5nT+NsbGzIzs5mzpw5/PDDD2RlZZnVd6yLnJwcfHx8qk0Bt7e3x8fHhxMn6rZowYABA9iyZQsbNmxgw4YNNG3alF69ejFs2DDT1PCsrCwAs4zGqn7el0mTJrF582ZycnJ46623cKsyLSM7O9t0jRISEnByciI7O5uEhAReeeUV2rVrx8yZM5k/f75ZoLmm6dm2trYsX74cg8HA8ePHycrKMi3oU/lBpfJ6tGjRwuxYBwcHAgICbmp8Uv/YXJuGV15aVm1f+bUPq7aOdlytZbuqfjx6mvKSqzQJ9L2VXRb5TTk4VqxuX1pDqZSr1zKOHR0dazz2wYf7c6WwiG8+T2avoWIhA/+gAHoMiGDLmvU4uThTVFjEl5u24e3bnD9Nft4UfOkQ2pEFM9/k/+JX8NfZ/thW+f/awNmJDqEVNWEDQh5g3vTX2bB8LQEhQbdu4CK3mKXcS19/9gWnc04wdmoMly9eAuDKtQfjJSWlXL54CScX5zoHV0XqK0eHinuzppJgJdeymJ0cHXG4llQSFhSEi9NPJX6cnZwIDgwk2WDgSnGx6Xwi8vuloKXUWWFhIbGxsQQEBNCvn3mR/oCAAN544w0KCgpITk7mwoUL1z1PZSCrqsqMvJtVOZ0bKlY279WrF4888ghPPvkkK1aswNfX19Q2Li6OWbNm0bJlS0JCQujXrx9BQUEkJCTwSR2f3t1oAaHy8vI6B9js7OyYO3cuhw4dYsuWLSQnJ5OYmMjq1av5y1/+wjPPPGO6Vu+99951P3hXdfz4cc6dq1iw5LPPPjObGp6cnExpaSljx47F6doHgylTppCRkcGqVato1KgRrq6u1VaL//mUkPPnzzN8+HDOnDnDH/7wByIiImjXrh3e3t4MHz7c7JrAjZ+y1nV8Uv84uFVkQJZcrL5YVUlBETYN7LCxt6t1u6rOH8rBytYaD//q011FLJVbY3egombez13ML8DRqQH2jjV/QbOysmLg48PoObAP53LP0tCjEe5NPNiS+ClW1ta4ebiTe+IUZVev0iGso9mCCTa2ttzfJYTPViVx9tQZmjWvuSyInb0d/kEBpH6ezOWLl3B2VRazWCZLuZcO7ztA2dUyYme+We11vtq0ja82bePFWf/EXYtbyV2iiXvFvZl/bdHTqi4UFODUoAGODg6mlcgbulR/n3FzdcVoNFKkoKXIXUFBS6kzBwcH4uLi6NixY7WgZaXWrVuTkpJSY7DJ3d0dFxcXjh8/Xm1fTk7NqznerHvvvZdXX32V559/nhdffJGVK1dia2tLcXEx8+bNIywsjIULF5otNDNnzpw6v463tzd79uyhtLTULEBZUlJCTk6OKTuytk6ePMnJkycJCQnB39+fCRMmcPr0aZ588kni4uJ45plnTLUmmzVrRvv25jX7vvjiC1yqvMlfvXqVadOm0ahRI4YOHcoHH3zAoEGD6Nu3r9lxVT9429vb8/bbbzNs2DDy8/N5+umnadDAvPbTzy1dupScnBzi4+Pp2rWraXt6erpZu8pszaysLFq2bGnaXlJSwuTJkxkyZEidxif1k20Dexw8XGpc/fvSqXO4ejepU7uqCrLO4OrdBFvH6jWTRCxVA6cGNGriwanj1d8LT2bl4O1bfbXVShlp6bi6udKyXRtc3FxN248dOsI9Le7Fzt7O9F5X00IgRtNDQyNnT+Wy+M1Yuj8UQViEedmW4itXwMoK2xpqzIpYCku5lwaMGErRZfOSQ5cLLrL6gyUEdQ3hgW6dcWnoWu0cIr9Xzk5ONG3cmMwavvNlZmfjd20mnk+zZtja2pJ9+nS1dmfOncPOzg43fRcQuSuopqXUmY2NDQMHDsRgMLBu3bpq+/Pz89m8eTPdunWjQYMGpkBY1ey6vn37kpKSwuHDh03H5eTk/CZ1Cvv06cPgwYNNU9ehIsuzqKgIX19fs4DlgQMHTLU4r16bdlqZTXijLNCIiAguXbrExx9/bLZ96dKlXL58mfDw8Dr1ecGCBYwZM8ZsurqXlxeenp6m6/nggw8CFbU5q2Z6HjhwgPHjx/PRRx+ZtsXFxbF//36mTp1KTEwMfn5+/Otf/zItutO5c2esra1ZsWKF2Tjz8vIovlYwe+PGjaZMzeupPF/r1q1N24xGI0uWLAF+uqbdunXDzs6OlStXmvV906ZNbNq0qc7jk/qrSUAL8o+cpPBsvmnbhR9OUnS2gKb3t6xzO4DysjIKc/NxvkeZK1L/BAQHceS7Q5w99dP//x/2H+Lc6TN0COt03eO+3ryDT5asoazspzIKh77dT9bho6bAo6e3F66NGrL7yzRKr02RhYpFRvZ8vRMnF2c87/HCw7MJV4qK2Lnja8qu/d+GilXE9+/6Fl9/PxyUAS8WzhLuJW9fH1oH+Jv9NG/TCgCPpo1pHeCvha3krhMWFMTeQ4c4UeV7TsbBg5w6c4ZuwcFAxTTykA4d2L1vH9lVauqfOXeOXXv3EtKhg1myhYj8fukxudyUv/3tb2RkZDBlyhSSkpLo0aMHLi4uZGVlkZiYSGlpKf/85z+Bn+oeLlu2jLy8PIYMGUJMTAw7duxg5MiRjBkzBhsbGxISEnB2dq6xxsmvNXXqVFJSUpg/fz4DBgygefPmBAUFkZiYiIuLCy1btuTw4cOsWrXK9AZ4+fJl3NzccL82jSEpKQmj0ciwYcOqnX/48OGsXbuW119/ne+//57AwED27dtHYmIiDzzwgNnU6NqIiopi3bp1REVFMWLECNzc3EhNTcVgMDBx4kQA2rZty6hRo0hISCA/P58+ffqQn5/PkiVLcHZ2JiYmBoAjR47wzjvv0L17dwYNGgTAjBkzGD16NK+++iqzZ8+mbdu2REVFkZCQwJ///Gd69+7N0aNHWblyJZ6envzxj3/kjTfeYOTIkcTHx1+33z179iQhIYFx48bx6KOPUlpaysaNG9m3bx/W1tamhXgaN27M888/z9tvv81TTz1Fnz59OH36NEuWLCEsLIyIiAisra1rNT6pP4rOX6Tg+BkatvCkgUdFZsm9PQI5s/sIe+M24909kPKrV8lJ2YeLd2M8H/AzHVvbdgDF+ZcxlpXj6KYn8FL/9Hgogj1f72TR7Pn8of+DXC0t5ctN27nH14egLhVf5s6fySPrh0yat26Jh2dFpnGPgb1Z/u4ilsz5gPs63U/+ufN8tXkHrQPbEdS1Itvf2tqawVGPsuzdRcS+8hadeoRhLC/nPylpnD19hkfHRmFz7UHeoCf+mzUffsyHr8/jga4hFF4uJG1rSsU5nnjkzlwckTqwlHtJ5G6Wm5fHoaNH8W/Viv9qUnGPPdynD8kGAzPnzWNwRAQlpaV8snUrrZo3p0eV2WkjIyP57vBhXp47l4fCw7G1sWHjF19gb2fH40OG3KkhichtZmW8UTE+kRsoLCwkPj6erVu3kpWVRVFREZ6enoSHh/Pss8/i6ekJQGlpKZMnT2b79u04ODiQkpKCg4MDmZmZzJo1C4PBgL29vSmwFxsby6FDh+rUl7S0NEaPHs2ECROIjo6usc2qVav4xz/+QdeuXYmPj+fUqVO89tprpKWlUVJSgre3N4MGDcLPz4/o6Gjmzp1L//79AXjllVdITEzEaDSybt06du3axdSpU1m8eDFhYWEAXLp0ifnz57Nx40by8vLw8vJi0KBBjB8//qZqMqanpzN//ny+++47Ll26hK+vLyNGjCAqKspUC9JoNLJs2TKWL19OZmYmrq6udOrUiZiYGNq0aUN5eTlPPPEE3333HevXrzdb/GjKlCmsW7eO2NhYwsPDKS8vJz4+nhUrVnDixAkaN25Mv379mDBhAm5ubqxYsYKkpCTi4uLIy8ujd+/eNV7vVatWsXDhQk6cOIGbmxsBAQFER0czffp0SktLzeqFrl69msWLF5OZmUnTpk3p27cv0dHRpqnfvzS+m/XY9lk3fazUjmH2KhwbuXD/nx8ybctN/4HvV39J20e781+dfsrGLTz7I0c/NfDjsVxs7G1xb+tNywEh2LuYlyOobbuL2WfZ896ntB7alWah/r/tQO9yY/363Oku/C7lnT7DhmVrOfb9Eezt7Wl7/330Hz4E52vTSNO/NLB24VKGPfUEnbqHmo7LSEsnZcPnnMvNw7mhC0FdQug5qA/2DuZlEo4eOMz2pE2cyMwGoFmLe+k1uC9tO5iX4ti3czfJG7Zy5sQp7Bwc8Gvfhj7/PYgmXp6/8RUQuTUs5V6q6kLeed6c8jIPPtyfiKEPXbed3LzQfAWM74TnZ8ygqYcH/1MlsWBHWhrvLVnC+JEjCb/2nQngZG4uHyUmcuDIERzs7OgYEEBUZCRurublEnLz8vh43Tr2HjqE0WikvZ8fUUOHcq+X120b192s4f333+ku3HIX5tW9FNzt4h6tpJyaKGgpIrVmNBp/FytcKmgpcmsoaCkiIpZGQUuRW0NBy9tLQcuaqRCEiNTa7yFgKSIiIiIiIiKWT4+hxGKdPXu2Vu2cnJxwdnb+jXvz6+Xn51NaWvqL7ezs7GjUqNFv3yEREREREREREQuloKVYrO7du9eq3Y3qWFqS6Oho08rkNxIaGkpCQsJt6JGIiIiIiIiIiGVS0FIs1qJFi2rVzsfH5zfuya3x0ksvUVBQ8IvtGjZseBt6IyIiIiIiIiJiuRS0FIvVrVu3O92FWyowMPBOd0FEREREREREpF7QQjwiIiIiIiIiIiJiURS0FBEREREREREREYuioKWIiIiIiIiIiIhYFAUtRURERERERERE6pkXXngBf39/Lly4UG3fSy+9hL+/P+PHj6+27/Lly9x33328+OKLt6ObAGRnZ9f5GAUtRURERERERERE6pnOnTsDkJGRUW1fWloadnZ27Ny5k7KyMrN9GRkZlJWVERYWdlv6+e677/LUU0/V+TgFLUVEREREREREROqZ6wUtjx07xqlTpxg8eDAXL15k//79ZvvT09MBCA0NvS39/Oabb6oFTmtDQUsREREREREREZF6pk2bNjRq1Ihvv/3WbHtqairW1tY8++yzWFlZ8c0335jt3717N56enrRs2fJ2drfOFLQUERERERERERGpZ6ysrAgJCWHv3r1m21NTU2nXrh2+vr74+/uTmppq2mc0GsnIyDBlWZaVlfHhhx/Sv39/AgMD6d69OzNmzOD8+fOmY9LS0vD392ft2rUMGTKEDh06MHXqVAAMBgNRUVGEhITQsWNHHnvsMbZt22Y6NiIiAoPBwIkTJ/D392fevHm1Hp+CliIiIiIiIiIiIvVQ586dyc/P59ixY0BFUNJgMJjqVXbp0oX09HRKSkoAOHLkCD/++CNdunQBYNKkScyePZu2bdsydepUBgwYwOrVq3n88ccpKCgwe62XX36Z0NBQJk+eTO/evTl69Cjjxo3DaDQyadIk/vrXv1JUVMRzzz3Hrl27AJg2bRqtWrXC3d2dWbNm0bdv31qPzfbXXhwRERERERERERG5Ob17977h/q1bt153X2XG5Lfffouvry/ff/89586dMwUlw8LCiI+PJz09nS5durB7927TccnJyWzevJnRo0fz97//3XTO4OBgXnjhBRYsWMCUKVPMtk+fPt30+wcffEBhYSHvvPMOHh4eAAwcOJDHHnuMAwcOEBISQp8+ffjoo48oLi4mMjKyTtdFQUsRuessf3DKLzcSERERkfqn+Z3ugIhYKvfomDvdhev7v6SbPrRdu3a4urqSkZFBZGQkqamp2NjYEBISAlRkYtrY2GAwGExZl15eXrRo0YJFixYBMG7cOLNzPvTQQ8yZM4etW7eaBS0rF/6p5OXlBcDMmTN5+umnCQwMxN3dnc2bN9/0eKpS0FJEREREREREROQOuVEm5S+xtrYmODjYtBhPamoqgYGBuLi4AODq6kr79u35z3/+A8CePXtMU8dzcnJo2LAhTZo0qXZePz8/kpOTzbZVZlNWGjBgAFu2bGHDhg1s2LCBpk2b0qtXL4YNG2YKmv4aqmkpIiIiIiIiIiJST4WEhHDw4EGKi4vZtWuXaWp4pbCwMDIyMjh//jyZmZmmKeVGo/G65ywvL8fOzs5sm42NjdnvdnZ2zJ07l6SkJKKjo7nnnntITEwkKiqK999//1ePS0FLERERERERERGReio0NJTS0lI2btxIQUGBKZOyUpcuXSgsLOTTTz/FaDSa9nt7e1NQUEBeXl61c2ZmZtKsWbMbvu7JkyfZtWsX/v7+TJgwgZUrV7J9+3Z8fX2Ji4v71eNS0FJERERERERERKSeCggIwMnJieXLl2NnZ0dwcLDZ/uDgYGxtbVm7di3e3t74+PgAEBERAUBsbKxZ+88//5zMzEzCw8Nv+LoLFixgzJgx5ObmmrZ5eXnh6emJtfVPIUdra2vKy8vrPC7VtBQREREREREREamnbG1t6dixI1999RUhISE4Ojqa7Xd2dqZDhw7s3r2bYcOGmbb36tWL3r17s3jxYnJzcwkLC+PYsWMsW7YMHx+fagv0/FxUVBTr1q0jKiqKESNG4ObmRmpqKgaDgYkTJ5raeXh4sHPnThYuXEhwcDBBQUG1GpcyLUVEREREREREROqxypW9f17PslLllPDKepYAVlZWzJkzh5iYGA4ePMhrr73GZ599xogRI1i9ejUNGza84Wv6+/uzaNEiWrRowcKFC5k5cyaHDx9m+vTpPPfcc6Z2Y8eOxdfXlzfffJM1a9bUekxWxhtV3RQRERERERERERG5zZRpKSIiIiIiIiIiIhZFQUsRERERERERERGxKApaioiIiIiIiIiIiEVR0FJEREREREREREQsioKWIiIiIiIiIiIiYlEUtBQRERERERERERGLoqCliIiIiIiIiIiIWBQFLUVERERERERERMSiKGgpIiIiIiIiIiIiFkVBSxEREREREREREbEoClqKiIiIiIiIiIiIRVHQUkRERERERERERCyKgpYiIiIiIiIiIiJiUf4fh34sqYNxWBgAAAAASUVORK5CYII=" }, "metadata": {}, "output_type": "display_data" @@ -936,20 +936,20 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-06-01T21:28:50.683383Z", - "start_time": "2024-06-01T21:28:50.362940Z" + "end_time": "2024-09-02T20:15:14.841119Z", + "start_time": "2024-09-02T20:15:14.559360Z" } }, "id": "4bfca852f6ef428a" }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 52, "id": "2326c129", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:28:50.688445Z", - "start_time": "2024-06-01T21:28:50.683504Z" + "end_time": "2024-09-02T20:15:14.841211Z", + "start_time": "2024-09-02T20:15:14.835997Z" } }, "outputs": [], diff --git a/docs/examples/Multiple_Models_Interface_With_DB_Writer.ipynb b/docs/examples/Multiple_Models_Interface_With_DB_Writer.ipynb index 21fb6e82..a1833630 100644 --- a/docs/examples/Multiple_Models_Interface_With_DB_Writer.ipynb +++ b/docs/examples/Multiple_Models_Interface_With_DB_Writer.ipynb @@ -2,15 +2,32 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": 26, "id": "68ae1475", "metadata": { "ExecuteTime": { - "end_time": "2024-01-29T12:31:35.894729Z", - "start_time": "2024-01-29T12:31:35.556147Z" + "end_time": "2024-09-02T20:20:12.562451Z", + "start_time": "2024-09-02T20:20:12.029964Z" } }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-09-02 23:20:12 law_school_gpa_dataset.py WARNING : No module named 'tempeh': LawSchoolGPADataset will be unavailable. To install, run:\n", + "pip install 'aif360[LawSchoolGPA]'\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The autoreload extension is already loaded. To reload it, use:\n", + " %reload_ext autoreload\n" + ] + } + ], "source": [ "%matplotlib inline\n", "%load_ext autoreload\n", @@ -19,12 +36,12 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 27, "id": "9a1a7163", "metadata": { "ExecuteTime": { - "end_time": "2024-01-29T12:31:35.903518Z", - "start_time": "2024-01-29T12:31:35.894998Z" + "end_time": "2024-09-02T20:20:12.599967Z", + "start_time": "2024-09-02T20:20:12.559552Z" } }, "outputs": [], @@ -69,24 +86,15 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 28, "id": "dec1f3f0", "metadata": { "ExecuteTime": { - "end_time": "2024-01-29T12:31:37.182331Z", - "start_time": "2024-01-29T12:31:35.904119Z" + "end_time": "2024-09-02T20:20:12.606310Z", + "start_time": "2024-09-02T20:20:12.582885Z" } }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "WARNING:root:No module named 'tempeh': LawSchoolGPADataset will be unavailable. To install, run:\n", - "pip install 'aif360[LawSchoolGPA]'\n" - ] - } - ], + "outputs": [], "source": [ "import os\n", "import pandas as pd\n", @@ -132,7 +140,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 29, "outputs": [], "source": [ "TEST_SET_FRACTION = 0.2\n", @@ -141,8 +149,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-01-29T12:31:37.205245Z", - "start_time": "2024-01-29T12:31:37.182699Z" + "end_time": "2024-09-02T20:20:12.629234Z", + "start_time": "2024-09-02T20:20:12.606096Z" } }, "id": "5b151f8896bc744e" @@ -181,7 +189,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 30, "outputs": [], "source": [ "ROOT_DIR = os.getcwd()\n", @@ -200,19 +208,20 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "start_time": "2024-01-29T12:31:37.286356Z" + "end_time": "2024-09-02T20:20:12.652213Z", + "start_time": "2024-09-02T20:20:12.629593Z" } }, "id": "79dcac74" }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 31, "id": "abc8bd6f", "metadata": { "ExecuteTime": { - "end_time": "2024-01-29T12:31:37.333453Z", - "start_time": "2024-01-29T12:31:37.310610Z" + "end_time": "2024-09-02T20:20:12.675095Z", + "start_time": "2024-09-02T20:20:12.651308Z" } }, "outputs": [], @@ -248,14 +257,14 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 32, "outputs": [ { "data": { "text/plain": " juv_fel_count juv_misd_count juv_other_count priors_count \\\n0 0.0 -2.340451 1.0 -15.010999 \n1 0.0 0.000000 0.0 0.000000 \n2 0.0 0.000000 0.0 0.000000 \n3 0.0 0.000000 0.0 6.000000 \n4 0.0 0.000000 0.0 7.513697 \n\n age_cat_25 - 45 \n0 1 \n1 1 \n2 0 \n3 1 \n4 1 ", "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
juv_fel_countjuv_misd_countjuv_other_countpriors_countage_cat_25 - 45
00.0-2.3404511.0-15.0109991
10.00.0000000.00.0000001
20.00.0000000.00.0000000
30.00.0000000.06.0000001
40.00.0000000.07.5136971
\n
" }, - "execution_count": 5, + "execution_count": 32, "metadata": {}, "output_type": "execute_result" } @@ -267,14 +276,15 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "start_time": "2024-01-29T12:31:37.204682Z" + "end_time": "2024-09-02T20:20:12.714316Z", + "start_time": "2024-09-02T20:20:12.674605Z" } }, "id": "30a74059" }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 33, "outputs": [], "source": [ "column_transformer = ColumnTransformer(transformers=[\n", @@ -285,14 +295,15 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "start_time": "2024-01-29T12:31:37.236370Z" + "end_time": "2024-09-02T20:20:12.761302Z", + "start_time": "2024-09-02T20:20:12.708927Z" } }, "id": "e249dee6ca87b5fd" }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 34, "outputs": [], "source": [ "base_flow_dataset = preprocess_dataset(data_loader=data_loader,\n", @@ -304,7 +315,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "start_time": "2024-01-29T12:31:37.257924Z" + "end_time": "2024-09-02T20:20:12.777372Z", + "start_time": "2024-09-02T20:20:12.729932Z" } }, "id": "6cd3c2f8ad510bb2" @@ -327,12 +339,12 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 35, "id": "a711e1af", "metadata": { "ExecuteTime": { - "end_time": "2024-01-29T12:31:37.361100Z", - "start_time": "2024-01-29T12:31:37.334204Z" + "end_time": "2024-09-02T20:20:12.795838Z", + "start_time": "2024-09-02T20:20:12.766035Z" } }, "outputs": [], @@ -374,12 +386,12 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 36, "id": "899e6ab4", "metadata": { "ExecuteTime": { - "end_time": "2024-01-29T12:31:40.778305Z", - "start_time": "2024-01-29T12:31:37.358318Z" + "end_time": "2024-09-02T20:20:13.018267Z", + "start_time": "2024-09-02T20:20:12.791193Z" } }, "outputs": [], @@ -405,12 +417,12 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 37, "id": "db8df420", "metadata": { "ExecuteTime": { - "end_time": "2024-01-29T12:31:40.803706Z", - "start_time": "2024-01-29T12:31:40.779222Z" + "end_time": "2024-09-02T20:20:13.018487Z", + "start_time": "2024-09-02T20:20:13.007597Z" } }, "outputs": [ @@ -418,7 +430,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Current session uuid: 65f2800c-dea8-4760-89bd-40564b4e19fd\n" + "Current session uuid: 39e822c3-4aa4-424f-a052-bce799a0ac05\n" ] } ], @@ -434,12 +446,12 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 38, "id": "46961cf7", "metadata": { "ExecuteTime": { - "end_time": "2024-01-29T12:31:56.546913Z", - "start_time": "2024-01-29T12:31:40.803920Z" + "end_time": "2024-09-02T20:20:34.589008Z", + "start_time": "2024-09-02T20:20:13.007690Z" } }, "outputs": [ @@ -449,7 +461,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "a1811a1ab37c4496b890c888300ae8d7" + "model_id": "53515d3ddb88460d81731bd75f7e58df" } }, "metadata": {}, @@ -461,7 +473,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "8bd53805018e4895838bddd0a8120fec" + "model_id": "2b48da3d573a4e37a34b27dc0512f789" } }, "metadata": {}, @@ -473,7 +485,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "c01ea2f7f936405580494c5e98ad4d41" + "model_id": "b2c63a6679704c449f6abf9d8dd85a7d" } }, "metadata": {}, @@ -485,7 +497,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "cf3981d3fc2b438f9d994fdf9d6f6c6f" + "model_id": "5c29f53b6f8147718f13385732864a7e" } }, "metadata": {}, @@ -497,7 +509,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "781ad75be0d447f9af1f9755bc266593" + "model_id": "fb6da1f5677d49719f27d50d91416654" } }, "metadata": {}, @@ -519,21 +531,21 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 39, "id": "d030be0d", "metadata": { "ExecuteTime": { - "end_time": "2024-01-29T12:31:56.594531Z", - "start_time": "2024-01-29T12:31:56.552582Z" + "end_time": "2024-09-02T20:20:34.638557Z", + "start_time": "2024-09-02T20:20:34.595365Z" } }, "outputs": [ { "data": { - "text/plain": " Metric overall sex_priv sex_dis race_priv \\\n0 Statistical_Bias 0.415777 0.411280 0.416900 0.411460 \n1 Std 0.070086 0.072965 0.069367 0.069672 \n2 Mean_Prediction 0.519189 0.574330 0.505420 0.583615 \n3 Overall_Uncertainty 0.885080 0.894485 0.882731 0.879480 \n4 Aleatoric_Uncertainty 0.859123 0.866579 0.857261 0.853366 \n5 IQR 0.084150 0.081478 0.084817 0.085661 \n6 Epistemic_Uncertainty 0.025957 0.027907 0.025470 0.026114 \n7 Label_Stability 0.854811 0.842275 0.857941 0.865700 \n8 Jitter 0.111783 0.119586 0.109835 0.103488 \n9 TPR 0.656051 0.480000 0.689394 0.517007 \n10 TNR 0.735043 0.808824 0.712695 0.790262 \n11 PPV 0.665948 0.580645 0.679104 0.575758 \n12 FNR 0.343949 0.520000 0.310606 0.482993 \n13 FPR 0.264957 0.191176 0.287305 0.209738 \n14 Accuracy 0.699811 0.691943 0.701775 0.693237 \n15 F1 0.660963 0.525547 0.684211 0.544803 \n16 Selection-Rate 0.439394 0.293839 0.475740 0.318841 \n17 Positive-Rate 0.985138 0.826667 1.015152 0.897959 \n18 Sample_Size 1056.000000 211.000000 845.000000 414.000000 \n\n race_dis \n0 0.418561 \n1 0.070352 \n2 0.477643 \n3 0.888691 \n4 0.862836 \n5 0.083176 \n6 0.025856 \n7 0.847788 \n8 0.117133 \n9 0.719136 \n10 0.688679 \n11 0.701807 \n12 0.280864 \n13 0.311321 \n14 0.704050 \n15 0.710366 \n16 0.517134 \n17 1.024691 \n18 642.000000 ", - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Metricoverallsex_privsex_disrace_privrace_dis
0Statistical_Bias0.4157770.4112800.4169000.4114600.418561
1Std0.0700860.0729650.0693670.0696720.070352
2Mean_Prediction0.5191890.5743300.5054200.5836150.477643
3Overall_Uncertainty0.8850800.8944850.8827310.8794800.888691
4Aleatoric_Uncertainty0.8591230.8665790.8572610.8533660.862836
5IQR0.0841500.0814780.0848170.0856610.083176
6Epistemic_Uncertainty0.0259570.0279070.0254700.0261140.025856
7Label_Stability0.8548110.8422750.8579410.8657000.847788
8Jitter0.1117830.1195860.1098350.1034880.117133
9TPR0.6560510.4800000.6893940.5170070.719136
10TNR0.7350430.8088240.7126950.7902620.688679
11PPV0.6659480.5806450.6791040.5757580.701807
12FNR0.3439490.5200000.3106060.4829930.280864
13FPR0.2649570.1911760.2873050.2097380.311321
14Accuracy0.6998110.6919430.7017750.6932370.704050
15F10.6609630.5255470.6842110.5448030.710366
16Selection-Rate0.4393940.2938390.4757400.3188410.517134
17Positive-Rate0.9851380.8266671.0151520.8979591.024691
18Sample_Size1056.000000211.000000845.000000414.000000642.000000
\n
" + "text/plain": " Metric overall sex_priv sex_dis race_priv \\\n0 Std 0.073404 0.076654 0.072593 0.073483 \n1 Mean_Prediction 0.519733 0.575657 0.505768 0.585374 \n2 Statistical_Bias 0.416691 0.413261 0.417548 0.412091 \n3 IQR 0.087474 0.088773 0.087150 0.089656 \n4 Overall_Uncertainty 0.887649 0.898580 0.884919 0.882318 \n5 Aleatoric_Uncertainty 0.859615 0.866990 0.857773 0.853026 \n6 Epistemic_Uncertainty 0.028034 0.031589 0.027146 0.029292 \n7 Label_Stability 0.862917 0.827488 0.871763 0.859614 \n8 Jitter 0.108416 0.130465 0.102910 0.107781 \n9 TPR 0.656051 0.493333 0.686869 0.517007 \n10 TNR 0.733333 0.808824 0.710468 0.790262 \n11 PPV 0.664516 0.587302 0.676617 0.575758 \n12 FNR 0.343949 0.506667 0.313131 0.482993 \n13 FPR 0.266667 0.191176 0.289532 0.209738 \n14 Accuracy 0.698864 0.696682 0.699408 0.693237 \n15 F1 0.660256 0.536232 0.681704 0.544803 \n16 Selection-Rate 0.440341 0.298578 0.475740 0.318841 \n17 Sample_Size 1056.000000 211.000000 845.000000 414.000000 \n\n race_dis \n0 0.073353 \n1 0.477403 \n2 0.419658 \n3 0.086067 \n4 0.891086 \n5 0.863864 \n6 0.027223 \n7 0.865047 \n8 0.108826 \n9 0.719136 \n10 0.685535 \n11 0.699700 \n12 0.280864 \n13 0.314465 \n14 0.702492 \n15 0.709285 \n16 0.518692 \n17 642.000000 ", + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Metricoverallsex_privsex_disrace_privrace_dis
0Std0.0734040.0766540.0725930.0734830.073353
1Mean_Prediction0.5197330.5756570.5057680.5853740.477403
2Statistical_Bias0.4166910.4132610.4175480.4120910.419658
3IQR0.0874740.0887730.0871500.0896560.086067
4Overall_Uncertainty0.8876490.8985800.8849190.8823180.891086
5Aleatoric_Uncertainty0.8596150.8669900.8577730.8530260.863864
6Epistemic_Uncertainty0.0280340.0315890.0271460.0292920.027223
7Label_Stability0.8629170.8274880.8717630.8596140.865047
8Jitter0.1084160.1304650.1029100.1077810.108826
9TPR0.6560510.4933330.6868690.5170070.719136
10TNR0.7333330.8088240.7104680.7902620.685535
11PPV0.6645160.5873020.6766170.5757580.699700
12FNR0.3439490.5066670.3131310.4829930.280864
13FPR0.2666670.1911760.2895320.2097380.314465
14Accuracy0.6988640.6966820.6994080.6932370.702492
15F10.6602560.5362320.6817040.5448030.709285
16Selection-Rate0.4403410.2985780.4757400.3188410.518692
17Sample_Size1056.000000211.000000845.000000414.000000642.000000
\n
" }, - "execution_count": 14, + "execution_count": 39, "metadata": {}, "output_type": "execute_result" } @@ -561,12 +573,12 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 40, "id": "180f429c", "metadata": { "ExecuteTime": { - "end_time": "2024-01-29T12:31:56.636346Z", - "start_time": "2024-01-29T12:31:56.594732Z" + "end_time": "2024-09-02T20:20:34.684570Z", + "start_time": "2024-09-02T20:20:34.639437Z" } }, "outputs": [], @@ -592,12 +604,12 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 41, "id": "64a38bb0", "metadata": { "ExecuteTime": { - "end_time": "2024-01-29T12:31:56.886638Z", - "start_time": "2024-01-29T12:31:56.622454Z" + "end_time": "2024-09-02T20:20:35.030543Z", + "start_time": "2024-09-02T20:20:34.666267Z" } }, "outputs": [], @@ -608,12 +620,12 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 42, "id": "b30c703c", "metadata": { "ExecuteTime": { - "end_time": "2024-01-29T12:31:56.914627Z", - "start_time": "2024-01-29T12:31:56.887129Z" + "end_time": "2024-09-02T20:20:35.063025Z", + "start_time": "2024-09-02T20:20:35.031092Z" } }, "outputs": [], @@ -631,12 +643,12 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 43, "id": "896f7906", "metadata": { "ExecuteTime": { - "end_time": "2024-01-29T12:31:56.946010Z", - "start_time": "2024-01-29T12:31:56.913113Z" + "end_time": "2024-09-02T20:20:35.096846Z", + "start_time": "2024-09-02T20:20:35.063553Z" } }, "outputs": [], @@ -662,12 +674,12 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 44, "id": "de09882f", "metadata": { "ExecuteTime": { - "end_time": "2024-01-29T12:31:56.978582Z", - "start_time": "2024-01-29T12:31:56.947086Z" + "end_time": "2024-09-02T20:20:35.152335Z", + "start_time": "2024-09-02T20:20:35.097330Z" } }, "outputs": [], @@ -679,21 +691,21 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 45, "id": "0d29adad", "metadata": { "ExecuteTime": { - "end_time": "2024-01-29T12:31:57.029982Z", - "start_time": "2024-01-29T12:31:56.978835Z" + "end_time": "2024-09-02T20:20:35.186912Z", + "start_time": "2024-09-02T20:20:35.150090Z" } }, "outputs": [ { "data": { - "text/html": "\n
\n", + "text/html": "\n
\n", "text/plain": "alt.Chart(...)" }, - "execution_count": 20, + "execution_count": 45, "metadata": {}, "output_type": "execute_result" } @@ -707,21 +719,21 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 46, "id": "ed6a0671", "metadata": { "ExecuteTime": { - "end_time": "2024-01-29T12:31:57.086426Z", - "start_time": "2024-01-29T12:31:57.029867Z" + "end_time": "2024-09-02T20:20:35.238865Z", + "start_time": "2024-09-02T20:20:35.184178Z" } }, "outputs": [ { "data": { - "text/html": "\n
\n", + "text/html": "\n
\n", "text/plain": "alt.Chart(...)" }, - "execution_count": 21, + "execution_count": 46, "metadata": {}, "output_type": "execute_result" } @@ -735,19 +747,19 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 47, "id": "dee49825", "metadata": { "ExecuteTime": { - "end_time": "2024-01-29T12:31:57.324795Z", - "start_time": "2024-01-29T12:31:57.082777Z" + "end_time": "2024-09-02T20:20:35.459963Z", + "start_time": "2024-09-02T20:20:35.234922Z" } }, "outputs": [ { "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAABQwAAAJKCAYAAABpvAj9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3QU5dfA8W/appdN75WQAGm0QOi9NynSpFhBQSwoCipVuqCICKgI0gSU0EGa9A4SAoQACaQCKZCEVJJs9v0jvx0TEutrQbifczzCzuzs7LKzM3Of+9yrp9VqtQghhBBCCCGEEEIIIQSg/2/vgBBCCCGEEEIIIYQQ4tEhAUMhhBBCCCGEEEIIIYRCAoZCCCGEEEIIIYQQQgiFBAyFEEIIIYQQQgghhBAKCRgKIYQQQgghhBBCCCEUEjAUQgghhBBCCCGEEEIoJGAohBBCCCGEEEIIIYRQSMBQCCGEEEIIIYQQQgihkIChEEIIIYQQQgghhBBCIQFDIYQQQgghhBBCCCGEQgKGQgghhBBCCCGEEEIIhQQMhRBCCCGEEOIfotVq//BzysrKANBoNH/q+UIIIcQfpaeVM44QQgghhBBC/KXKysqIjY3l3Llz6OnpYWxszNy5c1m3bh2+vr6/+Bw9PT309PR+ddvFxcWoVKq/Y7eFEEIIQDIMhRBC/IU0Gg2lpaX/9m4IIYQQ/6i0tDS2b99OcXGx8tiePXsYNGgQy5Yt4+bNm9SsWZPXXnsNW1vbSs+tmL+hr69fJVj44MED9uzZQ3x8PAsWLKBBgwa8/fbbpKen/71vSgghxBNNMgyFEOIJl5aWRn5+PrGxsWzcuJFly5b927skhBBC/KcsXbqUr7/+mu+//x4PDw8AOnbsSH5+Ph9//DH+/v5YWFigp6eHgYGB8ryysjL09ctzONLT04mPjwegYcOGGBoaAnDt2jUGDRqEubk5/v7+eHp60qBBA1q0aIGFhcU//E6FEEI8KQz/7R0QQgjxz8jPz8fc3Fz5+4kTJ5g+fTpxcXE8++yz2NjYYGBgQHZ2NjY2Nsp6Wq1WmSKlu6l5WGFhIUVFRcTExLBu3Trq1KnD4MGDsbS0/LvflhBCCPGv69OnD61atcLR0RGNRoOBgQEmJia4ubnRsGHDSuvqphNrtVr09fW5efMms2bN4vjx4xgZGWFqakpgYCAjR46kYcOGWFpa0rx5c3bt2sXgwYN56aWX0Gq1vzltWQghhPj/kIChEEI8AaZMmUJkZCRbt27Fy8sLrVbLF198QUZGBhMnTqRVq1ZYWFjQr18/rKysKj334WyI+/fvV1rn7NmzjB8/HicnJ8zMzEhKSsLX11eChUIIIR5LWq1WCfbp2NvbY29vX2k9b29vLl68yMcff4yfnx/169dnxowZZGdns3TpUiwsLEhLS+Odd94hMzOTSZMm4e7uzsWLF9mwYQPTpk1j6dKl2NnZoVarMTU1pW7dugASLBRCCPG3k4ChEEI8xnRTnXr27EmTJk2UzMGMjAzu3r1LWFgY/fv3rxQQfFhOTg5ff/01u3btIisrC39/f7p06UKXLl2wtbXF1tYWBwcHfvrpJ/r27cuHH36oTKMSQgghHjfVNSXRaDRERUWRlZVFWFgYH374Ibt378bIyIilS5fy9NNPU79+fczNzYmNjSU/Px8LCwuOHTvG1atXWbFihRIMbNy4Mc2bN6dXr15s3LiR0aNH4+HhQXFxsQQKhRBC/GPkjk4IIR5juuyH0NDQSjcZjo6OeHt7c+fOHW7fvo1Go8HNzY358+eTl5fH1KlT0Wg0FBcX89FHH7F37166du2Kk5MTp06dYvr06URFRfHRRx/h6OiIlZUVKpWKF154AUdHx3/r7QrxRNBlN/2eTqpCiN9HV35Dq9ViYGBQ6diqOP03Pz+f69evk56ejo+PD/7+/gBkZ2cze/ZskpKS2Lt3L506dcLe3p7Vq1fz2muvMXToUIyMjKhRowY//PAD2dnZ2Nvbc+bMGaysrKhbty7JyclcvXqVixcvcv36dQCOHj3KyJEj8fT0pKysTBqdCCGE+MdIwFAIIR4TGo0GoFK24MNBhYyMDNRqNR9//DFnz57l/v37tGvXjlq1arFp0yaOHj1KcnIyU6dOxcDAgDNnzvDdd98xffp02rdvj5WVFS+99BLLly9n9uzZ9OzZk+bNm+Pm5kZRUZGSWSi1lYSoKi8vj4yMDHx8fCo1OvgtGo2mUg1RCRQKUdWhQ4dYu3Ytw4cPJyIi4hePsV86Pz1cfuPh9YuLi5kzZw47duygoKAAS0tLTExM6NevHyNGjMDS0pK6desSHx9PSUkJHTt2JDAwkNWrVwMoNYTd3d0pLi4mOTmZgIAAMjMzycjIoG7duhQWFmJmZoaLiwuenp6MGzeOmjVrYmhoiKOjIxYWFty4ceMP/X4IIYQQf5YEDIUQ4j9Cl1UEVHujUPFGJycnBwMDA6V7Yl5eHgMHDqS4uJjdu3eTkZGBu7s7ly5d4rXXXqNp06YA1K1bl2vXrlFUVISJiQkbNmzAz8+PPn36AOWZFcnJycrrbNmyhaZNm+Lj4wNAamoqrq6uEjAU4iF3795l0KBBODg4sHr16irHsC67CagStHj47/Hx8dy8eRNzc3MiIiL+3h0X4l9U8VySnp7O5cuXSUhIQK1W06xZM+zt7ZV1MjMzOXToEI0bN650XOiOLX19/UrB9ofPU9evX+fQoUOcPXsWjUZDo0aNePrpp7GyskKr1bJ27Vo2btzISy+9RL169cjLy2PJkiWsWrWKp59+GrVajYuLC/n5+aSkpGBra4uTkxM2NjbcvHmT3NxcLC0tcXR0xNTUlPj4eNq1a4ednR0qlYphw4bRvn17zMzMsLa2xtbWluTkZDIyMtBoNNjZ2eHo6EhcXBylpaWoVKp/9h9DCCHEE0cChkII8Q+4desWJ0+epEGDBnh6ev6pgNpvZRVt2LCBLVu2cPXqVSwtLalXrx7PPfccderUwcLCAhcXF2JiYsjPz2fatGkcOHCAsWPH4uLiQkhICACurq4AXL16ldDQUNLT08nIyGDYsGEkJyeTnp6u3LhERETQqFEj9PX1cXFxAeDy5cs0bNhQCWwKIcrZ2dkxffp0TE1Nq13+S9lNAEeOHOH48eN06tSJb7/9lp07d6LRaLCwsGD48OEMHjy4SrMiIR4Henp65Obm8umnn7Jr1y5KSkowNTWloKAAa2trhg0bxjPPPANAnTp1MDU1rTSopduG7tjKy8sjLS0NU1NT5XwH5YNd7777LgUFBXh5eVFWVsb8+fM5fvw4CxcuxNzcnMjISBo1asTw4cOV47h+/fqkpqYq2YNubm7o6+tz/fp1QkJCMDU1xcvLi6SkJO7fv4+lpSVqtRpHR0dlynFISAibN2/G3t6eOnXqVNr3b775hlOnTrFw4UIcHBzw8fEhKSmJgoICCRgKIYT420nAUAgh/iJlZWUkJyej1Wrx9vYGfs5gOHr0KBMnTmT27Nl4enpWep5Go1HW+7XmIzdv3iQ6Opr79+9Tp04d6tWrpyzbuXMnn376KXXr1mXMmDHcvn2bVatWkZqayoIFC3BycsLDw4OTJ09y48YNgoOD8fT0xMrKivj4eIqLi1GpVLi7uwMQExNDaGgoHh4eREdHY2RkxNNPP42XlxceHh7Y29ujp6fHgwcPAHBxcUGtVhMdHa28byFEZQ0aNKj28dLSUq5evcqZM2dIT08nLCyMpk2bKkGICxcuEBkZyZYtW6hRowYLFy5ET0+PZcuWsWjRIjw9PenatatMUxT/aRqNpso5MD09ndGjR3Pz5k2effZZGjdujJmZGcnJySxdupS5c+dSVFTECy+8gIeHB+bm5iQlJQE/Z+InJiaycuVK9u/fT0ZGBkZGRtSuXZtRo0bRqFEjDA0NmT17NllZWUyfPp3AwEDMzMz46quvOH/+PJmZmZibm+Pk5MTRo0eZP38+zZs3R6vVKoNzOg4ODqjVaq5cuaI85u/vz5EjR7h37x5ubm5YWVnh7u7OzZs30Wg0NG7cmFq1arFmzRqCg4OpVasWhYWF7Nu3j9WrV9O6dWu8vb0pKCjAwcGBffv2cffuXaWJmRBCCPF3kYChEEL8P2g0GiIjI/nuu++IjY3FyMgIW1tbIiIiGDp0KDVq1AAgODgYfX19srKyACplCj58g/TwTVNeXh6TJk3iyJEjqFQqtFotGo2GkSNH0q9fP8zNzVm+fDkBAQG8//772NvbY2BgQHh4ODdv3lReS1c3LS4ujuDgYCXrMC4ujpKSElQqFS4uLlhYWHDx4kUGDhxIzZo12blzJ0899RRdu3altLRUqVP41VdfER0dzfz587G3t8fFxUXJmJDpyOJJpCsb8GtBuxs3bmBmZoazs7MyVXLJkiWsXLkSCwsL9PT0WLlyJQ0bNuT1118nNDSU4OBgoDxLccaMGUpg39bWlkGDBnHs2DG6du36j7xHIf4OJ0+eZOXKlXz++eeVAt+ff/45ly9fZvXq1UoHYYDAwEDq169P9+7d2bp1K4MGDVKCenfu3CErKwu1Wk1OTg5z5swhISGBnj174uPjw7Vr11i9ejVz587l448/xsfHh9u3b+Po6IiTkxNqtRqAUaNGVdrHN998kzlz5rBq1SpWrVoFlNcltLe3p3fv3owYMQI7OzucnJy4du2a8rxatWqxefNmMjIyADAzM8Pb25sffviB9PR0fH19eeutt3jllVcYPnw4zZs3p6ysjMuXL9OoUSM++OAD5XmdOnXC29sbJyenv+8fQwghhPgfCRgKIcSflJeXx2effcamTZto1qwZffr0wcjIiJ9++okNGzZw6tQpPv/8c/z8/HBxccHY2JjExEQlm0+3jaNHj/Ljjz8qNxht2rShX79+yjTfBQsWcPDgQV5//XUaN25MYWEhc+bMYcuWLTRv3hw/Pz9MTExITEzk0qVLNGvWjOLiYho2bEjr1q2V/fXx8UGlUnH16lUALCws8PLyIjY2loKCAuVmSzd1GaBZs2Z8+umnbNu2ja5duyrBwpiYGBYtWoSPjw+GhobY2Njg5ubG3r17gapBUCEeBxXrDOrqoVVUsWxAWloaeXl5uLu7Y2xsDMC+ffsYPXo0w4cP591330VPT49169bx2WefMWDAAAYOHIiJiQnHjh1j6tSpFBQUsH79enx9fTEwMMDIyEhpmKBSqXB2dsbDw4O4uDjl9YX4r9FqtRw7dowff/yR/Px8JbM2LS2Nbdu20aNHD4KCgpR19fT0KC0txdbWljVr1igZ/QC+vr4cPXqUlJQU1Go1a9asYf/+/UyePJkBAwYoA3JmZmYsXryY69ev4+PjQ/v27Zk/fz5Dhw4lMDAQAwMDfH19qV+/PsHBwTg5OVGrVi0+++wz7t27x8WLF0lJSSErK4sjR47w9ddfExoaSr169XB3dycqKko5TmvWrElpaSlpaWkAmJqa4uPjw927d7l16xYuLi40bdqUyMhIvv/+e86fP4+JiQkDBw6kQ4cOlaZON2rUiEaNGv1z/zhCCCGeaBIwFEKIP2njxo2sWLGCcePG0bdvX6WGWO/evWnSpAlvvvkmEydOZMGCBUoGXlJSEnl5edja2lJWVsZXX33Fzp07cXV1pXbt2ty4cYPPP/+c5ORkJk2ahEql4uLFizRt2pQhQ4Yor/3111+TnZ2No6MjAM888wwTJkxg1KhRWFlZYWhoiI+PD0FBQbRo0YKmTZvi4uKCtbU18fHxwM9ZDocOHeL+/fs4ODhgZ2eHu7s7p06dAiAgIICXX36Zzz77jEGDBtGhQwf09fXZtGkT9vb2TJgwAQCVSkVAQACpqank5ORgbW39T/5TCPGP+K2yAcnJyXzyySccO3ZMmT7YokULhgwZgq+vL+7u7koGFJRPt1y5ciW1a9dm8uTJyna8vLzIy8tjwYIF7Nmzh9atW+Pq6kpOTg6AMuBgb2+Ps7Mz165d48GDB0pgUohHUXWNfXTZhPb29gBkZWUpAcOjR4+Sn59Pq1atMDIyqpR5qBu80gULS0pKMDIywt/fn927d5OQkEBwcDDOzs6MGDGCp556CkCpLxgbG4u+vj43btwAYMCAAajVanbv3k1WVhZ37tzh0KFDLF++nLCwML7++mtMTEwoLCzE2tqaLl26KO+rRYsWPPvss6Snp6NSqfDx8eHgwYPcvXtX6XYMcO3aNSVL38nJCWtra4qKipTPxs/Pj3HjxkngXzwRNBoNhYWFSnO+P/I8fX3938zmF0L8NSRgKIQQf0J2djZLly6lRYsWPPfcc8rjuhuiLl26KBlAuhuhGjVqcPXqVTIyMrC1tSUyMpIlS5bw7LPPMnz4cMzNzSkpKeGTTz5hz549XL9+nbp161K7dm3Wrl3La6+9RpMmTdBqtTg5OREaGqq8brt27XBycuLy5cvcuHGDhIQEUlNTWb16Nfv372fjxo24ublhb2+vFIQ3MTHBy8uLgoIC0tLSlExFb29vDhw4wL1797C1tWX06NFYWVmxbds2Pv/8c0pKSggJCeG1116rVJNt9OjRjB49+h/6FxDir/NrHYorSk5O5ty5c1y9ehUrKytat25NYGAgUJ4tPHfuXKKjoxkxYgQODg6cOXOGb7/9FgMDA95//31cXV1Rq9VKkMLAwIDExESGDRum7AeUBybbtWvHwoULiYqKokOHDri7u5OUlERmZib29vZKppSbmxvnzp0jKSkJf3//v/NjEuL/pbqAu76+Pnfu3OHcuXMAdO/eHUdHR7766isKCgqA8gDBb9EFDgICApR6wlA+gAflDbkiIyM5e/YsKSkpODg4oK+vT2JiIgCWlpb069ePfv36kZqaikajQaVSsXz5clauXMnRo0epX78+Tz/9NO3bt+fVV1+lrKyMjIwMNm3aBKBkQdrb21NcXMy1a9dwcXHB1taWpk2b4u3trfzOtGnTRhmY0302Ff8vxOMmOjqaAwcOkJCQwNChQxkyZAjjxo1jyJAhVb73uvIeQJWgoO43RPecu3fvYmJiogw0CCH+WhIwFEKIalScdliRbjrU3r17uXfvHp07dwZQsgYq3hC1a9eu0nMDAwOVwudQ3jk5LCyM1157DRMTE2U9W1tbCgoKSEpKom7dujz//PPcunWLQ4cOceDAAYqLiwFwcnKiW7duvP322xgYGBASEkJYWFilTKMvvviC+fPnExMTQ0REBG5ubpw4cYKMjAwcHBxwcnLCxMSE+Ph4GjVqhIGBgZIpefXqVSIiIigrK2Po0KF06dIFjUYjtZPEf9YvBQYfDmTophJW7Gaua1yk1WqxsrIiPT2dtWvXMmXKFNq0aUNaWhp79+5lxowZ9OrVCz09Pbp160Z4eDgODg4AWFlZ4ezszIULF8jNzUVPTw9TU1P09fUrlSqA8qCDvb29Mo3Rx8eHffv2cfPmzUoBQx8fH0pLS4mLi8Pf3/9PdWAX4v+jrKxM+d79UsaPRqNRGvskJibi6elJmzZt8PT05NKlS9y8eRNDQ0M8PDwYN24cLi4uynkxPz//N/dBd/z6+vqiUqmUxicA27ZtY+HChZiZmdG4cWNatWpFREQETZo04datWwAUFRWxc+dOatWqRe3atZXnNmzYkG+++QaVSoWdnR1BQUF88803REdH4+rqSmpqKikpKUyaNEnJJNQ1H/P19QXAyMiIZcuWVbu/QjxusrKy2LhxI/Xq1VMaAl27do2xY8fy4MEDQkNDsbGx4ZNPPqFGjRrVnq8qlveoSKvVsm/fPvLz89FoNEyfPh0bGxsmTZpEy5Yt5fwnxN9AAoZCiP88jUZDbGwsXl5ev3tqw281J9A9XlZWxu3bt7GyssLS0pLS0lKMjIyUGxhTU9NK6/+awMBACgsLlQDAq6++ypgxY0hLS2PXrl0cP36co0ePkp2djb6+Prdv3wbAzc2NRYsWkZeXx6VLl0hLS6O4uJjvv/+eZcuW0adPHywsLJgzZw49evSgRYsWQHnQIz8/H319fYyMjABwd3cnJyeH2NhYHBwcsLKywsTEhFu3bikBiKeeeoq2bdsqDVt0702XKSnEf0F1HVd/aUpxSkoK3377LYcPH6agoIDQ0FD69etHREQEALm5ubzzzjvUrl2b0aNHY2trS1ZWFq+//jqnT5+mZcuWSoBx165dODk5UbNmTXJzc2nVqlWlzAdPT0+OHj1KYmIiNWvWxNHRkcTERKVUgW7woaioSMk6BvDw8ADKb7waNmyobM/X1xcTExOuXr1K586d5YZJ/G10Dbf09fUrnfMq/lmr1SrnyYrfxTVr1rB48WKsra0xMTFhy5YtbN68menTp9OuXTscHBx49913MTQ0pFmzZgBKcx9dUO+XvtcajYbMzEzUajUeHh6o1WpSUlLQaDSUlZWxcOFCLCwsmDt3Ln5+fsrzVCoVKSkpZGZmYmhoyKxZs7C3t2fEiBF4e3tz69YtPvvsM7y9vZXz4axZs2jXrh179uwhLS2NmjVrMnLkSJo0aaJMkw4KClKyDYV40iQnJ7Nlyxbs7e0JCQnB0NCQ7777juTkZKZNm0bXrl0xMjLCx8en0vMq/l7Ex8dz8eJFCgoKaNSokXLclpSUsHfvXrZu3UpwcDD9+/cnODhYCc7LuU+Iv54EDIUQ/ykpKSnEx8dz+fJlzpw5w7Vr18jJyaG0tJTFixfTunXrShcdv3TzXHH0srp19u3bx5IlS7h69Srm5ubUqlWLp59+utINuaGhoXKD8EsBw4o1l3QXR6mpqco+3Lx5k48++oikpCRcXFx47rnn6NSpE3379iU5OZmioiJMTEyIjY3F09OTpk2bKts2MTHh3XffJTU1lbCwMKKioti7dy9PP/00NWvW5Nq1a+zatYu+ffsSEBAAlE+Lrl27tvJ+/f392b9/f6WAhrOzM87Ozn/wX0aIf091GcEPBwZv3LiBhYUFu3btYteuXTg7O/PJJ5+QlZXFjBkzuHbtGo0aNcLKyoq9e/eyc+dO5s2bR5cuXUhISCA7O5unnnpKKQXg4eHBtm3blGPHw8ODF198kS+//JLDhw8DYG1tjYeHB6GhofTv35+aNWvi6emJVqvl2rVrBAUFERwczJEjR5SMXt1vSkpKCnFxcTRu3BgoDzRaWVkpnch1nJ2dKSws5PLly3/DJyv+61JTU7l8+TJRUVFcuXKF8+fPs2jRIpo2bVrp/PR76M57D4uOjmbVqlWcO3cOQ0NDmjRpQp8+fZTu3hcuXGDmzJkMHjyYgQMHYmpqSkxMDNOmTSMqKoo6depQu3ZtvL29OX36tLLdWrVqARAbG6u8fnV0tYDnzJlDQEAArq6u3L59m8zMTEpLS7l37x5du3ZVgg6lpaV8/fXXZGRkYGlpyY0bNwgPD+f999/nq6++4qOPPqK0tJSCggKCg4OZMGEC7u7uaDQazMzM6NGjBz169Pjdn5sQT5LAwECWLl2KpaWl8piNjQ2GhoaEhIRgZmamPJ6ZmYm5uTmmpqbo6emRn5/PrFmz2LlzJyqVCkNDQxYsWMDTTz/N2LFjMTAwoGHDhmzduhUHBwfeeeedf+MtCvFEkYChEOKRVlRUxNKlS9mwYQN5eXk8ePBAWVanTh2GDBmCi4sLDg4OSi2xsrKyKjVOKt4Y5efnc+XKFVJTU/Hy8iIsLKzSax45coTJkycTEBDA+++/T25uLjt27ODNN99EX1+fjh07YmFhgUajITc391f3v+LNmLOzMzY2NkrjEwsLC8aOHcudO3eUDsjOzs7k5eVhZWVFSkoKBQUFJCQkMHLkSNq1a8cLL7yAkZERmZmZbNy4EXt7eyX78ZNPPmHNmjX8+OOPREZGYm1tTa9evRg+fLhy4darVy969eql7JNKpao0DVKIf0JKSgoxMTHcuHGD0tJSGjZs+KudP3UZwdVNU3o4Uzg7OxsbGxu++OILnJ2d6d69O9nZ2XTp0oXWrVuTkpKCj48PNWvWpKysjFWrVnHixAmmTp1KmzZtUKlUvPPOO7zwwgvMmzePwMBAvL298fX1Zfz48ezbtw9PT08MDAyoU6cOoaGhqNVq9PX1efnll+nQoQMJCQnExsaSnJxMSkoKa9as4f79+0qGk7GxMTExMfTu3Ztu3bqxY8cOPvnkE6ytrbGysiI5OZk5c+Zga2urBCZcXV158OABFy5cAH5u+uDn58fGjRuVbCwpAv9ku3z5MuvXr+f06dOkpqZSUlKCubk5rq6u+Pr6MnDgQGVAqGImfcW/Q+WBtJKSEuLj4zE3N2ft2rUcPXqU5s2bM27cOC5fvsykSZMoKyujY8eOFBUVsWvXLrZt28YXX3xB/fr1iY+PR19fn759+ypBO1dXV5o2bapk6RsZGeHm5kZ+fr5SP9fGxoawsDCOHj1Kamoqbm5ulfZLN43/8uXLXL16Vcn89/HxISYmhtu3bxMUFISvry9r1qzByMiIGjVqcOrUKQ4dOkTdunU5d+4cGzZsIDw8nJ49e9K4cWN++uknjI2N8ff3VzJ7tVqtTCMW4iG6cgT6+vrKcalSqSp19obyAa/S0lI++eQT3Nzc6NmzJxcvXmTq1KksX76ciIgISkpKmDVrFlu3buX1118nPDyc+/fvs3v3br788ks8PDx4+umnlW3XrFnzH3+/QjyJJGAohHik6enpYW1tTevWralduzZBQUEcO3aMBQsW0KFDB0aMGFFl6mHF7otxcXEUFBQoQcFNmzaxcOFC7t69i4WFBSUlJbRo0YIZM2agUqkoLi5m0aJFuLu7M2PGDKVe3wsvvECfPn1YtGgRLVq0wNfXFyMjI+Li4n61O+m6des4e/YsY8aMwdPTEzc3NxITEykuLiY6OpqbN2/y8ssv8/TTTyvP+emnn7h16xaWlpakp6cTGBhIt27dWL58OadOncLFxYWEhAQMDQ2ZMGECoaGhaDQagoKCmDJlCpmZmTg4OCjTkIX4NxUWFhIZGUlUVBTnz5/nzp07lJaWYmFhgbW1NRkZGaxZs4YBAwbw2muvVbuNX8sI1tPTIzo6miVLlnDq1CmsrKx46aWXmD9/Pm3btqVFixao1Wrq1KnDgQMHePvttxk0aBBQHiDZvXs3nTp1onv37kB5ECI7OxtXV1eOHj3Kjz/+yIsvvsjbb7/NsmXLOHv2LIcPHyYvLw8oD3yMGjWKPn36YGhoiL+/P8HBwcr2tFotL730EmfOnEGr1eLu7o5arVaaLTRp0oTZs2czceJEnnnmGTw9PUlPT8fGxoZZs2YREhKivM6yZcuUm6WK3WJ1gyXiyaUbFEtISGDDhg14eXkxe/ZszM3NcXJyQq1WY25ujrGxcZVzg+67pNFoSElJQV9fXwmUAZw7d47hw4fTsWNHbty4QWhoKD4+Pmi1WhYtWkROTg6ffPIJ/v7+mJiY8Pbbb9OrVy8++ugjVqxYQe3atTE1NeW5556jVatW2NjYYG5uTt26dQkODsbc3LzSa167dk3JrO3Xrx+XLl1i1apVjB49ulLZEZVKxaVLlzh58iTt2rVTgpF16tRhy5YtXL16lbCwMEaPHs3SpUtZunQpUD54N2TIELp06UJcXBwuLi7KNp2cnJTaxBXJVEchqvqlAaqYmBj27t1L79692bdvH7Nnz8bAwICTJ0/SuHFjjIyMcHFxwcDAgKysLADu3LnD9u3bGTt2LEOHDlW2FRERoTQQ69KlCx4eHpiamqLRaKrU/hVC/PUkYCiEeKQZGxszaNAgtFothoaGGBgYYG5uzoIFC5QafxUvWNLT0/nwww/p3r07S5cu5cqVKzRv3pwlS5awb98+Jk2aRPv27enTpw8GBgacPXuWhQsXYm5uzvjx48nJySEqKor58+fj5OREYWEh169fJyUlhaKiIuLj44mNjSU4OBh3d3dOnjxJ//79lWmGFTMyjIyMuHz5Mj/88AN9+vTB09OTmjVrcvToUe7fv4+5uTnW1tb8+OOPNG7cGFNTU06dOsWKFSswMzPj2rVrbN++ncDAQEaPHk3z5s3ZsWMHpaWlNGnShKZNmypdUXVB0upGdoX4N5WWljJt2jQAnn32Wby8vHB3d1e6lN67d48PPviAxYsX06lTJ2X6vC4Aogv8X7t2DWNjY1q1alUp4JGcnMz06dPJzMxkxIgRFBYWsnbtWgAePHhATk4ONjY2eHh4cPnyZerWratkNd24cQOtVktsbCxjx45VspKKioqws7MjLCxMqd3ZokULWrRoQXZ2NlevXqWsrIw7d+4wa9YsvvzyS/r06cPu3bv57rvvmDZtGl5eXjx48IC4uDju3LmDWq1GT08PJycnLCwsiI6OBsqP2R49elCvXj127NjBvXv3CAgIIDw8XMka1Hk4G1oIHd25JzAwEBsbG9RqNV26dPldzz1//jyfffYZp0+fxsjICAcHBzp06MCoUaMwMTHBx8cHMzMzdu/ezdKlSwkPD8fIyIisrCwOHjzIlClTlMB2Xl4e9+7dw8nJiTNnznD58mXq1avHu+++y4YNGzh+/Dg5OTkUFhYC5VlCEyZMoHHjxsq56+LFi0rAsFu3bly8eJEVK1agp6fHc889pzQJio6OZsGCBWg0Gnr27Im1tTVQns304MEDpfxHixYtCAoKIi0tDRcXF2xsbJT3rmtIJIQo90vNwR6Wnp7OxYsXSUpKwsHBgU6dOimZ76dPn2bx4sWEh4fTvHlzvLy8GDNmDA0bNmTKlCk4OjoC5QNeusGzS5cuUVhYSEBAAPHx8Zw7d47o6GiSk5OJj4/HyMiIlJQUvLy8cHJyUsr2SMBQiL+XBAyFEI8MjUajTG2oGAR8+GJAdxN98+ZNoPLIv76+Pnv27OHUqVM0bNiQV155BVtbWwCWLVtGWFgY06dPV7ovNmrUiMzMTDZv3szAgQOVqcKffvopH330Eenp6ZSVlWFlZUVQUBCNGzfGzMwMQ0NDOnbsyOLFizl69CiDBg2qNBXayMiIO3fusG/fPurUqUPdunWB8mLou3btIiUlhWbNmvHss8/yySef8Nxzz2FpaUlxcTHt2rXj2Wef5auvvlIKOZubm9OkSROaNGnyd3z0QvxuycnJlJWV4eXl9bvWt7S0JCQkhMTERIYPH15tl+3Ro0fz3nvvsXPnTnx8fFCpVOjr6xMTE8OsWbOIiorC3NwcjUaDu7s77777LuHh4QBs3ryZy5cvM3v2bLp27QqUBxneffddbty4wb179/Dy8sLX1xdjY2MlMxDKb4asra25cOECrq6utGzZksDAQDw9PXFwcKCsrEypt5SZmcmlS5do1apVpenThw4d4sSJE2i1WpycnDh9+jTDhw+na9eu6Ovrc+7cOQoLC5WgqUqlonnz5uTm5lJYWKgEL93d3RkxYsSf+BcRTyLdVEAo/x7rzoNOTk44ODhw48YN4Ofp/Lp1H+5kHBsby+TJkyksLGTs2LHY2Niwf/9+vvzySzIzM3n33XeVbeoaAum+szExMZiZmfHDDz+wZ88erl+/TkZGBmVlZXh6etK4cWPlnNi3b1/69u1LWloaN2/exMjIiPPnz/PRRx+xYcMGGjdujIuLC/b29ko9Tl0N39deew1jY2OWL1/Opk2bCAoKIi8vj7i4OFxdXfnoo49o3bq10jCoQYMGHDp0qNJvja2trXItIMTjSDdonZiYyPjx4wkICGDSpEnKcfGwsrKyast8PNwcTDcAXtHy5ctZuXIl+fn52NjYcO/ePVauXMnSpUtRq9XUqFEDExMTbt++TYMGDahRowZeXl7cvXtX2Re1Wo29vb3yW5WdnY2xsTHDhg3DwMBAGejz8fFh8uTJuLm54ebmhoGBAd7e3kp5HysrK2n2JcTfSAKGQoj/twcPHvDtt99y7tw5Fi5c+Ke3U/EC5ZdO/lqtFmNjY5ycnEhNTeXu3bvY2dkp66vVaoKDg7l48SIvv/wyderUASAjI4PExESefvppioqKOH/+PBcvXuTmzZscOXKEwsJCYmJiqF27Nubm5pSWljJ06FCcnZ3x8PDA3t4elUrFvXv3lClR3bp148SJE8ydOxdnZ2fatGmDVquluLiY27dv8/HHH5OVlcXbb7+tBCi9vb0pKiri+vXrNGvWjKFDh1KzZk2io6Oxs7MjNDQUPz8/9PX1+fDDD//0ZynEX6Vi/c979+7RpUsXhg4dyhtvvFHlJkQXxNAFJXTlAjw8PIiOjiYtLQ0nJyel06ouyB4YGIiTkxMpKSlKZkNSUhITJkygqKiIWbNm4e7uTmxsLKtWrWLKlClKfcHLly/j6+urBAuhvK7f4MGDGT9+PBkZGQAEBATw4MEDsrOzlfXs7OxQq9VYWloya9YsZbqm7rdn1qxZqFQq3nzzTbZv386sWbOYNGkSDRs2RE9Pj3PnznHgwAG6du1KSUkJ4eHhLF++nPXr17N3716Ki4sJDg7mpZdeUjouA7z11lvVftYVMzsq1oQSTzbdYFrFwOAvTQW0sLDA3d2d69evK7UAf+179M033xAfH89XX32lZPX16tWLiRMnsmHDBlq3bk2HDh1wd3dXzrkVM/RsbGyIjo6mbdu2hIaGEhAQgJubGzY2NpSUlCjrxsfHk56eTkREhBLI8/f3Z8uWLaSlpQHg6OiIr68vx44dY8mSJfj4+NCxY0fUarUyzXnPnj0kJCTg4eFB//79CQ8PV2ob6n6PjIyMqh2YEOK/quI1cWJiIufPn+fy5csYGRnRtGlTmjRpoiw3MTEhOTm50oCCbhsVa/7q/v/w9XZiYiI7duzg8OHD5OTk4O/vz+DBg2nQoAEGBgacPn2aRYsW0aVLF/r27YuJiQk//PADa9as4fjx43Tt2hV7e3ssLCy4fv26ck6rWbMmJ0+eJCUlBVtbW8zNzfHy8iIhIYGioiKcnJzQ19enQ4cOTJgwQfn9sLS0JCsri3PnzpGTk4O7uzu+vr5cuHBBKR8i50oh/j4SMBRC/KLfO2Knu/FXq9VV6onoAgi/FgxMS0vD0dGRkydPsmrVKuLj43F3d+eFF16gYcOGlYISGo0GQ0ND5cIjNTW1UsDQwMAANzc3EhIS0Gg0yvNu3bqFWq1myZIlfPnllxgYGODo6Iinpyd9+vTBy8uLiIgIysrKsLGxwdTUlOHDh1fa11u3bjF+/HhatmzJqFGj8PPzY9q0abz11lu88sorhIeHEx4eTlFREadOneLmzZu8/fbbSi0zKM8w/OCDD2jVqhVQPpIbERFRKZggxKMiLS2NEydOKHXH1Go1y5cvx8nJqdqpSr8UxAgICGDHjh3ExsYqUxcf/m25d+8egBJcP3LkCCkpKXz99dfKc0JCQqhduzYDBgxgx44d+Pv7k5GRoWyrYj3Thg0botVqldIFuvpmt27dUl7TwsKCFi1a8OOPP7J582aGDBmiLDt79iwrVqxg8ODBlJWV8fTTT3Po0CFmzJiBt7e3Enxs3bo1b731FiqVirKyMiIiIggNDcXY2PhXp3OVlpZWCgDpPhNprPD4yM/P58svvyQgIIDOnTv/oSyYiutW9524du0au3fvJjk5mbCwMHr06KEMZnl7ewNw/fp16tSpw5kzZ4iJiSE2NpajR48yY8YMOnfuTE5ODleuXCE8PJx69eoBP2cT9ejRgx9++IEDBw7QoUMHatasyaVLlyoF3F1dXTExMcHR0ZFZs2ZRXFyMoaEh+vr6ZGZmMn/+fOrVq8egQYP48ssv2bZtGx9//DE1atRQmqPEx8fz9ttvA+XTg19++WXee+89li5dSqdOnejYsSNQPnWxVq1aSufkh0nAQDwuqvud0P39iy++4LvvvqO4uBi1Wk1eXh7ffPMN4eHhzJs3D1tbW5ycnPDz8yMxMVE5Jz7cNOz27dskJCSgr6+vZMzrBrznz59PTEwMdevWRa1Ws3fvXp5//nkWL15M8+bNOXbsGBYWFvTu3Vs5N9esWZP+/ftjZ2cHlA8kuLq6cv36dYqLizE2NiYkJIRdu3Zx584dQkJCUKlU+Pn5sWvXLjIyMvD398fW1pb09HSlMZPOmTNneOONN5g8eTL9+vWjZs2aFBQUKAOCQoi/jwQMhRBVREdHExcXR+/evX/X+kZGRgwYMACNRlMpWPhw99K8vDwKCwsr1Qw6cOAAL7/8MsOGDSM1NZUHDx5Qr149jhw5wqhRo5g3bx6tW7eulOUE5YG3I0eOkJycTEhIiDKSClCjRg0OHTqkdEwEsLa2xtjYGBcXFz7++GPMzMyUEU59fX0uXrzI/fv3CQgIoH379nz22WesX7+e/v37o9FoyMnJYcWKFURHR/P6668r2/X392fRokXs2LGDo0ePsnXrVkpLSwkMDOS5556jbdu2laZyWFtbM3jw4N/3DyHEX+zXGvRUpDveli5dyv79+/H19VUyhRo0aFDtc/Lz8zl//jznzp2jqKiIFi1aKNOGdcG6a9euAT8HFg0MDMjPz+f777+noKBAyXAqKioiJiYGExMT6tSpw4ULF4iNjeXy5ctcuXKF0tJSTpw4wdixY7GwsCApKUnZHpT/9jg7OyuZFsXFxbi6umJpaUlSUlKlqcBPPfUUO3bsYMaMGVy5coWIiAhyc3OVkgBDhw5FX18fMzMzPv/8cw4ePEhMTAxqtZqwsDBq166NiYlJpd873TTmX6sFVd0UMfF4MTIyYsmSJXTq1InOnTtXCgKUlZUpx9nDgXbdzX1xcTHFxcUcPnyY/fv3U1xczKBBg3Bzc2PhwoXKd3nr1q2kpqby8ssvKxmGhoaGPP/882g0GkxMTHBycsLf359+/fop5QTu3r1LUVERZmZmSsBb9710dXXFx8dHOWYDAgLIyckhPT1d2U8XFxeaNWvGypUrOXDgAK1btwbKA/e7du1i+/btNGvWDCgvOxAdHc0777yDl5cXmZmZaLVannvuOZ599lng5wG0yMjISlmMQjzOsrOzlVrZTk5Ov1h6ZuzYsezcuZPBgwfTpUsXHB0d0Wg0bN++ncWLF/PSSy+xaNEinJyccHFx4cKFCyQnJ+Pt7Y2enh7379/nm2++YePGjaSnp6Onp6cE/oYOHYqLiwsbN27k+PHjjBs3jp49e6JSqejatSvr16+npKQEKO9Cnp2dzeTJk+nSpQsWFhaYmpoSEhKiZPaamZnh6elJdHQ0BQUFWFpaEhwcDKDUFjUwMKBGjRpkZ2eTmppKo0aN6NOnD59++ikff/yxcq0cGxvLrFmzUKvVykwCFxcXHjx4wI0bN2jRooUMGAjxN5KrVSFEFZ9//jmZmZl069atSgDwl6bL6W6QK9LT0yMhIYEvv/ySAwcO8ODBA3x8fOjcuTPdu3fH0dERS0tL6tSpwzfffMOAAQN45ZVXcHR05MiRI4wePZrt27fTunXrKtOwgoKCgJ/rGFYUEBBAYWFhpRsbR0dHfHx8SElJwdnZudLoZW5uLq+//jqNGjVi3rx5PPPMMxw4cIBJkyZx5MgRgoKCuHHjBnv37uXZZ5+lYcOGlV5PV3ts4MCBmJubS4aQeOScOnWKkSNH8vrrrzNs2LBq16lYz0gXgHd0dCQjI0P5HdBqtZSUlBATE4OLi4tyc5Cbm8vcuXPZuXOn0nH022+/pWvXrkyfPh0/Pz8MDAxISEgAyrsh3rhxg/j4eM6ePcuZM2d48cUX6devH1De7CgnJ4fMzExCQ0OVDGZd46ABAwbg5uYGgK+vL6dPnyYxMVEJhOjp6ZGUlKTUUMrNzcXOzg5PT09SU1PJzc3F1NSU0tJSjI2NmThxImvXruXo0aNs374dAwMD6tevz2uvvVapVqOpqSmdO3f+3V1UJWPwyaUbQHN1dSUrK4ucnBysra0rTdnXnc90wUNDQ0Nl+RtvvMHt27cJDw/n+PHjmJqaEhcXR1RUFFqtlgYNGrBgwQIMDAyYN28emzZtolmzZkRERODp6YmRkRE1atRg1qxZQPn0e139Xd131cLCAktLS6WGWMUMJGtra0xMTJRlNWrUACpn6JqamjJ06FB2797N2LFj6d+/P3Xq1OHGjRusWLGCtm3bKhmC7u7urFu3jt27d3P79m1cXV2pW7euUqe3IgkWisfJwxmDP/30Ez/88ANnz54lISGBgoICTExMUKvVFBUV0aBBA2bOnFmpI/j333/Pjh07mDhxIoMGDaq0/VGjRnH37l327t3LnTt3cHJywtvbm5KSEuLj45U/f/XVV3z//ff06tWL8PBwcnNz2bRpE8uXL8fT05OBAwdSUFBAXl5epcGD4OBgJZMQoGPHjuTm5rJw4UKWLFlCQUEBUH7erlWrFosWLUKtVuPt7c3+/fvJyclRBiwAUlJSgPKAoZeXF1qtllu3bqGnp8fzzz9PVFQUX375Jfv378fGxoZbt25hbm7O/PnzlXuNgIAAFixYQP369SVYKMTfTAKGQogq3n///UoNPHR+7eY3LS2Njz76CD8/P0aOHAmUT3mYPHkycXFx9O3bFxsbGw4cOMDcuXO5fv06M2fOxN3dHTMzMxwdHRk2bJjSOa127do0aNCAmJiYShdbuv/rOqnqAhAVMzR0NyC6qYhQHtDs27cvO3bs4MMPP+SDDz7AxMSEu3fvsmTJEjIzM+nbty9QfrMyf/58IiMjOXToEKdOncLd3Z2XX36ZQYMGVSn+rGNlZfX7P2Qh/gG6Y8fb25spU6ZUmc5X8diqbjqxiYkJZWVlTJgwAXd3dyZOnMjZs2d5/fXXmTZtGv369aO4uJgvv/ySDRs2MGbMGLp06YJGo2Ht2rWsXbuWp556irp16+Lg4MDp06dp2LAhubm5qFQqiouLARg+fDivvvoq8HN2o7W1NYaGhowfP17pIm5paYmlpSXXrl3j7t27AHTo0EG56Rk/fjzGxsaUlpaybt06srOzuX//vlLr1M3NjaNHjyplEHRTtfz9/Zk4cSLx8fHo6enh5eX1qxmAunIHDzeQEEL3/dWdK318fLh58yaZmZlYW1srx9vZs2dZu3Yt58+fR6VS0apVK3r27Ent2rWB8nOcbqreSy+9RNeuXTl16hRTp04FYMSIEcrU4969e/PDDz8QHx9PREQE3t7emJubU1BQoGT3VketVuPv78+OHTu4ffu2EuyH8kZbt27dwsnJieLiYjw9PTE3N+f27dtK6RGtVourqytz585l7dq17Ny5k1WrVmFhYUGnTp147bXXlExeKD9H6gYFhHic3blzh/v37+Pp6amU2dCdb7dv387atWtp3LgxY8aMwd3dHbVajaGhIXv27GHFihV8/fXXjBgxQpkRsGPHDnx8fGjRogXwc/kNXUOT1157jYkTJyqv7+Pjg4GBAbGxsbRt25aoqCi++OILunfvzrhx45T1QkJC6N69O1FRUQwcOJBmzZoRGRnJpEmTlM7kHh4eyjV506ZNMTU1ZciQIQwaNIgrV66QnJxMfn4+165dY+XKlSxZsoT33nsPLy8vCgsLuX37Nv7+/lhbW2NtbU1qaioFBQXKtb++vj5XrlxRmhx99tlnHDx4kAMHDlBcXEzHjh1p0qRJpd8yGxsbZTBCCPH3koChEE+46moM6roQV6TVarlx4wZHjx7l4sWLGBkZKSdxlUpFXl4e58+f59atW0rAcNu2bZw8eZJZs2bRvXt3DAwMGD58OLNnz+abb76hadOmdO3aFUdHR+Li4rCzs1NutiwtLfHx8eHs2bNkZWUp3Q11N1u6KVfJyclVOrg5OTlhZWVFUlKScgGi1WqJiIjghRde4JtvvuHSpUsEBASQlZVFYmIib7/9tpI5qOsAO2bMGJ5//nkJBIr/LN0NipOTE927d//FukipqancvHkTExMTpbD52bNnmTVrFgYGBqSnpxMWFoaenh7+/v4YGBhUqmW2bt062rZtyyuvvKI89tZbb9GzZ09q1qyJgYEB7u7upKWl8corr9CwYUOsra1JSEjgm2++4YcffsDAwIDnn39eOdbr1KnDxo0blTpHFS1fvpxz586xaNEiIiIiGDp0KF988QVXr16lbdu2xMfHc/XqVWrXrs3Nmze5f/8+AK1bt8bGxgZ7e/tK71/3Z10Wle6ze7isgo5kDT65dOfMX2pKU7FBkK2tLaGhoZw6dYo7d+4o3+OzZ88q3Uu7dOlCRkYGa9euZfv27Xz44Ye0bt2asLAwAGrVqkX//v0BlPqY586dw9nZWQkW6AYCdJk7Tk5OuLq6EhMT86vvRXcej4yMZN68ecycORMjIyNyc3PZsmULycnJPP/886hUKlQqFVZWVkRFRZGdnY2joyN6enqUlZXRoEED6tSpQ0pKChYWFpUCj0I8CQoLC9m+fTs7d+7kwoULQHmWro+PDz179qRTp05K8K9OnToYGBjQokULhg8fXmk7ISEhXL9+nX379tGtWzd8fX2JjY0lLi6O8PBw3N3dKw3o6wa2rK2tAZTfBE9PTywsLJSSAs7Ozrz11lt06NABKC8hEhsbS2RkJGVlZcpsnYCAABYuXMimTZu4ffs2ycnJREdHc+LECRYvXsxXX31F06ZNSU9PJzc3l6CgIGXGD8DOnTu5d+8epaWluLq6Ym5uTmJiIqWlpRgZGeHo6MiFCxdIT0/H29sba2trwsPDcXBwUH47VSoVHTp0UPZVCPHvkoChEP9BFacO/n9VdzNcUFDAgQMHMDc3V5pzXLhwgffee4+SkhKcnZ3Jyclh69atDBgwgA8++ABbW1uCgoKIjo5Gq9WSm5vLjz/+iK+vL7169ar0eqNGjWLNmjXs3buX7t274+XlxY4dO8jOzlaCcyqVCg8PDx48eKB0VKv4/vX19fHy8iI1NZX09HSlS6KuJou3tzcpKSnk5OQoWVIGBga88cYbtGjRgh07dpCUlERQUBCjRo2iUaNGyoVXxfpqEiwU/xW/1Em1YrHz3NxcpW4nwL59+/j000+5ceOGMp2+QYMGzJ07l+DgYNavX88zzzxDUFAQr732mlIL1MzMjISEBB48eEBaWhrFxcWEh4crv01arVapaaTj6+vL2bNnCQoKon79+mg0GmrUqEG9evWYMGECy5YtIz8/nzFjxmBra0ujRo0ICwtj8eLFODg4EB4eTn5+Prt27WLTpk306tVLmeL00ksv4ejoyMaNG1m0aBEODg688sormJmZ8eabbyqZjE899RRPPfXUr36OFT8vmer0eCgtLeXu3btKkOuPqFiGo+L/q6PVavn2229ZtmwZaWlptG/fXmkEkpCQQNOmTZVmIFlZWXz99dd4eXlhamrKiy++yMCBA5k9ezatW7dWgte6aYlarRYTExN8fX3Zu3cvBQUFqNVqoLxZiKmpKcnJycogma4zeWpqqjJ9vzotW7akf//+rF+/nri4OJo2bUpOTg579+6la9eulbJ4nnrqKeX419H9xpiamirHoxCPq6SkJL766ivCw8Pp1q0bAPfv32fhwoX88MMPhISE8Oabb2Jra0tCQgI7duxgwoQJZGVlKcFBFxcXVCqVMt0fys/fuox1Pz8/4uLilABjSUkJWVlZSqmQijW7H6b7fXJ1dcXW1pbk5GQAPDw8eOGFF0hLS2P27NmcPn2aO3fu4O7ujpubG7dv31Z+O/z8/HjrrbfIy8ujuLgYW1tbzp49y6hRo9i8eTPNmjVj0qRJXLt2jVmzZlGjRg1ycnLYuXMnmZmZhIeHY2hoiIWFBaWlpZw/f56+fftiZGRE7969uXfvnnJtbWdnx7Jly/7afyQhxF9KAoZCPOJSUlK4dOkSFy5cICYmhvT0dKytrWnWrBmdOnWqlBGjo6uH9Fv1s+7evUtUVBQJCQl4enrSsmVLVCoVqampjBs3jpCQEFq1asW9e/eYN28e+vr6LFiwADs7O/Ly8vjiiy+U4sVWVla4ubmxd+9e0tPTcXJyIi0trUqmgVarxcrKCnd3d+XmRjet6ubNm3h6eio37C4uLujr6xMXF1cp8KALGNauXZtdu3YpN0QVR13t7Ow4d+4cWVlZSkdXXTBF181YiH9TxY6+v9evdVl9eFs5OTkcPnxY6dK9bNky5s6dy7Zt2/D39ycpKYnp06dTo0YNXn31VSwtLdmzZw9r166lbdu2dOnShdDQUHx8fEhPT1cKnuuaKiQmJlJUVERBQQEqlYrc3FzlZkUXNNQFKS0tLZWpltevX6dZs2ZKPURbW1umTp3KnDlzWLduHRqNhmnTpuHn58eYMWMYN24cr7/+OqGhoQDEx8fTunXrStOqLCwseOaZZ+jatStWVlbKZ7F582ZKS0srDThU1524IgkS/rdVPGdeunSJmzdvUlxcjLW1NW3btmXgwIF4eXlVaqSlC7ZXd858uHHXqVOnuHLlClZWVrRp0wZ3d3fluTt37mTevHnUr1+fUaNGce3aNTZu3EhpaalS+y8nJ4effvqJkSNHEhgYqGzb39+f4cOH89lnnxEVFUVYWBimpqZkZ2crzYr09PSUwbGEhATc3NyU3xEvLy9SUlLIzMzE3d1dqb159epV5fz4S81Vxo4dS1hYGNu3b2fLli2o1WoGDx7MwIEDlaAkwJgxY6r9zOWYEY+TlJQUbGxssLCwUI4R3fHz/fffs2HDBqWZD5SfW9etW8crr7zCgAEDKp2Dhg4dyptvvsns2bPx9fWlRYsWODk54ejoyNWrV5Vt6NZPSkrixIkT+Pj4KIF+R0dHSktLKSwsrLRudXTHuJWVFa6urly6dIm8vDwsLCw4f/48kydP5v79+7Rp04bGjRvTvn17Jk6cSGRkJMnJyfj7+7N582Zyc3N55plnlAELJycnjIyMlMGCHj16MH/+fMaMGUONGjXIz8/n1q1bPPfcc8o1h6urK/PmzcPLy0t5nq7BkRDiv0MChkI8ohISEnjxxRdJTk7G2tpaadpRs2ZNkpOT+eyzz1i3bh2TJ0+mXbt2lW4Gquu6+LDjx48zdepUsrKyUKvVpKenExoaysKFC/Hw8CAoKIi8vDygfKrDhQsX6N27N76+vhgbG+Po6KgUU4fyCxgPDw80Gg03btzAyckJExMTCgsLSUtLU5ojaDQaDA0NcXV1JSkpidzcXNzc3DA2Nubq1au0bNmy0jRKW1vbShdVFfn4+FBaWsrVq1erBADff/99DA0NldcFuakRj4aSkhJeeeUVEhMT2bVr128GDSse27rvcHWBw3379rFx40aSk5Np3rw5UD51NygoCB8fH6WRQGJiIv7+/hw+fJj8/HxeffVVJSDfuHFjevbsibu7u7L9mjVrcvToUW7duqVM5fX39+fMmTNkZWVhbW1d6TjVarXKcX7mzBmWLVvGpEmTlOCIboqUnp6ektXr6OjIm2++ya1bt/juu+8oKipi5syZNGnShO+++47IyEiioqKwtLSkW7dutGjRolIQMDo6mtWrV/Pqq6+iVqspLi4mIyODdevW4ezsXKkzu3QnfjxVd8709fWlYcOG6Ovrc+bMGVasWEFqamqVhgK/dgwmJyczZswYhg8fzvnz5/nxxx8xNDTk9u3brF+/nmXLluHs7ExRURFLlizB3d2d+fPnK9tv0aIFzz//PKmpqWg0GlJSUtDX1ycoKEg5jnX/DwoKQqVScfnyZcLCwvDx8SE1NZV79+4pg2/Ozs7K+bJp06bKQFmtWrX48ccfSU9Px93dXanle/HiRdq0aVNtwFD32lZWVjz11FN07Nix2gZmQjwpPv74Y5YuXUqnTp2YOHEitra2SlA+OTmZnTt30qpVK2W6bExMDCtXrqRly5a8/PLLlbal0WiwsLBg8uTJHD58mMaNGwM/lwyIjY2lqKiIwsJCbty4QXR0NIcOHSI5OZkPP/xQ2Y6TkxOWlpaV6odWp6SkhOTkZIyMjPDw8MDT05MTJ05w48YNQkJCWLduHSkpKSxevLjSNXNJSQmlpaVcv34df39/jhw5wo4dO7hy5Qrt2rXjwYMHbNiwgdLSUtq3bw9Aly5dqF27Ntu2bSMxMRE3NzfCw8OpW7eu8htiaWlJu3bt/rp/HCHEv0KumoV4ROm6KdaqVYuPPvoICwsLzMzMUKlUGBsbc+nSJUaOHMm0adPw9vZWMg01Gg0nT55k7969SsZev379CA4OVgIA8fHxjB49Gm9vb8aPH4+7uztRUVG89957zJkzh6lTp+Ls7MyJEyfIyMhQpgOuW7eO2NhYPDw8lKlRuo6MZmZmygjk1atXiYiIICgoiL1795KcnIyTk5MSRACUjA9zc3NsbGxwcnJSAgk6tra2WFlZcfr06UqP6256unfvjrOzMy1btgQq3/T92hQsIf5NhoaG6Ovrk5aWRnZ2NnZ2dr+6vu77np2dzZ07d7Czs6sUAAPYu3cvkydPxtXVlSZNmnD06FEl+zcpKQkfHx+cnZ0xMzMjJiaGdu3aoVKpKCkp4dNPP6Vfv36o1WrKysqoVasW1tbWylTMkJAQtm/fzu3bt5XAYq1atdi1axe3b9+mQYMG1K1blyNHjnD16lUCAgKU4zwqKorTp0+jr6+Pu7s7lpaWJCYmVnpfOq6urnz66aeMGDGC+/fvk52djb29PS4uLowaNepXPyMzMzO2bt3K0aNHefrppzEzM1Pqxr399tu/+RmL/77qzpnm5uZK/b2ioiKmTp3K9u3bOXDggJIFk5OTw+nTpzly5Ajx8fGYm5vTqVMnunXrhkqlwsHBgStXrrBo0SKMjIyYNm0aXl5eHDt2jGnTprFs2TLefvttCgoKuHnzJiNHjlSChSUlJTRp0oRatWqRmppKXl4eKpVKOf4fDvpbWVmhUqlIT08HyuuJ7du3r1K2voODA/b29kqAXreN0NBQNm3aRFJSEvXq1VMGy3766Sfgl6dSV9wHCRaKJ92wYcMoLS1l2bJlmJiYMHXqVCVAd/ToUVJSUnjvvfeU9WNiYigsLFRK71QMzOtmtri4uNCnTx+l1rYuS//kyZO0bNmS+/fvY2BggJ2dHU5OThgaGvL888/z1ltv0b17d0xMTKhVqxZRUVEkJyfj5+dX7aDh6dOnmTp1Kn379uXFF1/E09NTGcQPCQnh3r17ODs74+npCZSXHzp48CCHDx8GygfeunTpwuuvv45arebAgQPs3buXwsJCatSowdSpU5XBSABvb2+lWZkQ4vElAUMhHlGWlpY4ODhw+/ZtfHx8qlzsBwUFMXfuXJ599llWrlypdE7cvn07n3zyCWq1GldXV44dO8Z3333HhAkTGDRoEIaGhqxfv57i4mIWLFiAh4cHAH5+fjg6OioXEu7u7hQUFJCQkICDgwNTp07lyy+/5MKFC5w7d47MzEylLtiLL77I2LFjcXFxQa1Wc+XKFaC8wcAPP/zAxo0blUYKAFu2bOGnn35SbuwtLCxwcHDg3LlzwM83MGq1mtatW1NaWlolgxLKa7Lo9l+I/wpdJtGhQ4dISUn5zWDW5s2b+eKLL0hISMDExISaNWvSr18/OnfujJmZGffu3eOTTz7BycmJefPm4ezsDMAnn3zC119/zYULF2jZsiV2dnaVpkF17NiR1NRUli5dytGjR4Hy2qG6+oFvvvkmTk5OylRiXS0kKA9klJSUkJKSQkREBAMHDmTTpk3Mnj2bN998EwsLC6Kjo/nyyy9p3LhxpUzf8+fPK7WSHmZvb8/GjRur/Rwqllqo2HCirKyMGjVq8M0337Bx40Z27NhBYWEh/v7+jBs3jk6dOv3efxrxH/Zb50xjY2MGDBhAZGQkMTExdO/eneLiYubNm8fJkyextbXF1taWS5cucfjwYXJzcxk4cCAmJiZKRvzOnTuVzD1vb2/WrVvHuXPnyMvLIz09HZVKhaWlpfKauu9oSEgIhw8fJjMzExcXF+zs7Lh06ZIy1Vg3mFZSUqLUDYPy5gi65gO6Jii2tra4ublx8eLFSq8REBAA/NzBOzg4mE2bNinnSOnmLcRvs7W1ZeTIkaSnp7N582ZUKhVTp05VyvCEhITQunVrZf3o6GgMDQ2VpnnVZfFCeYOh4uJi9PT0MDIyUkrutGnThm7duuHo6KhMZc7JyeGDDz5Q6oO3bduWNm3acPr0aQ4fPoyfn1+ladK6rMNbt26RmJjIgwcPAPD09ESlUimD8Y0bN2bu3Lm8//77tGnThsTERI4dO0ZgYCCFhYVs3LiRl156CQ8PD95//32eeuoppQmg1PMW4sklAUMhHlGGhoZ4eHgQFRVFampqlcCYrutvzZo12bNnD6+99hq5ublMnDiRdu3a8corr6BWqzE3N+f9999nzpw5+Pn50bRpU2JjY/H19VWygHTTLZo3b67cbOjqCl6/fp2GDRvi5OSkdHWMj49Hq9WSn5/PokWL2LRpE+3bt8fLywtXV1fi4+MBaNasGc888wzLly8nMTGRDh06kJmZyc6dO6lfv75Sy8TGxoYGDRqQkpJSabqFhYUFb7/99j/xcQvxj9J1NY2Li1Nq81Vn27ZtTJo0iXr16jFq1Ciys7PZuHEj7733Hnfv3uWll17i7NmzxMfHM2nSpEo1QHv27MmOHTs4f/48UB6Ad3d35+bNm2i1WqytrXn11VcZOHAg169f5/r169y9e5fExES2bNmCpaUl77//vhKI0GU9AXh5eSnTMsvKyggJCeG9995jyZIljBgxAnNzc/Lz86lXr16lqVUfffQRNjY2SjH36uimND9cZ/CXSi3oHmvUqBGhoaFoNBrMzc1/zz+DeIxUd86smIWjp6eHlZUVJiYmynlu0aJFbNiwgXfeeYcOHTpgampKSUkJzz33HFu3bqVNmzZ4eHjg4+NDVlaWEsjTBbxr1arFwYMHuXv3Lubm5lhaWlbKlNc1J/D19WX9+vWkpKTQsmVLGjduzA8//ECnTp1o2bKlci4+duwYgFIfrWLdTh1LS0s8PDzIycmpFHivW7cusbGxynq6/RNC/DGWlpbMnDmT3NxcNmzYgIODA15eXqSnpzN27Fjg57Igd+7cQU9Pj4KCAqVTMZT/RkRFRXHu3DliY2NJTEzk1q1bzJs3j5YtW+Lu7o5Go8HNzY2mTZtWen17e3teeOEFRo8ezcGDB2nbti2tWrVi7969rF27luDgYBo0aFCpq3BeXh6bN2/G2dlZaVTk4+ODWq1WuqX37t1b6YB+/vx5HB0d6dChAwMHDlSaF+lKfWi1WurUqfO3f9ZCiEefBAyFeITVrl2brVu3kpycXCVgqKtb1LRpU5YvX05aWhq7d+/G3NycSZMmVRoN7Ny5Mzt37mTXrl00bdoUtVpNdna2ctNUcSqv7s9+fn6YmJgoNz93797l/PnzBAUFKQEEKK/PdO7cOczNzTE2NsbX15eDBw+Sn5+PlZUVr7/+Ok5OTmzbtk2Z0tWyZUuGDx+uFGU3NjbmjTfe+Hs+RCEeQd7e3hgZGVW6wX9YZmYmX331FZ6enixatAhTU1P09PTo2LEjo0ePZs2aNXTv3l0JsOumKet+G9zc3KhXr54ypd/a2hovLy/Onj1Ldna2UuvP0NCQ5s2bV5pq1Lx5c+Lj43nw4AGWlpao1WoOHz5MeHg4gYGB2NnZoVKpuHDhAnl5eVhZWTFkyBAiIiI4ePAgRUVFBAcHU7duXeW3SKvVKuUDfk3F2oZ/VHVZi+LJoTtnJiUlKQFDHT09PeW7qQuknTp1ivbt21cpxO/h4cHly5e5ffs2Hh4e1KxZk9OnT3Pv3j3g5yB1SEgIW7duVTJta9SowaVLl5S6vbopiFqtFq1Wy40bN2jZsiVDhw7l4MGDvPXWWwwbNowaNWpw5swZ1q9fT//+/ZX6YjVq1MDKyqrSVGFTU1M+/PBDqckrxN/I0NCQWbNmMXr0aJYtW4ahoSEBAQE0adIEKG+eZWRkhIWFBWVlZaSmpuLi4kJpaSmGhoacO3eO2bNnk5ubS1hYGC4uLly7do24uDhatmyJq6srNjY2yjW27jdCo9FgZGSEl5eX0mkZyq8ZRo8ezYgRI5g4cSLvvPMO7u7uGBgYkJCQwDfffMP58+d5+eWXlW7lutqHumYparWa119/nYEDB2Jvb/+rtVvl90UIoSMBQyEeYbrA3LVr15SLlIfpLgyOHTumZOetW7eO5ORkLl++TGpqKvn5+RgaGmJhYUFubi7e3t7KzY9ulNPAwICsrCy++OILatWqRatWrbC2tlYyG1JTU3nttddo06YNL774IiYmJsTExPDll19Su3ZtfH190dPTw8bGhnv37pGRkaEEEYcPH0737t0xNjauVGheiCeVvb09dnZ2Vep2QuXMhatXrzJixAjMzMyU6bi2trY8++yzvPbaaxw/fhxXV1egPKMBfg76W1hY4Obmxt27dykuLsbExAR3d3eKiopISUlBrVYzbdo0pT6bg4MDWVlZnD9/noyMDJ555hklMDJ48GBWrFjB6NGjGTBgAG+//Tb9+/evFBSB8gBHdZ3bgUpTiGV6pPg76M6ZCQkJNG3aVPme5eXlceLECb799lsaNGigZPB98803GBsbk5qaypkzZzh+/DjHjx8nMzMTW1tbpQ5ocHAwJSUlyt9132VdBk5CQgKtW7emZ8+ejBs3jlWrVvHWW29RWlpKXFwc3377LRYWFsrz69Spw8KFC1mxYgVr1qwhNzcXa2trhg8fzujRo5VjytTUtEoN34qvL4T4e2g0GmxsbJg7dy5Tpkzh4MGDNGvWrNIAGEBgYCA7d+7k+vXrNGjQQHm8Xr16fPHFFxgZGWFnZ8f58+e5cOGCcs53cnLCycmJ+Pj4Shn1ut8sCwsLMjMzadSokbJPERERfPXVV7z77ruMGjUKb29v9PT0lPP5+PHjGTJkiLK+sbEx69evrzKQVrFEiBBC/BYJGArxCHN3d8fMzKzaLsG6GwZdc4/Lly9Tp04d7ty5w6pVq/Dw8CA4OJg+ffrg6+uLra0tlpaWWFhY0KBBA5YuXcpPP/1ESEhIpVHGtWvX8tJLL2FlZYWbmxtpaWlotVrq1q3LyJEj2bBhA2PHjqW4uJiCggLq169fKdth+PDhDBs2rMoFiTQdEOJnFhYWODs7k5CQoNQx09EdSxU7CAOVanjWrFlTmRIcHByMSqUiPj5eGTTQ3YDcv38fgBs3bhAYGIiTkxMGBgZcv36d4OBg6tWrx549e+jfvz+NGzemuLiYc+fO0aFDB3r16qUELoYPH650eKxTpw6mpqa888471b43rVZbqdbgwyRYKP4uusY6+/bto6CggKioKOLj48nMzCQvL4/w8HBmzJiBg4MDZWVlGBsbc/nyZRYuXMitW7dwcHDg1Vdfxd3dneeff560tDQApY5nSkoK8POxqRuwS0pKAqBbt24cOnSIr776ikuXLhESEsL58+fx8/MjJSWFa9euUVBQgJmZGeHh4dSuXZuUlBRsbGyU2qNCiH+f7rrYzs4OGxsbACIjI7G0tOTFF19UztP169dHT0+PY8eOMXDgQOVxU1NTTE1Nle35+/vj4ODAzZs3le26ublx4sQJZcBAd1198+ZNFi1aBMDTTz9dab/Cw8PZsWMHx48fJzo6GlNTU2rWrElISAj29vZV3odk3Qsh/r8kYCjEI8zW1hZHR8dqs5B0FyW6mwwDAwPMzc3R09Nj0qRJREREYGRkhJGRkTIVa8+ePbz88ss0adIELy8vvvzyS+rWrYuzszN5eXl8/vnnPHjwQGkSYGlpyenTp0lKSsLLy4vXX3+d1q1bc+nSJSwsLKhVqxb+/v6Vsh10wQ0hxC8zNDTE09OTCxcukJGRgbu7e7XrmJqakpGRoQQCddmHJiYmWFtbk5ubS82aNalVqxZbt26ld+/eeHh4YGBgQF5envLbERsbS2BgII6OjpiamhIVFUXv3r3p168ffn5+bN68mStXrqBWq3n++efp1KlTpaC/bqDhYbrpVxXp6en96lQnIf4uarUaLy8vTpw4wZ07d/Dx8aFZs2ZcuXKFmJgY6tSpo2QA6evrk5mZyfPPP4+lpSWjRo0iJCQET09Pbt++DfwcIPT29sbAwICUlBQlGK/VarGwsFCmDebl5WFhYaHUHN26dSuRkZHUqlWLyZMnk5ycjKOjY6XpxRYWFgQGBv7zH5QQ4lfpzrWxsbHs27ePiIgIcnJy+Pjjj7GxsaFfv35AeVZz27ZtOXjwIGfPnqVBgwbKb0RFd+7cISsri/v371NcXIyZmRmenp4cOHCArVu3olKpiIuL48aNGyQlJaHRaJg2bZpSnqAiU1NT2rZtS9u2bf+Rz0II8WSTgKEQjzBTU1NcXV25fPmycjOiowvSlZaWAuVTAWvXro2+vj4nTpygXbt2lbY1Y8YMcnJylNols2fPZty4cTzzzDMEBARQXFxMVlYWc+fOxcfHB4C+ffvSokULpQgylBdh/7UmDUKI36divbXqAobOzs44OzsTFRXFvXv3KmUgJSYmcvfuXaXI+rBhw5gyZQovv/wygwYNwtHRkW+//ZaUlBQMDAw4f/48vXr1Qq1WExQUVKkpSL169ahXr95v7q8u0FJxgODP1hoU4u9gZmaGtbU1FhYWfPHFFzg6OmJoaEhRURGbN29m2rRp7N69mwULFhAcHMxPP/1EdnY2c+fOrVTD88CBA+jr6ys3+Wq1Gg8PD5KSksjKysLe3p6SkhJUKhWOjo7cvXtXOUdbWVkxePBg+vXrp9QXhZ9rjAohHn2689z3339PXl4eEydOpKysjGHDhjF16lRsbGxo3749FhYWjBw5knPnzjFhwgRmzJihDK6VlpaSk5PDqVOnWLp0KZmZmYwfP155DUtLS7RaLTNmzMDIyAhXV1cCAgIYNmwYjRo1okaNGlJ+QAjxr5MrfSEeYfr6+vj4+HD8+HFu376Nv79/pa6PAD/++CNQftMfFhZG8+bNWbNmDUZGRrRo0QKVSsWaNWtISkpi5syZ2Nvbo9VqCQsLY82aNezZs4cLFy7g7u5O06ZNCQ0NVaYMtm7d+l9530I8CR6uUarRaKrUMGrTpg3Lli1j7969DBkyhOLiYvLy8li1ahUmJiZKoK9Lly4YGRmxePFiZs6cSUlJCU2aNOH999/n66+/VqZMenl5sWLFimr3R1dwXbcPD9+oyI2LeNTp6+vj7e3NsWPHKCkpUab6m5ubM3jwYEpKSpg7dy6vvvoqq1evxsjICENDQ06dOoWLi4uSjf/FF19gYGBAVFQU58+fp02bNjg6OhIfH09OTg729vZKsHz16tXV1uatGCwUQvz33L59mx07dtC+fXtcXV0xNjZm9uzZvPvuu4wbN44lS5bQsGFDgoKC+OCDD/jkk08YOXIktWrVom7duhgbG3P16lV++uknXFxcWLp0KS1btqSsrAwob0gYHh6Ou7s7Li4u//K7FUKI6knAUIhHXFBQEFCeUVRx+m9ZWRl37tzh22+/JSQkRGk0MHnyZD7//HM2b95MZGQkpaWlmJqaMm7cOLp16wb8fOPv4ODA4MGDGTx48L/wzoR4sulqlF6/fh2o3K28qKgIPT09evbsSVxcHNOnT2f//v2EhYVx/vx5rl27xhtvvEHjxo2VQYT27dvTokULLl68iJubGy4uLpSVlfHxxx8r0yB1QY7qpkz9f7oTC/Go0J0zr1+/jq+vL/Bzduzw4cMpLCxkwYIFvPXWW0yYMIGePXvy1VdfsXPnToyNjbl//z7PP/88Pj4+fP/998r5csGCBVhbW1eqJQpIIy8hHjO6c+rq1avJz8+nb9++GBsbU1JSQtOmTRk/fjyTJk1izJgxfPrppzRq1IguXboQEBDA/v37uXDhAj/++CN5eXm4uroybNgwWrdurVyn6347fH19ld8oIYR4VMmdgRCPOD8/P/T19bl48SKNGjUiPT2d9PR0YmNj2bhxIxqNhjfeeAM7Ozu0Wi3Ozs5MmTKFvn37kpSUhIuLC4GBgZWmIAoh/n26GqVXrlwhPj6eO3fucOvWLW7dusWNGzfIy8tj+PDhzJkzh40bN7Jjxw4iIyPx9fXlnXfeoXPnzsDPAwBbt27F3NxcqWuk1Wq5cuUKiYmJVQqnS41B8bjSnTPj4uLo2LEjUH6M6IKGzz//PMXFxSxevJi5c+fy9ttv07RpU86dO4eXlxf16tUjICAAIyMj2rdvD5QfS2q1+l97T0KIf46enh4ZGRns3r2bkJAQ6tevD6A0AevSpQulpaWMGzeON998k48++oiIiAj8/Pzw8/MjLy8PQ0NDaTgihHgs6Gl1V1BCiEdSeno6vXv3pqioiBo1apCYmEh2drbSZfH555+vthmBEOLRVlZWxksvvcTRo0dxdXUlMzOT4uJiAIyNjfH29uadd96hSZMmAErjk4fpsiEGDhzI+fPnefHFFwkLCyM9PZ0VK1agUqn4/PPP8fDw+EffnxD/hvT0dLp06UJoaCjLli2rtEx3rOTl5RETE4OPj4/UFhRCVLF8+XJmz57N+++/zzPPPENZWZmSGQjl5+OEhASsra0rNQgTQojHjWQYCvGIs7KyIigoiJycHGrWrEnfvn0JDg7G39+/0sWLEOK/RV9fH09PT7y9vfH29qZ3794EBwdTq1ataruN67ok6+ofPZwlOG3aNJYvX87u3btZvXo1AA0bNuTNN9+UYKF4YlhbW1OnTh0cHByq1PzV/dnCwqLa7qNCCFFcXMyxY8do3749bdq0Aahyva1SqahZs+a/sXtCCPGPkgxDIYQQ4hH0cBOUX6MLjBQXFxMfH69kKMqgghBCCCGEEOLPkIChEEII8S8qKytTsgb19fUlyCeEEEIIIYT410nAUAghhBBCCCGEEEIIoZA0BiGEEEIIIYQQQgghhEIChkIIIYQQQgghhBBCCIUEDIUQQgghhBBCCCGEEAoJGAohhBBCCCGEEEIIIRQSMBRCCCGEEEIIIYQQQigkYCiEEEIIIYQQQgghhFBIwFAI8URq27Ytbdu2/bd3QwjxK+Q4FeK/QY5VIR59cpwKIf4oCRgKIYQQQgghhBBCCCEUhv/2DgghhBBCCCGEEEII8V/z7rvvsmnTpkqPGRkZ4ejoSOvWrRkzZgzW1tZ/y2sXFxeTlZWFk5PT37J9CRgKIYQQQgghhBBCCPEnjR8/HrVaDcCDBw+Ii4tj/fr1XLx4kW+//RYDA4O/9PVSU1N57rnnGDFiBL179/5Lt60jAUMhhBBCCCGEEEIIIf6kdu3a4e7uXukxb29vpkyZwuHDh2nduvVf+nopKSkkJCT8pdt8mNQwFEIIIYQQQgghhBDiL9SoUSMArl+//i/vyZ8jAUMhhBBCCCGEEEIIIf5Cd+7cAcDT01N5LC4ujlGjRtGgQQNCQ0MZMGAAR44cqfS84uJipk+fTtu2bQkKCqJly5ZMmTKFnJwcACIjIxk6dChQPhU6ICDgb9l/mZIshBBCCCGEEEIIIZ5Ybdu2/dXl+/fv/9Xl9+/f5969ewCUlJQQHx/Phx9+SJ06dWjTpg0AV69eZdCgQdjb2zNixAiMjIzYvn07L730EvPmzaNLly4ATJ06le3btzN06FA8PDy4fv06a9asITExka+//pqGDRsycuRIlixZQv/+/alfv/5f8AlUpafVarV/y5aFeMwMODDn394FIcRvWHzJ+N/eBSHEb9AbPvzf3gUhhBDisWBj+fd0333U/BP34hkf7v7V5b8UMKyuS7KOiYkJK1euJDQ0FIAhQ4Zw584dtmzZgpmZGQClpaUMGzaMhIQEDhw4gEqlIjQ0lD59+jBx4kRlW5988glHjhxh5cqVmJubc+rUKYYOHcrMmTOl6YkQQgghhBBCCCGEEH+138og/C1z587F3t4eKM8wTE1NZc2aNQwePJgvvviCWrVqcfr0aYYMGUJRURFFRUXKc9u3b8/MmTO5ePEi9evXx9nZmZ07dxIUFES7du2wsrLi9ddf5/XXX/9/7eMfJQFDIYQQQgghhBBCCCH+pHr16lXpkty5c2c6dOjAtGnTmD17NgCrVq1i1apV1W7j9u3bAEyePJnXX3+d8ePH88EHHxAWFkb79u3p06cPlpaWf+8bqUAChkIIIYQQQgghhBBC/IXUajWNGjVi7969aDQaAAYPHky7du2qXb9GjRoAREREcODAAeW/Y8eOMXPmTFasWEFkZCS2trb/yP5LwFAIIYQQQgghhBBCiL9YWVkZAI6OjgAYGBjQpEmTSuvExcWRkpKCqakpxcXFXLlyBWdnZ7p27UrXrl0pKytj+fLlzJkzhx07djBkyJB/ZN/1/5FXEUIIIYQQQgghhBDiCZGZmcnJkyepVasWbm5uBAUFsWnTJtLS0pR1SkpKmDBhAmPGjKG0tJSsrCz69+/P0qVLlXX09fUJDg5W/gzlgUf4OSD5d5AMQyGEEEIIIYQQQggh/qR9+/ahVqsB0Gq13Llzhw0bNlBYWMgbb7wBwPvvv8+wYcPo06cPAwcOxMbGhh07dnDhwgXGjh2rPL979+6sXbuWwsJC6tatS3Z2NqtXr8be3p7OnTsDKOtu3boVrVbLU089haHhXxvik4ChEEIIIYQQQgghhBB/0syZM5U/GxgYYG1tTXBwMNOnTyciIgKAunXr8u2337Jw4UKWL19OaWkpPj4+zJo1i6eeekp5/rRp0/Dw8GDHjh3s2LEDU1NTIiIieOONN5T6hX5+fgwZMoTIyEguXrxIo0aN8PT0/Evfk55Wq9X+pVsU4jE14MCcf3sXhBC/YfEl4397F4QQv0Fv+PB/exeEEEKIx4KNpfW/vQv/iH/iXnxd63F/+2v810gNQyGEEEIIIYQQQgghhEIChkIIIYQQQgghhBBCCIUEDIUQQgghhBBCCCGEEAppelKN4uJiVqxYwfbt20lKSkJfXx9vb286derEsGHDMDb+uUZWXl4excXFSuHJP/o6WVlZODk5ARAZGcn48eNZuXIljRo1+kPbSk5OxsPDQ/l7QEAATz31FLNmzfrD+/Vb/uy23333XTZt2lTpMSMjIxwdHWndujVjxozB2tq6yvpXr179S/Zb/PcV3cvlxq4z5Ny4A4BtoDs+nRuisjD93dvIv3OP84u249EqGK+2dX9xveubjlOYmUPIi52rLCvOKyRhz0/ci02mrKQUC1c7vDs2wMrT4Y+/KSEeQ+n3c1l98iQxt24BUNfTkyERjbEy/f3HatLdu7y3aTM9w8Lo26B+pWWXU2+x4exZEu/exUylopGvL/0bNsDEyOhPbU+IJ1F6ejqrVq4i5nIMAPXq1+WZIUMqXYv9lqTERCaMn0DPXr3o93S/SssuREURGbmJmzduoK+vT40a/vQf2B9/f/9K6+Xk5LD+23WcPXuOkpJivH18GDR4UJX1hHgS/dvHaUZGBq+OGv2r2/9g0kTq1KnzB9+ZEOK/QAKGDyktLeX5558nKiqKXr160b9/fzQaDWfPnmX+/Pn8+OOPrFy5EpVKxaVLl3j55Zf56KOP/nCALzU1leeee44RI0bQu3dvABo2bMicOXPw8/P7Q9uaOHEiN2/eZNWqVcpjc+bM+cs75PxVxo8fr7QAf/DgAXFxcaxfv56LFy/y7bffYmBgAED//v2VbkJClBQ8IHrZD2g1Zbi3CEKr1ZJy5BL5d7IIe6Ub+v/73vyaMk0ZV78/ilZT9qvr3Tl7jTtnrmHt41RlWemDEqK//IHi3ALcmtbG0MSYWyevcHHZD4S93A1zZ/Wffo9CPA5yi4qYtn07mrIyuoeGUqbVsj06muR79/jwqV4Y/o5jVVNWxucHD1FazbF6OfUW03fswMfenkGNwrmbl8+uS5e4kZHB5B7d0dPT+0PbE+JJlJuby7QpUyktLaVHzx6UlZWxbes2khKTmD5zBoaGv32LoNFo+HzR55SWllZZFhMTw6yZs3B392DAwAFoNBr27N7DlEmTmTxlCjX8awBQWFjIlMlTyM7KonOXLphbmLPnh91MmzKVD2dMf2SvZYX4JzwKx6mlpSWjRo+q8tzi4hJWLF+OlZUVXl5ef8n7FUI8eiRg+JBdu3Zx+vRpFi5cSIcOHZTHhw4dyldffcXcuXP5/vvvGTRoENeuXSM9Pf1PvU5KSgoJCQmVHvPw8KiUJfh7HT16FDc3t0qP9ezZ80/t1z+hXbt2uLu7V3rM29ubKVOmcPjwYVq3bg2UtxyvW/eXM8DEkyX16GUe5BRQf0xPzBxtALB0d+DS13tI+ykOl4YBv7mNlEPRFKRl/+JybVkZyQejSdwf9SvbuEhhZg7BL3TCxscZAIcQb858tJGUIxcJ6Nfij7wtIR47O6Mvci8vn9n9+uD+v8GhGo4OzNixi0PXrtG2Vq3f3Mbm81GkZmVVu2z1yZPYWVgwqUd3VP+7WbK3sODro8e4kJxCmGfV8+ivbU+IJ9GO7Tu4e/cucz6aq1yT1ajhx/QPp3Po4CHatmv7m9vYvGkzKSkp1S5bueIb7Ozs+HDGh8rMnBYtWvDmG2NZv24d733wPgBbNm/h9q1bfDBpIrVr1wagSUQTxrz6Ktu2bmXU6F/PbBLicfYoHKcmJiY0b1H12vabFd9QWlrK6DGvYmFh8f94l0KIR5nUMHzI+fPnAWjatGmVZYMGDcLIyIioqKh/eK8ef7oMzevXr//LeyIeVRnRN7DxcVaChQDqGq6YOliREX3zN5+ff+ceSQei8WwTWu1yTUkpP322jcR9UTiG+aGyNquyjlarJe18HLYB7kqwEEBlaYZP54ZYeVfNSBTiSXM8Pp7ari5KsBAg2N0dFxtrTsTf+M3nJ929y+bz53mqXtUBo+LSUqxMTWkTGKgECwFqubgAkHj37h/anhBPqhPHj1O7dp1KA7jBISG4uLpy/Pjx33x+UmIimyIj6d2nT5VleXl5JCYm0jiicaUyPtY2NtSqXYtr164B5efUw4cOUbduXSVYCGCjtuGZIUMIDPztwQUhHmePwnH6S9v9YdcuWrVqRa3fMQgohPjvkoDhQ8zNzQFYv359lWVmZmb89NNPzJkzh4ULFzJ+/HigPPuwTZs2ynonTpzghRdeoFGjRtSpU4fmzZszceJE7t+/D5TXKhw6dChQPj03ICBAeTwgIIBTp04p29q9ezd9+vShbt261K9fn2effZZz584pywMCAkhNTeX06dMEBAQQGRmpPP7uu+9W2v9Dhw7xzDPPULduXZo2bcobb7xRacSppKSEpUuX0qNHD0JDQwkJCaFHjx58//33f/4D/Z3u3CmvSVdx6sm7776rfDY6v/XZQvkF6GeffUbHjh0JDg6mSZMmvP3229y+fftvfx/i71FS+ICie3lYuNlVWWbhYkferapBgorKNGVc23gMtb8rjmHVT/nXlpaheVBM4MCWBPRrjp5+1WmND7LyKM4pwKaGa/lztFo0xSUAuDYO/F1ZjkI8zvIePCD9fi4+DvZVlnnb23MzM/NXn68pK2PJocMEu7nRvJr6ZSpDQ8Z36Vwl+Jdwt3y7DpaWf2h7QjyJ8vLySEtLw9fPp8oyHx8fbt749UE4jUbDksVLCAkJoXmL5lWWm5mZMf+Tj+natVuVZbm5uUrpmYyMDO7du0dwaAhQfk4tKioCoEPHDr8re0qIx9WjcpxWZ/269RgbG/N0//6/450IIf7LZEryQ3r06MHy5cuZPXs2kZGRtGvXjoiICOrWrYtKpUKlUgHQvn17MjIyWL9+PSNHjiQ4OBgonx784osvUq9ePcaMGYOenh7Hjh1j/fr15OTksGDBAho2bMjIkSNZsmQJ/fv3p3796ouvnz59mjfeeIMWLVrQr18/CgsLWb16Nc8++yw7duzAw8ODOXPmMHPmTNRqNSNHjqRevXrVbmvHjh2MHTsWf39/Xn31VUpKSvj666+5ePEikZGRWFlZMX78eHbt2sXAgQMZMmQIWVlZbNiwgffeew8HBwdatmz5l3zG9+/f5969e0B5kDI+Pp4PP/yQOnXqVAq8Puz3fLYAS5YsYdGiRQwePJiAgABSUlJYuXIlly5dYvv27b96AhSPpuKcAgBUVlWz/lRWpmgKSygtLMbQVFXt81OOXKTw7n1qP9MGbZm22nUMTIxo8GYf9A1+eRyl8G55YNrI3IQbu85w58w1NEUlmNhZ4tslHLtaf7ykgBCPk6z8fABszcyrLFObmVHwoJj8Bw8wr5DNUNHWqAvcyclhbIf2lGmrP1YrysjNJebWbVafPImHrZoG3pXrKP3R7QnxJNBdg6mradinVttQUJBPfn6+Moj+sK1btnLnzh3Gvv0WZWVV64Lq6+vj8r+s34qSEhO5dvUqoaHlmf53/jeQa2VlxepVq/hx/48UFBTg7OzMkKFDqS/NicQT7FE5Tqtbfu7cObp174baVup2C/G4k4DhQ/z9/fnss8+YMGEC169f5/r16yxevBgzMzPatGnD6NGj8fHxITAwkLCwMNavX0+TJk2UKbUrVqzAxcWF5cuXK8HFQYMG0b9/f44cOQKU1yps0qQJS5YsISws7BfrDe7cuRMTExMWL16sFHFv0qQJY8aM4fLly3h4eNCzZ08WLFiAvb39L26nrKyMmTNnUrNmTTZs2ICJiQkAwcHBPPvss2zbto0OHTqwfft2XnzxRcaOHas8t127dnTu3JkjR478ZQHDp556qspjJiYmSjOZX/J7PluAbdu20aJFC95//33lMRcXF7799ltSU1OlgPZ/kC6Lz8Co6k+W/v+mJWpKSqsNGOanZZG0/wJ+PRphbG1OUVZeta+hp6eHnkHVrMKKSouKAUjcdx49A338ujUCPT1SjlwiZvV+gp7tgPp/2YdCPIkKS8qPVVU1hdhV/xusKS4trTZgmHIvi8iffmJ40ybYWViQkZv7q6+VW1TEmLXrlNcb3rRJpdf9o9sT4kmhy+IzVlU9Do2Mys+jxQ+Kqw1EJCcns/H773n2ueews7MjIyPjd7/mos8WAdCjV/n1an5B+WDgd+s3YGBgyLDhw9HX12Pb1m18NHcuE96bQHBIyB9/g0I8Bh6V4/Rhe/bsRV9fn46dOv2ubQoh/tskYFiNVq1aceDAAfbv38/Bgwc5fvw4GRkZbN++nb179/LVV18RHh5e7XOXLl3K/fv3KwW+srKysLCwoOB/F0a/l7OzM/n5+Xz44YcMGjQIPz8/AgIC2L179x/azqVLl8jIyGDkyJFKsBDKg4/fffcdvr6+WFhYcO7cOfT1f86u0mq1Sket/P9ljfwV5s6di719+XS1kpISUlNTWbNmDYMHD+aLL76gSZMm1T7v9362zs7OnDp1im+++YauXbtib2/PgAEDGDBgwF/2HsQ/TJcZ9OvxvKpPKyvj2sajWHk7/iXThctKy0doS4uKafBmb4xMyy/i7AI9ODNvIwl7zknAUDzRtP87VqvrVPxrysrKWHzwIAHOzr+rKYruNca0a0OppowfLl1i+vadjGnXlka+Pn9qe0I8Kf4/x+mSzxcTEBj4h6YLP3jwgLlz5pKYmEivXr2UeoWl/xtgyM8v4OMFHyuNE+rVr89rr77Gum/XScBQPLEeleO0ouLiYo4eOUL9Bg1wcHD4Q/slhPhvkoDhLzA2NqZLly506dIFgMuXL/P111+zfft2Jk2axK5du6p9noGBAcnJySxYsIC4uDiSkpJIS0v7U/vwzDPPcPToUVavXs3q1atxd3endevW9O3bl8DAwN+9ndTUVIBqW96HVLgQU6lUbN26laNHj5KQkEBiYqISKNT+hVO56tWrV6VLcufOnenQoQPTpk37f3+248aN4+WXX2bGjBnMnDlTmer89NNPy8ntP8rA2AiAshJNlWVl/wtqG5oYVVmWcuQS+bezCB3RhZL88pHa0sIHAGiKSynJL8LQzPh3X4wZGJVnSNnX8VKChQCGpipsA91JPx+PprgEA1XVfRHiSWBqVP7dL/7fcVlRsab8+DWtJpN824Voku7dY3KPHtwvLD9W8x+UH6sPSku5X1iEpUnlY9XC2JgIv/KapI18fXj7u+9ZeeIEjXx9/tT2hHhSmP5v8PjB/46JikpKyjPpTc1MqyzbtnUbiYmJTJk6VakdnZ9Xfp1YXPyA+/fvY2lpWem4ys/PZ/as2Vy7epXWrVvTf+DPg7eq/2UahzcKr9Rl1dzcnPr163H48GGKiooqDXYL8aR4VI7Tii5fukxRURGNIxr//96cEOI/QwKGFRQUFLB06VLq1KlDhw4dKi2rU6cO8+bN4/79+xw+fJisrKxqt7Fs2TLmzJmDj48PDRo0oEOHDoSGhrJq1Sq2bdv2h/bHwsKC1atXExUVxb59+zh8+DCrVq1izZo1zJkzh+7du/+u7ejqVvzajdGDBw8YNGgQV65coVGjRkRERDB8+HDCw8Np1arVH9rvP0OtVtOoUSP27t1LTk4O1tbWVdb5vZ9tYGAgu3fv5siRIxw4cIAjR47w6aefsnz5ctavX4+fX/VNL8Sjy9i6/EaiOLewyrLi+4UYmBpVG6TLupaKVlNG1OfbqyxLPXKZ1COXafh2X0zUFlWWV0dlVT7tw8i86s2LysIUtKB5IAFD8eSy+99Nf3Y1GfVZBQWYGaswMap6fFxITqZUU8b7mzZXWbb9QjTbL0Tz6aABVZqa6KgMDanr6cnuS5e5X1j0/96eEI8zu//N8sjOzq6yLCsrGzMz82qDdFFRUZSWlvLehAlVlm3buo1tW7excNFnyuBsTk4OM6fPICEhgbbt2vHCiy9Uuha1/V9tNisrqyrbs7axLm+CUigBQ/FkelSO04rOnz+PkZERdevWrXa5EOLxIwHDCoyNjVm2bBl169atEjDUqVGjBkeOHKn2B/rBgwcsXLiQRo0a8fXXX2NYoZaSriHHH3Hz5k1yc3MJCwsjLCyMt956i7i4OAYPHszy5ct/d8BQV9A2KSmpyrLx48dTr149jIyMuHTpEtOnT6dv377K8j+bHfln6AKbFadF6/zez1aj0RAbG4uFhQVt27albdvyVPydO3fyxhtv8N1331XpHi0efYamKoxtLarthpx3+y6WblU7sgL4dGlIaWFxpcdK8gq5uuEIjnV9caxbAyOL338jYu5sg56hPgXp2VWWFWXloW9kUG0wUYgnhbmxMQ6WltV2Q07IzMT3F7K8n4lorGQA6uQUFrLox4M0869Bi5r+WJuakpqVzaxdu+gRGkr7OpWnSxWVlKCnB0YG+r97e0I8iczNzXF0dCThZtUuqzdv3sTPz7fa5w0ZMoT8/Mp1gHNycvhs4Wc0b9GcFi1aKAO+hYWFShCiS9euDB02tMr2PDw8MDIyIiUlpcqy9PQMVCoVVtZVg4lCPAkeleO0omtXr+Lj64uZWdUmhEKIx5MEDCswMDCgS5cubNmyhS1btlRpIpKdnc3u3btp0qQJpqamSmBLF+gqKiqisLAQb2/vSgGtK1eucPr0aQBKS0sxNDRUOvVW17VK58MPP+Tq1avs3r1bKWjr6+uLlZVVpaCavr7+r24nKCgIW1tbIiMj6du3r1ID8Ny5c0RGRhIYGKhMOa5Ro0al565cuVLZ779TZmYmJ0+epFatWlhWk/Hxez/bsrIyhg4dSoMGDVi6dKmynq7TV3XBSPHfYF/Hi1vHYyjIyMbMwQaArLhbFGbcx715ULXPqS6QqGt6YmJr+YfrDRqojLCr5cndmCTy07IwdyrvDld0L5e7V5Kwq+2JnnzHxBMu3MebHy5dIjUrGze1DQAXU1K4nZ1D91/oulhdIFHXpMTJyorg/5WxcLa2oqC4mH1XrtA6MADD/51LM3JzOXXjJrVcXDBVqX739oR4UoU3CmfXzl2kpqbi5uYGwMXoaG7fukWPHj2qfY5vNQEKXTMFR0enSvUGv162jISEBDp36fKLQQgTExPqN2jA2TNnSE5OxsPDA4D09HTOnT1Lg4YN5bpNPNEeheNUp7S0lJSUFNq2a/dn344Q4j9IAoYPeffdd4mOjmbcuHFs3bqV5s2bY2FhQVJSEpGRkZSUlDBx4kTg56kU3377LZmZmXTv3p3Q0FAiIyOxsLDAx8eH69ev89133ykXPPn5+VhbW6NWlwcatm7dilarrbZz8LPPPsuLL77I4MGD6dWrF8bGxuzbt4+kpCRmz56trGdra0tsbCxr164lPDy8StBPpVLx7rvv8s477zBw4EB69OhBfn4+K1euxM/Pj379+pGSkoKhoSHjxo1j8ODBGBoacuDAAY4ePYqRkdFf2vRk3759yvvXarXcuXOHDRs2UFhYyBtvvFHtc6ytrX/3ZztkyBAWL17MqFGjaN68OUVFRaxfvx5TU1P69Onzl70P8c9ybx5E+vl4Li7bjVuzIMpKS0k5cgkLNzscw8qnmRfey+V+YjpWXo6Y2v49Uw19OjUg5+YdLi7bjWuTWujrG5B6IgZ9IwO8O9T/W15TiP+SHmGhHLl+nek7dtA1JJjiUg3bo6PxcbCnmX/5+Snt/n2u3UmjprMTTtVMR/wlBvr6DG/ShM8PHGTKtu00969BbtED9ly+jL6+HsObVt80SwhRWfcePTh86AgfTp1Gt+7dKC4uYdvWbfj6+tKseTOgfJbJtatXqRkQgJOT0+/edkpKCkcOH8HMzBxvb2+OHD5cZZ3mLVoAMPiZwcRcjmHalGl07tIZQ0MDdu3chZGRigG/UEdNiCfFo3KcQnlyR2lpKfb2dv//NyaE+M+QgOFDdJl4K1asYP/+/SxatIjCwkIcHR3p0KEDI0eOxNHREYCIiAg6d+7MgQMHOHnyJB06dGDBggXMnDmTjRs3UlxcjJubGy+99BJ+fn68+uqrnDx5ko4dO+Ln58eQIUOIjIzk4sWLNGrUqMq+NGvWjMWLF7N06VI+//xzHjx4gL+/P/Pnz6dr167Keq+++iqTJk1ixowZjBo1qkrAEKBnz55YWlqyZMkS5s2bh5WVFa1bt2bs2LGYmZlRs2ZNPv30Uz777DPmz5+Pubk5/v7+LF++nLVr13L69GlKSkowqqb21B81c+ZM5c8GBgZYW1sTHBzM9OnTiYiI+MXn/d7PdsyYMdjY2LBx40Zmz56NgYEB9erVY+7cuVK/8D9MZWFKyIudubHjNIn7zmOgMsSulic+nRqgb1ieZXQ/IY1r3x+lZt9mf1vA0ERtQejIriT8cJaUI5dAC9beTvh0avC3vaYQ/yVWpqZM6tGdlcdP8N3ZcxgbGtLAy4vBjRth9L+MwNjbd1hy8BAjW7X8QwFDgOY1/TEyMGBLVBSrTpzE2NCQIDc3nm7YAFcbm7/hHQnx+LG2tmby1MmsXPEN3234DpXKmIYNGzDomcHKtV7slVgWf/45L7/yyh8KRFyJuQJAQUE+iz//vNp1dIEIBwcHpk2fxto1a9m2dRugJTAwkEHPDP5DrynE4+hROU4B8nLLZ+iYmsp0ZCGeJHrav7L9rRCPsQEH5vzbuyCE+A2LLxn/9kpCiH+V3vDh//YuCCGEEI8FG8uqzUIfR//Evfi61uP+9tf4r5HCIEIIIYQQQgghhBBCCIVMSRZ/WlFREbn/KyL/W2xtbZVGL0IIIYQQQgghhBDi0SUBQ/Gn7dy5k/Hjx/+udffv34+7dKUUQgghhBBCCCGEeORJwFD8ac2aNWP58uW/a10HB4e/eW+EEEIIIYQQQgghxF9BAobiT3N0dFQ6RgshhBBCCCGEEEKIx4M0PRFCCCGEEEIIIYQQQigkYCiEEEIIIYQQQgghhFBIwFAIIYQQQgghhBBCCKGQgKEQQgghhBBCCCGEEEIhAUMhhBBCCCH+j737jq+yvP8//srJOSc52RsIYSRh7xH2UAEHyHRUy7DWb4d1to7WLcPR1traqrS1P63iAkVBNigyoqCyJGyUEUgCSczeJ2f8/jjhlvQECCNkvZ+PB4/KfY1zXSlX7ut87uu+LhERERExKGAoIiIiIiIiIiIiBgUMRURERERERERExKCAoYiIiIiIiIiIiBgUMBQRERERERERERGDub4bICIiIiIiIg3LnVv/Xd9NEJFzmH/V7+u7CdKEaYWhiIiIiIiIiIiIGBQwFBEREREREREREYMChiIiIiIiIiIiImJQwFBEREREREREREQMChiKiIiIiIiIiIiIQQFDERERERERERERMShgKCIiIiIiIiIiIgYFDEVERERERERERMSggKGIiIiIiIiIiIgYFDAUERERERERERERgwKGIiIiIiIiIiIiYjDXdwOkeXjkkUdYtGjROfNNmTIFwCuvyWTCZrORmJjI1KlTjXxnq9tqtRIVFcWQIUN44IEHiIqKusheSH0rzy3i8MotFBw+CUBElzjixw7AGmQ7azl7cRlH12wnd/9xXJUOgmIjaX9tEiFto6vl2zF3KcVpOV7lI3u0o9vUq867PpHmKquwiHe++oq9GRkA9G3blhlDBhNiO/tYLSwrY/43W9iWmord4SQ+KpKfDhpIxxYtzljmPxuTOZGfz1MTJ1yS+kSai6ysLN6e9zZ79+wFoF//vkyfMYPQ0NCzlisoKGDB+/PZunUblZV22sfHM3XaVDp27HjGMsdSU3ns0ceYNHkyN//k5jPme+3fr3HixAmenvn0hXVKpIlpKHPfovQfOLp6G4XHsvDx8SE0viXxYwcQEH323xci0rgpYCiXxS233MKQIUOMv2/bto0FCxZwyy230L9/f+N627ZtWbBgAQCPPvoo4eHhALjdboqLi1myZAmPPPIIeXl53HHHHdU+4/T8AMXFxWzevJmPPvqI3bt3s3DhQqxWa112U+pQZWkFKa+vwu10ETeyB263m7Tk3ZSczKPPXeMx+frWWM5RUUnKf1ZhLyql9bBumP39yPhqH7teX0Wf34wnsOWP/8ZKswqI7NaWyO7tqtXhHxZ43vWJNFdF5eXMWbYMp8vFhN69cbndLEtJ4XhuLs9MmYz5DGO1zG5n1pKl5JWWMq5nTwL9/Fi9Zw9zli3n2SmTaRMR4VVm3f4DfL5vP11btbwk9Yk0F0VFRcyZNRuHw8HESRNxuVwsXbKUY6nHePb55zCba/6KUFZWxqyZs8jPy2PsuHEEBgWyZtVq5syazTPPPUvbtm29yjidTua+OheHw3HWNq37fB2fr11L127dLkkfRRq7hjL3Lc0uIOU/q/C1mml7VW8A0r/cy87XVtDv3kn4hQTU0U9AROqbAoZyWfTt25e+ffsaf3c6nSxYsIA+ffowadKkanlPBQzHjBlDXFxctbSbbrqJcePG8eqrrzJ9+vRqAcCa8k+bNo2ZM2fy/vvv89lnnzFu3LhL3TW5TNK/2ENFQSn975tEQEwYAMFx0ex+Yw2Z27+n1YDONZZL27CLsh8K6PmL6wiL9wQVonu1Z8tfPiIteRedbx4JQEVeMS67g8hubWnRN/GM7ahtfSLN1YqUXeQWl/Cnm28kruohToeYaJ5bvpINBw8yumvXGsst+XYnJwoKeGL8eLrFtgJgSGIC970/nyXf7uTuUT+udHC5XCza8S0fbdt2xnacT30izc3yZcvJycnhz395wZg7deiQyLPPPMuG9RsYPWZ0jeU+WfwJJzIyePLpp+hWFdgbOmQo9917L0uXLOHue+7xKrN40WLS0tLO2BaXy8Wijxex8MMPL0HPRJqOhjL3Td+0F5fdQe9fjSUoNhKAsMRYvp27jPQv95AwdsAl7LWINCTaw1AaFX9/f0aNGkVxcTHfffddrcqcen15586dddk0qWPZKYcJi29pTJgAwjvEYosOITvlSI1l3G43mTu+J6JznDFhArAGBxA/dgAh7X98LbEkKx8AW9SZX604n/pEmqtNhw7RLbaVESwE6BkXR6uwUDYfOlxjGbfbzcaDB+nTpo0R3AMICwhgxuDBdDltBaHd4eDRjxexcOs2hnfsSESg98qG86lPpDnavGkT3bp1r/agtWevXrSKjWXTpk01lnG73WzcsIG+ffsawUKAsPAwps+YQZcu3g8DjqWmsujjj7nhxhtrrNNut/PI7//Ahx98wIgRI4jQyl8RQ0OY+4LntWhzoJ8RLAQIjovCHOBHaWbeBfRMRBoLBQyl0fHx8QE8qxRrw1a1Z5bb7a6zNkndqiyroDy3mKDWkV5pQa0iKc7w3nsFPE9O7QWlhHWIBTz/Bpz2SgBiB3ep9mT21IQnIMYzaTqV70LrE2mOiisqyCosIj7ae8/Y9lFRHPnhhxrLZRcVk1tSSq+q4IXb7aa80jO2ru7erdqqxEqnk1K7nfvHjOauq67EZPKeypxPfSLNTXFxMZmZmSQkxnulxcfHc+RwzYGI7OxscnNz6dm7F1A1rsrLAbjm2mu8ViU6nU7+9c9/0atXL0aMHFFjnZWVlZSVlXH/737LXffcje8ZXrEUaW4aytwXwBYZgqO0Antx2Y/tK63AUW7Hco69FEWkcdMrydKouFwuvvnmG6xWK4mJZ146f7rk5GSAak/DpXGxF5QCYK1hjxRriA1nWSWOMjtmW/U9KstyCgGwBPpzeOUWTm45iLO8Ev/IYBLGDSSyaxsjb2lWPr5+Zg6v2EJ2yhFcdgf+EUG0u7ofMb0Tzrs+keYor6QEgIiAQK+08IAASivslFRUEOjnVy3tZEEBACE2G+9s/orP9++nzF5Ji9AQZgwZTP92P+6tFGC18tKtt+BbQ6DwQuoTaW5yc3MBCK9hNV94eBilpSWUlJQQGFh9HJ88cQKAkJAQ3nn7bT5f+zmlpaW0bNmSGbfdRv+k/tXyL/lkCSdPnuTBhx/C5XLV2JaAgABe+sffFSgU+R8NZe4LEDeyB7n7j3NgwUYSrve8fnx45VZMviZaD9X3K5GmTAFDabAKCwuNSa3T6SQ9PZ0333yT/fv3c/vtt3tNZE/PD54n6MnJybzyyiskJiZy/fXXX9b2y6Vz6omnr8X7V5apamN2Z6XDa9LkKLcDkPrZDnx8TSSOHwQ+PqQl72bvO2vp8fNrCK96AluSmY+zwoGj3E7nm0fgKLeTsWkvBxZsxO1y06Jv4nnVJ9IclVWt4rPWcGCCtSogYHc4vAKGpXbP2Ppg61bMJhM/GzoUk48Py1JSeHH1Gh4dN5aeVasFfXx88K1aaX4m51OfSHNzalWgn9XPK81i8dxH7RV2r3lWSakngPHhgg/w9TXzs9tvx2TyYemSpfzlhRd47PHH6NnLs/rw+PHjfLRwIT+/4w4iIyPJzs6usS0+Pj4KForUoKHMfQH8w4Joc2UvDi39iu3/WFLVCB+6Tr2y2mvKItL0KGAoDdapvQdPZ7VamTFjBg8++GCt8ttsNkaPHs0TTzyBxWKpk3bKZXDqdfKzxwi8uByeFQ2OcjtJD9yAxeb5chTZpQ1bXvyIo2u2GZOmVgM64Xa7iR3846uK0b3i2f73xRxZuYWY3vHnVZ9Ic3Rq6wefcwT0/ldl1RYTpRV2/nrrTwiqCij2a9eW385fwPxvtpxXgO9S1yfSlFzoOHVUPRAoKSnlb3//G0FBQQD069+f+++9n/nvz6dnr164XC7+NfefdO7S5YyHp4jIOTSQua+PycTRT7dzfF0KofEtaDmwM26XmxNf72f/+xvoOvUqvWEj0oQpYCgN1gsvvEBUlGcfLJPJREhICImJifj5eT8RPz1/ZWUlycnJvPvuu4wdO5aZM2eesYw0Dr5+nmCvq9J730qXwwGA2d87IOxr8axaiOrezpgwAZhtViK6xJG14xBOeyW+VgutBnWpobyZmL6JHFu70/PaxnnUJ9Ic2aoezNirxuXp7FVBPJvV6pV2akXiwPj2RnAPINDPj35t25L83XeUV1biX8sHP5e6PpGmxObvD0BFRYVXWmWlZ3WSLcB7XzJr1VgaOGigESwECAwMpH//fmzcuJHy8nJWr1pNamoqs2bPprDQ83pkSbFnuwK7vYLCwkKCg4PPO2Ap0pw0lLmvX2gQacm7CYqLpOf/XYtP1XYg0b3a8+3cZXy36EvCO96MyayVwiJNkQKG0mD169ev2ul955P/iiuuoF27djzzzDPk5+czd+5cTUwbMb9QzxcTe1GZV5q9sAxfm6XGIJ01xPM6lSXQ3zstyAZucFacPcBnCfR8aXLaHZekPpGmLLIqiJBf9eri6fJKSwnws9YYpDt10nGIzTtIERpgw+3mvAJ8l7o+kaYksuphbH5+vldaXl4+AQGB+Pt73+dOnWAcEhLilRYaFuo5BKWsnG+//RaHw8Hjjz3mlW/pkqUsXbKUl199hejo6IvsiUjT1VDmvmU5hbgdLqJ7JRjBQgCTry8xvRM5smorpdkFBLXSCeciTZEChtJkzZgxg82bN7N27Vreeustbr/99vpuklwgs82KX0RQjSfCFZ/IIbi194msAIEtw/AxmyjNyvdKK88rxmTxxRLoT0VBCbv+u4aYXvG0HdWnWr6yHzyHJ/iHB+HrZ6lVfSLNVaCfH9HBwTWehnz0hx9IOEOAoE1EBBZfX9Ly8rzSsguLsJh9CakhgHEml7o+kaYkMDCQmJgYjh7xPg35yJEjJCYm1FAK2rRpg8ViIS0tzSstKysbq9VKSGgIM2bMoKSkuFp6QUEBr7z8CiNGjmDkyJGEhoZems6INFENZe5bWeLZ8xSX26s+t9t16j9q3zERaVTOfMSgSBMwe/ZsQkNDeemllzh+/Hh9N0cuQlT3duQfyqA0O9+4lvd9BmXZhUT3iq+xjK/VQmTXtuTuT6Mk88fAQXluETn7jhHRtQ0+JhN+oYE4y+2c2HLQ2CwaoDy/mMxt3xGa2BJrcECt6xNpzgbGt2d3ejrpefnGtV1paZzIL2DoGU6397dY6N+uLTuOHSMt98exlVVYxLbUYyS1a4fpPMbWpa5PpKkZOGggu3btIj093bi2KyWFExkZDB02rMYy/v7+9E9KYsf27dXmVFlZWWzbupX+SUmYTCYSEhPo2atXtT+du3hefYyJaUHPXr2w1rA1gYhU1xDmvgExYVhDbJzc/h3Oyh+3G3FWOsjccQhzoB8BLcIued9FpGHQCkNp0qKionjooYd48sknmTlzJq+//np9N0kuUNyIHmTtOMSu11fTengPXA6HZ0+V1pHE9PEEIcpyiyhMzSKkXQy2iGAA4q9LouDISXa9vprYoV0xmXxJ37wXk8WX9tf0N+pPnDiYfe+sY+e/V9AyqRNOeyUZm/fhYzLRYcJgI19t6xNprib26U3yd9/x7PLlXN+rJ3aHk2UpKcRHRzG8YwcAMgsLOXgyk04tW9Ci6vXGqYMHsffECeYsW8Z1PXpg9jWxatduLGZfbhk44LzbcanrE2lKJkycyMYNyTwzew7jJ4zHbq9k6ZKlJCQkMHzEcAAyMzM5eOAAnTp3pkWLFgBMmz6NvXv2MmfWHMaOG4vZ7MvKFSuxWKzc+tNb67NLIk1OQ5j7+phMJE4YzL731vHtP5fTsn9H3G43mdu+oyy7gM43j8Ckk85FmiwFDKXJu/nmm1m8eDFffPEFixcvZvLkyfXdJLkA1iAbvX45lsPLvyH1sx34Ws1Edm1L/HVJxkbLhUczObjwCzrdNNyYNPmHB9H7zus5umoracm7wQ2h7VsQf12SkQcgqls7us0YxbH1KRxZvRWTxZew+Fa0v7YfAdFhRr7a1ifSXIXYbDw9cQLzNm3mw63b8DObSWrXjmmDB2Gp+lKx/8RJ/rV+A3deeYURMIwODmb25Em8//U3LEtJwe1206VlS6YOHmTkOR+Xuj6RpiQ0NJSZs2cy7823+PCDD7Fa/RgwIImp06dhqdrbc/++/fxz7lx+c9ddRsAwOjqaOc/O4b1332PpkqWAmy5dujB1+jQjj4hcGg1l7hvVvR0977iWY59/y9FPtwEQFBtJ95+NIaJT7febF5HGx8ft1qYDIrVx67o/13cTROQc/rlbJ6KLNHQ+2lNYpFG4c+u/67sJInIO86/6fX034bK4HN/Fm8vP8nxoAx8RERERERERERExKGAoIiIiIiIiIiIiBgUMRURERERERERExKCAoYiIiIiIiIiIiBgUMBQRERERERERERGDAoYiIiIiIiIiIiJiUMBQREREREREREREDAoYioiIiIiIiIiIiEEBQxERERERERERETEoYCgiIiIiIiIiIiIGBQxFRERERERERETEoIChiIiIiIiIiIiIGBQwFBEREREREREREYMChiIiIiIiIiIiImIw13cDRBqLfyX9ur6bICLnklTfDRCRc7lz67/ruwkiUgua+4qING9aYSgiIiIiIiIiIiIGBQxFRERERERERETEoIChiIiIiIiIiIiIGBQwFBEREREREREREYMChiIiIiIiIiIiImJQwFBEREREREREREQMChiKiIiIiIiIiIiIQQFDERERERERERERMShgKCIiIiIiIiIiIgYFDEVERERERERERMSggKGIiIiIiIiIiIgYzPXdAGn6HnnkERYtWnTOfFOmTAFg0aJFPPXUU0ybNs0rT1paGqNHj+aee+7h3nvvPWv9VquVqKgohgwZwgMPPEBUVNRF9kTqW1ZWFm/Pe5u9e/YC0K9/X6bPmEFoaGiN+bOzs7n37nvOWueTTz9F9+7dATh65CjvvvMOhw4dxtfXl379+jJ12lRCw8KqlXnpby/x1ebNXnUlJCTw3B+fv4CeiTQtDWWs1jafiHiU5xZxeOUWCg6fBCCiSxzxYwdgDbLVnD+vmC0vLDxrnT1/cS1hCa0A2Pf+en7YddQrT1DrSPrePeHiGi/SBDWU++n3333Phx98wMGDB3E6nbRr144bbryRvv36XnwnRaTBUsBQ6twtt9zCkCFDjL9v27aNBQsWcMstt9C/f3/jetu2bVmwYAEAL730Etdee+15BfkeffRRwsPDjb8XFxezefNmPvroI3bv3s3ChQuxWq2XoEdSH4qKipgzazYOh4OJkybicrlYumQpx1KP8ezzz2E2e/86Cw4O5u577va6brdX8uZ//0tISAjt2rUDPMHop596ivCICG76yU2UlZaxfNlyDhw8yB//9Ef8/f2N8sePHadT585cffWY//m8kEvca5HGp6GM1fMZ0yIClaUVpLy+CrfTRdzIHrjdbtKSd1NyMo8+d43H5OvrVcYS6Eenm0d4XXc5HBxa+jWWQH8CW0UY10sy8whpF0PLgZ296hGR6hrK/TQjI4PZs2YREhLC5ClTsFgtbFi3nj//6U/87oEHGDhoYN3+IESk3ihgKHWub9++9O3749Mnp9PJggUL6NOnD5MmTaqW91TAsLCwkOeff54XX3yx1p8zZswY4uLiql2bNm0aM2fO5P333+ezzz5j3LhxF9ETqU/Lly0nJyeHP//lBeP/5w4dEnn2mWfZsH4Do8eM9irj7+/PiJEjva6/9eZbOBwO7rnvXoKCggD4YMEH+Pr6MnPmTMLCwwDPisE//fGPbNywkWuuvQYAh8NBZuZJJg2ZXGPdIs1dQxmrtc0nIh7pX+yhoqCU/vdNIiAmDIDguGh2v7GGzO3f02pAZ68yvlYLLfomel0/tOxr3E4XXX4yEovNEwx0OZ2U5xQRfWX7GsuISHUN5X763rvv4evryzPPPmvkGzNmDL9/6GHee/ddBQxFmjDtYSgN0qhRo1i2bBmba3jt83ydetV5586dF12X1J/NmzbRrVv3akHhnr160So2lk2bNtW6nmOpqaxauZIrr7ySrl27GtfNZjPDR4wwJkIAXbt50o8dO2Zcy8jIwOFw0Dqu9UX0RqTpaihjtbb5RMQjO+UwYfEtjWAhQHiHWGzRIWSnHKl1PSUnc8nYvI8W/TsSGt/SuF6WXYjb6SIgOuzMhUXE0BDup263m31799Grd+9q+axWK/369+fkyZMUFBRcYA9FpKHTCkNpkJ544gk2b97MzJkzWbp06UW9Smyzefbdcbvdl6p5cpkVFxeTmZnJoMGDvNLi4+P5dse3ta5rwfwF+Pn58ZNbbql2/b777/PKm5qaClDt1fi0tDQA4lp7Aobl5eV6tVGkSkMaq7XNJyJQWVZBeW4xUT3ae6UFtYok97u0Wtd19NPtmCxm2o2pvrdZaVY+AAExnr3XnPZKfK2WC26zSFPWUO6nPj4+PP+n5/Hx8fHKW1RUCIBvDdsViEjToIChNEitW7fmrrvu4sUXX+S1117jnnvOvnnv2SQnJwPQrVu3S9U8ucxyc3MBCI+I8EoLDw+jtLSEkpISAgMDz1rPsdRUtm3bxvgJ4wmPCD9jvrzcPA5+d5B35r1NeHg4V426ykg7fuw4AJ99tpZNX26iuLiIsLAwJk2ZzNixYy+keyJNRkMaqxeST6S5sheUAmANCfBKs4bYcJZV4iizY7ad/QFuyclccvel0XpEd/z+p66SzDwATnxzkOyUIzhKK7AE22hzRU9aD9UcTeR0Del+GhMT45W/ID+fLd9sIbZ1a+MVZxFpehQwlAbr5z//OUuWLOG1115jwoQJxga9Z1JYWGjcXMHzZC45OZlXXnmFxMRErr/++rpustSR8vJyAPys3puiWyyeLy/2Cvs5J01r1nyKyWTi2uuuO2u+B373O8rKyjCZTNx97z3VTqI7tcIwPT2dO35xB06Hg/XrN/DWf9+krLSMG2684bz6JtKUNKSxeiH5RJorp70SAF+L91cDU9XBCs5KxzkDhhlfHwCTD7GDu3qlnVphWJqdT4eJg3E5XWRu/47Dy77BWVFJ26t6X2QvRJqOhno/Bc9+9K++8irl5eVMnjzpjPlEpPFTwFAaLIvFwsyZM5k+fTqzZ8/m9ddfP2v+U3sVns5mszF69GieeOIJLBa99tJYnXqdvKbXIWrLbrfzRXIy/ZOSiI6OPmM+p9PJHf93B75mM+s/X8fLf/8HBfn5jKsKOA8eMpjExEQmTZ5ktGf4iBE8/dTTLPr4Y8ZcPYaQEJ2WLM1TQxqr55tPpFk7tW3LhQ9dnJUOsnYcIrJrG/zDvVccRfVoT3DrKOKu6Gn8jojpk0DKays5tm4nrQZ2xhKoLT5EoGHeTwFcLhevvvIqKSkpDB02jJFXXHHB7RORhk+HnkiDlpSUxJQpU/jiiy9Yvnz5WfO+8MIL/Pe//+W1115jxowZmEwmxo4dy3PPPUd4+JmX4EvDZ6vaI7CiosIrrbLS7skTYDtrHXt276G8vJzBQwafNZ+vry8jRo5k6NChPPr4Y3Tq3JkPFnxAWVkZAMOGDWPylMnVJnA+Pj6MHj2ayspKvjv43Xn1TaQpaUhj9XzziTRnvn6eh6quSqdXmsvhAMDsf/YHrwWHT+KyO2rcBxEgpncCba7s5XX/bDmgE26Hi8Jj2RfYepGmpyHeTysrK3npby+x6csv6dOnD3fdfdf5dElEGiEFDKXBe/jhhwkLC+P555+nuLj4jPn69evH0KFDueKKK3jiiSd47LHH+Pjjj/ntb3+rA08auciqjZfz8/O90vLy8gkICDznwSM7duzAYrHQt2/fs+Y7nY+PD4MHD6K8vJyM9Iyz5j21qrC8orzW9Ys0NQ19rJ7PmBZpTvxCPSsC7UXegXR7YRm+Nss5DyjJPZCGj9lEROe4s+b7X6dWFZ56LVpEGt79tLy8nD//8U988/XX9OvXjwcffgizWS8rijR1ChhKgxcREcFDDz1EdnY2L730Uq3LzZgxg9GjR/P555/z1ltv1V0Dpc4FBgYSExPD0SNHvNKOHDlCYmLCOes4eOAA8QkJBAR4b+heUlLCb++7n/fffc8rrazMEwC0+llxOBw88vs/8Nq/X/PKl5GRDtS8MbRIc9FQxmpt84mIh9lmxS8iiOKMHK+04hM5BLc+98nihceyCG4dhdnfe2y5nE62v7KE7xZt8korzS4AwD88+AJaLtI0NZT7KXheWf7bi39l165dDB4yhAceelBbPYk0EwoYSqNw00030a9fP9atW3de5WbPnk1oaCgvvfQSx48fr6PWyeUwcNBAdu3aRXp6unFtV0oKJzIyGDps2FnLOhwO0tLSiI+PrzE9MDAQs9nChg0bqq1iLSkpYd3nnxMTE0NcXBxmsxmrnx+bvvySH374oVq+lStW0rJlSzp06HCRPRVp3BrCWK1tPhH5UVT3duQfyqA0O9+4lvd9BmXZhUT3qnlMnuJyOinNzCcw1vtEVwCTry++FjNZOw9Tnv/jmHSU2cnYtBf/yGCC25w7KCnSnDSE+ynARws/YufOnQwcNIj77r9PKwtFmhGNdmkUfHx8mDlzJjfccAOOqr10aiMqKoqHHnqIJ598kpkzZ57z4BRpuCZMnMjGDck8M3sO4yeMx26vZOmSpSQkJDB8xHAAMjMzOXjgAJ06d6ZFixZG2R9++AGHw0FUVOQZ67/jF3fwzOw5PP3k04weMwqHw8Haz9aSn5/PHx59xNhz6Wc/+xlPP/UUTz/5FNeN9Zw4t/aztRQUFPDo449d1ObUIk1BQxmrtc0nIh5xI3qQteMQu15fTevhPXA5HKQl7yaodSQxfRIBKMstojA1i5B2MdgiflwRWJFfgtvpwj/U+7CTUxKuH8jOf69g579X0HpINwBObDmAvbiMHj+/RmNS5H80hPtpUVERy5YuxWw206NHD7784guvegYMHHjO16NFpHFSwFAajc6dO3PbbbfxxhtvnFe5m2++mcWLF/PFF1+wePFiJk+eXDcNlDoVGhrKzNkzmffmW3z4wYdYrX4MGJDE1OnTjNci9u/bzz/nzuU3d91VbdJUXOR5cmqzeb+ScUq3bt149PHHWPjhQua/Px+TyUSXLl247/77SeyQaORL7JDIE089yYcffMjCDxfi4+NDx44dufvee+jYsWPddF6kEWkoY7W2+UTEwxpko9cvx3J4+TekfrYDX6uZyK5tib8uCZPZF4DCo5kcXPgFnW4aXi1g6Cj1HMzge5aDUYLjouj5f9eSunYHqZ/vAHwIaRtN55tHEtL2zCe4ijRXDeF+euj7Q9jtnkNW3jjDwouXX+2qgKFIE+Xj1mkQIrWSX1RQ300QERFp9O7c+u/6boKI1MK/kn5d300QkXMICw6t7yZcFreu+3Odf8b8q35f55/R2GgPQxERERERERERETEoYCgiIiIiIiIiIiIGBQxFRERERERERETEoIChiIiIiIiIiIiIGBQwFBEREREREREREYMChiIiIiIiIiIiImJQwFBEREREREREREQMChiKiIiIiIiIiIiIQQFDERERERERERERMShgKCIiIiIiIiIiIgYFDEVERERERERERMSggKGIiIiIiIiIiIgYFDAUERERERERERERgwKGIiIiIiIiIiIiYjDXdwNEREQuFfebb9Z3E0TkXHrUdwNERERE5Fy0wlBEREREREREREQMChiKiIiIiIiIiIiIQQFDERERERERERERMShgKCIiIiIiIiIiIgYFDEVERERERERERMSggKGIiIiIiIiIiIgYFDAUERERERERERERgwKGIiIiIiIiIiIiYlDAUERERERERERERAwKGIqIiIiIiIiIiIhBAUMRERERERERERExmOu7AdJ8PPLIIyxatKjaNZPJhM1mIzExkalTpzJlypTzznvbbbexZcsWNm7cSHR0dI2fXVBQwLBhw7jyyit55ZVX6qB3cjlkZWXx9ry32btnLwD9+vdl+owZhIaGnrVcQUEBC96fz9at26istNM+Pp6p06bSsWPHOs0nIj/KKizina++Ym9GBgB927ZlxpDBhNhsZy1XWFbG/G+2sC01FbvDSXxUJD8dNJCOLVpUy/f4x4s4nP2DV/mB8e353TVXX7qOiDQR5blFHF65hYLDJwGI6BJH/NgBWIPOPibtxWUcXbOd3P3HcVU6CIqNpP21SYS09czByvOK2fLCwrPW0fMX1xKW0MrrekVhKdv/vpiIrm3ofNOIC+yZSNPRUOa+pzuWmspjjz7GpMmTufknN198J0WkwVLAUC67Rx99lPDwcADcbjfFxcUsWbKERx55hLy8PO64447zyjthwgS+/vpr1qxZw7Rp02r8zDVr1lBZWcnEiRPrvoNSJ4qKipgzazYOh4OJkybicrlYumQpx1KP8ezzz2E21/zrrKysjFkzZ5Gfl8fYceMIDApkzarVzJk1m2eee5a2bdvWST4R+VFReTlzli3D6XIxoXdvXG43y1JSOJ6byzNTJmP29a2xXJndzqwlS8krLWVcz54E+vmxes8e5ixbzrNTJtMmIgLw3B/S8/NJat+OgfHx1eqICg6q8/6JNDaVpRWkvL4Kt9NF3MgeuN1u0pJ3U3Iyjz53jcd0hjHpqKgk5T+rsBeV0npYN8z+fmR8tY9dr6+iz2/GE9gyHEugH51u9g72uRwODi39GkugP4GtImqs//tPNuEos1/Svoo0Vg1l7ns6p9PJ3Ffn4nA46rTvItIwKGAol92YMWOIi4urdu2mm25i3LhxvPrqq0yfPv288l533XXMnj2b1atXnzFguGLFCkJCQrjyyisveX/k8li+bDk5OTn8+S8vGP8mOnRI5NlnnmXD+g2MHjO6xnKfLP6EExkZPPn0U3Tr1g2AoUOGct+997J0yRLuvueeOsknIj9akbKL3OIS/nTzjcRVPQTqEBPNc8tXsuHgQUZ37VpjuSXf7uREQQFPjB9Pt1jPaqQhiQnc9/58lny7k7tHXQVAdlExFZUOktq3Z0QnrfQVOZf0L/ZQUVBK//smERATBkBwXDS731hD5vbvaTWgc43l0jbsouyHAnr+4jrC4lsCEN2rPVv+8hFpybvofPNIfK0WWvRN9Cp7aNnXuJ0uuvxkJBabn1d65o5D5B3MuHSdFGnkGsrc93SLFy0mLS2tLrorIg2Q9jCUBsHf359Ro0ZRXFzMd999d155g4ODueqqq9i6dSs5OTle+XNycvj666+57rrrsFqtddUFqWObN22iW7fu1QLIPXv1olVsLJs2baqxjNvtZuOGDfTt29eYCAGEhYcxfcYMunTpWif5RKS6TYcO0S22lREsBOgZF0ersFA2HzpcYxm3283Ggwfp06aNESwECAsIYMbgwXRp1dK4lpaXB0Bs2Nlf0RIRj+yUw4TFtzSChQDhHWKxRYeQnXKkxjJut5vMHd8T0TnOCBYCWIMDiB87gJD2LWosB1ByMpeMzfto0b8joaeVPcVeVMrhZV/TdlTvC++USBPTEOa+pzuWmsqijz/mhhtvvFRdFJEGTgFDaTB8fHwAz1L38807YcIEnE4nn376qVfeVatW4XQ69TpyI1ZcXExmZiYJifFeafHx8Rw5XPOXm+zsbHJzc+nZuxfgmRyVl5cDcM211xhPZi91PhH5UXFFBVmFRcRHR3mltY+K4sgP3vsOgmfVYG5JKb2qvii53W7KKysBuLp7t2qrEo/n5gLQuiogeSqfiHirLKugPLeYoNaRXmlBrSIpzvB++ApQkVeMvaCUsA6xgGdMOu2esRY7uMsZVyUCHP10OyaLmXZj+taY/t3izfiFBRI3ssf5dkekSWooc99TnE4n//rnv+jVqxcjRmp/UZHmQq8kS4Pgcrn45ptvsFqtJCZ6v8ZyrrxXXHEFoaGhrFq1iltvvbVa/hUrVtC6dWuSkpLqrP1St3KrggHhEd57HoWHh1FaWkJJSQmBgYHV0k6eOAFASEgI77z9Np+v/ZzS0lJatmzJjNtuo39S/zrJJyI/yispASAiINArLTwggNIKOyUVFQT6VX9F8WRBAQAhNhvvbP6Kz/fvp8xeSYvQEGYMGUz/du2MvGl5efhbLLy9eTObDx2motJBTEgwtwwYwNAOZ7+niDQ39oJSAKwhAV5p1hAbzrJKHGV2zLbqb2WU5RQCYAn05/DKLZzcchBneSX+kcEkjBtIZNc2NX5eyclccvel0XpEd/xq+Mysbw+RdzCNPr85896JIs1NQ5n7nrLkkyWcPHmSBx9+CJfLdcn7KyINk1YYymVXWFhIbm4uubm5ZGdn8+233/LAAw+wf/9+pk6dWu3GV9u8VquVa6+9li1btpBX9WoaQGZmJtu2bWP8+PHGqkRpfE498fSzeu95ZLF4vtDYK7w3SS8p9Xwp+nDBB+zY/i0/u/127r7nbqxWK3954QV2paTUST4R+VFZ1Wo/aw2bs1urggP2GjZPL7V7xvQHW7fy7fHj/GzoUO666kr8zGZeXL2GXaftoXQ8L4/yykpKK+zcddWV/PrKkdgsFl5e+znJB8++zYVIc3NqVaCvxXtMmqrGqbPSe0w6yj1jMvWzHeQeSCNx/CA63TwCk8XM3nfWkvd9zfsPZnx9AEw+xA72fsXRXlzGoWXfEDeiJ0Gx3iseRZqrhjL3BTh+/DgfLVzItOnTiYzUOBVpTrTCUC67KVOmeF2zWq3MmDGDBx988ILzTpw4kQ8++IDPPvuMm2++GYCVK1fidrv1OnIj53a7Ac476OuoClSUlJTyt7//jaAgz2mp/fr35/5772f++/Pp2avXJc8nIj+60PFbWbXlRGmFnb/e+hOCqlYg9mvXlt/OX8D8b7bQs+p15dFdu+B2u7mme3ej/NDERB7+cCHvfvU1wzokYjLpGakIAFVjkvN8jupyeFYVOcrtJD1wg3FwSWSXNmx58SOOrtlGeNXryqc4Kx1k7ThEZNc2+Id7n1j+/SebsQT5a+9Ckf/RUOa+LpeLf839J527dNHWOyLNkAKGctm98MILREV59rIymUyEhISQmJiIn5/3E7TzyZuUlERsbCyrVq0yAobLly+nW7dudOjQoQ57JHXN5u8PQEVFhVdaZaXn6aotwOaVZq36dzJw0EBjIgQQGBhI//792LhxI+Xl5Zc8n39Ve0UEbBYLUPMqQntVUNBWw4FUp1YkDoxvbwQLAQL9/OjXti3J331HeWUl/hYLV5+2Yfvp5Ud07MhH27aTlpdHW62KEAHA188zJl2V3ntGu6rGqdnf4l3O4lkRHNW9XbVTjs02KxFd4sjacQinvRJf649lCw6fxGV3ENWjvVd9WTsPk7PnGN1mjMZZUYmz4se9R90OF5Ul5fj6W/SasjRLDWXuu3rValJTU5k1ezaFhZ5tCUqKPVuN2O0VFBYWEhwcrDe5RJooBQzlsuvXr1+1074uVV4fHx+uv/56/vvf/5Kfn09RUREpKSk88sgjF9NcaQAiq4LG+fn5Xml5efkEBATWGKSLqNr3JSQkxCstNCzUs8FzWfklz6eAociPIqu+iORXvf50urzSUgL8rPhbvIMTEYGevc5CbN5fiEIDbLjdGAHDMwmtKlteQ7BSpLnyC/WMSXtRmVeavbAMX5ulWtDvFGuIZxsYS6D3Pc4aZAM3OCuqBwxzD6ThYzYR0dl7Lpf3XToAe99e65WWnXKE7JQj9PzFtYQltPJKF2nqGsrc99tvv8XhcPD4Y4955Vu6ZClLlyzl5VdfITo6+rz6JyKNgwKG0qRMnDiR//znP6xbt47c3Fx8fX25/vrr67tZcpECAwOJiYnh6BHvE+GOHDlCYmJCjeXatGmDxWIh7bS9zk7JysrGarUSEhqCv83/kuYTkR8F+vkRHRxc42nIR3/4gYQzfMloExGBxdeXtNP2pT0lu7AIi9mXEH9/cktKeG75CoYkJnJj/37V8qVXfdGKCQ6++I6INBFmmxW/iKAaT0MuPpFDcGvvE80BAluG4WM2UZqV75VWnleMyeLrFUwsPJZFcOsozP7eq4jbjOxJTB/vQ4l2v7GGsI6xxI3oQWAr7wMfRJqDhjL3nTFjBiUlxdXSCwoKeOXlVxgxcgQjR44kNDT0AnspIg2dNvSRJqVTp0507tyZ9evXs27dOgYPHkxMTEx9N0sugYGDBrJr1y7S09ONa7tSUjiRkcHQYcNqLOPv70//pCR2bN/O8ePHjetZWVls27qV/klJmEymS55PRKobGN+e3enppOflG9d2paVxIr+AoYk1n2Lsb7HQv11bdhw7Rlruj0HDrMIitqUeI6ldO0wmExGBgZTa7Xy+f79xUArAD0XFbDhwkO6tYwkL8D6ZVaQ5i+rejvxDGZRm5xvX8r7PoCy7kOhe8TWW8bVaiOzaltz9aZRk/jgmy3OLyNl3jIiubfA57R7ocjopzcwnMLbmoF9ATBjhHWK9/gBYg22Ed4it9uqzSHPTEOa+CYkJ9OzVq9qfzl26ABAT04KevXphrWFbERFpGrTCUJqciRMnMnfuXMrLy3nuuefquzlyiUyYOJGNG5J5ZvYcxk8Yj91eydIlS0lISGD4iOGA51TsgwcO0KlzZ1q0aAHAtOnT2LtnL3NmzWHsuLGYzb6sXLESi8XKrT+91aj/UucTkR9N7NOb5O++49nly7m+V0/sDifLUlKIj45ieEfPHrOZhYUcPJlJp5YtaFH1itTUwYPYe+IEc5Yt47oePTD7mli1azcWsy+3DBxg1P/zYcP465pPeXrxEkZ17UJZpZ01u/fia/Lh9mFD66XPIg1Z3IgeZO04xK7XV9N6eA9cDgdpybsJah1prPoryy2iMDWLkHYx2CI8q3Tjr0ui4MhJdr2+mtihXTGZfEnfvBeTxZf21/Sv9hkV+SW4nS78Q70POxGRc2soc18Rab4UMJQmZ/z48bz44ov4+flx9dVX13dz5BIJDQ1l5uyZzHvzLT784EOsVj8GDEhi6vRpWKr2MNu/bz//nDuX39x1lzFpio6OZs6zc3jv3fdYumQp4KZLly5MnT7NyFMX+UTkRyE2G09PnMC8TZv5cOs2/Mxmktq1Y9rgQViqDjTYf+Ik/1q/gTuvvMIIGEYHBzN78iTe//oblqWk4Ha76dKyJVMHDzLyAAyIb8+D117N4h3f8v7X32Ax+9KtVStuHTiQ1uFh9dFlkQbNGmSj1y/Hcnj5N6R+tgNfq5nIrm2Jvy4Jk9kzJguPZnJw4Rd0umm4ETD0Dw+i953Xc3TVVtKSd4MbQtu3IP66JCPPKY5Sz2ENvjUcoCIi59ZQ5r4i0nz5uE+d2S4iZ5VfVFDfTRCRc3C/+WZ9N0FEzuE3PbxP/RSRhudfSb+u7yaIyDmEBTePPSRvXffnOv+M+Vf9vs4/o7HRZlsiIiIiIiIiIiJiUMBQREREREREREREDAoYioiIiIiIiIiIiEEBQxERERERERERETEoYCgiIiIiIiIiIiIGBQxFRERERERERETEoIChiIiIiIiIiIiIGBQwFBEREREREREREYMChiIiIiIiIiIiImJQwFBEREREREREREQMChiKiIiIiIiIiIiIQQFDERERERERERERMShgKCIiIiIiIiIiIgYFDEVERERERERERMTg43a73fXdCJHG4NZ1f67vJojIOfxzt199N0FEzsHn9tvruwkiUgt3bv13fTdBRM5h/lW/r+8mXBb5RQV1/hlhwaF1/hmNjVYYioiIiIiIiIiIiEEBQxERERERERERETEoYCgiIiIiIiIiIiIGBQxFRERERERERETEoIChiIiIiIiIiIiIGBQwFBEREREREREREYMChiIiIiIiIiIiImJQwFBEREREREREREQMChiKiIiIiIiIiIiIQQFDERERERERERERMShgKCIiIiIiIiIiIgZzfTdAmoeXX36ZV1555ax5Fi9ezFtvvcWiRYt46qmnmDZtmleetLQ0Ro8ezT333MO9994LwCOPPMKiRYu88lqtVqKiohgyZAgPPPAAUVFRl6YzUm/Kc4s4vHILBYdPAhDRJY74sQOwBtnOWi7/0AlSP9tB8YlczP4Wonq0p/01/fC1Ws5YpuRkLjteXUabK3vSbnTfi84n0pxkFRbxzldfsTcjA4C+bdsyY8hgQmxnH6t70jP4YOtWUnNyCLBaGZSQwC0DkvC3VB+rh7Ozef+bLRw8mYnJx4eurVoyfchgYsPCzlj3sZwcHl+0mEl9+nBTUv+L7qNIY5eVlcXb895m7569APTr35fpM2YQGhp61nK7d+/mgwUfcCw1FZvNxuAhQ7jl1lvw9/evlu/xRx/j0KFDXuUHDhrEAw8+YPx9//79zH9/PocPHSIwMJCkAQO4+Sc3ExIScgl6KdK4NZS5b+7BdI6v30lxeg74+BDSJpp2V/cjpG30xXdSRBosBQzlsrrzzjtJSEioMS02Ntb475deeolrr732vIJ8jz76KOHh4cbfi4uL2bx5Mx999BG7d+9m4cKFWK3WC2+81KvK0gpSXl+F2+kibmQP3G43acm7KTmZR5+7xmPy9a2xXP6hE+x6YzVBrSOJv64/FQWlZGzaS3F6Dr1+NRYfHx+vMi6niwMLv8DtdJ21TbXNJ9KcFJWXM2fZMpwuFxN698bldrMsJYXjubk8M2Uy5jOM1T3pGTy7fDnxUVFMHTSQnOISVu7ezeHsbGZOnGCM1Yz8fGYvXYaf2cwN/TxfaFbs2sXMT5byp5tuIDww0Ktup8vF3PUbcGisigBQVFTEnFmzcTgcTJw0EZfLxdIlSzmWeoxnn38Os7nmrwi7d+/m2TnPkJCQwE+nTiU3J4eVK1dy6NAhZs2eZYxTt9tNeno6SQMGMGjQwGp1REX/GGDYs2cPzz/7HAEBgUyeMgWTycSK5SvYs2cPs+fMJigoqO5+CCINXEOZ++YfOcmetz4lICaM9tf0w+10k/H1PlL+s5LevxpLcBsFDUWaKgUM5bIaOnQogwYNOme+wsJCnn/+eV588cVa1z1mzBji4uKqXZs2bRozZ87k/fff57PPPmPcuHHn3WZpGNK/2ENFQSn975tEQEwYAMFx0ex+Yw2Z27+n1YDONZY7vHILfmGB9PrlWHwtnl95fqGBHFryFXnfpRPRKc6rTNqGFEoz88/ZptrmE2lOVqTsIre4hD/dfCNxVQ9xOsRE89zylWw4eJDRXbvWWO6dr74iMiiIpydOwFoVrIgKCuKNL75k5/E0+rRtA8DKXbupqHQwc+IE2lc9VOrRujVPLFrM8pRdTB8y2KvuxTu+JT0vry66K9IoLV+2nJycHP78lxeMuVOHDok8+8yzbFi/gdFjRtdY7t233yEqKoqnZ800HsJGRkXxxuuvs/PbnfTp2weA7OxsysvLGTBgACNGjjxjO958401MJhOzn5lNy5YtARgwcAB/ePj3LF60iOkzZlzCXos0Lg1l7nt4+Tf4hQbS5zfj8bV66ovpl8i2vy3i6Kfb6XnHtRffWRFpkLSHoTRIo0aNYtmyZWzevPmi65oyZQoAO3fuvOi6pP5kpxwmLL6lMWECCO8Qiy06hOyUIzWWcVY6sAb503JAJ2PCBBAa3wKAkhO5XmVKTuZybF0KbUf1Pmt7aptPpLnZdOgQ3WJbGcFCgJ5xcbQKC2XzocM1lrE7HITYbIzq0sUIFgJ0bdUKgNScHONaZmEhwf7+RrAQIDEmmiB/P47XEBQ8lpPD4h07mNJPWwaInLJ50ya6dete7UFrz169aBUby6ZNm2osY7fbCQkJYdTo0dXe2OjazfMQIDU11biWdjwNgNjWsZxJdnY2x48fY8TIkUawEKB169b069+fDes3XljnRJqIhjD3rSyroORELlE92xvBQgBrkI3Q+JYUHsu60O6JSCOggKE0SE888QQ2m42ZM2dit9svqi5b1Z5Zbrf7UjRN6kFlWQXlucUEtY70SgtqFUlxRk4NpcDXYqbH7dfQ9srqE6BTkyW/sOqvOrmcLg5+9CXhHWOJ6ZN4xvbUNp9Ic1NcUUFWYRHx0d7bSbSPiuLIDz/UWM5qNvPouLFeQb2jOZ780cHBxrVWoaEUV5RTWFZmXCsqL6e0wk7Y/+yR6HS5+NeGjfRs3ZoRHTtecL9EmpLi4mIyMzNJSIz3SouPj+fI4ZoDEVarlUcff4wpN0ypdj316FEAok4b98ePHwc8wT+A8vJyr/pycz334jZt2niltWzZgqKiQnJyar6/izR1DWXua/azkPS7G2g9rLt3G0vL8TEpnCDSlGmEy2VVVFREbm6u15/Kyspq+Vq3bs1dd93F0aNHee211y7qM5OTkwHo1q3bRdUj9cdeUAqANSTAK80aYsNZVomj7NyB5fK8YjK3f8+hZd8Q0CKMyG5tq6WnJe+iLKeQDpOGnLWe2uYTaW7ySkoAiAjw3kcwPCCA0go7JRUV56wnu6iIDQcO8tamzbSJCCepfTsjbULv3kQEBvLy2s85lpPDsZwcXl77Ob6+Jsb27FGtniXf7uRkQQH/N2L4RfZMpOk4FagLj4jwSgsPD6O0tISSqrF8NtnZ2WxYv4E3//sWbdq0ZcCAAUZaWtpxbDYbb781j9tv+xm33/Yz7r/3Pr788ksjj5/VD6g5mFhUWARAfl7+efVNpKloKHNfH5MJW1QIfv/TjpKTuRSmZhHSNqa2XRKRRkh7GMpldffdd9d4fd68eV57G/785z9nyZIlvPbaa0yYMIF27drVWPaUwsJCYxIMnifoycnJvPLKKyQmJnL99ddffAekXjjtnoDy6a9WnGKqen3RWenAbDvzoTaVpRVseWGhp4zVl8QJg6rVV5KZx7G1O0mcOAi/0EDK84prrKe2+USao7Kqhz/WGg5MsFZtzm53OAj08ztjHUXl5dz33nyjntuHDa1WX1RwEJP79uXNL7/kDws/BsDk48Nvrx5T7TXltNw8Pt6+nduHDSUyKIjsoqKL76BIE3AqQHcqYHc6i8VzH7VX2Ams4QChU4qKirj37ns89fj5cfsdt1d7Tfn4seOUlZVRUlrKXXffTWlpKStXrODlv/8Dl9PJiJEjiWsTR0BAAN98/TWTJk8yDmKw2+2kpKR4/rvy4t4yEWmsGtLct6a2HfjQsyAj7oqeteuQiDRKChjKZfWHP/yBLl26eF2v6ZrFYmHmzJlMnz6d2bNn8/rrr5+17lN7FZ7OZrMxevRonnjiCSwWy4U3XOrXqdfJvQ91qz0f6HLrFbicLjI272XXG2voeusVRPVoj9vl4uBHXxDSPuaMG0gDtc4n0lyd2vqhphMYa8vHx4f7xozC4XSxavdunl22gvvGjGZQguf1yQ+2bGXR9h10bdWS0V274nK7+XTvXv6xdi2/vXoM/du1w+Vy8c/16+ncsuUZD1kRaa4u2Tj97f04HQ5WrVzFs3Oe4f7f/dZ4+Dt6zBhcLhfXXvfjYQhDhw3l4Qcf4p2332HY8OGYzWbGXX89Cz/8kJf/8TKTJ0/C5XLzwYIFlJd7ViL7nuEUWJEmr4HMff+X0+5gz9trKTmRR9yVPQmLb3nuQiLSaClgKJdV9+7da3VK8ilJSUlMmTKFjz/+mOXLl9O795kPmHjhhReIioqisrKS5ORk3n33XcaOHcvMmTPxO8tqFmn4fP08wV5XpdMrzeVwAGD2P3tA2GLzI7qXJ+AQ1aMd2/++mEPLvyGqR3vSkndTciKP3r8eR2WJZ+WFo8zzZcVpd1BZUo45wK/W+S7mS5hIY2arejBjrxqXp7M7PePXZj3zagiAID8/hiR69lEalBDPwx8uZN7mzQxKiKekooJlO1NIiI7iifHXY6raO2lIYgJPLFrMfzYk02taHCtSdnEsN5eZEydSWOYZq6deha5wOCgsKyfYX2NVmiebvz8AFTVsD1BZtaLPFmDzSjtdUFAQQ4cOBWDQ4ME8/OBDzHvzLWOOd/U1V3uVsVqtDB8xgo8WLiTt+HHatmvHjTfdaKw+3FT1unL//v2ZOGki77/3HkFBQV71iDQHDWXue/p90lFmZ8+8zyhMzaJFUkfaX93v4jsqIg2aAobS4D388MN8/vnnPP/88/y///f/zpivX79+xml/V1xxBe3ateOZZ54hPz+fuXPn6othI+YX6vnCYC8q80qzF5bha7Pga639ClJfi5mILm3I2LSPypJy8g6m43a6+HbuMq+86cl7SE/ew4CHb6p1Pv9wfcGR5imy6st9fmmpV1peaSkBflb8z2O1t9Vspm/btqzevYfCsnKyi4qodDoZ2iHRCBYCmH19GdaxA+999Q0Z+fnsPH4ch9PFE4sWe9W5bGcKy3am8I+pt1Y7TEWkuYisenU/Pz/fKy0vL5+AgED8q4KKtWG1Wunbrx+rVq6ksLCQkJCQM+YNDQ0FoLwqWOnj48NtP7uNSZMmcuLkSSIjI4mOjmb++/MxmUxERXkfoCTSHDSUue+pOa29uIzdb35KSUYuLQd2osOkIfpuJdIMKGAoDV5ERAQPPfQQTzzxBC+99FKty82YMYPNmzezdu1a3nrrLW6//fY6a6PULbPNil9EUI0nwhWfyCG4dc1fKEqz89n95qfEjehJ7ODqr707KyrBB3zMvsSPG+C1cXRlcRkHPkgmpm8CMX07YAnyr3U+keYq0M+P6ODgGk9DPvrDDyRER9dYLj0vnz+uXMnE3r25unv1A6rKKyvx8QGLrwmLrydI6Krh1HuXy3PN7XYzfchgr8NVCsrKePXz9Qzv2IGRnToSajv7CiqRpiowMJCYmBiOHvE+DfnIkSMkJibUWC49PZ0/Pvc8EyZO5Jprr6mWVl5Who+PDxaLhdycXJ595lmGDhvKjTfdWC1fRkYGADHRnoMSvvzyS8LCwujevTuhYWFGvn379pGQkFBtX0SR5qShzH0BHBWVRrAwdlg3Eq8feIl6KSINnU5Jlkbhpptuol+/fqxbt+68ys2ePZvQ0FBeeukljh8/Xketk8shqns78g9lUJqdb1zL+z6DsuxC43WL/+UfEYKj3M6Jbw7gcv74Skd5XjE/7D5KaHxLzH4WgltHEd4httqfkHYtquoIJrxDLL4Wc63ziTRnA+Pbszs9nfTTTjfdlZbGifwChla9avy/WoaGUGq389m+fThOG6vZRUV8ffgIXVu1wma1EhceTnhgABsOHKz22rPd4SD5u+8I9vcnLjychOhoesbFVfvTuaVnn6UWISH0jIur8WAWkeZi4KCB7Nq1i/T0dOParpQUTmRkMHTYsBrLtGzZkpKSUj779FMcp42/7Oxsvv76a7p264bNZiMiMoLS0hI+X7uW0tNWG//www9sWL+e7j16EBYeBsCKZcv57+v/xXnauN++bTsH9u/3CkqKNDcNYe4LcGjJZk+wcGhXBQtFmhnNlqVR8PHxYebMmdxwww3VJqnnEhUVxUMPPcSTTz7JzJkzz3lwijRccSN6kLXjELteX03r4T1wORykJe8mqHUkMX08QYiy3CIKU7MIaReDLSIYk6+JxPGDOfhhMimvrSSmbyKO0goyvtoPJh8Sx9d+P00RqZ2JfXqT/N13PLt8Odf36ond4WRZSgrx0VEM79gBgMzCQg6ezKRTyxa0CAnB12Ti9qFDmbtuPbOWLmNExw4UlVewZs8eTCYfbh/m2SvNZDJx+7ChvPTpZzy5+BOu7NwZl9vF+v0HycjP566rrsSsQxJEzmnCxIls3JDMM7PnMH7CeOz2SpYuWUpCQgLDRwwHIDMzk4MHDtCpc2datGiBr68vP7/jdl595VVmPT2T4SNGUFxczOpVq/HxMXH7z2836r/j//6PF//yF5564ilGjRlFeVk5q1etwmTy5ed3/NzIN3HyJP724l/58x//xICBA/khO9vYs3r4iBGX+8ci0qA0hLlvaVY+WTsO42uzEBQbSeaOQ155WvSt+WGgiDR+ChhKo9G5c2duu+023njjjfMqd/PNN7N48WK++OILFi9ezOTJk+umgVKnrEE2ev1yLIeXf0PqZzvwtZqJ7NqW+OuSMJk9AYLCo5kcXPgFnW4aji3CszdZi76JmMwmjm/YxeHlW/C1mglLbEW7q/sREB1an10SaZJCbDaenjiBeZs28+HWbfiZzSS1a8e0wYOwVAXz9p84yb/Wb+DOK6+gRdV+ZyM6dcTi68sn337L25u/ws9spkfr1vxkQBKxp72qODA+nsevv56Ptm1j/jdbAIiPiuT3111Hn7ZtLnt/RRqj0NBQZs6eybw33+LDDz7EavVjwIAkpk6fhqVqn9H9+/bzz7lz+c1dd9GihWfl0YiRIzFbLCxZ/Alvz5uHn58/PXr24JZbbyE2Ntaof8DAATz08MMsXrSI9999D4vFSrfu3fjp1J/SunVrI9+gQYO49/77jPpCQ0MZP2ECk6dMrrZPqUhz1BDmvgVHTgLgLKvk4MIvasyjgKFI0+XjdtewEZCIeLl13Z/ruwkicg7/3K0T0UUaOh/tKSzSKNy59d/13QQROYf5V/2+vptwWeQXFdT5Z4QFazHJ/9KjOxERERERERERETEoYCgiIiIiIiIiIiIGBQxFRERERERERETEoIChiIiIiIiIiIiIGBQwFBEREREREREREYMChiIiIiIiIiIiImJQwFBEREREREREREQMChiKiIiIiIiIiIiIQQFDERERERERERERMShgKCIiIiIiIiIiIgYFDEVERERERERERMSggKGIiIiIiIiIiIgYFDAUERERERERERERgwKGIiIiIiIiIiIiYvBxu93u+m6ESGOQX1RQ300QERFp9O7c+u/6boKI1MK/kn5d300QkXMICw6t7yZcFpfju3hz+VmeD60wFBEREREREREREYMChiIiIiIiIiIiImJQwFBEREREREREREQMChiKiIiIiIiIiIiIQQFDERERERERERERMShgKCIiIiIiIiIiIgYFDEVERERERERERMSggKGIiIiIiIiIiIgYFDAUERERERERERERgwKGIiIiIiIiIiIiYlDAUERERERERERERAzm+m6ANC8vv/wyr7zyylnzLF68mLfeeotFixZVu24ymbDZbCQmJjJ16lSmTJlipD3yyCNe+QGsVitRUVEMGTKEBx54gKioqEvTEakXWVlZvD3vbfbu2QtAv/59mT5jBqGhoWctt/Pbb/n440UcOXwYk8lEhw4dueWnt9CxY8dq+QoKCljw/ny2bt1GZaWd9vHxTJ021Svf448+xqFDh7w+Z+CgQTzw4AMX2UuRxq++x2p2djb33n3PWT/ryaefonv37hfRS5Gmpzy3iMMrt1Bw+CQAEV3iiB87AGuQ7azlcg+mc3z9TorTc8DHh5A20bS7uh8hbaOr5dsxdynFaTle5SN7tKPb1KsuXUdEmoj6vp+ecvjQYd5/7z0OHjyIyWSia9euTL9tBrGxsZe2wyLSoChgKPXizjvvJCEhoca00288jz76KOHh4QC43W6Ki4tZsmQJjzzyCHl5edxxxx3Vyp6eH6C4uJjNmzfz0UcfsXv3bhYuXIjVaq2DHkldKyoqYs6s2TgcDiZOmojL5WLpkqUcSz3Gs88/h9lc86+zvXv38sfn/0hcXBtu/emtOJ1O1qxew6ynZzJz1iw6dOwAQFlZGbNmziI/L4+x48YRGBTImlWrmTNrNs889yxt27YFPP8O09PTSRowgEGDBlb7rKjoaK/PF2luGsJYDQ4O5u577vb6DLu9kjf/+19CQkJo165dnf4cRBqbytIKUl5fhdvpIm5kD9xuN2nJuyk5mUefu8Zj8vWtsVz+kZPseetTAmLCaH9NP9xONxlf7yPlPyvp/auxBLfx3BvdbjelWQVEdmtLZPfq488/LLDO+yfS2DSE+ylARkYGs2fNwmr144YbbwRg+bLlPP3k0/z5hT8THhFeYztEpPFTwFDqxdChQxk0aNA5840ZM4a4uLhq12666SbGjRvHq6++yvTp06sFAGvKP23aNGbOnMn777/PZ599xrhx4y5NJ+SyWr5sOTk5Ofz5Ly8Y/x936JDIs888y4b1Gxg9ZnSN5ea9+RaRkZE889wz+Pn5ATBy5Ege+N2DLJg/n8effAKATxZ/womMDJ58+im6desGwNAhQ7nv3ntZumQJd9/jWa2UnZ1NeXk5AwYMYMTIkXXdbZFGpyGMVX9//xrH51tvvoXD4eCe++4lKCioLrov0milf7GHioJS+t83iYCYMACC46LZ/cYaMrd/T6sBnWssd3j5N/iFBtLnN+PxtXq+WsT0S2Tb3xZx9NPt9LzjWgAq8opx2R1EdmtLi76Jl6VPIo1ZQ7ifAqxYvoLy8nJmzppF+/j2APTo0YPHH3uM5cuXMX3GjLr8MYhIPdIehtLo+Pv7M2rUKIqLi/nuu+9qVebU68s7d+6sy6ZJHdq8aRPdunWvFhDu2asXrWJj2bRpU41liouLSU1NZfCQwcaECSA0LIyu3bpy8OBBwLPqYeOGDfTt29eYMAGEhYcxfcYMunTpalxLO54GQGxrvYIhUpOGMlb/17HUVFatXMmVV15J165nzifSXGWnHCYsvqURLAQI7xCLLTqE7JQjNZapLKug5EQuUT3bG8FCAGuQjdD4lhQeyzKulWTlA2CLOvurlCLi0VDup1mZmQQHhxjBQoDEDokEBQVz/NjxS9VdEWmAtMJQGiUfHx8AnE5nrfLbbJ69d9xud521SepOcXExmZmZDBrsvSo1Pj6eb3d8W2O5gIAA/vrS3/D38/dKKyoqwrfq9ars7Gxyc3OZMGki4Pl3UlFRgb+/P9dce021csePeyZGrVu3BqC8vBx/f+/6RZqjhjRW/9eC+Qvw8/PjJ7fccp69Emn6KssqKM8tJqpHe6+0oFaR5H6XVmM5s5+FpN/dgMnq/ZWisrQcH9OPaxNKM/MACIjxBAyd9kp8rZZL0HqRpqch3U9btmrFrl27KCgoMPZOLCoqorS0hLCwsIvopYg0dAoYSr0oKioiNzfX63pwcDAWy9knjy6Xi2+++Qar1UpiYu1eaUlOTgao9gRNGo9T/1bCIyK80sLDwygtLaGkpITAwOp7IJlMJlq1auVV5lhqKgcPHKB3794AnDxxAoCQkBDeefttPl/7OaWlpbRs2ZIZt91G/6T+Rtm0tOPYbDbefmsemzdvpry8nBYtWvCTW29h2LBhl6zPIo1RQxqr/1vPtm3bGD9hvPZaEqmBvaAUAGtIgFeaNcSGs6wSR5kds636PtA+JhO2qBCvMiUncylMzSK8Y2vjWmlWPr5+Zg6v2EJ2yhFcdgf+EUG0u7ofMb1r3tdapLlqSPfTiZMmsn3bNl7++8vc9jPP68fvvP0OZrOZsdrqSaRJU8BQ6sXdd3tvRg8wb968ansbFhYWGjdMp9NJeno6b775Jvv37+f222/3ukmenh88T+eSk5N55ZVXSExM5Prrr6+D3khdKy8vB8DP6ueVZrF4vrzYK+xe/x7OVNerr7wKwMTJkwAoKfV8UfpwwQf4+pr52e23YzL5sHTJUv7ywgs89vhj9OzVC4Djx45TVlZGSWkpd919N6WlpaxcsYKX//4PXE6n9jWUZq0hjdXTrVnzKSaTiWuvu+7COibSxDntlQD4Wry/GpiqDlZwVjq8AoZnquvAh54HtXFX9DSul2Tm46xw4Ci30/nmETjK7WRs2suBBRtxu9za11DkNA3pfhoVFcXkKVP47xtv8PuHfw94ApO/e+CBaq8pi0jTo4Ch1Is//OEPdOnSxev6/147tffg6axWKzNmzODBBx/0Sqspv81mY/To0TzxxBPnXL0oDdOpV8lPvYp+oSoqKnjhzy+QmprK5MmTjRWnjkrPF6WSklL+9ve/GYch9Ovfn/vvvZ/57883Jk2jx4zB5XJx7XXXGvUOHTaUhx98iHfefodhw4djMml7WGmeGtJYPcVut/NFcjL9k5KI1knmIjU7tWXLxQ1dnHYHe95eS8mJPOKu7ElYfEsjrdWATrjdbmIH/7g3WnSveLb/fTFHVm4hpnd8tVeYRZqzhnQ/XTB/AYs+/piu3boxZsxoXC4Xa9Z8yt9feonfPfDAGVf3i0jjp4Ch1Ivu3bvX6pTkF154gaioKMDzJCskJITExMRqm/jWlL+yspLk5GTeffddxo4dy8yZM89YRho+W9UegRUVFV5plZV2T54A21nrKCkp4U9//BMHDxzgqquu4paf3mqkWav+bQwcNLDayamBgYH079+PjRs3GnsVXn3N1V51W61Who8YwUcLF5J2/Dht27U7/06KNAENaayesmf3HsrLyxk8ZPCFd0ykifP18zxQdVV67w3tcjgAMPuf/aGro8zOnnmfUZiaRYukjrS/ul+19FaDvB8U+1rMxPRN5NjanZRm5RPY0vv1S5HmqKHcT51OJ8uWLiUxMZEnn3rSeCg+ZOhQHn/0MV779795pferWpQh0kQpYCgNWr9+/aqdDHY++a+44gratWvHM888Q35+PnPnzr3op3RSPyKrgsb5+fleaXl5+QQEBJ714JGCggKef/Y5jh49yugxY/jFL39R7d9CRNX+MCEh3vswhYaF4na7KS87++EmpzaBLq9hYifSXDTEsbpjxw4sFgt9+/a90G6JNHl+oZ6Agb2ozCvNXliGr81y1gNK7MVl7H7zU0oycmk5sBMdJg2p9ZzLEugJejjtjgtouUjT1FDupzk5OVRWVjJ02NBqb9CYzWaGjxjOu++8S0Z6Ou3at7/AnopIQ6Z1/9KkzZgxg9GjR/P555/z1ltv1Xdz5AIFBgYSExPD0SNHvNKOHDlCYuKZN0svKyszJkzjrr+eX/7ql15fYtq0aYPFYiEtzfsUyKysbKxWKyGhIeTm5PLg7x7ko4UfeeXLyMgAICY65ny7J9JkNJSxerqDBw4Qn5BAQID3YQ4i4mG2WfGLCKI4I8crrfhEDsGto85Y1lFRaQQLY4d1o+PkoV5jt6KghK0vLeLY5996lS/7oQAA//AgrzSR5qqh3E8tVfuaulwur3wul+e16VM7GohI06OAoTR5s2fPJjQ0lJdeeonjx4/Xd3PkAg0cNJBdu3aRnp5uXNuVksKJjAyGnuV04jdef52jR48ydtw4bvvZbTXm8ff3p39SEju2b6/2byQrK4ttW7fSPykJk8lERGQEpaUlfL52LaVVm0UD/PDDD2xYv57uPXoQFh528Z0VacQawlg9xeFwkJaWRnx8/CXomUjTFtW9HfmHMijNzjeu5X2fQVl2IdG9zjyGDi3Z7AkWDu1K4vUDa8zjFxqIs9zOiS0HcZTbjevl+cVkbvuO0MSWWIMV1Bc5XUO4n8a1aUN4eDjr123Abv9x7NrtdjZu2EhwcAhxbWr/NpiINC56JVmavKioKB566CGefPJJZs6cyeuvv17fTZILMGHiRDZuSOaZ2XMYP2E8dnslS5csJSEhgeEjhgOQmZnJwQMH6NS5My1atCAtLY3kjckEBATSvn17kjdu9Kr31KnG06ZPY++evcyZNYex48ZiNvuycsVKLBYrt56258sd//d/vPiXv/DUE08xaswoysvKWb1qFSaTLz+/4+eX54ch0oA1lLEKnmC+w+EgKiqy7jsu0sjFjehB1o5D7Hp9Na2H98DlcJCWvJug1pHE9PGcYFyWW0RhahYh7WKwRQRTmpVP1o7D+NosBMVGkrnjkFe9p04/Tpw4mH3vrGPnv1fQMqkTTnslGZv34WMy0WGC9hgV+V8N4X5qMpn4+R138Le//pUnHnucK0ddhdvlYt3n68nISOfue+7GbFZIQaSp0uiWZuHmm29m8eLFfPHFFyxevJjJkyfXd5PkPIWGhjJz9kzmvfkWH37wIVarHwMGJDF1+jRjo+X9+/bzz7lz+c1dd9GiRQv27d0HQGlpCf+cO7fGek9NmqKjo5nz7Bzee/c9li5ZCrjp0qULU6dPo0WLFkb+AQMH8NDDD7N40SLef/c9LBYr3bp346dTf0rr1q3r9Gcg0hg0lLEKUFxUDIDNppVLIudiDbLR65djObz8G1I/24Gv1Uxk17bEX5eEyewLQOHRTA4u/IJONw3HFhFMwZGTADjLKjm48Isa6z0VMIzq1o5uM0ZxbH0KR1ZvxWTxJSy+Fe2v7UdAdNhl6aNIY9JQ7qcDBw3k8Sef4KOFH7Hg/fkAtI+P5w+PPEKfvn3qrP8iUv983G7tOiBSG/lFBfXdBBERkUbvzq3/ru8miEgt/Cvp1/XdBBE5h7Dg0PpuwmVxOb6LN5ef5fnQHoYiIiIiIiIiIiJiUMBQREREREREREREDAoYioiIiIiIiIiIiEEBQxERERERERERETEoYCgiIiIiIiIiIiIGBQxFRERERERERETEoIChiIiIiIiIiIiIGBQwFBEREREREREREYMChiIiIiIiIiIiImJQwFBEREREREREREQMChiKiIiIiIiIiIiIQQFDERERERERERERMShgKCIiIiIiIiIiIgZzfTdARERERERERESkvowePfqs6WvXrr1MLWk4FDAUqaU7t/67vpsgIufwr6Rf13cTREREmgTNfUUavvlX/b6+myBNmAKGIiIiIiIiIiLSbDXHFYTnoj0MRURERERERERExKCAoYiIiIiIiIiIiBgUMBQRERERERERERGDAoYiIiIiIiIiIiJiUMBQREREREREREREDAoYioiIiIiIiIiIiEEBQxERERERERERETEoYCgiIiIiIiIiIiIGBQxFRERERERERETEYK7vBojUxssvv8wrr7xy1jyLFy+ma9eu1a49+eSTHD16lLfffrsumyeXSXluEYdXbqHg8EkAIrrEET92ANYg21nL2YvLOLpmO7n7j+OqdBAUG0n7a5MIaRt9QflO992iTZT9UECvX469+A6KNBFZWVm8Pe9t9u7ZC0C//n2ZPmMGoaGhZy1XUFDAgvfns3XrNior7bSPj2fqtKl07NixWr7du3fzwYIPOJaais1mY/CQIdxy6y34+/tXy7fz22/5+ONFHDl8GJPJRIcOHbnlp7d41SfSHNX1PXXH3KUUp+V4lY/s0Y5uU6+iPK+YLS8sPOtn9fzFtYQltDrPnok0HZr7ikh9UsBQGpU777yThISEGtNiY2Or/f3DDz/kgw8+YODAgZejaVLHKksrSHl9FW6ni7iRPXC73aQl76bkZB597hqPyde3xnKOikpS/rMKe1EprYd1w+zvR8ZX+9j1+ir6/GY8gS3Dzyvf6U5uPcjJLQcJjW9Rp30XaUyKioqYM2s2DoeDiZMm4nK5WLpkKcdSj/Hs889hNtc89SgrK2PWzFnk5+Uxdtw4AoMCWbNqNXNmzeaZ556lbdu2gCdY+OycZ0hISOCnU6eSm5PDypUrOXToELNmz8LHxweAvXv38sfn/0hcXBtu/emtOJ1O1qxew6ynZzJz1iw6dOxw2X4mIg1NXd9T3W43pVkFRHZrS2T3dtXq8A8LBMAS6Eenm0d4fYbL4eDQ0q+xBPoT2CriEvdcpPHQ3FdE6psChtKoDB06lEGDBp01j9Pp5J///Oc5VyRK45L+xR4qCkrpf98kAmLCAAiOi2b3G2vI3P49rQZ0rrFc2oZdlP1QQM9fXEdYfEsAonu1Z8tfPiIteRedbx55XvkA3C4Xx9enkLr227rrsEgjtXzZcnJycvjzX14gLi4OgA4dEnn2mWfZsH4Do8eMrrHcJ4s/4URGBk8+/RTdunUDYOiQodx3770sXbKEu++5B4B3336HqKgonp41E6vVCkBkVBRvvP46O7/dSZ++fQCY9+ZbREZG8sxzz+Dn5wfAyJEjeeB3D7Jg/nwef/KJuvwxiDRodX1PrcgrxmV3ENmtLS36JtZYl6/VUmPaoWVf43a66PKTkVhsfpegtyKNk+a+IlLftIehNCkVFRVMmTKFl19+mUmTJtGihZ5+NRXZKYcJi29pTJgAwjvEYosOITvlSI1l3G43mTu+J6JznDERArAGBxA/dgAh7VucVz4AZ6WD7a8sJfWzb4npk4g1NOAS91Skcdu8aRPdunU3goUAPXv1olVsLJs2baqxjNvtZuOGDfTt29cIFgKEhYcxfcYMunTxbDdht9sJCQlh1OjRRrAQoGs3T3pqaioAxcXFpKamMnjIYCNYCBAaFkbXbl05ePDgpeuwSCNUl/dUgJKsfABsUWffhuB/lZzMJWPzPlr070joaZ8h0hxp7isi9U0rDKVJqaiooLi4mL/97W+MGzeOUaNG1XeT5BKoLKugPLeYqB7tvdKCWkWS+11ajeUq8oqxF5QSNqIH4JkcuSod+FotxA7uct75ANwOF84KO11+egXRPeP55oUPL1EvRRq/4uJiMjMzGTTYeyV4fHw83+74tsZy2dnZ5ObmMmHSRMAzBisqKvD39+eaa68x8lmtVh59/DGv8qlHjwIQFR0FQEBAAH996W/4+/l75S0qKsL3DK9xiTQHdX1PBSjNzAMgIMYTMHTaK/G1Ws7ZtqOfbsdkMdNuTN/z6ZJIk6O5r4g0BAoYSqNSVFREbm6u1/Xg4GAsFgtBQUGsWbPmjHtkSeNkLygFwBri/UTTGmLDWVaJo8yO2WatllaWUwiAJdCfwyu3cHLLQZzllfhHBpMwbiCRXducVz4AX38LSQ/ciMlXC7RF/tep38/hEd77joWHh1FaWkJJSQmBgYHV0k6eOAFASEgI77z9Np+v/ZzS0lJatmzJjNtuo39S/xo/Lzs7m7179vL2vLdp06YtAwYMAMBkMtGqlfdBCcdSUzl44AC9e/e+qH6KNGZ1fU8FKM3Kx9fPzOEVW8hOOYLL7sA/Ioh2V/cjpnfNe1GXnMwld18arUd0x6+Gtok0J5r7ikhDoKiKNCp33313jdfnzZvHoEGDMJlMmEy6mTU1TnslAL4W719ZpqrgsLPS4TVpcpTbAUj9bAc+viYSxw8CHx/Sknez95219Pj5NYR3iK11PgAfHx98fH3qrK8ijVl5eTkAflbvfccsFs/4tFfYvQKGJaWeL0YfLvgAX18zP7v9dkwmH5YuWcpfXniBxx5/jJ69elUrU1RUxL13e/Y19PPz4/Y7bq/2mnJNbXv1lVcBmDh50gX2UKTxq+t7KkBJZj7OCgeOcjudbx6Bo9xOxqa9HFiwEbfLXePehRlfHwCTD7GDu17S/oo0Rpr7ikhDoIChNCp/+MMf6NKli9f1mq5JE+J2e/73POcqLocL8Eyekh64wdg8PbJLG7a8+BFH12wjvENsrfOJyNm5q8bqqZOKa8tR6fliVFJSyt/+/jeCgoIA6Ne/P/ffez/z35/vFTD08fHhvt/ej9PhYNXKVTw75xnu/91vazwYq6Kighf+/AKpqalMnjy52j6JIs1OHd9TAVoN6ITb7a4W/IvuFc/2vy/myMotxPSOx+e0B7zOSgdZOw4R2bUN/uFBF9E5kSZCc18RaQAUMJRGpXv37uc8JVmaHl8/z75HrkqnV5rL4QDA7O+9N5KvxbNPWVT3dtVOWjTbrER0iSNrxyHPvkq1zVeL/ZdEmjObv2fPwIqKCq+0ykrPagZbgM0rzVp1MMnAQQONYCFAYGAg/fv3Y+PGjZSXl+Pv/+OehEFBQQwdOhSAQYMH8/CDDzHvzbe87hElJSX86Y9/4uCBA1x11VXc8tNbL7KXIo1bnd9TrRZaDfJ+kOtrMRPTN5Fja3dSmpVPYMsfty4oOHwSl91R435tIs2R5r4i0hDo3U0RafD8Qj0BBHtRmVeavbAMX5ulxgmNNcTz2qMl0PvgA2uQDdzgrKisdT4RObvIKM+hI/n5+V5peXn5BAQEVgv6nRJRtedhSEiIV1poWChut5vysvIzfq7VaqVvv37k5ORQWFhoXC8oKGDOrNkcPHCA0WPG8Ks7f33eqx9Fmpq6vqeejSXQ88DAaXdUu557IA0fs4mIznE1FRNpdjT3FZGGQAFDEWnwzDYrfhFBFGfkeKUVn8ghuHVUjeUCW4bhYzZRmpXvlVaeV4zJ4osl0L/W+UTk7AIDA4mJieHokSNeaUeOHCExsebDDtq0aYPFYiEtzfvUx6ysbKxWKyGhIaSnp3Pv3fewZvUar3zlZWX4+PhgsXi+QJWVlfH8s89x9OhRxl1/Pb/81S8VLBSh7u+pFQUlbH1pEcc+/9YrX9kPBQBerx0XHssiuHUUZv8z70Mq0pxo7isiDYEChiLSKER1b0f+oQxKs/ONa3nfZ1CWXUh0r/gay/haLUR2bUvu/jRKMvOM6+W5ReTsO0ZE1zb4mEy1zici5zZw0EB27dpFenq6cW1XSgonMjIYOmxYjWX8/f3pn5TEju3bOX78uHE9KyuLbVu30j8pCZPJRMuWLSkpKeWzTz/F4fhxhVJ2djZff/01Xbt1w2bzrGB64/XXOXr0KGPHjeO2n91WR70VaZzq8p7qFxqIs9zOiS0HjYMVAMrzi8nc9h2hiS2xBv948qvL6aQ0M5/AWO/T1UWaM819RaS+aQ9DEWkU4kb0IGvHIXa9vprWw3vgcjhIS95NUOtIYvp4Tlssyy2iMDWLkHYx2CKCAYi/LomCIyfZ9fpqYod2xWTyJX3zXkwWX9pf09+ov7b5ROTsJkycyMYNyTwzew7jJ4zHbq9k6ZKlJCQkMHzEcAAyMzM5eOAAnTp3pkWLFgBMmz6NvXv2MmfWHMaOG4vZ7MvKFSuxWKzcWrXvoK+vLz+/43ZefeVVZj09k+EjRlBcXMzqVavx8TFx+89vByAtLY3kjckEBATSvn17kjdu9GrniJEjL88PRKQBqut7auLEwex7Zx07/72ClkmdcNorydi8Dx+TiQ4TBldrS0V+CW6nC/9QHXYicjrNfUWkvilgKCKNgjXIRq9fjuXw8m9I/WwHvlYzkV3bEn9dEiazZ+PmwqOZHFz4BZ1uGm5MmvzDg+h95/UcXbWVtOTd4IbQ9i2Ivy7JyHM++UTk7EJDQ5k5eybz3nyLDz/4EKvVjwEDkpg6fZrxuvD+ffv559y5/Oauu4yAYXR0NHOencN7777H0iVLATddunRh6vRpRh7wBPrMFgtLFn/C2/Pm4efnT4+ePbjl1luIjfWc6Lhv7z4ASktL+OfcuTW2UwFDac7q+p4a1a0d3WaM4tj6FI6s3orJ4ktYfCvaX9uPgOiwam1xlHoOSfKt4QAHkeZMc18RqW8+bvepM9tF5GxuXffn+m6CiJzDv5J+Xd9NEJFzuHPrv+u7CSIiIk3C/Kt+X99NuCzyiwrq/DPCgkPr/DMaG21MICIiIiIiIiIiIgYFDEVERERERERERMSggKGIiIiIiIiIiIgYFDAUERERERERERERgwKGIiIiIiIiIiIiYlDAUERERERERERERAwKGIqIiIiIiIiIiIhBAUMRERERERERERExKGAoIiIiIiIiIiIiBgUMRURERERERERExKCAoYiIiIiIiIiIiBgUMBQRERERERERERGDAoYiIiIiIiIiIiJiUMBQREREREREREREDAoYioiIiIiIiIiIiEEBQxERERERERERETEoYCgiIiIiIiIiIiIGBQxFRERERERERETEoIChiIiIiIiIiIiIGBQwFBEREREREREREYMChiIiIiIiIiIiImJQwFBEREREREREREQMChiKiIiIiIiIiIiIQQFDERERERERERERMShgKCIiIiIiIiIiIgYFDEVERERERERERMRgru8GSN376quv+NnPfkZYWBjJyclYrdb6bpJInSrPLeLwyi0UHD4JQESXOOLHDsAaZKs5f14xW15YeNY6e/7iWsISWl3ytoo0RVlZWbw972327tkLQL/+fZk+YwahoaFnLVdQUMCC9+ezdes2KivttI+PZ+q0qXTs2LFavsOHDvP+e+9x8OBBTCYTXbt2ZfptM4iNjT1j3a/9+zVOnDjB0zOfvvgOijQBdX2vtBeXcWTVVvIOpuOqdBCa0IqE6wdiiwiuVqboeDapa3dQmJqF2+UmsGU4bUf1IaJz3CXopUjjdr7j9BR7cRlH12wnd/9xXJUOgmIjaX9tEiFto6vlKziaydE12ylO/wGzzUpk17a0G9MXS6D/BeUTkaZFAcNmYOnSpQQEBJCfn8/nn3/OddddV99NEqkzlaUVpLy+CrfTRdzIHrjdbtKSd1NyMo8+d43H5OvrVcYS6Eenm0d4XXc5HBxa+jWWQH8CW0VcjuaLNHpFRUXMmTUbh8PBxEkTcblcLF2ylGOpx3j2+ecwm2ueepSVlTFr5izy8/IYO24cgUGBrFm1mjmzZvPMc8/Stm1bADIyMpg9axZWqx833HgjAMuXLefpJ5/mzy/8mfCIcK+6132+js/XrqVrt25113GRRqSu75Uuh5M9b31G2Q8FtB7eHV8/K+lf7CblPyvpd+8kLAF+AJRmF5Dy/1ZhCfSnzZW9MJnNZG7/jj3zPqPr1KuI6t6ubn8QIg3YhYxTAEdFJSn/WYW9qJTWw7ph9vcj46t97Hp9FX1+M57Alp77ZP7hE+z+76eYbVbaXNkLHx8f0jftJf/wSXrfOQ6Lze+88olI06OAYRNnt9tZs2YNkyZNYtmyZSxatEgBQ2nS0r/YQ0VBKf3vm0RATBgAwXHR7H5jDZnbv6fVgM5eZXytFlr0TfS6fmjZ17idLrr8ZKQmQyK1tHzZcnJycvjzX14gLs6zQqhDh0SefeZZNqzfwOgxo2ss98niTziRkcGTTz9Ft6rA3tAhQ7nv3ntZumQJd99zDwArlq+gvLycmbNm0T6+PQA9evTg8cceY/nyZUyfMcOo0+VysejjRSz88MM67LFI41PX98rMHd9TnJ5DjzuuIbyDZ+VvROfWbP/HJ6R/sYf21/QD4OjqbfiYfOjzm+uxBgcA0HJgJ7b/4xOOrNqqgKE0axcyTgHSNuyi7IcCev7iOsLiWwIQ3as9W/7yEWnJu+h880gADi39Gh+TD71/PQ5bZAgAkd3bsv0fSzi+PoWEsQPOK5+IND3aw7CJ27BhA4WFhQwaNIjhw4fzxRdfkJ2dXd/NEqkz2SmHCYtvaUysAMI7xGKLDiE75Uit6yk5mUvG5n206N+R0KrJloic2+ZNm+jWrbsRLATo2asXrWJj2bRpU41l3G43GzdsoG/fvkawECAsPIzpM2bQpUtX41pWZibBwSFGsBAgsUMiQUHBHD923Lhmt9t55Pd/4MMPPmDEiBFERGiVsMgpdX2vzE45gn9ksBEsBAiIDiMssRXZKYcBz7gvOHKS8I6tjWAhgK/FTESXNpTnFGEvLruIXoo0bhcyTt1uN5k7vieic5wRLASwBgcQP3YAIe1bAJ4tBkoz84npm2gEAcEzTiO6tiFz+/fnlU9EmiYFDJu4pUuX4uPjw4ABA7j66qtxOBx88sknXvl27tzJL3/5S5KSkhg0aBC/+tWvOHDgwHnlGTVqFDNOW9lxpuujRo3iiSee4LHHHqNXr16MHDmS3Nxc3G4377//PjfddBN9+/alZ8+eXHfddbz22mu43e5at+XFF1+kc+fOfP999RuYy+VixIgR3Hfffef/g5RGobKsgvLcYoJaR3qlBbWKpDgjp9Z1Hf10OyaLmXZj+l7KJoo0acXFxWRmZpKQGO+VFh8fz5HDNX/Byc7OJjc3l569ewGeLzzl5eUAXHPtNdVWJbZs1Yri4iIKCgqMa0VFRZSWlhAWFmZcq6yspKysjPt/91vuuudufM/w6pZIc3M57pXFGTkExXrXHxgbSXluMZVlFfj4+ND37gnE17A6yVHqGf8+vvqqIs3ThY7Tirxi7AWlhFUF691uN057JQCxg7sYqxLthSUABLbw3sbDFhGMo6SCioKSWucTkaZJd+EmrLi4mPXr19OnTx+ioqK44oorsFqtLF68uFq+rVu3Mm3aNA4dOsQvfvELfvOb3/D9999z2223kZaWVus852P58uUcOHCAxx57jJ/85CdERETw0ksvMXPmTDp06MCjjz7KAw88gJ+fHy+++CLvvfderds7fvx4AFauXFntM7/55huysrKYMGHCebdXGgd7QSkA1pAArzRriA1nWSWOMvs56yk5mUvuvjRaDeqMXw11iUjNcnNzAQivYTVfeHgYpaUllJR4f7E4eeIEACEhIbzz9tv838/v4PbbfsZv77ufbVu3Vcs7cdJEIiMjefnvL3MsNZVjqam8/Pd/YDabGTtunJEvICCAl/7xd4YMGXIpuyjS6NX1vdJpr8RZVllz/VUHNVTke34P+EcE4x8eVL19xWX8sOcYtuhQbQcizdaFjtOynEIALIH+HF65hc1z3mPTzHfZ8uJH5Oz7cRW+yeLZmcxZUelVR2VphacNRWW1ziciTZP2MGzCVq9eTUVFBddccw0AQUFBDB06lPXr15OSkkKvXp6VHH/6058ICwvjo48+Ijzc8/ToiiuuYNy4cbz33nv8/ve/r1We81FeXs7cuXNp0cKzLL6yspJ33nmH66+/nj/+8Y9GvptvvpkhQ4aQnJzMtGnTat3eTp06sWrVKu69916jrhUrVhAcHMwVV1xxIT9OaQROPUH1tXj/ajNVHbTgrHRgtp39pPCMrw+AyYfYwV3Pmk9Eqju1KtDP6v0l32LxjDt7hZ3AwMBqaSWlni9GHy74AF9fMz+7/XZMJh+WLlnKX154gccef4yeVfesqKgoJk+Zwn/feIPfP+y595hMJn73wAPVXlP28fHRqkKRGtT1vdJRfub6T11z2b2DDwAup4sDHybjsjtoc0XPc/REpOm60HHqKPcEEVM/24GPr4nE8YPAx4e05N3sfWctPX7u2Vc0oEUYvv4WftiTStwVPfHx8THqzPsuHQBXpYPgttG1yiciTZMChk3YsmXLALj66quNa1dffTXr16/n448/plevXuTk5JCSksIdd9xhBN/A8+rYRx99RKtWrWqV53y1bdvWCBYCWCwWNm3aRGVl9QlkXl4eQUFBlFZ9maxtWyZMmMCLL77IwYMH6dSpEw6Hg9WrV3P11VdjtZ59AiyN2KlX130uvApnpYOsHYeI7NrGa9WDiJzdqe0jTn2hqC1H1e/+kpJS/vb3vxEU5Bl7/fr35/5772f++/ONgOGC+QtY9PHHdO3WjTFjRuNyuViz5lP+/tJL/O6BB+if1P8S9kikCbpc98qz1V/D7wi3y8XBD5PJ/y6D6F7xtOjX4cIbKNLYXeA4dTlcgCdwmPTADcYq3cgubdjy4kccXbON8A6xmHx9aT2sO8fWfsuBBRtpc2VP3C43qZ/twGX3BAB9fE21ziciTZMChk1UVlYWX331Fe3bt8fHx8d4bbhLly74+PiwYsUKHnvsMdLTPU+G2rXzPoXu1MbzKSkp58xzviIjvffjsFgsrF+/nrVr13LkyBFSU1ONPapOfQmtTXsBxo8fz1//+ldWrVpFp06d+PLLL8nPz9fryE2cr58FAFel0yvN5fBMasz+lrPWUXD4JC67g6ge7S95+0SaOpu/PwAVFRVeaZWVnlUPtgCbV5rVz/OFZuCggUawECAwMJD+/fuxceNGysvLcTqdLFu6lMTERJ586klMJs+XlCFDh/L4o4/x2r//zSu9X8ViOfs4F2nO6vpe6WutWkXo8K7fWbUS6VQbfvxcJ/s/2EjO7lTCO7Wm083Dz90RkSbsQsepr8Wzsj6qe7tqr/SbbVYiusSRteMQTnslvlYLbUf1xlFuJ2PTXuMQlYiuccSN7MHR1dsxV5WvbT4RaXoUMGyiVqxYgcvl4ujRo4wePdorvaCggM8++4zYWM+GuGdbDeJyuc6Z52ycTu8b3f++JuZ2u7nrrrtYt24d/fv3p2/fvtxyyy0MGDCAn/3sZ+fdltjYWPr168fKlSu57777WLlyJdHR0QwaNOiC+iCNg1+oJ9BQ014q9sIyfG0WfK1n/xKUeyANH7OJiM5xZ80nIt4io6IAyM/P90rLy8snICAQ/6qg4ulOnWAcEhLilRYaFuo5BKWsnJycHCorKxk6bKgRLAQwm80MHzGcd995l4z0dNq1b39pOiTSBNX1vdLsb8XXZsFeWOpdf9VnWv9nz8O973xO/vcniOgSR9epV2HSdgLSzF3oOLWGeLb8sAR632utQTZwe/Yj9LVa8PHxIfH6gbS5oidlPxTiFxqIf3gQR9dsB5MPfmGeumqbT0SaHgUMm6hTpyP/8Y9/rLZaA2D//v28/PLLLFq0iGeeeQaAY8eOedXxwgsvEBoayqRJk86Z51e/+hUmkwm7vfrmuw6Hg7y8PNq2bXvW9m7dupV169Zx1113cf/991crn5+fT5s2bQCMV47P1RbwrDKcNWsWhw8fZt26dUyYMEH7WTVxZpsVv4igGk+OKz6RQ3DrqHPWUXgsi+DWUZj99eq6yPkKDAwkJiaGo0e8T0M+cuQIiYkJNZZr06YNFoulxkO0srKysVqthISGUFjoWXV+6uHR6Vwuz0r0U29xiUjNLse9Mig2kuKMXK/rJSdy8I8MNlY+uZwu9r23jvzvTxDVsz2dfzJCwUIRLnycBrYMw8dsojQr3yutPK8Yk8XXCCZm7TyMNdhGWEIr40AigIKjJwlqHWnsn1jbfCLS9GjDgSboyJEj7N69m4EDBzJ58mTGjBlT7c+vf/1roqOj+fLLLwHPa8rLly+nuLjYqOP48ePMmzePH374gRYtWpwzD3g2oj9y5Iix6T3A559/XuOraf/r1GqUDh2q71fzwQcfUFZWhqNq6X1t2wIwduxYLBYLL7/8Mvn5+cbpydK0RXVvR/6hDEqz841red9nUJZdSHSv+LOWdTmdlGbmExjrfcKriNTOwEED2bVrl7GFBMCulBROZGQwdNiwGsv4+/vTPymJHdu3c/z4j6c4ZmVlsW3rVvonJWEymYhr04bw8HDWr9tQ7QGV3W5n44aNBAeHENdGq4NFzqWu75VR3dtRll1A3vcZxrXS7HzyD52oVv+xdTvJO5hBZI92dLllpIKFIqe5kHHqa7UQ2bUtufvTKMnMM66X5xaRs+8YEV3b4FO1Qj/9yz0cWvo1LuePD+Fy9h+n8GgWsYO6GNdqm09Emh49DmiCTh12ctNNN9WYbrFYuPHGG/nXv/7FJ598wqOPPsovfvELbrzxRm6++WZMJhPvvPMOISEh/PKXvwSoVZ7x48czZ84cfvGLXzBx4kRSU1P54IMPaN269Tnb3LdvX4KCgnj++edJT08nNDSUr7/+mhUrVuDn50dJSYmRtzZtAQgPD2fYsGGsWLGCNm3a0KdPnwv9kUojEjeiB1k7DrHr9dW0Ht4Dl8NBWvJuglpHEtMnEYCy3CIKU7MIaReDLSLYKFuRX4Lb6cI/VIediFyoCRMnsnFDMs/MnsP4CeOx2ytZumQpCQkJDB/h2ZcsMzOTgwcO0KlzZ+MArGnTp7F3z17mzJrD2HFjMZt9WbliJRaLlVt/eivgOQ3553fcwd/++leeeOxxrhx1FW6Xi3WfrycjI52777kbs1lTG5Fzqet7ZcukTmRs3s++99cRN6IHvhYzacm7sYYE0HpYdwAqSytIT96Nj6+JsIRWZO30Xpkc1b3tOV+PFmmqLnScxl+XRMGRk+x6fTWxQ7tiMvmSvnkvJosv7a/58WCwNiN7su+99ex9+zMiu7WjPL+Y9C/2EN4plpg+CeedT0SaHh+3Wy/vNDXXXnstOTk5fPHFFzXuFQWew0PGjBlD+/btWblyJdu2beMf//gHKSkp+Pn5MWDAAB5++OFqrxKfK4/L5WLu3LksXLiQnJwcunTpwkMPPcQbb7xBaWkpb7/9NgCjRo2idevWxt9Pr/8vf/kL+/fvx2q1Eh8fz2233UZKSgrz5s1j48aNRFXtj1Wb9oInePrggw9y55138rvf/e6ifq63rvvzRZWXy6c0u4DDy7+h4GgmvlYz4Z1aE39dkvEaReb27zm48As63TS82imMRcez+fafy+kweQitBnaur+bLRfhX0q/ruwkCZGRkMO/Nt6p+n/vRt28fpk6fRmhoKAAb1m/gn3Pn8pu77uKKK68wymVmZvLeu++xK2UX4KZLly5MnT6NuLjqqwZ3797NRws/4vChQwC0j49nypQp9Onb54xtuvfue4iKjubpmU9f8v7K+blz67/ruwlC3d8rKwpLObJiC7kH0/Dx8SE0oSUJYwfgXxXUyD2Yxp43PztrGwc8fNOZT2EWaQYudJyW5RZxdNVW8g5lgBtC27cg/rokAmLCqtWftfMwaRt3UZZTiCXIRkzvBNpc0cs4vOh888nlN/+q39d3Ey6L/KKCOv+MsODQOv+MxkYBQ2nSVqxYwe9+9ztWrFhBYmLiRdWlgKFIw6eAoUjDp4ChiIjIpaGA4aWjgKE37WEoTZbb7Wb+/Pn07t37ooOFIiIiIiIiIiLNhdYQS5PjcDh44IEHOHHiBCkpKbz88sv13SQRERERERERkUZDAUNpcsxmM6mpqaSlpXHPPfdwzTXX1HeTREREREREREQaDQUMpUn65JNP6rsJIiIiIiIiIiKNkvYwFBEREREREREREYMChiIiIiIiIiIiImJQwFBEREREREREREQMChiKiIiIiIiIiIiIQQFDERERERERERERMShgKCIiIiIiIiIiIgYFDEVERERERERERMSggKGIiIiIiIiIiIgYFDAUERERERERERERgwKGIiIiIiIiIiIiYjDXdwNEGot/Jf26vpsgIufgfvPN+m6CiJzDP/Gr7yaISC38pkdFfTdBRAS4THP8e++v+89oZLTCUERERERERERERAwKGIqIiIiIiIiIiIhBAUMRERERERERERExKGAoIiIiIiIiIiIiBgUMRURERERERERExKCAoYiIiIiIiIiIiBgUMBQRERERERERERGDAoYiIiIiIiIiIiJiUMBQREREREREREREDAoYioiIiIiIiIiIiEEBQxERERERERERETGY67sBTc0jjzzCokWLql0zmUzYbDYSExOZOnUqU6ZMqbPPPXDggHHNbreTl5dHixYtAPj444959NFHmTdvHoMGDbrkbTiTzp0713g9KCiINm3acMMNNzBjxgx8fP5/e/cdV3X1P3D8xWXvjShDkRQHiAiImisc5UDcmrP1y9LM7Ptt2LLUsq+lZZaZpVaWe6WCO3FvLRTFrSxFkD0vl3t/fwCfxIsKjkR5Px8PHw/4fM45n3M+eO54f84wuKvy4+Pj8fDwuJcqikfEtWvXWPjrQk7GnASgRWAAw4YPx9bW9rb5YmNjWbJ4CRfOn8fS0pKg4GAGDByAjY1NuXQXzl9g8aJFnDlzBpVKRePGjRk2Yjh16tQpl+79Ce9x/vx5veu0DAnhzf+8eY+tFOLRdy0rm9/27+dkUhIAAZ6eDG/dChtz89vmi71ylaWHDnE+JQUrU1OC6talf1AQNuZmt8wTd/06769eQ3jz5vQPCgQgJTub1xctue21PgzrQZOb+rYQNcmD7qfvr1rNhZRUvfwtveoxvmuXCsv+cecurmRk8FGvsLtslRCPl4K0bC5sOETmhasAODRyx6tbMCZWt++nmZeSubT5KDmJqRiZm+DY2JO6nQMwtjS7q3RpZxKJj/qbnMTrYGCAjYczdbu0wMbT+f42WAhRrUjA8AGZMGEC9vb2AOh0OnJycli7di3vvvsu6enpvPDCC/f1eoMGDaJ169bK74mJibzwwguMGjWKvn37AhAcHMy0adPw9va+r9eujPr16/PKK6+UO3b16lVWrlzJp59+SkFBAS+//HKVy33xxRdxdnbm888/v19VFdVUdnY2kz+ZhEajoVd4L7RaLevWriPuchyfTv0MI6OKX85iYmKY+ulnWFhY0rtPH1QqFZERkcTExDBp8iSsrKwASEpKYtInn2BiYkrffv0AiFgfwcQPJzLti2nYO/zTnxMTEwkKDiYkpGW5azk5y4cmIbILCpi8fj3FWi1h/v5odTrWR0cTn5bGlD69MTI0rDDfyaQkpkZuwMLEhN4BzVEZqNhw/DgxSUl80jscK1NTvTzFWi2zo3agKdaWO25tZsbopzrqpVcXa/hlzz6szc3wdHS8H80V4pH0oPupTqcjMSODoHp1aenlVa4MJ2urCsveHnuaP0/F0ri26/1trBCPqKK8QqLnbURXrMW9vS86nY6EXSfIvZpO89E9Ud2in2ZcuMKJBVswMjfBo2MzDAwMSNx7kowLV/F/pTvG5qZVS3fxKjG/bMHCxY56XVugK9aRdOAU0T9uwP/lblh7yOdfIR5XEjB8QDp37oy7u3u5Y/3796d79+589913DBs2DBMTk/t2vYCAAAICApTfExISuHTpUrk0Hh4eD20knpOTE+Hh4XrHhw4dyjPPPMNPP/3Ec889V+V7EzBD/QAAch9JREFUsnv37gcyYlNUPxHrI7h+/TrTvvxC6VtPPOHNp1M+ZUfUDjp17lRhvp/n/4xKpWLSlEm4upZ8CQluGcw7b73NmtWrGTZ8OACREZEUFBTw8SefUM+rHgC+vr68/957RESsV9KlpKRQUFBAcHAw7dq3f8CtFuLRExl9nLScXP43oB/upQ/OnnBx5rOIDew4c4ZOjRtXmO/nPXsxMDDgk/BeuJaOGg6uV493V65kzdFjDGvdSi/PmmN/kZiernfczNiYdg0b6B3/Ze8+NNpiXgt9qsIApBA1xYPupynZORQWaQiqV6/CvngjrVbL6mN/sfLIkfvYQiEefYm7YyjMzCPw9XAsXOwAsHZ35sT8zSQfPUft4IpncZ1fdwADlQH+o7pj7lgym8axqSdHv1lLfFQ09bsFVyndhYiDmNpa0vzVnhialIQPXFp4c+Sr1VzachS/F55+kLdBCPEQyRqG/yIzMzNCQ0PJycnh7NmzD7s61YKVlRWdOnUiMzOTCxcuPOzqiGps3969NGnStFwg3q9ZM2rXqcPevXsrzJOSkkJ8fBzt2rdXgoUAbm5utAgMZEfUTuXYteRkrK1tlGAhgPcT3lhZWRMfF68cS4hPAKCOm0xlFKIie8+fp0md2koQAsDP3Z3adrbsO1/x63xKdjbxaem0b9BACUIAuNnb0cLTk51n9N8z465fZ82xY/RpEaB3riJx16+z6cQJOvg0pHHt2lVslRCPlwfdTxNKA/l17G6/ZIhao2HCqtWsOHyEtg0a4GBpcS/NEuKxkhJ9ATsvVyVYCGD/RB3MnW1Iib5YYZ6C9BzykjNwCfBWgoAAFs52ODT2IPnouSqlK8ovJPdKGk5+9ZRgIYCJlTm2Xq5kxV27n00WQlQzEjD8l5Wt01dcXAzA4cOHee6555QRgiNGjODQoUPl8mRmZvLuu+/SsWNHfH196dy5M9OnT6ewsFBJ8+677yprBa5atYoRI0YAJVOjbzzu4+PDgQMHuHbtGo0bN2bKlCl6dZw1axaNGjUiMTERgMLCQr766itCQ0Px9fWlU6dOzJw5E7VafV/uiYWF/ofDy5cv884779C+fXt8fX1p2bIlr7zyihJoTUhIUNq1evVqpV1Q8qR6/vz5PPPMM/j6+tKuXTumTJlCTk7Ofamv+Pfl5OSQnJxMfW8vvXNeXl5cvFDxh6a0tDSACkfWurrWIjs7i+vXr5f8Xrs2OTnZZGZmKmmys7PJy8vFzs5OORYfXxI8dHNzA6CgoODuGiXEYyinsJBrWdl4OTvpnavn5MTFVP31zADScnMB8HBw0DtXy9aG7IICrt/wGl6s1TJnx0783Nxo1+D2o5fKLD10GBMjIwYGBVUqvRCPq3+jn8aXvv+6lQYkC4qKKiyzqLiYPLWacZ07MfqpjqhU8tVECCgJ1BWk5WDlpr98hlVtR3KSrleYT51V0k8ta9nrnTN3sEaTW0hhZm6l0xmZGhM0vi9uTzbVr2NeAQbSZ4V4rMmU5H+RVqvl4MGDmJiY4O3tzbZt23jttdfw9PTk1VdfBWD58uU899xzfPPNN3TqVDLF8o033uDkyZOMGDECFxcXjh07xty5c8nIyGDy5Ml61wkODuaVV15hzpw5DBo0iMDAQL00Li4uhISEsGnTJt57771yH9AiIyNp0aIFbm5uFBcXM2rUKI4ePcrAgQPx9vbmxIkTzJkzh1OnTvH999/f9WYlZfdk9+7dWFhYUK9ePQBSU1MZOHAgVlZWDBs2DHt7e06dOsWyZcuIiYnhzz//xMHBgWnTpvH2228TFBSk1A3g/fff548//qB3794899xznD9/nsWLF3P06FEWL16MqUxDe+SUBf7sK/iSYm9vR15eLrm5uVhaWpY7Z2pS8reuKKiXnZUNQEZ6Bo6OjvQK78XRI0eYNXMWI0aWTD/+beFvGBkZ0a17dyVfQkI85ubmLPzlV/bt20dBQQG1atVi4OBBPPnkk/enwUI8otJLAwoOFpZ65+wtLMgrVJNbWIjlTa/DpqVrkOZXEFTILu2/GXn5OJauObr2r7+5mpnJf7p2QavT3bFecdevc/RyHD2a+WFvqV83IWqSf6OfJqSnY2ZszMJ9+9h3/gKFRRpcbKwZFBxMmyf+WUvbwsSErwcPwlCCDkKUo87MA8DERn9ghYmNOcX5RWjy1RiZl1/OSWVc0k+LC/X7aVFeyWATdXZ+pdOZ2lpi7mSjlyb3ahpZl69h38CtKs0SQjxiJGD4gGRlZSlBjuLiYhITE/n555+JjY3lueeew9TUlEmTJlGrVi1WrlypbLwwePBgevbsySeffEL79u3Jyspi7969vP3227z44osADBgwAJ1Op4x0upmHhwdt2rRhzpw5NG/evMK1AwHCwsJ47733OHr0KEGlIy5iY2O5cOECH3/8MQB//PEH+/bt46effqJdu3ZK3mbNmvHRRx+xbds2OnfufMf7UVRUpNwPKAkUXrlyhV9++YUzZ84wbtw4zMxKduNatWoVmZmZLFq0qNwGLZaWlsydO5czZ87QtGlTwsPDefvtt/Hw8FDaeODAAVatWsUnn3zC4MGDlbwdOnTgxRdfZMmSJYwcOfKO9RXVS1nArywAeCNj45IPSupCtV7A0N3DHQsLCw4eOEB473AluK1Wq4mOji75uahkpKyTkxO9+/Rhwfz5vP3W20DJDufj33yz3DTl+Lh48vPzyc3LY/SYMeTl5bEhMpJZM79BW1ws6xqKGq0skGBSwSZEJqWLs6s1Gr1AhLu9PeYmxhy8eJHw5v7/9FWNhuiEktHu6mINAAlp6aw6epTnnmyDo5UVKdnZd6zXlpOnUBkY8LSv/ggJIWqaf6OfxqenU1BURF6hmtFPdSRPrWbj8RPM2vYnxVqtsq6hgYEBhvfw4FmIx1WxuqSfGhrr91NVad8tLtLoBQwtatlhaGZMasxl3Dv4/TO7rUhD+tmSfqot0mDt6VypdLeq2+nluwBw7+B3r00VQlRjEjB8QCraiMPExIThw4fzn//8h5MnT3L16lX++9//KsFCABsbG4YNG8b06dM5ceIETZs2xcLCgkWLFuHu7k67du2wsLBg6tSp91zHp59+mk8++YQNGzYoAcPIyEiMjY155plnANi8eTMODg40bdq0XMCvQ4cOGBoaEhUVVamA4bFjx8rt4lzGzc2N999/X5lCDfDyyy/Tr18/HG/YwbKgoEAZBZmXl3fL62zevBkDAwM6dOhQrr5NmjTB2dmZqKgoCRg+gnSlI4iqOprVyMiI7j16sGL5cmZ9M4vevcPRanUsW7qUgoKSp6eGpV+Oli5ZyupVq2jcpAmdO3dCq9WyefMWZn79NePffJPAoJKRup06d0ar1fL0M/8s8NzmyTa89Z//8tvC33iybVuZUiVqrLvuq4aG9Gjmx4rDR5n153Z6Ny/ZtXXZocMUlgY3DFUqtFot30dF4ePqestNGW6m1mjYdfYsgfXq4mxtXbUGCfEYetD9FKBT40bodDq6Nv0nSN/G25u3lq/g9/0HePIJb3mvFOJ2ykbPVzGerjI0xO3JpsRt+4vTS3fi0dEPnVbH5a3H0KpLAoAGhqpKp7tZsVpDzMJt5F5Jx72jH3Zesqu5EI8zCRg+IF988QVOTiVrw6hUKmxsbPD29lamwyYklGyc4OWlvyZb/fr1AUhKSiIgIIBJkybx4Ycf8vrrr2NiYkLLli3p2rUrvXv3vqfptVZWVnTs2JFNmzbx/vvvo1Kp2LBhA23btsW+dM2ZuLg40tLSKgz2AVy5cgUomTJati5jGWdnZ+VnHx8f3n33XQDS09P59ddfOXv2LG+99RbdunXTK7eoqIivvvqKmJgY4uLiSEhIUMrXarW3bFNcXBw6nY6OHTtWeP7mEWji0WBeOvr0xnU7yxSVjhA0tzCvMG+//v2UUYB79+wBIDAwkF7hvVi8aBFWVlbk5uayft06vL29+fCjD5UvMa3btOH9Ce8x94cf+Nb/O4yNjenStYveNUxMTGjbrh0rV6wgIT4ez7p170u7hXjUmBsbAyVBupupS1/DzU1M9M4B9G3RgtxCNRtPnGDfufMAtKjrSZi/P0sOHsLK1JR1f0cTl5bGx716kZVfMvI4t/R1oVCjISu/AGsz03KBkJikJAqLNLQqfW8VoqZ70P0UoEuTJnp5TYyMaNegASuPHCUhPR1PR/212YQQJQxNS/qptqhY75y2tO8amRlXmNcz1B9NgZqkvSeVzVEcGrvj3t6XS5uOYmRuWqV0ZTT5amJ+3UrW5WvUCmpAvS4t7k9jhRDVlgQMH5AWLVqU2831ZrrbrLlUds649ANdWFgY7dq1Y+vWrezYsYO9e/eye/duFi1axPLlyzG5xYe6yggLC2PTpk0cOXIEMzMz4uLieOONN5TzxcXF1KtXj4kTJ1aY38amZE2L/v37K5uklDl9+rTys62tLW3atFF+79KlCyNGjODNN9/EwMBAGdEIJRvBvPjii1hYWNCmTRv69etHkyZNiIuLY9KkSbdtj1arxdLSkm+//bbC87J+4aPJsTT4npGRoXcuPT0DCwtLZUr7zQwMDBgxcgTh4b24cvUqjo6OODs7s2TxElQqFU5OTsTHxVNUVESbJ9uUG/FgZGRE23Zt+f2330lKTKRu6TqbFbEt3TGyoIKgphA1RdkagxkVjARPz8vDwtQEM+OKv+AYGBgwok1rwpv7cyUzC0crS5ytrVl68BAqAwOcrKz4Oz4eTbGWD1av0cu//u9o1v8dzTdDBpcbSfhXXDzGhoY099Tf/EiImuhB99PbsTUvebhXUEGwUgjxD1Pbkr6kzs7XO6fOysfQ3BhDk1v3U+8eLfHo4Ed+ahamtpaY2VtxafNRUBlgamdZpXQA6px8Tvy8hdykNFxbNuSJ8Nb3tI69EOLRIAHDh6Rsh9ULFy7onbt4seQJj6urK7m5uZw6dYoGDRrQv39/+vfvj1qt5osvvuDXX39l9+7dhIaG3nU9OnTogI2NDVu3bsXQ0BALC4ty5bm7u3PixAlatWpVLpBSVFTEli1bcHUtGYb+xRdfVDj661ZMTEyYMWMGYWFhvP/++/j5+Sn35JtvvsHMzIyIiAgcbtjkYs6cOXcs183Njd27d+Pr66sEM8ts3LgRT0/PStdRVB+Wlpa4uLhw6aL+bsgXL17E2/vWI4f27NmDnZ0dTZs2xfaG3Y5PnTpF/fr1MTExwbh0fZiKRq9qtSUBfJ0O0q6n8emUT2nzZBv69e9XLl1SUhIALs4uVW6fEI8LS1NTnK2tK9xl9VJqKvVvGHl+s73nzmNnYU6TOnWwtfhnkfdTV67g5eyEiZERw1q3UkYUlsnMz+e7P6No2+AJ2jdsoAQkypxOTsbL2QmLe3i4JsTj5EH307TcXD6LiKS1tzf9AsuPQEosffDnIssDCHFbRuYmmDpYVbgbcs6V61i76e9yXuba3xcwsTbHrn5tTKz+eU/MvHQVKzdHZV3EyqbTFBYpwcI6TzbBu0fL+9VMIUQ1J4uHPCRNmzbF2dmZxYsXk5OToxzPyclh0aJFODs74+vry9mzZxk6dCgrVqxQ0piYmNCkdKpH2fprNys7frvpu2VlPf3000RFRbFt2za6dOmC+Q1ftkJDQ8nIyGDx4sXl8i1ZsoTx48ezb98+oGSKZ5s2bcr9u5M6derw9ttvk5OTo2yyAiWjyBwcHMoFC7Ozs1m9ejVAuanPqtI1rW6sL8D3339f7lp//vkn48aNY926dXesl6ieWoa05Pjx4+VGsh6PjuZKUhJtbrM7ceT6CBbMW1Du/83RI0c5HRtL16e7AuDu4YG9vT1R23egVquVdGq1mp07dmJtbYO7hzsOjg7k5eXy57Zt5dbSTE1NZUdUFE19fbGzt7uPrRbi0dPSqx4nEhNJTM9Qjh1PSOBKRiZtbtjI6mYR0dEs2L2X4hte049ejuP01WS6Ni15z6vv7Iyfu3u5fz6lD65q2djg5+5ebiMHTXExienpeDnJ1EchbvQg+6mDpSV5ajV/xsaSd8N7amp2DjtOn6GpWx3sLPR3fhVClOfUtC4Z55PIS8lQjqWfSyI/JQvnZvrLWpVJ3BPD+XUH0Bb/00+vx8aTdekadUIaVTnd+bX7SoKFbRpLsFCIGkZGGD4kxsbGfPDBB4wfP55+/frRv39/AFasWMG1a9f45ptvUKlU+Pv7ExQUxFdffcWVK1fw8fHhypUr/Pbbb9SvX/+WawuWrUG4du1adDpdhZuwlAkLC2P58uUAfPDBB+XODRgwgNWrVzN58mRiYmJo1qwZZ86cYenSpTRt2pS+ffve030YOHAga9asYefOnaxbt46wsDDat2/Pjz/+yLhx42jbti0pKSmsWLGC1NIn4bm5uUp+BwcHDh48yLJly2jbti0dOnSgU6dOzJ8/n8TERFq3bk1iYiK///47derUUXaaFo+esF692LljF1MmTaZnWE/U6iLWrV1H/fr1aduuLQDJycmcOX2ahj4+1KpVC4BevcP5avoMpn3+P4JbtiQ1JYWIiAj8/f1pW7rzt0ql4vkXXuCrGTP44L336Rj6FDqtlu1/RpGUlMiY18ZgVBqEeOHFF5n+5Zd89MFHhHYOpSC/gE0bN6JSGfL8C88/nJsjRDXSq7k/u86e5dOICHo080OtKWZ9dDRezk60bfAEAMlZWZy5mkxD11rUKh0N3qt5c77espVpGzcRXK8eqTnZREafoJmHO22feOKu6pKak4OmWKtMwRRClHjQ/fT5J59kxuYtTFyzltDGjcgvUrP5xEkMVQY89+SdHyoLIcC9nS/Xjp3n+LxNuLX1RavRkLDrBFZujrg0Lwns56dlk3X5GjZ1XTB3KBm569Hej1OLoji5cCuOTepSkJFD4u4Y7BvWwaX5P7NyKpMu71oG145dwNDcGKs6jiQfO69Xz1oBt37IIIR4tBnobreYnqiyd999l9WrV7Nt27bbrmFYZt++fcyePZvjx49jZGSEv78/r776qrJrMZSMuPv222/Zvn07165dw9bWlo4dOzJu3DhlY5Gy6964buCUKVNYtWoVOp2OP/74g8OHDzNhwgR+/fVXQkJClHRarZannnqKoqIidu3apTdqMScnh++++45NmzZx7do1XFxcCA0NZcyYMUpg8nZ8fHxo2bIlCxcurPD8uXPn6N27N9bW1kRGRmJhYcHXX39NZGQk6enpuLi40KpVK1544QV69OjBkCFD+PDDDwFYvXo106dPJzMzk8mTJ9O7d2+Kior46aefWLNmDYmJiTg4ONC6dWvGjRtHnTp17ljfW8nIzrzrvOL+SEpK4teffyE2NhYTE1MCApozZNhQZf3AHVE7+H72bF4dPZoOHTso+fbs2cPaNX9w9epVbG1tebJtW3r30d806MSJE6xcsZIL50s+DNXz8qJPnz40D2heLt3hQ4dZs3o1ly9fxtjYhCZNm/DskGeVafXi4dH9/PPDroIAkjIy+HXvPmKvXsXUyIjmHh4MbRWCTekI9h2nzzAnagevdOxAB5+GSr69586z9q+/uJKZha25OW0bPEF48+aYGt/6+WZKdjavL1pCv8AW9C/dzbzMuWvX+HD1H7zYri2dm1RuV2UhaooH3U8PX7rEmmN/EXc9DWMjQ5rUrs3gli1xu81I/LGLFuNsZcVHvcIeSJtF1bzqK+syP2x5KZlciDhI5qVkDE2MsG/ohtczQcoU4uSj5zizYjcN+7elVot/gvbX/r5Aws7j5F/PwtjKHBf/+nh0aIahSfl+eqd0Vw7Ecu6P/betY7vPnru/jRZVsuSptx92Ff4V6bNmPvBr2I8d98Cv8aiRgKEQlSQBQyGqPwkYCiGEEPeHBAyFqP4kYHj/SMBQn6xhKIQQQgghhBBCCCGEUEjAUAghhBBCCCGEEEIIoZCAoRBCCCGEEEIIIYQQQiEBQyGEEEIIIYQQQgghhEIChkIIIYQQQgghhBBCCIUEDIUQQgghhBBCCCGEEAoJGAohhBBCCCGEEEIIIRQSMBRCCCGEEEIIIYQQQigkYCiEEEIIIYQQQgghhFBIwFAIIYQQQgghhBBCCKGQgKEQQgghhBBCCCGEEEIhAUMhhBBCCCGEEEIIIYRCAoZCCCGEEEIIIYQQQgiFBAyFEEIIIYQQQgghhBAKo4ddASEeFa8c/uFhV0EIcQdznhv1sKsghBBCPBbmPOwKCCGEeKhkhKEQQgghhBBCCCGEEEIhAUMhhBBCCCGEEEIIIYRCAoZCCCGEEEIIIYQQQgiFBAyFEEIIIYQQQgghhBAKCRgKIYQQQgghhBBCCCEUEjAUQgghhBBCCCGEEEIoJGAohBBCCCGEEEIIIYRQSMBQCCGEEEIIIYQQQgihkIChEEIIIYQQQgghhBBCIQFDIYQQQgghhBBCCCGEQgKGQgghhBBCCCGEEEIIhdGDLHz//v2MHDkSOzs7du3ahYmJSbnzoaGhuLm5sXDhwgdWh+vXr2Nubo6FhcV9Ke/dd99l9erVnD59+r6Ud6MDBw4wYsQIXnvtNcaOHVthmtDQUAD+/PPP+379+0Gr1ZKUlIS7u3uV8pW1ferUqfTt27fK142Pj8fDw6PK+cSjpSAtmwsbDpF54SoADo3c8eoWjImV+W3zZSemcmnTEbLirmFgYICtlyte3YKxcLYtl+7Y7HXkJFzXy+/oW5cmQ55Sfs+8lMylzUfJSUzFyNwEx8ae1O0cgLGl2X1opRCPvmvXrrHw14WcjDkJQIvAAIYNH46tre1t88XGxrJk8RIunD+PpaUlQcHBDBg4ABsbm7sq/8L5CyxetIgzZ86gUqlo3Lgxw0YMp06dOvextUI8mh52P01JSWHsmNdue60PJ35E06ZN77aJQjzyHnY/LSPvp0LUTA80YLhu3TosLCzIyMjgzz//5JlnnnmQl9OzY8cO/vvf/7J69er7FjAcNGgQrVu3vi9lPW5ycnJ47rnn6NChwy0Dnrfi7e3NtGnTaNGiRZWv+9FHH3Hx4sUHGngWD19RXiHR8zaiK9bi3t4XnU5Hwq4T5F5Np/nonqgMDSvMl5eSSfSPGzE0McLzKX8AEvec5O+5kbQYG46pTclrg06nI+9aJo5NPHFsWrdcGWZ2lsrPGReucGLBFozMTfDo2AwDAwMS954k48JV/F/pjrG56QO6A0I8GrKzs5n8ySQ0Gg29wnuh1WpZt3YdcZfj+HTqZxgZVfzRIyYmhqmffoaFhSW9+/RBpVIRGRFJTEwMkyZPwsrKqkrlJyUlMemTTzAxMaVvv34ARKyPYOKHE5n2xTTsHez/nRsiRDVUHfqptbU1Y14bo3cNtbqInxcswMbGhrp16+qdF6KmqA79FOT9VIia7IEFDNVqNZs3byY8PJz169ezevXqfz1gGB0dTVZW1n0tMyAggICAgPta5uMiIyOD48eP06FDhyrndXJyIjw8/K6uu3v3btzc3O4qr3h0JO6OoTAzj8DXw7FwsQPA2t2ZE/M3k3z0HLWDfSrOt/ckWrUG/5e7YVXHEQA77zr8NXs9iXtiqN8tGIDC9By0ag2OTTypFeB9y3qcX3cAA5UB/qO6Y+5Y8pTWsaknR79ZS3xUtFKeEDVVxPoIrl+/zrQvv1BGmz/xhDefTvmUHVE76NS5U4X5fp7/MyqViklTJuHq6gpAcMtg3nnrbdasXs2w4cOrVH5kRCQFBQV8/Mkn1POqB4Cvry/vv/ceERHrlfKEqImqQz81MzOjXfv2etf45edf0Gg0vPb6WCWwIURNVB36Kcj7qRA12QNbw3DHjh1kZWUREhJC27Zt2b17NykpKQ/qckKIx1xK9AXsvFyVYCGA/RN1MHe2ISX64i3zFaRlY2RpqgQLAazdnTCyMCUvOV05lnstAwBzp1tP8ShIzyEvOQOXAG8lWAhg4WyHQ2MPko+eu4uWCfF42bd3L02aNC23NIVfs2bUrlOHvXv3VpgnJSWF+Pg42rVvr3y5AXBzc6NFYCA7onZWufxryclYW9soX24AvJ/wxsrKmvi4+PvRVCEeWdWln94s7vJlNm7YQMeOHWncuPG9NFGIR1516afyfipEzfXAAobr1q3DwMCA4OBgunTpgkaj4Y8//rhjvmPHjvH8888rI/leeOEFoqOjy6XR6XQsXryY/v37ExAQgJ+fH8888wxz585Fp9MBJWsNfvvttwB06tSJ4Tc8+Th9+jSjR48mKCiIZs2aMXDgQLZu3VruGsOHD+fFF1/kq6++IiAggNatW3P69GneffddfHzKj2RKTk7mvffeo23btgQEBNCvXz+98h6UWbNm4efnx6VLlxg1ahQBAQEEBwfzzjvvkJ6eXi5tTk4On332GR07dsTf35+wsDCWL19eLk1mZiaTJ0+mXbt2+Pr60q1bN3755Rflvt54zS1btvDkk08SEBDA8uXL6dSp5CnUt99+i4+PDwkJCQBcvnyZd955h/bt2+Pr60vLli155ZVXOHv2rFLmgQMH8PHxYdWqVeV+37NnD5988gmtW7fG39+fkSNHEhsbq+Tz8fEhMTGRgwcPKvkHDRpE27Zt0Wq15dp2/vx5fHx8+P333+/DnRf/pqL8QgrScrByc9Q7Z1XbkZwk/XUHy5g72qDJK0Sdk/9PeXmFaArUGN+w9mFZ8NDCpSRgWKwu0itLnZULgGUt/akX5g7WaHILKczMrWSrhHj85OTkkJycTH1vL71zXl5eXLxQcXA/LS0NoMK1aF1da5GdncX169erVL5r7drk5GSTmZmpHMvOziYvLxc7O7uqNk2Ix0Z16qc3W7pkKaampgwcNKiyzRHisVSd+qm8nwpRcz2QKck5OTlERUXRvHlznJyc6NChAyYmJqxZs4aXXnrplvn27NnDqFGjaNSoEePGjUOtVrNq1SqGDh3KggULCAoKAuDrr79mzpw59OnTh4EDB5Kbm8uaNWuYPn06lpaWDB06lEGDBpGTk8OWLVuYMGECDRo0AEqmKY8YMQIrKyuef/55LC0t+eOPPxgzZgwfffQRQ4cOVepz9OhR4uPjeeutt0hISOCJJ57Qq3NGRgYDBw4kIyODoUOH4uHhwfr163nttdf49ttv6dy5832+u/q0Wi0jRowgKCiId955h+PHj7NixQoKCgqYOXMmUDJFfOjQoZw9e5aBAwfSqFEjduzYwQcffEB+fj4jRowgLy+PYcOGceXKFYYMGYKrqyv79+/ns88+49KlS0ycOFG5pkaj4aOPPuL5559HrVbTsGFDJkyYwNSpU+nSpQtdunTBwcGB1NRUBg4ciJWVFcOGDcPe3p5Tp06xbNkyYmJi+PPPPzE2Nr5l2z744ANcXFwYPXo0mZmZ/PTTT/zf//0f27dvx8jIiGnTpjF16lTs7e155ZVXaNGiBbm5uUyZMoVDhw4REhKilBUREYGRkRHdunV7cH8M8UCoM/MAMLHRX4vUxMac4vwiNPlqjMxN9M67t/clLTae00t3Ur9HyXThCxsOozJU4damiZIu71oGhqZGXIg8REr0RbRqDWYOVtTt0gIX//oAqIxLXjKLC/WDiUV5hSV1zc7H1NZS77wQNUHZFxV7Bwe9c/b2duTl5ZKbm4ulZfk+YmpSsvZnQUGBXr7srGwAMtIzMDYxrnT5vcJ7cfTIEWbNnMWIkSUPDX9b+FvJ+0D37vfQSiEebdWpn94o7vJljhw5Qs+wnrImmqjxqlM/lfdTIWquBxIw3LRpE4WFhXTt2hUAKysr2rRpQ1RUFNHR0TRr1kwvj1arZeLEifj5+fHbb79hWLqBwbBhw+jduzdTpkxhzZo1FBUV8dtvv9GjRw8+//xzJf+AAQNo3bo1u3btYujQoQQEBODj48OWLVvo3LmzMtR6ypQpGBgYsGLFCmWY9rPPPsuzzz7LtGnT6NatGw6lL5x5eXl88cUX+Pv737KtP/74I1evXmXRokUEBgYC0LdvX3r27MmcOXP+lYChRqOhe/fuvPvuuwAMHjyY5ORktm7dSn5+Pubm5qxYsYLY2Fi+/PJLwsLCgJINXIYNG8bcuXMZNmwY8+bN4+LFi6xcuVIZRTlkyBBmzJjBDz/8wKBBg2jUqBFQ8vd6/vnnefnll5V6ODo6MnXqVHx8fJT1CH/77TcyMzNZtGgR3t7/rAtnaWnJ3LlzOXPmzG13v3N0dGTRokXK/wcTExOmT5/OgQMHePLJJwkPD2fmzJnl1kDs3r07U6dOZcOGDeUChpGRkbRu3Vr5+4pHR9loP0Nj/ZcsVemCzMVFmgoDhmZ2Vnh0bMb5dfs5+s3a0kwGNB7Ssdw05dzkDIoLNWgK1PgMaIemQE3S3pOcXroTnVZHrQBvLGrZYWhmTGrMZdw7+GFgYKBcO/1sIgDaIs19bbsQj5KyLyhlX1huZGxc0j/VhWq9LzjuHu5YWFhw8MABwnuHK31LrVYrswzURWqKtcWVLt/JyYneffqwYP583n7rbQBUKhXj33yz3LQqIWqa6tRPb7R58xZUKhVP/8trngtRHVWnfirvp0LUXA9kSvL69esB6NKli3Ks7OeyKac3O3nyJPHx8XTu3JnMzEzS0tJIS0ujoKCAp556ilOnTpGcnIyxsTF79+5l0qRJ5fKnp6djZWVFXl7eLeuVmprK33//TXh4eLk1HUxNTXnxxRcpKCgot16DmZkZfn5+t21rVFQUTZs2VYKFZeXNnTuXb7755rZ576ebR801btwYjUZDRkaGUk8HBwd69uyppDEwMGDatGn8/vvvGBgYsHnzZho2bIizs7Ny/9PS0pSg5/bt28tdIzj4zps7vPzyy+zZs6dcsLCgoACVquS/3u3+XgBdu3ZVgoVl7QJuux6mo6MjrVu3ZsuWLRQXl7wZnjx5kosXL5Zrv3iElE2JN6h61ktbjnJuzT5sPF3wGdSehgPaYe3uROziHVw/9c+6K7WDG+LdK4QmQ57CqWldXAMb4P9KD8wcrLi44RA6rRaVoSFuTzYlJ/E6p5fuJPdqGjlJ14ldHIVWXRIoNDB8YCs9CFHtlS1fUfYFpbKMjIzo3qMHFy5cYNY3s4i7fJlLFy/x9YyvKCgoGb1raGhYpfKXLlnKTz/+SEMfH8a+PpYxr43B+4knmPn11xw5fKSKLRPi8VGd+mkZtVrN7l27CAwKwtnZuUr1EuJxVJ36qbyfClFz3fcRhteuXWP//v3Uq1cPAwMDZR27Ro0aYWBgQGRkJO+99x4mJuVHAsXFxQEwbdo0pk2bVmHZSUlJ1KpVC2NjY6Kioti2bRsXL17k8uXLypoKN661d7PExJIRQF5e+ms1lAW0kpKSlGN2dnZKYOt2ZYaGhuodr+gad2JqWvKER6O59QgljUaj9yQJ0Bs1V3Z/ywJmiYmJeHp66r0p3Li7cFxcHAUFBbRu3brCa1+5cqXc746O+uvJVaSoqIivvvqKmJgY4uLiSEhIUOp18zqDN7tVu+6ULywsjN27d3Po0CFatWpFREQEpqam/8qIT3H/GZqWTJvQFhXrndOW9hcjM/2p7Zp8NQm7TmDl7ojfi09jUNqfnZvV46/Z6zm7eg/2DQagMjKkdkgj/esaG+ES4E3ctr/Ju5aBpasDnqH+yujDss1WHBq7497el0ubjmJkrv+kVoiawtzMDIDCwkK9c0VF6pI0FuZ65wD69e9HXl4eGyIj2btnDwCBgYH0Cu/F4kWLsLKyQlNUVKnyc3NzWb9uHd7e3nz40YfKe3nrNm14f8J7zP3hB771/+62S2II8biqLv30RjEnYigoKKBV61Z32SohHi/VpZ/K+6kQNdt9DxhGRkai1Wq5dOmSsgnGjTIzM9m6dSvdb1rvoCwANG7cOJo3b15h2fXr10en0zF69Gi2b99OYGAgAQEBDBo0iODgYEaOHHnbut0umFh2/Rtf7G4c2XYrxcXFVX7ycys2NiW7rubm3nrThOzsbGrXrq13/E51qEw9i4uLCQwM5LXXXqvwvIuLS7nf7xRMBTh8+DAvvvgiFhYWtGnThn79+tGkSRPi4uL0RolWpDLXqEiXLl2YOHEiGzZsoFWrVmwo3XHPysrqrsoTD5epbcnfTZ2dr3dOnZWPobkxhib6H1Tyr2eh02hxblZfCRYCqAwNcfH35uLGw+SlZGJV+9bT1I0tSz6MFZeNIDQwwLtHSzw6+JGfmoWprSVm9lZc2nwUVAaY2sn6haLmcnRyAlBGt98oPT0DCwtLzEq/BN3MwMCAESNHEB7eiytXr+Lo6IizszNLFi9BpVLh5OREUekXnDuVf/7ceYqKimjzZJty7yNGRka0bdeW33/7naTEROrWq3fPbRbiUVNd+umNjh07hrGxMQEBAffWOCEeE9Wln8r7qRA1230PGJbtjvz555/rBWdiY2OZNWsWq1ev1gsYlo10Kwss3Sg6OprMzEzMzMw4fPgw27dvZ/To0YwbN05JUzb9tqIdoW6+xoULF/TOXbxYMlLoxqnKlVGnTh1ldOSNVq9ezZEjR/joo4/0RlPeiru7O2ZmZpw7d67C8/Hx8eTl5SkbuFS1nqdPn9Y7vmPHDiIjI3nrrbdwc3MjNzdX7/5nZmayb98+6tatW+XrfvPNN5iZmREREVFutOCcOXOqXFZVWFpa8tRTT7F9+3aeffZZEhMTmTBhwgO9pnhwjMxNMHWwqnA35Jwr17F2c6own8qo9IONVv9hgU6nLfuBwsxcji/YjEszLzxDm5dLl59aMnrZzL7k9eza3xcwsTbHrn5tTG7YZTnz0lWs3BwrXGdRiJrC0tISFxcXLl3U373x4sWLeHvXv2XePXv2YGdnR9OmTbG9YdfFU6dOUb9+fUxMTDAxMalU+cal/bCi0eja0teD2zxDFOKxVl366Y3OnD6NV/36WFjob24mRE1UXfqpvJ8KUbPd18W2Ll68yIkTJ2jZsiW9e/emc+fO5f6NGjUKZ2dn9uzZQ3Jycrm8vr6+ODs7s3DhwnIj7HJycnjjjTeYMGEChoaGylOQm3csXrZsGfn5+eWm85Y9BSkbWejs7Iyvry9r167l6tWrSjq1Ws2CBQswMTHhySefrFKb27dvz/Hjxzlx4oRyrKioiHnz5nHixIlKBwuhZLptu3btOHDgAH/99Zfe+V9++QUovzZkVeqZmprKli1b9MqMiorC3t6e0NBQYmNj2bFjR7k033//PePGjePs2bO3vUbZiMwb31AyMjJwcHAoFyzMzs5m9erVwD9Tpu+FSqWq8E0sLCyM5ORkfvjhB6ytrenQocM9X0s8PE5N65JxPom8lAzlWPq5JPJTsnBuVvESABYudpjYmHP16FmKb9iMpLhIQ/Kx8xhZmmJRyw5TW0uKC9RcOXQGTYFaSVeQkUPykbPYertiYl3yJSZxTwzn1x1AW/zP/7nrsfFkXbpGnQqmNQtR07QMacnx48eVZUAAjkdHcyUpiTa3eY+NXB/BgnkLyr0vHD1ylNOxsXR9umuVynf38MDe3p6o7TtQq//p02q1mp07dmJtbYO7h/t9aa8Qj6Lq0E/LaDQaEhIS7mo5HyEeZ9Whn8r7qRA1230dClO22Un//v0rPG9sbEy/fv2YM2cOf/zxh965Dz74gPHjx9O3b1/69++Pqakpy5cvJykpiS+//BIjIyMCAgKwsrJi6tSpJCYmYmtry4EDB4iMjMTU1LRcsLEsSPXTTz/Rvn17OnXqxAcffMDIkSPp378/zz77LJaWlqxdu5aYmBg++OADZVpwZb3yyits2rSJkSNHMmzYMFxcXIiIiOD8+fPMnz+/SmUBvP322/z11188//zz9OvXDx8fH/Lz89m5cye7du2ib9++dxX4Gjx4MCtXrmT8+PEMHToULy8voqKi2LNnD5999hmGhoaMGjWKzZs3M2bMGAYPHkyDBg04cuQIf/zxB+3bt6d9+/a3vUbZmo/btm2jTp06dO3alfbt2/Pjjz8ybtw42rZtS0pKCitWrCA1NRW4/fTrynJwcCA2NpZFixbRsmVLJZjcrl077OzsiIyMpG/fvlUK3orqx72dL9eOnef4vE24tfVFq9GUrE/o5ohL85I1SPPTssm6fA2bui6YO1hjoFLhHdaKU4u289f3EbgGNkCn05F85Cz5KZn4DGiHqjTQ7d2rFad+287fP0TiGtSQYnURSftOYaBS8UTYP2sqebT349SiKE4u3Ipjk7oUZOSQuDsG+4Z1cGl+66e9QtQUYb16sXPHLqZMmkzPsJ6o1UWsW7uO+vXr07ZdWwCSk5M5c/o0DX18qFWrFgC9eofz1fQZTPv8fwS3bElqSgoRERH4+/vTtl27KpWvUql4/oUX+GrGDD547306hj6FTqtl+59RJCUlMua1MRgZyWhgUXNVh35aJjU1FY1Gg5NT5dbGFqKmqA79VN5PhajZ7usIw/Xr12NtbU3Xrl1vmWbgwIGoVCplhNmNnnnmGebPn0+tWrWYPXs2M2fOxNLSku+//17Z3dbJyYm5c+fi4eHB999/z4wZM0hKSmLGjBkMGTKEc+fOKcGoHj160KZNG1atWsWXX34JQEBAAIsXL6Zp06bMnz+fmTNnYmpqynfffcfw4cOr3GZHR0eWLl3KU089xZIlS/jyyy/R6XTMnz//lpuH3I6npycrV66kX79+7Ny5kylTpvDdd9+Rk5PD1KlT+eyzz6pcJpTs+Lxw4UL69+9PREQEU6dO5dq1a3z99df069cPKAn4LV26lL59+7Jx40amTJnC33//zejRo/nmm2/uuJ6gubk548ePJzk5mSlTphAbG8vYsWN54YUX+Ouvv5g8eTKrVq2iTZs2rFmzBpVKxf79+++qPTcaO3Ystra2fPbZZ+VGUJqYmPD0008DyO7IjwETK3Oa/V83LF0duLz1GEl7T+HY2JOmIzujMioJ+mVdSubM8l1kXfpnBLNT07r4vfA0xuYmXNpyhMtbj2JkbkLTkZ2VQCOAU5O6NBkeisrEiIubDpOw+wQ2ni74v9IdCxe7f9L51sNnUHvU2flciDxISvRF3Nv50nhIaLl1EoWoqWxtbfl40sfUrVuX5cuWsyFyA8HBQbwz4V1lneDYU7F89+13xJ6KVfKFhIQwdtzrZGRksPDXX9m7dy89w8J487//Kff+U5nyoWTkxPsffoCllRVLFy9h2dJlWFpZ8s6775b7wiRETVRd+ilATnYOAObmMh1ZiBtVl34q76dC1FwGutvtBCLEI27ixIls27aNHTt2VGoTm9sZvL3i3buFENXHnKBRD7sKQgghhBBC/CvsrG0fdhX+FemzZj7wa9iPHXfnRDWMDIcRj62MjAw2btxI79697zlYKIQQQgghhBBCCFFTyIIDD1hKSkql0llYWGBpafmAa1MzxMTE8NNPPxEdHU1hYSFDhw592FUSQgghhBBCCCGEeGRIwPABa9u27Z0TAa+99hpjx459wLWpGaytrdm3bx+mpqZ8+eWX1K5d+2FXSQghhBBCCCGEEOKRIQHDB2zBggWVSufh4fGAa1JzeHp63pfNVIQQQgghhBBCCCFqIgkYPmBt2rR52FUQQgghhBBCCCGEEKLSZNMTIYQQQgghhBBCCCGEQgKGQgghhBBCCCGEEEIIhQQMhRBCCCGEEEIIIYQQCgkYCiGEEEIIIYQQQgghFBIwFEIIIYQQQgghhBBCKCRgKIQQQgghhBBCCCGEUEjAUAghhBBCCCGEEEIIoZCAoRBCCCGEEEIIIYQQQiEBQyGEEEIIIYQQQgghhMLoYVdACCGEEEIIIUT1ovv554ddBSHEnYwd97BrIB5jMsJQCCGEEEIIIYQQQgihkIChEEIIIYQQQgghhBBCIQFDIYQQQgghhBBCCCGEQgKGQgghhBBCCCGEEEIIhQQMhRBCCCGEEEIIIYQQCgkYCiGEEEIIIYQQQgghFBIwFEIIIYQQQgghhBBCKCRgKIQQQgghhBBCCCGEUEjAUAghhBBCCCGEEEIIoZCAoRBCCCGEEEIIIYQQQiEBQyGEEEIIIYQQQgghhMLoYVfgRmq1mt9//52IiAguXLiAgYEBnp6e9OjRg0GDBmFtbf2wq1ih0NBQ3NzcWLhwYYW/V9asWbP49ttv+fXXXwkJCdE7n5CQQKdOnejTpw+ff/75fan7/ZaTk4NarcbBwaFK+cravm3bNtzd3auUV6vVkpSUVOV84tFTkJbNhQ2HyLxwFQCHRu54dQvGxMr8tvmyE1O5tOkIWXHXMDAwwNbLFa9uwVg4295VumOz15GTcF3vOo6+dWky5Kl7bKUQj75r166x8NeFnIw5CUCLwACGDR+Ora3tbfPFxsayZPESLpw/j6WlJUHBwQwYOAAbG5tb5pn7w1yuXLnCxI8nVng+JyeHN994k6HDhtKhY4e7b5QQj5nq0k9PnDjBsqXLiLt8GXNzc1q1bs2gwYMwMzO7twYK8Ri4lpXNb/v3czIpCYAAT0+Gt26FjfntP/vGXrnK0kOHOJ+SgpWpKUF169I/KAgb81v3qx937uJKRgYf9QpTjqVkZ/P6oiW3vdaHYT1oUqdOFVolhHhUVJuAYXJyMi+99BJnz56lc+fO9OnTB51Ox7Fjx5gxYwZLly7lhx9+oH79+g+7quIWTpw4wauvvsqXX35ZYcDzdrp06YKnp2eVA405OTk899xzdOjQgbFjx1Ypr3i0FOUVEj1vI7piLe7tfdHpdCTsOkHu1XSaj+6JytCwwnx5KZlE/7gRQxMjPJ/yByBxz0n+nhtJi7HhmNpYVCmdTqcj71omjk08cWxat9y1zOwsH1TzhXhkZGdnM/mTSWg0GnqF90Kr1bJu7TriLsfx6dTPMDKq+KNHTEwMUz/9DAsLS3r36YNKpSIyIpKYmBgmTZ6ElZWVXp7tf27nz23baNykSYVlajQaZn71NVlZmfe1jUI86qpLPz1x4gSfTp5C/fr1eXbIENKuX2fDhg2cP3+eTyZ9goGBwX1vuxCPiuyCAiavX0+xVkuYvz9anY710dHEp6UxpU9vjG7x2fdkUhJTIzdgYWJC74DmqAxUbDh+nJikJD7pHY6Vqalenu2xp/nzVCyNa7uWO25tZsbopzrqpVcXa/hlzz6szc3wdHS8H80VQlRD1SJgqFarefXVV0lISGDBggW0bt1aOTds2DBGjBjByy+/zMsvv8y6deswv8MTFfFwnDlzhmvXrt1V3kaNGtGoUaMq58vIyOD48eN06CCjRh53ibtjKMzMI/D1cCxc7ACwdnfmxPzNJB89R+1gn4rz7T2JVq3B/+VuWNUp+UBj512Hv2avJ3FPDPW7BVcpXWF6Dlq1BscmntQK8H7ArRbi0ROxPoLr168z7csvlJHfTzzhzadTPmVH1A46de5UYb6f5/+MSqVi0pRJuLqWfGEJbhnMO2+9zZrVqxk2fLiSVqvVsnrValYsX37LeqRdT+Prr7/mzOnT97F1Qjweqks//X3hbzg5OTHxk48xMTEBwNHJifnz5vH3X3/TPKD5fWqxEI+eyOjjpOXk8r8B/XC3twfgCRdnPovYwI4zZ+jUuHGF+X7esxcDAwM+Ce+Fa+mI4eB69Xh35UrWHD3GsNatlLRarZbVx/5i5ZEjFZZlZmxMu4YN9I7/sncfGm0xr4U+VWEAUgjxeKgWaxiuWbOGmJgY3nnnnXLBwjL+/v68//77xMfHM2/evIdQQyHEw5YSfQE7L1clWAhg/0QdzJ1tSIm+eMt8BWnZGFmaKkFAAGt3J4wsTMlLTq9yutxrGQCYO91+ypYQNdW+vXtp0qRpuWUi/Jo1o3adOuzdu7fCPCkpKcTHx9GufXslCAHg5uZGi8BAdkTtVI6p1Wreffsdli9bRrt27SocmR7999+8OX48cZcv80y3bvexdUI8HqpDP1Wr1djY2BDaqZMSLARo3KQkCHL58uV7bqcQj7K958/TpE5tJVgI4OfuTm07W/adv1BhnpTsbOLT0mnfoIESLARws7ejhacnO8+cVY6pNRomrFrNisNHaNugAQ6WFpWqV9z162w6cYIOPg1pXLv2XbZOCPEoqDYBQwsLC/r06XPLNGFhYTg7O7Nu3TomTpxIkyZNSEtLK5cmLy+P5s2bM2HCBOXYsWPHeP755wkICCAgIIAXXniB6OjocvlCQ0P54IMPeO+992jWrBnt27cnLS0NnU7H4sWL6d+/PwEBAfj5+fHMM88wd+5cdDrd/b0Jd2n48OG8+OKL7Ny5k759++Ln50eHDh2YNWsWWq22XNrz588zbtw4QkJCCAwMZPjw4Rw+fLhcmnPnzjFmzBiCgoLw9/dn8ODB7Nq1q8JrfvXVVwQEBNC6dWvGjh2r3PcRI0YQGhqqpN+3bx8vvfQSISEhNG3alHbt2vHRRx+RlZWlpJk1axY+Pj4kJCQov/v5+XHp0iVGjRpFQEAAwcHBvPPOO6SnlwRvDhw4QKdOJU/Av/32W3x8fIiNjaVZs2aMGzdO714tXrwYHx8fzp49q3dOVG9F+YUUpOVg5aY/5cGqtiM5SfrrCZYxd7RBk1eIOif/n/LyCtEUqDG+Ye3DyqYrCx5auJR8CCtWF919w4R4zOTk5JCcnEx9by+9c15eXly8UHFwv+z93MPDQ++cq2stsrOzuH69pJ8XFRWRn5/PuPFvMPq1MRhWMCUrITGRpk2b8vm0/xHcMvhemiTEY6e69FMTExMmvP8effqW//x/+dIlAJycnarULiEeJzmFhVzLysargn5Qz8mJi6mpFeZLy80FwKOCIH0tWxuyCwq4npMDQFFxMXlqNeM6d2L0Ux1RqSoXGlh66DAmRkYMDAqqZGuEEI+qhz4lubi4mOPHj9OsWTNMbzOc2cDAgJCQENavX8+nn37KkiVL2LRpE88++6ySJioqivz8fHr16gXAnj17GDVqFI0aNWLcuHGo1WpWrVrF0KFDWbBgAUE3vMhFRERQv3593nvvPVJTU3FwcOCrr75izpw59OnTh4EDB5Kbm8uaNWuYPn06lpaWDB069MHdmCo4c+YMb7zxBoMGDWLQoEGsX7+eb7/9FgcHB6WOly5dYuDAgRgZGTFs2DAcHBxYsmQJzz//PL///jvNmjXj9OnTDBkyBCcnJ0aNGoWxsTHr16/n5ZdfZvr06XTv3l255tGjR4mPj+ett94iISGBXr16YW9vz9KlS3nllVfw8/MDYPfu3fzf//0fLVq04PXXX8fAwIA9e/awdOlSMjMzmTlz5i3bpdVqGTFiBEFBQbzzzjscP36cFStWUFBQwMyZM/H29mbChAlMnTqVLl26KOsgdujQgR07dpCfn19u+npERAQ+Pj40aKA/rF5Ub+rMPABMbPSffJrYmFOcX4QmX42RuYneeff2vqTFxnN66U7q9ygJHFzYcBiVoQq3Nk2qnC7vWgaGpkZciDxESvRFtGoNZg5W1O3SAhd/WWNV1GxlAQX7Cr6o2NvbkZeXS25uLpaW5df7NDUpef8vKCjQy5edlQ1ARnoGjo6OWFhY8PU3MysMQJTp2rWr8p5VFsAQQpSoLv30ZikpKZyMOcnCXxfi4eFJcLAE+0XNlV4a+HOw0F8f297CgrxCNbmFhVje9P3ZtHT90fwi/Qfa2aV9NyMvH0crKyxMTPh68CAMKxkohJLRhUcvx9GjmR/2lrJ2txCPu4ceMMzMzEStVuPs7HzHtC4uLgCYmZnh5ubGxo0bywUMIyMjcXFxISQkBK1Wy8SJE/Hz8+O3335TPrAMGzaM3r17M2XKFNasWaPkLSgoYPbs2dSqVQsoeTL622+/0aNHj3I7Eg8YMIDWrVuza9euahMwvHbtGt9//70yqq937960a9eOdevWKXX8+uuv0Wg0rFq1irp1SzZq6N69O126dGHevHnMnDmTKVOm4ODgwOrVq7GwKAnMDBs2jJEjR/Lpp5/SuXNnZcpIXl4eX3zxBf7+/ko9mjdvztKlS2nTpo2y6cnPP/9M7dq1WbBggZJ3yJAhDBo0SG/k4s00Gg3du3fn3XffBWDw4MEkJyezdetW8vPzcXJyonPnzkydOhUfHx/Cw8OBktGomzdvZvv27coXxuTkZI4cOcL48ePv/YaLf13ZKD5DY/2XLFXpB6PiIk2FAUMzOys8Ojbj/Lr9HP1mbWkmAxoP6Vhu+nFl0+UmZ1BcqEFToMZnQDs0BWqS9p7k9NKd6LQ6WddQ1GhlgYSywMKNjI1L+qe6UK0XiHD3cMfCwoKDBw4Q3jtc2ehArVYrswLURWqg5AHinYIQt9qwQQhRffrpjbKzsxk75rWSepma8twLz5WbpixETVMW8DOp4P3MpLRvqTUavYChu7095ibGHLx4kfDm/v/0U42G6ITEkp+LNUBpP63ixkJbTp5CZWDA075Nq9YgIcQj6aFPSS6b2luZDxU3fgHo2bMnhw4dUkYO5OTksHPnTnr06IFKpeLkyZPEx8fTuXNnMjMzSUtLIy0tjYKCAp566ilOnTpFcnKyUp6np6cSLAQwNjZm7969TJo0qVwd0tPTsbKyIi8v757afS9u3jHO3Nycjh07Kr+bmpri5eVFaulQda1Wy44dO+jQoYMSLASwt7dn0aJFfPDBB6Snp3Pw4EE6dOhAQUGBcr+ysrLo0qULqampHD9+XMlrZmamjCK8nR9++IGVK1eW+9BXlXvY7aa1pxo3boxGoyEjI+OWeTp27Ii1tTUbN25Ujm3YsAGdTkePHj3ueE1RDZUtAXAXmyVe2nKUc2v2YePpgs+g9jQc0A5rdydiF+/g+qn4KqerHdwQ714hNBnyFE5N6+Ia2AD/V3pg5mDFxQ2H0N20FIAQNUnZe3pVdzY1MjKie48eXLhwgVnfzCLu8mUuXbzE1zO+oqCgEKjc5wQhxJ1Vx35qYGDA62+MY8xrY3B3d+fTyVM4cODAXZUlxOPgrvupoSE9mvlxMSWVWX9uJ+76dS6lpvL1lq0UlgYhqzKi8EZqjYZdZ88SWK8uztbWd1WGEOLR8tAfwTs4OGBsbFypKUNlO/C6uLgQFhbGDz/8wObNm3n22WfZunUrhYWF9OzZE4C4uDgApk2bxrRp0yosLykpSQkSOlawHbyxsTFRUVFs27aNixcvcvnyZTIzMwEeyBqGZVOyi4uLKzxfdvzmJ652dnZ6a06YmJgoaxhmZGSQl5dXLlhYpmHDhgDKk+GFCxeycOHCCq9/5cqV216zIoaGhsTHxzNz5kzOnTtHXFxcuUDtndy8SHZZ2291j8rSdO3alYiICPLy8rCwsCAiIoKAgADc3NwqfW1RfRiaGgOgLdL/u2s1JU9JjcyM9c5p8tUk7DqBlbsjfi8+jUHp/1nnZvX4a/Z6zq7eg32DAWiLiiuVTmVkSO0Q/d28DY2NcAnwJm7b3+Rdy8DSVX+alxA1gbmZGQCFhYV654pKRx6ZW5jrnQPo178feXl5bIiMZO+ePQAEBgbSK7wXixctwsrK6gHVWoiapTr2UysrK9q0aQNASKtWvPWf//Lrz78oM1aEqGnMjUs+16pLP+feSF36Pcj8FqNw+7ZoQW6hmo0nTrDv3HkAWtT1JMzfnyUHD931rsYxSUkUFmloVV+W4BGipnjoAUMDAwMCAgI4fvw4hYWFt1zHUKfTceTIETw8PHBxccHFxQUfHx82bNjAs88+y4YNG/Dy8sLX1xdACZaNGzeO5s2bV1hm/Rte7G5+IqrT6Rg9ejTbt28nMDCQgIAABg0aRHBwMCNHjrwPLddnY2MDQG7pmhU3KwtWlqUrc6fAXVlw7XZPqMrSDB06lM6dO1eY5oknnlB+ruwT5Hnz5jFt2jS8vLwICgqia9eu+Pv7s3DhQtatW3fH/FV9qlYmLCyMlStXEhUVhZ+fH9HR0Xz00Ud3VZZ4+ExtS76AqLPz9c6ps/IxNDfG0EQ/YJh/PQudRotzs/pKEBBAZWiIi783FzceJi8lE12xtlLprGrfOhBobFny5apYrf/BToiawtGpZHH2ikaBp6dnYGFhiVlpsOJmBgYGjBg5gvDwXly5ehVHR0ecnZ1ZsngJKpUKJyfZAEGI+6G691MTExMCWrRg44YNZGVl6X3uFaImcCwNvmdUMCMrPS8PC1MTzIz1P/tCaT9t05rw5v5cyczC0coSZ2trlh48hMrAAKe7DOz/FRePsaEhzT31Nz4SQjyeHnrAEErW3Dt48CBLly5lxIgRFabZtm0b8fHxjB49WjkWFhbGV199RXx8PHv27OHVV19VzpWNJLOwsFCeWJaJjo4mMzPzlh+GAA4fPsz27dsZPXp0uR13y6bDVrRD3L0qC8idPXuWLl266J0/c+YMQJU37bC3t8fMzEwZdXmjefPmkZKSwgsvvACUBAJvvl/nzp0jISGh3AYilVFYWMisWbMICQlh/vz55aaU326zk/shJCQEZ2dntm3bRkpKCkZGRnrTm8Wjw8jcBFMHqwp3Q865ch1rt4q/oKiMSoN/Wv0RwTqdtuyHSqcrzMzl+ILNuDTzwjO0ebl0+aklAX0zexkFJWouS0tLXFxcuHRRf5fVixcv4u1961EJe/bswc7OjqZNm2JrZ6ccP3XqFPXr15f1zIS4T6pLP01MTOTzz6YS1qsXXZ/uWu5cQX4+BgYGGN8iICLE487S1BRna+sKd0O+lJpK/dus/7/33HnsLMxpUqcOthb/bBh46soVvJydKlwXsTJOJyfj5eyEhbwfC1FjPPQ1DAH69OlDQEAA06dPZ/fu3XrnT506xYcffoi7uzsvvfSScrxnz55otVo+/fRTioqKCAsLU875+vri7OzMwoULy43Yy8nJ4Y033mDChAm3HSVX9tT1xlF1AMuWLSM/Px9NBcPD71WzZs1wdnZm+fLlpKenlzunVqtZvHgxFhYWtG3btkrlGhkZ8eSTT7Jjx45y04ozMzOZN28e8fHxuLi44Ovry+rVq8tNGS4qKuK9997j9ddfv2Oby0Y6lo3uLCgoID8/n3r16pULFp46dYqDBw8C3PN9LPsbam9aN06lUtGjRw92795NVFQUrVq10pveLB4tTk3rknE+ibyUDOVY+rkk8lOycG7mVWEeCxc7TGzMuXr0LMVF//xfKy7SkHzsPEaWpljUsqt0OlNbS4oL1Fw5dAZNgVpJV5CRQ/KRs9h6u2Jirb+TsxA1ScuQlhw/fpzExETl2PHoaK4kJdHmySdvmS9yfQQL5i0ot+TE0SNHOR0bqxdMEELcm+rQT11dXcnNzWPrli3lPg+mpKRw4MABGjdpUuWH1UI8Tlp61eNEYiKJ6RnKseMJCVzJyKSN96032YuIjmbB7r0U3/D96OjlOE5fTaZr0yZ3VRdNcTGJ6el4Oekv4yWEeHxVixGGKpWKb7/9lldffZWXXnqJrl27EhISgqGhIX///Tfr1q2jdu3azJ49u9yObbVr1yY4OJjt27fTvHlzPD09lXPGxsZ88MEHjB8/nr59+9K/f39MTU1Zvnw5SUlJfPnll7fdRTEgIAArKyumTp1KYmIitra2HDhwgMjISExNTW85bfhemJiY8PHHH/PGG2/Qp08f+vfvT+3atbl+/Trr1q3j3LlzTJ48+a4CX//5z38YMGAAAwYMYOjQoVhZWbFs2TLy8vJ44403APjggw8YOXIk/fr149lnn8XOzo6IiAj+/vtv/vOf/2Bvb3/ba5TVa/HixaSmphIWFoa/vz+rVq3CysoKLy8vzp49y/Lly5XgYm5uLra2tlVuT5mytRS3bdtGnTp16Nq1q1Jez549+fnnn9m7dy//+9//7voaonpwb+fLtWPnOT5vE25tfdFqNCXrDro54tK85ENTflo2WZevYVPXBXMHawxUKrzDWnFq0Xb++j4C18AG6HQ6ko+cJT8lE58B7VCVBp0rna5XK079tp2/f4jENaghxeoikvadwkCl4omwVg/t/ghRXYT16sXOHbuYMmkyPcN6olYXsW7tOurXr0/bdiUPvJKTkzlz+jQNfXyUtYR79Q7nq+kzmPb5/whu2ZLUlBQiIiLw9/enbbt2D7NJQjx2qkM/NTQ05PkXnuO7b7/jk4kf07ZdO3Jycti0cRMGBiqee/65+91sIR4pvZr7s+vsWT6NiKBHMz/UmmLWR0fj5exE2wYlg1qSs7I4czWZhq61qFU6fb9X8+Z8vWUr0zZuIrhePVJzsomMPkEzD3fa3jQYprJSc3LQFGuVqdJCiJqhWgQMAZycnPj9999Zs2YNq1at4ptvvkGj0eDp6cm4ceMYPHgw1hXsxhQWFsbBgweVzU5u9Mwzz2Bra8v333/P7NmzUalUNGjQgO+//56nnnrqjvWZO3cuX375Jd9//z0mJiZ4eXkxY8YMoqOj+fXXX0lNTb3vayp17tyZ33//nQULFrBs2TLS0tKws7PD19eXDz/8kJYtW95Vud7e3ixdupQZM2bw008/oVKpaNasGf/73/+UKc4BAQEsXryYWbNmsWDBAjQaDV5eXnz++ef06dPnjtdo3bo13bp1Y/v27ezfv5+uXbsyc+ZMpk6dysqVK1Gr1bi5ufHyyy/j7e3N2LFj2b9/P08//fRdtQlKdogeP3488+bNY8qUKXh6eioLZPv5+VGvXj2uXLlyy3UZxaPDxMqcZv/XjQsRB7m89RiGJkY4NvbE65kgVEYlwbysS8mcWbGbhv3bYu5Q8nrh1LQufi88Tdyff3FpyxEArOo40nRkZxwauivlVzpdk7o0GR5KXFQ0FzcdRmVsiJ1Xbeo93QILZ7t/6W4IUX3Z2try8aSP+fXnX1i+bDkmJqYEBwcxZNhQZXph7KlYvp89m1dHj1YCESEhIYwd9zpr1/zBwl9/xdbWlp5hYfTu07tSm2wJISqvuvTTdu3bY2RsrJRnamqGr58vgwYPok6dOvezyUI8cmzMzZnYK4xf9+5j+eEjmBoZEVS3LkNbhWBc+iA79spV5kTt4JWOHZSAYUh9L8Z2CmXtX3+xcN9+bM3N6enfjPDmze/6/TSndJMkc2OZjixETWKgexDb/QpRTXTr1g0fHx++/vrrey5r8PaKd9sWQlQfc4JGPewqCCGEEI8F3c8/P+wqCCHuwH7suDsnegykz3qweyBAzbmXVSGP7MVj6+DBg1y4cIG+ffs+7KoIIYQQQgghhBBCPDKqzZTkx5FarSYzM7NSaW1tbWUHyPtkzZo1bN++nT179tCoUSPaydpXQgghhBBCCCGEEJUmAcMH6NixY4wYMaJSaX/99Vdl7T1xbwwNDdm5cydeXl58+eWXGBgYPOwqCSGEEEIIIYQQQjwyJGD4ADVq1IgFCxZUOq24P8LCwggLC3vY1RBCCCGEEEIIIYR4JEnA8AGytbWlTZs2D7saQgghhBBCCCGEEEJUmmx6IoQQQgghhBBCCCGEUEjAUAghhBBCCCGEEEIIoZCAoRBCCCGEEEIIIYQQQiEBQyGEEEIIIYQQQgghhEIChkIIIYQQQgghhBBCCIUEDIUQQgghhBBCCCGEEAoJGAohhBBCCCGEEEIIIRQSMBRCCCGEEEIIIYQQQigkYCiEEEIIIYQQQgghhFAYPewKCPGo+P6E6cOughDiDl7hh4ddBSGEEOKxMOe5UQ+7CkIIIR4iGWEohBBCCCGEEEIIIYRQSMBQCCGEEEIIIYQQQgihkIChEEIIIYQQQgghhBBCIQFDIYQQQgghhBBCCCGEQgKGQgghhBBCCCGEEEIIhQQMhRBCCCGEEEIIIYQQCgkYCiGEEEIIIYQQQgghFBIwFEIIIYQQQgghhBBCKCRgKIQQQgghhBBCCCGEUEjAUAghhBBCCCGEEEIIoZCAoRBCCCGEEEIIIYQQQmFUlcTvvvsuq1evvm2aTp06MXv27EqXOXz4cBITE/nzzz+rUhXUajXp6enUqlWrSvnuxaxZs/j222/Ztm0b7u7u97XshIQEOnXqRJ8+ffj8888rTDN8+HAOHjzI6dOn7+u176f4+Hg8PDyqlKes7a+99hpjx479V64pHk3XsrL5bf9+TiYlARDg6cnw1q2wMTe/L/n+jo9n9dFjXEhNRWVgQAMXFwYGB9HgpteZrPx8lhw8xJHLl1FrivFycuTZkJZ66YSoqQrSsrmw4RCZF64C4NDIHa9uwZhY3b6vVjZfZdNlnL/C5a3HyLmShpGZMU6+9ajXtQWGJsb3q6lCPLKqSz89NnsdOQnX9a7j6FuXJkOeuuv2CfE4uHbtGgt/XcjJmJMAtAgMYNjw4dja2t6XfJVNFxsby5LFS7hw/jyWlpYEBQczYOAAbGxs7ldThRDVUJUChmUmTJiAvb19hedq165dpbJeeeUV8vPzq5QnMTGRF154gVGjRtG3b98q5b0XXbp0wdPTEwcHh3/tmo+SF198EWdn51sGPG/FwcGBadOm4ePjU+Vrzp49m9WrV7Nly5Yq5xWPluyCAiavX0+xVkuYvz9anY710dHEp6UxpU9vjAwN7ynfyaQr/G/DRtzt7RkcHEyxTsvmmJNMWreeib3CeMLFBYB8tZpP1q4jPS+P7n5+WJqasikmhsnrI/i0T2885PVB1HBFeYVEz9uIrliLe3tfdDodCbtOkHs1neaje6K6RV+tbL7Kpss4f4Xj8zdh5eaI1zOBFGbmkbT3JDmJ12n2cjcMDAz+tXsiRHVTXfqpTqcj71omjk08cWxat9y1zOwsH+xNEKKay87OZvInk9BoNPQK74VWq2Xd2nXEXY7j06mfYWRU8Vf5yuarbLqYmBimfvoZFhaW9O7TB5VKRWREJDExMUyaPAkrK6t/7Z4IIf5ddxUw7Ny5830bYffkk09WOU9CQgKXLl26L9evikaNGtGoUaN//bqPit27d9OnT58q57OwsCA8PPyurrlv3z6Ki4vvKq94tERGHyctJ5f/DeiHe+kDiydcnPksYgM7zpyhU+PG95Tv1337cLC0ZHLv3pgal7w0tm/QgP8sW87SQ4d5v0d3ANb+9TdXMjP5oGdPmtQpeUDS2rs+ry9ewtq//mZMqIyGEDVb4u4YCjPzCHw9HAsXOwCs3Z05MX8zyUfPUTu44odDlc1X2XQXNhzC1M6SZv/XDcPSPm1qa8n5tftJP5uIQ8P7O1NAiEdJdemnhek5aNUaHJt4UivA+4G2WYhHTcT6CK5fv860L79Qvns/8YQ3n075lB1RO+jUudM95atsup/n/4xKpWLSlEm4uroCENwymHfeeps1q1czbPjwB3ofhBAPj6xhKIR4JOw9f54mdWorQT8AP3d3atvZsu/8hXvKl1NYSNz167SqX18JFgLYWljQuHZtzlxNBkpGQuw8c4bmHh5KsBDAzsKC4a1a0ai2631rrxCPqpToC9h5uSpBAgD7J+pg7mxDSvTFe85XmXTFRRpMrMxwDW6oBAsBbL1Klg3IvZJ2j60U4tFWHfopQO61DADMnW4/vVKImmjf3r00adK03EAdv2bNqF2nDnv37r3nfJVJl5KSQnx8HO3at1eChQBubm60CAxkR9TO+9JWIUT19MAChqGhobz//vssX76cTp060bx5cwYPHsz+/fvLpRs+fDihoaHK72q1mk8//ZROnTrh6+tLhw4d+OSTT8jMzARg1apVjBgxAiiZGn3jNNbMzEwmT55Mu3bt8PX1pVu3bvzyyy/odDolzaxZswgICODcuXM8//zzNG/enHbt2vHjjz+i0+mYN28eHTt2JCAggBdffJGEhIRyeX18fMody8nJ4bPPPqNjx474+/sTFhbG8uXL7+/NvIVVq1bh4+NDbGws//nPfwgODiYgIIDRo0eXqyOU3NdZs2bRtWtXmjVrxtNPP83cuXPLjc4rLCzkq6++IjQ0FF9fXzp16sTMmTNRq9V619y0aROhoaH4+/vz7rvvKn+H1atX4+Pjw4EDB4CSN5lPPvlE+XsGBgYyYsQIjhw5opSZkJCAj48Ps2bNKvf7mjVr+Oqrr2jfvj1+fn4MGDCg3P+f0NBQDh48SGJiopL/zTffxNfXl6ysrHLtz87Oxs/Pj//973/36e6Lf1NOYSHXsrLxcnbSO1fPyYmLqan3lM/C2JjpgwbSo5mfXrrsggIMVSVTF1Oyc0jLzaNZ6QcrnU5HQVERAF2aNrnlKEchaoqi/EIK0nKwcnPUO2dV25GcJP11yqqSr7LpDI2N8H2uK54d/culKQsUmtrJ9ClRc1WXfgqQl5wOgIVLScCwWF1U9QYJ8RjKyckhOTmZ+t5eeue8vLy4eKHiwH5l81U2XVpayftmRevFu7rWIjs7i+vXK37NEEI8+u5qSnJWVpby4nEzW1tbDEvXJdm7dy9r165l+PDhODs7s3jxYl566SXmz59Py5YtK8w/adIk1q9fz4gRI/Dw8ODs2bP8/vvvXL58mfnz5xMcHMwrr7zCnDlzGDRoEIGBgQDk5eUxbNgwrly5wpAhQ3B1dWX//v189tlnXLp0iYkTJyrXKCoqYuTIkXTu3JmuXbuycuVKvvzyS/bv309iYiLPPfcc6enp/PTTT0yYMIGFCxdWWFe1Ws3QoUM5e/YsAwcOpFGjRuzYsYMPPviA/Px8JbD5oL366qt4e3szfvx44uPj+eWXX7h27RorVqxQ0owZM4adO3cSFhbG888/T3R0NNOnT+f69etMmDCB4uJiRo0axdGjRxk4cCDe3t6cOHGCOXPmcOrUKb7//vty6z29//77DBs2DCsrK5o1a0br1q15++23CQoKUvIXFBQwdOhQsrOzGTp0KLVq1eLSpUvK/4OtW7fi6Kj/YbLMzJkzMTc354UXXqCoqIj58+czatQooqKisLe357333mP69Omkp6crweOkpCQiIiLYunVrufUtN2/ejFqtJiws7MH8EcQDlZ6bC4CDhf56RvYWFuQVqsktLMTS1PSu89WuYPHouOvXOZOcrAQIr5Y+uLAxN+e3ffv5MzaWfHURtWxtGN66FYF16+qVIURNos7MA8DExkLvnImNOcX5RWjy1RiZm9xVvrstvyA9h8yLV7kQeQiLWnY4NvG8uwYK8RioTv0071oGhqZGXIg8REr0RbRqDWYOVtTt0gIX//r33FYhHlVl37XtK1gb297ejry8XHJzc7G0tLyrfJVNZ2pS8tm6oKBAL112VjYAGekZt/1OJ4R4dN1VwPB269StWbOGxqWjbJKSkvjuu+/o3LkzAOHh4Tz99NNMnz6dpUuXVph/3bp19OvXjzfffFM5ZmFhwa5du8jNzcXDw4M2bdowZ84cmjdvrqx9N2/ePC5evMjKlSuV0W5DhgxhxowZ/PDDDwwaNEhZf7CoqIhevXrxzjvvABAcHEyPHj04duwYW7duVTY1SUxMZP369ajVakxMyn9oAlixYgWxsbF8+eWXSiBq0KBBDBs2jLlz5zJs2DBUqgc/69vX11cZnQclwdMlS5Zw6dIl6tWrx44dO9i5cyfjx4/nlVdeAeDZZ5+lqKiI33//nTFjxrB161b27dvHTz/9RLt27ZSymjVrxkcffcS2bduUvyNAjx49eOONN8rV4+2338bDw0P5m0RGRnL58mW9Mj08PJg4cSJHjhyha9eut2yXTqdjxYoVWFiUfOB0c3Nj/PjxbNmyhYEDB9K5c2d++eUXCgsLlWt6e3tjZ2fHhg0bygUMIyMjqV+/Pk2aNKnq7RXVQH7pKD6TChZ3Nil9QKHWaPQChnebD6CgqIjZ26MA6NW8OQB5paNtlx0+jJFKxcg2bVAZGLA+OprpmzYzoXs3/O7zDupCPErKRgfdOA24jKq0HxYXafQCEZXNdzflF+UVcuiLkgdoKhNDvMNCKswvRE1RnfppbnIGxYUaNAVqfAa0Q1OgJmnvSU4v3YlOq5N1DUWNVRagKwvY3cjYuKRvqgvVegHDyuarbDp3D3csLCw4eOAA4b3DlQEkarWa6Ojokp+L1HplCCEeD3f1ifmLL77AyUl/ih+Ap+c/T+3r169fLsjk4OBAeHg4v/32G9evX6/wSYSrqyuRkZH4+vrSuXNnbGxseOONN/SCUzfbvHkzDRs2xNnZudzox86dO/PDDz+wffv2chuW3FivevXqAdCiRYtyOyC7u7uj0+lITU2lTp06eteMiorCwcGBnj17KscMDAyYNm0aGo3mX9uBsVu3buV+LwvYpqamUq9ePaKiolCpVAwbNqxcunfeeYdXX30VS0tLNm/ejIODA02bNi13/zp06IChoSFRUVHl7llwcPAd69W9e3datWpVbkftG6c35+Xl3TZ/hw4dlGAhoPz9UlJSbpnH2NiYp59+mlWrVpGZmYmtrS1paWns37+fV1999Y51FtVT2bICVe1Td5uvsEjDl5s2c/l6GuEB/sp6hUWlU/jzCtXMGDwQq9JAY4u6nryxZClLDh6SgKGo2cqWAKnq219l891N+QbQaHAHtMVakvad5Pj8zTQe3AEn33pVrKQQj4lq1E9rBzdEp9NRp9U/S3o4N/Pi6Mw1XNxwCBd/Lwz+hYfvQlQ3D/qzb2XTGRkZ0b1HD1YsX86sb2bRu3c4Wq2OZUuXUlBQCKDMLhRCPH7uKmDYokWLSu2S/MQTT+gdq1u3LjqdjsTExAoDhh9//DFvvPEGEyZM4MMPP6R58+Z06dKFfv36YW1tfctrxcXFUVBQQOvWrSs8f+XKlXK/3xjwLNsy/ub6lL34abXaCstMTEzE09NT74XWzc3tlvW8FdPSwINGo7llGo1Go6S70Y0BOUAZDVm2PmHZvb55y3tnZ2ecnZ2BkvuXlpZW6ftX2WHnBgYGzJ07l2PHjhEXF0dcXBxFpaO+bnVfyzjcNES+rF13yterVy+WLl3K1q1b6devHxs3bkSj0ch05EeYubExUDIa8Gbq0v/n5hWMAr6bfLmFhUzbuIkzV5Pp2Kghg24IjpeNVGzpVU8JFgJYmprSwtOTXWfPUlBUhFnpdYWoaQxNS/7va4v0d6/XlvZDIzP9/lHZfJq7KN/Y3BTnZiVrNDn51uXozDWcjzgoAUNRY1Wnflo7pJFeGkNjI1wCvInb9jd51zKwdNWfMinE487czAwoWWP+ZkWlI/rMLczvOl9Vyu/Xvx95eXlsiIxk7549AAQGBtIrvBeLFy3S+44phHh8PNA5OcYVfGkuC2Ld6klE69at2b59u/Jvz549TJ06lZ9//plVq1bpBZFuLDcwMJDXXnutwvMuLi7lfq/o+lV9glNcXHzfRhHalq6fllu65lpFsrKysLGx0Tt+p2nPN25scrs09erVK7fW441uvm5lplpfuHBBmfrctm1bunfvTuPGjdHpdIwZM+aO+e92OndgYCB16tRhw4YN9OvXjw0bNuDr60tdWV/ukeVY+kEko4JRqel5eViYmlQYpKtqvqz8fD6L3MDl1Ot0atyIF9u1LdfHHSxLRrzamOt/QLO1MEenQwKGokYztS3pc+rsfL1z6qx8DM2NMTTR7x+VzXe35ZcxNDbCoZEHSXtPUZRbgLGlWeUaJsRjpLr3UwBjy5L32WL1rR+kC/E4cywd3JKRkaF3Lj09AwsLS8zM9N/DKpuvKuUbGBgwYuQIwsN7ceXqVRwdHXF2dmbJ4iWoVKpbzjwUQjz6HmjAMC4uTu/Y5cuXMTQ0rHCEolqt5tSpU7i6utKjRw969OiBVqtlwYIFTJs2jYiICIYPH17htdzc3MjNzaVNmzbljmdmZrJv374HEiyqU6cOp0+f1ju+Y8cOIiMjeeuttyr9AmpiYoKHhwfnzp2r8Hx+fj5xcXEEBQXdVT337t2rtzBuTEwM8+fP59VXX8Xd3Z0TJ07QqlWrcoG6oqIitmzZgqura5Wv++OPP5KVlcWGDRuUad9Qsk7lg2RgYED37t355ZdfSEpK4siRI7z99tsP9JriwbI0NcXZ2rrC3ZAvpaZSv3Sk7L3ky1erlWBhNz9fRrTRH23r4eCAsaEhCenpeudSsrIxNjLEpoIPb0LUFEbmJpg6WFW4y2rOletYu1X8nljZfJVNl5eSwYmft+Dezo86rcqPYCouLAIDMDCSKVSiZqou/bQwM5fjCzbj0swLz9Dm5dLlp5ZsMmZmLyOXRM1kaWmJi4sLly7q74Z88eJFvL0r3hSosvmqUv6ePXuws7OjadOm2NrZKcdPnTpF/fr1K1zrXwjxeHigi4IcP36cv/76S/k9NTWVtWvX0qpVK2VE3Y3S09MZNGgQP/zwwz8VVKnw8/NTfoaKpwqHhoYSGxvLjh07ypX5/fffM27cOM6ePXvf2lWmffv2pKamsmXLlnLHf/nlF2Un36ro1KkTcXFxbNiwQe/ckiVLUKvVdOnSpcr17NChA1qtluXLl5c7vnjxYjZs2ICTkxOhoaFkZGSwePFiveuOHz+effv23fE6KpWq3N8kIyMDc3Pzcus/qtVqlixZAlRu5GNVr1kmLCyMoqIivvjiC3Q6nd46j+LR09KrHicSE0lMz1COHU9I4EpGJm28b70oemXzzd+9h8up13nmFsFCADNjYwLrenIsLo6EtH+ChteysjlyOY6gunX/lY2OhKjOnJrWJeN8EnkpGcqx9HNJ5KdkKVOD7yVfZdKZOdigKVBz5eBptDe81xSk55B64hK2Xq4YmcpIYFFzVYd+amprSXGBmiuHzqAp+GeN64KMHJKPnMXW2xUTa/2dloWoKVqGtOT48eMkJiYqx45HR3MlKYk2Tz55z/kqmy5yfQQL5i0o993t6JGjnI6NpevTt97AUgjx6LurEYZbt269bTCsbMdaExMT/u///o+RI0diZmbGokWL0Gq1txztVatWLcLCwli0aBH5+fkEBASQkZHBb7/9hpOTkxL0Kbv22rVr0el09OnTh1GjRrF582bGjBnD4MGDadCgAUeOHOGPP/6gffv2tG/f/m6aeluDBw9m5cqVjB8/nqFDh+Ll5UVUVBR79uzhs88+q/ICsKNHj2bHjh3897//ZdeuXfj7+1NcXMzBgwfZuHEjTz75JAMHDqxyPUNDQ2nbti2ff/45Z8+exc/Pj2PHjrFmzRrGjBmDnZ0dAwYMYPXq1UyePJmYmBiaNWvGmTNnWLp0KU2bNi234/CtODg4cPDgQZYtW0bbtm1p3749f/75J6NGjeKZZ54hOzubNWvWKCNPbzf9urIcHBw4dOgQ8+fPJzAwEH9/f6Bkg5QGDRoQGRlJSEgItWrVuudriYerV3N/dp09y6cREfRo5odaU8z66Gi8nJ1o26BkvdTkrCzOXE2moWstapVOo69MvoT0dHafPYeFqQn1HB3ZdUb/AUO7hg0AGNIqhJNXrjB5/Xqe8fXFyFDFxuMnMDYyZFDLO28GJMTjzr2dL9eOnef4vE24tfVFq9GQsOsEVm6OuDQvCdLnp2WTdfkaNnVdMHewrnS+yqZTGarw7tmKM8t3ET13Ay4B3mjyCknaHwsqA7x7hvz7N0aIaqQ69FMA716tOPXbdv7+IRLXoIYUq4tI2ncKA5WKJ8Ja/bs3RYhqJqxXL3bu2MWUSZPpGdYTtbqIdWvXUb9+fdq2awtAcnIyZ06fpqGPj/J9pzL5qpKuV+9wvpo+g2mf/4/gli1JTUkhIiICf39/2rZr9+/eFCHEv+quAoZTp0697fmygGHz5s3p0aMHs2fPJjs7m6CgIP7zn/+U2634ZpMnT8bDw4OIiAgiIiIwNzendevWjB8/Xlm/0Nvbm+HDh7Nq1SqOHz9OSEgInp6eLF26lG+++YaNGzeydOlS6tSpw+jRo3n55ZcfyKgfMzMzFi5cyNdff01ERATZ2dl4e3vz9ddf39WINltbW5YtW8a8efPYsmULGzZsQKVS4enpybvvvsuQIUOUDVqqQqVSMXv2bL777jvWrVvH2rVr8fT05KOPPuLZZ58FSoK7P//8M9999x2bNm1i7dq1uLi48OyzzzJmzBjMK1iz7Wb//e9/mT59OpMnT2by5MkMHjyYrKwsli9fzpQpU3BycqJ58+Z8++23DB48mP379/Pcc89VuT03eumllzh9+jQzZsygb9++SsAQSkYZzpgxo9wu1uLRZWNuzsReYfy6dx/LDx/B1MiIoLp1GdoqBOPS4HzslavMidrBKx07KAHDyuQ7VbqpT16hmjlROyq8flnA0Nnamkm9w1l84CDro6PR6XQ0cnVlSKsQ5ZpC1GQmVuY0+79uXIg4yOWtxzA0McKxsSdezwShKp0GnHUpmTMrdtOwf1slEFGZfFVJVyvAG5WRivgdx7kQcQhDEyPsvGtTt0sLLJz1ZzkIUZNUl37q1KQuTYaHEhcVzcVNh1EZG2LnVZt6T7fAwtnuX70nQlQ3tra2fDzpY379+ReWL1uOiYkpwcFBDBk2VNkrIPZULN/Pns2ro0crAcPK5KtKupCQEMaOe521a/5g4a+/YmtrS8+wMHr36S0za4R4zBnoyvZUv89CQ0Nxc3Nj4cKFD6J4Ie5o7ty5zJo1i927d1c4Bb6q0mfNvA+1EkI8SK/66u/2J4QQQoiqmxM06mFXQQhxB3bWNeMh6L/xXdx+7LgHfo1HjTwSEI8ltVrNqlWr6Ny5830JFgohhBBCCCGEEELUFA90l+SaLi0trVIbe5iZmWFtbf0v1Ojxl5yczNSpUzl37hyXL1/miy++eNhVEkIIIYQQQgghhHikSMDwAerfv3+5XadupU+fPnz++ef/Qo0ef7a2thw+fBiNRsPEiROVHbaFEEIIIYQQQgghROU8sIDhn3/++aCKfmR88cUXFBbeeT0tFxeXf6E2NYOZmRm7d+9+2NUQQgghhBBCCCGEeGTJCMMHKDAw8GFXQQghhBBCCCGEEEKIKpFNT4QQQgghhBBCCCGEEAoJGAohhBBCCCGEEEIIIRQSMBRCCCGEEEIIIYQQogreeOMNfHx8SE9P1zv3zjvv4OPjw6uvvqp3Ljc3lyZNmvDmm2/+G9UEID4+vsp5JGAohBBCCCGEEEIIIUQVBAcHAxAdHa137sCBAxgbG3Po0CGKi4vLnYuOjqa4uJiQkJB/pZ6zZ8/mhRdeqHI+CRgKIYQQQgghhBBCCFEFtwoYXrp0iStXrtCzZ0+ys7OJiYkpd/7o0aMAtGzZ8l+p5759+/SClpUhAUMhhBBCCCGEEEIIIaqgQYMG2NnZ8ffff5c7vn//flQqFa+88goGBgbs27ev3Pljx47h4uKCl5fXv1ndKpOAoRBCCCGEEEIIIYQQVWBgYEBQUBDHjx8vd3z//v00atSIevXq4ePjw/79+5VzOp2O6OhoZXRhcXExP/30E08//TS+vr60bduWiRMnkpaWpuQ5cOAAPj4+rF69mrCwMPz8/JgwYQIABw8eZOjQoQQFBREQEMDgwYP5888/lbyhoaEcPHiQxMREfHx8mDVrVqXbJwFDIYQQQgghhBBCCCGqKDg4mIyMDC5dugSUBAQPHjyorE/YqlUrjh49ilqtBuD8+fNkZmbSqlUrAMaPH88XX3xBw4YNmTBhAs888wwrVqzg2WefJSsrq9y1Jk2aRMuWLXnrrbfo1KkTFy5cYNSoUeh0OsaPH89///tf8vPzGT16NIcPHwbgvffeo379+tjb2zNt2jS6dOlS6bYZ3evNEUIIIYQQQgghhBDiUdWpU6fbnt+2bVuFx8tGCv7999/Uq1ePM2fOcP36dSUgGBISws8//8zRo0dp1aoVx44dU/Lt3LmTTZs2MWLECN5//32lzMDAQN544w3mzJnD22+/Xe74hx9+qPz+448/kpeXx7fffouDgwMA3bt3Z/DgwZw6dYqgoCA6d+7ML7/8QmFhIeHh4VW6JxIwFKKS7MeOe9hVEELcwZKHXQEhhBBCCCHEffWvfBdfs/ausjVq1Ahra2uio6MJDw9n//79GBoaEhQUBJSMQDQ0NOTgwYPKaENXV1fq1q3LggULABg1alS5Mrt168bMmTPZtm1buYBh2SYrZVxdXQGYPHkyL774Ir6+vtjb27Np06a7asvNJGAohBBCCCGEEEIIIWqsW40gvBOVSkVgYKCy8cn+/fvx9fXFysoKAGtraxo3bsyRI0cA+Ouvv5TpygkJCdjY2ODk5KRXrre3Nzt37ix3rGwUYZlnnnmGLVu2EBkZSWRkJM7OznTo0IE+ffooAct7IWsYCiGEEEIIIYQQQghxF4KCgoiNjaWwsJDDhw8r05HLhISEEB0dTVpaGhcvXlSmMet0uluWqdVqMTY2LnfM0NCw3O/GxsZ88803rF27lrFjx1KnTh1WrVrF0KFDmTt37j23SwKGQgghhBBCCCGEEELchZYtW1JUVMSGDRvIyspSRhCWadWqFXl5eURERKDT6ZTzbm5uZGVlkZqaqlfmxYsXqV279m2vm5SUxOHDh/Hx8eG1115j2bJlbN++nXr16jFv3rx7bpcEDIUQQgghhBBCCCGEuAtNmzbFwsKCJUuWYGxsTGBgYLnzgYGBGBkZsXr1atzc3PDw8AAgNDQUgB9++KFc+q1bt3Lx4kU6dux42+vOmTOH5557juTkZOWYq6srLi4uqFT/hPtUKhVarbbK7ZI1DIUQQgghhBBCCCGEuAtGRkYEBASwZ88egoKCMDMzK3fe0tISPz8/jh07Rp8+fZTjHTp0oFOnTvz6668kJycTEhLCpUuXWLx4MR4eHnqbodxs6NCh/PHHHwwdOpRBgwZha2vL/v37OXjwIK+//rqSzsHBgUOHDjF//nwCAwPx9/evVLtkhKEQQgghhBBCCCGEEHepbAfjm9cvLFM2Dbls/UIAAwMDZs6cybhx44iNjWXq1Kls3ryZQYMGsWLFCmxsbG57TR8fHxYsWEDdunWZP38+kydP5uzZs3z44YeMHj1aSffSSy9Rr149ZsyYwcqVKyvdJgPd7VZZFEIIIYQQQgghhBBC1CgywlAIIYQQQgghhBBCCKGQgKEQQgghhBBCCCGEEEIhAUMhhBBCCCGEEEIIIYRCAoZCCCGEEEIIIYQQQgiFBAyFEEIIIYQQQgghhBAKCRgKIYQQQgghhBBCCCEUEjAUQgghhBBCCCGEEEIoJGAohBBCCCGEEEIIIYRQSMBQCCGEEEIIIYQQQgihkIChEEIIIYQQQgghhBBCIQFDIYQQQgghhBBCCCGEQgKGQgghhBBCCCGEEEIIhQQMhRBCCCGEEEIIIYQQiv8HYGO75Iz7x7gAAAAASUVORK5CYII=" + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQoAAAIYCAYAAAAl5NFGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3QU5dfA8W/appdN75UkQCotEHqvUqQXKVZQEAuCggoI0gVFREClSBNQAlKlSa+ChNACJJAKpEAS0stm3z/y2zGBqOironA/53gMuzOzs5vMzsx97nOvnlar1SKEEEIIIYQQQgghhHii6T/qHRBCCCGEEEIIIYQQQjx6EigUQgghhBBCCCGEEEJIoFAIIYQQQgghhBBCCCGBQiGEEEIIIYQQQgghBBIoFEIIIYQQQgghhBBCIIFCIYQQQgghhBBCCCEEEigUQgghhBBCCCGEEEIggUIhhBBCCCGEEEIIIQQSKBRCCCGEEEIIIYQQQiCBQiGEEEIIIYQQQgghBBIoFEIIIYQQQgghhBBCIIFCIYQQQgghhPjHaLXaP7xOeXk5ABqN5k+tL4QQQjwsPa2caYQQQgghhBDiL1VeXk5sbCxnzpxBT08PY2Nj5syZw7p16/D19f3VdfT09NDT0/vNbZeUlKBSqf6O3RZCCPGEk4xCIYQQfxmNRkNZWdmj3g0hhBDiH5WWlsa2bdsoKSlRHtu9ezcDBw5k6dKl3Lhxg4CAAF577TVsbW2rrFs5b0NfX/+BIGFxcTG7d+8mPj6e+fPnU79+fcaOHUt6evrf+6aEEEI8kSSjUAghnnBpaWnk5+cTGxvLxo0bWbp06aPeJSGEEOI/ZcmSJSxbtozvvvsODw8PADp06EB+fj4ff/wx/v7+WFhYoKenh4GBgbJeeXk5+voVuRvp6enEx8cD0KBBAwwNDQG4evUqAwcOxNzcHH9/fzw9Palfvz7NmzfHwsLiH36nQgghHneGj3oHhBBC/DPy8/MxNzdX/n38+HGmTZtGXFwczz77LDY2NhgYGJCdnY2NjY2ynFarVaZC6W5m7ldYWEhRURGXLl1i3bp1BAUFMWjQICwtLf/utyWEEEI8cr169aJly5Y4Ojqi0WgwMDDAxMQENzc3GjRoUGVZ3bRhrVaLvr4+N27cYObMmRw7dgwjIyNMTU2pWbMmI0aMoEGDBlhaWtKsWTN27tzJoEGDeOmll9Bqtb87PVkIIYT4MyRQKIQQT4APPviAqKgotmzZgpeXF1qtli+++IKMjAwmTpxIy5YtsbCwoE+fPlhZWVVZ9/7sh3v37lVZ5vTp04wfPx4nJyfMzMxISkrC19dXgoRCCCEeS1qtVgny6djb22Nvb19lOW9vb86fP8/HH3+Mn58f9erVY/r06WRnZ7NkyRIsLCxIS0vj7bffJjMzk0mTJuHu7s758+fZsGEDU6dOZcmSJdjZ2aFWqzE1NaVOnToAEiQUQgjxt5FAoRBCPMZ0U5q6d+9O48aNlUzBjIwM7ty5Q3h4OP369asSCLxfTk4Oy5YtY+fOnWRlZeHv70/nzp3p3Lkztra22Nra4uDgwM8//0zv3r358MMPlelSQgghxOOmumYjGo2G6OhosrKyCA8P58MPP2TXrl0YGRmxZMkS+vbtS7169TA3Nyc2Npb8/HwsLCw4evQoV65cYcWKFUoQsFGjRjRr1owePXqwceNGRo0ahYeHByUlJRIgFEII8beTOzkhhHiM6bIdwsLCqtxcODo64u3tze3bt7l16xYajQY3NzfmzZtHXl4eU6ZMQaPRUFJSwkcffcSePXvo0qULTk5OnDx5kmnTphEdHc1HH32Eo6MjVlZWqFQqXnjhBRwdHR/V2xXiiaDLZnqYzqhCiIejK7Oh1WoxMDCocmxVnuabn5/PtWvXSE9Px8fHB39/fwCys7OZNWsWSUlJ7Nmzh44dO2Jvb8/q1at57bXXGDJkCEZGRtSoUYMffviB7Oxs7O3t+emnn7CysqJOnTokJydz5coVzp8/z7Vr1wA4cuQII0aMwNPTk/LycmlgIoQQ4m8ngUIhhHhMaDQagCrZgfcHEzIyMlCr1Xz88cecPn2ae/fu0bZtW2rVqsWmTZs4cuQIycnJTJkyBQMDA3766Se+/fZbpk2bRrt27bCysuKll15i+fLlzJo1i+7du9OsWTPc3NwoKipSMgmldpIQD8rLyyMjIwMfH58qDQx+j0ajqVIjVAKEQjzo4MGDrF27lmHDhhEZGfmrx9ivnZ/uL7Nx//IlJSXMnj2b7du3U1BQgKWlJSYmJvTp04fhw4djaWlJnTp1iI+Pp7S0lA4dOlCzZk1Wr14NoNQIdnd3p6SkhOTkZAIDA8nMzCQjI4M6depQWFiImZkZLi4ueHp6Mm7cOAICAjA0NMTR0RELCwuuX7/+h74/hBBCiD9KAoVCCPEfocsiAqq9Qah8g5OTk4OBgYHSDTEvL48BAwZQUlLCrl27yMjIwN3dnQsXLvDaa6/RpEkTAOrUqcPVq1cpKirCxMSEDRs24OfnR69evYCKTIrk5GTldb7//nuaNGmCj48PAKmpqbi6ukqgUIj73Llzh4EDB+Lg4MDq1asfOIZ12UzAA8GK+/8dHx/PjRs3MDc3JzIy8u/dcSEeocrnkvT0dC5evEhCQgJqtZqmTZtib2+vLJOZmcnBgwdp1KhRleNCd2zp6+tXCbLff566du0aBw8e5PTp02g0Gho2bEjfvn2xsrJCq9Wydu1aNm7cyEsvvUTdunXJy8tj8eLFrFq1ir59+6JWq3FxcSE/P5+UlBRsbW1xcnLCxsaGGzdukJubi6WlJY6OjpiamhIfH0/btm2xs7NDpVIxdOhQ2rVrh5mZGdbW1tja2pKcnExGRgYajQY7OzscHR2Ji4ujrKwMlUr1z/4yhBBCPDEkUCiEEP+AmzdvcuLECerXr4+np+efCqT9XhbRhg0b+P7777ly5QqWlpbUrVuX5557jqCgICwsLHBxceHSpUvk5+czdepU9u/fz5gxY3BxcSE0NBQAV1dXAK5cuUJYWBjp6elkZGQwdOhQkpOTSU9PV25YIiMjadiwIfr6+ri4uABw8eJFGjRooAQ0hRAV7OzsmDZtGqamptU+/2vZTACHDx/m2LFjdOzYkW+++YYdO3ag0WiwsLBg2LBhDBo06IEmREI8DvT09MjNzeXTTz9l586dlJaWYmpqSkFBAdbW1gwdOpRnnnkGgKCgIExNTasMZum2oTu28vLySEtLw9TUVDnfQcUg1zvvvENBQQFeXl6Ul5czb948jh07xoIFCzA3NycqKoqGDRsybNgw5TiuV68eqampSragm5sb+vr6XLt2jdDQUExNTfHy8iIpKYl79+5haWmJWq3G0dFRmVocGhrK5s2bsbe3JygoqMq+f/3115w8eZIFCxbg4OCAj48PSUlJFBQUSKBQCCHE30YChUII8RcpLy8nOTkZrVaLt7c38EvGwpEjR5g4cSKzZs3C09OzynoajUZZ7reaity4cYOYmBju3btHUFAQdevWVZ7bsWMHn376KXXq1GH06NHcunWLVatWkZqayvz583FycsLDw4MTJ05w/fp1QkJC8PT0xMrKivj4eEpKSlCpVLi7uwNw6dIlwsLC8PDwICYmBiMjI/r27YuXlxceHh7Y29ujp6dHcXExAC4uLqjVamJiYpT3LYSoqn79+tU+XlZWxpUrV/jpp59IT08nPDycJk2aKMGHc+fOERUVxffff0+NGjVYsGABenp6LF26lIULF+Lp6UmXLl1kOqL4T9NoNA+cA9PT0xk1ahQ3btzg2WefpVGjRpiZmZGcnMySJUuYM2cORUVFvPDCC3h4eGBubk5SUhLwS+Z9YmIiK1euZN++fWRkZGBkZETt2rUZOXIkDRs2xNDQkFmzZpGVlcW0adOoWbMmZmZmfPXVV5w9e5bMzEzMzc1xcnLiyJEjzJs3j2bNmqHVapVBOR0HBwfUajWXL19WHvP39+fw4cPcvXsXNzc3rKyscHd358aNG2g0Gho1akStWrVYs2YNISEh1KpVi8LCQvbu3cvq1atp1aoV3t7eFBQU4ODgwN69e7lz547SnEwIIYT4q0mgUAgh/h80Gg1RUVF8++23xMbGYmRkhK2tLZGRkQwZMoQaNWoAEBISgr6+PllZWQBVMgPvvzG6/2YpLy+PSZMmcfjwYVQqFVqtFo1Gw4gRI+jTpw/m5uYsX76cwMBA3nvvPezt7TEwMCAiIoIbN24or6WrixYXF0dISIiSZRgXF0dpaSkqlQoXFxcsLCw4f/48AwYMICAggB07dvD000/TpUsXysrKlDqEX331FTExMcybNw97e3tcXFyUDAmZdiyeRLryAL8VrLt+/TpmZmY4OzsrUyIXL17MypUrsbCwQE9Pj5UrV9KgQQNef/11wsLCCAkJASqyEqdPn64E9G1tbRk4cCBHjx6lS5cu/8h7FOLvcOLECVauXMnnn39eJeD9+eefc/HiRVavXq10BAaoWbMm9erVo2vXrmzZsoWBAwcqwbzbt2+TlZWFWq0mJyeH2bNnk5CQQPfu3fHx8eHq1ausXr2aOXPm8PHHH+Pj48OtW7dwdHTEyckJtVoNwMiRI6vs45tvvsns2bNZtWoVq1atAirqDtrb29OzZ0+GDx+OnZ0dTk5OXL16VVmvVq1abN68mYyMDADMzMzw9vbmhx9+ID09HV9fX9566y1eeeUVhg0bRrNmzSgvL+fixYs0bNiQ999/X1mvY8eOeHt74+Tk9Pf9MoQQQjzxJFAohBB/Ul5eHp999hmbNm2iadOm9OrVCyMjI37++Wc2bNjAyZMn+fzzz/Hz88PFxQVjY2MSExOV7D3dNo4cOcKPP/6o3Fi0bt2aPn36KNN558+fz4EDB3j99ddp1KgRhYWFzJ49m++//55mzZrh5+eHiYkJiYmJXLhwgaZNm1JSUkKDBg1o1aqVsr8+Pj6oVCquXLkCgIWFBV5eXsTGxlJQUKDcZOmmKAM0bdqUTz/9lK1bt9KlSxclSHjp0iUWLlyIj48PhoaG2NjY4Obmxp49e4AHg59CPA4q1xHU1TurrHJ5gLS0NPLy8nB3d8fY2BiAvXv3MmrUKIYNG8Y777yDnp4e69at47PPPqN///4MGDAAExMTjh49ypQpUygoKGD9+vX4+vpiYGCAkZGR0ghBpVLh7OyMh4cHcXFxyusL8V+j1Wo5evQoP/74I/n5+UombVpaGlu3bqVbt24EBwcry+rp6VFWVoatrS1r1qxRMvgBfH19OXLkCCkpKajVatasWcO+ffuYPHky/fv3VwbizMzMWLRoEdeuXcPHx4d27doxb948hgwZQs2aNTEwMMDX15d69eoREhKCk5MTtWrV4rPPPuPu3bucP3+elJQUsrKyOHz4MMuWLSMsLIy6devi7u5OdHS0cpwGBARQVlZGWloaAKampvj4+HDnzh1u3ryJi4sLTZo0ISoqiu+++46zZ89iYmLCgAEDaN++fZUp0g0bNqRhw4b/3C9HCCHEE0kChUII8Sdt3LiRFStWMG7cOHr37q3UCOvZsyeNGzfmzTffZOLEicyfP1/JuEtKSiIvLw9bW1vKy8v56quv2LFjB66urtSuXZvr16/z+eefk5yczKRJk1CpVJw/f54mTZowePBg5bWXLVtGdnY2jo6OADzzzDNMmDCBkSNHYmVlhaGhIT4+PgQHB9O8eXOaNGmCi4sL1tbWxMfHA79kNRw8eJB79+7h4OCAnZ0d7u7unDx5EoDAwEBefvllPvvsMwYOHEj79u3R19dn06ZN2NvbM2HCBABUKhWBgYGkpqaSk5ODtbX1P/mrEOIf8XvlAZKTk/nkk084evSoMk2wefPmDB48GF9fX9zd3ZWMJ6iYVrly5Upq167N5MmTle14eXmRl5fH/Pnz2b17N61atcLV1ZWcnBwAZaDB3t4eZ2dnrl69SnFxsRKQFOLfqLqGPbrsQXt7ewCysrKUQOGRI0fIz8+nZcuWGBkZVck01A1a6YKEpaWlGBkZ4e/vz65du0hISCAkJARnZ2eGDx/O008/DaDUD4yNjUVfX5/r168D0L9/f9RqNbt27SIrK4vbt29z8OBBli9fTnh4OMuWLcPExITCwkKsra3p3Lmz8r6aN2/Os88+S3p6OiqVCh8fHw4cOMCdO3eU7sUAV69eVbLynZycsLa2pqioSPls/Pz8GDdunAT8xRNBo9FQWFioNN37I+vp6+v/bva+EOL/RwKFQgjxJ2RnZ7NkyRKaN2/Oc889pzyuuxHq3LmzkvGjuwGqUaMGV65cISMjA1tbW6Kioli8eDHPPvssw4YNw9zcnNLSUj755BN2797NtWvXqFOnDrVr12bt2rW89tprNG7cGK1Wi5OTE2FhYcrrtm3bFicnJy5evMj169dJSEggNTWV1atXs2/fPjZu3Iibmxv29vZKoXcTExO8vLwoKCggLS1NyUz09vZm//793L17F1tbW0aNGoWVlRVbt27l888/p7S0lNDQUF577bUqNddGjRrFqFGj/qHfgBB/nd/qOFxZcnIyZ86c4cqVK1hZWdGqVStq1qwJVGQHz5kzh5iYGIYPH46DgwM//fQT33zzDQYGBrz33nu4urqiVquV4ISBgQGJiYkMHTpU2Q+oCEi2bduWBQsWEB0dTfv27XF3dycpKYnMzEzs7e2VzCg3NzfOnDlDUlIS/v7+f+fHJMT/S3WBdn19fW7fvs2ZM2cA6Nq1K46Ojnz11VcUFBQAFYGB36MLGAQGBir1gqFi4A4qGm1FRUVx+vRpUlJScHBwQF9fn8TERAAsLS3p06cPffr0ITU1FY1Gg0qlYvny5axcuZIjR45Qr149+vbtS7t27Xj11VcpLy8nIyODTZs2AShZj/b29pSUlHD16lVcXFywtbWlSZMmeHt7K98zrVu3VgbkdJ9N5f8L8biJiYlh//79JCQkMGTIEAYPHsy4ceMYPHjwA3/3ujIewAPBQN13iG6dO3fuYGJiogwwCCH+GhIoFEKIalSeXliZbtrTnj17uHv3Lp06dQJQsgQq3wi1bdu2yro1a9ZUCppDRSfk8PBwXnvtNUxMTJTlbG1tKSgoICkpiTp16vD8889z8+ZNDh48yP79+ykpKQHAycmJp556irFjx2JgYEBoaCjh4eFVMou++OIL5s2bx6VLl4iMjMTNzY3jx4+TkZGBg4MDTk5OmJiYEB8fT8OGDTEwMFAyI69cuUJkZCTl5eUMGTKEzp07o9FopDaS+M/6tYDg/QEM3ZTByt3JdQ2JtFotVlZWpKens3btWj744ANat25NWloae/bsYfr06fTo0QM9PT2eeuopIiIicHBwAMDKygpnZ2fOnTtHbm4uenp6mJqaoq+vX6UkAVQEG+zt7ZXpij4+Puzdu5cbN25UCRT6+PhQVlZGXFwc/v7+f6qjuhD/H+Xl5crf3a9l+Gg0GqVhT2JiIp6enrRu3RpPT08uXLjAjRs3MDQ0xMPDg3HjxuHi4qKcF/Pz8393H3THr6+vLyqVSmloArB161YWLFiAmZkZjRo1omXLlkRGRtK4cWNu3rwJQFFRETt27KBWrVrUrl1bWbdBgwZ8/fXXqFQq7OzsCA4O5uuvvyYmJgZXV1dSU1NJSUlh0qRJSuagrqmYr68vAEZGRixdurTa/RXicZOVlcXGjRupW7eu0ujn6tWrjBkzhuLiYsLCwrCxseGTTz6hRo0a1Z6vKpfxqEyr1bJ3717y8/PRaDRMmzYNGxsbJk2aRIsWLeT8J8RfSAKFQoj/PI1GQ2xsLF5eXg89heH3mg7oHi8vL+fWrVtYWVlhaWlJWVkZRkZGyo2LqalpleV/S82aNSksLFRu/F999VVGjx5NWloaO3fu5NixYxw5coTs7Gz09fW5desWAG5ubixcuJC8vDwuXLhAWloaJSUlfPfddyxdupRevXphYWHB7Nmz6datG82bNwcqgh35+fno6+tjZGQEgLu7Ozk5OcTGxuLg4ICVlRUmJibcvHlTCTw8/fTTtGnTRmnEontvusxIIf4Lquug+mtTh1NSUvjmm284dOgQBQUFhIWF0adPHyIjIwHIzc3l7bffpnbt2owaNQpbW1uysrJ4/fXXOXXqFC1atFACizt37sTJyYmAgAByc3Np2bJllUwHT09Pjhw5QmJiIgEBATg6OpKYmKiUJNANOhQVFSlZxgAeHh5AxQ1XgwYNlO35+vpiYmLClStX6NSpk9woib+NrpGWvr5+lXNe5Z+1Wq1ynqz8t7hmzRoWLVqEtbU1JiYmfP/992zevJlp06bRtm1bHBwceOeddzA0NKRp06YAStMeXTDv1/6uNRoNmZmZqNVqPDw8UKvVpKSkoNFoKC8vZ8GCBVhYWDBnzhz8/PyU9VQqFSkpKWRmZmJoaMjMmTOxt7dn+PDheHt7c/PmTT777DO8vb2V8+HMmTNp27Ytu3fvJi0tjYCAAEaMGEHjxo2V6dDBwcFKdqEQT5rk5GS+//577O3tCQ0NxdDQkG+//Zbk5GSmTp1Kly5dMDIywsfHp8p6lb8v4uPjOX/+PAUFBTRs2FA5bktLS9mzZw9btmwhJCSEfv36ERISogTl5dwnxF9HAoVCiP+UlJQU4uPjuXjxIj/99BNXr14lJyeHsrIyFi1aRKtWrapcbPzaTXPl0crqltm7dy+LFy/mypUrmJubU6tWLfr27VvlRtzQ0FC5Mfi1QGHlmkq6i6LU1FRlH27cuMFHH31EUlISLi4uPPfcc3Ts2JHevXuTnJxMUVERJiYmxMbG4unpSZMmTZRtm5iY8M4775Camkp4eDjR0dHs2bOHvn37EhAQwNWrV9m5cye9e/cmMDAQqJj+XLt2beX9+vv7s2/fviqBDGdnZ5ydnf/gb0aIR6e6DOD7A4LXr1/HwsKCnTt3snPnTpydnfnkk0/Iyspi+vTpXL16lYYNG2JlZcWePXvYsWMHc+fOpXPnziQkJJCdnc3TTz+tTPn38PBg69atyrHj4eHBiy++yJdffsmhQ4cAsLa2xsPDg7CwMPr160dAQACenp5otVquXr1KcHAwISEhHD58WMng1X2npKSkEBcXR6NGjYCKAKOVlZXSWVzH2dmZwsJCLl68+Dd8suK/LjU1lYsXLxIdHc3ly5c5e/YsCxcupEmTJlXOTw9Dd967X0xMDKtWreLMmTMYGhrSuHFjevXqpXTrPnfuHDNmzGDQoEEMGDAAU1NTLl26xNSpU4mOjiYoKIjatWvj7e3NqVOnlO3WqlULgNjYWOX1q6Or9Tt79mwCAwNxdXXl1q1bZGZmUlZWxt27d+nSpYsSbCgrK2PZsmVkZGRgaWnJ9evXiYiI4L333uOrr77io48+oqysjIKCAkJCQpgwYQLu7u5oNBrMzMzo1q0b3bp1e+jPTYgnSc2aNVmyZAmWlpbKYzY2NhgaGhIaGoqZmZnyeGZmJubm5piamqKnp0d+fj4zZ85kx44dqFQqDA0NmT9/Pn379mXMmDEYGBjQoEEDtmzZgoODA2+//fajeItCPBEkUCiE+FcrKipiyZIlbNiwgby8PIqLi5XngoKCGDx4MC4uLjg4OCi1wsrLyx+oYVL5hig/P5/Lly+TmpqKl5cX4eHhVV7z8OHDTJ48mcDAQN577z1yc3PZvn07b775Jvr6+nTo0AELCws0Gg25ubm/uf+Vb8KcnZ2xsbFRGppYWFgwZswYbt++rXQ0dnZ2Ji8vDysrK1JSUigoKCAhIYERI0bQtm1bXnjhBYyMjMjMzGTjxo3Y29sr2Y6ffPIJa9as4ccffyQqKgpra2t69OjBsGHDlAu2Hj160KNHD2WfVCpVlemOQvwTUlJSuHTpEtevX6esrIwGDRr8ZidPXQZwddOR7s8Mzs7OxsbGhi+++AJnZ2e6du1KdnY2nTt3plWrVqSkpODj40NAQADl5eWsWrWK48ePM2XKFFq3bo1KpeLtt9/mhRdeYO7cudSsWRNvb298fX0ZP348e/fuxdPTEwMDA4KCgggLC0OtVqOvr8/LL79M+/btSUhIIDY2luTkZFJSUlizZg337t1TMpqMjY25dOkSPXv25KmnnmL79u188sknWFtbY2VlRXJyMrNnz8bW1lYJSLi6ulJcXMy5c+eAX5o5+Pn5sXHjRiX7Soq7P9kuXrzI+vXrOXXqFKmpqZSWlmJubo6rqyu+vr4MGDBAGQiqnDlf+d9QdQCttLSU+Ph4zM3NWbt2LUeOHKFZs2aMGzeOixcvMmnSJMrLy+nQoQNFRUXs3LmTrVu38sUXX1CvXj3i4+PR19end+/eSrDO1dWVJk2aKFn5RkZGuLm5kZ+fr9THtbGxITw8nCNHjpCamoqbm1uV/dJN17948SJXrlxRMv19fHy4dOkSt27dIjg4GF9fX9asWYORkRE1atTg5MmTHDx4kDp16nDmzBk2bNhAREQE3bt3p1GjRvz8888YGxvj7++vZPJqtVqZLizEfXRlB/T19ZXjUqVSVenUDRUDXWVlZXzyySe4ubnRvXt3zp8/z5QpU1i+fDmRkZGUlpYyc+ZMtmzZwuuvv05ERAT37t1j165dfPnll3h4eNC3b19l2wEBAf/4+xXiSSKBQiHEv5qenh7W1ta0atWK2rVrExwczNGjR5k/fz7t27dn+PDhD0wxrNxNMS4ujoKCAiUYuGnTJhYsWMCdO3ewsLCgtLSU5s2bM336dFQqFSUlJSxcuBB3d3emT5+u1ON74YUX6NWrFwsXLqR58+b4+vpiZGREXFzcb3YbXbduHadPn2b06NF4enri5uZGYmIiJSUlxMTEcOPGDV5++WX69u2rrPPzzz9z8+ZNLC0tSU9Pp2bNmjz11FMsX76ckydP4uLiQkJCAoaGhkyYMIGwsDA0Gg3BwcF88MEHZGZm4uDgoEw3FuJRKiwsJCoqiujoaM6ePcvt27cpKyvDwsICa2trMjIyWLNmDf379+e1116rdhu/lQGsp6dHTEwMixcv5uTJk1hZWfHSSy8xb9482rRpQ/PmzVGr1QQFBbF//37Gjh3LwIEDgYrAyK5du+jYsSNdu3YFKoIP2dnZuLq6cuTIEX788UdefPFFxo4dy9KlSzl9+jSHDh0iLy8PqAh4jBw5kl69emFoaIi/vz8hISHK9rRaLS+99BI//fQTWq0Wd3d31Gq10kShcePGzJo1i4kTJ/LMM8/g6elJeno6NjY2zJw5k9DQUOV1li5dqtwkVe7+qhskEU8u3WBYQkICGzZswMvLi1mzZmFubo6TkxNqtRpzc3OMjY0fODfo/pY0Gg0pKSno6+srATKAM2fOMGzYMDp06MD169cJCwvDx8cHrVbLwoULycnJ4ZNPPsHf3x8TExPGjh1Ljx49+Oijj1ixYgW1a9fG1NSU5557jpYtW2JjY4O5uTl16tQhJCQEc3PzKq959epVJZO2T58+XLhwgVWrVjFq1Kgq5UVUKhUXLlzgxIkTtG3bVglCBgUF8f3333PlyhXCw8MZNWoUS5YsYcmSJUDFoN3gwYPp3LkzcXFxuLi4KNt0cnJSag9XJlMahXjQrw1MXbp0iT179tCzZ0/27t3LrFmzMDAw4MSJEzRq1AgjIyNcXFwwMDAgKysLgNu3b7Nt2zbGjBnDkCFDlG1FRkYqjcE6d+6Mh4cHpqamaDSaB2r7CiH+OhIoFEL8qxkbGzNw4EC0Wi2GhoYYGBhgbm7O/PnzlRp+lS9U0tPT+fDDD+natStLlizh8uXLNGvWjMWLF7N3714mTZpEu3bt6NWrFwYGBpw+fZoFCxZgbm7O+PHjycnJITo6mnnz5uHk5ERhYSHXrl0jJSWFoqIi4uPjiY2NJSQkBHd3d06cOEG/fv2U6YSVMzCMjIy4ePEiP/zwA7169cLT05OAgACOHDnCvXv3MDc3x9ramh9//JFGjRphamrKyZMnWbFiBWZmZly9epVt27ZRs2ZNRo0aRbNmzdi+fTtlZWU0btyYJk2aKF1OdcHR6kZyhXiUysrKmDp1KgDPPvssXl5euLu7K11H7969y/vvv8+iRYvo2LGjMk1eF/jQBfyvXr2KsbExLVu2rBLoSE5OZtq0aWRmZjJ8+HAKCwtZu3YtAMXFxeTk5GBjY4OHhwcXL16kTp06ShbT9evX0Wq1xMbGMmbMGCULqaioCDs7O8LDw5XanM2bN6d58+ZkZ2dz5coVysvLuX37NjNnzuTLL7+kV69e7Nq1i2+//ZapU6fi5eVFcXExcXFx3L59G7VajZ6eHk5OTlhYWBATEwNUHLPdunWjbt26bN++nbt37xIYGEhERISSJahzf/azEDq6c0/NmjWxsbFBrVbTuXPnh1r37NmzfPbZZ5w6dQojIyMcHBxo3749I0eOxMTEBB8fH8zMzNi1axdLliwhIiICIyMjsrKyOHDgAB988IES0M7Ly+Pu3bs4OTnx008/cfHiRerWrcs777zDhg0bOHbsGDk5ORQWFgIVWUETJkygUaNGyrnr/PnzSqDwqaee4vz586xYsQI9PT2ee+45pflPTEwM8+fPR6PR0L17d6ytrYGK7KXi4mKlzEfz5s0JDg4mLS0NFxcXbGxslPeuazQkhKjwa02/7peens758+dJSkrCwcGBjh07Kpnup06dYtGiRURERNCsWTO8vLwYPXo0DRo04IMPPsDR0RGoGOjSDZpduHCBwsJCAgMDiY+P58yZM8TExJCcnEx8fDxGRkakpKTg5eWFk5OTUp5HAoVC/D0kUCiE+NfQaDTKFIbKwb/7LwJ0N883btwAqo706+vrs3v3bk6ePEmDBg145ZVXsLW1BWDp0qWEh4czbdo0pZtiw4YNyczMZPPmzQwYMECZEvzpp5/y0UcfkZ6eTnl5OVZWVgQHB9OoUSPMzMwwNDSkQ4cOLFq0iCNHjjBw4MAqU56NjIy4ffs2e/fuJSgoiDp16gAVRc537txJSkoKTZs25dlnn+WTTz7hueeew9LSkpKSEtq2bcuzzz7LV199pRRoNjc3p3HjxjRu3Pjv+OiFeGjJycmUl5fj5eX1UMtbWloSGhpKYmIiw4YNq7Zr9qhRo3j33XfZsWMHPj4+qFQq9PX1uXTpEjNnziQ6Ohpzc3M0Gg3u7u688847REREALB582YuXrzIrFmz6NKlC1ARXHjnnXe4fv06d+/excvLC19fX4yNjZVMQKi4CbK2tubcuXO4urrSokULatasiaenJw4ODpSXlyv1lDIzM7lw4QItW7asMk364MGDHD9+HK1Wi5OTE6dOnWLYsGF06dIFfX19zpw5Q2FhoRIsValUNGvWjNzcXAoLC5Wgpbu7O8OHD/8TvxHxJNJN+YOKv2PdedDJyQkHBweuX78O/DJtX7fs/Z2JY2NjmTx5MoWFhYwZMwYbGxv27dvHl19+SWZmJu+8846yTV2jH93f7KVLlzAzM+OHH35g9+7dXLt2jYyMDMrLy/H09KRRo0bKObF379707t2btLQ0bty4gZGREWfPnuWjjz5iw4YNNGrUCBcXF+zt7ZV6m7oava+99hrGxsYsX76cTZs2ERwcTF5eHnFxcbi6uvLRRx/RqlUrpRFQ/fr1OXjwYJXvGltbW+VaQIjHkW6wOjExkfHjxxMYGMikSZOU4+J+5eXl1ZbzuL/pl27gu7Lly5ezcuVK8vPzsbGx4e7du6xcuZIlS5agVqupUaMGJiYm3Lp1i/r161OjRg28vLy4c+eOsi9qtRp7e3vluyo7OxtjY2OGDh2KgYGBMsDn4+PD5MmTcXNzw83NDQMDA7y9vZUyPlZWVtLES4i/gQQKhRD/b8XFxXzzzTecOXOGBQsW/OntVL4w+bWTvlarxdjYGCcnJ1JTU7lz5w52dnbK8mq1mpCQEM6fP8/LL79MUFAQABkZGSQmJtK3b1+Kioo4e/Ys58+f58aNGxw+fJjCwkIuXbpE7dq1MTc3p6ysjCFDhuDs7IyHhwf29vaoVCru3r2rTH166qmnOH78OHPmzMHZ2ZnWrVuj1WopKSnh1q1bfPzxx2RlZTF27FglMOnt7U1RURHXrl2jadOmDBkyhICAAGJiYrCzsyMsLAw/Pz/09fX58MMP//RnKcRfpXJ9z7t379K5c2eGDBnCG2+88cDNhy54oQtG6MoCeHh4EBMTQ1paGk5OTkrnVF1wvWbNmjg5OZGSkqJkMiQlJTFhwgSKioqYOXMm7u7uxMbGsmrVKj744AOlfuDFixfx9fVVgoRQUbdv0KBBjB8/noyMDAACAwMpLi4mOztbWc7Ozg61Wo2lpSUzZ85UpmXqvntmzpyJSqXizTffZNu2bcycOZNJkybRoEED9PT0OHPmDPv376dLly6UlpYSERHB8uXLWb9+PXv27KGkpISQkBBeeuklpYMywFtvvVXtZ105k6NyzSfxZNMNolUOCP7alD8LCwvc3d25du2aUuvvt/6Ovv76a+Lj4/nqq6+ULL4ePXowceJENmzYQKtWrWjfvj3u7u7KObdyRp6NjQ0xMTG0adOGsLAwAgMDcXNzw8bGhtLSUmXZ+Ph40tPTiYyMVAJ4/v7+fP/996SlpQHg6OiIr68vR48eZfHixfj4+NChQwfUarUynXn37t0kJCTg4eFBv379iIiIUGoX6r6PjIyMqh2QEOK/qvI1cWJiImfPnuXixYsYGRnRpEkTGjdurDxvYmJCcnJylYEE3TYq1/TV/f/+6+3ExES2b9/OoUOHyMnJwd/fn0GDBlG/fn0MDAw4deoUCxcupHPnzvTu3RsTExN++OEH1qxZw7Fjx+jSpQv29vZYWFhw7do15ZwWEBDAiRMnSElJwdbWFnNzc7y8vEhISKCoqAgnJyf09fVp3749EyZMUL4/LC0tycrK4syZM+Tk5ODu7o6vry/nzp1TyoTIuVKIv54ECoUQv+phR+h0N/xqtfqBeiG6wMFvBQHT0tJwdHTkxIkTrFq1ivj4eNzd3XnhhRdo0KBBlWCERqPB0NBQueBITU2tEig0MDDAzc2NhIQENBqNst7NmzdRq9UsXryYL7/8EgMDAxwdHfH09KRXr154eXkRGRlJeXk5NjY2mJqaMmzYsCr7evPmTcaPH0+LFi0YOXIkfn5+TJ06lbfeeotXXnmFiIgIIiIiKCoq4uTJk9y4cYOxY8cqtcqgIqPw/fffp2XLlkDFyG1kZGSVIIIQ/xZpaWkcP35cqSumVqtZvnw5Tk5O1U5J+rXgRWBgINu3byc2NlaZonj/d8vdu3cBlKD64cOHSUlJYdmyZco6oaGh1K5dm/79+7N9+3b8/f3JyMhQtlW5XmmDBg3QarVKiQJd/bKbN28qr2lhYUHz5s358ccf2bx5M4MHD1aeO336NCtWrGDQoEGUl5fTt29fDh48yPTp0/H29laCjq1ateKtt95CpVJRXl5OZGQkYWFhGBsb/+a0rbKysiqBH91nIg0THh/5+fl8+eWXBAYG0qlTpz+U9VJ52er+Jq5evcquXbtITk4mPDycbt26KYNY3t7eAFy7do2goCB++uknLl26RGxsLEeOHGH69Ol06tSJnJwcLl++TEREBHXr1gV+yR7q1q0bP/zwA/v376d9+/YEBARw4cKFKoF2V1dXTExMcHR0ZObMmZSUlGBoaIi+vj6ZmZnMmzePunXrMnDgQL788ku2bt3Kxx9/TI0aNZSmJ/Hx8YwdOxaomAb88ssv8+6777JkyRI6duxIhw4dgIopirVq1VI6Id9PAgXicVHd94Tu31988QXffvstJSUlqNVq8vLy+Prrr4mIiGDu3LnY2tri5OSEn58fiYmJyjnx/mZgt27dIiEhAX19fSVDXjfQPW/ePC5dukSdOnVQq9Xs2bOH559/nkWLFtGsWTOOHj2KhYUFPXv2VM7NAQEB9OvXDzs7O6BiAMHV1ZVr165RUlKCsbExoaGh7Ny5k9u3bxMaGopKpcLPz4+dO3eSkZGBv78/tra2pKenKw2XdH766SfeeOMNJk+eTJ8+fQgICKCgoEAZCBRC/PUkUCiEeEBMTAxxcXH07NnzoZY3MjKif//+aDSaKkHC+7uR5uXlUVhYWKUm0P79+3n55ZcZOnQoqampFBcXU7duXQ4fPszIkSOZO3curVq1qpLVBBUBt8OHD5OcnExoaKgycgpQo0YNDh48qHRABLC2tsbY2BgXFxc+/vhjzMzMlBFNfX19zp8/z7179wgMDKRdu3Z89tlnrF+/nn79+qHRaMjJyWHFihXExMTw+uuvK9v19/dn4cKFbN++nSNHjrBlyxbKysqoWbMmzz33HG3atKkyZcPa2ppBgwY93C9CiL/YbzXeqUx3vC1ZsoR9+/bh6+urZAbVr1+/2nXy8/M5e/YsZ86coaioiObNmyvTg3VBuqtXrwK/BBQNDAzIz8/nu+++o6CgQMloKioq4tKlS5iYmBAUFMS5c+eIjY3l4sWLXL58mbKyMo4fP86YMWOwsLAgKSlJ2R5UfPc4OzsrmRUlJSW4urpiaWlJUlJSlSm/Tz/9NNu3b2f69OlcvnyZyMhIcnNzlan/Q4YMQV9fHzMzMz7//HMOHDjApUuXUKvVhIeHU7t2bUxMTKp83+mmK/9WrafqpoKJx4uRkRGLFy+mY8eOdOrUqcrNf3l5uXKc3R9g193Ul5SUUFJSwqFDh9i3bx8lJSUMHDgQNzc3FixYoPwtb9myhdTUVF5++WUlo9DQ0JDnn38ejUaDiYkJTk5O+Pv706dPH6VswJ07dygqKsLMzEwJdOv+Ll1dXfHx8VGO2cDAQHJyckhPT1f208XFhaZNm7Jy5Ur2799Pq1atgIqA/c6dO9m2bRtNmzYFKsoLxMTE8Pbbb+Pl5UVmZiZarZbnnnuOZ599Fvhl4CwqKqpK1qIQj7Ps7GylFraTk9OvlpgZM2YMO3bsYNCgQXTu3BlHR0c0Gg3btm1j0aJFvPTSSyxcuBAnJydcXFw4d+4cycnJeHt7o6enx7179/j666/ZuHEj6enp6OnpKQG/IUOG4OLiwsaNGzl27Bjjxo2je/fuqFQqunTpwvr16yktLQUquopnZ2czefJkOnfujIWFBaampoSGhiqZvGZmZnh6ehITE0NBQQGWlpaEhIQAKLVDDQwMqFGjBtnZ2aSmptKwYUN69erFp59+yscff6xcK8fGxjJz5kzUarUyc8DFxYXi4mKuX79O8+bNZaBAiL+BXKUKIR7w+eefk5mZyVNPPfVA4O/XpsXpbowr09PTIyEhgS+//JL9+/dTXFyMj48PnTp1omvXrjg6OmJpaUlQUBBff/01/fv355VXXsHR0ZHDhw8zatQotm3bRqtWrR6YbhUcHAz8UqewssDAQAoLC6vc0Dg6OuLj40NKSgrOzs5VRitzc3N5/fXXadiwIXPnzuWZZ55h//79TJo0icOHDxMcHMz169fZs2cPzz77LA0aNKjyerraYgMGDMDc3FwygsS/zsmTJxkxYgSvv/46Q4cOrXaZyvWKdIF3R0dHMjIylO8BrVZLaWkply5dwsXFRbkpyM3NZc6cOezYsUPpIPrNN9/QpUsXpk2bhp+fHwYGBiQkJAAV3Q2vX79OfHw8p0+f5qeffuLFF1+kT58+QEUTo5ycHDIzMwkLC1MylnUNgfr374+bmxsAvr6+nDp1isTERCUAoqenR1JSklIjKTc3Fzs7Ozw9PUlNTSU3NxdTU1PKysowNjZm4sSJrF27liNHjrBt2zYMDAyoV68er732WpVajKampnTq1Omhu6JKhuCTSzdw5urqSlZWFjk5OVhbW1eZmq87n+mChoaGhsrzb7zxBrdu3SIiIoJjx45hampKXFwc0dHRaLVa6tevz/z58zEwMGDu3Lls2rSJpk2bEhkZiaenJ0ZGRtSoUYOZM2cCFdPsdfV1dX+rFhYWWFpaKjXCKmccWVtbY2JiojxXo0YNoGpGrqmpKUOGDGHXrl2MGTOGfv36ERQUxPXr11mxYgVt2rRRMgLd3d1Zt24du3bt4tatW7i6ulKnTh2lDm9lEiQUj5P7MwR//vlnfvjhB06fPk1CQgIFBQWYmJigVqspKiqifv36zJgxo0qH7++++47t27czceJEBg4cWGX7I0eO5M6dO+zZs4fbt2/j5OSEt7c3paWlxMfHKz9/9dVXfPfdd/To0YOIiAhyc3PZtGkTy5cvx9PTkwEDBlBQUEBeXl6VQYOQkBAlcxCgQ4cO5ObmsmDBAhYvXkxBQQFQcd6uVasWCxcuRK1W4+3tzb59+8jJyVEGKgBSUlKAikChl5cXWq2Wmzdvoqenx/PPP090dDRffvkl+/btw8bGhps3b2Jubs68efOUe43AwEDmz59PvXr1JEgoxN9EAoVCiAe89957VRpz6PzWTW9aWhofffQRfn5+jBgxAqiY2jB58mTi4uLo3bs3NjY27N+/nzlz5nDt2jVmzJiBu7s7ZmZmODo6MnToUKUTWu3atalfvz6XLl2qcpGl+7+uM6ou8FA5I0N346GbcggVgczevXuzfft2PvzwQ95//31MTEy4c+cOixcvJjMzk969ewMVNynz5s0jKiqKgwcPcvLkSdzd3Xn55ZcZOHDgA0WddaysrB7+QxbiH6A7dry9vfnggw8emLZX+diqbtqwiYkJ5eXlTJgwAXd3dyZOnMjp06d5/fXXmTp1Kn369KGkpIQvv/ySDRs2MHr0aDp37oxGo2Ht2rWsXbuWp59+mjp16uDg4MCpU6do0KABubm5qFQqSkpKABg2bBivvvoq8Es2o7W1NYaGhowfP17pCm5paYmlpSVXr17lzp07ALRv31652Rk/fjzGxsaUlZWxbt06srOzuXfvnlLL1M3NjSNHjijlDnRTsvz9/Zk4cSLx8fHo6enh5eX1mxl/urIG9zeGEEL396s7V/r4+HDjxg0yMzOxtrZWjrfTp0+zdu1azp49i0qlomXLlnTv3p3atWsDFec43ZS8l156iS5dunDy5EmmTJkCwPDhw5Upxj179uSHH34gPj6eyMhIvL29MTc3p6CgQMnmrY5arcbf35/t27dz69YtJcgPFQ20bt68iZOTEyUlJXh6emJubs6tW7eUEiNarRZXV1fmzJnD2rVr2bFjB6tWrcLCwoKOHTvy2muvKZm7UHGO1A0GCPE4u337Nvfu3cPT01Mpp6E7327bto21a9fSqFEjRo8ejbu7O2q1GkNDQ3bv3s2KFStYtmwZw4cPV2YAbN++HR8fH5o3bw78UmZD16jktddeY+LEicrr+/j4YGBgQGxsLG3atCE6OpovvviCrl27Mm7cOGW50NBQunbtSnR0NAMGDKBp06ZERUUxadIkpdO4h4eHck3epEkTTE1NGTx4MAMHDuTy5cskJyeTn5/P1atXWblyJYsXL+bdd9/Fy8uLwsJCbt26hb+/P9bW1lhbW5OamkpBQYFy7a+vr8/ly5eV5kWfffYZBw4cYP/+/ZSUlNChQwcaN25c5bvMxsZGGYQQQvw9JFAoxBOuuhqCuq7ClWm1Wq5fv86RI0c4f/48RkZGyslbpVKRl5fH2bNnuXnzphIo3Lp1KydOnGDmzJl07doVAwMDhg0bxqxZs/j6669p0qQJXbp0wdHRkbi4OOzs7JSbLEtLS3x8fDh9+jRZWVlKt0LdTZZualVycvIDHdmcnJywsrIiKSlJufDQarVERkbywgsv8PXXX3PhwgUCAwPJysoiMTGRsWPHKpmCuo6uo0eP5vnnn5cAoPjP0t2YODk50bVr11+te5SamsqNGzcwMTFRCpafPn2amTNnYmBgQHp6OuHh4ejp6eHv74+BgUGVWmXr1q2jTZs2vPLKK8pjb731Ft27dycgIAADAwPc3d1JS0vjlVdeoUGDBlhbW5OQkMDXX3/NDz/8gIGBAc8//7xyrAcFBbFx40aljlFly5cv58yZMyxcuJDIyEiGDBnCF198wZUrV2jTpg3x8fFcuXKF2rVrc+PGDe7duwdAq1atsLGxwd7evsr71/2sy5rSfXb3l0/QkSzBJ5funPlrzWYqN/6xtbUlLCyMkydPcvv2beXv+PTp00o30s6dO5ORkcHatWvZtm0bH374Ia1atSI8PByAWrVq0a9fPwCl/uWZM2dwdnZWggS6AQBdpo6TkxOurq5cunTpN9+L7jweFRXF3LlzmTFjBkZGRuTm5vL999+TnJzM888/j0qlQqVSYWVlRXR0NNnZ2Tg6OqKnp0d5eTn169cnKCiIlJQULCwsqgQchXgSFBYWsm3bNnbs2MG5c+eAiqxcHx8funfvTseOHZWgX1BQEAYGBjRv3pxhw4ZV2U5oaCjXrl1j7969PPXUU/j6+hIbG0tcXBwRERG4u7tXGcjXDWhZW1sDKN8Jnp6eWFhYKKUDnJ2deeutt2jfvj1QUSokNjaWqKgoysvLldk5gYGBLFiwgE2bNnHr1i2Sk5OJiYnh+PHjLFq0iK+++oomTZqQnp5Obm4uwcHBygwfgB07dnD37l3KyspwdXXF3NycxMREysrKMDIywtHRkXPnzpGeno63tzfW1tZERETg4OCgfHeqVCrat2+v7KsQ4tGQQKEQ/0GVpwj+f1V3E1xQUMD+/fsxNzdXmm6cO3eOd999l9LSUpydncnJyWHLli3079+f999/H1tbW4KDg4mJiUGr1ZKbm8uPP/6Ir68vPXr0qPJ6I0eOZM2aNezZs4euXbvi5eXF9u3byc7OVoJyKpUKDw8PiouLlQ5pld+/vr4+Xl5epKamkp6ernQ91NVc8fb2JiUlhZycHCUrysDAgDfeeIPmzZuzfft2kpKSCA4OZuTIkTRs2FC54KpcP02ChOK/4tc6o1YuYp6bm6vU5QTYu3cvn376KdevX1emzdevX585c+YQEhLC+vXreeaZZwgODua1115Tan2amZmRkJBAcXExaWlplJSUEBERoXw3abVapWaRjq+vL6dPnyY4OJh69eqh0WioUaMGdevWZcKECSxdupT8/HxGjx6Nra0tDRs2JDw8nEWLFuHg4EBERAT5+fns3LmTTZs20aNHD2Uq00svvYSjoyMbN25k4cKFODg48Morr2BmZsabb76pZC4+/fTTPP3007/5OVb+vGRK0+OhrKyMO3fuKMGtP6JyuY3K/6+OVqvlm2++YenSpaSlpdGuXTulwUdCQgJNmjRRmnxkZWWxbNkyvLy8MDU15cUXX2TAgAHMmjWLVq1aKUFr3fRDrVaLiYkJvr6+7Nmzh4KCAtRqNVDRBMTU1JTk5GRlcEzXaTw1NVWZpl+dFi1a0K9fP9avX09cXBxNmjQhJyeHPXv20KVLlypZO08//bRy/OvovmNMTU2V41GIx1VSUhJfffUVERERPPXUUwDcu3ePBQsW8MMPPxAaGsqbb76Jra0tCQkJbN++nQkTJpCVlaUEBV1cXFCpVMq0fqg4f+sy1P38/IiLi1MCi6WlpWRlZSklQSrX5L6f7vvJ1dUVW1tbkpOTAfDw8OCFF14gLS2NWbNmcerUKW7fvo27uztubm7cunVL+e7w8/PjrbfeIi8vj5KSEmxtbTl9+jQjR45k8+bNNG3alEmTJnH16lVmzpxJjRo1yMnJYceOHWRmZhIREYGhoSEWFhaUlZVx9uxZevfujZGRET179uTu3bvKtbWdnR1Lly79a39JQoi/hAQKhfiXS0lJ4cKFC5w7d45Lly6Rnp6OtbU1TZs2pWPHjlUyYHR09Y5+rz7WnTt3iI6OJiEhAU9PT1q0aIFKpSI1NZVx48YRGhpKy5YtuXv3LnPnzkVfX5/58+djZ2dHXl4eX3zxhVKU2MrKCjc3N/bs2UN6ejpOTk6kpaU9kFmg1WqxsrLC3d1duanRTZ+6ceMGnp6eyo26i4sL+vr6xMXFVQk46AKFtWvXZufOncqNUOVRVjs7O86cOUNWVpbSoVUXRNF1JxbiUarcofdh/VbX1Pu3lZOTw6FDh5Su20uXLmXOnDls3boVf39/kpKSmDZtGjVq1ODVV1/F0tKS3bt3s3btWtq0aUPnzp0JCwvDx8eH9PR0pZC5rllCYmIiRUVFFBQUoFKpyM3NVW5SdMFCXXDS0tJSmVJ57do1mjZtqtQ7tLW1ZcqUKcyePZt169ah0WiYOnUqfn5+jB49mnHjxvH6668TFhYGQHx8PK1ataoyfcrCwoJnnnmGLl26YGVlpXwWmzdvpqysrMpAQ3XdhiuT4OB/W+Vz5oULF7hx4wYlJSVYW1vTpk0bBgwYgJeXV5UGWboge3XnzPsbcp08eZLLly9jZWVF69atcXd3V9bdsWMHc+fOpV69eowcOZKrV6+yceNGysrKlNp+OTk5/Pzzz4wYMYKaNWsq2/b392fYsGF89tlnREdHEx4ejqmpKdnZ2UoTIj09PWVQLCEhATc3N+V7xMvLi5SUFDIzM3F3d1dqa165ckU5P/5a05QxY8YQHh7Otm3b+P7771Gr1QwaNIgBAwYowUiA0aNHV/uZyzEjHicpKSnY2NhgYWGhHCO64+e7775jw4YNSpMeqDi3rlu3jldeeYX+/ftXOQcNGTKEN998k1mzZuHr60vz5s1xcnLC0dGRK1euKNvQLZ+UlMTx48fx8fFRAvyOjo6UlZVRWFhYZdnq6I5xKysrXF1duXDhAnl5eVhYWHD27FkmT57MvXv3aN26NY0aNaJdu3ZMnDiRqKgokpOT8ff3Z/PmzeTm5vLMM88oAxVOTk4YGRkpgwTdunVj3rx5jB49mho1apCfn8/Nmzd57rnnlGsOV1dX5s6di5eXl7KernGREOLfTwKFQvxLJSQk8OKLL5KcnIy1tbXSjCMgIIDk5GQ+++wz1q1bx+TJk2nbtm2Vm4Dquije79ixY0yZMoWsrCzUajXp6emEhYWxYMECPDw8CA4OJi8vD6iY0nDu3Dl69uyJr68vxsbGODo6KkXSoeLCxcPDA41Gw/Xr13FycsLExITCwkLS0tKUpgcajQZDQ0NcXV1JSkoiNzcXNzc3jI2NuXLlCi1atKgyXdLW1rbKxVRlPj4+lJWVceXKlQcCf++99x6GhobK64LczIh/h9LSUl555RUSExPZuXPn7wYLKx/bur/h6gKGe/fuZePGjSQnJ9OsWTOgYopucHAwPj4+SoOAxMRE/P39OXToEPn5+bz66qtKIL5Ro0Z0794dd3d3ZfsBAQEcOXKEmzdvKlN2/f39+emnn8jKysLa2rrKcarVapXj/KeffmLp0qVMmjRJCYropkLp6ekpWbyOjo68+eab3Lx5k2+//ZaioiJmzJhB48aN+fbbb4mKiiI6OhpLS0ueeuopmjdvXiX4FxMTw+rVq3n11VdRq9WUlJSQkZHBunXrcHZ2rtJpXboNP56qO2f6+vrSoEED9PX1+emnn1ixYgWpqakPNAr4rWMwOTmZ0aNHM2zYMM6ePcuPP/6IoaEht27dYv369SxduhRnZ2eKiopYvHgx7u7uzJs3T9l+8+bNef7550lNTUWj0ZCSkoK+vj7BwcHKcaz7f3BwMCqViosXLxIeHo6Pjw+pqancvXtXGXRzdnZWzpdNmjRRBshq1arFjz/+SHp6Ou7u7kqt3vPnz9O6detqA4W617aysuLpp5+mQ4cO1TYmE+JJ8fHHH7NkyRI6duzIxIkTsbW1VYLxycnJ7Nixg5YtWyrTYi9dusTKlStp0aIFL7/8cpVtaTQaLCwsmDx5MocOHaJRo0bAL6UBYmNjKSoqorCwkOvXrxMTE8PBgwdJTk7mww8/VLbj5OSEpaVllfqg1SktLSU5ORkjIyM8PDzw9PTk+PHjXL9+ndDQUNatW0dKSgqLFi2qcs1cWlpKWVkZ165dw9/fn8OHD7N9+3YuX75M27ZtKS4uZsOGDZSVldGuXTsAOnfuTO3atdm6dSuJiYm4ubkRERFBnTp1lO8QS0tL2rZt+9f9coQQ/yi5WhbiX0rXHbFWrVp89NFHWFhYYGZmhkqlwtjYmAsXLjBixAimTp2Kt7e3klmo0Wg4ceIEe/bsUTL0+vTpQ0hIiHLjHx8fz6hRo/D29mb8+PG4u7sTHR3Nu+++y+zZs5kyZQrOzs4cP36cjIwMZdrfunXriI2NxcPDQ5kCpeuwaGZmpow4XrlyhcjISIKDg9mzZw/Jyck4OTkpwQNAyfAwNzfHxsYGJycnJYCgY2tri5WVFadOnaryuO5mp2vXrjg7O9OiRQug6s3eb021EuJRMjQ0RF9fn7S0NLKzs7Gzs/vN5XV/79nZ2dy+fRs7O7sqgS+APXv2MHnyZFxdXWncuDFHjhxRsn2TkpLw8fHB2dkZMzMzLl26RNu2bVGpVJSWlvLpp5/Sp08f1Go15eXl1KpVC2tra2XKZWhoKNu2bePWrVtKQLFWrVrs3LmTW7duUb9+ferUqcPhw4e5cuUKgYGBynEeHR3NqVOn0NfXx93dHUtLSxITE6u8Lx1XV1c+/fRThg8fzr1798jOzsbe3h4XFxdGjhz5m5+RmZkZW7Zs4ciRI/Tt2xczMzOlLtzYsWN/9zMW/33VnTPNzc2V+npFRUVMmTKFbdu2sX//fiXrJScnh1OnTnH48GHi4+MxNzenY8eOPPXUU6hUKhwcHLh8+TILFy7EyMiIqVOn4uXlxdGjR5k6dSpLly5l7NixFBQUcOPGDUaMGKEECUtLS2ncuDG1atUiNTWVvLw8VCqVcvzfH+y3srJCpVKRnp4OVNQL27t3b5XsfAcHB+zt7ZXAvG4bYWFhbNq0iaSkJOrWrasMkv3888/Ar0+ZrrwPEiQUT7qhQ4dSVlbG0qVLMTExYcqUKUpg7siRI6SkpPDuu+8qy1+6dInCwkKlxE7lgLxuJouLiwu9evVSamnrsvJPnDhBixYtuHfvHgYGBtjZ2eHk5IShoSHPP/88b731Fl27dsXExIRatWoRHR1NcnIyfn5+1Q4Wnjp1iilTptC7d29efPFFPD09lcH70NBQ7t69i7OzM56enkBFmaEDBw5w6NAhoGLArXPnzrz++uuo1Wr279/Pnj17KCwspEaNGkyZMkUZhATw9vZWmpAJIR4/EigU4l/K0tISBwcHbt26hY+PzwMX+cHBwcyZM4dnn32WlStXKp0Qt23bxieffIJarcbV1ZWjR4/y7bffMmHCBAYOHIihoSHr16+npKSE+fPn4+HhAYCfnx+Ojo7KBYS7uzsFBQUkJCTg4ODAlClT+PLLLzl37hxnzpwhMzNTqfv14osvMmbMGFxcXFCr1Vy+fBmoaBzwww8/sHHjRqVBAsD333/Pzz//rNzQW1hY4ODgwJkzZ4BfblzUajWtWrWirKzsgYxJqKi5ott/If4rdJlDBw8eJCUl5XeDWJs3b+aLL74gISEBExMTAgIC6NOnD506dcLMzIy7d+/yySef4OTkxNy5c3F2dgbgk08+YdmyZZw7d44WLVpgZ2dXZbpThw4dSE1NZcmSJRw5cgSoqA2qqw/45ptv4uTkpEwZ1tU6gooARmlpKSkpKURGRjJgwAA2bdrErFmzePPNN7GwsCAmJoYvv/ySRo0aVcnsPXv2rFIL6X729vZs3Lix2s+hckmFyo0kysvLqVGjBl9//TUbN25k+/btFBYW4u/vz7hx4+jYsePD/mrEf9jvnTONjY3p378/UVFRXLp0ia5du1JSUsLcuXM5ceIEtra22NracuHCBQ4dOkRubi4DBgzAxMREyYDfsWOHkqnn7e3NunXrOHPmDHl5eaSnp6NSqbC0tFReU/c3GhoayqFDh8jMzMTFxQU7OzsuXLigTCnWDaKVlpYqdcGgoumBrqmArrmJra0tbm5unD9/vsprBAYGAr905A4JCWHTpk3KOVK6cwvx+2xtbRkxYgTp6els3rwZlUrFlClTlHI7oaGhtGrVSlk+JiYGQ0NDpRledVm7UNE4qKSkBD09PYyMjJTSOq1bt+app57C0dFRmbKck5PD+++/r9T/btOmDa1bt+bUqVMcOnQIPz+/KtOhdVmGN2/eJDExkeLiYgA8PT1RqVTKIHyjRo2YM2cO7733Hq1btyYxMZGjR49Ss2ZNCgsL2bhxIy+99BIeHh689957PP3000pzP6nXLcSTRwKFQvxLGRoa4uHhQXR0NKmpqQ8ExHRdfAMCAti9ezevvfYaubm5TJw4kbZt2/LKK6+gVqsxNzfnvffeY/bs2fj5+dGkSRNiY2Px9fVVsn500yqaNWum3GTo6gZeu3aNBg0a4OTkpHRpjI+PR6vVkp+fz8KFC9m0aRPt2rXDy8sLV1dX4uPjAWjatCnPPPMMy5cvJzExkfbt25OZmcmOHTuoV6+eUqvExsaG+vXrk5KSUmVahYWFBWPHjv0nPm4h/lG6LqVxcXFK7b3qbN26lUmTJlG3bl1GjhxJdnY2Gzdu5N133+XOnTu89NJLnD59mvj4eCZNmlSlxmf37t3Zvn07Z8+eBSoC7+7u7ty4cQOtVou1tTWvvvoqAwYM4Nq1a1y7do07d+6QmJjI999/j6WlJe+9954SgNBlOQF4eXkp0y/Ly8sJDQ3l3XffZfHixQwfPhxzc3Py8/OpW7dulSlUH330ETY2NkqR9uropi7fX0fw10oq6B5r2LAhYWFhaDQazM3NH+bXIB4j1Z0zK2fd6OnpYWVlhYmJiXKeW7hwIRs2bODtt9+mffv2mJqaUlpaynPPPceWLVto3bo1Hh4e+Pj4kJWVpQTwdIHuWrVqceDAAe7cuYO5uTmWlpZVMuN1TQd8fX1Zv349KSkptGjRgkaNGvHDDz/QsWNHWrRooZyLjx49CqDUP6tcl1PH0tISDw8PcnJyqgTc69SpQ2xsrLKcbv+EEH+MpaUlM2bMIDc3lw0bNuDg4ICXlxfp6emMGTMG+KX8x+3bt9HT06OgoEDpPAwV3xHR0dGcOXOG2NhYEhMTuXnzJnPnzqVFixa4u7uj0Whwc3OjSZMmVV7f3t6eF154gVGjRnHgwAHatGlDy5Yt2bNnD2vXriUkJIT69etX6RKcl5fH5s2bcXZ2VhoQ+fj4oFarle7nPXv2VDqanz17FkdHR9q3b8+AAQOUpkS6kh5arZagoKC//bMWQvx7SaBQiH+x2rVrs2XLFpKTkx8IFOrqEjVp0oTly5eTlpbGrl27MDc3Z9KkSVVG/zp16sSOHTvYuXMnTZo0Qa1Wk52drdwsVZ6yq/vZz88PExMT5abnzp07nD17luDgYCVwABX1l86cOYO5uTnGxsb4+vpy4MAB8vPzsbKy4vXXX8fJyYmtW7cqU7datGjBsGHDlGLrxsbGvPHGG3/PhyjEv5C3tzdGRkZVbuzvl5mZyVdffYWnpycLFy7E1NQUPT09OnTowKhRo1izZg1du3ZVAuu66ci67wY3Nzfq1q2rTN23trbGy8uL06dPk52drdTyMzQ0pFmzZlWmFDVr1oz4+HiKi4uxtLRErVZz6NAhIiIiqFmzJnZ2dqhUKs6dO0deXh5WVlYMHjyYyMhIDhw4QFFRESEhIdSpU0f5LtJqtUqZgN9SuXbhH1VdlqJ4cujOmUlJSUqgUEdPT0/529QF0E6ePEm7du0eKLDv4eHBxYsXuXXrFh4eHgQEBHDq1Cnu3r0L/BKcDg0NZcuWLUpmbY0aNbhw4YJSl1c31VCr1aLVarl+/TotWrRgyJAhHDhwgLfeeouhQ4dSo0YNfvrpJ9avX0+/fv2U+mE1atTAysqqypRgU1NTPvzwQ6m5K8TfyNDQkJkzZzJq1CiWLl2KoaEhgYGBNG7cGKhoimVkZISFhQXl5eWkpqbi4uJCWVkZhoaGnDlzhlmzZpGbm0t4eDguLi5cvXqVuLg4WrRogaurKzY2Nso1tu47QqPRYGRkhJeXl9I5GSquGUaNGsXw4cOZOHEib7/9Nu7u7hgYGJCQkMDXX3/N2bNnefnll5Xu47rahromKGq1mtdff50BAwZgb2//m7VZ5ftFCCGBQiH+xXQBuatXryoXJ/fTXRAcPXpUycZbt24dycnJXLx4kdTUVPLz8zE0NMTCwoLc3Fy8vb2Vmx7dqKaBgQFZWVl88cUX1KpVi5YtW2Jtba1kMqSmpvLaa6/RunVrXnzxRUxMTLh06RJffvkltWvXxtfXFz09PWxsbLh79y4ZGRlK8HDYsGF07doVY2PjKgXkhXhS2dvbY2dn90BdTqiaqXDlyhWGDx+OmZmZMu3W1taWZ599ltdee41jx47h6uoKVGQwwC/BfgsLC9zc3Lhz5w4lJSWYmJjg7u5OUVERKSkpqNVqpk6dqtRfc3BwICsri7Nnz5KRkcEzzzyjBEQGDRrEihUrGDVqFP3792fs2LH069evSjAEKgIb1XViB6pMFZZpkOLvoDtnJiQk0KRJE+XvLC8vj+PHj/PNN99Qv359JWPv66+/xtjYmNTUVH766SeOHTvGsWPHyMzMxNbWVqnzGRISQmlpqfJv3d+yLuMmISGBVq1a0b17d8aNG8eqVat46623KCsrIy4ujm+++QYLCwtl/aCgIBYsWMCKFStYs2YNubm5WFtbM2zYMEaNGqUcU6ampg/U6K38+kKIv4dGo8HGxoY5c+bwwQcfcODAAZo2bVpl4AugZs2a7Nixg2vXrlG/fn3l8bp16/LFF19gZGSEnZ0dZ8+e5dy5c8o538nJCScnJ+Lj46tk0Ou+sywsLMjMzKRhw4bKPkVGRvLVV1/xzjvvMHLkSLy9vdHT01PO5+PHj2fw4MHK8sbGxqxfv/6BAbTKpUCEEOLXSKBQiH8xd3d3zMzMqu36q7tR0DXtuHjxIkFBQdy+fZtVq1bh4eFBSEgIvXr1wtfXF1tbWywtLbGwsKB+/fosWbKEn3/+mdDQ0CqjimvXruWll17CysoKNzc30tLS0Gq11KlThxEjRrBhwwbGjBlDSUkJBQUF1KtXr0p2w7Bhwxg6dOgDFyLSTECIX1hYWODs7ExCQoJSp0xHdyxV7ggMVKnRGRAQoEz9DQkJQaVSER8frwwW6G487t27B8D169epWbMmTk5OGBgYcO3aNUJCQqhbty67d++mX79+NGrUiJKSEs6cOUP79u3p0aOHErAYNmyY0rExKCgIU1NT3n777Wrfm1arrVJL8H4SJBR/F13DnL1791JQUEB0dDTx8fFkZmaSl5dHREQE06dPx8HBgfLycoyNjbl48SILFizg5s2bODg48Oqrr+Lu7s7zzz9PWloagFKnMyUlBfjl2NQN1CUlJQHw1FNPcfDgQb766isuXLhAaGgoZ8+exc/Pj5SUFK5evUpBQQFmZmZERERQu3ZtUlJSsLGxUWqLCiEePd11sZ2dHTY2NgBERUVhaWnJiy++qJyn69Wrh56eHkePHmXAgAHK46amppiamirb8/f3x8HBgRs3bijbdXNz4/jx48pAge66+saNGyxcuBCAvn37VtmviIgItm/fzrFjx4iJicHU1JSAgABCQ0Oxt7d/4H1Ilr0Q4s+SQKEQ/2K2trY4OjpWm3WkuxjR3VwYGBhgbm6Onp4ekyZNIjIyEiMjI4yMjJQpV7t37+bll1+mcePGeHl58eWXX1KnTh2cnZ3Jy8vj888/p7i4WCn+b2lpyalTp0hKSsLLy4vXX3+dVq1aceHCBSwsLKhVqxb+/v5Vsht0QQ0hxK8zNDTE09OTc+fOkZGRgbu7e7XLmJqakpGRoQQAddmGJiYmWFtbk5ubS0BAALVq1WLLli307NkTDw8PDAwMyMvLU747YmNjqVmzJo6OjpiamhIdHU3Pnj3p06cPfn5+bN68mcuXL6NWq3n++efp2LFjlWC/boDhfrppVpXp6en95pQmIf4uarUaLy8vjh8/zu3bt/Hx8aFp06ZcvnyZS5cuERQUpGT86Ovrk5mZyfPPP4+lpSUjR44kNDQUT09Pbt26BfwSGPT29sbAwICUlBQlCK/VarGwsFCmB+bl5WFhYaHUFN2yZQtRUVHUqlWLyZMnk5ycjKOjY5VpxBYWFtSsWfOf/6CEEL9Jd66NjY1l7969REZGkpOTw8cff4yNjQ19+vQBKrKY27Rpw4EDBzh9+jT169dXviMqu337NllZWdy7d4+SkhLMzMzw9PRk//79bNmyBZVKRVxcHNevXycpKQmNRsPUqVOVMgSVmZqa0qZNG9q0afOPfBZCiCeTBAqF+BczNTXF1dWVixcvKjchOrrgXFlZGVAx5a927dro6+tz/Phx2rZtW2Vb06dPJycnR6lNMmvWLMaNG8czzzxDYGAgJSUlZGVlMWfOHHx8fADo3bs3zZs3V4obQ0Vx9d9qviCEeDiV66lVFyh0dnbG2dmZ6Oho7t69WyXjKDExkTt37ijF04cOHcoHH3zAyy+/zMCBA3F0dOSbb74hJSUFAwMDzp49S48ePVCr1QQHB1dp9lG3bl3q1q37u/urC7BUHhj4s7UEhfg7mJmZYW1tjYWFBV988QWOjo4YGhpSVFTE5s2bmTp1Krt27WL+/PmEhITw888/k52dzZw5c6rU6Ny/fz/6+vrKzb1arcbDw4OkpCSysrKwt7entLQUlUqFo6Mjd+7cUc7RVlZWDBo0iD59+ij1Q+GXGqJCiH8/3Xnuu+++Iy8vj4kTJ1JeXs7QoUOZMmUKNjY2tGvXDgsLC0aMGMGZM2eYMGEC06dPVwbVysrKyMnJ4eTJkyxZsoTMzEzGjx+vvIalpSVarZbp06djZGSEq6srgYGBDB06lIYNG1KjRg0pMyCEeGTkCl+IfzF9fX18fHw4duwYt27dwt/fv0oXR4Aff/wRqLjZDw8Pp1mzZqxZswYjIyOaN2+OSqVizZo1JCUlMWPGDOzt7dFqtYSHh7NmzRp2797NuXPncHd3p0mTJoSFhSlTA1u1avVI3rcQT4L7a5BqNJoHahS1bt2apUuXsmfPHgYPHkxJSQl5eXmsWrUKExMTJcDXuXNnjIyMWLRoETNmzKC0tJTGjRvz3nvvsWzZMmVqpJeXFytWrKh2f3SF1HX7cP8NitywiH87fX19vL29OXr0KKWlpcqUfnNzcwYNGkRpaSlz5szh1VdfZfXq1RgZGWFoaMjJkydxcXFRsu+/+OILDAwMiI6O5uzZs7Ru3RpHR0fi4+PJycnB3t5eCZKvXr262tq7lYOEQoj/nlu3brF9+3batWuHq6srxsbGzJo1i3feeYdx48axePFiGjRoQHBwMO+//z6ffPIJI0aMoFatWtSpUwdjY2OuXLnCzz//jIuLC0uWLKFFixaUl5cDFY0GIyIicHd3x8XF5RG/WyGEqEoChUL8ywUHBwMVGUSVp/mWl5dz+/ZtvvnmG0JDQ5UGApMnT+bzzz9n8+bNREVFUVZWhqmpKePGjeOpp54Cfrnhd3BwYNCgQQwaNOgRvDMhnmy6GqTXrl0DqnYfLyoqQk9Pj+7duxMXF8e0adPYt28f4eHhnD17lqtXr/LGG2/QqFEjZfCgXbt2NG/enPPnz+Pm5oaLiwvl5eV8/PHHynRHXXCjuqlR/59uw0L8W+jOmdeuXcPX1xf4JRt22LBhFBYWMn/+fN566y0mTJhA9+7d+eqrr9ixYwfGxsbcu3eP559/Hh8fH7777jvlfDl//nysra2r1AoFpEGXEI8Z3Tl19erV5Ofn07t3b4yNjSktLaVJkyaMHz+eSZMmMXr0aD799FMaNmxI586dCQwMZN++fZw7d44ff/yRvLw8XF1dGTp0KK1atVKu03XfHb6+vsp3lBBC/NvIHYEQ/3J+fn7o6+tz/vx5GjZsSHp6Ounp6cTGxrJx40Y0Gg1vvPEGdnZ2aLVanJ2d+eCDD+jduzdJSUm4uLhQs2bNKlMNhRCPnq4G6eXLl4mPj+f27dvcvHmTmzdvcv36dfLy8hg2bBizZ89m48aNbN++naioKHx9fXn77bfp1KkT8Evgf8uWLZibmyt1i7RaLZcvXyYxMfGBguhSQ1A8rnTnzLi4ODp06ABUHCO6YOHzzz9PSUkJixYtYs6cOYwdO5YmTZpw5swZvLy8qFu3LoGBgRgZGdGuXTug4lhSq9WP7D0JIf45enp6ZGRksGvXLkJDQ6lXrx6A0tyrc+fOlJWVMW7cON58800++ugjIiMj8fPzw8/Pj7y8PAwNDaWRiBDiP01Pq7tyEkL8K6Wnp9OzZ0+KioqoUaMGiYmJZGdnK10Tn3/++WqbDAgh/t3Ky8t56aWXOHLkCK6urmRmZlJSUgKAsbEx3t7evP322zRu3BhAaWhyP132w4ABAzh79iwvvvgi4eHhpKens2LFClQqFZ9//jkeHh7/6PsT4lFIT0+nc+fOhIWFsXTp0irP6Y6VvLw8Ll26hI+Pj9QOFEI8YPny5cyaNYv33nuPZ555hvLyciUTECrOxwkJCVhbW1dp/CWEEI8LySgU4l/OysqK4OBgcnJyCAgIoHfv3oSEhODv71/lokUI8d+ir6+Pp6cn3t7eeHt707NnT0JCQqhVq1a13cN1XY919Y3uzwqcOnUqy5cvZ9euXaxevRqABg0a8Oabb0qQUDwxrK2tCQoKwsHB4YGavrqfLSwsqu0mKoQQJSUlHD16lHbt2tG6dWuAB663VSoVAQEBj2L3hBDiHyEZhUIIIcS/0P3NTX6LLiBSUlJCfHy8kpEogwlCCCGEEEKIP0IChUIIIcQjVF5ermQJ6uvrS3BPCCGEEEII8chIoFAIIYQQQgghhBBCCIGkLQghhBBCCCGEEEIIISRQKIQQQgghhBBCCCGEkEChEEIIIYQQQgghhBACCRQKIYQQQgghhBBCCCGQQKEQQgghhBBCCCGEEAIJFAohhBBCCCGEEEIIIZBAoRDiCdWmTRvatGnzqHdDCPEb5DgV4r9BjlUh/v3kOBVCPCwJFAohhBBCCCGEEEIIITB81DsghBBCCCGEEEIIIcR/xTvvvMOmTZuqPGZkZISjoyOtWrVi9OjRWFtb/y2vXVJSQlZWFk5OTn/L9iVQKIQQQgghhBBCCCHEHzR+/HjUajUAxcXFxMXFsX79es6fP88333yDgYHBX/p6qampPPfccwwfPpyePXv+pdvWkUChEEIIIYQQQgghhBB/UNu2bXF3d6/ymLe3Nx988AGHDh2iVatWf+nrpaSkkJCQ8Jdu835So1AIIYQQQgghhBBCiL9Aw4YNAbh27doj3pM/RwKFQgghhBBCCCGEEEL8BW7fvg2Ap6en8lhcXBwjR46kfv36hIWF0b9/fw4fPlxlvZKSEqZNm0abNm0IDg6mRYsWfPDBB+Tk5AAQFRXFkCFDgIopz4GBgX/L/svUYyGEEEIIIYQQQgjxRGnTps1vPr9v377f3ca9e/e4e/cuAKWlpcTHx/Phhx8SFBRE69atAbhy5QoDBw7E3t6e4cOHY2RkxLZt23jppZeYO3cunTt3BmDKlCls27aNIUOG4OHhwbVr11izZg2JiYksW7aMBg0aMGLECBYvXky/fv2oV6/e//MTqJ6eVqvV/i1bFuIx03//7Ee9C0KI37HogvGj3gUhxO/QGzbsUe+CEEII8Viwsfx7uur+2/xd9+IZH+76zed/K1BYXddjHRMTE1auXElYWBgAgwcP5vbt23z//feYmZkBUFZWxtChQ0lISGD//v2oVCrCwsLo1asXEydOVLb1ySefcPjwYVauXIm5uTknT55kyJAhzJgxQ5qZCCGEEEIIIYQQQgjxV3iYjMHfM2fOHOzt7YGKjMLU1FTWrFnDoEGD+OKLL6hVqxanTp1i8ODBFBUVUVRUpKzbrl07ZsyYwfnz56lXrx7Ozs7s2LGD4OBg2rZti5WVFa+//jqvv/76/3s//wgJFAohhBBCCCGEEEII8QfVrVv3ga7HnTp1on379kydOpVZs2YBsGrVKlatWlXtNm7dugXA5MmTef311xk/fjzvv/8+4eHhtGvXjl69emFpafn3vpFKJFAohBBCCCGEEEIIIcRfQK1W07BhQ/bs2YNGowFg0KBBtG3bttrla9SoAUBkZCT79+9X/jt69CgzZsxgxYoVREVFYWtr+4/svwQKhRBCCCGEEEIIIYT4i5SXlwPg6OgIgIGBAY0bN66yTFxcHCkpKZiamlJSUsLly5dxdnamS5cudOnShfLycpYvX87s2bPZvn07gwcP/kf2Xf8feRUhhBBCCCGEEEIIIR5zmZmZnDhxglq1auHm5kZwcDCbNm0iLS1NWaa0tJQJEyYwevRoysrKyMrKol+/fixZskRZRl9fn5CQEOVnqAg4wi+ByL+DZBQKIYQQQgghhBBCCPEH7d27F7VaDYBWq+X27dts2LCBwsJC3njjDQDee+89hg4dSq9evRgwYAA2NjZs376dc+fOMWbMGGX9rl27snbtWgoLC6lTpw7Z2dmsXr0ae3t7OnXqBKAsu2XLFrRaLU8//TSGhn9taE8ChUIIIYQQQgghhBBC/EEzZsxQfjYwMMDa2pqQkBCmTZtGZGQkAHXq1OGbb75hwYIFLF++nLKyMnx8fJg5cyZPP/20sv7UqVPx8PBg+/btbN++HVNTUyIjI3njjTeU+oR+fn4MHjyYqKgozp8/T8OGDfH09PxL35OeVqvV/qVbFOIx1X//7Ee9C0KI37HogvGj3gUhxO/QGzbsUe+CEEII8ViwsbR+1Lvwj/i77sXXtRr3t2z3v05qFAohhBBCCCGEEEIIISRQKIQQQgghhBBCCCGEkEChEEIIIYQQQgghhBACaWZSrZKSElasWMG2bdtISkpCX18fb29vOnbsyNChQzE2/qUGVl5eHiUlJUphyT/6OllZWTg5OQEQFRXF+PHjWblyJQ0bNvxD20pOTsbDw0P5d2BgIE8//TQzZ878w/v1e/7stt955x02bdpU5TEjIyMcHR1p1aoVo0ePxtra+oHlr1y58pfst/jvK7qby/WdP5Fz/TYAtjXd8enUAJWF6UNvI//2Xc4u3IZHyxC82tT51eWubTpGYWYOoS92+uX1s/L4ac53v7n9kBc6YOPr8tD7I8TjKP1eLqtPnODSzZsA1PH0ZHBkI6xMH/5YTbpzh3c3baZ7eDi969er8tzF1JtsOH2axDt3MFOpaOjrS78G9TExMqqy3LtRm7iekfnAtiN8vHmjfbs/8c6EeHykp6ezauUqLl28BEDdenV4ZvDgKtdivycpMZEJ4yfQvUcP+vTtU+W5c9HRREVt4sb16+jr61Ojhj/9BvTD398fgIyMDF4dOeo3t//+pIkEBQX9wXcmxONDjlMhxKMggcL7lJWV8fzzzxMdHU2PHj3o168fGo2G06dPM2/ePH788UdWrlyJSqXiwoULvPzyy3z00Ud/OLCXmprKc889x/Dhw+nZsycADRo0YPbs2fj5+f2hbU2cOJEbN26watUq5bHZs2f/5Z1v/irjx49XWnoXFxcTFxfH+vXrOX/+PN988w0GBgYA9OvXT+kSJERpQTExS39AqynHvXkwWq2WlMMXyL+dRfgrT6H/v7+b31KuKefKd0fQasp/c7nbp69y+6erWPs4VXncyNyYgD7NHtxuWRnxW09iZG6CucsfHzQQ4nGSW1TE1G3b0JSX0zUsjHKtlm0xMSTfvcuHT/fA8CGOVU15OZ8fOEhZNcfqxdSbTNu+HR97ewY2jOBOXj47L1zgekYGk7t1RU9PDwCtVktqdjb1vb2I8PGpsg17S4u/5s0K8R+Vm5vL1A+mUFZWRrfu3SgvL2frlq0kJSYxbcZ0DA1//xZBo9Hw+cLPKSsre+C5S5cuMXPGTNzdPeg/oD8ajYbdu3bzwaTJTP7gA2r418DS0pKRo0Y+sG5JSSkrli/HysoKLy+vv+T9CvFfJMepEOJRkUDhfXbu3MmpU6dYsGAB7du3Vx4fMmQIX331FXPmzOG7775j4MCBXL16lfT09D/1OikpKSQkJFR5zMPDo0pW4MM6cuQIbm5uVR7r3r37n9qvf0Lbtm1xd3ev8pi3tzcffPABhw4dolWrVkBFC/E6dX4940s8WVKPXKQ4p4B6o7tj5mgDgKW7AxeW7Sbt5zhcGgT+7jZSDsZQkJb9q89ry8tJPhBD4r7oap83UBnhVOfBQH78tpNoNeXU7NscI1PpuiuebDtiznM3L59ZfXrh/r9BoRqODkzfvpODV6/Splat393G5rPRpGZlVfvc6hMnsLOwYFK3rqj+d5Nkb2HBsiNHOZecQrhnxXk0IzeP4tIy6nt70yzA/y96d0I8HrZv286dO3eY/dEc5ZqsRg0/pn04jYMHDtKmbZvf3cbmTZtJSUmp9rmVK77Gzs6OD6d/qMzEad68OW++MYb169bx7vvvYWJiQrPmzR9Y9+sVX1NWVsao0a9iYSFBffHkkuNUCPGoSI3C+5w9exaAJk2aPPDcwIEDMTIyIjo6+h/eq8efLiPz2rVrj3hPxL9VRsx1bHyclSAhgLqGK6YOVmTE3Pjd9fNv3yVpfwyercOqfV5TWsbPn20lcW80juF+qKzNHmq/8m/f5ebxyzjV88fax/mh1hHicXYsPp7ari5KkBAgxN0dFxtrjsdf/931k+7cYfPZszxd98GBopKyMqxMTWlds6YSJASo5VIx3T/xzh3lsZT/BRpdbR5+epYQT4rjx45Ru3ZQlYHbkNBQXFxdOXbs2O+un5SYyKaoKHr26vXAc3l5eSQmJtIoslGVcj3WNjbUql2Lq1ev/uZ2f9i5k5YtW1LrIQYVhHicyXEqhHhUJFB4H3NzcwDWr1//wHNmZmb8/PPPzJ49mwULFjB+/HigItuwdevWynLHjx/nhRdeoGHDhgQFBdGsWTMmTpzIvXv3gIpahEOGDAEqpuEGBgYqjwcGBnLy5EllW7t27aJXr17UqVOHevXq8eyzz3LmzBnl+cDAQFJTUzl16hSBgYFERUUpj7/zzjtV9v/gwYM888wz1KlThyZNmvDGG29UGWEqLS1lyZIldOvWjbCwMEJDQ+nWrRvffffbNdn+CrdvV9Scqzxd+p133lE+G53f+2yhYrrZZ599RocOHQgJCaFx48aMHTuWW7du/e3vQ/w9SguLKbqbh4Wb3QPPWbjYkXfzTjVr/aJcU87VjUdR+7viGF791H5tWTma4hJqDmhBYJ9m6OnrPdS+Jez5GX0jQ7zaSvarEHnFxaTfy8XHwf6B57zt7bmR+WC9wMo05eUsPniIEDc3mvk/mAWoMjRkfOdODwQRE+5UbNfB0lJ5LPnuXQDc/hewLCot/WNvRojHVF5eHmlpafj6+TzwnI+PDzeu//bgm0ajYfGixYSGhtKs+YPlOMzMzJj3ycd06fLUA8/l5uYqJWaqs37deoyNjenbr99DvBMhHl9ynAohHiWZenyfbt26sXz5cmbNmkVUVBRt27YlMjKSOnXqoFKpUKlUALRr146MjAzWr1/PiBEjCAkJASqmAb/44ovUrVuX0aNHo6enx9GjR1m/fj05OTnMnz+fBg0aMGLECBYvXky/fv2oV69etfty6tQp3njjDZo3b06fPn0oLCxk9erVPPvss2zfvh0PDw9mz57NjBkzUKvVjBgxgrp161a7re3btzNmzBj8/f159dVXKS0tZdmyZZw/f56oqCisrKwYP348O3fuZMCAAQwePJisrCw2bNjAu+++i4ODAy1atPhLPuN79+5x9383cKWlpcTHx/Phhx8SFBRUJeB6v4f5bAEWL17MwoULGTRoEIGBgaSkpLBy5UouXLjAtm3bfvPEJ/6dSnIKAFBZPZjlp7IyRVNYSllhCYamqmrXTzl8nsI796j9TGu05dpqlzEwMaL+m73QN3j48ZP823e5ezkFt2ZBGFezb0I8abLy8wGwNTN/4Dm1mRkFxSXkFxdjblz9FP0t0ee4nZPDmPbtKNdWf6xWlpGby6Wbt1h94gQetmrqe/9SJyklKwsTIyNWHT/O8fjrFJeW4WhlSb8GDWhc44/VAhbicaK7BlNX04hPrbahoCCf/Px8ZfD8flu+38Lt27cZM/YtyssfrCOqr6+Pi8uDTb2SEhO5euUKYWHVZ/YnJSZy5swZnur6FGpbdbXLCPGkkONUCPEoSaDwPv7+/nz22WdMmDCBa9euce3aNRYtWoSZmRmtW7dm1KhR+Pj4ULNmTcLDw1m/fj2NGzdWps6uWLECFxcXli9frgQVBw4cSL9+/Th8+DBQUYuwcePGLF68mPDw8F+tJ7hjxw5MTExYtGiRUpy9cePGjB49mosXL+Lh4UH37t2ZP38+9vb2v7qd8vJyZsyYQUBAABs2bMDExASAkJAQnn32WbZu3Ur79u3Ztm0bL774ImPGjFHWbdu2LZ06deLw4cN/WaDw6aeffuAxExMTpUnMr3mYzxZg69atNG/enPfee095zMXFhW+++YbU1NR/bZMX8es0JRWZQAZGD35l6f9v+qGmtKzaQGF+WhZJ+87h160hxtbmFGXlVfsaenp66Bk8XBahzs2TV0BfD9dGMu1CCIDC/2XtqaopsK763yBNSVlZtYHClLtZRP38M8OaNMbOwoKM3NzffK3coiJGr12nvN6wJo2rvG5yVhZFpaUUFJfwSquWFJSU8MP5CyzY9yOa8nKpWyieWEVFRQAYqx48Do2MKs6jJcUl1QYgkpOT2fjddzz73HPY2dmRkZHx0K+58LOFAHTrUf316u7de9DX16dDx44PtU0hHmdynAohHiUJFFajZcuW7N+/n3379nHgwAGOHTtGRkYG27ZtY8+ePXz11VdERERUu+6SJUu4d+9elYBXVlYWFhYWFBQU/KH9cHZ2Jj8/nw8//JCBAwfi5+dHYGAgu3bt+kPbuXDhAhkZGYwYMUIJEkJF0PHbb7/F19cXCwsLzpw5g77+L9lUWq1W6ZCV/78skb/CnDlzsLevmJZWWlpKamoqa9asYdCgQXzxxRc0bty42vUe9rN1dnbm5MmTfP3113Tp0gV7e3v69+9P//79/7L3IP5husyiPxbHQ1teztWNR7DydnyoZid/hKa0jPSz8djV8sBELUWchYCK8wagDG49rPLychYdOECgs/NDNTvRvcbotq0p05Tzw4ULTNu2g9Ft29DQt2KaVptaNdFqtbQPClLWaeznx9hvv2PNiZM0qeFX5ZwnxJPi/3OcLv58EYE1az5UEwWd4uJi5syeQ2JiIj169KB27doPLFNSUsKRw4epV78+Dg4Of2i/hHgcyXEqhHiUJFD4K4yNjencuTOdO3cG4OLFiyxbtoxt27YxadIkdu7cWe16BgYGJCcnM3/+fOLi4khKSiItLe1P7cMzzzzDkSNHWL16NatXr8bd3Z1WrVrRu3dvatas+dDbSU1NBai2dX1oaKjys0qlYsuWLRw5coSEhAQSExOVAKH2IaaAPay6des+0PW4U6dOtG/fnqlTp/6/P9tx48bx8ssvM336dGbMmKFMae7bt6+c1P6jDIyNACgv1TzwXPn/gtmGJkYPPJdy+AL5t7IIG96Z0vyKkdmywmIANCVllOYXYWhm/IcvwgByrt+mvKQM+2DvP7yuEI8rU6OK47Dkf8dlZSWaiuPXtJrM8a3nYki6e5fJ3bpxr7DiWM0vrjhWi8vKuFdYhKVJ1WPVwtiYSL+KKcQNfX0Y++13rDx+XAkUtqvmJkdlaEgzf382nvmZlKwsPO0erHsqxOPO9H+DxsX/O8YqKy0tqVjGzPSB57Zu2UpiYiIfTJmi1IbOz6u4TiwpKebevXtYWlpWOU7z8/OZNXMWV69coVWrVvQbUP2g7cULFykqKqJRZKP/35sT4jEhx6kQ4lGSQGElBQUFLFmyhKCgINq3b1/luaCgIObOncu9e/c4dOgQWf/rpni/pUuXMnv2bHx8fKhfvz7t27cnLCyMVatWsXXr1j+0PxYWFqxevZro6Gj27t3LoUOHWLVqFWvWrGH27Nl07dr1obajq0vxW8GQ4uJiBg4cyOXLl2nYsCGRkZEMGzaMiIgIWrZs+Yf2+89Qq9U0bNiQPXv2kJOTg7X1g10qH/azrVmzJrt27eLw4cPs37+fw4cP8+mnn7J8+XLWr1+Pn5/UpvqvMbauyNgryS184LmSe4UYmBphoHowUJh1NRWtppzoz7c98Fzq4YukHr5Ig7G9/1RG4N0rKegZ6mMb6P77CwvxhLCzqDiWsqvJoM8qKMDMWIWJ0YPH6rnkZMo05by3afMDz207F8O2czF8OrB/lWYllakMDanj6cmuCxe5V1iElalJtcsBWJtW3FgVVRPMFOJJYPe/WR3Z2dkPPJeVlY2ZmXmVGSg60dHRlJWV8e6ECQ88t3XLVrZu2cqChZ8pg7I5OTnMmDadhIQE2rRtywsvvvCr16Jnz57FyMiIOnWkMZgQIMepEOLRkkBhJcbGxixdupQ6deo8ECjUqVGjBocPH672i7m4uJgFCxbQsGFDli1bhmGlWkm6Rht/xI0bN8jNzSU8PJzw8HDeeust4uLiGDRoEMuXL3/oQKGuUG1SUtIDz40fP566detiZGTEhQsXmDZtGr1791ae/7PZkH+GLqBZ3VSwh/1sNRoNsbGxWFhY0KZNG9q0qUi537FjB2+88QbffvvtA92gxb+foakKY1uLarsb5926g6Xbgx1WAXw6N6CssKTKY6V5hVzZcBjHOr441qmBkcWvBxR+y72kdCzd7DE0+fW6mkI8acyNjXGwtKy2u3FCZia+v5LV/UxkIyWDUCensJCFPx6gqX8Nmgf4Y21qSmpWNjN37qRbWBjtgqpmDBaVlqKnB0YG+tzNz2f69h1E+vnRq17VJl+p/7vpcvyVoKMQjztzc3McHR1JuPFg19QbN27g5+db7XqDBw8mP79qnd+cnBw+W/AZzZo3o3nz5spAb2FhoRJ86NylC0OGDvnNfbp65Qo+vr6YmUljMCFAjlMhxKMlgcJKDAwM6Ny5M99//z3ff//9A81BsrOz2bVrF40bN8bU1FQJaOkCXEVFRRQWFuLt7V0lkHX58mVOnToFQFlZGYaGhkrn3eq6UOl8+OGHXLlyhV27dimFan19fbGysqoSTNPX1//N7QQHB2Nra0tUVBS9e/dWavydOXOGqKgoatasqUwtrlGjRpV1V65cqez33ykzM5MTJ05Qq1YtLKu5eXvYz7a8vJwhQ4ZQv359lixZoiyn69wl9aj+u+yDvLh57BIFGdmYOdgAkBV3k8KMe7g3C652neoCiLpmJia2lqhruP6pfSnXaChIy8Y5IuBPrS/E4yzCx5sfLlwgNSsbN7UNAOdTUriVnUPXX+miWF0AUdfMxMnKipD/latwtraioKSEvZcv06pmIIb/O5dm5OZy8voNarm4YKpSYapSUVBSwo+xsXQKCcbsf+e9zNw8Dl65SpCbKzZyoyOeYBENI9i5Yyepqam4ubkBcD4mhls3b9KtW7dq1/GtJjCha5Lg6OhESKVyNsuWLiUhIYFOnTv/bvChrKyMlJQU2rRt+2ffjhCPJTlOhRCPigQK7/POO+8QExPDuHHj2LJlC82aNcPCwoKkpCSioqIoLS1l4sSJANj+r139N998Q2ZmJl27diUsLIyoqCgsLCzw8fHh2rVrfPvtt0qAKj8/H2tra9TqinbyW7ZsQavVVtsJ+Nlnn+XFF19k0KBB9OjRA2NjY/bu3UtSUhKzZs1SlrO1tSU2Npa1a9cSERHxQLBPpVLxzjvv8PbbbzNgwAC6detGfn4+K1euxM/Pjz59+pCSkoKhoSHjxo1j0KBBGBoasn//fo4cOYKRkdFf2sxk7969yvvXarXcvn2bDRs2UFhYyBtvvFHtOtbW1g/92Q4ePJhFixYxcuRImjVrRlFREevXr8fU1JRevXr9Ze9D/LPcmwWTfjae80t34dY0mPKyMlIOX8DCzQ7H8Irp5IV3c7mXmI6VlyOmtn9ftlBxdj5aTTkm1tLERIj7dQsP4/C1a0zbvp0uoSGUlGnYFhODj4M9Tf0rzk9p9+5x9XYaAc5OOFlZPfS2DfT1Gda4MZ/vP8AHW7fRzL8GuUXF7L54EX19PYY1+aUZ1rNNmjBv9x4mbd5C61o1KSwtYfeFSxjct5wQT6Ku3bpx6OBhPpwylae6PkVJSSlbt2zF19eXps2aAhWzSq5euUJAYCBOTk4Pve2UlBQOHzqMmZk53t7eHD506IFlmjVvrvycmZlJWVkZ9vZSM1SIyuQ4FUI8KhIovI8u827FihXs27ePhQsXUlhYiKOjI+3bt2fEiBE4OjoCEBkZSadOndi/fz8nTpygffv2zJ8/nxkzZrBx40ZKSkpwc3PjpZdews/Pj1dffZUTJ07QoUMH/Pz8GDx4MFFRUZw/f56GDRs+sC9NmzZl0aJFLFmyhM8//5zi4mL8/f2ZN28eXbp0UZZ79dVXmTRpEtOnT2fkyJEPBAoBunfvjqWlJYsXL2bu3LlYWVnRqlUrxowZg5mZGQEBAXz66ad89tlnzJs3D3Nzc/z9/Vm+fDlr167l1KlTlJaWYlRNbak/asaMGcrPBgYGWFtbExISwrRp04iMjPzV9R72sx09ejQ2NjZs3LiRWbNmYWBgQN26dZkzZ47UJ/wPU1mYEvpiJ65vP0Xi3rMYqAyxq+WJT8f66BtWZBXdS0jj6ndHCOjd9G8NFJYVVEyRNKimgYoQTzorU1MmdevKymPH+fb0GYwNDanv5cWgRg0x+l8GYOyt2yw+cJARLVv8oUAhQLMAf4wMDPg+OppVx09gbGhIsJsbfRvUx9XGRlmugY83Yzq0Y/PZaL45eQojQwNqu7jQPyJCyXQU4kllbW3N5CmTWbnia77d8C0qlTENGtRn4DODlGu92MuxLPr8c15+5ZU/FIC4fOkyAAUF+Sz6/PNql6kcgMjLrcj0NzWVLF8hKpPjVAjxqOhp/8p2tkI8xvrvn/2od0EI8TsWXTB+1LsghPgdesOGPepdEEIIIR4LNpYPNgF9HP1d9+LrWo37W7b7XycF24QQQgghhBBCCCGEEDL1WPx5RUVF5P6v2PzvsbW1VRq4CCGEEEIIIYQQQoh/HwkUij9tx44djB8//qGW3bdvH+7/61ophBBCCCGEEEIIIf59JFAo/rSmTZuyfPnyh1rWwcHhb94bIYQQQgghhBBCCPH/IYFC8ac5OjoqHaCFEEIIIYQQQgghxH+bNDMRQgghhBBCCCGEEEJIoFAIIYQQQgghhBBCCCGBQiGEEEIIIYQQQgghBBIoFEIIIYQQQgghhBBCIIFCIYQQQgghhBBCCCEEEigUQgghhBBCCCGEEEIggUIhhBBCCCGEEEIIIQQSKBRCCCGEEEIIIYQQQgCGj3oHhBBCCCGEEEL8u4w4veRR74IQ4nesazXuUe+CeAxJRqEQQgghhBBCCCGEEEIChUIIIYQQQgghhBBCCAkUCiGEEEIIIYQQQgghkEChEEIIIYQQQgghhBACCRQKIYQQQgghhBBCCCGQQKEQQgghhBBCCCGEEAIJFAohhBBCCCGEEEIIIZBAoRBCCCGEEEIIIYQQAgkUCiGEEEIIIYQQQgghkEChEP/H3n2HR1nl/R9/ZzIzyaR3IAklBOktkBC6CqiAFFnrUhRdd9e1PmvZVddC1V3Lo7uW3fX54QrYUBGkgw0IgkjT0NHQUiAJ6W0ymcz8/hgYyU6AoMS0z+u6vDT3KXPuXN455/7OKSIiIiIiIiIiggKFIiIiIiIiIiIiAhgbugHSMjz66KMsWbLkgvkmTZoE4JHXYDBgsViIj49n8uTJ7nznq9tsNhMREcGgQYN48MEHiYiI+Jl3IQ3Nml/C4dXbKDp8EoCwrrHEjUnCHGA5bzlbaQVH1+0k/0A6jio7AdHhdLgmkaB2kTXy7Xp9OaUZeR7lw3u2p/vkKy+6PpGWKqe4hLe//pp9WVkAJLRrx7RBAwmynP9ZLa6o4P1vtrHj2DFs9mriIsL5dfIALmvVqka+79LTWbJzF4dPncLg5cVlUVHclJToka+u9YmIS05ODgsXLGTf3n0A9OufwNRp0wgODj5vuaKiIha99z7bt++gqspGh7g4Jk+ZzGWXXVYj318ee5y0tDSP8gOSk3nwoQcv3Y2INGP1PR7WOFdEFCiUX8TNN9/MoEGD3D/v2LGDRYsWcfPNN9O/f3/39Xbt2rFo0SIAHnvsMUJDQwFwOp2UlpaybNkyHn30UQoKCrjjjjtqfMbZ+QFKS0vZsmULixcvZs+ePXz00UeYzeb6vE2pR1XllaTOW4Oz2kHs8J44nU4yUvZQdrKAvnePw+DtXWs5e2UVqf+3BltJOTFDumP09SHr6/3snreGvn8Yh3/rH/8fK88pIrx7O8J7tK9Rh2+I/0XXJ9JSlVitzF6xgmqHg/F9+uBwOlmRmkp6fj5zJl2H8RzPaoXNxsxlyykoL2dsr174+/iwdu9eZq9YydxJ19E2LAyAfVkn+NvqNcSGhnJLUhLVTgfr9u5j1vIVPD1hPJ2ioi6qPhFxKSkpYfbMWdjtdiZMnIDD4WD5suUcP3acuc8+g9FY+2tDRUUFM2fMpLCggDFjx+If4M+6NWuZPXMWc56ZS7t27QBXP5uZmUliUhLJyQNq1BERqQCESF3U93hY41wRAQUK5ReSkJBAQkKC++fq6moWLVpE3759mThxYo28ZwKFo0aNIjY2tkbaDTfcwNixY3nttdeYOnVqjcBfbfmnTJnCjBkzeO+99/jss88YO3bspb41+YVkbtpLZVE5/e+fiF9UCACBsZHseXMd2Tt/oE1Sl1rLZWzYTcWpInrdOZqQuNYARPbuwLYXFpORspsuNw4HoLKgFIfNTnj3drRKiD9nO+pan0hLtSp1N/mlZfztxuuJPf3lTaeoSJ5ZuZoNhw4xslu3Wsst+/Y7ThQV8cS4cXSPbgPAoPiO3P/e+yz79jvuGeGa1btgyxbC/P2Zfd11+Jhcw5jhl13GQx98yKJt2/nLtWMvqj4RcVm5YiV5eXk898Lz7vFUp07xzJ0zlw3rNzBy1Mhay32y9BNOZGXx5NNP0b17dwAGDxrM/ffdx/Jly7jn3nsByM3NxWq1kpSUxLDh6itFfor6Hg9rnCsioD0KpYnx9fVlxIgRlJaW8v3339epzJllyt999119Nk3qWW7qYULiWrsHRQChnaKxRAaRm3qk1jJOp5PsXT8Q1iXWPdgBMAf6ETcmiaAOPy4/LMspBMASce7lVRdTn0hLtTktje7RbdxBQoBesbG0CQlmS9rhWss4nU42HjpE37Zt3UE9gBA/P6YNHEjXNq7nrbSykuN5eQzs2NEdJAQI9vOjW5s2HDqZfVH1iciPtmzeTPfuPWp86dqrd2/aREezefPmWss4nU42bthAQkKCO0gIEBIawtRp0+ja9ccvBjLSMwCIjomupzsQaf7qczysca6InKEZhdLkeHl5Aa5ZiXVhOb0nltPprLc2Sf2qqqjEml9KRM8OHmkBbcLJ/z6j1nKVBaXYisoJGdYTcP0/4Kiy4202ET2wa4285dkFAPhFuQKF1bYqvM2mn1yfSEtUWllJTnEJyR3jPNI6RETwXXp6reVyS0rJLytnfJ8+gOvZqrTb8TWZuKrHj8EHP5OJF2++Cd9alkCWWK14G7wuqj4RcSktLSU7O5vkgckeaXFxcXy769tay+Xm5pKfn8/4iROA089aZSW+vr5cfc3VNfKmn37+Y2JiALBarfj6+l7CuxBp3up7PKxxroicoUChNCkOh4NvvvkGs9lMfPy5l4eeLSUlBaDGN93StNiKygEwB/l5pJmDLFRXVGGvsGG01NyDsiKvGACTvy+HV2/j5LZDVFur8A0PpOPYAYR3a+vOW55TiLePkcOrtpGbegSHzY5vWADtr+pHVJ+OF12fSEtUUFYGQJifv0daqJ8f5ZU2yior8ffxqZF2sqgIgCCLhbe3fM0XBw5QYauiVXAQ0wYNpH97176hBoOBNrUcqnA8L49D2dn0Pj0Tqq71iYhLfn4+AKG17N0ZGhpCeXkZZWVl+PvXfLZPnjgBQFBQEG8vXMgXn39BeXk5rVu3Ztqtt9I/8cd9qDMy0rFYLCycv4AtW7ZgtVpp1aoVN91yM0OGDKnHuxNpHup7PKxxroicoaXH0mgVFxeTn59Pfn4+ubm5fPvttzz44IMcOHCAyZMnewxWz86fn5/P8ePHeeedd3j11VeJj4/n2muvbaA7kZ+r2lYFgLfJ87sNw+mZRdVVdo80u9UGwLHPdpF/MIP4ccl0vnEYBpORfW9/TsEPWe68ZdmFVFfasVttdLlxGJddPwRvHxMHF20ke1faRdcn0hJVVLmeVXMtM/7MpzdYt9k9n9Vym+vZ+mD7dr5NT+e2wYO5+8or8DEaeXHtOnZn1D5LAsBaVcXrX64HYELfvj+7PpGWyGq1AuBj9vFIM5lcQQdbpc0jrazcFbj4cNEH7Nr5LbdNn849996D2WzmheefZ3dqqjtv+vF0KioqKCsv5+577uGuP/wBX19fXvn7P0jZuLE+bkukWanv8bDGuSJyhmYUSqN1Zm/Bs5nNZqZNm8ZDDz1Up/wWi4WRI0fyxBNPYDKZPNKliTizbNzr4oo57A7ANfBJfPBXmCyuF6Dwrm3Z9uJijq7bQWgn115JbZI643Q6iR74435Kkb3j2Pn3pRxZvY2oPnEXVZ9IS3Rmi4czW0TUVdXprSTKK2387y03EXB6xmG/9u34n/cX8f432+j1X4dVAVRW2Xlh7TqO5eUzMaGPez/Cn1qfSEv1U59d++kvB8rKynnp7y8REBAAQL/+/Xngvgd4/7336dW7NwAjR43C4XBwzehr3OUHDxnMIw89zNsL32bI0KEYDJrDIHJO9Twe1jhXRM5QoFAareeff56IiAjAtdwsKCiI+Ph4fHw8v+0+O39VVRUpKSm88847jBkzhhkzZpyzjDQN3j6uIK+jynNfSsfp2UlGX89AsLfJNYMpokd792AHwGgxE9Y1lpxdae69CNske+694m0yEpUQz/HPv3MtTb6I+kRaIsvpL2RqmzVoOx28s5jNHmlnZiAOiOvgDuoB+Pv40K9dO1K+/x5rVRW+Z33hU1ZZyXNr1nLoZDZXdO3MzUlJP6s+kZbMcnqvwMrKSo+0qirXLCOLn8UjzXz6+RqQPMAdJATw9/enf/9+bNy40b0X4VVXX+VZ3mxm6LBhLP7oIzLS02mnbQFEzqnex8Ma54rIaQoUSqPVr1+/GifvXUz+yy+/nPbt2zNnzhwKCwt5/fXXL/pbcmk8fIJdLx+2kgqPNFtxBd4WU62DFnOQa3m6yd9zs3RzgAWcUF15/gGPyd/1YlRts1+S+kSas/DTgYLC08sRz1ZQXo6fj7nW4FyYv2u/pSCLZyAi2M+C00mNwF5xRQXPrFrNsVN5jOzWld8MG1rjb/zF1ifS0oWf/mK2sLDQI62goBA/P/9aDx4JO72nYVBQkEdacEgwTqcTa8X5Dy0JPr3vqLWWIKWI/Ki+x8Ma54rIGZrfL83WtGnTGDlyJF988QXz589v6ObIz2C0mPEJC6A0K88jrfREHoExEbWW828dgpfRQHlOoUeataAUg8kbk78vlUVlbH95Cce/+NYjX8Up16EIvqEBda5PpKXy9/EhMjCQI6dOeaQdPXWKjpGRtZZrGxaGydubjIICj7Tc4hJMRm+CTgcaKmw2d5BwTK+e3Dl8mMcXQRdTn4i4ZgBGRUVx9MgRj7QjR44QH9+x1nJt27bFZDKRUcu+nzk5uZjNZoKCg8jPy+ehPz7E4o8We+TLynLtexYVGfUz70Kkeavv8bDGuSJyhgKF0qzNmjWL4OBgXn75ZdLT0xu6OfIzRPRoT2FaFuW5he5rBT9kUZFbTGTvuFrLeJtNhHdrR/6BDMqyfwwYWPNLyNt/nLBubfEyGPAJ9qfaauPEtkPujZwBrIWlZO/4nuD41pgD/epcn0hLNiCuA3syM8ksKHRf252RwYnCIgaf47R6X5OJ/u3bsev4cTLyf3y2copL2HHsOInt27v3Lntz01ccO5XH6F49uXXwoJ9dn4i4DEgewO7du8nMzHRf252ayomsLAaf41RiX19f+icmsmvnzhrjrJycHHZs307/xEQMBgNh4WGUl5fxxeefU37WjONTp06xYf16evTsSUhoSL3dm0hzUZ/jYY1zReQMLT2WZi0iIoKHH36YJ598khkzZjBv3ryGbpL8RLHDepKzK43d89YSM7QnDrudjJQ9BMSEE9XXFXyoyC+h+FgOQe2jsIQFAhA3OpGiIyfZPW8t0YO7YTB4k7llHwaTNx2u7u+uP37CQPa//SXf/XsVrRM7U22rImvLfrwMBjqNH+jOV9f6RFqqCX37kPL998xduZJre/fCZq9mRWoqcZERDL2sEwDZxcUcOplN59ataHV6yeLkgcnsO3GC2StWMLpnT4zeBtbs3oPJ6M3NA1z7D2YUFLDp+x/w8zHTITyclEPfe3z+sM6X1bk+EfnR+AkT2LghhTmzZjNu/DhstiqWL1tOx44dGTpsKADZ2dkcOniQzl260KpVKwCmTJ3Cvr37mD1zNmPGjsFo9Gb1qtWYTGZu+fUt7vrv+M1vePGFF3jqiacYMWoE1gora9eswWDw5vY7bm+QexZpaup7PKxxroiAAoXSAtx4440sXbqUTZs2sXTpUq677rqGbpL8BOYAC71/O4bDK7/h2Ge78DYbCe/WjrjRiRiMrs2Xi49mc+ijTXS+Yah7YOQbGkCfu67l6JrtZKTsAScEd2hF3OhEdx6AiO7t6T5tBMfXp3Jk7XYMJm9C4trQ4Zp++EWGuPPVtT6RlirIYuHpCeNZsHkLH27fgY/RSGL79kwZmIzJ2/WsHjhxkn+t38BdV1zuDhRGBgYy67qJvLf1G1akpuJ0OunaujWTBya78+w/cQJwnWb8r/Ubav38M4HCutQnIj8KDg5mxqwZLHhrPh9+8CFmsw9JSYlMnjoF0+n9PA/sP8A/X3+dP9x9tztQGBkZyey5s3n3nXdZvmw54KRr165MnjrFnQcgaUASDz/yCEuXLOG9d97FZDLTvUd3fj3518TExDTAHYs0PfU9HtY4V0QAvJzOM+esi8j53PLlcw3dBBG5gH/u0QnnIo2d1/TpDd0EEamDu7b/u6GbICIX8P6Vf2roJvwi6utdvKX8/i6WNhkQERERERERERERBQpFREREREREREREgUIRERERERERERFBgUIRERERERERERFBgUIRERERERERERFBgUIRERERERERERFBgUIRERERERERERFBgUIRERERERERERFBgUIRERERERERERFBgUIRERERERERERFBgUIRERERERERERFBgUIRERERERERERFBgUIREREREREREREBjA3dABERkUvFa/r0hm6CiFzAXdv/3dBNEJE6+Ffi7xu6CSIi0gA0o1BEREREREREREQUKBQREREREREREREFCkVERERERERERAQFCkVERERERERERAQFCkVERERERERERAQFCkVERERERERERAQFCkVERERERERERAQFCkVERERERERERAQFCkVERERERERERAQFCkVERERERERERAQFCkVERERERERERAQwNnQDpPl79NFHWbJkyQXzTZo0CYAlS5bw1FNPMWXKFI88GRkZjBw5knvvvZf77rvvvPWbzWYiIiIYNGgQDz74IBERET/zTqShWfNLOLx6G0WHTwIQ1jWWuDFJmAMstecvKGXb8x+dt85ed15DSMc2AJRm5XFkzXZKMk/hZTAQ1iWWuNGJHvXXNZ9IS5WTk8PCBQvZt3cfAP36JzB12jSCg4NrzZ+bm8t999x73jqffPopevToAcDRI0d55+23SUs7jLe3N/36JTB5ymSCQ0JqlPnh+x/48IMPOHToENXV1bRv355fXX89Cf0Sfv5NijRxjaVPrcgr5sjq7RQeOYHT7iCwbSQdru5PULvIS3CXIs1PY+ljRaT5UqBQ6t3NN9/MoEGD3D/v2LGDRYsWcfPNN9O/f3/39Xbt2rFo0SIAXn75Za655pqLCu499thjhIaGun8uLS1ly5YtLF68mD179vDRRx9hNpsvwR1JQ6gqryR13hqc1Q5ih/fE6XSSkbKHspMF9L17HAZvb48yJn8fOt84zOO6w24nbflWTP6++LcJA6A8p5Dv3liFOciP9iMSqK60kfHVXoqP59Dv3gl4m00XlU+kpSopKWH2zFnY7XYmTJyAw+Fg+bLlHD92nLnPPoPR6Dn0CAwM5J577/G4brNV8dZ//kNQUBDt27cHXF8YPf3UU4SGhXHDTTdQUV7ByhUrOXjoEH/921/x9fUFICsri1kzZxIUFMR1kyZhMpvY8OV6nvvb3/jjgw8yIHlA/f4iRBqxxtKnVpVZSf2/1ditVcQM7YHJYiZzy352z1tD3z9ci3/rsPr9RYg0MY2ljxWR5k2BQql3CQkJJCT8OHujurqaRYsW0bdvXyZOnFgj75lAYXFxMc8++ywvvvhinT9n1KhRxMbG1rg2ZcoUZsyYwXvvvcdnn33G2LFjf8adSEPK3LSXyqJy+t8/Eb+oEAACYyPZ8+Y6snf+QJukLh5lvM0mWiXEe1xPW7EVZ7WDrjcNx2TxAeDoZ7vwMhjo89sxmAP9AAiIiWDv/M/I3plG9MCuF5VPpKVauWIleXl5PPfC8+6/yZ06xTN3zlw2rN/AyFEjPcr4+voybPhwj+vz35qP3W7n3vvvIyAgAIAPFn2At7c3M2bMICQ0BICOHTvyt7/+lY0bNnL1NVcD8O477+Lt7c2cuXPd+UaNGsWfHn6Ed995R4FCadEaS596cvshbMUVdJtyJRE9XIGK8B7t2fHSEo5/8R3dJl9ZH7cv0mQ1lj5WRJo37VEojdKIESNYsWIFW7Zs+dl1nVnS/N133/3suqTh5KYeJiSutfuFBiC0UzSWyCByU4/UuZ6yk/lkbdlPq/6XERzX2n3dYDAQ1Tfe/UIDEBzXylUmu+Ci84m0VFs2b6Z79x41vrjp1bs3baKj2bx5c53rOX7sGGtWr+aKK66gW7du7utGo5Ghw4a5X2AAunV3pR8/fhwAp9PJ/n376d2nT418ZrOZfv37c/LkSYqKin7iHYo0fY2lT7UWlLo++7Jo9zXfkAD8okLUp4rUojH0sSLS/GlGoTRKTzzxBFu2bGHGjBksX778Zy0Ztlhce+E4nc5L1Tz5hVVVVGLNLyWiZwePtIA24eR/n1Hnuo5+uhODyUj7UTX3KOt6y+UeectO5APgG+x/0flEWqLS0lKys7NJHpjskRYXF8e3u76tc12L3l+Ej48PN918c43r9z9wv0feY8eOAbi3q/Dy8uLZvz2Ll5eXR96SkmIAvGtZWinSEjSmPtUSHgRARW4xATHhADiqq6ksKqsRxBSRxtPHikjzpxmF0ijFxMRw9913c/ToUd54442fVVdKSgoA3bt3vxRNkwZgKyoHwBzk55FmDrJQXVGFvcJ2wXrKTuaTvz+DNsld8KmlrjMqi8s5tecoBz7YiDnIQqvEy35WPpGWIj/fFQgIDfPcVyw0NITy8jLKysouWM/xY8fYsWMHo64aRWhY6DnzFeQXsHXrVl79xyuEhoZy5YgflylGRUURGVnzMISiwkK2fbON6JgY9zIrkZamMfWprRM7498mlENLvqL4eC7luUV8//FXVJVZiR3W8yfcnUjz1Zj6WBFp3jSjUBqt22+/nWXLlvHGG28wfvx49ya751JcXOzuQMH1rVtKSgqvvvoq8fHxXHvttfXdZKkn1bYqALxNnn+yDKc3ba6usmO0nH/madbWg2DwInpgt/Pm2/HSx1RX2sHgRZcbh53zBMi65hNpKaxWKwA+Zh+PNJPJ9XzaKm34+59/9u26dZ9iMBi4ZvTo8+Z78I9/pKKiAoPBwD333XvOEx/BtT/ua6++htVq5brrJp4zn0hz15j6VKPFTPtRCRxYtJHv/rXSfT1+fDJhXWJrq06kxWrMfayINC8KFEqjZTKZmDFjBlOnTmXWrFnMmzfvvPnP7EV4NovFwsiRI3niiScwmXQabZN1Ztm45yrCOquuspOzK43wbm3xDT33TCJHtYP4CYMweBs4ueN7Di7aSFVpBTFDevykfCItyZktHmpb8ltXNpuNTSkp9E9M9JgReLbq6mru+M0deBuNrP/iS175+z8oKixkbC1fCjkcDl579TVSU1MZPGQIwy/3XBYp0mI0oj715PZDfP/xZvxahxI7tAcGozc536aRtmIreHnpgDCRszTWPlZEmh8tPZZGLTExkUmTJrFp0yZWrlx53rzPP/88//nPf3jjjTeYNm0aBoOBMWPG8MwzzxAaeu5p9dL4efu4gryOqmqPNIfdDoDR9/yB4KLDJ3HY7LXuyXQ2g7eBVgnxRPaOo+f0qwhqH8XRT3dhr6z6SflEWhKLry8AlZWVHmlVVa6ljBa/88+83btnL1arlYGDBp43n7e3N8OGD2fw4ME89pfH6dylCx8s+oCKior/+twqXn7pZTZ/9RV9+/bl7nvuvphbEml2GlOfevTTXZiD/eh711ha9etEZO84etw6itDOMRxZvQ1bacV56xdpSRpjHysizZMChdLoPfLII4SEhPDss89SWlp6znz9+vVj8ODBXH755TzxxBM8/vjjfPzxx/zP//yPDjJp4nyCXbMVbCWegxNbcQXeFhPe5vO/1OQfzMDLaLiopUxeXl5E9GyPw2anIvfcJ6TWNZ9Icxd+eqPzwsJCj7SCgkL8/PzxPf2icy67du3CZDKRkJBw3nxn8/LyYuDAZKxWK1mZWe7rVquV5/76N77ZupV+/frx0CMPYzRqMYW0bI2lT7WVVlBVUkFEj/Yen9eqXyccVdWUpOfWuX6R5q6x9bEi0nwpUCiNXlhYGA8//DC5ubm8/PLLdS43bdo0Ro4cyRdffMH8+fPrr4FS74wWMz5hAZRm5XmklZ7IIzDmwqewFR/PITAmAqOv555L9gob215czJG1OzzSqk/PejCYvOucT6Sl8vf3JyoqiqNHjnikHTlyhPj4jhes49DBg8R17Iifn+fhCGVlZfzP/Q/w3jvveqRVVLj2bjL7uJ7x6upqXnrxf9m9ezcDBw3iwYcf0hYUIjSePtVw+uRxZ7XDI5/T4azxbxFpXH2siDRvChRKk3DDDTfQr18/vvzyy4sqN2vWLIKDg3n55ZdJT0+vp9bJLyGiR3sK07Iozy10Xyv4IYuK3GIie8edt6yjupry7EL8oz1PiQPXS5PB6E32zh+oqvhxOYe9wsbJ7d/jExaAX1RInfOJtGQDkgewe/duMjMz3dd2p6ZyIiuLwUOGnLes3W4nIyODuLjan2l/f3+MRhMbNmyoMcO8rKyML7/4gqioKGJjXTOcFn+0mO+++44Bycnc/8D9mkkocpbG0qcGto3g1N5jVJVZ3fmcTicntx/Cy9tAUPuon3ejIs1MY+ljRaR506hZmgQvLy9mzJjBr371K+yn98+pi4iICB5++GGefPJJZsyYccEDUaTxih3Wk5xdaeyet5aYoT1x2O1kpOwhICacqL7xAFTkl1B8LIeg9lFYwgLdZSsLy3BWO/ANPveG6/ETBrJ73lq++/cq2iR1xlHt4OQ3B7GVVNBj+ij3xtF1zSfSUo2fMIGNG1KYM2s248aPw2arYvmy5XTs2JGhw4YCkJ2dzaGDB+ncpQutWrVylz116hR2u52IiPBz1n/HnXcwZ9Zsnn7yaUaOGoHdbufzzz6nsLCQPz/2KF5eXpSUlLBi+XKMRiM9e/bkq02bPOpJGjDggku0RJqrxtKndrw2md3z1rDr9eW0GdAFg8nIqd1HKT6WQ4er+9U4IVlEGkcfKyLNnwKF0mR06dKFW2+9lTfffPOiyt14440sXbqUTZs2sXTpUq677rr6aaDUK3OAhd6/HcPhld9w7LNdeJuNhHdrR9zoRAxG1/Kl4qPZHPpoE51vGFrjpcZe7prR4H2ezdlD4lrT8/arOP75txxdtxO8vAju0Iqut1xBYGzERecTaamCg4OZMWsGC96az4cffIjZ7ENSUiKTp05xL/09sP8A/3z9df5w9901XmJKS1wzGCwWzyVRZ3Tv3p3H/vI4H334Ee+/9z4Gg4GuXbty/wMPEN/JFeBI+yENm821sfub5/iC6JXXuilQKC1WY+lTg9pF0uf3Yzn66U7S16fiqHbgFxVCl5uGuQOWIvKjxtDHikjz5+XUKQ8idXLLl881dBNE5AL+lfj7hm6CiFzAXdv/3dBNEJE6UJ8q0viFBAY3dBN+EfX1Lv7+lX+ql3qbOu1RKCIiIiIiIiIiIgoUioiIiIiIiIiIiAKFIiIiIiIiIiIiggKFIiIiIiIiIiIiggKFIiIiIiIiIiIiggKFIiIiIiIiIiIiggKFIiIiIiIiIiIiggKFIiIiIiIiIiIiggKFIiIiIiIiIiIiggKFIiIiIiIiIiIiggKFIiIiIiIiIiIiggKFIiIiIiIiIiIiggKFIiIiIiIiIiIiAhgbugEiIiIiIiLSuNy1/d8N3QQRuYD3r/xTQzdBmiHNKBQREREREREREREFCkVERERERERERESBQhEREREREREREUGBQhEREREREREREUGBQhEREREREREREUGBQhEREREREREREUGBQhEREREREREREUGBQhEREREREREREUGBQhEREREREREREUGBQhEREREREREREUGBQhEREREREREREQGMDd0AaTkeffRRlixZUuOawWDAYrEQHx/P5MmTmTRp0kXnvfXWW9m2bRsbN24kMjKy1s8uKipiyJAhXHHFFbz66qv1cHfyS7Dml3B49TaKDp8EIKxrLHFjkjAHWM5bzlZawdF1O8k/kI6jyk5AdDgdrkkkqF3kT8q36/XllGbkeXxOeM/2dJ985c+8S5GmLycnh4ULFrJv7z4A+vVPYOq0aQQHB5+3XFFREYvee5/t23dQVWWjQ1wck6dM5rLLLquR7y+PPU5aWppH+QHJyTz40IPun/fs2cMHiz7g+LFjWCwWBg4axM233Iyvr+8luEuRpq2h+1RrQSnbnv/ovJ/V685rCOnY5mfcpUjT1tDP6RmFaSc49tkuSk/kY/Q1EdGzAx2u7oe32XRpb1hEGgUFCuUX99hjjxEaGgqA0+mktLSUZcuW8eijj1JQUMAdd9xxUXnHjx/P1q1bWbduHVOmTKn1M9etW0dVVRUTJkyo/xuUelFVXknqvDU4qx3EDu+J0+kkI2UPZScL6Hv3OAze3rWWs1dWkfp/a7CVlBMzpDtGXx+yvt7P7nlr6PuHcfi3Dr2ofE6nk/KcIsK7tyO8R/san+Ub4l+/vwSRJqCkpITZM2dht9uZMHECDoeD5cuWc/zYceY++wxGY+1Dj4qKCmbOmElhQQFjxo7FP8CfdWvWMnvmLOY8M5d27doBrmcwMzOTxKQkkpMH1Kgj4qwvi/bs2cPc2XPo2LEjv548mfy8PFavXk1aWhozZ83Ey8ur/n4JIo1cY+hTTf4+dL5xmMdnOOx20pZvxeTvi3+bsHr9PYg0Zo3hOQVXkHD3m2sJiAknbnR/KovKydq8j9LMPHr/boz6U5FmSIFC+cWNGjWK2NjYGtduuOEGxo4dy2uvvcbUqVMvKu/o0aOZNWsWa9euPWegcNWqVQQFBXHFFVdc8vuRX0bmpr1UFpXT//6J+EWFABAYG8meN9eRvfMH2iR1qbVcxobdVJwqotedowmJaw1AZO8ObHthMRkpu+ly4/CLyldZUIrDZie8eztaJcTX812LND0rV6wkLy+P51543v33u1OneObOmcuG9RsYOWpkreU+WfoJJ7KyePLpp+jevTsAgwcN5v777mP5smXcc++9AOTm5mK1WklKSmLY8OHnbMc7C98mIiKCp2fOwGw2AxAeEcGb8+bx3bff0Teh7yW8a5GmpTH0qd5mU639aNqKrTirHXS9aTgmi0893L1I09AYnlOAw6u34RPiT+/fjsHb5Aof+AT7k7bsawq+zySsc2wtrRCRpkx7FEqj4Ovry4gRIygtLeX777+/qLyBgYFceeWVbN++nbw8z+WgeXl5bN26ldGjR7tfFqXpyU09TEhca/dACSC0UzSWyCByU4/UWsbpdJK96wfCusS6B0AA5kA/4sYkEdSh1UXlAyjLKQTAEnH+JZQiLdWWzZvp3r1HjS95evXuTZvoaDZv3lxrGafTycYNG0hISHAHCQFCQkOYOm0aXbt2c1/LSM8AIDom+pxtsNlsBAUFMWLkyBp/97t1d9Vz7Nixn3ZzIs1EY+lT/1vZyXyytuynVf/LCD6rrEhL1Bie0+oqO+YAX1ondXYHCQGC41zpZSfyL9n9ikjjoRmF0micmbZeXV190XnHjx/P2rVr+fTTT7nllltq5F2zZg3V1dVadtyEVVVUYs0vJaJnB4+0gDbh5H+fUWu5yoJSbEXlhAzrCbgGRY4qO95mE9EDu150PoDy7AIA/KJcgcJqW5X2ZxE5rbS0lOzsbJIHJnukxcXF8e2ub2stl5ubS35+PuMnuv5OO51OKisr8fX15eprrq6RNz09HYCYmBgArFarx56DZrOZx/7yuMfnHDt6FICIyIiLui+R5qQx9an/7einOzGYjLQflfAT706keWgsz6m3yUjP6TX7YfgxQOgTEvCT71FEGi8FCqVRcDgcfPPNN5jNZuLjz7+cs7a8l19+OcHBwaxZs8YjULhq1SpiYmJITEyst/ZL/bIVlQNgDvLzSDMHWaiuqMJeYcNoqTljtCKvGACTvy+HV2/j5LZDVFur8A0PpOPYAYR3a3tR+QDKcwrx9jFyeNU2clOP4LDZ8Q0LoP1V/Yjq07Fe7l+kqcjPd704hIZ57isWGhpCeXkZZWVl+PvX3M/z5IkTAAQFBfH2woV88fkXlJeX07p1a6bdeiv9E/u782ZkpGOxWFg4fwFbtmzBarXSqlUrbrrlZoYMGVJru3Jzc9m3dx8LFyykbdt2JCUlXapbFmlyGlOferayk/nk788gZlgPfGppm0hL0lifU2tBKUVHTnJ41Tb8WoUQ3r3dJbtnEWk8FCiUX1xxcbH7ZbK6uprMzEzeeustDhw4wPTp02u8QNY1r9ls5pprruHjjz+moKDAfQBKdnY2O3bs4He/+5022m3Cqm1VADWWPJxhOH0wQnWV3WOwZLfaADj22S68vA3Ej0sGLy8yUvaw7+3P6Xn71YR2iq5zPoCy7EKqK+3YrTa63DgMu9VG1uZ9HFy0EafDqX0LpUWzWq0A+Jg99xUzmVzPp63S5hEoLCt3vRB9uOgDvL2N3DZ9OgaDF8uXLeeF55/n8b88Tq/evQFIP55ORUUFZeXl3H3PPZSXl7N61Spe+fs/cFRXe+xbWFJSwn33uPY39PHxYfod07UNhbRojalPPVvW1oNg8CJ6YDePNJGWpjE+p1Xlle6Tyg1mb+LHJ9faPhFp+vRkyy9u0qRJHtfMZjPTpk3joYce+sl5J0yYwAcffMBnn33GjTfeCMDq1atxOp1adtzUOZ2uf19krNdhdwCuQVPig79yb4oe3rUt215czNF1OwjtFF3nfABtkjrjdDprvMhE9o5j59+XcmT1NqL6xOFl0Pav0jI5Tz+rF/vFjL3K9UJUVlbOS39/iYAA11Kmfv3788B9D/D+e++7A4UjR43C4XBwzehr3OUHDxnMIw89zNsL32bI0KEYznoGvby8uP9/HqDabmfN6jXMnT2HB/74PyQney6PFmkRGlGfekZ1lZ2cXWmEd2uLb6iWMoo0xucUL+h6y+U4qh1kbdnH7jfX0e2Wy2tdHi0iTZsChfKLe/7554mIcO0PZTAYCAoKIj4+Hh8fzxkoF5M3MTGR6Oho1qxZ4w4Urly5ku7du9OpU6d6vCOpb94+rj0AHVWe+1c67HYAjL6e+wR6m7wBiOjRvsbJiUaLmbCuseTsSnPtMVjXfGYTbZI991fyNhmJSojn+OffUZ5TiH9rz2WXIi2B5fRegZWVlR5pVVWu2QsWP4tHmvn03/QByQPcQUIAf39/+vfvx8aNG917EV519VWe5c1mhg4bxuKPPiIjPZ127du70wICAhg8eDAAyQMH8shDD7PgrfkKFEqL1Zj61DOKDp/EYbMr4CByWmN8Tk0WHyJ7x7nK9WzPzr8vJW3lN3puRZohBQrlF9evX78ap2FeqrxeXl5ce+21/Oc//6GwsJCSkhJSU1N59NFHf05zpRHwCXYFDmwlFR5ptuIKvC2mWg8UMQe5ljea/H090wIs4ITqyqo65zvfoSUmf1fwo9pmr8MdiTRP4ae/2CksLPRIKygoxM/P3+PgEYCw03saBgUFeaQFhwTjdDqxVngeWlIjX7DrgCFrLUHKM8xmMwn9+rFm9WqKi4tr/TyR5q4x9qn5BzPwMhoI61K3MZ9Ic9cYn9OzeZuMhHVtS9bm/VSVWWutR0SaLq2Pk2ZlwoQJ2O12vvzyS9atW4e3tzfXXnttQzdLfiajxYxPWAClWXkeaaUn8giMqf0EU//WIXgZDZTnFHqkWQtKMZi8Mfn71jlfZVEZ219ewvEvvvXIV3GqCEBLpqRF8/f3JyoqiqNHjnikHTlyhPj42g/8adu2LSaTiYwMz1Mcc3JyMZvNBAUHkZ+Xz0N/fIjFHy32yJeVlQVAVGQUmZmZ3HfPvaxbu84jn7WiAi8vL0wmnVYuLVNj6VPPVnw8h8CYCIy+2j9UBBrPc1qeW8g3z39I1tcHPPJVV1aBF3gZvS/6/kSkcVOgUJqVzp0706VLF9avX8+XX37JwIEDiYqKauhmySUQ0aM9hWlZlOcWuq8V/JBFRW6xexnEf/M2mwjv1o78AxmUZRe4r1vzS8jbf5ywbm3xMhjqnM8n2J9qq40T2w65N4EGsBaWkr3je4LjW2MO1EmN0rINSB7A7t27yczMdF/bnZrKiawsBp/jVGJfX1/6Jyaya+dO0tPT3ddzcnLYsX07/RMTMRgMhIWHUV5exheff0756QNQAE6dOsWG9evp0bMnIaEhtG7dmrKycj779FPs9h9n+ebm5rJ161a6de+OxeK5BFqkpWgMfeoZjupqyrML8Y/Wth0iZ2sMz6lvWBB2q40T3xzEUf3jMmhrQSmn9hwlOK41Rh998SbS3GjpsTQ7EyZM4PXXX8dqtfLMM880dHPkEokd1pOcXWnsnreWmKE9cdjtZKTsISAmnKi+rpOGK/JLKD6WQ1D7KCxhgQDEjU6k6MhJds9bS/TgbhgM3mRu2YfB5E2Hq/u7669rvvgJA9n/9pd89+9VtE7sTLWtiqwt+/EyGOg0fuAv+0sRaYTGT5jAxg0pzJk1m3Hjx2GzVbF82XI6duzI0GFDAdeJ9IcOHqRzly60atUKgClTp7Bv7z5mz5zNmLFjMBq9Wb1qNSaTmVt+fYu7/jt+8xtefOEFnnriKUaMGoG1wsraNWswGLy5/Y7bAfD29ub2O6bz2quvMfPpGQwdNozS0lLWrlmLl5eB6bdP/8V/LyKNSWPpUwEqC8twVjvwDdaMfJGzNYbn1OBtIH7cQA59mELqG6uJSojHXl7pmmFo8HKdliwizY6X88wRhSL17NFHH2XJkiV8/vnnF9x38GLy/reTJ09y5ZVX4uPjw1dffYW/v//PabbbLV8+d0nqkZ+uPLeIwyu/oehoNt5mI6GdY4gbnejaSwXI3vkDhz7aROcbhtKq348H2FTkl3B0zXYK0rLACcEdWhE3OhG/qJAa9dc1X97+4xxfn0rZiXwMJm9C4trQ4Zp++EXWzCe/vH8l/r6hmyC4lgEveGs+Bw4cwGz2ISGhL5OnTnHvI7hh/Qb++frr/OHuu7n8isvd5bKzs3n3nXfZnbobcNK1a1cmT53i0Q9s37adpUuWcOzYMUwmM917dOfXk39NTExMjXxbtmxh2dJPSE9Px8fHl569enLzLTcTHf1fJznKL+qu7f9u6CYIjadPLUnP5dt/rqTTdYNoM6BLfd+2SJPSWJ7T3N1HSN+wm/LsQrzNRkLi29D+qn74RQbX969ALuD9K//U0E34RdTXu3hL+f1dLAUKRepIgUKRxk+BQpHGT4FCERGRS6OlBLoUKPxlaemxiIiIiIiIiIg0SpoM8MvSYSYiIiIiIiIiIiKiQKGIiIiIiIiIiIgoUCgiIiIiIiIiIiIoUCgiIiIiIiIiIiIoUCgiIiIiIiIiIiIoUCgiIiIiIiIiIiIoUCgiIiIiIiIiIiIoUCgiIiIiIiIiIiIoUCgiIiIiIiIiIiIoUCgiIiIiIiIiIiIoUCgiIiIiIiIiIiIoUCgiIiIiIiIiIiKAsaEbICIicqk433qroZsgIhfwr+m/b+gmiEgd3LX93w3dBBERaQCaUSgiIiIiIiIiIiIKFIqIiIiIiIiIiIgChSIiIiIiIiIiIoIChSIiIiIiIiIiIoIChSIiIiIiIiIiIoIChSIiIiIiIiIiIoIChSIiIiIiIiIiIoIChSIiIiIiIiIiIoIChSIiIiIiIiIiIoIChSIiIiIiIiIiIoIChSIiIiIiIiIiIgIYG7oB0jK88sorvPrqq+fNs3TpUubPn8+SJUt46qmnmDJlikeejIwMRo4cyb333st9990HwKOPPsqSJUs88prNZiIiIhg0aBAPPvggERERl+ZmpMFY80s4vHobRYdPAhDWNZa4MUmYAyznLVeYdoJjn+2i9EQ+Rl8TET070OHqfnibTecsU3Yyn12vraDtFb1oPzLhZ+cTaUlyikt4++uv2ZeVBUBCu3ZMGzSQIMv5n9W9mVl8sH07x/Ly8DObSe7YkZuTEvE1uZ7V3JIS7n/3/fPW8eT4a+keHe1xvaCsjEc+/Ij+7dvzhyuv+En3JdLc5eTksHDBQvbt3QdAv/4JTJ02jeDg4POW27NnDx8s+oDjx45hsVgYOGgQN99yM76+vjXy/eWxx0lLS/MoPyA5mQcfevDS3YhIM9YYx8Mi0rwoUCi/qLvuuouOHTvWmhZ91ovdyy+/zDXXXHNRwb3HHnuM0NBQ98+lpaVs2bKFxYsXs2fPHj766CPMZvNPb7w0qKrySlLnrcFZ7SB2eE+cTicZKXsoO1lA37vHYfD2rrVcYdoJdr+5loCYcOJG96eyqJyszfsozcyj9+/G4OXl5VHGUe3g4EebcFY7ztumuuYTaUlKrFZmr1hBtcPB+D59cDidrEhNJT0/nzmTrsN4jmd1b2YWc1euJC4igsnJA8grLWP1nj0czs1lxoTxeHl5Eejry91XXuFR1lZtZ/5XWwi0+NIuPLzW+v9fyibKKm2X8E5FmpeSkhJmz5yF3W5nwsQJOBwOli9bzvFjx5n77DMYjbW/NuzZs4e5s+fQsWNHfj15Mvl5eaxevZq0tDRmzprp7medTieZmZkkJiWRnDygRh0RkZH1fn8izUFjHA+LSPOjQKH8ogYPHkxycvIF8xUXF/Pss8/y4osv1rnuUaNGERsbW+PalClTmDFjBu+99x6fffYZY8eOveg2S+OQuWkvlUXl9L9/In5RIQAExkay5811ZO/8gTZJXWotd3j1NnxC/On92zF4m1x/8nyC/Ulb9jUF32cS1jnWo0zGhlTKswsv2Ka65hNpSVal7ia/tIy/3Xg9sae/vOkUFckzK1ez4dAhRnbrVmu5t7/+mvCAAJ6eMB7z6YBEREAAb276iu/SM+jbri2+JhPDOl/mUXb+5i3YHdXcO+JKAnx8PNJTDn1PakbGJbxLkeZn5YqV5OXl8dwLz7vHU506xTN3zlw2rN/AyFEjay33zsK3iYiI4OmZM9xfyIZHRPDmvHl89+139E3oC0Bubi5Wq5WkpCSGDR/+i9yTSHPTGMfDItL8aI9CaZRGjBjBihUr2LJly8+ua9KkSQB89913P7suaTi5qYcJiWvtHhQBhHaKxhIZRG7qkVrLVFfZMQf40jqps3tQBBAc1wqAshP5HmXKTuZz/MtU2o3oc9721DWfSEuzOS2N7tFt3EFCgF6xsbQJCWZL2uFay9jsdoIsFkZ07eoOEgJ0a9MGgGN5eef8vON5eazds4fLu3R25z9bYXk58zdvZlI/LZkSOZ8tmzfTvXuPGl+69urdmzbR0WzevLnWMjabjaCgIEaMHFlj1Ua37q4vBI4dO+a+lpHuCtZHx3huDSAiddPYxsMi0jwpUCiN0hNPPIHFYmHGjBnYbD9vqZjl9J5YTqfzUjRNGkBVRSXW/FICYjyXFAa0Cac0q/YggrfJSM/pV9PuipqDnDMDIp+QgBrXHdUODi3+itDLoonqG3/O9tQ1n0hLU1pZSU5xCXGRnttGdIiI4MipU7WWMxuNPDZ2jEcw72ieK39kYOA5P3PRtu2YjUZuSkysNf3/pWwiIiCACX30siNyLqWlpWRnZ9MxPs4jLS4ujiOHaw9AmM1mHvvL40z61aQa148dPQpAxFl/C9LT0wGIiYkBwGq1Xoqmi7QYjW08LCLNlwKF8osqKSkhPz/f45+qqqoa+WJiYrj77rs5evQob7zxxs/6zJSUFAC6d+/+s+qRhmMrKgfAHOTnkWYOslBdUYW94sIBZWtBKdk7fyBtxTf4tQohvHu7GukZKbupyCum08RB562nrvlEWpqCsjIAwvz8PdJC/fwor7RRVll5wXpyS0rYcPAQ8zdvoW1YKIkd2tea73heHjuPHWdUt26E+nt+5qbvv+fb48e564rLz7k3oohAfr4rYBAaFuaRFhoaQnl5GWWnn+/zyc3NZcP6Dbz1n/m0bduOpKQkd1pGRjoWi4WF8xcw/dbbmH7rbTxw3/189dVXl+5GRJqxxjYeFpHmS3sUyi/qnnvuqfX6ggULPPYuvP3221m2bBlvvPEG48ePp3372l8UzyguLnYPdMH17XhKSgqvvvoq8fHxXHvttT//BqRBVNtcgeSzl0ucYTi9TLG6yo7Rcu7DaqrKK9n2/EeuMmZv4scn16ivLLuA459/R/yEZHyC/bEWlNZaT13zibREFae/9DHXcuiB+XSgzma341/LPoJnlFit7pONzUYj04cMrrU+gE/37cfg5cU1PXt4pBWVlzN/8xbG9+lDB516L3JeZ2b3+Zg9n02TydW32ipt+NcSkD+jpKSE++6511WPjw/T75heYzly+vF0KioqKCsv5+577qG8vJzVq1bxyt//gaO6WvsWilxAYxoPi0jzpkCh/KL+/Oc/07VrV4/rtV0zmUzMmDGDqVOnMmvWLObNm3feus/sRXg2i8XCyJEjeeKJJzCZTD+94dKwziwb9zyQre68oOstl+OodpC1ZR+731xHt1suJ6JnB5wOB4cWbyKoQ9Q5N4EG6pxPpKU6s8VDbacn1pWXlxf3jxqBvdrBmj17mLtiFfePGklyx5pLIm12Oynff0//Du1rXZo8b9NXBFss/Kp/v5/cFpGW4pI9u//zANV2O2tWr2Hu7Dk88Mf/cX8RPHLUKBwOB9eMvsZdZvCQwTzy0MO8vfBthgwdisGgxU4i59RIxsMi0vwpUCi/qB49etTp1OMzEhMTmTRpEh9//DErV66kz3n2mHr++eeJiIigqqqKlJQU3nnnHcaMGcOMGTPwOc/sFWn8vH1cQV5HVbVHmsNuB8Doe/5AsMniQ2RvV6Ahomd7dv59KWkrvyGiZwcyUvZQdqKAPr8fS1WZa1aFvcK1PLLaZqeqzIrRz6fO+X7Oi5ZIU2Y5/YWM7fRzeTZbtev5tZjPPdMBIMDHh0Hxrj2RkjvG8ciHH7FgyxaPQOHerCwqq+wM7NjRo47NP6Sx7chRHh59NRW2Kir4cXuLKoeD4gorfmaTliOLnGbx9QWgspatAaqqXEsZLX6W89YREBDA4MGDAUgeOJBHHnqYBW/Nd4/7rrr6Ko8yZrOZocOGsfijj8hIT6fdBVaPiLRkjWU8rHGuSPOnQKE0eo888ghffPEFzz77LP/v//2/c+br16+f+6S+yy+/nPbt2zNnzhwKCwt5/fXX1ak1YT7Brk2WbSUVHmm24gq8LSa8zXWfMeptMhLWtS1Zm/dTVWal4FAmzmoH376+wiNvZspeMlP2kvTIDXXO5xsa4JEu0hKEB7j+3y8sL/dIKygvx8/HjO9FzO42G40ktGvH2j17Ka6wEmTxdad9ezwdk7c3fdu19Sj33elDE15Ys84jbcsPaWz5IY0nx19L92idvioCEH56eX5hYaFHWkFBIX5+/vj6+nqknYvZbCahXz/WrF5NcXExQUFB58wbHBwMgLUO+5eKtGSNZTysca5I86dAoTR6YWFhPPzwwzzxxBO8/PLLdS43bdo0tmzZwueff878+fOZPn16vbVR6pfRYsYnLKDW09xKT+QRGFP7/mPluYXseetTYof1InpgzeXt1ZVV4AVeRm/ixiZ5bP5cVVrBwQ9SiEroSFRCJ0wBvnXOJ9JS+fv4EBkYWOvpxkdPnaJjZGSt5TILCvnr6tVM6NOHq3rUPHjKWlWFlxeYvGsuSTyYnU1cZAR+tcxQHN+3D0Mv6+Rx/ZmVq+kVG8P4Pr1pF+55aqRIS+Xv709UVBRHj3iebnzkyBHi4z1n7gJkZmby12eeZfyECVx9zdU10qwVFXh5eWEymcjPy2funLkMHjKY62+4vka+rKwsAKIioy7R3Yg0T41lPCwizZ82ApEm4YYbbqBfv358+eWXF1Vu1qxZBAcH8/LLL5N+eoaJNE0RPdpTmJZFeW6h+1rBD1lU5Ba7l1D8N9+wIOxWGye+OYij+sdlGtaCUk7tOUpwXGuMPiYCYyII7RRd45+g9q1O1xFIaKdovE3GOucTackGxHVgT2YmmQWF7mu7MzI4UVjE4NNLiv9b6+Agym02Ptu/H/tZz2puSQlbDx+hW5s2NZYs26urySwoIC6i9mBfbGgovWJjPf4B1+nLvWJjCdCWFCI1DEgewO7du8nMzHRf252ayomsLAYPGVJrmdatW1NWVs5nn36K/awtB3Jzc9m6dSvdunfHYrEQFh5GeXkZX3z+OeVnzTg+deoUG9avp0fPnoSEhtTbvYk0F41hPCwizZ+edGkSvLy8mDFjBr/61a9qDEQvJCIigocffpgnn3ySGTNmXPBAFGm8Yof1JGdXGrvnrSVmaE8cdjsZKXsIiAknqq8r+FCRX0LxsRyC2kdhCQvE4G0gftxADn2YQuobq4lKiMdeXknW1wfA4EX8uLrvlykidTOhbx9Svv+euStXcm3vXtjs1axITSUuMsI9yy+7uJhDJ7Pp3LoVrYKC8DYYmD54MK9/uZ6Zy1cw7LJOlFgrWbd3LwaDF9OHDK7xGadKS7FXO9xLnUXk5xs/YQIbN6QwZ9Zsxo0fh81WxfJly+nYsSNDhw0FIDs7m0MHD9K5SxdatWqFt7c3t98xnddefY2ZT89g6LBhlJaWsnbNWry8DEy/fbq7/jt+8xtefOEFnnriKUaMGoG1wsraNWswGLy5/Y7bG+iuRZoWjYdF5JegQKE0GV26dOHWW2/lzTffvKhyN954I0uXLmXTpk0sXbqU6667rn4aKPXKHGCh92/HcHjlNxz7bBfeZiPh3doRNzoRg9F1IEHx0WwOfbSJzjcMxRLmOgW1VUI8BqOB9A27ObxyG95mIyHxbWh/VT/8IoMb8pZEmqUgi4WnJ4xnweYtfLh9Bz5GI4nt2zNlYDKm04eHHDhxkn+t38BdV1xOq9N7lw3rfBkmb28++fZbFm75Gh+jkZ4xMdyUlEh0SEiNzyg9vZeZxXT+g1FEpO6Cg4OZMWsGC96az4cffIjZ7ENSUiKTp07BdHpv0QP7D/DP11/nD3ffTatWrplGw4YPx2gysWzpJyxcsAAfH1969urJzbfcTPRZ+4AmDUji4UceYemSJbz3zruYTGa69+jOryf/mpiYmIa4ZZEmR+NhEfkleDmdZ85ZF5HzueXL5xq6CSJyAf/co+WkIo2dl/YMFmkS7tr+74ZugohcwPtX/qmhm/CLKCwpqpd6QwIVKK+N9igUERERERERERERBQpFREREREREREREgUIRERERERERERFBgUIRERERERERERFBgUIRERERERERERFBgUIRERERERERERFBgUIRERERERERERFBgUIRERERERERERFBgUIRERERERERERFBgUIRERERERERERFBgUIRERERERERERFBgUIRERERERERERFBgUIREREREREREREBjA3dABERkUvFa/r0hm6CiFzAXdv/3dBNEJE6+Ffi7xu6CSIi0gA0o1BEREREREREREQUKBQREREREREREREFCkVERERERERERAQFCkVERERERERERAQFCkVERERERERERAQFCkVERERERERERAQFCkVERERERERERAQFCkVERERERERERAQFCkVERERERERERAQFCkVERERERERERAQFCkVERERERERERAQwNnQDpGV55ZVXePXVV8+bZ+nSpcyfP58lS5bUuG4wGLBYLMTHxzN58mQmTZrkTnv00Uc98gOYzWYiIiIYNGgQDz74IBEREZfmRqRBWPNLOLx6G0WHTwIQ1jWWuDFJmAMs5y2XfyiT9PXfUZqZB15eBLWNpP1V/QhqF1kjn620gqPrdpJ/IB1HlZ2A6HA6XJPozmctKGXb8x+d97N63XkNIR3b/Iy7FGn6cnJyWLhgIfv27gOgX/8Epk6bRnBw8HnLffftt3z88RKOHD6MwWCgU6fLuPnXN3PZZZfVyFdUVMSi995n+/YdVFXZ6BAXx+Qpkz3yHU47zHvvvsuhQ4cwGAx069aNqbdOIzo6+tLesEgT1NB96sXWJyIu9dXH5ubmct899563jieffooePXpcmhsRkUZLgUJpEHfddRcdO3asNe3sF7jHHnuM0NBQAJxOJ6WlpSxbtoxHH32UgoIC7rjjjhplz84PUFpaypYtW1i8eDF79uzho48+wmw218MdSX2rKq8kdd4anNUOYof3xOl0kpGyh7KTBfS9exwGb+9ayxUeOcne+Z/iFxVCh6v74ax2krV1P6n/t5o+vxtDYFvXi4i9sorU/1uDraScmCHdMfr6kPX1fnbPW0PfP4zDv3UoJn8fOt84zOMzHHY7acu3YvL3xb9NWL3+HkQau5KSEmbPnIXdbmfCxAk4HA6WL1vO8WPHmfvsMxiNtQ899u3bx1+f/SuxsW255de3UF1dzbq165j59AxmzJxJp8s6AVBRUcHMGTMpLChgzNix+Af4s27NWmbPnMWcZ+bSrl07ALKyspg1cyZmsw+/uv56AFauWMnTTz7Nc88/R2hYaK3tEGkJGkOfejH1iYhLffaxgYGB3HPvPR5lbbYq3vrPfwgKCqJ9+/b1fYsi0ggoUCgNYvDgwSQnJ18w36hRo4iNja1x7YYbbmDs2LG89tprTJ06tUbgr7b8U6ZMYcaMGbz33nt89tlnjB079tLchPyiMjftpbKonP73T8QvKgSAwNhI9ry5juydP9AmqUut5Q6v/AafYH/6/mEc3mbXn7yofvHseGkJRz/dSa87rgEgY8NuKk4V0evO0YTEtQYgsncHtr2wmIyU3XS5cTjeZhOtEuI9PiNtxVac1Q663jQck8WnHu5epOlYuWIleXl5PPfC8+6/x506xTN3zlw2rN/AyFEjay234K35hIeHM+eZOfj4uJ6j4cOH8+AfH2LR++/zlyefAOCTpZ9wIiuLJ59+iu7duwMweNBg7r/vPpYvW8Y997pmQ6xauQqr1cqMmTPpENcBgJ49e/KXxx9n5coVTJ02rT5/DSKNWmPoUy+mPhFxqc8+1tfXl2HDh3uUnf/WfOx2O/fefx8BAQH1d3Mi0mhoj0Jpcnx9fRkxYgSlpaV8//33dSpzZpnyd999V59Nk3qUm3qYkLjW7hcagNBO0Vgig8hNPVJrmaqKSspO5BPRq4P7BQTAHGAhOK41xcdzANds1exdPxDWJdb9QgNgDvQjbkwSQR1anbNdZSfzydqyn1b9LyP4rLIiLdWWzZvp3r1HjS9tevXuTZvoaDZv3lxrmdLSUo4dO8bAQQPdLzAAwSEhdOvejUOHDgGuZ3Xjhg0kJCS4g4QAIaEhTJ02ja5du7mv5WRnExgY5A4SAsR3iicgIJD04+mX6nZFmqTG0KfWtT4R+VF99rG1OX7sGGtWr+aKK66gW7du58wnIs2LZhRKk+Tl5QVAdXV1nfJbLK79dpxOZ721SepPVUUl1vxSInp28EgLaBNO/vcZtZYz+phI/OOvMJg9/9RVlVvxMri+K6ksKMVWVE7IsJ6A6/8TR5Udb7OJ6IFdz9u2o5/uxGAy0n5UwkXelUjzU1paSnZ2NskDPWeMx8XF8e2ub2st5+fnx/++/BK+Pr4eaSUlJXifXgaZm5tLfn4+4ydOAFzPamVlJb6+vlx9zdU1yrVu04bdu3dTVFTk3reppKSE8vIyQkJCfsZdijRtjaVPrWt9IuJS331sbRa9vwgfHx9uuvnmn9xuEWl6FCiUBlFSUkJ+fr7H9cDAQEwm03nLOhwOvvnmG8xmM/HxnstAa5OSkgJQYwaKNB22onIAzEF+HmnmIAvVFVXYK2wYLTX3n/QyGLBEBHmUKTuZT/GxHEIviwGgIq8YAJO/L4dXb+PktkNUW6vwDQ+k49gBhHdrW2u7yk7mk78/g5hhPfCppW0iLc2Zv+uhYZ57dYaGhlBeXkZZWRn+/v410gwGA23aeB4CdPzYMQ4dPEifPn0AOHniBABBQUG8vXAhX3z+BeXl5bRu3Zppt95K/8T+7rITJk5g544dvPL3V7j1Ntcy47cXvo3RaGSMtqCQFqyx9Kl1rU9EXOq7j60tfceOHYwbP077+oq0MAoUSoO45x7PjXIBFixYUGPvwuLiYnenWF1dTWZmJm+99RYHDhxg+vTpHh3h2fnB9c1bSkoKr776KvHx8Vx77bX1cDdS36ptVQB4mzz/ZBlOb9pcXWX3eKk5V10HP3QFjmMv7wWA3WoD4Nhnu/DyNhA/Lhm8vMhI2cO+tz+n5+1XE9rJ85TUrK0HweBF9EAtxRABsFqtAPiYPffqNJlcz6et0ubxt/tcdb326msATLhuIgBl5a4Ax4eLPsDb28ht06djMHixfNlyXnj+eR7/y+P06t0bgIiICK6bNIn/vPkmf3rkT4DrZemPDz5YYzmySEvTWPvUc9UnIi713cf+t3XrPsVgMHDN6NE/tcki0kQpUCgN4s9//jNdu3ou6fzva2f2Fjyb2Wxm2rRpPPTQQx5pteW3WCyMHDmSJ5544oKzFaWROrNk3OvnVVNts7N34eeUnSgg9ope7r2THHYH4Hq5SXzwV+4DScK7tmXbi4s5um6Hx0tNdZWdnF1phHdri2+oNnYWgR+3dzizPcRPVVlZyfPPPc+xY8e47rrr3LPB7VWuAEdZWTkv/f0l96bq/fr354H7HuD99953BwoXvb+IJR9/TLfu3Rk1aiQOh4N16z7l7y+/zB8ffLDG7EORFqUR9qnnq09EXOq7jz2bzWZjU0oK/RMTiYzU6eMiLY0ChdIgevToUadTj59//nkiIiIA10yQoKAg4uPja2zEW1v+qqoqUlJSeOeddxgzZgwzZsw4Zxlp/Lx9XAFeR5XnnpQOux0Ao+/5g8D2Cht7F3xG8bEcWiVeRoer+v1Yv8m1N0tEj/Y1Ti02WsyEdY0lZ1ca1bYqvM0/fkbR4ZM4bPZa93gSaaksvq79jyorKz3Sqqpcs4wsfpbz1lFWVsbf/vo3Dh08yJVXXsnNv77FnWY+/Xd8QPKAGicv+vv7079/PzZu3IjVaqW6upoVy5cTHx/Pk089ieH0XmeDBg/mL489zhv//jev9nlNXx5Ji9QY+9Tz1SciLvXdx55t7569WK1WBg4a+DNbLdK4jRxZ+0nhZ3z++ee/UEsaFwUKpVHr169fjVO9Lib/5ZdfTvv27ZkzZw6FhYW8/vrrP/sbOGkYPsGugICtpMIjzVZcgbfFVOOFwyNPaQV73vqUsqx8Wg/oTKeJg2r8v2AOci3RMPl7bvJsDrCAE6ora77U5B/MwMtoIKxL3f//FGnuwk9/sVNYWOiRVlBQiJ+fP76+ns/ZGUVFRTw79xmOHj3KyFGjuPO3d9Z4VsNO78sUFOS5r1lwSDBOpxNrhZW8vDyqqqoYPGSwO0gIYDQaGTpsKO+8/Q5ZmZm079DhJ96pSNPV2PrUC9UnIi713ceebdeuXZhMJhISdFifSEukQKE0a9OmTWPLli18/vnnzJ8/n+nTpzd0k+QnMFrM+IQFUJqV55FWeiKPwJiIc5a1V1a5X0Cih3Qn/toBHnn8W4fgZTRQnlPokWYtKMVg8vZ44Sk+nkNgTARG3wvv4STSUvj7+xMVFcXRI0c80o4cOUJ8fMdzlq2oqHC/wIy99lpuve1Wjzxt27bFZDKRkeF5KmtOTi5ms5mg4CCKi4sA1+FX/83hcC3dOrP6UqSlaUx9al3qExGX+u5jz3bo4EHiOnbEz0+H9Unz1lJnDF6I4cJZRJq2WbNmERwczMsvv0x6enpDN0d+ooge7SlMy6I8t9B9reCHLCpyi4nsHXfOcmnLtrheQAZ3O+cLiLfZRHi3duQfyKAsu8B93ZpfQt7+44R1a4vXWbOSHNXVlGcX4h/teeqcSEs3IHkAu3fvJjMz031td2oqJ7KyGDxkyDnLvTlvHkePHmXM2LHnfIHx9fWlf2Iiu3burPH3PCcnhx3bt9M/MRGDwUBs27aEhoay/ssN2Gw2dz6bzcbGDRsJDAwitq1mA0vL1Vj61LrUJyI/qs8+9gy73U5GRgZxcef+WyAizZtmFEqzFxERwcMPP8yTTz7JjBkzmDdvXkM3SX6C2GE9ydmVxu55a4kZ2hOH3U5Gyh4CYsKJ6hsPQEV+CcXHcghqH4UlLJDynEJydh3G22IiIDqc7F1pHvW2SnCVjRudSNGRk+yet5bowd0wGLzJ3LIPg8mbDlfXPPSgsrAMZ7UD32AdYiLy38ZPmMDGDSnMmTWbcePHYbNVsXzZcjp27MjQYUMByM7O5tDBg3Tu0oVWrVqRkZFBysYU/Pz86dChAykbN3rUO2z4cACmTJ3Cvr37mD1zNmPGjsFo9Gb1qtWYTGZuOb3XksFg4PY77uCl//1fnnj8L1wx4kqcDgdffrGerKxM7rn3HoxGDYGk5WoMferF1CciLvXdxwKcOnUKu91ORET4L3ZfItK4aJQsLcKNN97I0qVL2bRpE0uXLuW6665r6CbJRTIHWOj92zEcXvkNxz7bhbfZSHi3dsSNTsRgdG2cXnw0m0MfbaLzDUOxhAVSdOQkANUVVRz6aFOt9Z55CfENDaDPXddydM12MlL2gBOCO7QibnQilrDAGmXs5a5NpL0vsNm7SEsUHBzMjFkzWPDWfD784EPMZh+SkhKZPHWK+/CQA/sP8M/XX+cPd99Nq1at2L9vPwDl5WX88/XXa633zEtMZGQks+fO5t133mX5suWAk65duzJ56hRatWrlzj8geQB/efIJFn+0mEXvvQ9Ah7g4/vzoo/RN6Ftv9y/SFDSGPvVi6hMRl/ruYwFKS0oBsFi07FikpfJyOrVLj0hd3PLlcw3dBBG5gH8l/r6hmyAiF3DX9n83dBNEpA7Up4o0fiGBwQ3dhF9EYUlRvdTbUn5/F0t7FIqIiIiIiIiIiIgChSIiIiIiIiIiIqJAoYiIiIiIiIiIiKBAoYiIiIiIiIiIiKBAoYiIiIiIiIiIiKBAoYiIiIiIiIiIiKBAoYiIiIiIiIiIiKBAoYiIiIiIiIiIiKBAoYiIiIiIiIiIiKBAoYiIiIiIiIiIiKBAoYiIiIiIiIiIiKBAoYiIiIiIiIiIiKBAoYiIiIiIiIiIiKBAoYiIiIiIiIiIiADGhm6AiIiIiIiINC53bf93QzdBRC7g/Sv/1NBNkGZIMwpFREREREREREREgUIRERERERERERFRoFBERERERERERERQoFBERERERERERERQoFBERERERERERERQoFBERERERERERERQoFBERERERERERERQoFBERERERERERERQoFBERERERERERERQoFBEREREREREREQAY0M3QKQuXnnlFV599dXz5lm6dCndunWrce3JJ5/k6NGjLFy4sD6bJw3Iml/C4dXbKDp8EoCwrrHEjUnCHGA5bzlbaQVH1+0k/0A6jio7AdHhdLgmkaB2kT8pn4j8KCcnh4ULFrJv7z4A+vVPYOq0aQQHB5+3XFFREYvee5/t23dQVWWjQ1wck6dM5rLLLquRb8+ePXyw6AOOHzuGxWJh4KBB3HzLzfj6+tbId+DAAd5/730Op6Xh7+9PYlISN950I0FBQZf2hkWaoPruP3e9vpzSjDyP8uE929N98pXun0syT3F07Q6Kj+fg5eVFcFxr4sYk4Rd5/r8XIi1BYxnn5h/KJH39d5Rm5oGXF0FtI2l/VT+Nh0WaKQUKpUm566676NixY61p0dHRNX7+8MMP+eCDDxgwYMAv0TRpAFXllaTOW4Oz2kHs8J44nU4yUvZQdrKAvnePw+DtXWs5e2UVqf+3BltJOTFDumP09SHr6/3snreGvn8Yh3/r0IvKJyI/KikpYfbMWdjtdiZMnIDD4WD5suUcP3acuc8+g9FY+9CjoqKCmTNmUlhQwJixY/EP8GfdmrXMnjmLOc/MpV27doArSDh39hw6duzIrydPJj8vj9WrV5OWlsbMWTPx8vICYO/evTw79xn8/Py5btIkDAYDq1auYu/evcyaPYuAgIBf7Hci0tjUd//pdDopzykivHs7wnu0r1GHb4i/+7/Lc4tI/b81eJuNtLuyDwCZX+3juzdW0e++ifgE+dXTb0Ck8Wss49zCIyfZO/9T/KJC6HB1P5zVTrK27if1/1bT53djCGyrYKFIc6NAoTQpgwcPJjk5+bx5qqur+ec//3nBGYjS9GVu2ktlUTn975+IX1QIAIGxkex5cx3ZO3+gTVKXWstlbNhNxakiet05mpC41gBE9u7AthcWk5Gymy43Dr+ofCLyo5UrVpKXl8dzLzxPbGwsAJ06xTN3zlw2rN/AyFEjay33ydJPOJGVxZNPP0X37t0BGDxoMPffdx/Lly3jnnvvBeCdhW8TERHB0zNnYDabAQiPiODNefP47tvv6JvQF4C33nwLg8HArDmzaN3a9fwmDUjiz4/8iaVLljB12rT6/DWINGr13X9WFpTisNkJ796OVgnx527H5n04bHb6/G4MAdHhAITER/Pt6yvI/GovHcckXcK7FmlaGss49/DKb/AJ9qfvH8bhbXaFD6L6xbPjpSUc/XQnve64pj5/DSLSALRHoTQrlZWVTJo0iVdeeYWJEyfSqlWrhm6S1KPc1MOExLV2D54AQjtFY4kMIjf1SK1lnE4n2bt+IKxLrHtQBGAO9CNuTBJBHVpdVD4RqWnL5s10797DHSQE6NW7N22io9m8eXOtZZxOJxs3bCAhIcEdJAQICQ1h6rRpdO3q2lbCZrMRFBTEiJEj3UFCgG7dXenHjh0DIDc3l/T04wwbPtwdJASIiYmhX//+bFi/8dLdsEgTVJ/9J0BZTiEAlojzLx+25pdg9PdxBwkBAmMjMPr5UJ5d8BPuTKT5aAzj3KqKSspO5BPRq4M7SAhgDrAQHNea4uM5l/KWRaSR0IxCaVYqKyspLS3lpZdeYuzYsYwYMaKhmyT1pKqiEmt+KRE9O3ikBbQJJ//7jFrLVRaUYisqJ2RYT8A1UHJU2fE2m4ge2PWi84nIj0pLS8nOziZ5oOfM77i4OL7d9W2t5XJzc8nPz2f8xAmA63mrrKzE19eXq6+52p3PbDbz2F8e9yh/7OhRACIiIwDIz88HoG3bth55W7duxTdbt5KXl0d4eLhHukhzV9/9J+AO8vlFuQKF1bYqvM0mjzot4UEU/pCFrbTCvedaVXkldqsN0wX2YBNpzhrLONfoYyLxj7/CYPYMG1SVW/EyaN6RSHOkQKE0KSUlJe4XwLMFBgZiMpkICAhg3bp159wDS5oPW1E5AOZa9i8yB1morqjCXmHDaDHXSKvIKwbA5O/L4dXbOLntENXWKnzDA+k4dgDh3dpeVD4R+dGZv8+hYWEeaaGhIZSXl1FWVoa/v3+NtJMnTgAQFBTE2wsX8sXnX1BeXk7r1q2Zduut9E/sX+vn5ebmsm/vPhYuWEjbtu1ISnItU/Qx+wBgtVo9ypQUlwBQWFCoQKG0SPXdfwKU5xTi7WPk8Kpt5KYewWGz4xsWQPur+hHV58e9pmOH9yT/QDoHF22k47Wu5/fw6u0YvA3EDO6OSEvVWMa5XgYDlgjPA8DKTuZTfCyH0MtiLt1Ni0ijoWiKNCn33HNPrdcXLFhAcnIyBoMBg77ZahGqbVUAeJs8/4wZTgeKq6vsHgMou9UGwLHPduHlbSB+XDJ4eZGRsod9b39Oz9uvJrRTdJ3ziciPzgTmzgTqzmYyuZ5FW6XNI1BYVu56Ifpw0Qd4exu5bfp0DAYvli9bzgvPP8/jf3mcXr171yhTUlLCffe49i308fFh+h3T3cuRY9vG4ufnxzdbtzLxuonuA05sNhupqamu/66yXarbFmlS6rv/BCjLLqS60o7daqPLjcOwW21kbd7HwUUbcTqc7n0LfUMCaHtFb9KWf83Ofyw73Qgvuk2+osZyZJGWpjGPc6ttVRz8MAWA2Mt7XZobFpFGRYFCaVL+/Oc/07Wr57LP2q5JM+d0uv7tdXHFHHYH4BpIJT74K0wWV0AjvGtbtr24mKPrdhDaKbrO+UTkR87Tz+WZwFxd2atcL0RlZeW89PeX3CcS9+vfnwfue4D333vfI1Do5eXF/f/zANV2O2tWr2Hu7Dk88Mf/ITk5GaPRyNhrr+WjDz/klX+8wnXXTcThcPLBokVYrZUAeJ/jtEiRZq+e+0+ANkmdcTqdRA/s5i4f2TuOnX9fypHV24jqE4eXwcDRT3eS/mUqwXGtaD2gC06HkxNbD3DgvQ10m3ylZu9Ly9VIx7nVNjt7F35O2YkCYq/oVWN/QxFpPhQolCalR48eFzz1WFoGbx/XXkeOqmqPNIfdDoDR13M/JG+TKzgQ0aO9e1AEYLSYCesaS86uNNdeSnXNV8ueSyItlcXXF3DtF/vfqk7P4LP4ee47ZvZxPWMDkge4g4QA/v7+9O/fj40bN2K1WvE9XT9AQEAAgwcPBiB54EAeeehhFrw1391HXH/D9ZSXl7N61So2f/UVAP3792fCxAm89+67NT5HpCWp9/7TbKJNsucXuN4mI1EJ8Rz//DvKcwrxCQ4gI2UPAbHh9PrNNe69ziJ7d+Db11fw/ZKvCL3sRgxGBfWl5WmM41x7hY29Cz6j+FgOrRIvo8NV/S7BnYpIY6RAoYg0ST7Brpd8W0mFR5qtuAJvi6nWIJ45yLXk0eTv65kWYAEnVFdW1TmfAoUiPwqPcB0mUlhY6JFWUFCIn59/jWDfGWGn9zQMCvLcByk4JBin04m1wlprWXAdcpLQrx9rVq+muLiYoKAgvLy8uPW2W5k4cQInTp4kPDycyMhI3n/vfQwGAxGn2yrS0tR3/3m+ftHk7/qioNpmpyKvGKfdQWTvjjUORDB4exPVJ54ja7ZTnltEQBvPPU9FmrvGNs61lVaw561PKcvKp/WAznSaOOiiVw+ISNOhzdxEpEkyWsz4hAVQmpXnkVZ6Io/AmNqDAP6tQ/AyGijPKfRIsxaUYjB5Y/L3rXM+EfmRv78/UVFRHD1yxCPtyJEjxMd3rKWU63Rik8lERobnKY45ObmYzWaCgoPIzMzkvnvuZd3adR75rBUVeHl5YTK5Xmq++uor9u7dS3BICF27diUyMhKA/fv307FjR/d+hiItTX33n5VFZWx/eQnHv/jWI1/FqSIAfEMDMBhPv4Y4nB75nE7Hmf+o202JNDONaZxrr6xyBwmjh3TnsusGK0go0swpUCgiTVZEj/YUpmVRnlvovlbwQxYVucVE9o6rtYy32UR4t3bkH8igLLvAfd2aX0Le/uOEdWuLl8FQ53wiUtOA5AHs3r2bzMxM97XdqamcyMpi8JAhtZbx9fWlf2Iiu3buJD093X09JyeHHdu30z8xEYPBQOvWrSkrK+ezTz/FfnrpFbhOP966dSvdunfHYnHNWFq1YiX/mfcfqqt/XLa1c8dODh44wNXXXH2pb1ukSanP/tMn2J9qq40T2w65D0wAsBaWkr3je4LjW2MO9MMvKgRzkIWTO7+nuurH57m6yk72rjSM/j74tQq55Pcu0lQ0lnFu2rItriDh4G7EXzugfm5WRBoVLT0WkSYrdlhPcnalsXveWmKG9sRht7v2O4oJJ6qv60TFivwSio/lENQ+CktYIABxoxMpOnKS3fPWEj24GwaDN5lb9mEwedPh6v7u+uuaT0R+NH7CBDZuSGHOrNmMGz8Om62K5cuW07FjR4YOGwpAdnY2hw4epHOXLrRq1QqAKVOnsG/vPmbPnM2YsWMwGr1ZvWo1JpOZW359C+A6gOT2O6bz2quvMfPpGQwdNozS0lLWrlmLl5eB6bdPd7djwnUTeenF/+W5v/6NpAEDOJWby8qVK+nTpw9Dhw37xX8vIo1Jffef8RMGsv/tL/nu36tondiZalsVWVv242Uw0Gn8QAC8DAbixw9k/7tf8u0/V9K6/2U4nU6yd3xPRW4RXW4chkGHDkkL1hjGueU5heTsOoy3xURAdDjZu9I82nnmFHMRaT68nE7N6ZfG75VXXuHVV19lwYIFF3WYyYgRI4iJiWHhwoU/uw23fPncz65DLr3y3CIOr/yGoqPZeJuNhHaOIW50omt/FSB75w8c+mgTnW8YSqt+ndzlKvJLOLpmOwVpWeCE4A6tiBudiF9USI3665pPGod/Jf6+oZsgQFZWFgvems+BAwcwm31ISOjL5KlTCA4OBmDD+g388/XX+cPdd3P5FZe7y2VnZ/PuO++yO3U34KRr165MnjqF2NjYGvVv2bKFZUs/IT09HR8fX3r26snNt9xMdHTNExq/+uorli39hJMnTxIcHMyQoUO5btJ1+Pj4IA3nru3/bugmCPXff+btP87x9amUncjHYPImJK4NHa7ph19kzXyFaSc4/sW3lGSeAiAgOpy2V/QmrHPN516kJWroce6JrQf44ZOvz9vGYc9Mv5S3LBfp/Sv/1NBN+EUUlhTVS70hgcH1Um9Tp0ChSB0pUCjS+ClQKNL4KVAoIiJyaShQ+PMoUFg7bbAlIiIiIiIiIiIiChSKiIiIiIiIiIiIAoUiIiIiIiIiIiKCAoUiIiIiIiIiIiKCAoUiIiIiIiIiIiKCAoUiIiIiIiIiIiKCAoUiIiIiIiIiIiKCAoUiIiIiIiIiIiKCAoUiIiIiIiIiIiKCAoUiIiIiIiIiIiKCAoUiIiIiIiIiIiKCAoUiIiIiIiIiIiKCAoUiIiIiIiIiIiKCAoUiIiIiIiIiIiKCAoUiIiIiIiIiIiKCAoUiIiIiIiIiIiKCAoUiIiIiIiIiIiKCAoUiIiIiIiIiIiKCAoUiIiIiIiIiIiKCAoUiIiIiIiIiIiKCAoUiIiIiIiIiIiKCAoUiIiIiIiIiIiKCAoUiIiIiIiIiIiKCAoUiIiIiIiIiIiKCAoUiIiIiIiIiIiICGBu6AVL/vv76a2677TZCQkJISUnBbDY3dJNEfhJrfgmHV2+j6PBJAMK6xhI3JglzgOW85WylFRxdt5P8A+k4quwERIfT4ZpEgtpF1shXdDSbo+t2Upp5CqPFTHi3drQflYDJ3/cn5RNpqXJycli4YCH79u4DoF//BKZOm0ZwcPB5yxUVFbHovffZvn0HVVU2OsTFMXnKZC677LIa+Q6nHea9d9/l0KFDGAwGunXrxtRbpxEdHV0j318ee5y0tDSPzxmQnMyDDz34M+9SpGlTnyrS+Ok5FZGGoEBhC7B8+XL8/PwoLCzkiy++YPTo0Q3dJJGLVlVeSeq8NTirHcQO74nT6SQjZQ9lJwvoe/c4DN7etZazV1aR+n9rsJWUEzOkO0ZfH7K+3s/ueWvo+4dx+LcOBaDw8An2/OdTjBYzba/ojZeXF5mb91F4+CR97hqLyeJzUflEWqqSkhJmz5yF3W5nwsQJOBwOli9bzvFjx5n77DMYjbUPPSoqKpg5YyaFBQWMGTsW/wB/1q1Zy+yZs5jzzFzatWsHQFZWFrNmzsRs9uFX118PwMoVK3n6yad57vnnCA1zPdNOp5PMzEwSk5JITh5Q47MiImu+KIm0NOpTRRo/Paci0lAUKGzmbDYb69atY+LEiaxYsYIlS5YoUChNUuamvVQWldP//on4RYUAEBgbyZ4315G98wfaJHWptVzGht1UnCqi152jCYlrDUBk7w5se2ExGSm76XLjcADSlm/Fy+BFn9+PxRIeBEB4j3bs/Mcy0ten0nFM0kXlE2mpVq5YSV5eHs+98DyxsbEAdOoUz9w5c9mwfgMjR42stdwnSz/hRFYWTz79FN27dwdg8KDB3H/ffSxftox77r0XgFUrV2G1WpkxcyYd4joA0LNnT/7y+OOsXLmCqdOmAZCbm4vVaiUpKYlhw4fX812LNC3qU0UaPz2nIj9yvvVW/VR83wP1U28Tpz0Km7kNGzZQXFxMcnIyQ4cOZdOmTeTm5jZ0s0QuWm7qYULiWrsHSgChnaKxRAaRm3qk1jJOp5PsXT8Q1iXWPVACMAf6ETcmiaAOrQCwFpRSnl1IVEK8ewAE4BcZQli3tmTv/OGi8om0ZFs2b6Z79x7uICFAr969aRMdzebNm2st43Q62bhhAwkJCe4gIUBIaAhTp02ja9du7ms52dkEBga5g4QA8Z3iCQgIJP14uvtaRnoGANExNZcji4j6VJGmQM+piDQUBQqbueXLl+Pl5UVSUhJXXXUVdrudTz75xCPfd999x29/+1sSExNJTk7md7/7HQcPHryoPCNGjGDa6ZkcZ/vv6yNGjOCJJ57g8ccfp3fv3gwfPpz8/HycTifvvfceN9xwAwkJCfTq1YvRo0fzxhtv4HQ669yWF198kS5duvDDDzU7LofDwbBhw7j//vsv/hcpDaqqohJrfikBMeEeaQFtwinNyqu1XGVBKbaickI6uQIFTqeTalsVANEDu7q/ibUVlwHg3yrUow5LWCD2skoqi8rqnE+kpSotLSU7O5uO8XEeaXFxcRw5XPuLTW5uLvn5+fTq0xtwPatWqxWAq6+5usYsxNZt2lBaWkJRUZH7WklJCeXlZYSEhLivpae7goYxMTEA7vpEWjr1qSKNn55TEWlIWnrcjJWWlrJ+/Xr69u1LREQEl19+OWazmaVLl3LnnXe6823fvp3p06cTFRXFnXfeia+vLwsWLODWW29l8eLFxMbG1inPxVi5ciUdO3bk8ccf59SpU4SFhfHSSy/xr3/9i0mTJnHTTTdRVlbG0qVLefHFF/H392fKlCl1au+4ceN44403WL16Nffdd5/7M7/55htycnIYP378pfkFyy/GVlQOgDnIzyPNHGShuqIKe4UNo6XmQT0VecUAmPx9Obx6Gye3HaLaWoVveCAdxw4gvFtbAAwm15/C6soqj/qryitdbSipqHM+n2D/n3SfIk1dfn4+AKFhYR5poaEhlJeXUVZWhr9/zWfk5IkTAAQFBfH2woV88fkXlJeX07p1a6bdeiv9E/u7806YOIGdO3bwyt9f4dbbXF9Cvb3wbYxGI2PGjnXny8hIx2KxsHD+ArZs2YLVaqVVq1bcdMvNDBky5JLfu0hToT5VpPHTcyoiDUkzCpuxtWvXUllZydVXXw1AQEAAgwcP5vvvvyc1NdWd729/+xshISEsXryYu+66i+nTpzNv3jyKi4t5991365znYlitVl5//XVuueUW7r33Xqqqqnj77be59tpr+etf/8pNN93E7bffzjvvvIPZbCYlJaXO7e3SpQudO3dmzZo1NT5z1apVBAYGcvnll/+UX6c0oDPfhHqbPL/bMJw+GKG6yu6RZrfaADj22S7yD2YQPy6ZzjcOw2Aysu/tzyn4IQsAv1YhePuaOLX3WI3Zq9VVdgq+zwTAUWWvcz6RlurMrD0fs+fG5iaT62XGVmnzSCsrd70QfbjoA3bt/Jbbpk/nnnvvwWw288Lzz7P7rD4rIiKC6yZNYv/+ffzpkT/xp0f+xJ49e7jv/vtrLEdOP55ORUUFZeXl3H3PPdz1hz/g6+vLK3//BykbN17K2xZpUtSnijR+ek5FpCFpRmEztmLFCgCuuuoq97WrrrqK9evX8/HHH9O7d2/y8vJITU3ljjvuIDT0xynlcXFxLF68mDZt2tQpz8Vq164drVq1cv9sMpnYvHkzVVU1v60qKCggICCA8tMvkXVty/jx43nxxRc5dOgQnTt3xm63s3btWq666irM5prfvEkTcGZg4nVxxRx2B+AaNCU++Cv3qWzhXduy7cXFHF23g9BO0Ri8vYkZ0oPjn3/LwUUbaXtFL5wOJ8c+24XD5hr8eHkb6pxPpKU68xLh5XVxD6v99N/+srJyXvr7SwQEBADQr39/HrjvAd5/73169XYtS170/iKWfPwx3bp3Z9SokTgcDtat+5S/v/wyf3zwQffsw5GjRuFwOLhm9DXuzxk8ZDCPPPQwby98myFDh2Iw6HmVFkh9qkjjp+dURBqQAoXNVE5ODl9//TUdOnTAy8uLjAzXpu5du3bFy8uLVatW8fjjj5OZ6fomqH379h51nNlQ/szsw/PluVjh4Z77bZhMJtavX8/nn3/OkSNHOHbsmHsPqjMvn3VpL8C4ceP43//9X9asWUPnzp356quvKCws1LLjJsrbxwSAo6raI81hdw1SjL4mz3ImbwAierR3D5QAjBYzYV1jydmVRrWtCm+ziXYj+mC32sjavM+9QXRYt1hih/fk6NqdGE+Xr2s+kZbI4usLQGVlpUdaVZVrloPFz+KRZvZxPTcDkge4g4QA/v7+9O/fj40bN2K1WqmurmbF8uXEx8fz5FNPugN9gwYP5i+PPc4b//43r/Z5DZPJxFVXX+X5OWYzQ4cNY/FHH5GRnk67WvoSkeZOfapI46fnVEQakgKFzdSqVatwOBwcPXqUkSNHeqQXFRXx2WefER3t2uj2fLM/HA7HBfOcT3W1Zwfn7e1d42en08ndd9/Nl19+Sf/+/UlISODmm28mKSmJ22677aLbEh0dTb9+/Vi9ejX3338/q1evJjIykuTk5J90D9KwfIJdgQNbSYVHmq24Am+LCW+z52DJHOTaL8Xk7+uZFmABp2vPFW+zCS8vL+KvHUDby3tRcaoYn2B/fEMDOLpuJxi88Alx1VXXfCItUXhEBACFhYUeaQUFhfj5+ePr6/k8hp3e0zAoKMgjLTgk2HW4SYWVvLw8qqqqGDxkcI3ZgEajkaHDhvLO2++QlZlJ+w4dztnG4OBgAKy1BDNFWgL1qSKNn55TEWlIChQ2U2dOO/7rX/9aY3YGwIEDB3jllVdYsmQJc+bMAeD48eMedTz//PMEBwczceLEC+b53e9+h8FgwGarufeU3W6noKCAdu3anbe927dv58svv+Tuu+/mgQceqFG+sLCQtm1dG++eWVp8obaAa1bhzJkzOXz4MF9++SXjx4/3CFBK02C0mPEJC6j1hLfSE3kExkTUWs6/dQheRgPlOYUeadaCUgwmb/dAKue7w5gDLYR0bOMaSJ1WdPQkATHh7j1i6ppPpCXy9/cnKiqKo0c8Tzc+cuQI8fEday3Xtm1bTCaTe/b72XJycjGbzQQFB1Fc7JplfuZLo7M5HK6Z504n5OflM3fOXAYPGcz1N1xfI19Wlmt/pqjIqIu7OZFmQn2qSOOn51REGpI2FGiGjhw5wp49exgwYADXXXcdo0aNqvHP73//eyIjI/nqq68A13LklStXUlpa6q4jPT2dBQsWcOrUKVq1anXBPODaYP7IkSPuzewBvvjii1qXoP23M7NPOnXqVOP6Bx98QEVFBfbTU+zr2haAMWPGYDKZeOWVVygsLGTcuHF1/RVKIxTRoz2FaVmU5xa6rxX8kEVFbjGRveNqLeNtNhHerR35BzIoyy5wX7fml5C3/zhh3dridXpWUuZXe0lbvhVH9Y8BiLwD6RQfzSE6uav7Wl3zibRUA5IHsHv3bvdWEQC7U1M5kZXF4HOcNuzr60v/xER27dxJenq6+3pOTg47tm+nf2IiBoOB2LZtCQ0NZf2XG2p8MWWz2di4YSOBgUHEto0lLDyM8vIyvvj8c/cetwCnTp1iw/r19OjZk5DQkEt/8yJNhPpUkcZPz6mINBSF/5uhM4eY3HDDDbWmm0wmrr/+ev71r3/xySef8Nhjj3HnnXdy/fXXc+ONN2IwGHj77bcJCgrit7/9LUCd8owbN47Zs2dz5513MmHCBI4dO8YHH3xATEzMBduckJBAQEAAzz77LJmZmQQHB7N161ZWrVqFj48PZWVl7rx1aQtAaGgoQ4YMYdWqVbRt25a+ffv+1F+pNAKxw3qSsyuN3fPWEjO0Jw67nYyUPQTEhBPVNx6AivwSio/lENQ+CktYIABxoxMpOnKS3fPWEj24GwaDN5lb9mEwedPh6v7u+tsO78X+d9ezb+FnhHdvj7WwlMxNewntHE1U344XnU+kpRo/YQIbN6QwZ9Zsxo0fh81WxfJly+nYsSNDhw0FIDs7m0MHD9K5Sxf3wVZTpk5h3959zJ45mzFjx2A0erN61WpMJjO3/PoWAAwGA7ffcQcv/e//8sTjf+GKEVfidDj48ov1ZGVlcs+992A8fRrkHb/5DS++8AJPPfEUI0aNwFphZe2aNRgM3tx+x+0N88sRaSTUp4o0fnpORaSheDnPPudcmoVrrrmGvLw8Nm3aVOteUOA6FGTUqFF06NCB1atXs2PHDv7xj3+QmpqKj48PSUlJPPLIIzWWDF8oj8Ph4PXXX+ejjz4iLy+Prl278vDDD/Pmm29SXl7OwoULARgxYgQxMTHun8+u/4UXXuDAgQOYzWbi4uK49dZbSU1NZcGCBWzcuJGI0/tf1aW94AqaPvTQQ9x111388Y9//Fm/11u+fO5nlZefrzy3iMMrv6HoaDbeZiOhnWOIG53oXgaRvfMHDn20ic43DKVVvx9np1bkl3B0zXYK0rLACcEdWhE3OhG/qJAa9ed8d5iMjbupyCvGFGAhqk9H2l7eG2+z8Sflk1/evxJ/39BNEFzLexe8Nf/033MfEhL6MnnqFPf+gBvWb+Cfr7/OH+6+m8uvuNxdLjs7m3ffeZfdqbsBJ127dmXy1CnExsbWqH/Pnj0s/mgxh9PSAOgQF8ekSZPom9C3Rr7t27azdMkSjh07hslkpnuP7vx68q/r9AWW1J+7tv+7oZsgqE8VaQr0nMqFvH/lnxq6Cb+Iglf+Xi/1ht73wIUztUAKFEqztmrVKv74xz+yatUq4uPjf1ZdChSKNH4KFIo0fgoUioiIXBoKFP48ChTWTnsUSrPldDp5//336dOnz88OEoqIiIiIiIiINHeaKyzNjt1u58EHH+TEiROkpqbyyiuvNHSTREREREREREQaPQUKpdkxGo0cO3aMjIwM7r33Xq6++uqGbpKIiIiIiIiISKOnQKE0S5988klDN0FEREREREREpEnRHoUiIiIiIiIiIiKiQKGIiIiIiIiIiIgoUCgiIiIiIiIiIiIoUCgiIiIiIiIiIiIoUCgiIiIiIiIiIiIoUCgiIiIiIiIiIiIoUCgiIiIiIiIiIiIoUCgiIiIiIiIiIiIoUCgiIiIiIiIiIiIoUCgiIiIiIiIiIiKAsaEbICIiIiItx78Sf9/QTRARERGRc9CMQhEREREREREREVGgUERERERERERERBQoFBERERERERERERQoFBERERERERERERQoFBERERERERERERQoFBERERERERERERQoFBERERERERERERQoFBERERERERERERQoFBERERERERERERQoFBEREREREREREcBYn5V//fXX3HbbbYSEhJCSkoLZbK6RPmLECGJiYli4cGG9tSEvLw+LxYKfn98lqe/RRx9lyZIlHDx48JLUd7atW7dy6623cu+993LffffVmmfEiBEAfPHFF5f88y8Fh8NBVlYWsbGxF1XuzL0/++yz/OpXv7roz01PT6dt27YXXU6aPmt+CYdXb6Po8EkAwrrGEjcmCXOA5bzlSjJPcXTtDoqP5+Dl5UVwXGvixiThFxlcI5+ttIKj63aSfyAdR5WdgOhwOlyTSFC7yHq7J5GmLicnh4ULFrJv7z4A+vVPYOq0aQQHB5+33IEDB3j/vfc5nJaGv78/iUlJ3HjTjQQFBf2k+utan0hL1Fie08Nph3nv3Xc5dOgQBoOBbt26MfXWaURHR1/CuxVpmvScikhDqNdA4fLly/Hz86OwsJAvvviC0aNH1+fHediwYQMPP/wwS5YsuWSBwptvvplBgwZdkrqam9LSUqZPn87ll19+zkDnucTHx/Pcc8/Rr1+/i/7cp556iiNHjtRrwFkap6rySlLnrcFZ7SB2eE+cTicZKXsoO1lA37vHYfD2rrVceW4Rqf+3Bm+zkXZX9gEg86t9fPfGKvrdNxGfINffC3tlFan/twZbSTkxQ7pj9PUh6+v97J63hr5/GId/69Bf7F5FmoqSkhJmz5yF3W5nwsQJOBwOli9bzvFjx5n77DMYjbUPPfbu3cuzc5/Bz8+f6yZNwmAwsGrlKvbu3cus2bMICAi4qPrrWp9IS9RYntOsrCxmzZyJ2ezDr66/HoCVK1by9JNP89zzzxEapn5WWi49pyLSUOotUGiz2Vi3bh0TJ05kxYoVLFmy5BcPFKamplJcXHxJ60xISCAhIeGS1tlcFBYWsnv3bi6//PKLLhsREcHEiRN/0udu2rSJmJiYn1RWmrbMTXupLCqn//0T8YsKASAwNpI9b64je+cPtEnqUnu5zftw2Oz0+d0YAqLDAQiJj+bb11eQ+dVeOo5JAiBjw24qThXR687RhMS1BiCydwe2vbCYjJTddLlxeP3fpEgTs3LFSvLy8njuhefds8s7dYpn7py5bFi/gZGjRtZa7q0338JgMDBrzixat3Y9b0kDkvjzI39i6ZIlTJ027aLqr2t9Ii1RY3lOV61chdVqZcbMmXSI6wBAz549+cvjj7Ny5Qo9p9Ki6TkVkYZSb3sUbtiwgeLiYpKTkxk6dCibNm0iNze3vj5ORFqg3NTDhMS1dgcJAUI7RWOJDCI39cg5y1nzSzD6+7iDhACBsREY/Xwozy4AwOl0kr3rB8K6xLqDhADmQD/ixiQR1KHVpb8hkWZgy+bNdO/eo8YWFL1696ZNdDSbN2+utUxubi7p6ccZNny4+6UGICYmhn79+7Nh/caLqv9i6hNpiRrDcwqQk51NYGCQO/gAEN8pnoCAQNKPp1+KWxVpsvScikhDqbdA4fLly/Hy8iIpKYmrrroKu93OJ598csFyu3bt4vbbb3fP3LvjjjtITU2tkcfpdPLee+9xww03kJCQQK9evRg9ejRvvPEGTqcTcO0l+OqrrwIwcuRIpp31TcfBgwe5++67SUxMpHfv3tx000189tlnNT5j2rRp/OY3v+Gll14iISGBQYMGcfDgQR599FG6dKk5Syk7O5vHH3+coUOHkpCQwPXXX+9RX3155ZVX6NWrF0ePHuX3v/89CQkJJCUl8ec//5mCgoIaeUtLS3nmmWe44oor6NOnD+PHj+fDDz+skaeoqIjZs2czbNgwevbsyZgxY5g/f77793r2Z3766acMGTKEhIQEPvzwQ0aOdH3r9Oqrr9KlSxcyMjIAOHbsGH/+858ZPnw4PXv2ZMCAAdx11118//337jq3bt1Kly5d+Pjjj2v8/NVXXzFz5kwGDRpEnz59uO222zhw4IC7XJcuXcjMzOSbb75xl7/55psZOnQoDoejxr2lpaXRpUsX3nnnnUvwm5eGVlVRiTW/lICYcI+0gDbhlGblnbOsJTwIe3klttKKH+srr8RutWE6vbdhZUEptqJyQjq59l5xOp1U26oAiB7Y9ZyzFUVastLSUrKzs+kYH+eRFhcXx5HDtQfw8/Pz/3979x7fc/n/cfyx85EdbHOaMYs5jFnDkFOMcpg55NTQ8ZtQoX4dlNI3lRIifZFCpUiOYVMOOTPnGiJnY2PYeXb47PT7Y/bJbNgcMva8325uN3u/r+t6X9d7uz6H1/s6ABS51mylShVJTk4iNja22OUXtzyRsqi09FOASpUrk5KSTGJiovFYcnIyqamXcXR0LGnTRB4Y6qcici/dlanHKSkpbNiwgUaNGuHi4kKbNm2wtLRk2bJlPP/889fNt3XrVgYPHkydOnUYPnw4BoOBJUuWEBISwpw5c2jcuDEAkydPZsaMGfTo0YM+ffpw+fJlli1bxsSJE7GzsyMkJIS+ffuSkpLCmjVrGDVqFLVq1QLypiMPGjQIe3t7nnnmGezs7Pjll18YNmwY7733HiEhIcb67N27lzNnzvD6669z9uxZHnrooUJ1TkhIoE+fPiQkJBASEkK1atVYuXIlL730El9++SWBgYF3+O4WlpOTw6BBg2jcuDFvvvkm+/fvZ9GiRaSnpzNlyhQgbyp4SEgIR48epU+fPtSpU4eNGzcyevRo0tLSGDRoEKmpqQwYMIBz587x5JNPUqlSJcLDw/n44485deoUY8aMMV4zKyuL9957j2eeeQaDwUDt2rUZNWoU48aNo0OHDnTo0AFnZ2cuXbpEnz59sLe3Z8CAATg5OXHo0CF+/vlnDh48yO+//46FhcV12zZ69Gjc3NwYOnQoiYmJfPPNN/znP/9h/fr1mJubM378eMaNG4eTkxMvvvgiDz/8MJcvX+bDDz9k165dBAQEGMsKDQ3F3NycTp063b1fhvxrDImpAFiWL7z+qGV5G7LTMslKM2BuY1novHtrH+IOn+HvBZuo2SVvmvGJVbsxNTOlaot6AKTF5i1bYGFnzYlVuzi/6wjZ6ZlYVyhHzc5NqVBXm+eIXCv/C4qTs3Ohc05OjqSmXuby5cvY2dkVOGdlaQVAenp6oXzJSckAJMQnYGFpUazyi1tehQqFHzSIPOhKSz+1s7OjW3A39u7Zw9QpUxn0VN5D/R/m/pD3ea1z59topcj9Tf1URO6luxIo/O2338jIyKBjx44A2Nvb06JFCzZs2EBERAQNGzYslCcnJ4cxY8bQoEEDfvjhB8yubEIwYMAAunfvzocffsiyZcvIzMzkhx9+oEuXLnzyySfG/L1796Z58+Zs3ryZkJAQ/Pz88Pb2Zs2aNQQGBhqHVH/44YeYmJiwaNEi43Ds/v37079/f8aPH0+nTp1wvvKCmZqaymeffYavr+912/r1119z/vx55s2bh7+/PwA9e/aka9euzJgx418JFGZlZdG5c2feeustAPr160dMTAxr164lLS0NGxsbFi1axOHDh5kwYQJBQUFA3sYsAwYMYObMmQwYMIBZs2Zx8uRJFi9ebBw1+eSTTzJp0iS++uor+vbtS506dYC839czzzzDCy+8YKxHhQoVGDduHN7e3sb1Bn/44QcSExOZN28eXl5exrR2dnbMnDmTI0eOUL9+/eu2rUKFCsybN8/492BpacnEiRPZsWMHjzzyCMHBwUyZMqXAGoedO3dm3LhxrFq1qkCgMCwsjObNmxt/v3J/yx/dZ2ZR+GXM9Mriy9mZWUUGCq0d7anWtiHHV4Sz94vlVzKZUPfJtsbpyFnpBgBOr92HiZkpXl0DwMSEs5sP8NcP6/B5piNOD2mnN5Gr5X8xyf+icjULi7y+aMgwFPpi417NHVtbLZnN0wAASz5JREFUW3bu2EFw92BMTEzy0hoMxlkFhkwD2TnZxSq/uOWJlEWlpZ/a2dnh4uJC9x49mDN7Nm+8/gYApqamjHz11QLTHEXKGvVTEbmX7srU45UrVwLQoUMH47H8/+dPLb3WX3/9xZkzZwgMDCQxMZG4uDji4uJIT0/n0Ucf5dChQ8TExGBhYcG2bdv44IMPCuSPj4/H3t6e1NTU69br0qVL/PnnnwQHBxdYs8HKyornnnuO9PT0AusxWFtb06BBgxu2dcOGDdSvX98YJMwvb+bMmXzxxRc3zHsnXTtKrm7dumRlZZGQkGCsp7OzM127djWmMTExYfz48fz444+YmJiwevVqateujaurq/H+x8XFGYOd69evL3CNJk2a3LReL7zwAlu3bi0QJExPT8fUNO9P70a/L4COHTsag4T57QJuuN5lhQoVaN68OWvWrCE7O+9N8K+//uLkyZMF2i/3ufzp8CYlz3pqzV6OLdtOeQ83vPu2pnbvVpRzd+Hw/I3EHspbayUnK2/qela6Ad/Bnan48ENU9PPC9z+dMLex4tTqPXeqJSIPjPxlKvK/mBSXubk5nbt04cSJE0z9YiqRp09z6uQpJk/6nPT0DADMzMyKXX5xyxMpi0pLPwVY8NMCvvn6a2p7e/PyKy8z7KVheD30EFMmT2bPbr3PStmlfioi99IdH1F44cIFwsPDqVGjBiYmJsZ16urUqYOJiQlhYWG8/fbbWFoWHOUTGRkJwPjx4xk/fnyRZUdHR1OxYkUsLCzYsGED69at4+TJk5w+fdq4ZsLVa+ldKyoqCshbd+Fa+YGs6Oho4zFHR0djQOtGZbZr167Q8aKucTNWVnlPdLKysq6bJisrq9CTI6DQKLn8+5sfKIuKisLDw6PQm8HVuwVHRkaSnp5O8+bNi7z2uXPnCvxc3ClbmZmZfP755xw8eJDIyEjOnj1rrNe16whe63rtulm+oKAgtmzZwq5du2jWrBmhoaFYWVn9KyM85d9hZpU3ZSInM7vQuZwrfcjcuvC09qw0A2c3H8DevQINnnsMkyt93LVhDf6YtpKjS7fiVKs3ZhZ5QQSX+tWxsPnnaau5jSXOddy5sO842YZMzCyvP3VepKyxsbYGICMjo9C5zCsj+GxsbYrM2+uJXqSmprIqLIxtW7cC4O/vT7fgbsyfNw97e3uyMjOLXX5xyhMpi0pLP718+TIrV6zAy8uLd9971/iZu3mLFrwz6m1mfvUVX/r+74ZL1Ig8qNRPReReuuOBwrCwMHJycjh16pRxc4urJSYmsnbtWjpfs55BfuBn+PDhNGrUqMiya9asSW5uLkOHDmX9+vX4+/vj5+dH3759adKkCU899dQN63ajIGL+9a9+kSvOaIPs7OwSP+m5nvLlywNw+fLl66ZJTk6mcuXKhY7frA7FqWd2djb+/v689NJLRZ53c3Mr8PPNgqgAu3fv5rnnnsPW1pYWLVrQq1cv6tWrR2RkZKFRoUUpzjWK0qFDB8aMGcOqVato1qwZq1atom3btvpi+ACxcsj7XRqS0wqdMySlYWZjUWQQLy02idysHFwb1jQGCQFMzcxw8/Xi5K+7Sb2YiGX5vIC8hZ11oTIs7W0gF7IzFCgUuVoFFxcA42j2q8XHJ2Bra4e1deE+BXnvY4OeGkRwcDfOnT9PhQoVcHV15af5P2FqaoqLiwuZV77YFKf84pQnUhaVln56/NhxMjMzafFIiwKf98zNzWnZqiU//vAj0VFRVK9R47bbLHK/UT8VkXvpjgcK83c7/uSTTwoFZQ4fPszUqVNZunRpoUBh/si2/IDS1SIiIkhMTMTa2prdu3ezfv16hg4dyvDhw41p8qfZFrXD07XXOHHiRKFzJ0/m7ex09ZTk4qhSpYpxNOTVli5dyp49e3jvvfcKjZ68Hnd3d6ytrTl27FiR58+cOUNqaqpxY5aS1vPvv/8udHzjxo2EhYXx+uuvU7VqVS5fvlzo/icmJrJ9+3aqV69e4ut+8cUXWFtbExoaWmB04IwZM0pcVknY2dnx6KOPsn79evr3709UVBSjRo26q9eUf5e5jSVWzvZF7m6cci6WclWLDgKYml/5kJNT+MFBbm5O/n+wq+SIibkpqRcSCqVLj0/B1MKsyCCiSFlmZ2eHm5sbp04W3o3x5MmTeHnVvG7erVu34ujoSP369XG4ahfFQ4cOUbNmTSwtLbG0tCx2+cUpT6QsKi391OLKGsNFzRLJufIefYNn/CIPNPVTEbmX7ugahSdPnuTAgQM0bdqU7t27ExgYWODf4MGDcXV1ZevWrcTExBTI6+Pjg6urK3Pnzi0woi4lJYURI0YwatQozMzMjE89rt2B+OeffyYtLa3AtN38px75IwldXV3x8fFh+fLlnD9/3pjOYDAwZ84cLC0teeSRR0rU5tatW7N//34OHDhgPJaZmcmsWbM4cOBAib6IWFpa0qpVK3bs2MEff/xR6Px3330HFFz7sST1vHTpEmvWrClU5oYNG3BycqJdu3YcPnyYjRs3Fkgzffp0hg8fztGjR294jfwRmFe/kSQkJODs7FwgSJicnMzSpUuBf6ZG3w5TU9Mi37yCgoKIiYnhq6++oly5crRp0+a2ryWli0v96iQcjyb1YoLxWPyxaNIuJuHasOjp/7ZujliWt+H83qNkZ/7zepGdmUXMvuOY21lhW9ERM0sLKtT1IO7wWS7HxBvTpcclE3soEue61QqMSBSRPE0DmrJ//37jch8A+yMiOBcdTYsbvMeGrQxlzqw5Bd4X9u7Zy9+HD9PxsY4lLr+45YmURaWhn7pXq4aTkxMb1m/EYPhncyGDwcCmjZsoV6487tXc70h7Re5H6qcicq/c0RGF+ZuYPPHEE0Wet7CwoFevXsyYMYNffvml0LnRo0czcuRIevbsyRNPPIGVlRULFy4kOjqaCRMmYG5ujp+fH/b29owbN46oqCgcHBzYsWMHYWFhWFlZFQgy5genvvnmG1q3bk379u0ZPXo0Tz31FE888QT9+/fHzs6O5cuXc/DgQUaPHm2c/ltcL774Ir/99htPPfUUAwYMwM3NjdDQUI4fP87s2bNLVBbAG2+8wR9//MEzzzxDr1698Pb2Ji0tjU2bNrF582Z69ux5SwGvfv36sXjxYkaOHElISAienp5s2LCBrVu38vHHH2NmZsbgwYNZvXo1w4YNo1+/ftSqVYs9e/bwyy+/0Lp1a1q3bn3Da+Sv6bhu3TqqVKlCx44dad26NV9//TXDhw+nZcuWXLx4kUWLFnHp0iXgxtOsi8vZ2ZnDhw8zb948mjZtagwit2rVCkdHR8LCwujZs6dGjzyA3Fv5cGHfcfbP+o2qLX3IycrKW3+wagXcGuWtO5oWl0zS6QuUr+6GjXM5TExN8QpqxqF56/ljeiiV/GuRm5tLzJ6jpF1MxLt3K0yvBL09H29M4snz7J/1G1Va1MXU1Iyo7X9hamFGjY7+N6qaSJkV1K0bmzZu5sMPxtI1qCsGQyYrlq+gZs2atGzVEoCYmBiO/P03tb29qVixIgDdugfz+cRJjP/kU5o0bcqlixcJDQ3F19eXlq1alaj8kpQnUhaVhn5qamrKM88+y+eTJjH67Xdo2+5RcnNyWP/7BqKjoxj20jDMze/45CeR+4b6qYjcKya5N1q4r4Qee+wxYmNj2bJly3XXTIiKiiIwMJAaNWqQkZFB1apVmTt3rvH89u3bmT59Ovv378fU1JRatWoxePBgHn30UWOaPXv2MGHCBA4fPoylpSWenp4MGjSIiIgIvv/+ezZt2oSLiwtJSUkMHz6c3bt34+7uzqpVqwA4ePAgX3zxBbt37yYnJ4c6derw3HPPFdjoYuDAgURFRfH7778XqP9bb73F0qVLC0zjPXfuHBMnTmTz5s0YDAbq1KnDK6+8ct1NQW4mJiaGr7/+mk2bNhETE4O1tTWenp706dOHHj16FFhrcOrUqXz55ZesW7cOd3f3Gx5PSEhg8uTJrF27luTkZLy8vPjPf/5TYMfkS5cu8cUXX/D777+TmJhIlSpV6Ny5My+88AI2NjY3vCbAzJkzmTVrFunp6cycOZNGjRoxefJkwsLCiI+Px83NjWbNmvHss8/SpUsXnnzySd5991127NjBoEGDGDduHD179iz0c76ijm/evJkxY8Zw4cIFhg0bxpAhQ4zp33vvPRYsWMDs2bNLPFr0Wv3WF73JjtxbqRcTORG6k8RTMZhZmuNUuyqejzfOW0cQiNl7jCOLtlD7iZZUfPifkcgJx88R+fsfJEflBa3tq1SgWtuGONcu+DedFpfMqV93E388GnLBoUZFPB9vjK2b47/WRim+GY0H3+sqCHkbg33/7XdX3qet8PNrxJMDQnBwcABg44aNTJ82jSFDh9Km7T8Pv7Zu3cryZb9w/vx5HBwceKRlS7r36G7c7Ku45Ze0PJGyqLT00wMHDrB40WJOHD8OQA1PT3r06EEjv0Z39waI3AfUT+VmHMs53DzRAyB+6pS7Uq7Ty8NvnqgMuqOBQpHSZsyYMaxbt46NGzcWa3OaG1GgUKT0U6BQRERERMoKBQpvjwKFRdMCW/LASkhI4Ndff6V79+63HSQUEREREREREXnQaUGBu+zixYvFSmdra4udnd1drk3ZcPDgQb755hsiIiLIyMggJCTkXldJRERERERERKTUU6DwLmvZsuXNEwEvvfQSL7/88l2uTdlQrlw5tm/fjpWVFRMmTKBy5cr3ukoiIiIiIiIiIqWeAoV32Zw5c4qVrlq1ane5JmWHh4cH4eHh97oaIiIiIiIiIiL3FQUK77IWLVrc6yqIiIiIiIiIiIjclDYzEREREREREREREQUKRURERERERERERIFCERERERERERERQYFCERERERERERERQYFCERERERERERERQYFCERERERERERERQYFCERERERERERERQYFCERERERERERERQYFCERERERERERERAczvdQVERERERESkdMn99tt7XQURuZmXh9/rGsgDSCMKRURERERERERERIFCERERERERERERUaBQREREREREREREUKBQREREREREREREUKBQREREREREREREUKBQREREREREREREUKBQREREREREREREUKBQREREREREREREUKBQREREREREREREUKBQREREREREREREAPN7XYGrGQwGfvzxR0JDQzlx4gQmJiZ4eHjQpUsX+vbtS7ly5e51FYvUrl07qlatyty5c4v8ubimTp3Kl19+yffff09AQECh82fPnqV9+/b06NGDTz755I7U/U5LSUnBYDDg7Oxconz5bV+3bh3u7u4lypuTk0N0dHSJ88n9Jz0umROrdpF44jwAznXc8ezUBEt7mxvmS466xKnf9pAUeQETExMcPCvh2akJtq4OdzWdSFl14cIF5n4/l78O/gXAw/5+DBg4EAeHG/eRw4cP89P8nzhx/Dh2dnY0btKE3n16U758+evmmfnVTM6dO8eY98cUeT4lJYVXR7xKyIAQ2rRtc+uNEnnAlKZ+mi/y9GneHvU2wd2707tP75I3SuQBcyEpmR/Cw/krOhoAPw8PBjZvRnmbG3/2PXzuPAt27eL4xYvYW1nRuHp1nmjcmPI21tfN8/WmzZxLSOC9bkHGYxeTk3ll3k83vNa7QV2oV6VKCVolIqVdqQkUxsTE8Pzzz3P06FECAwPp0aMHubm57Nu3j0mTJrFgwQK++uoratasea+rKtdx4MABhgwZwoQJE4oMdN5Ihw4d8PDwKHGAMSUlhaeffpo2bdrw8ssvlyiv3F8yUzOImPUrudk5uLf2ITc3l7ObD3D5fDyNhnbF1MysyHypFxOJ+PpXzCzN8XjUF4CorX/x58wwHn45GKvytnclnUhZlZyczNj/fkBWVhbdgruRk5PDiuUriDwdyUfjPsbcvOiPHgcPHmTcRx9ja2tH9x49MDU1JSw0jIMHD/LB2A+wt7cvlGf97+v5fd066tarV2SZWVlZTPl8MklJiXe0jSL3u9LUT/NlZ2cz7X/TyMrKuiNtFLnfJaenM3blSrJzcgjy9SUnN5eVERGciYvjwx7dMb/OZ9+/oqMZF7YKW0tLuvs1wtTElFX793MwOpr/dg/G3sqqUJ71h//m90OHqVu5UoHj5aytGfpo20LpDdlZfLd1O+VsrPGoUOFONFdESpFSESg0GAwMGTKEs2fPMmfOHJo3b248N2DAAAYNGsQLL7zACy+8wIoVK7C5yRMUuTeOHDnChQsXbilvnTp1qFOnTonzJSQksH//ftq00SiRB13UloNkJKbi/0owtm6OAJRzd+XA7NXE7D1G5SbeRefb9hc5hix8X+iEfZW8DzKOXlX4Y9pKorYepGanJnclnUhZFboylNjYWMZP+Mw40vuhh7z46MOP2LhhI+0D2xeZ79vZ32JqasoHH35ApUp5X1SaNG3Cm6+/wbKlSxkwcKAxbU5ODkuXLGXRwoXXrUdcbByTJ0/myN9/38HWiTwYSks/vdqypcs4e/bsbbZM5MERFrGfuJTLfNq7F+5OTgA85ObKx6Gr2HjkCO3r1i0y37dbt2FiYsJ/g7tR6coI4SY1avDW4sUs27uPAc2bGdPm5OSwdN8fLN6zp8iyrC0saFW7VqHj323bTlZONi+1e7TIwKOI3N9KxRqFy5Yt4+DBg7z55psFgoT5fH19eeeddzhz5gyzZs26BzUUkXvtYsQJHD0rGYOEAE4PVcHGtTwXI05eN196XDLmdlbGoB5AOXcXzG2tSI2Jv2vpRMqq7du2Ua9e/QLLQTRo2JDKVaqwbdu2IvNcvHiRM2ciadW6tTH4AFC1alUe9vdn44ZNxmMGg4G33niThT//TKtWrYociR7x55+8OnIkkadP83inTnewdSIPhtLQT68Wefo0S5csoWevXrfZMpEHx7bjx6lXpbIxSAjQwN2dyo4ObD9+osg8F5OTORMXT+tatYxBQoCqTo487OHBpiNHjccMWVmMWrKURbv30LJWLZztijcrJjI2lt8OHKCNd23qVq58i60TkdKs1AQKbW1t6dGjx3XTBAUF4erqyooVKxgzZgz16tUjLi6uQJrU1FQaNWrEqFGjjMf27dvHM888g5+fH35+fjz77LNEREQUyNeuXTtGjx7N22+/TcOGDWndujVxcXHk5uYyf/58nnjiCfz8/GjQoAGPP/44M2fOJDc3987ehFs0cOBAnnvuOTZt2kTPnj1p0KABbdq0YerUqeTk5BRIe/z4cYYPH05AQAD+/v4MHDiQ3bt3F0hz7Ngxhg0bRuPGjfH19aVfv35s3ry5yGt+/vnn+Pn50bx5c15++WXjfR80aBDt2rUzpt++fTvPP/88AQEB1K9fn1atWvHee++RlJRkTDN16lS8vb2NT5KnTp1KgwYNOHXqFIMHD8bPz48mTZrw5ptvEh+fF4zZsWMH7dvnPfH+8ssv8fb25vDhwzRs2JDhw4cXulfz58/H29ubo0ePFjonpVtmWgbpcSnYVy08tcG+cgVSomOvm9emQnmyUjMwpKT9U15qBlnpBiyuWtvwTqcTKYtSUlKIiYmhppdnoXOenp6cPFF0UD///bxatWqFzlWqVJHk5CRiY/P6eWZmJmlpaQwfOYKhLw3DrIipV2ejoqhfvz6fjP+UJk01ylfkaqWln+bLzs5mxvQZNGzYkFatW91Kk0QeOCkZGVxISsbT1aXQuRouLpy8dKnIfHGXLwNQrYjgfEWH8iSnpxObkgJAZnY2qQYDwwPbM/TRtpiaFi80sGDXbizNzenTuHExWyMi95t7HijMzs5m//791KtXD6sbDFs2MTEhICCAU6dOERQURHZ2Nr/99luBNBs2bCAtLY1u3boBsHXrVgYOHEhycjLDhw9nyJAhREdHExISUihAFhoayt9//83bb79Nnz59cHZ2ZvLkybz//vs89NBDjBo1ildffRUrKysmTpzIvHnz7vzNuEVHjhxhxIgRBAQEMHr0aDw8PPjyyy+ZP3++Mc2pU6fo06cP4eHhDBgwgFdffZWEhASeeeYZY+D077//pm/fvhw7dozBgwczcuRIsrKyeOGFFwgLCytwzb1797Jq1Spef/11evTowbBhw+jbty8AL774Im+//TYAW7Zs4dlnnyUtLY1XXnmFd955h4YNG7JgwQLefffdG7YrJyeHQYMGYWdnx5tvvknHjh1ZtmwZ77//PgBeXl7G4GSHDh0YP348Hh4etGnTho0bN5KWllagvNDQULy9valVq/DweSndDImpAFgWsf6fZXkbstMyyUozFJnXvbUPVg52/L1gE5fPx3H5fByHF2zE1MyUqi3q3bV0ImVRfiDBqYgvKE5OjqSmXubylS8xV7OyzHv/T09PL3QuOSkZgIT4BABsbW2Z/MWUImcg5OvYsSOvv/lGgVFPIpKntPTTfMt/Wc758+d57j/PF7sNIg+6+Ct90NnWrtA5J1tbUjMMXM7IKHTO6sr6ommZmYXOJV/puwmped+RbC0tmdyvL828ir8HQGRsLHtPRxJYty5OdoXrJiIPhnu+RmFiYiIGgwFXV9ebpnVzcwPA2tqaqlWr8uuvv9K/f3/j+bCwMNzc3AgICCAnJ4cxY8bQoEEDfvjhB+OTzAEDBtC9e3c+/PBDli1bZsybnp7OtGnTqFixIpD3JPSHH36gS5cuBXYY7t27N82bN2fz5s2EhITciVtw2y5cuMD06dONo/i6d+9Oq1atWLFihbGOkydPJisriyVLllC9enUAOnfuTIcOHZg1axZTpkzhww8/xNnZmaVLl2JrmxeQGTBgAE899RQfffQRgYGBWFpaAnmjNz/77DN8fX2N9WjUqBELFiygRYsWxs1Mvv32WypXrsycOXOMeZ988kn69u1baKTitbKysujcuTNvvfUWAP369SMmJoa1a9eSlpaGi4sLgYGBjBs3Dm9vb4KDg4G80aerV69m/fr1dO7cGcjbLGfPnj2MHDny9m+4/OuyDXkfdswsCr9kmV75QJSdmYW5jWWh89aO9lRr25DjK8LZ+8XyK5lMqPtk2wLTh+90OpGyKD+AkB9QuJqFRV7/NGQYsLvmy4V7NXdsbW3ZuWMHwd2DMTExyUtrMBgfZhky8x4GmJiY3HB0EnDdjRhEpPT0U4AzZ86weNEinnn2WSpUqMDFixdvvWEiD5D8QJ9lEe9nllf6liErC7trBtq4OzlhY2nBzpMnCW7k+08/zcoi4mxU3v+z8zYMMjExwezK+eJa89chTE1MeMynfskaJCL3lXs+ojB/Cm9xPkxc/cG/a9eu7Nq1yzjFISUlhU2bNtGlSxdMTU3566+/OHPmDIGBgSQmJhIXF0dcXBzp6ek8+uijHDp0iJiYGGN5Hh4exiAhgIWFBdu2beODDz4oUIf4+Hjs7e1JTU29rXbfDpNrXtBtbGxo27at8WcrKys8PT25dGVIek5ODhs3bqRNmzbGICGAk5MT8+bNY/To0cTHx7Nz507atGlDenq68X4lJSXRoUMHLl26xP79+415ra2tadCgwU3r+tVXX7F48WJjkBBKdg87XbO2VN26dcnKyiIhIeG6edq2bUu5cuX49ddfjcdWrVpFbm4uXbp0uek1pRTKn+pfss8yAJxas5djy7ZT3sMN776tqd27FeXcXTg8fyOxh87ctXQiZVH+e/q171M3Y25uTucuXThx4gRTv5hK5OnTnDp5ismTPic9PW/ERHE+J4jIzZWWfpqTk8OMadPxrlPnupuniJRVt9xPzczo0rABJy9eYurv64mMjeXUpUtMXrOWjCvBR7NiTjG+liEri81Hj+Jfozqu5crdUhkicn+454/cnZ2dsbCwMAb8biR/R103NzeCgoL46quvWL16Nf3792ft2rVkZGTQtWtXACIjIwEYP34848ePL7K86OhoY3CwQhHbultYWLBhwwbWrVvHyZMnOX36NImJiQB3ZY3C/KnX2dnZRZ7PP3510A3A0dGx0JoSlpaWxjUKExISSE1NLRAkzFe7dm0A45PguXPnMnfu3CKvf+7cuRtesyhmZmacOXOGKVOmcOzYMSIjIwsEaG/m2sWv89t+vXuUn6Zjx46EhoaSmpqKra0toaGh+Pn5UbVq1WJfW0oPMysLAHIyC//ec7LynoqaW1sUOpeVZuDs5gPYu1egwXOPYXLlb9a1YQ3+mLaSo0u34lSrNzmZ2Xc0nam5AhpSNtlYWwOQUcR0qMwrI41sbItey7PXE71ITU1lVVgY27ZuBcDf359uwd2YP28e9vb2d6nWImVLaemnK5av4PTp0/z3gw+M61ZfTsmbbmkwZJCUlES5cuVKHCgReRDYWOR9rjVc+Zx7NcOV70E2loVn0gD0fPhhLmcY+PXAAbYfOw7Aw9U9CPL15aedu255l+KD0dFkZGbRrGbxpyqLyP3pngcKTUxM8PPzY//+/WRkZFx3ncLc3Fz27NlDtWrVcHNzw83NDW9vb1atWkX//v1ZtWoVnp6e+Pj4ABiDZMOHD6dRo0ZFllnzqhe5a5+A5ubmMnToUNavX4+/vz9+fn707duXJk2a8NRTT92BlhdWvnx5gCLXhQGMQcr8dPluFrDLD6rd6INWfpqQkBACAwOLTPPQQw8Z/1/cJ8azZs1i/PjxeHp60rhxYzp27Iivry9z585lxYoVN81/qx8Og4KCWLx4MRs2bKBBgwZERETw3nvv3VJZcu9ZOeR98TAkpxU6Z0hKw8zGAjPLwoHCtNgkcrNycG1Y0xjUAzA1M8PN14uTv+4m9WIiudk5dzSdfeUb7+4o8qCq4JK36HpRo77j4xOwtbXD+kqQ4lomJiYMemoQwcHdOHf+PBUqVMDV1ZWf5v+EqakpLi6FF3QXkZIrLf30jz/+ICsri3eurGt9tRXLV7Bi+Qqm/u/LYi1PJPKgqXAl6J5QxAys+NRUbK0ssbYo/NkXrvTTFs0JbuTLucQkKtjb4VquHAt27sLUxASXW3zw9kfkGSzMzGjkUXhDIxF5sNzzQCHkram3c+dOFixYwKBBg4pMs27dOs6cOcPQoUONx4KCgvj88885c+YMW7duZciQIcZz+SPHbG1tadGiRYGyIiIiSExMvO6HIIDdu3ezfv16hg4dWmAH3fxpr0Xt+Ha78gNxR48epUOHDoXOHzlyBKDEm3E4OTlhbW1tHGV5tVmzZnHx4kWeffZZIC8AeO39OnbsGGfPnsXGpmQ7umZkZDB16lQCAgKYPXt2ganjU6ZMKVFZJRUQEICrqyvr1q3j4sWLmJubF5rGLPcPcxtLrJzti9zdOOVcLOWqFv3FxNT8SjAvp/AI4NzcnPz/3PF0ImWVnZ0dbm5unDpZeNfUkydP4nWDBdO3bt2Ko6Mj9evXx8HR0Xj80KFD1KxZs9BoehG5NaWlnw4cOJDLl1MKHEtMTOTLqV/SqnUrWrdujYODQ7HLE3mQ2FlZ4VquXJG7G5+6dImaNwigbzt2HEdbG+pVqYKD7T8bAR46dw5PV5ci1z0sjr9jYvB0dcFW78ciD7x7vkYhQI8ePfDz82PixIls2bKl0PlDhw7x7rvv4u7uzvPP/7MjWteuXcnJyeGjjz4iMzOToKAg4zkfHx9cXV2ZO3dugRF6KSkpjBgxglGjRt1wVFz+U9arR9EB/Pzzz6SlpZFVxDDw29WwYUNcXV1ZuHAh8fHxBc4ZDAbmz5+Pra0tLVu2LFG55ubmPPLII2zcuLHA9OHExERmzZrFmTNncHNzw8fHh6VLlxaYGpyZmcnbb7/NK6+8ctM2549szB/NmZ6eTlpaGjVq1CgQJDx06BA7d+4EuO37mP87zL/m1XXp0qULW7ZsYcOGDTRr1qzQNGa5v7jUr07C8WhSLyYYj8UfiybtYhKuDT2LzGPr5ohleRvO7z1KduY/f2vZmVnE7DuOuZ0VthUd73g6kbKsaUBT9u/fT1RUlPHY/ogIzkVH0+KRR66bL2xlKHNmzSmwtMTePXv5+/BhOj7W8a7WWaSsKQ39tKZXTRo0bFjgn3edOgC4uVWkQcOGekAgZVpTzxociIoi6spu4gD7z57lXEIiLby8rpsvNCKCOVu2kX3V96O9pyP5+3wMHevXu6W6ZGVnExUfj6eLNu4TKQtKxYhCU1NTvvzyS4YMGcLzzz9Px44dCQgIwMzMjD///JMVK1ZQuXJlpk2bVmAHtsqVK9OkSRPWr19Po0aN8PDwMJ6zsLBg9OjRjBw5kp49e/LEE09gZWXFwoULiY6OZsKECTfcFdHPzw97e3vGjRtHVFQUDg4O7Nixg7CwMKysrK47Pfh2WFpa8v777zNixAh69OjBE088QeXKlYmNjWXFihUcO3aMsWPH3lLA67XXXqN379707t2bkJAQ7O3t+fnnn0lNTWXEiBEAjB49mqeeeopevXrRv39/HB0dCQ0N5c8//+S1117DycnphtfIr9f8+fO5dOkSQUFB+Pr6smTJEuzt7fH09OTo0aMsXLjQGFS8fPnybT0tzl8rcd26dVSpUoWOHTsay+vatSvffvst27Zt49NPP73la0jp4N7Khwv7jrN/1m9UbelDTlZW3nqBVSvg1ijvw1JaXDJJpy9QvrobNs7lMDE1xSuoGYfmreeP6aFU8q9Fbm4uMXuOknYxEe/erTC9Emy+0+lEyqqgbt3YtHEzH34wlq5BXTEYMlmxfAU1a9akZau8B10xMTEc+ftvant7G9cK7tY9mM8nTmL8J5/SpGlTLl28SGhoKL6+vrRs1epeNknkgaN+KlL6dWvky+ajR/koNJQuDRtgyMpmZUQEnq4utKyVN5glJimJI+djqF2pIhWvLE/VrVEjJq9Zy/hff6NJjRpcSkkmLOIADau50/KaQTDFdSklhazsHOOUaBF5sJWKQCGAi4sLP/74I8uWLWPJkiV88cUXZGVl4eHhwfDhw+nXrx/lithdKSgoiJ07dxo3Mbna448/joODA9OnT2fatGmYmppSq1Ytpk+fzqOPPnrT+sycOZMJEyYwffp0LC0t8fT0ZNKkSURERPD9999z6dKlO75mUmBgID/++CNz5szh559/Ji4uDkdHR3x8fHj33Xdp2rTpLZXr5eXFggULmDRpEt988w2mpqY0bNiQTz/91DiV2c/Pj/nz5zN16lTmzJlDVlYWnp6efPLJJ/To0eOm12jevDmdOnVi/fr1hIeH07FjR6ZMmcK4ceNYvHgxBoOBqlWr8sILL+Dl5cXLL79MeHg4jz322C21CfJ2fB45ciSzZs3iww8/xMPDg4CAAAAaNGhAjRo1OHfu3HXXXZT7h6W9DQ3/04kToTs5vXYfZpbmVKjrgefjjY2bhySdiuHIoi3UfqIlNs55rxcu9avT4NnHiPz9D06t2QOAfZUK1H8qEOfa7sby73Q6kbLKwcGB9z94n++//Y6FPy/E0tKKJk0a8+SAECyurKd0+NBhpk+bxpChQ40BiICAAF4e/grLl/3C3O+/x8HBga5BQXTv0b1Ym2eJSPGpn4qUfuVtbBjTLYjvt21n4e49WJmb07h6dUKaBWBx5cH04XPnmbFhIy+2bWMMFAbU9OTl9u1Y/scfzN0ejoONDV19GxLcqNEt99OUK5sf2VholK9IWWCSeze27xUpJTp16oS3tzeTJ0++7bL6rS9692wRKT1mNB58r6sgIiLyQMj99tt7XQURuQmnl4ffPNEDIH7q3dnjoKzcv5LSoz95YO3cuZMTJ07Qs2fPe10VEREREREREZFSr9RMPX4QGQwGEhMTi5XWwcFBCzbfIcuWLWP9+vVs3bqVOnXq0Epr5oiIiIiIiIiI3JQChXfRvn37GDRoULHSfv/998a19eT2mJmZsWnTJjw9PZkwYQImJib3ukoiIiIiIiIiIqWeAoV3UZ06dZgzZ06x08qdERQURFBQ0L2uhoiIiIiIiIjIfUWBwrvIwcGBFi1a3OtqiIiIiIiIiIiI3JQ2MxEREREREREREREFCkVERERERERERESBQhEREREREREREUGBQhEREREREREREUGBQhEREREREREREUGBQhEREREREREREUGBQhEREREREREREUGBQhEREREREREREUGBQhEREREREREREQHM73UFRO4X0w9Y3esqiMhNvMhX97oKIiIiD4QZTw++11UQEZF7QCMKRURERERERERERIFCERERERERERERUaBQREREREREREREUKBQREREREREREREUKBQREREREREREREUKBQREREREREREREUKBQREREREREREREUKBQREREREREREREUKBQREREREREREREUKBQREREREREREREAPN7XQERkeK6kJTMD+Hh/BUdDYCfhwcDmzejvI3NHcn355kzLN27jxOXLmFqYkItNzf6NGlMrYoVC6Q7cfEi83fu4sj5GExNTKhbuRIDmjejiqPjnWusyH0sPS6ZE6t2kXjiPADOddzx7NQES/sb99Xi5ituuoTj5zi9dh8p5+Iwt7bAxacGNTo+jJmlxZ1qqsh9q7T0U0NKGqdW7yXu8BlyMrOwr1KBGo81pryH651qqsh968KFC8z9fi5/HfwLgIf9/RgwcCAODg53JF9x0x0+fJif5v/EiePHsbOzo3GTJvTu05vy5cvfqaaKSClSohGFb731Ft7e3jf8N3To0BJVYODAgbRr165EeQAMBgMxMTElznc7pk6dire3N2fPnr3jZZ89exZvb2/eeuut66YZOHAg3t7ed/zad9KZM2dKnCe/7VOnTv3Xrin3n+T0dMauXMmxCxcI8vWlS8OG7I2M5OPQMLKys28731/R5/h01a+kGgz0a9KEXv4Pcz4piQ9W5OXNF52QwAcrVhIZG0vPh/3o7teI4xcv8v4vK4i/fPmu3gOR+0FmagYRs34l+cxF3Fv7ULVVfWIPn+HAnNXk3KCvFjdfcdMlHD/H/tm/kZOdjefj/rj5PcT5XUc4MGcNubm5d/UeiJR2paWfZmVkEvH1r1w6cIrKAd5UD3yYjKRU9s/6lcvn4+/qPRAp7ZKTkxn73w84dvQo3YK70TWoK3t27+XjDz8iKyvrtvMVN93Bgwf58IOxREdF071HDx57/HF2hO/g/THvk5KSclfvgYjcG7c0onDUqFE4OTkVea5y5colKuvFF18kLS2tRHmioqJ49tlnGTx4MD179ixR3tvRoUMHPDw8cHZ2/teueT957rnncHV15ZNPPilRPmdnZ8aPH39LQdBp06axdOlS1qxZU+K8cn8Ji9hPXMplPu3dC/crrz8PubnycegqNh45Qvu6dW8r3/fbt+NsZ8fY7t2xssh7aWxdqxav/byQBbt2806XzgCs2n+AjMws3u8WRA0XFwB8qlZl9NJlhEbsZ0DzZnf1PoiUdlFbDpKRmIr/K8HYujkCUM7dlQOzVxOz9xiVmxT9Wl/cfMVNd2LVLqwc7Wj4n06YXenTVg52HF8eTvzRKJxru9+9myBSypWWfnp2437SLiXS4PnHcfSsBIBrwxrsmrCYs5v349279d27CSKlXOjKUGJjYxk/4TPc3fPesx56yIuPPvyIjRs20j6w/W3lK266b2d/i6mpKR98+AGVKuX10yZNm/Dm62+wbOlSBgwceFfvg4j8+25pjcLAwECCg4OL/Ne0adMSlfXII48QGBhYojxnz57l1KlTJcpzJ9SpU4fg4GBsbW3/9WvfD7Zs2XJL+WxtbQkODqZOnTolzrt9+3ayb/DkWx4c244fp16VysZgH0ADd3cqOzqw/fiJ28qXkpFBZGwszWrWNAYJARxsbalbuTJHzv8zejkmKYly1tbGICGAl5sr9tZWnInX6AeRixEncPSsZAwOADg9VAUb1/JcjDh52/mKky47MwtLe2sqNaltDBICOHjmLSNw+VzcbbZS5P5WGvppbm4uMfuO4eztbgwSAliWs8WzUxPK1yi47IdIWbN92zbq1atvDOIBNGjYkMpVqrBt27bbzlecdBcvXuTMmUhatW5tDBICVK1alYf9/dm4YdMdaauIlC7azERESr2UjAwuJCXj6epS6FwNFxdOXrp0W/lsLSyY2LcPXRo2KJQuOT0dM1MT48+VHRxIyUgn6aqR0Mnp6aRmGHC8yVqJIg+6zLQM0uNSsK9aodA5+8oVSImOva18xU1nZmGOz9Md8WjrWyBNfoDQytG+ZA0TeYCUln6aEZ+CITEVx4eqAHmBw2xDJgBVmtW57qhGkbIgJSWFmJgYanp5Fjrn6enJyRNFB/SLm6+46eLi8t43q1WrVihdpUoVSU5OIja26NcMEbl/3bVAYbt27XjnnXdYuHAh7du3p1GjRvTr14/w8PAC6a5do9BgMPDRRx/Rvn17fHx8aNOmDf/9739JTEwEYMmSJQwaNAjImwJ99XTVxMRExo4dS6tWrfDx8aFTp0589913BdYimjp1Kn5+fhw7doxnnnmGRo0a0apVK77++mtyc3OZNWsWbdu2xc/Pj+eee67AeoRFrVGYkpLCxx9/TNu2bfH19SUoKIiFCxfe2Zt5HUuWLMHb25vDhw/z2muv0aRJE/z8/Bg6dGihdRQNBgNTp06lY8eONGzYkMcee4yZM2cWGI2XkZHB559/Trt27fDx8aF9+/ZMmTIFg8FQ6Jq//fYb7dq1w9fX17h2JcDSpUvx9vZmx44dQN5TqP/+97/G36e/vz+DBg1iz549xjKvXaMw/+dly5bx+eef07p1axo0aEDv3r0L/P20a9eOnTt3EhUVZcz/6quv4uPjQ1JSUoH2Jycn06BBAz799NM7dPfl35S/9p+zrV2hc062tqRmGLickXHL+UxNTans4ICTXcF0kbGxHImJofZVm5kE+fribGfH1HW/ExkbS2RsLFPX/Y6ZmSmdGvjcVjtF7neGxFQALMsXHnlvWd6G7LRMstIMhc4VN9+tlp8en0LM3mMcX7kT24qOVKjnUbKGiTxASks/TYvN+6xmYWfNiVW72D52Htve/5FdExcTe0jrT0vZlh+gcypiySsnJ0dSUy9zuYi1sYubr7jprCytAEhPTy+ULjkpGYCE+IRitkpE7he3tEZhUlKS8cXlWg4ODpiZmQGwbds2li9fzsCBA3F1dWX+/Pk8//zzzJ49+7pTlD/44ANWrlzJoEGDqFatGkePHuXHH3/k9OnTzJ49myZNmvDiiy8yY8YM+vbti7+/PwCpqakMGDCAc+fO8eSTT1KpUiXCw8P5+OOPOXXqFGPGjDFeIzMzk6eeeorAwEA6duzI4sWLmTBhAuHh4URFRfH0008THx/PN998w6hRo5g7d26RdTUYDISEhHD06FH69OlDnTp12LhxI6NHjyYtLc0Y0LzbhgwZgpeXFyNHjuTMmTN89913XLhwgUWLFhnTDBs2jE2bNhEUFMQzzzxDREQEEydOJDY2llGjRpGdnc3gwYPZu3cvffr0wcvLiwMHDjBjxgwOHTrE9OnTMTH5Z1TVO++8w4ABA7C3t6dhw4Y0b96cN954g8aNGxvzp6enExISQnJyMiEhIVSsWJFTp04Z/w7Wrl1LhQqFnzbnmzJlCjY2Njz77LNkZmYye/ZsBg8ezIYNG3BycuLtt99m4sSJxMfHG4PG0dHRhIaGsnbt2gLrV65evRqDwUBQUNDd+SXIXZWWmTfCwNK88EuW5ZXXG0NWFnZWVnckH0B6ZibT1m8AoFujRsbjLuXs6e7nx7dbt/LmoiUAmJqYMKJDYIHpyCJlUf5ooKun++YzvdIPszOzMLexvKV8t1J+ZmoGuz7Lez80tTTDKyigyPwiZUVp6adZ6XnByNNr92FiZopX1wAwMeHs5gP89cM6fJ7piNOV0YYiZU1+YC4/UHc1C4u8vmnIMGB3zUPu4uYrbjr3au7Y2tqyc8cOgrsHG78PGgwGIiIi8v6fWfjBgojc327pk3KPHj2ue27ZsmXUvbI5QHR0NP/73/+MaxAGBwfz2GOPMXHiRBYsWFBk/hUrVtCrVy9effVV4zFbW1s2b97M5cuXqVatGi1atGDGjBk0atSI4OBgAGbNmsXJkydZvHixcXTbk08+yaRJk/jqq6/o27evcQ28zMxMunXrxptvvglAkyZN6NKlC/v27WPt2rXGzUqioqJYuXIlBoMBS8uCH5YAFi1axOHDh5kwYYIxANW3b18GDBjAzJkzGTBgAKamd392t4+PT4Edg1NTU/npp584deoUNWrUYOPGjWzatImRI0fy4osvAtC/f38yMzP58ccfGTZsGGvXrmX79u188803tGrVylhWw4YNee+991i3bl2BtSS7dOnCiBEjCtTjjTfeoFq1asbfSVhYGKdPny5UZrVq1RgzZgx79uyhY8eO121Xbm4uixYtMq4JWbVqVUaOHMmaNWvo06cPgYGBfPfdd2RkZBiv6eXlhaOjI6tWrSoQKAwLC6NmzZrUq1evpLdXSoH8UcFXB6vvZr6MzCwm/Laa07FxBPv5Uq/KP5s0/bxrN0v37qNu5Uq0r1uXnNxc1vz1F1+sW8eIDoH4V69eomuJPFDyR/CXrMsVP9+tlG8Cdfq1ISc7h+jtf7F/9mrq9muDi0+NElZS5AFRSvppTlYOAFnpBhq/2hMLm7yARYU61dg1cTGnVu9RoFDKrLv92be46czNzencpQuLFi5k6hdT6d49mJycXH5esID09LzZPPmDhETkwXFLgcLPPvsMl+uMnPHw+Gc6T82aNQsEl5ydnQkODuaHH34gNja2yNFklSpVIiwsDB8fHwIDAylfvjwjRowoFJS61urVq6lduzaurq4FRjsGBgby1VdfsX79+gKbZVxdrxo1agDw8MMPF9jR2N3dndzcXC5dukSVKoU/qGzYsAFnZ2e6du1qPGZiYsL48ePJysoq8Qv7rerUqVOBn/MDtZcuXaJGjRps2LABU1NTBgwYUCDdm2++yZAhQ7Czs2P16tU4OztTv379AvevTZs2mJmZsWHDhgL3rEmTJjetV+fOnWnWrFmBHbKvnsacmpp6w/xt2rQpsHFM/u/v4sWL181jYWHBY489xpIlS0hMTMTBwYG4uDjCw8MZMmTITesspZONhQWQN/rvWoYr0+dtigjm30q+yxkZjP/1N46cj6Ftndr0vepv/XJGBiv/jKCmqwuju3YxPgho7lWT0UuX8fXGzTQMccdCH5ikjDKzyutzOZmFN5nKudIPza0tbjlf1i2Ub2FjhWvDvDWYXHyqs3fKMo6H7lSgUMqs0tJPzSzy3itd6lc3BgkBzG0sca7jzoV9x8k2ZGJmWbguIg86G2trIG9pqGtlXhnBZ2NbeG3s4uYrSfm9nuhFamoqq8LC2LZ1KwD+/v50C+7G/HnzsLfXur8iD5pbChQ+/PDDBXZHup6HHnqo0LHq1auTm5tLVFRUkYHC999/nxEjRjBq1CjeffddGjVqRIcOHejVqxflypW77rUiIyNJT0+nefPmRZ4/d+5cgZ+vDnSaX5kGcW198p+O5OTkFFlmVFQUHh4ehQKCVatWvW49r8fqytTHrCICGvmysrKM6a52dSAOMI5+zF9/MP9eX/si7urqiqurK5B3/+Li4op9/240ZfhqJiYmzJw5k3379hEZGUlkZCSZV6aDXu++5nO+Zs2M/HbdLF+3bt1YsGABa9eupVevXvz6669kZWVp2vF9rMKVv92EIoLL8amp2FpZYm1R+ItESfMlpaXxcdgqTl+KpX3dOjzXqmWB/n0+MYnM7GxaPORVYLSwuZkZj9R6iHnhO4lOSKB6MfuHyIPGyiGvzxmS0wqdMySlYWZjUeSX/uLmu9Xy85lZmONcpxrR2w6ReTkdCzvr4jVM5AFSWvqpZfm8KZNF9UNLexvIhewMBQqlbKpw5btqQkJCoXPx8QnY2tphbV247xQ3X0nKNzExYdBTgwgO7sa58+epUKECrq6u/DT/J0xNTa87gEhE7l93dZEeiyK+uOcHr643RLl58+asX7/e+G/r1q2MGzeOb7/9liVLlhQKHl1drr+/Py+99FKR593c3Ar8XNT1SzoCMDs7+46NGnRwcAAoclHafElJSZQvX77Q8ZtNb756w5IbpalRo0aBtRyvdu11izOl+sSJE8Ypzi1btqRz587UrVuX3Nxchg0bdtP8tzpt29/fnypVqrBq1Sp69erFqlWr8PHxobqmhN637KyscC1XrsjdjU9dukTNKwHv28mXZjAYg4SdGvgwqEXhoLmFWd7fZM5VGyTly8nJO5ZbxDmRssLcxhIrZ/sid01NORdLuapFf5kobr7ipku9mMCBb9fg3qoBVZrVKZAuOyMTTMDEXCN/pWwqLf3UrpIjJuampF5IKJQuPT4FUwszBfOlzLKzs8PNzY1TJwvvbnzy5Em8vGreVr6SlL9161YcHR2pX78+Do6OxuOHDh2iZs2aRS7RJSL3t7u6gF5kZGShY6dPn8bMzKzIEYkGg4E///yT5ORkunTpwoQJE9i6dStvvPEG586dIzQ09LrXqlq1KpcvX6ZFixYF/tWvX5+kpCRsbAoPzb5dVapU4cyZwruybdy4kTfffJNLRQQnrsfS0pJq1apx7NixIs+npaURGRlJrVq1bqmesbGxhYKQBw8e5LXXXuPYsWO4u7uTkJBAs2bNCty/Jk2akJCQUGAKcHF9/fXXJCUlsWTJEr744gteeukl2rdvT1pa4SfMd5KJiQmdO3cmPDyc6Oho9uzZo9GED4CmnjU4EBVF1FU7q+0/e5ZzCYm08PK67Xyzt2zl9KVYHr9OkBDA3ckJJztbNv59pMB0ZkNWFpuPHqWctTXu14zwFSlrXOpXJ+F4NKkXE4zH4o9Fk3YxyTgF+HbyFSedtXN5stINnNv5NzlXPSxLj0/h0oFTOHhWwtxKo5Sk7CoN/dTM0oIKdT2IO3yWyzHxxnTpccnEHorEuW41TP6Ftb5FSqumAU3Zv38/UVFRxmP7IyI4Fx1Ni0ceue18xU0XtjKUObPmFBh8snfPXv4+fJiOj11/vXkRuX/d1Xff/fv388cffxh/vnTpEsuXL6dZs2bGEXRXi4+Pp2/fvnz11Vf/VNDUlAYNGhj/D0VPCW7Xrh2HDx9m48aNBcqcPn06w4cP5+jRo3esXflat27NpUuXWLNmTYHj3333nXFn3pJo3749kZGRrFq1qtC5n376CYPBQIcOHUpczzZt2pCTk8PChQsLHJ8/fz6rVq3CxcWFdu3akZCQwPz58wtdd+TIkWzfvv2m1zE1NS3wO0lISMDGxqbA+o4Gg4GffvoJKN5Ix5JeM19QUBCZmZl89tln5ObmFlrHUe4/3Rr5YmdlxUehoYRGRLB07z4mr12Hp6sLLWvlLXMQk5TE5iNHiUlKKlG+s/HxbDl6DFsrS2pUqMDmI0cL/YO8v7enH2lBdEIC7y77hVX7DxAaEcE7S5YRnZDAoBbNMNf6hFLGubfywdzGiv2zfuPsloNEbviTQ/PXY1+1Am6N8oLzaXHJxOw7TlpcconyFTedqZkpXl2bkXo+noiZq4gOP0Tk73/wx/SVYGqSt7uqSBlWGvopgOfjjTG3sWT/rN+I3PAnZzcd4M+vV2FqYUaNjv7/3g0RKYWCunXDzs6eDz8YS+jKlSxdspTPJ02mZs2atGzVEoCYmBg2b9pETExMifKVJF237sGcPXuG8Z98yto1a/lp3nw+nzQJX19fWl61YaWIPDhuaerx2rVrbxgEy9+B1tLSkv/85z889dRTWFtbM2/ePHJycnjjjTeKzFexYkWCgoKYN28eaWlp+Pn5kZCQwA8//ICLi4sx2JN/7eXLl5Obm0uPHj0YPHgwq1evZtiwYfTr149atWqxZ88efvnlF1q3bk3r1q1vpak31K9fPxYvXszIkSMJCQnB09OTDRs2sHXrVj7++OMS7wA1dOhQNm7cyP/93/+xefNmfH19yc7OZufOnfz666888sgj9OnTp8T1bNeuHS1btuSTTz7h6NGjNGjQgH379rFs2TKGDRuGo6MjvXv3ZunSpYwdO5aDBw/SsGFDjhw5woIFC6hfv36BHYSvx9nZmZ07d/Lzzz/TsmVLWrduze+//87gwYN5/PHHSU5OZtmyZcaRpjeaZl1czs7O7Nq1i9mzZ+Pv74+vry+Qt/FJrVq1CAsLIyAggIoVK972teTeKm9jw5huQXy/bTsLd+/BytycxtWrE9IswLh5yOFz55mxYSMvtm1DxSvT5YuT79CVNThTMwzM2LCxyOu3qp03mreppyfvdOnC4j17+GnnLgA8XSrwxuOP08ij2l29ByL3A0t7Gxr+pxMnQndyeu0+zCzNqVDXA8/HG2N6Zbpv0qkYjizaQu0nWmLjXK7Y+UqSrqKfF6bmppzZuJ8TobswszTH0asy1Ts8jK1r4YeVImVJaemn1k72+L7YhVO/7ubs5gOQCw41KuL5eGPjNUXKKgcHB97/4H2+//Y7Fv68EEtLK5o0acyTA0KMS3wdPnSY6dOmMWToUOP3neLkK0m6gIAAXh7+CsuX/cLc77/HwcGBrkFBdO/R/ZaXihKR0u2WAoXjxo274fn8QGGjRo3o0qUL06ZNIzk5mcaNG/Paa68V2H34WmPHjqVatWqEhoYSGhqKjY0NzZs3Z+TIkcb1Cb28vBg4cCBLlixh//79BAQE4OHhwYIFC/jiiy/49ddfWbBgAVWqVGHo0KG88MILd+VFzNramrlz5zJ58mRCQ0NJTk7Gy8uLyZMn39IINgcHB37++WdmzZrFmjVrWLVqFaampnh4ePDWW2/x5JNPGjdeKQlTU1OmTZvG//73P1asWMHy5cvx8PDgvffeo3///kBeUPfbb7/lf//7H7/99hvLly/Hzc2N/v37M2zYsGJN3f6///s/Jk6cyNixYxk7diz9+vUjKSmJhQsX8uGHH+Li4kKjRo348ssv6devH+Hh4Tz99NMlbs/Vnn/+ef7++28mTZpEz549jYFCyBtVOGnSpAK7Usv9rYqjI291vn7fauNdmzbetUucr0O9enSoV6/Y9ahftQr1qxbeCV1E8ti6OuDz9PVHwFd8+CEqPlx4w7Ob5StpOtcGnrg2uP40SpGyrLT0UxvnctR98tGbphMpi6pUqcJbb4+67vk2bdvQpm2bEucrabpHHnmER24w3VlEHiwmuXdp5f127dpRtWpV5s6dezeKF7mpmTNnMnXqVLZs2VLkVPeSip865Q7USkTupiE+Gfe6CiIiIg+EGY0H3+sqiMhNOJYrG7Mk7tZ3caeXh9+Vcu93GissDySDwcCSJUsIDAy8I0FCEREREREREZEH3S1NPZbiiYuLK9aGHdbW1pQrp3VY7oSYmBjGjRvHsWPHOH36NJ999tm9rpKIiIiIiIiIyH1BgcK76Iknniiw3fz19OjRg08++eRfqNGDz8HBgd27d5OVlcWYMWOMO2aLiIiIiIiIiMiN3bVA4e+//363ir5vfPbZZ2Rk3Hy9LDc3t3+hNmWDtbU1W7ZsudfVEBERERERERG572hE4V3k7+9/r6sgIiIiIiIiIiJSLNrMRERERERERERERBQoFBERERERERERKY4RI0bg7e1NfHx8oXNvvvkm3t7eDBkypNC5y5cvU69ePV599dV/o5oAnDlzpsR5FCgUEREREREREREphiZNmgAQERFR6NyOHTuwsLBg165dZGdnFzgXERFBdnY2AQEB/0o9p02bxrPPPlvifAoUioiIiIiIiIiIFMP1AoWnTp3i3LlzdO3aleTkZA4ePFjg/N69ewFo2rTpv1LP7du3FwpWFocChSIiIiIiIiIiIsVQq1YtHB0d+fPPPwscDw8Px9TUlBdffBETExO2b99e4Py+fftwc3PD09Pz36xuiSlQKCIiIiIiIiIiUgwmJiY0btyY/fv3FzgeHh5OnTp1qFGjBt7e3oSHhxvP5ebmEhERYRxNmJ2dzTfffMNjjz2Gj48PLVu2ZMyYMcTFxRnz7NixA29vb5YuXUpQUBANGjRg1KhRAOzcuZOQkBAaN26Mn58f/fr14/fffzfmbdeuHTt37iQqKgpvb2+mTp1a7PYpUCgiIiIiIiIiIlJMTZo0ISEhgVOnTgF5gcCdO3ca1x9s1qwZe/fuxWAwAHD8+HESExNp1qwZACNHjuSzzz6jdu3ajBo1iscff5xFixbRv39/kpKSClzrgw8+oGnTprz++uu0b9+eEydOMHjwYHJzcxk5ciT/93//R1paGkOHDmX37t0AvP3229SsWRMnJyfGjx9Phw4dit0289u9OSIiIiIiIiIiIveT9u3b3/D8unXrrnsuf2Tgn3/+SY0aNThy5AixsbHGQGBAQADffvste/fupVmzZuzbt8+Yb9OmTfz2228MGjSId955x1imv78/I0aMYMaMGbzxxhsFjr/77rvGn7/++mtSU1P58ssvcXZ2BqBz587069ePQ4cO0bhxYwIDA/nuu+/IyMggODi4RPdFgUKRYnJ6efi9roKI3MRP97oCIiIiIiJyR9217+LLlt9y1jp16lCuXDkiIiIIDg4mPDwcMzMzGjduDOSNODQzM2Pnzp3G0YWVKlWievXqzJkzB4DBgwcXKLNTp05MmTKFdevWFQgU5m+ekq9SpUoAjB07lueeew4fHx+cnJz47bffbrk9V1OgUEREREREREREypQbjRi8GVNTU/z9/Y0bmoSHh+Pj44O9vT0A5cqVo27duuzZsweAP/74wzgt+ezZs5QvXx4XF5dC5Xp5ebFp06YCx/JHDeZ7/PHHWbNmDWFhYYSFheHq6kqbNm3o0aOHMVB5O7RGoYiIiIiIiIiISAk0btyYw4cPk5GRwe7du43TjvMFBAQQERFBXFwcJ0+eNE5Xzs3NvW6ZOTk5WFhYFDhmZmZW4GcLCwu++OILli9fzssvv0yVKlVYsmQJISEhzJw587bbpUChiIiIiIiIiIhICTRt2pTMzExWrVpFUlKSccRgvmbNmpGamkpoaCi5ubnG81WrViUpKYlLly4VKvPkyZNUrlz5hteNjo5m9+7deHt789JLL/Hzzz+zfv16atSowaxZs267XQoUioiIiIiIiIiIlED9+vWxtbXlp59+wsLCAn9//wLn/f39MTc3Z+nSpVStWpVq1aoB0K5dOwC++uqrAunXrl3LyZMnadu27Q2vO2PGDJ5++mliYmKMxypVqoSbmxumpv+E+UxNTcnJySlxu7RGoYiIiIiIiIiISAmYm5vj5+fH1q1bady4MdbW1gXO29nZ0aBBA/bt20ePHj2Mx9u0aUP79u35/vvviYmJISAggFOnTjF//nyqVatWaJOTa4WEhPDLL78QEhJC3759cXBwIDw8nJ07d/LKK68Y0zk7O7Nr1y5mz56Nv78/vr6+xWqXRhSKiIiIiIiIiIiUUP6OxNeuT5gvf7px/vqEACYmJkyZMoXhw4dz+PBhxo0bx+rVq+nbty+LFi2ifPnyN7ymt7c3c+bMoXr16syePZuxY8dy9OhR3n33XYYOHWpM9/zzz1OjRg0mTZrE4sWLi90mk9wbraIoIiIiIiIiIiIiZYJGFIqIiIiIiIiIiIgChSIiIiIiIiIiIqJAoYiIiIiIiIiIiKBAoYiIiIiIiIiIiKBAoYiIiIiIiIiIiKBAoYiIiIiIiIiIiKBAoYiIiIiIiIiIiKBAoYiIiIiIiIiIiKBAoYiIiIiIiIiIiKBAoYiIiIiIiIiIiKBAoYiIiIiIiIiIiKBAoYiIiIiIiIiIiKBAoYiIiIiIiIiIiAD/D7qEKyvGGkUyAAAAAElFTkSuQmCC" }, "metadata": {}, "output_type": "display_data" @@ -763,12 +775,12 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 48, "outputs": [ { "data": { "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAABTUAAAN2CAYAAAAolW1tAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3QUZRfA4V/apvfeC4RQktB770iR3qUoCigICIKKCgiCFEERkSJVioDSCb1X6RAgBFJIJZUUUkmy2e+PuCOBgOiHInqfczzq7szs7GZnZ+a+971XR6PRaBBCCCGEEEIIIYQQQoiXhO6L3gEhhBBCCCGEEEIIIYT4IySoKYQQQgghhBBCCCGEeKlIUFMIIYQQQgghhBBCCPFSkaCmEEIIIYQQQgghhBDipSJBTSGEEEIIIYQQQgghxEtFgppCCCGEEEIIIYQQQoiXigQ1hRBCCCGEEEIIIYQQLxUJagohhBBCCCGEEEIIIV4qEtQUQgghhBBCCCGEEEK8VCSoKYQQQgghhBBCCCGEeKlIUFMIIYQQQgghhBBCCPFSkaCmEEIIIYQQQoiXlkaj+cPrFBcXA6BWq//U+kIIIV48HY38ggshhBBCCCGE+IcrLi4mNDSUixcvoqOjg6GhIXPmzGHDhg34+Pg8cR0dHR10dHSeuu2CggJUKtVfsdtCCCH+IpKpKYQQQoiXglqtpqio6EXvhhBCiL9BUlISu3btoqCgQHls//799OvXj+XLl3Pnzh0qVKjA6NGjsbGxKbXuw3k7urq6jwU0Hzx4wP79+4mIiGD+/PnUqlWL8ePHk5yc/Ne+KSGEEM+VZGoKIYQQ4i+TlJRETk4OoaGhbN68meXLl7/oXRJCCPESWLJkCStWrODnn3/G3d0dgLZt25KTk8NXX32Fr68vZmZm6OjooKenp6xXXFyMrm5J7k5ycjIREREA1K5dG319fQBu375Nv379MDU1xdfXFw8PD2rVqkWTJk0wMzP7m9+pEEKIP0v/Re+AEEIIIV5+OTk5mJqaKv9/5swZpk+fTnh4OK+//jpWVlbo6emRkZGBlZWVspxGo1GmBmpvQh+Vl5dHfn4+ISEhbNiwgSpVqtC/f3/Mzc3/6rclhBDiBenevTvNmjXDwcEBtVqNnp4eRkZGuLq6Urt27VLLaqeOazQadHV1uXPnDjNnzuT06dMYGBhgbGxMxYoVGT58OLVr18bc3JzGjRuzZ88e+vfvz9ChQ9FoNL87RV0IIcQ/iwQ1hRBCCPF/+eyzz9iyZQs7duzA09MTjUbD0qVLSUlJYdKkSTRr1gwzMzN69uyJhYVFqXUfzbC5f/9+qWUuXLjARx99hKOjIyYmJsTExODj4yMBTSGE+BfRaDRKQFLLzs4OOzu7Ust5eXlx7do1vvrqK8qVK0fNmjWZMWMGGRkZLFmyBDMzM5KSkvjggw9ITU1l8uTJuLm5ce3aNTZt2sS0adNYsmQJtra2WFtbY2xsTPXq1QEkoCmEEC8hCWoKIYQQ4k/RTvHr3LkzDRo0UDIwU1JSuHfvHtWqVaN3796lgpaPyszMZMWKFezZs4f09HR8fX1p37497du3x8bGBhsbG+zt7bl06RI9evTg888/V6YPCiGE+Hcoq5GPWq3mypUrpKenU61aNT7//HP27duHgYEBS5YsoVevXtSsWRNTU1NCQ0PJycnBzMyMU6dOcevWLVatWqUELOvVq0fjxo3p0qULmzdvZuTIkbi7u1NQUCDBTCGEeInJXYEQQggh/hRtRk3VqlVL3RQ6ODjg5eVFYmIiCQkJqNVqXF1dmTdvHtnZ2UydOhW1Wk1BQQFffvklBw4coEOHDjg6OnL27FmmT5/OlStX+PLLL3FwcMDCwgKVSsWbb76Jg4PDi3q7QvyltJlqz9KlWYiXgba8iEajQU9Pr9T3+uGp3jk5OYSFhZGcnIy3tze+vr4AZGRkMGvWLGJiYjhw4ADt2rXDzs6OtWvXMnr0aAYOHIiBgQHly5dn7969ZGRkYGdnx/nz57GwsKB69erExsZy69Ytrl27RlhYGAAnT55k+PDheHh4UFxcLM2BhBDiJSZBTSGEEEL8LrVaDVAq6/LRAExKSgrW1tZ89dVXXLhwgfv379OqVSsqVarE1q1bOXnyJLGxsUydOhU9PT3Onz/PTz/9xPTp02ndujUWFhYMHTqUlStXMmvWLDp37kzjxo1xdXUlPz9fydCUumfinyQ7O5uUlBS8vb1LNSj5PWq1ulQtWQlmin+aY8eOsX79egYPHkz9+vWf+P1+0m/yo+VFHl2+oKCA2bNnExQURG5uLubm5hgZGdGzZ0+GDRuGubk51atXJyIigsLCQtq2bUvFihVZu3YtgFLH2c3NjYKCAmJjY/Hz8yM1NZWUlBSqV69OXl4eJiYmODs74+HhwYQJE6hQoQL6+vo4ODhgZmZGZGTkHzp2hRBC/HNIUFMIIYQQSpYYUOaN3cM3ppmZmejp6SkdYrOzs+nbty8FBQXs27ePlJQU3NzcuH79OqNHj6Zhw4YAVK9endu3b5Ofn4+RkRGbNm2iXLlydO/eHSjJ1omNjVVeZ/v27TRs2BBvb28A4uPjcXFxkaCm+Me4d+8e/fr1w97enrVr1z527Ggz1YDHgjuP/n9ERAR37tzB1NSU+vXr/7U7Lv6zHv79TE5O5saNG0RFRWFtbU2jRo2ws7NTlklNTeXYsWPUq1ev1HdS+73W1dUtFYx/9Lc5LCyMY8eOceHCBdRqNXXr1qVXr15YWFig0WhYv349mzdvZujQodSoUYPs7GwWL17MmjVr6NWrF9bW1jg7O5OTk0NcXBw2NjY4OjpiZWXFnTt3yMrKwtzcHAcHB4yNjYmIiKBVq1bY2tqiUqkYNGgQrVu3xsTEBEtLS2xsbIiNjSUlJQW1Wo2trS0ODg6Eh4dTVFSESqX6e/8YQggh/m8S1BRCCCFecnfv3uWXX36hVq1aeHh4/Kmg3+9liW3atInt27dz69YtzM3NqVGjBm+88QZVqlTBzMwMZ2dnQkJCyMnJYdq0aRw5coRx48bh7OxMYGAgAC4uLgDcunWLqlWrkpycTEpKCoMGDSI2Npbk5GTlRrN+/frUrVsXXV1dnJ2dAbhx4wa1a9dWgq9CvGi2trZMnz4dY2PjMp9/UqYawIkTJzh9+jTt2rXjxx9/ZPfu3ajVaszMzBg8eDD9+/d/rLGWEP8vHR0dsrKy+Oabb9izZw+FhYUYGxuTm5uLpaUlgwYN4rXXXgOgSpUqGBsblxps0m5D+73Ozs4mKSkJY2Nj5TceSgahPvzwQ3Jzc/H09KS4uJh58+Zx+vRpFixYgKmpKVu2bKFu3boMHjxYOYZq1qxJfHy8koXp6uqKrq4uYWFhBAYGYmxsjKenJzExMdy/fx9zc3Osra1xcHBQppcHBgaybds27OzsqFKlSql9X716NWfPnmXBggXY29vj7e1NTEwMubm5EtQUQoiXkAQ1hRBCiJdAcXExsbGxaDQavLy8gN+yYk6ePMmkSZOYNWsWHh4epdZTq9XKck9r2HPnzh2Cg4O5f/8+VapUoUaNGspzu3fv5ptvvqF69eqMGjWKhIQE1qxZQ3x8PPPnz8fR0RF3d3d++eUXIiMjCQgIwMPDAwsLCyIiIigoKEClUuHm5gZASEgIVatWxd3dneDgYAwMDOjVqxeenp64u7tjZ2eHjo4ODx48AMDZ2Rlra2uCg4OV9y3EP0WtWrXKfLyoqIhbt25x/vx5kpOTqVatGg0bNlSCNVevXmXLli1s376d8uXLs2DBAnR0dFi+fDkLFy7Ew8ODDh06yLRY8aep1erHfveTk5MZOXIkd+7c4fXXX6devXqYmJgQGxvLkiVLmDNnDvn5+bz55pu4u7tjampKTEwM8FsWf3R0ND/88AOHDh0iJSUFAwMDKleuzIgRI6hbty76+vrMmjWL9PR0pk+fTsWKFTExMWHZsmVcvnyZ1NRUTE1NcXR05OTJk8ybN4/GjRuj0WiUQTMte3t7rK2tuXnzpvKYr68vJ06cIC0tDVdXVywsLHBzc+POnTuo1Wrq1atHpUqVWLduHQEBAVSqVIm8vDwOHjzI2rVrad68OV5eXuTm5mJvb8/Bgwe5d++e0uxOCCHEy0OCmkIIIcQ/lFqtZsuWLfz000+EhoZiYGCAjY0N9evXZ+DAgZQvXx6AgIAAdHV1SU9PByiVcfnoDe2jN7nZ2dlMnjyZEydOoFKp0Gg0qNVqhg8fTs+ePTE1NWXlypX4+fnxySefYGdnh56eHnXq1OHOnTvKa2nrCYaHhxMQEKBkb4aHh1NYWIhKpcLZ2RkzMzOuXbtG3759qVChArt376Zr16506NCBoqIipW7msmXLCA4OZt68edjZ2eHs7Kxk4cjUc/F30pZmeFpgMTIyEhMTE5ycnJSpuYsXL+aHH37AzMwMHR0dfvjhB2rXrs2YMWOoWrUqAQEBQEm254wZM5Sgv42NDf369ePUqVN06NDhb3mP4t/nl19+4YcffuC7774rFRj/7rvvuHHjBmvXrlU6gwNUrFiRmjVr0qlTJ3bs2EG/fv2UwGNiYiLp6elYW1uTmZnJ7NmziYqKonPnznh7e3P79m3Wrl3LnDlz+Oqrr/D29iYhIQEHBwccHR2xtrYGYMSIEaX2cezYscyePZs1a9awZs0aoKROpp2dHd26dWPYsGHY2tri6OjI7du3lfUqVarEtm3bSElJAcDExAQvLy/27t1LcnIyPj4+vP/++7zzzjsMHjyYxo0bU1xczI0bN6hbty6ffvqpsl67du3w8vLC0dHxr/tjCCGE+MtIUFMIIYT4B8rOzubbb79l69atNGrUiO7du2NgYMClS5fYtGkTZ8+e5bvvvqNcuXI4OztjaGhIdHS0khWp3cbJkyc5fPiwckPYokULevbsqUzpnj9/PkePHmXMmDHUq1ePvLw8Zs+ezfbt22ncuDHlypXDyMiI6Ohorl+/TqNGjSgoKKB27do0b95c2V9vb29UKhW3bt0CwMzMDE9PT0JDQ8nNzVVujrXT1AEaNWrEN998w86dO+nQoYMS0AwJCWHhwoV4e3ujr6+PlZUVrq6uHDhwAHg8UCvE/+PhupfaGoEPe7g0Q1JSEtnZ2bi5uWFoaAjAwYMHGTlyJIMHD+bDDz9ER0eHDRs28O2339KnTx/69u2LkZERp06dYurUqeTm5rJx40Z8fHzQ09PDwMBAaXSiUqlwcnLC3d2d8PBw5fWF+CM0Gg2nTp3i8OHD5OTkKNnBSUlJ7Ny5k1dffRV/f39lWR0dHYqKirCxsWHdunXKbAAAHx8fTp48SVxcHNbW1qxbt45Dhw4xZcoU+vTpowyUmZiYsGjRIsLCwvD29qZ169bMmzePgQMHUrFiRfT09PDx8aFmzZoEBATg6OhIpUqV+Pbbb0lLS+PatWvExcWRnp7OiRMnWLFiBVWrVqVGjRq4ublx5coV5RipUKECRUVFJCUlAWBsbIy3tzf37t3j7t27ODs707BhQ7Zs2cLPP//M5cuXMTIyom/fvrRp06bUNPm6detSt27dv++PI4QQ4rmSoKYQQgjxD7R582ZWrVrFhAkT6NGjh1Jbr1u3bjRo0ICxY8cyadIk5s+fr2QyxsTEkJ2djY2NDcXFxSxbtozdu3fj4uJC5cqViYyM5LvvviM2NpbJkyejUqm4du0aDRs2ZMCAAcprr1ixgoyMDBwcHAB47bXXmDhxIiNGjMDCwgJ9fX28vb3x9/enSZMmNGzYEGdnZywtLYmIiAB+y5w5duwY9+/fx97eHltbW9zc3Dh79iwAfn5+vP3223z77bf069ePNm3aoKury9atW7Gzs2PixIkAqFQq/Pz8iI+PJzMzE0tLy7/zTyH+5X6vNENsbCxff/01p06dUqarNmnShAEDBuDj44Obm5uSzQYl03t/+OEHKleuzJQpU5TteHp6kp2dzfz589m/fz/NmzfHxcWFzMxMAGUwws7ODicnJ27fvs2DBw+U4KkQjyqrEZU2K9POzg6A9PR0Jah58uRJcnJyaNasGQYGBqUyOLWDStqAZmFhIQYGBvj6+rJv3z6ioqIICAjAycmJYcOG0bVrVwCl3mVoaCi6urpERkYC0KdPH6ytrdm3bx/p6ekkJiZy7NgxVq5cSbVq1VixYgVGRkbk5eVhaWlJ+/btlffVpEkTXn/9dZKTk1GpVHh7e3P06FHu3bundDEHuH37tpLh7+joiKWlJfn5+cpnU65cOSZMmCADA+IvpVarycvLU5on/pH1dHV1f3cmgBDi6SSoKYQQQvzDZGRksGTJEpo0acIbb7yhPK69gW3fvr2S0aW9cS1fvjy3bt0iJSUFGxsbtmzZwuLFi3n99dcZPHgwpqamFBYW8vXXX7N//37CwsKoXr06lStXZv369YwePZoGDRqg0WhwdHSkatWqyuu2atUKR0dHbty4QWRkJFFRUcTHx7N27VoOHTrE5s2bcXV1xc7OTmkoYWRkhKenJ7m5uSQlJSkZn15eXhw5coS0tDRsbGwYOXIkFhYW7Ny5k++++47CwkICAwMZPXp0qVqFI0eOZOTIkX/TX0D8Gzyt8/jDYmNjuXjxIrdu3cLCwoLmzZtTsWJFoCTbec6cOQQHBzNs2DDs7e05f/48P/74I3p6enzyySe4uLhgbW2tBHP09PSIjo5m0KBByn5ASfC0VatWLFiwgCtXrtCmTRvc3NyIiYkhNTUVOzs7JevN1dWVixcvEhMTg6+v71/5MYmXWFkBeV1dXRITE7l48SIAnTp1wsHBgWXLlpGbmwuUBFN+jzbI4ufnp9R0hpKBNShp3LZlyxYuXLhAXFwc9vb26OrqEh0dDYC5uTk9e/akZ8+exMfHo1arUalUrFy5kh9++IGTJ09Ss2ZNevXqRevWrXn33XcpLi4mJSWFrVu3AijZpHZ2dhQUFHD79m2cnZ2xsbGhYcOGeHl5Kcd4ixYtlAEz7Wfz8L+FeF6Cg4M5cuQIUVFRDBw4kAEDBjBhwgQGDBjw2PdNW74EeCxwqT12tevcu3cPIyMjZRBCCPFsJKgphBBC/M0enur6MO00wAMHDpCWlsYrr7wCoGSiPHwD26pVq1LrVqxYUWmcACUd0atVq8bo0aMxMjJSlrOxsSE3N5eYmBiqV6/OkCFDuHv3LseOHePIkSMUFBQA4OjoSMeOHRk/fjx6enoEBgZSrVq1UpljS5cuZd68eYSEhFC/fn1cXV05c+YMKSkp2Nvb4+joiJGREREREdStWxc9PT0l4/TWrVvUr1+f4uJiBg4cSPv27VGr1VLXTPxhTwpePhrw0U5d1R5ngNJkS6PRYGFhQXJyMuvXr+ezzz6jRYsWJCUlceDAAWbMmEGXLl3Q0dGhY8eO1KlTB3t7ewAsLCxwcnLi6tWrZGVloaOjg7GxMbq6uqXKQUBJcMbOzk6ZNuvt7c3Bgwe5c+dOqaCmt7c3RUVFhIeH4+vrW2qfxb9fcXGx8jd/UgaXWq1WGlFFR0fj4eFBixYt8PDw4Pr169y5cwd9fX3c3d2ZMGECzs7OyrkgJyfnd/dBe+z4+PigUqmUZkEAO3fuZMGCBZiYmFCvXj2aNWtG/fr1adCgAXfv3gUgPz+f3bt3U6lSJSpXrqysW7t2bVavXo1KpcLW1hZ/f39Wr15NcHAwLi4uxMfHExcXx+TJk5WMTG2TOh8fHwAMDAxYvnx5mfsrxPOSnp7O5s2bqVGjhtK86vbt24wbN44HDx5QtWpVrKys+PrrrylfvnyZv9EPly95mEaj4eDBg+Tk5KBWq5k+fTpWVlZMnjyZpk2bym++EH+ABDWFEEKIp1Cr1YSGhuLp6fnMU4t+r7GI9vHi4mISEhKwsLDA3NycoqIiDAwMlBtOY2PjUss/TcWKFcnLy1OCJe+++y6jRo0iKSmJPXv2cPr0aU6ePElGRga6urokJCQA4OrqysKFC8nOzub69eskJSVRUFDAzz//zPLly+nevTtmZmbMnj2bV199lSZNmgAlAaKcnBx0dXUxMDAAwM3NjczMTEJDQ7G3t8fCwgIjIyPu3r2rBGu6du1Ky5YtlSZH2vemzTgV4mnK6ub8pOnjcXFx/Pjjjxw/fpzc3FyqVq1Kz549qV+/PgBZWVl88MEHVK5cmZEjR2JjY0N6ejpjxozh3LlzNG3aVAmC7tmzB0dHRypUqEBWVhbNmjUrlU3j4eHByZMniY6OpkKFCjg4OBAdHa2Ug9AOTOTn5ytZ0wDu7u5AyY1y7dq1le35+PhgZGTErVu3eOWVV+QG919K25hNV1e31O/8w/+t0WiUc8PD34N169axaNEiLC0tMTIyYvv27Wzbto3p06fTqlUr7O3t+fDDD9HX16dRo0YASjMqbeDxSd8ptVpNamoq1tbWuLu7Y21tTVxcHGq1muLiYhYsWICZmRlz5syhXLlyynoqlYq4uDhSU1PR19dn5syZ2NnZMWzYMLy8vLh79y7ffvstXl5eyjlg5syZtGrViv3795OUlESFChUYPnw4DRo0UKbE+/v7K1mbQvxdYmNj2b59O3Z2dgQGBqKvr89PP/1EbGws06ZNo0OHDhgYGODt7V1qvYeP04iICK5du0Zubi5169ZVjpfCwkIOHDjAjh07CAgIoHfv3gQEBCiBe/m9F+LZSVBTCCGE+FVcXBwRERHcuHGD8+fPc/v2bTIzMykqKmLRokU0b9681MXqkwIND4/Ml7XMwYMHWbx4Mbdu3cLU1JRKlSrRq1evUsELfX195YbuSUHNh+uhaS+q4+PjlX24c+cOX375JTExMTg7O/PGG2/Qrl07evToQWxsLPn5+RgZGREaGoqHhwcNGzZUtm1kZMSHH35IfHw81apV48qVKxw4cIBevXpRoUIFbt++zZ49e+jRowd+fn5AyRT4ypUrK+/X19eXQ4cOlQr+ODk54eTk9Af/MuK/qKyM5keDl5GRkZiZmbFnzx727NmDk5MTX3/9Nenp6cyYMYPbt29Tt25dLCwsOHDgALt372bu3Lm0b9+eqKgoMjIy6Nq1q1Juwd3dnZ07dyrfWXd3d9566y2+//57jh8/DoClpSXu7u5UrVqV3r17U6FCBTw8PNBoNNy+fRt/f38CAgI4ceKEkpGsPZbj4uIIDw+nXr16QEkw1MLCgrCwsFLvy8nJiby8PG7cuPEXfLLi/xEfH8+NGze4cuUKN2/e5PLlyyxcuJCGDRuW+k1+Ftrf+kcFBwezZs0aLl68iL6+Pg0aNKB79+4EBAQAcPXqVb744gv69+9P3759MTY2JiQkhGnTpnHlyhWqVKlC5cqV8fLy4ty5c8p2K1WqBEBoaKjy+mXR1mOePXs2fn5+uLi4kJCQQGpqKkVFRaSlpdGhQwclQFNUVMSKFStISUnB3NycyMhI6tSpwyeffMKyZcv48ssvKSoqIjc3l4CAACZOnIibmxtqtRoTExNeffVVXn311Wf+3IT4O1SsWJElS5Zgbm6uPGZlZYW+vj6BgYGYmJgoj6empmJqaoqxsTE6Ojrk5OQwc+ZMdu/ejUqlQl9fn/nz59OrVy/GjRuHnp4etWvXZseOHdjb2/PBBx+8iLcoxL+CBDWFEEL8Z+Xn57NkyRI2bdpEdnY2Dx48UJ6rUqUKAwYMwNnZGXt7e6XGXnFx8WN1kB6+kc3JyeHmzZvEx8fj6elJtWrVSr3miRMnmDJlCn5+fnzyySdkZWURFBTE2LFj0dXVpW3btpiZmaFWq8nKynrq/j988+zk5ISVlZXSLMjMzIxx48aRmJiodDZ3cnIiOzsbCwsL4uLiyM3NJSoqiuHDh9OqVSvefPNNDAwMSE1NZfPmzdjZ2SlZpF9//TXr1q3j8OHDbNmyBUtLS7p06cLgwYOVC/4uXbrQpUsXZZ9UKlWpqbfi3y0uLo6QkBAiIyMpKiqidu3aT+0qrM1oLmt63qOZzhkZGVhZWbF06VKcnJzo1KkTGRkZtG/fnubNmxMXF4e3tzcVKlSguLiYNWvWcObMGaZOnUqLFi1QqVR88MEHvPnmm8ydO5eKFSvi5eWFj48PH330EQcPHsTDwwM9PT2qVKlC1apVsba2RldXl7fffps2bdoQFRVFaGgosbGxxMXFsW7dOu7fv69kqxkaGhISEkK3bt3o2LEjQUFBfP3111haWmJhYUFsbCyzZ8/GxsZGCeC4uLjw4MEDrl69CvzWrKVcuXJs3rxZyayTJhIvzo0bN9i4cSPnzp0jPj6ewsJCTE1NcXFxwcfHh759+yoDNQ9n4T/8/1B6gKuwsJCIiAhMTU1Zv349J0+epHHjxkyYMIEbN24wefJkiouLadu2Lfn5+ezZs4edO3eydOlSatasSUREBLq6uvTo0UMJLLq4uNCwYUMlw9/AwABXV1dycnKUGsZWVlZUq1aNkydPEh8fj6ura6n90pZLuHHjBrdu3VJmDXh7exMSEkJCQgL+/v74+Piwbt06DAwMKF++PGfPnuXYsWNUr16dixcvsmnTJurUqUPnzp2pV68ely5dwtDQEF9fXyU7WaPRyJRx8Y+hLfmgq6urHA8qlQoXF5dSy3l4eFBUVMTXX3+Nq6srnTt35tq1a0ydOpWVK1dSv359CgsLmTlzJjt27GDMmDHUqVOH+/fvs2/fPr7//nvc3d3p1auXsu0KFSr87e9XiH8TCWoKIYT4z9LR0cHS0pLmzZtTuXJl/P39OXXqFPPnz6dNmzYMGzbssemuD3eYDQ8PJzc3Vwlcbt26lQULFnDv3j3MzMwoLCykSZMmzJgxA5VKRUFBAQsXLsTNzY0ZM2Yo9SPffPNNunfvzsKFC2nSpAk+Pj4YGBgQHh7+1O7HGzZs4MKFC4waNQoPDw9cXV2Jjo6moKCA4OBg7ty5w9tvv02vXr2UdS5dusTdu3cxNzcnOTmZihUr0rFjR1auXMnZs2dxdnYmKioKfX19Jk6cSNWqVVGr1fj7+/PZZ5+RmpqKvb29MuVc/Dfl5eWxZcsWrly5wuXLl0lMTKSoqAgzMzMsLS1JSUlh3bp19OnTh9GjR5e5jadlNOvo6BAcHMzixYs5e/YsFhYWDB06lHnz5tGyZUuaNGmCtbU1VapU4ciRI4wfP55+/foBJYGkffv20a5dOzp16gSUBGsyMjJwcXHh5MmTHD58mLfeeovx48ezfPlyLly4wPHjx8nOzgZKAkQjRoyge/fu6Ovr4+vrS0BAgLI9jUbD0KFDOX/+PBqNBjc3N6ytrZUmKQ0aNGDWrFlMmjSJ1157DQ8PD5KTk7GysmLmzJkEBgYqr7N8+XLl5vbhTtTagRTxYmgHq6Kioti0aROenp7MmjULU1NTHB0dsba2xtTUFENDw8d+D7V/R7VaTVxcHLq6ukowD+DixYsMHjyYtm3bEhkZSdWqVfH29kaj0bBw4UIyMzP5+uuv8fX1xcjIiPHjx9OlSxe+/PJLVq1aReXKlTE2NuaNN96gWbNmWFlZYWpqSvXq1QkICMDU1LTUa96+fVvJDu7ZsyfXr19nzZo1jBw5slRZFZVKxfXr1/nll19o1aqVEjCtUqUK27dv59atW1SrVo2RI0eyZMkSlixZApQMqg0YMID27dsTHh6Os7Ozsk1HR0elPvTDZHqt+Cd50sBRSEgIBw4coFu3bhw8eJBZs2ahp6fHL7/8Qr169TAwMMDZ2Rk9PT3S09MBSExMZNeuXYwbN46BAwcq26pfv77SaK59+/a4u7tjbGyMWq1+rP6yEOLZSVBTCCHEf5ahoSH9+vVDo9Ggr6+Pnp4epqamzJ8/X6k5+fCFbnJyMp9//jmdOnViyZIl3Lx5k8aNG7N48WIOHjzI5MmTad26Nd27d0dPT48LFy6wYMECTE1N+eijj8jMzOTKlSvMmzcPR0dH8vLyCAsLIy4ujvz8fCIiIggNDSUgIAA3Nzd++eUXevfurUxtfTjLx8DAgBs3brB37166d++Oh4cHFSpU4OTJk9y/fx9TU1MsLS05fPgw9erVw9jYmLNnz7Jq1SpMTEy4ffs2u3btomLFiowcOZLGjRsTFBREUVERDRo0oGHDhkrXZW0gt6ysBfHfVFRUxLRp0wB4/fXX8fT0xM3NTemAnJaWxqeffsqiRYto166dUqJAGyjSDgrcvn0bQ0NDmjVrViowFBsby/Tp00lNTWXYsGHk5eWxfv16AB48eEBmZiZWVla4u7tz48YNqlevrmSoRUZGotFoCA0NZdy4cUqGWX5+Pra2tlSrVk2p4dqkSROaNGlCRkYGt27dori4mMTERGbOnMn3339P9+7d2bdvHz/99BPTpk3D09OTBw8eEB4eTmJiItbW1ujo6ODo6IiZmRnBwcFAybHy6quvUqNGDYKCgkhLS8PPz486deoo2Zdaj2Zzi38G7e9txYoVsbKywtramvbt2z/TupcvX+bbb7/l3LlzGBgYYG9vT5s2bRgxYgRGRkZ4e3tjYmLCvn37WLJkCXXq1MHAwID09HSOHj3KZ599pgS+s7OzSUtLw9HRkfPnz3Pjxg1q1KjBhx9+yKZNmzh9+jSZmZnk5eUBJVlfEydOpF69esrv9bVr15SgZseOHbl27RqrVq1CR0eHN954Q2lqFRwczPz581Gr1XTu3BlLS0ugJDvtwYMHSnmTJk2a4O/vT1JSEs7OzlhZWSnvXdtAS4gX7UlN5B6VnJzMtWvXiImJwd7ennbt2ilZ8+fOnWPRokXUqVOHxo0b4+npyahRo6hduzafffYZDg4OQMlAlHZQ6/r16+Tl5eHn50dERAQXL14kODiY2NhYIiIiMDAwIC4uDk9PTxwdHZVyQBLUFOLPkaCmEEKI/wS1Wq1MLXo4UPnoRaQ24HDnzh2gdDaJrq4u+/fv5+zZs9SuXZt33nkHGxsbAJYvX061atWYPn260mG2bt26pKamsm3bNvr27atMC//mm2/48ssvSU5Opri4GAsLC/z9/alXrx4mJibo6+vTtm1bFi1axMmTJ+nXr1+pae8GBgYkJiZy8OBBqlSpQvXq1YGSZgp79uwhLi6ORo0a8frrr/P111/zxhtvYG5uTkFBAa1ateL1119n2bJlSkF6U1NTGjRoQIMGDf6Kj168BGJjYykuLsbT0/OZljc3NycwMJDo6GgGDx5cZtf6kSNH8vHHH7N79268vb1RqVTo6uoSEhLCzJkzuXLlCqampqjVatzc3Pjwww+pU6cOANu2bePGjRvMmjWLDh06ACXBmA8//JDIyEjS0tLw9PTEx8cHQ0NDJcMSSm5eLS0tuXr1Ki4uLjRt2pSKFSvi4eGBvb09xcXFSi201NRUrl+/TrNmzUpNlT927BhnzpxBo9Hg6OjIuXPnGDx4MB06dEBXV5eLFy+Sl5enBHZVKhWNGzcmKyuLvLw8JcDq5ubGsGHD/sRfRPzdtNNPoeQ7pP3td3R0xN7ensjISOC3sgnaZR/tUB4aGsqUKVPIy8tj3LhxWFlZcejQIb7//ntSU1P58MMPlW1qG1hpvy8hISGYmJiwd+9e9u/fT1hYGCkpKRQXF+Ph4UG9evWU80CPHj3o0aMHSUlJ3LlzBwMDAy5fvsyXX37Jpk2bqFevHs7OztjZ2Sm1WbV1lEePHo2hoSErV65k69at+Pv7k52dTXh4OC4uLnz55Zc0b95caXBVq1Ytjh07Vuo4t7GxUc5/QjxP2kHc6OhoPvroI/z8/Jg8ebLyfXxUcXFxmWVMHm0ipx0QftjKlSv54YcfyMnJwcrKirS0NH744QeWLFmCtbU15cuXx8jIiISEBGrVqkX58uXx9PTk3r17yr5YW1tjZ2en/EZkZGRgaGjIoEGD0NPTUwbgvL29mTJlCq6urri6uqKnp4eXl5dSNsjCwkKawgnxJ0hQUwghxD/agwcP+PHHH7l48SILFiz409t5+ML2SReNGo0GQ0NDHB0diY+P5969e9ja2irLW1tbExAQwLVr13j77bepUqUKACkpKURHR9OrVy/y8/O5fPky165d486dO5w4cYK8vDxCQkKoXLkypqamFBUVMXDgQJycnHB3d8fOzg6VSkVaWpoyFbBjx46cOXOGOXPm4OTkRIsWLdBoNBQUFJCQkMBXX31Feno648ePV4KoXl5e5OfnExYWRqNGjRg4cCAVKlQgODgYW1tbqlatSrly5dDV1eXzzz//05+lePk9XAc2LS2N9u3bM3DgQN57773Hbhq1wR5t8EZbksHd3Z3g4GCSkpJwdHRUujhrA/AVK1bE0dGRuLg4JVsmJiaGiRMnkp+fz8yZM3FzcyM0NJQ1a9bw2WefKfUub9y4gY+PjxLQhJI6k/379+ejjz4iJSUFAD8/Px48eEBGRoaynK2tLdbW1pibmzNz5kxlerD2mJ85cyYqlYqxY8eya9cuZs6cyeTJk6lduzY6OjpcvHiRI0eO0KFDBwoLC6lTpw4rV65k48aNHDhwgIKCAgICAhg6dKjSSR3g/fffL/Ozfjhb6OF6beLF0Q5yPRy8fNL0UzMzM9zc3AgLC1NqUz7tb7h69WoiIiJYtmyZkh3ZpUsXJk2axKZNm2jevDlt2rTBzc1NOc88nOloZWVFcHAwLVu2pGrVqvj5+eHq6oqVlRWFhYXKshERESQnJ1O/fn0l2Ojr68v27dtJSkoCwMHBAR8fH06dOsXixYvx9vambdu2WFtbK1Pa9+/fT1RUFO7u7vTu3Zs6deootTa1vwUGBgZlDlwI8Uc9fP0VHR3N5cuXuXHjBgYGBjRs2JAGDRoozxsZGREbG1tqsEG7jYfrLmv//ei1XXR0NEFBQRw/fpzMzEx8fX3p378/tWrVQk9Pj3PnzrFw4ULat29Pjx49MDIyYu/evaxbt47Tp0/ToUMH7OzsMDMzIywsTPkdr1ChAr/88gtxcXHY2NhgamqKp6cnUVFR5Ofn4+joiK6uLm3atGHixInKcWtubk56ejoXL14kMzMTNzc3fHx8uHr1qlIeRc4PQvxxEtQUQgjxQjzraLQ2SGJtbf1YzSFtsOVpAcukpCQcHBz45ZdfWLNmDREREbi5ufHmm29Su3btUgEctVqNvr6+csEaHx9fKqipp6eHq6srUVFRqNVqZb27d+9ibW3N4sWL+f7779HT08PBwQEPDw+6d++Op6cn9evXp7i4GCsrK4yNjRk8eHCpfb179y4fffQRTZs2ZcSIEZQrV45p06bx/vvv884771CnTh3q1KlDfn4+Z8+e5c6dO4wfP16p8QclmZqffvopzZo1A0qyFOrXr18q8CJEUlISZ86cUWrxWVtbs3LlShwdHcucovekYI+fnx9BQUGEhoYqU2UfPabT0tIAlMD7iRMniIuLY8WKFco6gYGBVK5cmT59+hAUFISvry8pKSnKth6ua1u7dm00Go1SHkJb8+/u3bvKa5qZmdGkSRMOHz7Mtm3bGDBggPLchQsXWLVqFf3796e4uJhevXpx7NgxZsyYgZeXlxIgbd68Oe+//z4qlYri4mLq169P1apVMTQ0fOo0xqKiolKBMu1nIg1Rno+cnBy+//57/Pz8eOWVV/5QVtPDy5b197h9+zb79u0jNjaWatWq8eqrryqDTF5eXgCEhYVRpUoVzp8/T0hICKGhoZw8eZIZM2bwyiuvkJmZyc2bN6lTpw41atQAfssOe/XVV9m7dy9HjhyhTZs2VKhQgevXr5cKyLu4uGBkZISDgwMzZ86koKAAfX19dHV1SU1NZd68edSoUYN+/frx/fffs3PnTr766ivKly+vNBSKiIhg/PjxQMlU8LfffpuPP/6YJUuW0K5dO9q2bQuUTJetVKmS0hH9URJcEf+vso5P7f8vXbqUn376iYKCAqytrcnOzmb16tXUqVOHuXPnYmNjg6OjI+XKlSM6Olo5DzzaXC4hIYGoqCh0dXWVbHvtAPC8efMICQmhevXqWFtbc+DAAYYMGcKiRYto3Lgxp06dwszMjG7duinnowoVKtC7d29sbW2BkkEGFxcXwsLCKCgowNDQkMDAQPbs2UNiYiKBgYGoVCrKlSvHnj17SElJwdfXFxsbG5KTk5UmYlrnz5/nvffeY8qUKfTs2ZMKFSqQm5urDNQJIf44CWoKIYT4WwUHBxMeHk63bt2eaXkDAwP69OmDWq0uFdB8tDtydnY2eXl5pep5HTlyhLfffptBgwYRHx/PgwcPqFGjBidOnGDEiBHMnTuX5s2bl8pag5Lg4IkTJ4iNjSUwMFDJEgAoX748x44dU7rCAlhaWmJoaIizszNfffUVJiYmyui9rq4u165d4/79+/j5+dG6dWu+/fZbNm7cSO/evVGr1WRmZrJq1SqCg4MZM2aMsl1fX18WLlxIUFAQJ0+eZMeOHRQVFVGxYkXeeOMNWrZsWWoqlaWlJf3793+2P4T413haM6mHab/nS5Ys4dChQ/j4+ChZX7Vq1SpznZycHC5fvszFixfJz8+nSZMmyhRxbUDx9u3bwG/BTz09PXJycvj555/Jzc1VstXy8/MJCQnByMiIKlWqcPXqVUJDQ7lx4wY3b96kqKiIM2fOMG7cOMzMzIiJiVG2ByXHvJOTk5K9U1BQgIuLC+bm5sTExJSa9t21a1eCgoKYMWMGN2/epH79+mRlZSllFwYOHIiuri4mJiZ89913HD16lJCQEKytralWrRqVK1fGyMio1O+Mdsr60+q0lTU1Ujw/BgYGLF68mHbt2vHKK6+UCpgUFxcr3/FHA/HaQEhBQQEFBQUcP36cQ4cOUVBQQL9+/XB1dWXBggXK92jHjh3Ex8fz9ttvK5ma+vr6DBkyBLVajZGREY6Ojvj6+tKzZ0+lbMO9e/fIz8/HxMRECYhrvxMuLi54e3srx4ufnx+ZmZkkJycr++ns7EyjRo344YcfOHLkCM2bNwdKAvt79uxh165dNGrUCCgp7xAcHMwHH3yAp6cnqampaDQa3njjDV5//XXgt4GtLVu2lMoGFeKvkJGRodQJd3R0fGJJm3HjxrF792769+9P+/btcXBwQK1Ws2vXLhYtWsTQoUNZuHAhjo6OODs7c/XqVWJjY/Hy8kJHR4f79++zevVqNm/eTHJyMjo6OkpwcuDAgTg7O7N582ZOnz7NhAkT6Ny5MyqVig4dOrBx40YKCwsB8Pb2JiMjgylTptC+fXvMzMwwNjYmMDBQyUw2MTHBw8OD4OBgcnNzMTc3JyAgAECpMaunp0f58uXJyMggPj6eunXr0r17d7755hu++uor5bosNDSUmTNnYm1trcxCcHZ25sGDB0RGRtKkSRMZTBDiT5ArLyGEEH+r7777jtTUVDp27PhYkPJJUzS1wYSH6ejoEBUVxffff8+RI0d48OAB3t7evPLKK3Tq1AkHBwfMzc2pUqUKq1evpk+fPrzzzjs4ODhw4sQJRo4cya5du2jevPlj0w/9/f2B3+pqPszPz4+8vLxSN6IODg54e3sTFxeHk5NTqZH5rKwsxowZQ926dZk7dy6vvfYaR44cYfLkyZw4cQJ/f38iIyM5cOAAr7/+OrVr1y71etqafH379sXU1FQyvoTi7NmzDB8+nDFjxjBo0KAyl3m41pg2OO/g4EBKSopy/Gk0GgoLCwkJCcHZ2Vm5mcvKymLOnDns3r1b6Wb8448/0qFDB6ZPn065cuXQ09MjKioKKOn4GhkZSUREBBcuXOD8+fO89dZb9OzZEyhpzJWZmUlqaipVq1ZVMrC1Ta769OmDq6srAD4+Ppw7d47o6GglYKSjo0NMTIxS3ywrKwtbW1s8PDyIj48nKysLY2NjioqKMDQ0ZNKkSaxfv56TJ0+ya9cu9PT0qFmzJqNHjy5VO9TY2JhXXnnlmTs0S+bli6Ed2HJxcSE9PZ3MzEwsLS1LlUbQ/oZrA5z6+vrK8++99x4JCQnUqVOH06dPY2xsTHh4OFeuXEGj0VCrVi3mz5+Pnp4ec+fOZevWrTRq1Ij69evj4eGBgYEB5cuXZ+bMmUBJmQNtDWTt98TMzAxzc3Oltt7DGWWWlpYYGRkpz5UvXx4onWVsbGzMwIED2bdvH+PGjaN3795UqVKFyMhIVq1aRcuWLZVMSzc3NzZs2MC+fftISEjAxcWF6tWrK7WSHyYBTfE8PJp5eenSJfbu3cuFCxeIiooiNzcXIyMjrK2tyc/Pp1atWnzxxRdKxjPAzz//TFBQEJMmTaJfv36ltj9ixAju3bvHgQMHSExMxNHRES8vLwoLC4mIiFD+e9myZfz888906dKFOnXqkJWVxdatW1m5ciUeHh707duX3NxcsrOzSw0sBAQEKBmZAG3btiUrK4sFCxawePFicnNzgZJzVaVKlVi4cCHW1tZ4eXlx6NAhMjMzlcEMgLi4OKAkqOnp6YlGo+Hu3bvo6OgwZMgQrly5wvfff8+hQ4ewsrLi7t27mJqaMm/ePOW61s/Pj/nz51OzZk0JaArxJ0lQUwghxN/qk08+KdX0RutpgYKkpCS+/PJLypUrx/Dhw4GSKUdTpkwhPDycHj16YGVlxZEjR5gzZw5hYWF88cUXuLm5YWJigoODA4MGDVK6VFauXJlatWoREhJS6iJd+29tp2ZtsObhrB/tDaN2+iuUBF179OhBUFAQn3/+OZ9++ilGRkbcu3ePxYsXk5qaSo8ePYCSm8t58+axZcsWjh07xtmzZ3Fzc+Ptt9+mX79+jxWx17KwsHj2D1n8q2m/s15eXnz22WePTR99+Dtd1tRxIyMjiouLmThxIm5ubkyaNIkLFy4wZswYpk2bRs+ePSkoKOD7779n06ZNjBo1ivbt26NWq1m/fj3r16+na9euVK9eHXt7e86dO0ft2rXJyspCpVJRUFAAwODBg3n33XeB37JELS0t0dfX56OPPqJevXoYGxtjbm6Oubk5t2/f5t69ewC0adNGuUn96KOPMDQ0pKioiA0bNpCRkcH9+/eVmreurq6cPHlSKTWhnaLo6+vLpEmTiIiIQEdHB09Pz6dmUmpLSjza+EW8WNrvjvb84O3tzZ07d0hNTcXS0lL5rl+4cIH169dz+fJlVCoVzZo1o3PnzlSuXBko+V3XTg8dOnQoHTp04OzZs0ydOhWAYcOGKdPMu3Xrxt69e4mIiKB+/fp4eXlhampKbm6ukqFcFmtra3x9fQkKCiIhIUEZDICShmx3797F0dGRgoICPDw8MDU1JSEhQSmtotFocHFxYc6cOaxfv57du3ezZs0azMzMaNeuHaNHj1aykaHkvKAdNBDir5CYmMj9+/fx8PBQyohozzG7du1i/fr11KtXj1GjRuHm5oa1tTX6+vrs37+fVatWsWLFCoYNG6bMJggKCsLb25smTZoAv5UX0TYBGj16NJMmTVJe39vbGz09PUJDQ2nZsiVXrlxh6dKldOrUiQkTJijLBQYG0qlTJ65cuULfvn1p1KgRW7ZsYfLkyaxatQodHR3c3d2V67+GDRtibGzMgAED6NevHzdv3iQ2NpacnBxu377NDz/8wOLFi/n444/x9PQkLy+PhIQEfH19sbS0xNLSkvj4eHJzc5XrTF1dXW7evKk05Pr22285evQoR44coaCggLZt29KgQYNSvyFWVlbKQIUQ4s+RoKYQQoi/TFk1L7XdxR+m0WiIjIzk5MmTXLt2DQMDA+XiT6VSkZ2dzeXLl7l7964S1Ny5cye//PILM2fOpFOnTujp6TF48GBmzZrF6tWradiwIR06dMDBwYHw8HBsbW2Vm2Nzc3O8vb25cOEC6enpSgdX7c2xdqphbGzsY90yHR0dsbCwICYmRrlw1Wg01K9fnzfffJPVq1dz/fp1/Pz8SE9PJzo6mvHjxysZmNoO06NGjWLIkCESrBR/mPaG0tHRkU6dOj2xZll8fDx37tzByMhIaYxw4cIFZs6ciZ6eHsnJyVSrVg0dHR18fX3R09MrVd9vw4YNtGzZknfeeUd57P3336dz585UqFABPT093NzcSEpK4p133qF27dpYWloSFRXF6tWr2bt3L3p6egwZMkQ5xqpUqcLmzZuVGmQPW7lyJRcvXmThwoXUr1+fgQMHsnTpUm7dukXLli2JiIjg1q1bVK5cmTt37nD//n0AmjdvjpWVFXZ2dqXev/a/tRlx2s/u0dIVWpJ9+WJozxNPaqL0cEMrGxsbqlatytmzZ0lMTFS+QxcuXFC6I7dv356UlBTWr1/Prl27+Pzzz2nevDnVqlUDoFKlSvTu3RtAqZV68eJFnJyclMCKdqBAm4nl6OiIi4sLISEhT30v2nPXli1bmDt3Ll988QUGBgZkZWWxfft2YmNjGTJkCCqVCpVKhYWFBVeuXCEjIwMHBwd0dHQoLi6mVq1aVKlShbi4OMzMzEoFR4X4K+Xl5bFr1y52797N1atXgZIsY29vbzp37ky7du2UAGWVKlXQ09OjSZMmDB48uNR2AgMDCQsL4+DBg3Ts2BEfHx9CQ0MJDw+nTp06uLm5lRrg1g44WVpaAijHooeHB2ZmZkrZBicnJ95//33atGkDlJRICQ0NZcuWLRQXFyszbPz8/FiwYAFbt24lISGB2NhYgoODOXPmDIsWLWLZsmU0bNiQ5ORksrKy8Pf3V2bpAOzevZu0tDSKiopwcXHB1NSU6OhoioqKMDAwwMHBgatXr5KcnIyXlxeWlpbUqVMHe3t75TdLpVLRpk0bZV+FEH8NCWoKIYQo5eHpqv+vsgIHubm5HDlyBFNTU6WhzdWrV/n4448pLCzEycmJzMxMduzYQZ8+ffj000+xsbHB39+f4OBgNBoNWVlZHD58GB8fH7p06VLq9UaMGMG6des4cOAAnTp1wtPTk6CgIDIyMpQAokqlwt3dnQcPHijdKx9+/7q6unh6ehIfH09ycrLSCVZbt8nLy4u4uDgyMzOVrDc9PT3ee+89mjRpQlBQEDExMfj7+zNixAjq1q2rXLA/XHdQApri9zypS/PDzRKysrKU+q0ABw8e5JtvviEyMlIpWVCrVi3mzJlDQEAAGzdu5LXXXsPf35/Ro0crNWFNTEyIioriwYMHJCUlUVBQQJ06dZTfBI1Go9Qb0/Lx8eHChQv4+/tTs2ZN1Go15cuXp0aNGkycOJHly5eTk5PDqFGjsLGxoW7dulSrVo1FixZhb29PnTp1yMnJYc+ePWzdupUuXbooU/uGDh2Kg4MDmzdvZuHChdjb2/POO+9gYmLC2LFjlYzQrl270rVr16d+jg9/XjLF7/9XVFTEvXv3lEDcH/FwmZGH/10WjUbDjz/+yPLly0lKSqJ169ZK85yoqCgaNmyoNNBJT09nxYoVeHp6YmxszFtvvUXfvn2ZNWsWzZs3V4Lb2qmwGo0GIyMjfHx8OHDgALm5uVhbWwMlDXaMjY2JjY1VBq/c3d0JDg4mPj5eKZNQlqZNm9K7d282btxIeHg4DRs2JDMzkwMHDtChQ4dSWVldu3ZVjj0t7fFtbGysHAtCPG8xMTEsW7aMOnXq0LFjRwDu37/PggUL2Lt3L4GBgYwdOxYbGxuioqIICgpi4sSJpKenKwFMZ2dnVCqVUlIBSs5Z2mz3cuXKER4ergRBCwsLSU9PV0qhPFyv/FHa3wUXFxdsbGyIjY0FwN3dnTfffJOkpCRmzZrFuXPnSExMxM3NDVdXVxISEpRjtly5crz//vtkZ2dTUFCAjY0NFy5cYMSIEWzbto1GjRoxefJkbt++zcyZMylfvjyZmZns3r2b1NRU6tSpg76+PmZmZhQVFXH58mV69OiBgYEB3bp1Iy0tTbmOs7W1Zfny5c/3jySEeCYS1BRCiP+wuLg4rl+/ztWrVwkJCSE5ORlLS0saNWpEu3btSmU4aWlrlf1eXbl79+5x5coVoqKi8PDwoGnTpqhUKuLj45kwYQKBgYE0a9aMtLQ05s6di66uLvPnz8fW1pbs7GyWLl2qFGG3sLDA1dWVAwcOkJycjKOjI0lJSY9lr2g0GiwsLHBzc1NuRrXTCe/cuYOHh4cS3HB2dkZXV5fw8PBSQRptULNy5crs2bNHuYF9OKPA1taWixcvkp6ernSM1gaetF3KxX/Tw526n9XTOjg/uq3MzEyOHz+udL1fvnw5c+bMYefOnfj6+hITE8P06dMpX7487777Lubm5uzfv5/169fTsmVL2rdvT9WqVfH29iY5OVlpmKBthhIdHU1+fj65ubmoVCqysrKUm0ttYFMbSDU3N1em9oaFhdGoUSOlPqeNjQ1Tp05l9uzZbNiwAbVazbRp0yhXrhyjRo1iwoQJjBkzhqpVqwIQERFB8+bNS00nNDMz47XXXqNDhw5YWFgon8W2bdsoKioqNRhRVtfxh0kg8897+Dxx/fp17ty5Q0FBAZaWlrRs2ZK+ffvi6elZquGaNhhf1nni0QZvZ8+e5ebNm1hYWNCiRQvc3NyUdXfv3s3cuXOpWbMmI0aM4Pbt22zevJmioiKlFmVmZiaXLl1i+PDhVKxYUdm2r68vgwcP5ttvv+XKlStUq1YNY2NjMjIylOZaOjo6yqBVVFQUrq6uyjHs6elJXFwcqampuLm5KXVYb926pZwTntSQaNy4cVSrVo1du3axfft2rK2t6d+/P3379lUCpwCjRo0q8zOX76t4HuLi4rCyssLMzEz5bmq/tz///DObNm1SGk9Byflkw4YNvPPOO/Tp06fU7+7AgQMZO3Yss2bNwsfHhyZNmuDo6IiDgwO3bt1StqFdPiYmhjNnzuDt7a0MAjg4OFBUVEReXl6pZcuiPbYsLCxwcXHh+vXrZGdnY2ZmxuXLl5kyZQr379+nRYsW1KtXj9atWzNp0iS2bNlCbGwsvr6+bNu2jaysLF577TVlMMPR0REDAwNlIOHVV19l3rx5jBo1ivLly5OTk8Pdu3d54403lPOsi4sLc+fOxdPTU1lP24xLCPHiSVBTCCH+g6KionjrrbeIjY3F0tJSaXRToUIFYmNj+fbbb9mwYQNTpkyhVatWpW7eyuos+6jTp08zdepU0tPTsba2Jjk5mapVq7JgwQLc3d3x9/cnOzsbKJlqdPXqVbp164aPjw+GhoY4ODgozRig5MLX3d0dtVpNZGQkjo6OGBkZkZeXR1JSktLYRK1Wo6+vj4uLCzExMWRlZeHq6oqhoSG3bt2iadOmpabu2tjYlLoYf5i3tzdFRUXcunXrsSDlJ598gr6+vvK6IDeh/3WFhYW88847REdHs2fPnt8NbD58TGm/O2UFNw8ePMjmzZuJjY2lcePGQMk0bX9/f7y9vZUGINHR0fj6+nL8+HFycnJ49913lWB9vXr16Ny5M25ubsr2K1SowMmTJ7l7964ybdvX15fz58+Tnp6OpaVlqeNDo9Eox9f58+dZvnw5kydPVoJI2qmBOjo6Slayg4MDY8eO5e7du/z000/k5+fzxRdf0KBBA3766Se2bNnClStXMDc3p2PHjjRp0qRUoDI4OJi1a9fy7rvvYm1tTUFBASkpKWzYsAEnJyfs7e2VZaXr+PNX1nnCx8eH2rVro6ury/nz51m1ahXx8fGPNQN52vc/NjaWUaNGMXjwYC5fvszhw4fR19cnISGBjRs3snz5cpycnMjPz2fx4sW4ubkxb948ZftNmjRhyJAhxMfHo1ariYuLQ1dXF39/f+UY0v7b398flUrFjRs3qFatGt7e3sTHx5OWlqYMijk5OSnniIYNGyoDWJUqVeLw4cMkJyfj5uam1FO+du0aLVq0KDOoqX1tCwsLunbtStu2bctsdCfEX+2rr75iyZIltGvXjkmTJmFjY6ME7GNjY9m9ezfNmjVTpkaHhITwww8/0LRpU95+++1S21Kr1ZiZmTFlyhSOHz9OvXr1gN/KMoSGhpKfn09eXh6RkZEEBwdz7NgxYmNj+fzzz5XtODo6Ym5uXqqObFkKCwuJjY3FwMAAd3d3PDw8OHPmDJGRkQQGBrJhwwbi4uJYtGhRqeuzwsJCioqKCAsLw9fXlxMnThAUFMTNmzdp1aoVDx48YNOmTRQVFdG6dWsA2rdvT+XKldm5cyfR0dG4urpSp04dqlevrhy75ubmtGrV6vn9cYQQz5VcAQohxH+QtmNspUqV+PLLLzEzM8PExASVSoWhoSHXr19n+PDhTJs2DS8vLyVjU61W88svv3DgwAEl87Fnz54EBAQowZKIiAhGjhyJl5cXH330EW5ubly5coWPP/6Y2bNnM3XqVJycnDhz5gwpKSnKFNQNGzYQGhqKu7u7MiVQ23XWxMREGV2/desW9evXx9/fnwMHDhAbG4ujo6MScAGULCJTU1OsrKxwdHRUgi5aNjY2WFhYcO7cuVKPa29SO3XqhJOTE02bNgVK36Q/beqh+G/S19dHV1eXpKQkMjIysLW1fery2u9ZRkYGiYmJ2NralgrSARw4cIApU6bg4uJCgwYNOHnypJK9HBMTg7e3N05OTpiYmBASEkKrVq1QqVQUFhbyzTff0LNnT6ytrSkuLqZSpUpYWloqU38DAwPZtWsXCQkJSvCzUqVK7Nmzh4SEBGrVqkX16tU5ceIEt27dws/PTzm+rly5wrlz59DV1cXNzQ1zc3Oio6NLvS8tFxcXvvnmG4YNG8b9+/fJyMjAzs4OZ2dnRowY8dTPyMTEhB07dnDy5El69eqFiYmJUktx/Pjxv/sZi/9PWecJU1NTpR5kfn4+U6dOZdeuXRw5ckTJasrMzOTcuXOcOHGCiIgITE1NadeuHR07dkSlUmFvb8/NmzdZuHAhBgYGTJs2DU9PT06dOsW0adNYvnw548ePJzc3lzt37jB8+HAloFlYWEiDBg2oVKkS8fHxZGdno1KplGPv0UEBCwsLVCoVycnJQEmdvYMHD5bK9Le3t8fOzk4J4Gu3UbVqVbZu3UpMTAw1atRQBrEuXboEPHna/MP7IAFN8aIMGjSIoqIili9fjpGREVOnTlWCiCdPniQuLo6PP/5YWT4kJIS8vDylpM/DQXvtbBRnZ2e6d++u1BnXZvj/8ssvNG3alPv376Onp4etrS2Ojo7o6+szZMgQ3n//fTp16oSRkRGVKlXiypUrxMbGUq5cuTIH886dO8fUqVPp0aMHb731Fh4eHsqgdmBgIGlpaTg5OeHh4QGUlDU6evQox48fB0oGxNq3b8+YMWOwtrbmyJEjHDhwgLy8PMqXL8/UqVOVQUIALy8vpamdEOLlI0FNIYT4DzI3N8fe3p6EhAS8vb0fuznz9/dnzpw5vP766/zwww9Kd9hdu3bx9ddfY21tjYuLC6dOneKnn35i4sSJ9OvXD319fTZu3EhBQQHz58/H3d0dgHLlyuHg4KBcgLq5uZGbm0tUVBT29vZMnTqV77//nqtXr3Lx4kVSU1OVenlvvfUW48aNw9nZGWtra27evAmUNAfZu3cvmzdvVpqgAGzfvp1Lly4pQRAzMzPs7e25ePEi8NsNp7W1Nc2bN6eoqOixTFQoqduk3X8hfo82K+zYsWPExcX9bsBt27ZtLF26lKioKIyMjKhQoQI9e/bklVdewcTEhLS0NL7++mscHR2ZO3cuTk5OAHz99desWLGCq1ev0rRpU2xtbUtN/2vbti3x8fEsWbKEkydPAiU1ZLX1LMeOHYujo6MybVxbpwxKAj6FhYXExcVRv359+vbty9atW5k1axZjx47FzMyM4OBgvv/+e+rVq1cqU/ny5ctKHbNH2dnZsXnz5jI/h4fLWTzcKKa4uJjy5cuzevVqNm/eTFBQEHl5efj6+jJhwgTatWv3rH8a8Sf93nnC0NCQPn36sGXLFkJCQujUqRMFBQXMnTuXX375BRsbG2xsbLh+/TrHjx8nKyuLvn37YmRkpGTT7969W8mA9PLyYsOGDVy8eJHs7GySk5NRqVSYm5srr6n9fgQGBnL8+HFSU1NxdnbG1taW69evK9PKtYNchYWFSj09KGlsom0com0cZGNjg6urK9euXSv1Gn5+fkDJYB5AQEAAW7duVc4LvzdjQYgXycbGhuHDh5OcnMy2bdtQqVRMnTpVKe8TGBhI8+bNleWDg4PR19dXmhqWlYUMJc2wCgoK0NHRwcDAQCnl06JFCzp27IiDg4MybT0zM5NPP/1UqY3esmVLWrRowblz5zh+/DjlypUrNSVem7159+5doqOjefDgAQAeHh6oVCplcLpevXrMmTOHTz75hBYtWhAdHc2pU6eoWLEieXl5bN68maFDh+Lu7s4nn3xC165dlSaNUstciH8fCWoKIcR/kL6+Pu7u7ly5coX4+PjHgnfabt4VKlRg//79jB49mqysLCZNmkSrVq145513sLa2xtTUlE8++YTZs2dTrlw5GjZsSGhoKD4+PkpWl3a6U+PGjZWbQ22dy7CwMGrXro2jo6PSuTYiIgKNRkNOTg4LFy5k69attG7dGk9PT1xcXIiIiACgUaNGvPbaa6xcuZLo6GjatGlDamoqu3fvpmbNmkq9IysrK2rVqkVcXFyp6U5mZmaMHz/+7/i4xX+EtmNyeHi4UiuyLDt37mTy5MnUqFGDESNGkJGRwebNm/n444+5d+8eQ4cO5cKFC0RERDB58uRStWA7d+5MUFAQly9fBkqC825ubty5cweNRoOlpSXvvvsuffv2JSwsjLCwMO7du0d0dDTbt2/H3NycTz75RAnYaDPYADw9PZVpwMXFxQQGBvLxxx+zePFihg0bhqmpKTk5OdSoUaPUlMIvv/wSKysrpRlEWbTT1x+te/mkchbax+rWrUvVqlVRq9WYmpo+y59BPCdlnScezqrS0dHBwsICIyMj5bd94cKFbNq0iQ8++IA2bdpgbGxMYWEhb7zxBjt27KBFixa4u7vj7e1Nenq6EmzUBsQrVarE0aNHuXfvHqamppibm5fKstc2FvHx8WHjxo3ExcXRtGlT6tWrx969e2nXrh1NmzZVzj+nTp0CUOoGPlzDVcvc3Bx3d3cyMzNLBearV69OaGiospx2/4R4WZibm/PFF1+QlZXFpk2bsLe3x9PTk+TkZMaNGwf8VvYkMTERHR0dcnNzlQ7kUHJsXrlyhYsXLxIaGkp0dDR3795l7ty5NG3aFDc3N9RqNa6urjRs2LDU69vZ2fHmm28ycuRIjh49SsuWLWnWrBkHDhxg/fr1BAQEUKtWrVLdwrOzs9m2bRtOTk5KUy1vb2+sra0JCQkBoFu3bmRlZbF9+3YuX76Mg4MDbdq0oW/fvkqjLW0pE41GQ5UqVf7yz1oI8eJIUFMIIf6jKleuzI4dO4iNjX0sqKmtKdawYUNWrlxJUlIS+/btw9TUlMmTJ5ca6X7llVfYvXs3e/bsoWHDhlhbW5ORkaHc5D48bVv73+XKlcPIyEi5Wb137x6XL1/G399fCbZASe20ixcvYmpqiqGhIT4+Phw9epScnBwsLCwYM2YMjo6O7Ny5U5nK2LRpUwYPHqw0dTA0NOS99977az5EIR7i5eWFgYFBqUDIo1JTU1m2bBkeHh4sXLgQY2NjdHR0aNu2LSNHjmTdunV06tRJCb5rp6Rrj0lXV1dq1KihlE2wtLTE09OTCxcukJGRodSe1NfXp3HjxqWm2DVu3JiIiAgePHiAubk51tbWHD9+nDp16lCxYkVsbW1RqVRcvXqV7OxsLCwsGDBgAPXr1+fo0aPk5+cTEBBA9erVld8AjUajlGh4modrbf5RZWV/ir+H9jwRExOjBDW1dHR0lO+FNth39uxZWrdu/VgTDXd3d27cuEFCQgLu7u5UqFCBc+fOkZaWBvwWxA4MDGTHjh1KtnD58uW5fv26UjtZO+1Vo9Gg0WiIjIykadOmDBw4kKNHj/L+++8zaNAgypcvz/nz59m4cSO9e/dW6u6VL18eCwuLUtPCjY2N+fzzz6UusvhX0tfXZ+bMmYwcOZLly5ejr6+Pn58fDRo0AEqarBkYGGBmZkZxcTHx8fE4OztTVFSEvr4+Fy9eZNasWWRlZVGtWjWcnZ25ffs24eHhNG3aFBcXF6ysrJTrOe2xqVarMTAwwNPTU+mgDiXnyZEjRzJs2DAmTZrEBx98gJubG3p6ekRFRbF69WouX77M22+/ja+vL/BbLU5tgyFra2vGjBlD3759sbOze2oNXzmuhfj3k6CmEEL8R2mDh7dv31Yubh+lvaA8deqUkuW4YcMGYmNjuXHjBvHx8eTk5KCvr4+ZmRlZWVl4eXkpN6vaEXw9PT3S09NZunQplSpVolmzZlhaWirZMvHx8YwePZoWLVrw1ltvYWRkREhICN9//z2VK1fGx8cHHR0drKysSEtLIyUlRQl0Dh48mE6dOmFoaFiqUYUQfzc7OztsbW0fq98KpbNhbt26xbBhwzAxMVGmXtvY2PD6668zevRoTp8+jYuLC1CSJQO/DQiYmZnh6urKvXv3KCgowMjICDc3N/Lz84mLi8Pa2ppp06YpNQvt7e1JT0/n8uXLpKSk8NprrykBpP79+7Nq1SpGjhxJnz59GD9+PL179y4VPIKSQJC2ru6jHp4uLtNx/32054moqCgaNmyo/I2zs7M5c+YMP/74I7Vq1VIyIVevXo2hoSHx8fGcP3+e06dPc/r0aVJTU7GxsVFqwgYEBFBYWKj8v/Z7pM2oioqKonnz5nTu3JkJEyawZs0a3n//fYqKiggPD+fHH3/EzMxMWb9KlSosWLCAVatWsW7dOrKysrC0tGTw4MGMHDlS+T4bGxs/Vkf54dcX4t9GrVZjZWXFnDlz+Oyzzzh69CiNGjUqNTAFULFiRXbv3k1YWBi1atVSHq9RowZLly7FwMAAW1tbLl++zNWrV5XznKOjI46OjkRERJTKxtf+VpiZmZGamkrdunWVfapfvz7Lli3jww8/ZMSIEXh5eaGjo6Ocwz766CMGDBigLG9oaMjGjRsfG+B6uASKEOK/S4KaQgjxH+Xm5oaJiUmZ3b+1N3jahjg3btygSpUqJCYmsmbNGtzd3QkICKB79+74+PhgY2ODubk5ZmZm1KpViyVLlnDp0iUCAwNLjaCvX7+eoUOHYmFhgaurK0lJSWg0GqpXr87w4cPZtGkT48aNo6CggNzcXGrWrFkqg2bw4MEMGjTosQtZaRgi/gnMzMxwcnIiKipKqe2npf0OP9wZHChVy7VChQrK9O+AgABUKhURERHKgIL2hvH+/fsAREZGUrFiRRwdHdHT0yMsLIyAgABq1KjB/v376d27N/Xq1aOgoICLFy/Spk0bunTpogR4Bg8erHSxrVKlCsbGxnzwwQdlvjeNRlOq9uWjJKD576RtBHXw4EFyc3O5cuUKERERpKamkp2dTZ06dZgxYwb29vYUFxdjaGjIjRs3WLBgAXfv3sXe3p53330XNzc3hgwZQlJSEoBS0zUuLg747bjQDqTFxMQA0LFjR44dO8ayZcu4fv06gYGBXL58mXLlyhEXF8ft27fJzc3FxMSEOnXqULlyZeLi4rCyslLq0ArxX6a9BrO1tcXKygqALVu2YG5uzltvvaWcm2rWrImOjg6nTp2ib9++yuPGxsYYGxsr2/P19cXe3p47d+4o23V1deXMmTPKYIL2Gu7OnTssXLgQgF69epXarzp16hAUFMTp06cJDg7G2NiYChUqEBgYiJ2d3WPvQzL2hRBPIkFNIYT4j7KxscHBwaHMrDLtxaz2plBPTw9TU1N0dHSYPHky9evXx8DAAAMDA2UK4v79+3n77bdp0KABnp6efP/991SvXh0nJyeys7P57rvvePDggdLgw9zcnHPnzhETE4OnpydjxoyhefPmXL9+HTMzMypVqoSvr2+pDBptIEiIfyJ9fX08PDy4evUqKSkpuLm5lbmMsbExKSkpSrBSm8VpZGSEpaUlWVlZVKhQgUqVKrFjxw66deuGu7s7enp6ZGdnK8dsaGgoFStWxMHBAWNjY65cuUK3bt3o2bMn5cqVY9u2bdy8eRNra2uGDBlCu3btSg0IaAchHqWddvgwHR2dp07xE/9O1tbWeHp6cubMGRITE/H29qZRo0bcvHmTkJAQqlSpomR06erqkpqaypAhQzA3N2fEiBEEBgbi4eFBQkIC8FsQ08vLCz09PeLi4pRgvUajwczMTJmqmp2djZmZmVJ/dseOHWzZsoVKlSoxZcoUYmNjcXBwKDWV3MzMjIoVK/79H5QQ/1Da80toaCgHDx6kfv36ZGZm8tVXX2FlZUXPnj2Bkqzsli1bcvToUS5cuECtWrWUY/NhiYmJpKenc//+fQoKCjAxMcHDw4MjR46wY8cOVCoV4eHhREZGEhMTg1qtZtq0aUoJiIcZGxvTsmVLWrZs+bd8FkKIfycJagohxH+UsbExLi4u3LhxQ7l51NIGEouKioCS6aeVK1dGV1eXM2fO0KpVq1LbmjFjBpmZmUp9o1mzZjFhwgRee+01/Pz8KCgoID09nTlz5uDt7Q1Ajx49aNKkiVLMHUqaODytwYoQ/3QP1yAsK6jp5OSEk5MTV65cIS0trVQ2WXR0NPfu3VOaNAwaNIjPPvuMt99+m379+uHg4MCPP/5IXFwcenp6XL58mS5dumBtbY2/v3+pRjo1atSgRo0av7u/2oDUw4MHf7b2pfj3MTExwdLSEjMzM5YuXYqDgwP6+vrk5+ezbds2pk2bxr59+5g/fz4BAQFcunSJjIwM5syZU6qe65EjR9DV1VUCItbW1ri7uxMTE0N6ejp2dnYUFhaiUqlwcHDg3r17ynnJwsKC/v3707NnT6XWLPxWb1YI8WTa3/aff/6Z7OxsJk2aRHFxMYMGDWLq1KlYWVnRunVrzMzMGD58OBcvXmTixInMmDFDGfQqKioiMzOTs2fPsmTJElJTU/noo4+U1zA3N0ej0TBjxgwMDAxwcXHBz8+PQYMGUbduXcqXLy8lHoQQfxm5ahVCiP8oXV1dvL29OX36NAkJCfj6+pbqbAtw+PBhoCRAUq1aNRo3bsy6deswMDCgSZMmqFQq1q1bR0xMDF988QV2dnZoNBqqVavGunXr2L9/P1evXsXNzY2GDRtStWpVZZpq8+bNX8j7FuKv9GitWrVa/Vh9sRYtWrB8+XIOHDjAgAEDKCgoIDs7mzVr1mBkZKQEI9u3b4+BgQGLFi3iiy++oLCwkAYNGvDJJ5+wYsUKZYqup6cnq1atKnN/tA0btPvw6I2l3GiKp9HV1cXLy4tTp05RWFiolFQwNTWlf//+FBYWMmfOHN59913Wrl2LgYEB+vr6nD17FmdnZyWTf+nSpejp6XHlyhUuX75MixYtcHBwICIigszMTOzs7JRg+tq1a8usj/xwQFMI8ewSEhIICgqidevWuLi4YGhoyKxZs/jwww+ZMGECixcvpnbt2vj7+/Ppp5/y9ddfM3z4cCpVqkT16tUxNDTk1q1bXLp0CWdnZ5YsWULTpk0pLi4GShpG1qlTBzc3N5ydnV/wuxVC/NdIUFMIIf7D/P39gZIMsYenehcXF5OYmMiPP/5IYGCg0iRkypQpfPfdd2zbto0tW7ZQVFSEsbExEyZMoGPHjsBvQRJ7e3v69+9P//79X8A7E+LF0NaqDQsLAyg1dS8/Px8dHR06d+5MeHg406dP59ChQ1SrVo3Lly9z+/Zt3nvvPerVq6cMMLRu3ZomTZpw7do1XF1dcXZ2pri4mK+++kqZdqsNBpU1VfD/6TouBPx2nggLC8PHxwf4LcN38ODB5OXlMX/+fN5//30mTpxI586dWbZsGbt378bQ0JD79+8zZMgQvL29+fnnn5VzxPz587G0tCxVVxaQhm9CPCfa88jatWvJycmhR48eGBoaUlhYSMOGDfnoo4+YPHkyo0aN4ptvvqFu3bq0b98ePz8/Dh06xNWrVzl8+DDZ2dm4uLgwaNAgmjdvrlwTao9ZHx8f5bdBCCH+bnKVK4QQ/2HlypVDV1eXa9euUbduXZKTk0lOTiY0NJTNmzejVqt57733sLW1RaPR4OTkxGeffUaPHj2IiYnB2dmZihUrlpr2KsR/mbZW7c2bN4mIiCAxMZG7d+9y9+5dIiMjyc7OZvDgwcyePZvNmzcTFBTEli1b8PHx4YMPPuCVV14Bfhsc2LFjB6ampkrNMY1Gw82bN4mOjn6s8YLUvBR/Be15Ijw8nLZt2wIl309tYHPIkCEUFBSwaNEi5syZw/jx42nYsCEXL17E09OTGjVq4Ofnh4GBAa1btwZKvsfW1tYv7D0J8V+go6NDSkoK+/btIzAwkJo1awIozeLat29PUVEREyZMYOzYsXz55ZfUr1+fcuXKUa5cObKzs9HX15cmPUKIfzQdjfaKRAghxH9OcnIy3bp1Iz8/n/LlyxMdHU1GRobSSXbIkCFlNhIRQpStuLiYoUOHcvLkSVxcXEhNTaWgoAAAQ0NDvLy8+OCDD2jQoAGA0izoUdoMm759+3L58mXeeustqlWrRnJyMqtWrUKlUvHdd9/h7u7+t74/8d+TnJxM+/btqVq1KsuXLy/1nPZ7mp2dTUhICN7e3lLrUoh/kJUrVzJr1iw++eQTXnvtNYqLi5UMSyg5B0VFRWFpaVmqkZwQQrwsJFNTCCH+wywsLPD39yczM5MKFSrQo0cPAgIC8PX1LXXRK4R4Nrq6unh4eODl5YWXlxfdunUjICCASpUq4eDg8Njy2u7n2tpkj2ZbTps2jZUrV7Jv3z7Wrl0LQO3atRk7dqwENMXfwtLSkipVqmBvb/9Y3WXtf5uZmZXZ3VgI8eIUFBRw6tQpWrduTYsWLQAeu7ZTqVRUqFDhReyeEEI8F5KpKYQQQgjxN3m0cdDTaANIBQUFREREKJmeMuAghBBCCCGEBDWFEEIIIZ674uJiJftSV1dXApFCCCGEEEI8ZxLUFEIIIYQQQgghhBBCvFQkbUAIIYQQQgghhBBCCPFSkaCmEEIIIYQQQgghhBDipSJBTSGEEEIIIYQQQgghxEtFgppCCCGEEEIIIYQQQoiXigQ1hRBCCCGEEEIIIYQQLxUJagohhBBCCCGEEEIIIV4qEtQUQgghnrOWLVvSsmXLF70bQvxjyTEixJPJ8SHEk8nxIYR4mAQ1hRBCCCGEEEIIIYQQLxX9F70DQgghhBBCCCGEEEKI5+/DDz9k69atpR4zMDDAwcGB5s2bM2rUKCwtLf+S1y4oKCA9PR1HR8e/ZPsS1BRCCCGEEEIIIYQQ4l/so48+wtraGoAHDx4QHh7Oxo0buXbtGj/++CN6enrP9fXi4+N54403GDZsGN26dXuu29aSoKYQQgghhBBCCCGEEP9irVq1ws3NrdRjXl5efPbZZxw/fpzmzZs/19eLi4sjKirquW7zUVJTUwghhBBCCCGEEEKI/5i6desCEBYW9oL35M+RoKYQQgghhBBCCCGEEP8xiYmJAHh4eCiPhYeHM2LECGrVqkXVqlXp06cPJ06cKLVeQUEB06dPp2XLlvj7+9O0aVM+++wzMjMzAdiyZQsDBw4ESqa9+/n5/SX7L9PPhRBCCCGEEEIIIYT4h2rZsuVTnz906NDvbuP+/fukpaUBUFhYSEREBJ9//jlVqlShRYsWANy6dYt+/fphZ2fHsGHDMDAwYNeuXQwdOpS5c+fSvn17AKZOncquXbsYOHAg7u7uhIWFsW7dOqKjo1mxYgW1a9dm+PDhLF68mN69e1OzZs3/8xMom45Go9H8JVsWQgjxt7ofHPyid0GIf6yh9/a+6F0Q4h9t0XXDF70LQvxjXezc+EXvghD/aK08arzoXXgu+hyZ/aJ34YlSPt/31OefFtQsq/u5lpGRET/88ANVq1YFYMCAASQmJrJ9+3ZMTEwAKCoqYtCgQURFRXHkyBFUKhVVq1ale/fuTJo0SdnW119/zYkTJ/jhhx8wNTXl7NmzDBw4kC+++EIaBQkhhBBCCCGEEEII8V/zLJmYv2fOnDnY2dkBJZma8fHxrFu3jv79+7N06VIqVarEuXPnGDBgAPn5+eTn5yvrtm7dmi+++IJr165Rs2ZNnJyc2L17N/7+/rRq1QoLCwvGjBnDmDFj/u/9/CMkqCmEEEIIIYQQQgghxL9YjRo1Hut+/sorr9CmTRumTZvGrFmzAFizZg1r1qwpcxsJCQkATJkyhTFjxvDRRx/x6aefUq1aNVq3bk337t0xNzf/a9/IQySoKYQQQgghhBBCCCHEf4y1tTV169blwIEDqNVqAPr370+rVq3KXL58+fIA1K9fnyNHjij/nDp1ii+++IJVq1axZcsWbGxs/pb9l6CmEEIIIYQQQgghhBD/QcXFxQA4ODgAoKenR4MGDUotEx4eTlxcHMbGxhQUFHDz5k2cnJzo0KEDHTp0oLi4mJUrVzJ79myCgoIYMGDA37Lvun/LqwghhBBCCCGEEEIIIf4xUlNT+eWXX6hUqRKurq74+/uzdetWkpKSlGUKCwuZOHEio0aNoqioiPT0dHr37s2SJUuUZXR1dQkICFD+G0qCo/Bb0PSvIJmaQgghhBBCCCGEEEL8ix08eBBra2sANBoNiYmJbNq0iby8PN577z0APvnkEwYNGkT37t3p27cvVlZWBAUFcfXqVcaNG6es36lTJ9avX09eXh7Vq1cnIyODtWvXYmdnxyuvvAKgLLtjxw40Gg1du3ZFX//5hiElqCmEEEIIIYQQQgghxL/YF198ofy3np4elpaWBAQEMH36dOrXrw9A9erV+fHHH1mwYAErV66kqKgIb29vZs6cSdeuXZX1p02bhru7O0FBQQQFBWFsbEz9+vV57733lHqa5cqVY8CAAWzZsoVr165Rt25dPDw8nut70tFoNJrnukUhhBAvxP3g4Be9C0L8Yw29t/dF74IQ/2iLrhu+6F0Q4h/rYufGL3oXhPhHa+VR40XvwnPR58jsF70LT7Sh+YQXvQv/SFJTUwghhBBCCCGEEEII8VKRoKYQQgghhBBCCCGEEOKlIkFNIYQQQgghhBBCCCHES0WCmkIIIYQQQgghhBBCiJeKdD8XQgghfpV87x4/bN1KSFgYADWqVGFA165Ymps/db0rN2+yZe9eImNj0dXVxdfLiz4dO+Lr5fWnth8aEcGPO3cSERODmYkJtQID6dW+PRZmZs/vzQrxB+WnZRG55zyZkYkA2FR0w/uV2qjMjJ95G2FbT5OXmkngW6/8tt30bM7P+fmp6wW82RYrH2dOTFz11OUq9GiEY43yz7w/QjwvyfezWPvLL4TcvQtAdQ8PBtSvh4Xx04+Pq7GxbL10mcjUVHR1dPB1cKBX7Vr4OjoCkJKVxaj1G566jU87daCyi8tjj2+9dJnDoaEs6Nf3T74rIZ6f9JR77Nm4nTu3wgHwC6zMK707Y2rx9Gush21btZF7SckM+eDdx56Lvh3JgS27iL8Ti7GpMZWqB9CiyyuYmpe+dsq5n8WBzUGEXrlOYWEhLp5utOnRCfdyXv/X+xNCvBgS1BT/lw8//JCtW7c+dZmWLVvy3Xff/U179LgWLVrg6urKmjVrABgwYADx8fEcPnz4b9uH5/Ga+/btY9OmTVy/fp38/HycnZ1p1KgRgwYNwt3d/Zm2of173bp167ks90fFxcXRsmXLZ1r20KFDAGUub2BggI2NDQ0bNmT06NE4OTk9dfs6OjqYm5vj4+ND//79efXVV/+PdyH+rbJycvjsm29Qq9W82qoVxcXF7Dx0iJi7d5nx/vvo65d9ygwJC2PmokW4OTnRt1Mn1Go1+06cYMrXX/PZmDGU/zWw+azbvxEWxoyFCzExNqZrmzbo6uqy+8gRbty+zbSxYzEzMfm7PhIhFIW5DwhevheNuhi3Jv5oNBriTlwnJzGdau90RFdP73e3kXjhNonnb2Pp7VjqcQNTQyr0fLyzcHFRERE7z2JgaoSpsw1AmcsBRO4+h0ZdjKWXY5nPC/FXysrPZ9quXaiLi+lUtSrFGg27goOJTUvj865d0H/C8RFyN4FZe/biZm1Nn9q1UWuK2X8jhKk7dzH51U6Ud3DA3MiId5o3e2zdAnURq0+dwdzYCA9b28eevxoby5ZLl7CSc4b4B8jNzmHF7IWo1UU0btcCjaaYk3uPkBR3l+GfjkXvCddYD7t44hcuHj+Dl1+5x567ExrG6nmLMTI2pmnH1ujo6nBm/zEiQ8MYOnEMxqYlx8GD/HyWzVpAVsZ9GrRuipGpCWcPnWDF7IUM/3Qsjm7Oz/29CyH+WhLUFM/FRx99hLW1dZnPOTv/s04Ow4cPJy8v70XvxjMrKCjggw8+YPfu3QQGBvLmm29iaWlJWFgYW7duZfPmzcyZM4dWrVq96F39XTY2NsyePbvUY1988QVQ8h16dNm0tDQAatWqRa9evZTnioqKCA8PZ926dZw5c4YdO3ZgYWGhPP/o8hqNhtjYWDZs2MD48ePR09OjQ4cOz/39iZdb0OHDpGVkMOejj3D7NVBe3tOT6QsXcvTsWVo1bFjmequ3bMHWyorp77+PoUoFQJM6dRg7fTobdu3ik5Ej/9D2V/70Ezq6ukwbOxYne3sA6lStyoQvvmDrvn0M6Nr1L/0chChL/MkbPMjMpeaozpg4WAFg7mbP9RX7SboUjnNtvyeuqykuJvZoMNGHrpT5vJ7KAMfqj9+kRuw6i0ZdTMVeTTAwNgQoc7n4UzcoynmAX+8mGNk8e8aPEM/L7uBrpGXnMKtnd9x+vR4u72DPjKA9HLt9m5aVKpW53g9nzmBjasq0Ll0wNCi5LWvi68u4TT+x8fwFPu7QHiMDAxpX8H1s3dWnz1BUrGZki+aYGRqWeu5gyE1Wnz5Nkbr4Ob9TIf6cU/uPkpmewcipE3BwKbkGcvX2ZPXcRVw6dY7aTRs8cd3i4mKO7TrA4e17n7jMrnVb0NHR5a2Jo7F1LLl2qlwjkIWTZ3Ns1wHa9e4MwPHdh0hNTOGNCSPw9ivJ6g+oU515E6ZxYs8herz12vN6y0KIv4kENcVz0apVK9zc3F70bjyThk8ITPxTzZ49m927dzN+/HjefPPNUs8NHz6cN998kzFjxrB582b8/J58U/lPYGJiQufOnUs9Nn/+fIDHHgeUoKa7u3uZz7u7u/PZZ5+xYcMGhg4dWurxspbv1q0b7du3Z+HChRLUFI85dekSlX19lYAjQGDFijg7OHD60qUyg5rZublEx8fToXlzJaAJYGVhQaXy5QkODf1D20+5d4/YhARaNWyoBDQBXB0dqREQwLFz5ySoKV6IlOBIrLydlIAmgHV5F4ztLUgJvvPEoKa6sIgri4LITUzHoXo5MiITnun1chLTuHvmJo41fbH0dnricgXZeUQduIxVOWccqvr8ofckxPNyOiKCyi7OSkATIMDNDWcrS85ERJYZ1Mx+8ICYe/doHxCgBDQBLE1MqOTsTHBc/BNfL+bePfZdv05TvwpUeiR5YHrQbq7HxRPo7sb9vDyyHzx4Du9QiP/PtbOX8PYrrwQ0AcpX8cPWyYFrZy8/MahZWFDIks+/IinuLtUa1Cbi5u3HlklPTSM5PoFaTRsoAU0Ae2dH/KpW4fKpc7Tr3RmNRsPlU+eoEFhJCWgCmFta0K53Z3T1pN2IEC8jOXKF+Ae7c+cOa9eupUOHDo8FNAFsbW2ZP38+Ojo6fP755y9gD1+s9u3bA3Dp0qVnWt7V1ZXatWsTERFBdnb2X7lr4iWTnZtLcmoqPmWUcvB2d+dObGyZ65kYGfHVJ5/QoUWLx57Lys5GT1f3D20/LTMTAPcyMtyd7OzIys7mXnr6s78xIZ6DwrwH5KdlY+b6+BRXM2dbsu/ee+K6mqJi1A8KqNi3KX49G6Ojq/NMrxl14BK6Bvp4tqr+1OVijwZTXFiEd/vaz7RdIZ637AcPSL6fhbe93WPPednZcSc1tcz1TAwMmNu7Fx0CAx57Lis/H72nHCsbz19Apa9Pr1q1HnsuNSuLNxo15MNX2mFsYPAH3okQf428nFzSU+7h4vV4AoyLhxsJMXFPXLeoqIgHefn0fnsQ3d/sj57u46Uc7qeXXDs5uj0+AGbjYEdudg6ZaelkpKaRlZ5J+SoVgZKZXAX5JUH/ui0aPTVbVAjxzyWZmuJvtWfPHpYsWUJkZCQeHh6MGzeOtWvXUlBQoNS8fLQGptajj2s0GjZs2MDmzZuJiIigqKgIV1dXunXrxltvvYWOTtkXgw/Xt/y9Go8jR47k3XdLClGHh4fz1VdfcfbsWQoLC6lUqRIjRoygcePS9b1Onz7NN998Q2hoKHZ2dgwbNuxPf17bt29Ho9HQv3//Jy7j4eFBq1at2LNnD4mJiUp9yevXrzNv3jwuX76MmZkZr732GhqN5rH1n2U5jUbDwoUL2blzJ3fv3sXc3JyGDRsyduzYF1peQPfXgJFarX7mdUx+rS1V1mfxe/bt28fSpUuJjIxEV1eXwMBARo4cSc2aNZVliouLWbVqFZs2bSIuLg5ra2vatm3LmDFjMPu1yct7773H7t27Wbp0KU2bNgUgIyODjh07YmxszPbt25X9FH+PtIwMAGwsLR97ztrCgty8PHJyczF95O+iq6uLs4PDY+tEx8dz+84dqv6anfOs21f9mu2ZV0ZmTdavgfiM+/exfUK5DyH+CgWZuQCoLB7/XVJZGKPOK6QorwB9Y9Vjz+sZGVBrbPc/lAGTk5hG2s04XBtXwbCM11T2KzuPhHO3sK3iidmvNTeF+Lul5+QAYGNi+thz1iYm5D4oIOfBA0wfmSKuq6uLcxnnhJh797idlETgE2ZAxdy7x6XoGDoEBmBt+vhrzunZ44k1PIV4EbRBRwtrq8eeM7eyID83j7zcPIxNHm+qZWRsxJiZH6P3lO+0yrAkeP8g//Frp9zskuMzKzOL/JySc5mpuRl7N27nwvEzPMjLx8bBjlf6dKFiNf8//N6EEC+eBDXFc3H//n1lqvCjLC0t0dPTY9u2bXzwwQcEBAQwfvx4IiMjGTVqFDY2Nnh4ePzh1/z6669ZvHgxXbt2pVevXuTk5LBt2zbmzp2LqanpUwOBWmXVeARYsGABiYmJSsDy1q1b9OvXTwlSGhgYsGvXLoYOHcrcuXOVjMHTp0/z1ltv4eXlxZgxY0hLS2P69Ono6Og8sebo01y5cgV9fX0CAh4fxX9YvXr12L17NxcvXqRDhw6EhYUxYMAALCwseOeddygsLGTFihUUFBSUWu9Zl1u8eDELFy6kf//++Pn5ERcXxw8//MD169fZtWvXUy80/kpnzpwBoHLlys+0fF5eHufPn8fNzQ3z3+lm/ahz587x3nvv0aRJE3r27EleXh5r167l9ddfJygoSGnW9PHHH7N9+3a6dOnC4MGDiYiI4Mcff+TSpUv8+OOPGBoa8umnn3LmzBmmTp1KUFAQRkZGTJs2jbS0NNauXSsBzRcg/9cgokr1eFBG9Wumy4PCQh6/fSx7Wwt/HXzp/Gut22fdvruTE8ZGRpy7epUurVsrgzMFhYXKVPaCwsI/8M6E+P+pC0q+c3oGj1826v7a3EFdWFRmUFNHRwcdvWfLztS6e/YW6OrgUq/sOoRaSRfD0BQV49bw2c4BQvwV8n79TVaV0ehE9ev1UUFR0WNBzbLkFxby3ZGjALxarVqZyxwIuYmujg5t/auU+bwENMU/zYP8fAAMVI9nDuv/+lhhQUGZQU0dHZ3fvc9wcHHC0NiIkIvBNGnfSrl2KiwoJPxGSdPTosJC8n/tqXBo62709PRo37cburo6nNx7hHULljNo7HDKV/lnl/ISQjxOgpriuej6lBpv27Zto0KFCsyePRsfHx/Wr1+v3Nj7+Pjw+eef/+GgZmFhoTIte+bMmcrjPXv2pH79+pw4ceKZgppl1XhctmwZsbGxTJo0iWq/XlB+/vnn2NjYsHXrViXg9NprrzFo0CCmT59Oq1atUKlUfPnll9jb27Nx40YlK69BgwYMGjToTwU1U1JSsLS0LDMQ8jCHXzPFkpOTgZKgLMCGDRuUTMq2bdvSpUuXUus963I7d+6kSZMmfPLJJ8pjzs7O/Pjjj8THx/+poPQfUVBQUCponpmZyeXLl/nyyy8xNTWlb9++T12+qKiI2NhYvvvuO9LS0vjwww//8D7s3r0bIyMjFi1apFwsNWjQgFGjRnHjxg3c3d05e/YsW7Zs4bPPPqNPnz7Kuk2bNmXIkCFs2LCBQYMGYWNjw6RJk3jvvfdYsmQJ/v7+SpC8Ro0af3jfxP9Pm7n7pAzvZ/WgoIDZS5cSHR9PlzZtqOzr+4e2r6+vT8cWLfhp926+Wb2aLq1bU6zRsGnXLvJ/HWx4UYMI4j9Mm9n+/x0ez0RdWETy5QhsK7ljZG321GUTL4Rh6mKDhad0PBcvznM7fxQW8eW+/UTfS6Nz9apUdnl8JkxBUREnwsKo6eWJ/R8cnBXiRVFOIf/nMfIkevr6NGjTjCPb9/LTkjU06dAKjaaYg1t3U/Cg5NpJV1eXosIiAPJz8xjzxcdKR3S/av589cE0Dm4OkqCmEC8hCWqK52LOnDnY2T1eSwhKpkdfu3aNe/fuMXTo0FIBut69eyuBtT/CwMCA06dPU/hIxlJ6ejpmZmbk5ub+4W0CnDhxgnnz5tG5c2clKJqens65c+cYMGAA+fn55P862gjQunVrvvjiC65du4aXlxc3btzgzTffVAKaUJJF6efn96dqOGo0mmcKYOj/mh2g0WgoLi7mxIkTNG3atNTU8HLlytGoUSMOHz4M8MzLATg5OXH27FlWr15Nhw4dsLOzo0+fPqUCd3+loKAggoKCHnvc19eXKVOmKFPuf295Hx8f5s2b96eaBDk5OZGTk8Pnn39Ov379KFeuHH5+fuzbt09ZZv/+/ejo6NC0adNSQdXKlStjb2/P0aNHGTRoEFBSDzQoKIjly5djYWFBxYoVlVIH4u9n9GsGzaNZyvBbZqSJkdFTt5GTm8vMJUu4HRlJ83r16NOx45/afvd27cjJy2PP0aOcvngRgJr+/rzaqhU/7tiBmWTyir+Z3q9T+4oLHy/1UVxUcpOob/R8avdlRiZSXFCEnb/XU5fLTc4g/14WXm1kIEi8WNq6lQW/HgsPK/i1PI7x7wxO5zx4wOy9+7idmESzihXoXbvsGrE37t7lQWER9XykKZZ4eRgalVwDFZZxDVT060wAo9+5xvo9zV9tS35uHmcOHufauZJa+35Vq9C4XQsObN6FiZkpWRn3Aahcs6oS0AQwNjGmYjV/Lp8+T0H+A1RGv59VLYT455CgpnguatSo8dTu53fv3gVQpuhqqVSqxx57VgYGBhw9epRDhw5x584doqOjyfy1ycafqZcYFRXF2LFj8fX1ZerUqcrjsb828FizZs1jdT61EhISMPj1orasrEUfHx+Cg4P/8D45ODgQGxtLUVGRErgsizZD08HBgYyMDHJzc5+4H9pg5bMuBzBhwgTefvttZsyYwRdffEGVKlVo0aIFvXr1wv6hDs1/lUaNGjFkyBCgZJRXpVLh7OyMi4vL7y6fmJjIsmXLuH//PlOmTKFu3bp/ah9ee+01Tp48ydq1a1m7di1ubm40b96cHj16ULFiScHxmJgYNBoNzZo1K3Mbpo/UvpoyZQpt2rQhJSWF77777nczcsVfx+7XTOqM+/cfey79/n1MjI2VwGRZMrOymPHdd0TFxdGqYUPe7N27VEbCH9m+jo4Og7p1o3OrViSmpGBrZYW9rS0bdu5EV1cXOxupHSj+XoaWJQN1BVl5jz1XcD8PPWMD9MqYVvhnpN2KQ0dfFxu/J19TaJcDsK3i+VxeV4g/y/bXgeyMMgbU03NzMTFUYfSUhj338/KYsXsP0an3aFmpIkMaN3piRtuVmFgM9PSo5vHnrp2FeBEsbUuugbIysx57LivjPkYmxv93IFFHR4f2fbvSpH0r7iWlYGFjhbWdDQe2BKGjq4uljTV5D9XUfJSphRloNDx4IEFNIV42EtQUf6uygo2Gz1BjCEo3g9FoNLzzzjscOXKEmjVrUr16dXr37k3t2rWVTLg/Ijs7mxEjRqCjo8O3335barRQ+7r9+/en1a/18R5Vvnx5kpKSAEplcmoVFxf/4X0CqFWrFmfOnCE4OPip05IvXLiAjo4O1av/1iX2WffjWZarWLEi+/bt48SJExw5coQTJ07wzTffsHLlSjZu3Ei5cuX+yNv6w+zt7WnQ4Nk7Ej66fMuWLenZsydvvfUWK1euLNXY51mZmZmxdu1arly5wsGDBzl+/Dhr1qxh3bp1zJ49m06dOlFcXIypqSnffvttmdt49LseEhKiZBXv27ePwMDAP7xf4vkwNTHB3taWO3GPd+C8ExtLuaeUWMjLz1cCmu2bN2dQt27/1/ZPXbyIlYUFVXx9sbKwUB4PCQ/Hx91dqcEpxN9F31iFoY1ZmV3OsxPuYe5a9kyNP+N+TDLmrnboGz19kOd+dDIqSxNM7B9vtCLE38nU0BB7c/Myu5xHpabi85TB37yCAiWg+UqAPwMb1H/qa91KSsLb3g4TGQQVLxFjE2Os7GxIiH78GuhuTByuXv9/kD747CXMLc3xruiLmeVvpRmibkXg4umGgcoAR1dn9PT1Sb6b+Nj66alp6BsYlBnwFEL8sz17K0oh/g9eXl5ASTbko7SZkFq6urqPTdEsKioiPT1d+f8LFy5w5MgR3nnnHdavX8/EiRPp0aMHrq6uZPzaZfhZaTQaxo8fT0REBHPmzHksc9TV1RUoqWPXoEGDUv84ODhQUFCAsbExrq6u6OjoEB0d/dhrxJURyHgWHTt2RE9PjxUrVjxxmcTERPbu3UvNmjVxdXXF2toaMzOz392PZ11OrVZz48YNEhISaNmyJZ9//jnHjh3jq6++Iisri59++ulPvbe/k6WlJXPnzkWtVjNu3Lg/VQrgzp07BAcHU61aNd5//3127NhBUFAQFhYWrFy5Eij5ruTk5ODv7//Yd+X+/fsYG/9WAD07O5tJkyZRoUIFunfvzsqVK/9UNq94fupWrcq1W7eI/3WAAiA4NJSE5GQaPCUQvnzTJqLi4nilWbMyA5p/dPtBhw+z4qefSg3kXLx+nVuRkbT5tXmZEH83uyqeZETcJTclQ3ksPfwueSn3sQ/0fi6vUaxWk5uUganL72cjZyfck47n4h+jjrcX1+PjiU/PUB67FhdHQkYmDZ4y8Lvi5CmiU+/R7hkCmkVqNfHp6Xjb2T6v3Rbib1OlZlUiQm6RkvDbNVD4jVvcS0wmoO7/X0bk9L6j7Fy7udS1062rN4gJi6Rui0YAqIwMqVjdn9vBN0iOT1CWS0+5R+jl61Ss7o+uroRHhHjZyFEr/hYVK1bEw8ODDRs2lKp3uXfvXmXqtJadnR137twplUF4+PBhHvzaPRhQApfly5cvte6mTZvIy8ujqIy6Rk8yf/58Dh8+zMiRI2natOljzzs4OODv78/WrVuVbEwoaVY0ceJERo0aRVFRETY2NtSuXZsdO3aQ+tBo/eXLl7lx48Yz78/DvLy8eP311zlw4ACLFi167PmMjAxGjRpFYWEhn376KVAy/aJ169acOHGCsLAwZdm4uDiOHj2q/P+zLqdWqxk4cCAzZswo9dpVq1YFeGlO/gEBAQwZMoSEhATmzJnzh9f//PPPeeedd8jJyVEe8/HxwcLCQvkMWrRoAfDY3+rw4cOMHj2anTt3Ko/Nnj2bpKQkPvvsMyZMmIClpSUff/xxmTUXxd/j1VatMDU2ZtqCBew6fJgt+/bx1YoV+Hh40LhWLQCSUlM5fu4cSb8e43GJiZw4fx4TY2O83Nw4fu7cY//8ke0DdG7dmriEBGYtWcLBU6f4cedO5i1fTtVKlWj8hDprQvzV3P7H3p3HRVX1Dxz/DPuOsiWLhKDihoq7uBVglru5h2TmUmmPS2Xa+lhZ9riVmVv5aLnklmIqqKWIUvhzNxRzR1kEF3bZB+b3BzA5DuCAyNLzfb9evsp7zzlz7jh37p3vPed7erTCwNSYc//dT9zvUcSE/clfmw5h4WyLQ9uioE12cga3z1wjO1l7iqEuclMzURUUYmJd/kiZwoJCclMzMbY2L7ecENVlYNs2mBsb83lwMMGRkQSdPsPXBw7SyN6O7k2K7lVvp6cTfvkKt4vTkMSlpPD7lauYGRvhZmtL+OUrWn8edO/+fZQFherp7kLUJT1e8MXUzIy1C5bxx/5DHN7zK1tW/ICTW0PadCl6sJt85x5nI06QfEd71PMj2+/rx91biWxY8j0nwiL4bfseNi1bS+NWzWjT9e97rD7DB2Jiasqa+cs4vOdXwveG8v2X32BoZEjvFyuec18IUfNk+rmoEgcOHCh3de9BgwYxZ84cJk2axMiRIxk6dCj37t1j/fr16lyUJfr3789nn33GhAkTGDhwIDdv3mTr1q3qEZMA3t7eWFhYMG/ePOLj47G2tubYsWOEhIRgbGysEXgqT1hYGCtXrsTDw4OmTZuye/dujanXdnZ2dOvWjQ8//JCxY8cydOhQRo8eTb169QgODubPP//k7bffVh/7rFmzCAgIYMSIEQQEBJCdnc0PP/xQqZXPS8yYMYO0tDS+/vprDh06RJ8+fbCysuL69evs3LmTnJwcFi1apM7rCDBt2jTCwsIYM2YMr7zyCvr6+qxfvx5zc3ONoJku5YyMjAgMDGTFihVMmTKFHj16kJOTw5YtWzA1NWXo0KGVPrbqNnnyZPbu3cuWLVsYOHBghaahjxs3jokTJxIQEMDgwYMxNjbmwIEDxMTE8J///AcoWuXcz8+PNWvWEB8fT9euXYmPj2fjxo04OTmp83wePXqUrVu3MmLECHVagXfffZfZs2ezfPlypk+fXuXHLh7N2tKST6ZP58cdO9gaEoKxoSEdW7cmYNAg9ffUX9eusWLDBt4YM4an7Oz46+pVALKys1mxYUOp7fbs1Enn9gE6t23L1Fde4ZfffuPHHTuwtrRkoJ8fg597rs48RBD/PEYWprSe+ALXg49z88AZ9I0MsG3uSqPnO6BnULSgXfqN21z++XeaDuuOqU3FV2ZWZhU9vNR/xKJDyuxcUIH+I6aoC1FdrExN+ffAAayLOMq2k6cwNjCgw9NPE9ClM4bFCz5eTEhkZdhhXn+mF09ZWfFXQtFIsazcPFaGHS613R5Nm6j//37xw31TQ/nci7rH3MqSCe9NJWRTEAd37sXIyIjm3l70GT4Ag+J7oBuXrxO05ieGvPoSNg4VS2vSskMbhr/2MuEhB9i7eSfmVhZ0f96Xnv38Ne6d6tvZMOmD6fz6825+33cIlUrF003d6TN8YIVfUwhROyhUlVlRRYhis2fPJigo6JHlLl26BMCxY8dYvHgxFy5cwMnJiWnTprFw4UKcnZ3Vi/AUFhayfPlyfv75Z5KSkmjWrBnvvPMOa9asISsrS13u1KlTLFy4kIsXL2JkZESjRo14+eWXiYyMZN26dRw5cgQ7Ozt8fX012g8MDCQ+Pp7Q0FCWLl1aZv5DgE6dOqnrRUVFsXTpUk6ePIlSqVS/3pAhQzTqREZGsmjRIiIjI7GysmLcuHGcP3+e06dPayy+U1FHjhxh48aNXLhwgfT0dBo0aEDPnj0JDAwsdbGf6Oho5s+fz/HjxzEyMmL48OEArFq1Sv3voWu5wsJC1q1bx/bt24mLi0NfX5927doxdepUWrVqVeljgr9HN5b23sTFxeHn58eQIUP48ssvH9mWLuUjIiIYN24cHh4e7Ny5s0KL84SFhbFq1SquXbtGbm4uTZo0Ydy4cRqrqefn57N69Wp27txJfHw8NjY2dO3alWnTpuHk5ER2djYDBgwgKyuLvXv3Ym39dz64MWPGcPbsWbZt20bz5s117leJdJm+LkSZJiXtq+kuCFGrrTgvi2MIUZZTgyT9ixDl8Xd9/DQCtcGoQ/Nrugtl2vzsuzXdhVpJgpqixj0cdBRCVI4ENYUomwQ1hSifBDWFKJsENYUonwQ1nzwJapZO5rEJIYQQQgghhBBCCCHqFMmpKUQ1KigoIDk5WaeylpaWmJiYPOEeVY3k5GSN1QbLYmJigqVlxfOsPSl1td9CCCGEEEIIIcT/OglqClGNEhIS8PPz06nsvHnzePHFF59wj6rGsGHDiI+Pf2Q5XXNjVpe62m8hhBBCCCGEEOJ/nQQ1RY17nMVz6hp7e3vWrl2rU9nGjRs/4d5UnQULFpBbvCpneRwcHKqhN7qrq/0WQgghhBBCCCH+10lQU4hqZGxsjI+PT013o8q1b9++prtQKXW130IIIYQQQgghxP86WShICCGEEEIIIYQQQghRp0hQUwghhBBCCCGEEEIIUadIUFMIIYQQQgghhBBCCFGnSFBTCCGEEEIIIYQQQghRp0hQUwghhBBCCCGEEEIIUadIUFMIIYQQQgghhBBCCFGnSFBTCCGEEEIIIYQQQghRp0hQUwghhBBCCCGEEEIIUadIUFMIIYQQQgghhBBCCFGnSFBTCCGEEEIIIYQQQghRpxjUdAeEEEJUjeP1lDXdBSFqre94vqa7IEStdnyQXEOEKMvqawdqugtC1Gr+ru1qugvif5SM1BRCCCGEEEIIIYQQQtQpEtQUQgghhBBCCCGEEELUKRLUFEIIIYQQQgghhBBC1CkS1BRCCCGEEEIIIYQQQtQpEtQUQgghhBBCCCGEEELUKRLUFEIIIYQQQgghhBBC1CkS1BRCCCGEEEIIIYQQQtQpEtQUQgghhBBCCCGEEELUKRLUFEIIIYQQQgghhBBC1CkS1BRCCCGEEEIIIYQQQtQpEtQUQgghhBBCCCGEEELUKRLUFEIIIYQQQgghhBBC1CkGNd0BIYQQorZIuZvE3i2/EH3pKgCerVvwwshBmFtZllvvyrm/CNvzG7duxKLQU9DQ3Q3/F/vS0MOtUu3r2p4Q1elOUhLrgoK4cOUKAO1atiRwyBCsLcs/P87+9Rc79u3jemwsenp6NHFzY1T//jRxc9Mol5aRwebduzl57hx5SiWNXFwIGDRIq5yu7QlRGz3p64wQtVVOcgbX954g7XoiADbNXGj0QkeMLEx1buNKUATZ99JoPfEFrX0Z8fe4sf8U6TF3UCgUWDdqQKMXOmJmb61R7szy3dyPS9Kqb9vqaVq89GwFj0oIUdMUKpVKVdOdELXb7NmzCQoKKreMn58fy5cvr6YeafP19cXZ2Zn169cDEBgYSHx8PKGhodXWh6p4zf3797N161bOnz9PTk4Ojo6OdO/enbFjx9KwYUOd2ij597p06VKVlKuouLg4/Pz8dCp78OBBgFLLGxoaYmNjQ7du3Zg2bRoNGjQot32FQoGlpSXu7u4EBAQwcODAxziKuulAzOma7kKdlnU/kxWfLKKgQEkXv56oVIX8vu8Q9Wzr8/pHb6FvUPpzwOhLV1kzfxkOTg1o36MzBQWFHA/9nYy0NCbMnoqL+9MVal/X9kTFdEqV57iPIyMzk9nz51NQUMDzvXpRWFjI7oMHsbex4Yt33sGgjPPjwpUrfLp0KS4NGvBs164UFBSwPzyc1LQ0Ppk+ncbFgcjsnBzeX7iQlLQ0+j37LOZmZuw7coTk1FS+eOcdXJ2cKtSeqLjj9ZQ13YV/vCd9nRFPzuprB2q6C3VaflYuZ5btQlVQiFPX5qhUKuLCz2NSz4K2k/ujp6//yDYST17myo4IrBs9pRXUzLqbxpllu9E3MsC5WwsA4v+4gEqlot2/BmFsZQaASqUi4pON1G/shG1LzfPGpJ451o0aVNER/+/Z/Oy7Nd2FKjHq0Pya7kKZ/invcVWTO3yhs/fee4/69euXus/R0bGae1O+119/nezs7Jruhs7y8vKYNWsWISEhtG7dmgkTJmBtbc2VK1cICgpi+/btLFiwAH9//5ru6iPZ2Ngwf77mxWDevHlA0Wfo4bLJyckAdOjQgREjRqj3KZVKrl69ysaNGzl69Ci7du3CyspKvf/h8iqVitjYWDZv3szMmTPR19enX79+VX584p/rj1/DSEtJ5c1P38XBqeim1rnR0/y4aAWn/zhOx14+pdYL2RSEdf16vPbhDIyMjQDw9unIkg/ncWBHMK+8M7lC7evanhDVKTg0lOTUVBa89x4uxQ+ZGj/9NJ8vW0bYsWP4d+tWar0fd+zAtl49Pn/nHYyNij7PPTt14q3PP2fznj18+OabAPzy228k3LnDx//6Fy2aNAGga7t2/GvOHHYdOMCbL79cofaEqI2e9HVGiNoq/vcoctOyaD91EGYO9QCwdLHn/JpfuX36Ko4dPcusqyosJDYskpsHz5bdfsQFCvOUtJn0AhZOtgDU83Di7PI9xP8RhfsLHQHITblPYZ4S2xauPOXtUWXHJ4SoORLUFDrz9/fHxcWlpruhk25l/LiqrebPn09ISAgzZ85kwoQJGvtef/11JkyYwPTp09m+fTuenmVf9GsDMzMzBg0apLFtyZIlAFrbAXVQs2HDhqXub9iwIZ988gmbN29m0qRJGttLK//iiy/St29fli1bJkFNUSHnjp2mkWdj9Q9NgMYtPbFt4MC5Y2dK/bGZnZlFYuwtuj33jPqHJoCFtSVuTT24FvX3SGhd2q9Ie0JUpz9On6ZFkybqgCZA62bNcHRwIOL06VKDmvezsrgZH0+/Z59VByAB6llZ0bxxYyIvXgSKHkodPn4c7xYt1AFNgPpWVrw8ZAh6enoVak+I2upJX2eEqK3uRl6nXqMG6oAmQP3GTpjaW3E3MrrMoGZBvpKzK4LJSkzBwduD1OsJpZbLSc7AwNxYHdAEsHSxw8DMmKzbKeptmXdSATC1s364CSFEHSULBQlRw6Kjo9mwYQP9+vXTCmgC2NrasmTJEhQKBXPnzq2BHtasvn37AnD6tG5Tq52dnenYsSPXrl3j/v37T7Jr4h8kOzOLlLtJOLlpP7hxcnUhISau1HrGpiZM++J9fPo8o7Uv634mevp6FWpf1/aEqE73s7K4c+8e7qWkQWnUsCHRsbGl1jMzMeGrDz+kn6+v1r6M+/fRLw5W3k1OJjk1ldbNmgFFQc6c3FwAnuvRQx0w1bU9IWqjJ32dEaK2ys/OJSf5PhbOtlr7LBxtuX9LO79lCZWykILcPJqN7oXn8B4o9BSlljO1tUKZlUve/b9n6uVn5aLMycPwgZydJQFOM4eioGZBXn6ljkkIUXvISE1R5fbu3cuqVau4fv06rq6uvP3222zYsIG8vDx1zsuHc2CWeHi7SqVi8+bNbN++nWvXrqFUKnF2dubFF19k4sSJKBSlX9gezG/5qByPb775Jv/6178AuHr1Kl999RXHjh0jPz+f5s2bM2XKFHr06KFRJyIigm+++YaLFy9iZ2fHa6+9Vun365dffkGlUhEQEFBmGVdXV/z9/dm7dy+JiYnq/JLnz59n8eLFnDlzBgsLC8aMGUNpaXJ1KadSqVi2bBm7d+/m1q1bWFpa0q1bN956660aTS9QMkKnoKBA5zpmZn/nzamIHTt28N577/HNN9/wn//8h6SkJCZMmMC//vUvbt68yfLlyzl69CjJycmYmZnRrl073n77bZo8MLIoLy+PVatWsXv3bhITE3F0dGTo0KGMHz8e/eJ8Qbm5uSxfvpzdu3dz584dnnrqKQYOHMgbb7yB0QOjj0T1SU9JA8Cqfj2tfZb1rMjJyiY7KxtTM81k9np6etg9Za9VJzH2FjFXo2nSqlmF29elPSGqU3JqKgA21tojW+pbWZGVnU1mVhbmxd+9JfT09HB0cNCqczM+nsvR0bRp3hyAhDt3ALCytGR9UBAHIyLIzsnhKXt7xg4ZQnsvrwq1J0Rt9KSvM0LUVnlpWQAYWZlp7TOyMqUgOx9ldh4Gptr3wPomhnR4a+gjg/cuPVuRfDGWS1uO4N6vaKr59b0n0dPXw9mnhbpc1p1U9I0NuB5ygruR0RTmKTGxseDp3u1waOP+OIcphKghEtQUOktPT1dPFX6YtbU1+vr67Ny5k1mzZuHl5cXMmTO5fv06U6dOxcbGBldX1wq/5tdff83KlSsZMmQII0aMIDMzk507d7Jo0SLMzc3LDQSWKC3HI8DSpUtJTExUBywvXbrESy+9pA5SGhoasmfPHiZNmsSiRYvUIwYjIiKYOHEibm5uTJ8+neTkZD7//HMUCkWZOUfLc/bsWQwMDPAq/tFWli5duhASEsKpU6fo168fV65cITAwECsrKyZPnkx+fj5r1qwhLy9Po56u5VauXMmyZcsICAjA09OTuLg41q1bx/nz59mzZ486IFfdjh49CkCLFi0eUbJIdnY2J06cwMXFBctHrMhblg8++IAxY8ZgYWFB27ZtuXfvHiNGjFAHhOvXr89ff/3F1q1biYqKIjQ0FENDQwCmTJnCkSNHGDBgAOPGjSMyMpJFixaRlJTEe++9R0FBAa+99hqnT59mxIgReHh4cP78eVauXMlff/3FihUrygzWiycnNycHAEMjQ619BsXb8vPytH5sliYvJ5ftqzcA0KOv32O3X1p7QlSnklGTpT10MSr+7svNz8dcx7aWFT+4HFScJzqrOAf2luBgDPT1eWXYMPQUCnYfPMiC77/n/cmT1aM4dWlPiNroSV9nhKitSkZD6htqhx70ihfHKshXlhrUVCgUKPQffV9sUs+Chs+05tru/+P0N7uKG1fQ/KVnNKakZ95OpSBXiTInD8/hPVDm5HEr4gKXthxBVaiSPJtC1EES1BQ6GzJkSJn7du7cSdOmTZk/fz7u7u789NNP6h8/7u7uzJ07t8JBzfz8fPW07C+//FK9ffjw4XTt2pXw8HCdgpql5XhcvXo1sbGxfPzxx7Rt2xaAuXPnYmNjQ1BQkHqk35gxYxg7diyff/45/v7+GBkZsXDhQuzt7dmyZQsWFhYA+Pj4MHbs2EoFNe/evYu1tfUjR+g5FI9OuVM8omXp0qUAbN68WT2Ssk+fPgwePFijnq7ldu/eTc+ePfnwww/V2xwdHdm0aRPx8fGVCkpXRF5enkbQPC0tjTNnzrBw4ULMzc0ZPXp0ueWVSiWxsbEsX76c5ORkZs+eXem+9OvXj+nTp6v//t1335GWlsZPP/2Eh8ffNzvm5uZ89913XL58mZYtW3L48GGOHDnCjBkzeP311wEYPXo0+fn5bNy4kSlTpnDgwAGOHj3K6tWrNUYAt27dmo8//piDBw/WiQWh/mlKBvU+bkA5LzePDd+sJjH2Fj37+dPIs/FjtV9We0JUp5JR7497fuTm5TH/u++4GR/P4OeeU+fPzFcWrbqdlZ3N1x99hEXxNbh9q1ZM/fRTNu/eXWpQs6z2hKiNnvR1RohaS/3hf3IvceO308QeisS60VM06OSJqlBFwrGLXNx0mOYvPYtt86L0KY4dm6JSqXDq8vfIfvvWjTi9ZCfRe0/g0KYRCkllIkSdIkFNobMFCxZgZ2dX6j5XV1fOnTtHUlISkyZN0gjQjRw5Uh1YqwhDQ0MiIiLIz9fMdZKSkoKFhQVZWVkVbhMgPDycxYsXM2jQIHVQNCUlhePHjxMYGEhOTg45xU/TAXr37s28efM4d+4cbm5uREVFMWHCBHVAE4pGUXp6elYqh6NKpdJpFKRB8ZNMlUpFYWEh4eHh9OrVS2NquIeHB927dyc0NBRA53IADRo04NixY/z444/069cPOzs7Ro0axahRoyp8TJURHBxMcHCw1vYmTZowZ84c9ZT7R5V3d3dn8eLFj7VIUMeOHTX+PmnSJIYOHYqt7d9PenNyctRT40s+i2FhYejp6TFmzBiN+rNmzeKNN97A3NycX3/9FRsbG1q2bKkRlO3Vqxf6+vqEhYVJULMGGJsYA0WjZB6mLB5hYGJiUm4b2VnZbPj6O2KuRtOuR2f8X/z7M1iZ9strT4jqZGJc9Pl9eIQ/QF7xNdrsEedHZlYWX65axeXr13m2SxdG9e+v3ley6E/nNm3UAU0AczMz2rdqxZHjx8nJzVX341HtCVEbPenrjBC1lb5x0UjkwnztVFKFxQ+1DEy0RzDrSpmdR1z4eSxcbPEa30cdlLRv7cbZ5Xu4EvQH9ZsMR89AH8fO2g/I9A0NcPD2IObgn2TdScW8gU2l+yKEqH4S1BQ6a9euXbmrn9+6dQsoWpX6QUZGRlrbdGVoaEhYWBgHDx4kOjqamzdvkpZWlJOoovkSAW7cuMFbb71FkyZN+PTTT9XbY4sXOVi/fr1Wns8SCQkJ6inGpY1adHd3JzIyssJ9cnBwIDY2FqVSqQ5clqZkhKaDgwOpqalkZWWV2Y+SYKWu5QDeffdd3njjDb744gvmzZtHy5Yt8fX1ZcSIEdjba+dyqmrdu3dn/PjxQNEoBiMjIxwdHXFycnpk+cTERFavXk16ejpz5syhc+fOj9WXB4OXJfLz8/nqq6+IiooiJiaGuLg4dZ7PwsJCAOLj47G1tdUIeAPY29ur38OYmBiSk5Pp2rVrqa+dkFD6qo7iybK2LRplnZGWobUvIzUdEzNTjEyMtfaVyEzP4IfFK0mMiadDLx8GvjxcYzRORdt/VHtCVCe74lkIqenpWvtS0tMxMzXVCDg+LC0jgy+WL+dGXBz+3boxYeRIjc+zTb16AFg99N0JYG1piUqlIvuBoOaj2hOiNnrS1xkhaitj66Lv9ryMbK19eenZ6Jsaol9KWgZdZSelo1IWYt/aXWOUpZ6+Pg5tPIjed5Ksu2lYOJYdrDQ0L0r7UJCnrHQ/hBA1Q4KaosqVFmw0LufHzoMeXAxGpVIxefJkDh06RPv27fH29mbkyJF07NiRsWPHVrhf9+/fZ8qUKSgUCr799luNp+ElrxsQEFDmKLnGjRtz+/ZtAI2RnCVKAlsV1aFDB44ePUpkZCTt2rUrs9zJkydRKBR4e3urt+naD13KNWvWjP379xMeHs6hQ4cIDw/nm2++Ye3atWzZskVj2vWTYG9vj4+PT6XL+/n5MXz4cCZOnMjatWtp3759pfui99C0k5MnTzJ+/HjMzMzw8fFh6NChtGjRgpiYGI3guC6LGRUUFODm5sa///3vUvdbWVlVut+i8kzNTKlnZ0PCTe3VZ2/FxOHsVvaDmdycHPUPza69e9F3tHaqjoq0r0t7QlQnczMz7G1tiY7T/vxGx8biUU56kuycHHUAsu+zzzL2xRe1yjR0dMTAwIDYxEStfXeSkjA0NMS6OOCpS3tC1EZP+jojRG1lYGqEsY1Fqauc309IwtK59JmAutIzKL5vL9T+DapSFZb8D7lpmZxb+ysOrRvh6ttWo1z2vaJBMyb1tR+uCSFqN0kYIaqMm5sbUDQa8mElIyFL6OnpaU1jUyqVpKSkqP9+8uRJDh06xOTJk/npp594//33GTZsGM7OzqQWr8SqK5VKxcyZM7l27RoLFizQGjnq7OwMgL6+Pj4+Php/HBwcyMvLw9TUFGdnZxQKBTdv3tR6jbhSfuzpon///ujr67NmzZoyyyQmJrJv3z7at2+Ps7Mz9evXx8LC4pH90LVcQUEBUVFRJCQk4Ofnx9y5czl8+DBfffUVGRkZbNu2rVLHVp2sra1ZtGgRBQUFvP3225VKBVCWb775BhMTE4KDg1m0aBGvvfYaPXr0ICNDc7SFk5MTSUlJZGZmamyPiori7bff5urVq7i4uJCamkqXLl00PmcdO3YkNTVVnc9VVL+W7dtw7cIl7ibcVm+7GnWJpMQ7eHUu+4HD7vU/F//Q7FnuD01d29e1PSGqU+c2bTh36RLxt//+/EZevEjCnTv4lPMQ6b9bt3IjLo4XnnmmzACkibExHby8OHP+PLEPjFa/k5TEyXPn6ODlpX7YpEt7QtRWT/o6I0RtZdfyaVKv3SLrbqp6W8rVW2TfTce+daPHatvMoR5GVqYknr5CQf7fIy0L8pXcPnMNA3NjzJ6qh7G1OQU5eSScuIwy5+/foTmp97l96grWHg0wspT7cCHqGglqiirTrFkzXF1d2bx5s0a+y3379qmnTpews7MjOjpaYwRhaGgoucUrrALqwGXjxpoJ0Ldu3Up2djZKpe7TA5YsWUJoaChvvvkmvXr10trv4OBAq1atCAoKUo/GhKIpx++//z5Tp05FqVRiY2NDx44d2bVrF/fu3VOXO3PmDFFRUTr350Fubm6MGzeO3377jRUrVmjtT01NZerUqeTn5/PRRx8BRdOze/fuTXh4OFeuXFGXjYuLIywsTP13XcsVFBTw8ssv88UXX2i8dps2bQDtkYu1lZeXF+PHjychIYEFCxZUWbupqanY2NhgY/P3tJWMjAyCgoKAv0do9urVi8LCQq0g8KZNm9i7dy92dnb4+vqSmprKpk2bNMps3ryZGTNmqFd7F9Wvxwu+mJqZsXbBMv7Yf4jDe35ly4ofcHJrSJsuRUGb5Dv3OBtxguQ7Ref/nVuJ/Hn0JCZmpjRo6MLZiBNafyrSfkXaE6I6DfT3x9zUlM+WLmVPaCg79u/nqzVrcHd1pUeHDgDcvnePI8ePc7v4+hiXmEj4iROYmZri5uLCkePHtf6UGDNoEGampnz6zTfs2L+fXQcO8O+vv8bI0JDRAwZUuD0haqMnfZ0RorZy6dEKA1Njzv13P3G/RxET9id/bTqEhbMtDm2LZoNlJ2dw+8w1spO1UzSUR6Gnh8eALmTfTePsimDi/7hA3O9RnF2+h+y7aXj064Re8foFHgO7kJeWxZ+rQoj/4wIxh/7k7PI9KPT0aDygS5UftxDiyZPp50JnBw4cKHd170GDBjFnzhwmTZrEyJEjGTp0KPfu3WP9+vXqXJQl+vfvz2effcaECRMYOHAgN2/eZOvWreoRkwDe3t5YWFgwb9484uPjsba25tixY4SEhGBsbKw1Gq4sYWFhrFy5Eg8PD5o2bcru3bs1pl7b2dnRrVs3PvzwQ8aOHcvQoUMZPXo09erVIzg4mD///JO3335bfeyzZs0iICCAESNGEBAQQHZ2Nj/88EOlVj4vMWPGDNLS0vj66685dOgQffr0wcrKiuvXr7Nz505ycnJYtGgRzR5Y/XXatGmEhYUxZswYXnnlFfT19Vm/fj3m5uYao2B1KWdkZERgYCArVqxgypQp9OjRg5ycHLZs2YKpqSlDhw6t9LFVt8mTJ7N37162bNnCwIEDH2saeomePXvy/fffM23aNLp3787du3f5+eef1YHtks+ir68v3bt358svv+TKlSt4eXlx5swZdu7cyZQpU6hXrx7Dhw8nKCiIzz77jKioKFq3bs3ly5fZsmULLVu25EUZeVRjzK0smfDeVEI2BXFw516MjIxo7u1Fn+EDMCj+Drtx+TpBa35iyKsvYeNgx41L1wDIycomaM1Ppbbb1qej7u1XoD0hqpO1pSWfTJ/Ojzt2sDUkBGNDQzq2bk3AoEHqa/xf166xYsMG3hgzhqfs7Pjr6lWgaFXzFRs2lNpuz06dALC3tWXu22+z8Zdf2H3wICqViuYeHgQMHsxTxYsUVqQ9IWqjJ32dEaK2MrIwpfXEF7gefJybB86gb2SAbXNXGj3fAT2DooBj+o3bXP75d5oO646pjWWF2rdr+TRer/YhJvQsN347BYCFky0tx/pj0/TvNSHsWjxNi0BfYsIiid5/Ej1Dfeo1csStTzvM7OtV2fEKIaqPQlWZ1VbE/5TZs2erR6SV59KlSwAcO3aMxYsXc+HCBZycnJg2bRoLFy7E2dlZvQhPYWEhy5cv5+effyYpKYlmzZrxzjvvsGbNGrKystTlTp06xcKFC7l48SJGRkY0atSIl19+mcjISNatW8eRI0fUo98ebD8wMJD4+HhCQ0NZunQp3377bZn97tSpk7peVFQUS5cu5eTJkyiVSvXrDRmiOdUnMjKSRYsWERkZiZWVFePGjeP8+fOcPn1aY/Gdijpy5AgbN27kwoULpKen06BBA3r27ElgYGCpi/1ER0czf/58jh8/jpGREcOHDwdg1apV6n8PXcsVFhaybt06tm/fTlxcHPr6+rRr146pU6fSqlWrSh8TFAX7gFLfm7i4OPz8/BgyZAhffvnlI9vSpXxERATjxo3Dw8ODnTt3YlS8su6j7Nixg/fee49169ZpLDaUm5vL119/TUhICCkpKTg4ONClSxdeffVV+vXrx0svvaQeRZubm8uyZcvYvXs39+7dw9XVlZdeeonRo0erR7zev3+fZcuWsX//fu7cuYODgwO+vr5MmTLlsYLjB2JOV7quEP90nVLlOa4Q5TleTxbIEKIsq68dqOkuCFGrbX723ZruQpUYdWh+TXehTP+U97iqSVBTVIuHg45CiKonQU0hyiZBTSHKJ0FNIcomQU0hyvdPCbhJULPuqRuJ8oQQQgghhBBCCCGEEKKYDFsQoooVFBSQnJysU1lLS0tMTEyecI+qRnJysnpBnPKYmJhgaVmxPDhPUl3ttxBCCCGEEEIIIcomQU0hqlhCQgJ+fn46lZ03b16dWRhm2LBhxMfHP7Kcrrkxq0td7bcQQgghhBBCCCHKJkFNUS0eZ/Gcusbe3p61a9fqVLZx48ZPuDdVZ8GCBeTm5j6ynIODQzX0Rnd1td9CCCGEEEIIIYQomwQ1hahixsbG+Pj41HQ3qlz79u1ruguVUlf7LYQQQgghhBBCiLLJQkFCCCGEEEIIIYQQQog6RYKaQgghhBBCCCGEEEKIOkWCmkIIIYQQQgghhBBCiDpFgppCCCGEEEIIIYQQQog6RYKaQgghhBBCCCGEEEKIOkWCmkIIIYQQQgghhBBCiDpFgppCCCGEEEIIIYQQQog6RYKaQgghhBBCCCGEEEKIOkWCmkIIIYQQQgghhBBCiDpFgppCCCGEEEIIIYQQQog6xaCmOyCEEEII8aQVHD5U010Qolbr1OvZmu6CELXW6prugBBCiFLJSE0hhBBCCCGEEEIIIUSdIkFNIYQQQgghhBBCCCFEnSJBTSGEEEIIIYQQQgghRJ0iQU0hhBBCCCGEEEIIIUSdIkFNIYQQQgghhBBCCCFEnSJBTSGEEEIIIYQQQgghRJ0iQU0hhBBCCCGEEEIIIUSdIkFNIYQQQgghhBBCCCFEnSJBTSGEEEIIIYQQQgghRJ0iQU0hhBBCCCGEEEIIIUSdIkFNIYQQQgghhBBCCCFEnSJBTSGEEEIIIYQQQgghRJ1iUNMdEEIIIWqLlLtJ7N3yC9GXrgLg2boFL4wchLmVpc5t7PxhC0m37zB+1r+09sXfiOW3n3cTc/UGCj0Fbp4evDByMHYNHDTK3bx8nd927CE+OhZTc1Oae3vhO/gFzC0tHu8AhXgMd9Iz2PB//8eFW7cA8HZ1JbBrF6xMTcut92dsLEGnz3D93j30FAqaODgwomMHmjz1lEa5qPhbbD15kptJSZgZGdHZ3Z2RHTtgYmgIwN2MDKb+tLnc1/poQD9aODk9xlEKUTl3kpJYFxTEhStXAGjXsiWBQ4ZgbVn+9ePsX3+xY98+rsfGoqenRxM3N0b1708TN7dKtX8tJoZNu3ZxKToaPT09Wnh4EDhkCE4PnW9CVLec5Ayu7z1B2vVEAGyaudDohY4YWZR/DXnQlaAIsu+l0XriC3+3m3KfEwt+Lree14Q+1HN3BOCvTWHcO3dDq4yFsy3eUwbo3BchRO0gQc1aYPbs2QQFBZVbxs/Pj+XLl1dTj7T5+vri7OzM+vXrAQgMDCQ+Pp7Q0NBq60NVvOb+/fvZunUr58+fJycnB0dHR7p3787YsWNp2LChTm2U/HtdunSpSspVVFxcHH5+fjqVPXjwIECp5Q0NDbGxsaFbt25MmzaNBg0alNu+QqHA0tISd3d3AgICGDhw4GMcRfUqKCjg+++/Z+vWraSnp9OhQwc+/vhjnOSHr3hA1v1M1sxfRkGBkh7P+6JSFfL7vkPcjrvF6x+9hb7Boy+Zp8L/j1NHjuLm6aG1717iHf77n6UYGRnxzIDnAIj4NYzvv1jClE/fxaqeNQDRF6/w4+KVmJia0qt/bxR6Co7+epjrF68w6f3pmJqbVe2BC6GDjJwcPtuzh4LCQga0aUOhSsWeyEhik5OZO2QwBvr6pda7cCuB/+zdh0v9+ozq2JECVSG/Rl3g0917+PfAATR2KAroR8Xf4vPgYBrZ2fFS504k3c9k7/nzXL97lzkDBxRdg0xMmPzsM1qvkVeg5Mc/jmJpaoKrre0TfBeEKF1GZiaffPMNBQUFDPT3p7CwkN0HDxJz6xZfvPMOBmVcPy5cucKXK1bg0qABowcMoKCggP3h4cz5+ms+mT6dxsWBTV3bv3X7Np988w3GhoYMff55AIJDQ/n466+ZP3s2NtbW1fJ+CPGw/KxcIv+7D1VBIS49W6FSqYgLP09mYgptJ/dHr4xryIMST14m8cRlrBtpBugNzY1pOryHVvlCpZJru49haG6CuaONenvm7RSsnnagQSdPrXaEEHWPBDVrkffee4/69euXus/R0bGae1O+119/nezs7Jruhs7y8vKYNWsWISEhtG7dmgkTJmBtbc2VK1cICgpi+/btLFiwAH9//5ru6iPZ2Ngwf/58jW3z5s0Dij5DD5dNTk4GoEOHDowYMUK9T6lUcvXqVTZu3MjRo0fZtWsXVlZW6v0Pl1epVMTGxrJ582ZmzpyJvr4+/fr1q/LjexKWL1/OsmXLGDduHPb29qxcuZI33niDHTt2oK/DTZT43/DHr2GkpaTy5qfv4uBUFOR3bvQ0Py5awek/jtOxl0+ZdQsLCzm85zdCf9lXZpmIX8PIz81j4ntTcXR1AcC9RVNWfbaYiP1hPD9yEAB7Nu5AodBj4vvTsH3KHoAW7Vqz7N/zObznN3U5IapTSOQ5ku9n8p/hQ3Epvldp7GDPF8F7OXz5Mn7Nm5dab93Ro9iYm/PZ4MEYGxbddvZs0oS3t25jy4mTfNCvLwAb/u//sLWw4N8DB2BUHKCxs7Bgze9/8GdsHG1dG2JiaEiPpk20XuPHiKMoCwt40/dZLIzlR6mofsGhoSSnprLgvfdwKX5I3Pjpp/l82TLCjh3Dv1u3Uuv9uGMHtvXq8fk772BsZARAz06deOvzz9m8Zw8fvvlmhdoPDgsjNzeXT6ZPp5FL0XXGq2lT3l+4kODQUAKHDHmi74MQZYn/PYrctCzaTx2EmUM9ACxd7Dm/5ldun76KY0fPMuuqCguJDYvk5sGzpe7XNzLkKW/th8nX9hxDVVBIsxE9MTQtujYUFhSQk5SB/TNupdYRQtQ9EtSsRfz9/XEpvgGp7bqVcXNWW82fP5+QkBBmzpzJhAkTNPa9/vrrTJgwgenTp7N9+3Y8Pcu+qNYGZmZmDBqkGdRYsmQJgNZ2QB3UbNiwYan7GzZsyCeffMLmzZuZNGmSxvbSyr/44ov07duXZcuW1Zmg5tatW+nZsyezZs0CigK6ixYt4vr16zRpov0DWfxvOnfsNI08G6sDmgCNW3pi28CBc8fOlBnUzM/LZ9Xcr7gdd4u2Ph259tflUssl303CzMJcHdAEcGnkiqm5GbfjEwBIuZfMnfgEOvTyUQc0Aewdn8KzTUvO/HFcgpqiRkRcu0YLJ0d1QBPAy8UFx3rWHL12vdSg5v3cXGKSkujr5aUOaAJYm5nR3NGRyLh4APKUSqxMTenUqJE6oAnQvPiB7s2kJNq6lj6bIiYpif3nz9PLs6m6vBDV7Y/Tp2nRpIk64AjQulkzHB0ciDh9utSg5v2sLG7Gx9Pv2WfVAU2AelZWNG/cmMiLFyvc/p1797C0sFAHNAE8nn4aC3NzYhMSqvSYhaiIu5HXqdeogTqgCVC/sROm9lbcjYwuM6hZkK/k7IpgshJTcPD2IPW6bp/jzMRkbh39i6faN8G60d/nTfbddFQFhZjZ1yu7shCiTpGFgsQ/XnR0NBs2bKBfv35aAU0AW1tblixZgkKhYO7cuTXQw5rVt2/RKJnTp0/rVN7Z2ZmOHTty7do17t+//yS7VmVycnJISEhApVIBkJubCxRNwRcCIDszi5S7STi5aT9YcnJ1ISEmrsy6SqWS3OwcRr4xlqETAtDXK330r+1T9mRlZpGZnqHelnU/k5zsHCyti0ZJp6ekAfCUSwOt+jYOdmTdzyQtOaVCxybE47qfm8ud9Awa2dtp7XOzsyP63r1S65kZGrJo5Aj6tfbS2peRk4O+ngIAIwMD3uv7AkPaeWuUuZFU1K59OTkJt5w4iZGBASM6dND5eISoSvezsrhz7x7upaQxatSwIdGxsaXWMzMx4asPP6Sfr6/Wvoz799HX06tw+w3s7bmfmUlaxt/XmYzMTLKys6n3wGwcIapTfnYuOcn3sXDWTg9i4WjL/VtJZdZVKQspyM2j2eheeA7vgaL4uvEoN347jZ6hAU/7a15Xsu6kAmDmUJSKoSAvX8ejEELUVhLUrIP27t3L4MGDad26Nf379+fQoUOMHz+ewMBAdRlfX1+Nv5e1XaVSsWnTJoYNG4a3tzdeXl48//zzfPfdd+oAUGkCAwPxLb4Ji4uLw9PTs8w/S5cuVde7evUqU6ZMoUOHDrRp04ZRo0YRHh6u1X5ERASjRo2ibdu2+Pv7s23btkq9VwC//PILKpWKgICAMsu4urri7+/PiRMnSExMVG8/f/48r776Kt7e3vTo0YNVq1aV+r7oUk6lUvHtt9/Sp08fvLy88PHxYebMmSTU8JNzveKb5oKCAp3rmJkV5fQr7zNSlv379zN06FC8vb1p374948aN49SpUxplCgsLWbNmDc8//zytWrWiR48ezJ07VyOIOmPGDDw9PTl8+LB6W2pqKt27d6d3795kZWWpt7/wwgtcvnyZ7777jsOHD7NmzRq6du2K20NJ+I8dO4anpydBQUEMGDAALy8v9ZT+u3fv8sknn+Dn50erVq1o3749L7/8slbfVSoV69ato3///rRu3RpfX18WLlyoka5Bl+MT1askmGhVv57WPst6VuRkZZOdVXrKDRNTE6Z/+QGtOnqXur9Ejxf8sK5fj62r1pMYe4vE2FtsXbUOfX19uvbuCYCRcVGgPTcnV6t+1v1MADLSMrT2CfEkpWQWffZszMy19tU3MyMrN4/MXO3PrJ6eHo7W1tQ316wXk5TE5du3aVrGwiV3MzI4fOkyP0YcpaFNfTq4PV1quZikJE7fjMG/eXOt1xCiuiSnpgKUmq+yvpUVWdnZZD5wT1JCT08PRwcHrXo34+O5HB2Np7t7hdsf5O+Pbb16fPPjj9yMj+dmfDzf/PAD+vr6vPDMM49xlEJUXl5a0efTyEo7J7iRlSkF2fkos/NKratvYkiHt4Zi79VI59fLTEwm+a84HDt7YvzQa2beLnownHD8MkfnbiJizkb+b94W4iMu6Ny+EKJ2kenntUh6erp6qvDDrK2t0dfXZ+fOncyaNQsvLy9mzpzJ9evXmTp1KjY2Nri6ulb4Nb/++mtWrlzJkCFDGDFiBJmZmezcuZNFixZhbm5ebiCwRGk5HgGWLl1KYmIiPXoUJW6+dOkSL730EnZ2drz22msYGhqyZ88eJk2axKJFi9QjBiMiIpg4cSJubm5Mnz6d5ORkPv/8cxQKRZk5R8tz9uxZDAwM8PLSHinyoC5duhASEsKpU6fo168fV65cITAwECsrKyZPnkx+fj5r1qwhL0/zoqtruZUrV7Js2TICAgLw9PQkLi6OdevWcf78efbs2VNjuR2PHj0KQIsWLXQqn52dzYkTJ3BxccHyESt6Puz48ePMmDGDnj17Mnz4cLKzs9mwYQPjxo0jODhYvVjTBx98wC+//MLgwYN55ZVXuHbtGps2beL06dNs2rQJY2NjPvroI44ePcqnn35KcHAwJiYmfPbZZyQnJ7NhwwZ14BXgrbfeIjw8nK+++gqVSkWnTp3UU/ZL8+mnn/Liiy8yfPhwnJycyMnJISAggIyMDAICAnjqqae4ceMGmzZtYsKECRw4cADb4sUpPvnkEzZt2sSzzz7L6NGjiY6OZs2aNdy4cYNvv/1W5+MT1Ss3JwcAQyPt0bsGxdvy8/IwNdNeoVOhUOh0/tazrU+v/r3Zs/Fnlv276DtToafHqMnj1FPSHZwaYGxqwoVTkfTs649CoSh+7XyuRhUtOqbMl1EFonplF3/mjEpZ7MSo+LOfp1RirsN3V05+PssPhQEwsG1brf0ZOTnqFc6NDAx4pZtPqa8L8NuFv9BTKOjTqqUuhyHEE5FTHNA3emAKeQmj4hkhufn56BJ2z8nNZVnxopyDivO8V6R9OxsbhvTpw5pt23j3yy+BouDpW+PHa0xJF6I6lYyG1DfU/i7XK/5+L8hXYmCq/RlXKBQo9HUbnVni1rFLoKfAqYt2WpSSkZpZd1NpPLALhQWF3D59het7jlOQm4/rs20q9FpCiJonQc1aZEg5ybt37txJ06ZNmT9/Pu7u7vz000/qmxt3d3fmzp1b4aBmfn6+elr2l8U3PgDDhw+na9euhIeH6xTULC3H4+rVq4mNjeXjjz+mbfGPlrlz52JjY0NQUJA64DRmzBjGjh3L559/jr+/P0ZGRixcuBB7e3u2bNmChYUFAD4+PowdO7ZSQc27d+9ibW1d6s3ggxyKV2C9c+cOgHqE6ebNm9ULNfXp04fBgwdr1NO13O7du+nZsycffvihepujoyObNm0iPj6+UkHpisjLy9MImqelpXHmzBkWLlyIubk5o0ePLre8UqkkNjaW5cuXk5yczOzZsyvch5CQEExMTFixYoU6WOPj48PUqVOJioqiYcOGHDt2jB07dvDJJ58watQodd1evXoxfvx4Nm/ezNixY7GxseHjjz9mxowZrFq1ilatWqmD5O3atdN43dDQULKyslCpVJiamrJ48WKsy1kBtH379nz00Uca/b558yarV69WB+mhKO/ov//9b06dOsVzzz3H1atX2bx5MyNGjOCzzz5TlzM3N2flypVcvXqVpKQknY5PVK+SQccln8sn4cCOEA7v+RU3Tw869PJBVVjI8UN/sHXlD4yaPI5mbVuhb2CAz3PPcOiXfWxbtZ6e/fxRqQo5EBRCXm7Rg5KS0dVCVJeSUfmPe37k5itZuP9XbiYlM8i7DS2ctHNgKhQKpvr7oiwoZN/583y+J4Sp/n50dtccpZOnVBJ+5Qrt3Z4ud3q6EE9alZ0feXnM/+47bsbHM/i552hRnPO7Iu1v2bOHHfv307xxY/y7daOwsJBff/+dr9es4a3x42n/iAf8QjwR6pusJ/9SBflK7py5hm3zhpjUt9Dab9fKDUtnO1x6eanPKYe27kR+t5eYQ3/i2MkTQ3OTJ99RIUSVkaBmLbJgwQLs7LTzVUHR9Ohz586RlJTEpEmTNAJ0I0eO1JjirStDQ0MiIiLIf2jUT0pKChYWFhrTdysiPDycxYsXM2jQIHVQNCUlhePHjxMYGEhOTg45xaOiAHr37s28efM4d+4cbm5uREVFMWHCBHVAE4pGUXp6elZqeq5KpdJpFJVB8ZNClUpFYWEh4eHh9OrVS2PleQ8PD7p3705oaCiAzuUAGjRowLFjx/jxxx/p168fdnZ2jBo1SiOw9SQFBwcTHBystb1JkybMmTOHBg0a6FTe3d2dxYsXV2qRoAYNGpCZmcncuXN56aWX8PDwwNPTk/3796vL/PrrrygUCnr16qURVG3RogX29vaEhYWpg359+/YlODiY//73v1hZWdGsWTP+9a9/abzmwoUL+f777+nRowdeXl4sX76cWbNmsXr1aq5du8b58+fp1asXNjY26jodO3bUaKNv37506dJFI6j+4EjcknMlLCwMlUqllfph/Pjx9O3bF1dXVzZt2qTz8YnqY2xSNMIsP097+pOyeISBiUnlb3Kzs7L5fV8ozm6ujJs5RR2Y9OrkzcrPFrPzhy28s8ATA0NDnh3Yh5ysbI4eOMK540W5bj3btKTH8778tn0PZhYyzVZUL9Pi0WB5SqXWvrzi1CWmj3hwmJmby/x9+7mceJtnmjVl5EPfsyUsjI3p6lG0Im1n90bM3PYz644e1QpqRt26RW6+ki7FU3SFqCkmxSOUH56hA5BXfI9t9ojrR2ZWFl+uWsXl69d5tksXRvXvX+H2M7Oy2HXwIB6urnz8r3+przM+7drx/sKFrNq0iWXNmkk+cVHt9ItT6xTma6e6Kiy+rhiYVM3nMu16IoV5SuxauZW636GN9jVDoVDQoGNT0m/eIT3mLrbNS1+YTghRO0lQsxZp165duauf37p1C0A9RbeEkZGR1jZdGRoaEhYWxsGDB4mOjubmzZukpRXllqtMvsQbN27w1ltv0aRJEz799FP19tjiJObr169nffG0moclJCSob7RKG7Xo7u5OZGRkhfvk4OBAbGwsSqVSHbgsTckITQcHB1JTU8nKyiqzHyXBSl3LAbz77ru88cYbfPHFF8ybN4+WLVvi6+vLiBEjsLe316pf1bp378748eOBoou3kZERjo6OODk5PbJ8YmIiq1evJj09nTlz5tC5c+dK9WHMmDH8/vvvbNiwgQ0bNuDi4sKzzz7LsGHDaNasGQAxMTGoVCqeKSP3k/lDedPmzJnDc889x927d1m+fLlGwP/UqVPqgOaqVavQ19fn0qVLHDx4kFWrVpGens6aNWv45ZdfNIKaD/5/CYVCwXfffceZM2eIiYkhJiZG/UCgsLAQgPj4opV8H87VaWVlhVVxgv6KHp+oHta2RQHr0vJVZqSmY2JmipFJ5dMCJN2+S4FSiVdnb42RlvoGBrTu0oFft+3ibsIdHF2dUSgU9B09hJ59/Um6fRcrm3rUt7Phtx3BKPT0sLap+Ih1IR6HbfFDxtRSHnamZGVhZmyESTmBkvTsbL4I2cvNe0n4NW/G+B7ddRp1ZmRggLerK/vPR5GenYOV6d+BobMxsRjq65e5KroQ1cWu+IFnanq61r6U9HTMTE3VgcnSpGVk8MXy5dyIi8O/WzcmjBypcX7o2v61mzdRKpX4tG+vcZ0xMDCge4cObPzlF+Jv38ZNpqGLamZsXXQNycvQzk2el56Nvqkh+qWk/6mM5EtxKAz0sPGs2Oe8ZHSmLBwkRN0jQc06qLRgo645+B5cDEalUjF58mQOHTpE+/bt8fb2ZuTIkXTs2LFSI8Xu37/PlClTUCgUfPvttxqjmkpeNyAgAP/iHEEPa9y4Mbdv3wbQGMlZoiRwVFEdOnTg6NGjREZGak1LftDJkydRKBR4e/+92Ieu/dClXLNmzdi/fz/h4eEcOnSI8PBwvvnmG9auXcuWLVvwKB6Z8qTY29vj4+NT6fJ+fn4MHz6ciRMnsnbtWtq3b1/hPlhYWLBhwwbOnj3LgQMHOHLkCOvXr2fjxo3Mnz+fAQMGUFhYiLm5uTr/5MMe/qxfuHBBPVJy//79tG7dWr3v4MGDAEyZMkU9WvfLL79kyJAhLF26FDMzM9zc3NQB1RIPj+y9fv06o0ePJj8/n+7du9O3b1+aN2+OSqViypQp6nK6LLZU0eMT1cPUzJR6djYk3NRe5fxWTBzObo8XOCl5oFJYqP39rVJ/VxTtizx2GktrSxo1a4KF9d/Tam9cuobT0y6l5v0U4kkyNzbG3tKy1FXOb9y7h3s5D+ay8/LUAc0XvFrxsk9XrTLxKal8uXcvA9u0oXdLzfzOOfn5KBRgqK+ZduHS7ds0srfD7BEjRIV40szNzLC3tSU6Tvv6ER0bi0c56YWyc3LUAc2+zz7L2BdfrHT7f19ntO9TC4t/O1R8uIIQj8/A1AhjG4tSVzm/n5CEpXPpMxUrIz3mDpbOdhiYaF8bCgsKOLsiGEtnO5oM0fxNlHW3aFCPSX1JZyJEXSOJueqQktFfN27c0NpXMhKyhJ6entY0FaVSSUpKivrvJ0+e5NChQ0yePJmffvqJ999/n2HDhuHs7Exq8UqLulKpVMycOZNr166xYMECrZGjzs7OQFGwyMfHR+OPg4MDeXl5mJqa4uxcNErp5s2bWq8RV8rNnC769++Pvr4+a9asKbNMYmIi+/bto3379jg7O1O/fn0sLCwe2Q9dyxUUFBAVFUVCQgJ+fn7MnTuXw4cP89VXX5GRkfFYq7tXF2traxYtWkRBQQFvv/12pVIBREdHExkZSdu2bXnnnXfYtWsXwcHBWFlZsXbtWqDos5KZmUmrVq20Pivp6emYmv69UMv9+/f5+OOPadq0KUOHDmXt2rUao3lLHgA8GKS0srJiyZIl6OnpkZGRwcsvv/zIfn///fekp6ezY8cOvvnmG9588038/Pw0VjQH1KNeHz4fb9++zfTp0zl58mSFjk9Ur5bt23DtwiXuJtxWb7sadYmkxDt4dS77gYguHJwbYFnPijO/HyP/gVEA+Xn5nI04gZmFOQ5ORSkgIvaHsXvDdo0g+aU/o4i5cp3Ovt0fqx9CVFanRm6cj48nPiVVve1cXBwJqWn4lPNQbs3vf3DzXhLPlxHQBGhgbUVWXh4H/voL5QOf+7sZGRy7Hk1zR0eN6e3KggLiU1JoZGf7+AcmRBXo3KYN5y5dIv7239ePyIsXSbhzB59yHgL/d+tWbsTF8cIzz5Qa0KxI+w0dHalvbU3YsWPqaelQNEX9yPHjWFpY0PChVENCVBe7lk+Teu0WWXdT1dtSrt4i+2469q11X9m8PIUFBWTdTsXcSXvGFYCevj76hgbc+fM6Oal//45RZudxK+ICJraWWDasugCrEKJ6SFCzDmnWrBmurq5s3rxZI9/lvn371FOnS9jZ2REdHa0xgjA0NJTc4hUUAXXgsnHjxhp1t27dSnZ2NspScmeVZcmSJYSGhvLmm2/Sq1cvrf0ODg60atWKoKAg9WhMKFqs6P3332fq1KkolUpsbGzo2LEju3bt4t4DI0LOnDlDVFSUzv15kJubG+PGjeO3335jxYoVWvtTU1OZOnUq+fn56sVhFAoFvXv3Jjw8nCtXrqjLxsXFERYWpv67ruUKCgp4+eWX+eKLLzReu02bohX26srCH15eXowfP56EhAQWLFhQ4fpz585l8uTJZGZmqre5u7tjZWWlfg98fX0BtP6tQkNDmTZtGrt371Zvmz9/Prdv3+aTTz7h3Xffxdramg8++EAd0O/SpQsAmzZt0mjrzp076oDR9u3btYKTD0tNTcXU1FRjqn5eXh6bNxet0FvSVsln/+HX27FjB3v37sXCwqJCxyeqV48XfDE1M2PtgmX8sf8Qh/f8ypYVP+Dk1pA2XYp+NCbfucfZiBMk39EesVYePT09+gcM427iHVbN/YqI3w7zx/5DrPh0EXcT79B39BD0i0fZ9Ojrx91biWxY8j0nwiL4bfseNi1bS+NWzWjTtUOVH7cQuhjYtg3mxsZ8HhxMcGQkQafP8PWBgzSyt6N7k6L7iNvp6YRfvsLt4mmycSkp/H7lKmbGRrjZ2hJ++YrWHwB9PT1e8fEhJimZT3bv4deoKLafOs2HQTvR01PwSjfNETX37t9HWVConhYvRE0b6O+Puakpny1dyp7QUHbs389Xa9bg7upKjw5F39u3793jyPHj3C6+v41LTCT8xAnMTE1xc3HhyPHjWn8q0r6enh6vDh/Ordu3+WDhQkLCwtgTGsp7CxZw6/Ztxr74YrlpmIR4klx6tMLA1Jhz/91P3O9RxIT9yV+bDmHhbItD26IHY9nJGdw+c43sZO1UQLrITc1EVVCIiXXZ1wb3fp1QFRTy56oQ4o6cJ+7Iec4s303e/WyavNjtiS4YKYR4MuTKVoscOHCg3NW9Bw0axJw5c5g0aRIjR45k6NCh3Lt3j/Xr12sl/e7fvz+fffYZEyZMYODAgdy8eZOtW7eqR0wCeHt7Y2Fhwbx584iPj8fa2ppjx44REhKCsbGxRuCpPGFhYaxcuRIPDw+aNm3K7t27Naa+2NnZ0a1bNz788EPGjh3L0KFDGT16NPXq1SM4OJg///yTt99+W33ss2bNIiAggBEjRhAQEEB2djY//PBDpVY+LzFjxgzS0tL4+uuvOXToEH369MHKyorr16+zc+dOcnJyWLRokcY05GnTphEWFsaYMWN45ZVX0NfXZ/369Zibm2uMgtWlnJGREYGBgaxYsYIpU6bQo0cPcnJy2LJlC6ampgwdOrTSx1bdJk+ezN69e9myZQsDBw6s0DT0cePGMXHiRAICAhg8eDDGxsYcOHCAmJgY/vOf/wBFgUE/Pz/WrFlDfHw8Xbt2JT4+no0bN+Lk5KTO83n06FG2bt3KiBEj1GkF3n33XWbPns3y5cuZPn06vXr1wtfXlx07dpCbm0unTp34888/+eWXX2jRogWdO3fmv//9L6+++irff/99mf3u2bMnoaGhvPbaazz//PNkZGSwc+dOYmJiANTnSvPmzRk+fDjr16/nzp07dO3aVb0i+uDBg2nWrBmenp46HZ+ofuZWlkx4byohm4I4uHMvRkZGNPf2os/wARgUf8feuHydoDU/MeTVl7BxqNjT/BbtWzPunckc2rWPA9uLFuFyfNqFwOmTaOrVXF2uZYc2DH/tZcJDDrB3807MrSzo/rwvPfv515kHIOKfx8rUlH8PHMC6iKNsO3kKYwMDOjz9NAFdOmNYPBr+YkIiK8MO8/ozvXjKyoq/EhIAyMrNY2XY4VLb7dG0ifq/hvr6/HL2LOuP/h/GBga0cnZmRMcOONWrp1HnfvEDWlNDmXouagdrS0s+mT6dH3fsYGtICMaGhnRs3ZqAQYPU9+h/XbvGig0beGPMGJ6ys+Ovq1cByMrOZsWGDaW227NTJ53bB+jUpg0fvvkmP+/dy6bih6SNXFyY9frreLdoUeprCFEdjCxMaT3xBa4HH+fmgTPoGxlg29yVRs93QM+g6BqSfuM2l3/+nabDumNqU/Fp4MqsomuDfjmLDlm62OE1vg83D57hZugZQIGVqz2ew3ti5frk1zgQQlQ9haoyq8GIKjV79myCgoIeWe7SpUsAHDt2jMWLF3PhwgWcnJyYNm0aCxcuxNnZWb0IT2FhIcuXL+fnn38mKSmJZs2a8c4777BmzRqysrLU5U6dOsXChQu5ePEiRkZGNGrUiJdffpnIyEjWrVvHkSNHsLOzw9fXV6P9wMBA4uPjCQ0NZenSpWXmBwTo1KmTul5UVBRLly7l5MmTKJVK9esNGTJEo05kZCSLFi0iMjISKysrxo0bx/nz5zl9+rTG4jsVdeTIETZu3MiFCxdIT0+nQYMG9OzZk8DAwFIX+4mOjmb+/PkcP34cIyMjhg8fDsCqVavU/x66lissLGTdunVs376duLg49PX1adeuHVOnTqVVq1aVPib4e3Rjae9NXFwcfn5+DBkyhC+//PKRbelSPiIignHjxuHh4cHOnTs1Fud5lLCwMFatWsW1a9fIzc2lSZMmjBs3TmM19fz8fFavXs3OnTuJj4/HxsaGrl27Mm3aNJycnMjOzmbAgAFkZWWxd+9erK2t1XXHjBnD2bNn2bZtG82bNyc3N5fly5eza9cu7t69i6OjIwMHDmTixImYmJiwZMkSrl69ypIlSzhx4gQvv/wy8+bN48UHpoGpVCq+++47tm3bxu3bt7Gzs6Nt27ZMmzaNUaNG0bZtW1auXAkU/TuvWbOGbdu2ER8fj5OTE4MHD2bChAnq9+lRx1dZB2JOV7quEP907X8Jr+kuCFGr6fd6tqa7IEStNSlpX013QYhabfOz79Z0F6rEqEPza7oLZfqnvMdVTYKa/xAPBx2FELpTqVT/iOkmEtQUomwS1BSifBLUFKJsEtQUonz/lICbBDXrHpnHJoT4n/dPCGgKIYQQQgghhBD/SySnpqhzCgoKSE5O1qmspaUlJiYmT7hHVSM5OVljteOymJiYYGlZ8TwzT0pd7bcQQgghhBBCCCHqLglqijonISEBPz8/nco+nBuxNhs2bBjx8fGPLKdrbszqUlf7LYQQQgghhBBCiLpLgpr/EI+zeE5dY29vz9q1a3Uq27hx4yfcm6qzYMECcotXdC2Pg4NDNfRGd3W130IIIYQQQgghhKi7JKgp6hxjY2N8fHxquhtVrn379jXdhUqpq/0WQgghhBBCCCFE3SULBQkhhBBCCCGEEEIIIeoUCWoKIYQQQgghhBBCCCHqFAlqCiGEEEIIIYQQQggh6hQJagohhBBCCCGEEEIIIeoUCWoKIYQQQgghhBBCCCHqFAlqCiGEEEIIIYQQQggh6hQJagohhBBCCCGEEEIIIeoUCWoKIYQQQgghhBBCCCHqFAlqCiGEEEIIIYQQQggh6hQJagohhBBCCCGEEEIIIeoUg5rugBBCCCHEk3ZqUI+a7oIQtZyypjsgRO2VVNMdEEIIURoZqSmEEEIIIYQQQgghhKhTJKgphBBCCCGEEEIIIYSoUySoKYQQQgghhBBCCCGEqFMkqCmEEEIIIYQQQgghhKhTJKgphBBCCCGEEEIIIYSoUySoKYQQQgghhBBCCCGEqFMkqCmEEEIIIYQQQgghhKhTJKgphBBCCCGEEEIIIYSoUySoKYQQQgghhBBCCCGEqFMkqCmEEEIIIYQQQgghhKhTJKgphBBCCCGEEEIIIYSoUySoKYQQQgghhBBCCCGEqFMMaroDom6bPXs2QUFB5Zbx8/Nj+fLl1dQjbb6+vjg7O7N+/XoAAgMDiY+PJzQ0tNr6UBWvuX//frZu3cr58+fJycnB0dGR7t27M3bsWBo2bKhTGyX/XpcuXaqScpXl6elZ7v6Sz0xcXBx+fn5a+w0NDbGxsaFbt25MmzaNBg0aAJRZXqFQYGlpibu7OwEBAQwcOLBqDkT846TcTWLvll+IvnQVAM/WLXhh5CDMrSyrpN7Ny9f5bcce4qNjMTU3pbm3F76DX8Dc0kKjXGZ6Br9tD+bi2fPk5+fj9LQLzw0bQEMPt6o7WCEqqLacH/E3Yvnt593EXL2BQk+Bm6cHL4wcjF0Dhyo8WiEqpracHys/XUz8jRit12nRvjWjp7z6OIcoxGPJSc7g+t4TpF1PBMCmmQuNXuiIkYVpldTLiL/Hjf2nSI+5g0KhwLpRAxq90BEze+sy274SFEH2vTRaT3zhMY9OCFFTJKgpqsR7771H/fr1S93n6OhYzb0p3+uvv052dnZNd0NneXl5zJo1i5CQEFq3bs2ECROwtrbmypUrBAUFsX37dhYsWIC/v39Nd7VC3N3def3110vd9/BnpkOHDowYMUL9d6VSydWrV9m4cSNHjx5l165dWFlZlVlepVIRGxvL5s2bmTlzJvr6+vTr16+Kj0jUdVn3M1kzfxkFBUp6PO+LSlXI7/sOcTvuFq9/9Bb6BqVfMnWtF33xCj8uXomJqSm9+vdGoafg6K+HuX7xCpPen46puRkAuTk5rP7PUjJS0/Hp3QsTczOOHQxnzfxlvP7RWzzlUru+U8X/htpyftxLvMN//7MUIyMjnhnwHAARv4bx/RdLmPLpu1jVK/vHqxBPSm05P1QqFXcSEmnm7UXL9q01Xquenc2TfROEKEd+Vi6R/92HqqAQl56tUKlUxIWfJzMxhbaT+6Onr/9Y9bLuphH5/T70jQxwfbYNAPF/XODP70Jo969BGFuZabWdePIyiScuY93oqSd34EKIJ06CmqJK+Pv74+LiUtPd0Em3bt1qugsVMn/+fEJCQpg5cyYTJkzQ2Pf6668zYcIEpk+fzvbt2x85ArI2sbOzY9CgQTqVbdiwYallGzZsyCeffMLmzZuZNGnSI8u/+OKL9O3bl2XLlklQU2j549cw0lJSefPTd3FwKhr969zoaX5ctILTfxynYy+fx6q3Z+MOFAo9Jr4/Ddun7AFo0a41y/49n8N7fuP5kUWf2SMhB7mXeJdX351CI8/GAHh18mbxu58RvvcgwyaOeaLvgxClqS3nR8SvYeTn5jHxvak4uhbdd7i3aMqqzxYTsT9MXU6I6lRbzo/Ue8nk5+bR3NuLtj4dn/RhC6Gz+N+jyE3Lov3UQZg51APA0sWe82t+5fbpqzh2LP03jK714iMuUJinpM2kF7BwsgWgnocTZ5fvIf6PKNxf+Pt8UBUWEhsWyc2DZ5/Y8Qohqo/k1BSiFouOjmbDhg3069dPK6AJYGtry5IlS1AoFMydO7cGeliz+vbtC8Dp06d1Ku/s7EzHjh25du0a9+/ff5JdE3XQuWOnaeTZWP3DEqBxS09sGzhw7tiZx6qXci+ZO/EJtPXpqP5BCmDv+BSebVpy5o/jQNEomzN/HKdp6+bqgCaApbUVz48cxNNN3avseIWoiNpwfgAk303CzMJcHdAEcGnkiqm5GbfjE6rkWIWoqNpyfty5lVi8T1IxiNrlbuR16jVqoA5MAtRv7ISpvRV3I6Mfu15OcgYG5sbqgCaApYsdBmbGZN1OUW8ryFdy+tvd3DxwFoe2HhhZa4/gFELULRLUFNVq7969DB48mNatW9O/f38OHTrE+PHjCQwMVJfx9fXV+HtZ21UqFZs2bWLYsGF4e3vj5eXF888/z3fffYdKpSqzD4GBgfj6+gJFORg9PT3L/LN06VJ1vatXrzJlyhQ6dOhAmzZtGDVqFOHh4VrtR0REMGrUKNq2bYu/vz/btm2r1HsF8Msvv6BSqQgICCizjKurK/7+/pw4cYLExET19vPnz/Pqq6/i7e1Njx49WLVqVanviy7lVCoV3377LX369MHLywsfHx9mzpxJQkLN/oDU0yv6CisoKNC5jpnZ31O0Kmr//v0MHToUb29v2rdvz7hx4zh16pRGmcLCQtasWcPzzz9Pq1at6NGjB3PnztUIos6YMQNPT08OHz6s3paamkr37t3p3bs3WVlZFe6beDzZmVmk3E3CyU17xLmTqwsJMXGPVS89JQ2Ap1waaJWzcbAj634mackppN5LJiMljcYtmwFFn9O8nFwAOvt2L3O0jxBPUm05PwBsn7InKzOLzPQMdZms+5nkZOdgaW2lVV+IJ602nR+344ruy+ydiqbTllw/hKhJ+dm55CTfx8LZVmufhaMt928lPXY9U1srlFm55N3/O8VYflYuypw8DB/IvalSFlKQm0ez0b3wHN4DhZ7icQ5NCFELyPRzUSXS09NJTk4udZ+1tTX6+vrs3LmTWbNm4eXlxcyZM7l+/TpTp07FxsYGV1fXCr/m119/zcqVKxkyZAgjRowgMzOTnTt3smjRIszNzcsNBJawsbFh/vz5WtuXLl1KYmIiPXr0AODSpUu89NJL2NnZ8dprr2FoaMiePXuYNGkSixYtUo8YjIiIYOLEibi5uTF9+nSSk5P5/PPPUSgUZeYcLc/Zs2cxMDDAy8ur3HJdunQhJCSEU6dO0a9fP65cuUJgYCBWVlZMnjyZ/Px81qxZQ15enkY9XcutXLmSZcuWERAQgKenJ3Fxcaxbt47z58+zZ88e9MvIg1Oe/Pz8Uj8zhoaGWFqWn1S/xNGjRwFo0aKFTuWzs7M5ceIELi4uOr9GiePHjzNjxgx69uzJ8OHDyc7OZsOGDYwbN47g4GD1Yk0ffPABv/zyC4MHD+aVV17h2rVrbNq0idOnT7Np0yaMjY356KOPOHr0KJ9++inBwcGYmJjw2WefkZyczIYNG9SBV1F9Sn40WtWvp7XPsp4VOVnZZGdlY2pmWql6RsaGAOSW8gMz634mABlpGeRkFgW0zS0t2LflF04eOUpudg42Dna8MGowzdq2qvQxClFZteX8sLapT48X/Lh0Noqtq9bzwqjBAOzb+gv6+vp07d2zsocoRKXVpvPjzq1EjEyM2bt5J+eOnyE/N4/69rb4v9iP1p3bPc5hClFpeWlF9zZGpeS1NLIypSA7H2V2HgamRpWu59KzFckXY7m05Qju/Yqmml/fexI9fT2cff7+naBvYkiHt4aipy9ju4T4p5CgpqgSQ4YMKXPfzp07adq0KfPnz8fd3Z2ffvoJI6Oii5a7uztz586tcFAzPz9fPS37yy+/VG8fPnw4Xbt2JTw8XKegppmZmVbuxdWrVxMbG8vHH39M27ZtAZg7dy42NjYEBQWpA05jxoxh7NixfP755/j7+2NkZMTChQuxt7dny5YtWFgUrUbp4+PD2LFjKxXUvHv3LtbW1ur3qywODkXTjO7cuQOgHmG6efNm9aI7ffr0YfDgwRr1dC23e/duevbsyYcffqje5ujoyKZNm4iPj69UUPrMmTN07dpVa3unTp3UK9WXyMvL0wiApqWlcebMGRYuXIi5uTmjR48ut7xSqSQ2Npbly5eTnJzM7NmzK9zfkJAQTExMWLFiBQpF0VNdHx8fpk6dSlRUFA0bNuTYsWPs2LGDTz75hFGjRqnr9urVi/Hjx7N582bGjh2LjY0NH3/8MTNmzGDVqlW0atVKHSRv105+dNSE3JwcAAyNDLX2GRRvy8/L0/pRqms9B6cGGJuacOFUJD37+qs/Q/l5+VyNugSAMj+fnOJFzA4GhaCvr0/f0S+ip6fg932H2Lj0v4x963Uat6w7uXPFP0NtOT8A6tnWp1f/3uzZ+DPL/l30UFKhp8eoyeM0pqQLUV1q0/lxOz6BvJxccrKyGTZhDDnZ2Rz97TDbVq2jsKBA8myKGlGQV/T51DfUDj3oFS+GVZCv1ApqVqSeST0LGj7Tmmu7/4/T3+wqLqSg+UvPaExJVygUKPRldKYQ/yQS1BRVYsGCBdjZ2ZW6z9XVlXPnzpGUlMSkSZM0AnQjR47UmOKtK0NDQyIiIsgvvokrkZKSgoWFRaWn74aHh7N48WIGDRqkDoqmpKRw/PhxAgMDycnJIaf4JhSgd+/ezJs3j3PnzuHm5kZUVBQTJkxQBzShaBSlp6dnpXI4qlQqnUZBGhRf2FUqFYWFhYSHh9OrVy+NVcQ9PDzo3r07oaGhADqXA2jQoAHHjh3jxx9/pF+/ftjZ2TFq1CiNwF1FeXp6lhpcfHAV8xLBwcEEBwdrbW/SpAlz5syhQYMGOpV3d3dn8eLFlVokqEGDBmRmZjJ37lxeeuklPDw88PT0ZP/+/eoyv/76KwqFgl69emkEVVu0aIG9vT1hYWGMHTsWKMoHGhwczH//+1+srKxo1qwZ//rXvyrcL1E1SrIRlPxYrOp6+gYG+Dz3DId+2ce2Vevp2c8flaqQA0Eh5OUWjYzW09NDma8EICcrm+nzPlCvaOvZthVfzfqMA9uDJagpql1tOT8ADuwI4fCeX3Hz9KBDLx9UhYUcP/QHW1f+wKjJ42Q0s6h2ten86Fh8TnT266Gu79WpHUs/+pJ9W3fRukt7dVkhqo36w/7k6t347TSxhyKxbvQUDTp5oipUkXDsIhc3Hab5S89i27xhBV9cCFFXSFBTVIl27dqVu/r5rVu3ANRTdEsYGRlpbdOVoaEhYWFhHDx4kOjoaG7evElaWtFUnsrkS7xx4wZvvfUWTZo04dNPP1Vvj42NBWD9+vVaIwhLJCQkYGhY9FS9tFGL7u7uREZGVrhPDg4OxMbGolQq1YHL0pSM0HRwcCA1NZWsrKwy+1ESrNS1HMC7777LG2+8wRdffMG8efNo2bIlvr6+jBgxAnt7e636urC2tsbHR7f8gN27d2f8+PFA0c2/kZERjo6OODk5PbJ8YmIiq1evJj09nTlz5tC5c+dK9XfMmDH8/vvvbNiwgQ0bNuDi4sKzzz7LsGHDaNasKP9hTEwMKpWKZ555ptQ2zM3NNf4+Z84cnnvuOe7evcvy5csfOSJXPDnGJsZA0aiYhymLRwqYmJg8Vr1nB/YhJyuboweOcO540eJWnm1a0uN5X37bvgczC3MyUtMBaNG+jTqgCWBqZkqztq04E3GCvJxcjIpfV4jqUFvOj+ysbH7fF4qzmyvjZk5RB2e8Onmz8rPF7PxhC+8s8MTAUHvkmxBPSm05PwA6PdtNqy1DI0Padu3AoV37uROfSIOGpd87CfGk6BenUCjM186BX6gsephrYKL9va1rPWV2HnHh57FwscVrfB8UxdcG+9ZunF2+hytBf1C/yXD0DCqeLksIUftJUFNUq9KCjcbGuv04f3AxGJVKxeTJkzl06BDt27fH29ubkSNH0rFjR/VIuIq4f/8+U6ZMQaFQ8O2332rcfJa8bkBAAP7+/qXWb9y4Mbdv3wbQGMlZorCwsMJ9AujQoQNHjx4lMjKy3GnJJ0+eRKFQ4O3trd6maz90KdesWTP2799PeHg4hw4dIjw8nG+++Ya1a9eyZcsWPDw8KnJYFWZvb69zALS08n5+fgwfPpyJEyeydu1a2rdvX+E+WFhYsGHDBs6ePcuBAwc4cuQI69evZ+PGjcyfP58BAwZQWFiIubk53377baltPPxZv3DhgnpU8f79+2ndunWF+yWqhrVtUXqIjLQMrX0ZqemYmJmWGkisSD2FQkHf0UPo2defpNt3sbKpR307G37bEYxCTw9rm/pkP5BT82HmVhagUpGbK0FNUb1qy/lxOz6BAqUSr87eGqPN9A0MaN2lA79u28XdhDs4ujpXyXELoYvacn6Ux9yqKI94Xq4sHCSqn7F10T1NXka21r689Gz0TQ3RLyUNg671MuLuoVIWYt/aXR3QBNDT18ehjQfR+06SdTcNC0ebqjokIUQtIkFNUS3c3NyAotGQD4uNjVXvh6IpNA8vVKNUKklJSVGPKjx58iSHDh1i8uTJTJs2TaNcampqhUZ/qlQqZs6cybVr11i1apVWXWfnoh9H+vr6WoG1q1evEhcXh6mpKc7OzigUCm7evKn1GnFxpa98+Sj9+/dn+fLlrFmzpsygZmJiIvv27aN9+/Y4OzujUqmwsLB4ZD/q16+vU7mCggIuXryIhYUFfn5++Pn5AUU5JmfMmMG2bdsqlaOyOllbW7No0SJGjRrF22+/zZ49ezRSBOgiOjqajIwM2rZtS9u2bXnnnXe4evUqAQEBrF27lgEDBuDs7Mzvv/9Oq1attKbR79u3T2NU7P379/n4449p2rQpXl5erF27lj59+khgs4aYmplSz86GhJva5+qtmDic3Ur/TqlIvchjp7G0tqRRsyZYWP+9UNWNS9dwetoFQyNDnnJ2RN/AgDu3ErXaS7mXjIGhYakBTyGepNpyfpTMWCgs1H5AqlI/jKv4TA0hHkdtOT/SU1L5YeEKvDq349mBfTTau5dYNKOnvr32KtJCPGkGpkYY21iUusr5/YQkLJ1LT2Gmaz09g+JAZmnXBlVhyf9UsvdCiNpOkqqIatGsWTNcXV3ZvHmzRr7Lffv2qadOl7CzsyM6OlpjBGFoaCi5DzxdTk1NBYpGSD5o69atZGdnoyyekqCLJUuWEBoayptvvkmvXr209js4ONCqVSuCgoLUozGhaLGi999/n6lTp6JUKrGxsaFjx47s2rWLe/fuqcudOXOGqKgonfvzIDc3N8aNG8dvv/3GihUrtPanpqYydepU8vPz+eijj4Cip/m9e/cmPDycK1euqMvGxcURFham/ruu5QoKCnj55Zf54osvNF67TZs2AHUmN5OXlxfjx48nISGBBQsWVLj+3LlzmTx5MpmZmept7u7uWFlZqd8DX19fAK1/q9DQUKZNm8bu3bvV2+bPn8/t27f55JNPePfdd7G2tuaDDz7QCuiL6tOyfRuuXbjE3YS/z/OrUZdISryDVzmrxupaL2J/GLs3bNcYdX7pzyhirlyns293AIxMjGnm3YrLkVHciU9Ql0u5m8TFM+dp5t2qzpxz4p+lNpwfDs4NsKxnxZnfj5Gf93dO7fy8fM5GnMDMwhwHJ80cy0JUh9pwfljVr0dOdjYnjxxVLzoHkJqUwunfj9GoWRMsrbXzlgtRHexaPk3qtVtk3U1Vb0u5eovsu+nYt270WPXMHOphZGVK4ukrFOT//RuwIF/J7TPXMDA3xuypelV9SEKIWkJGaooqceDAgXJX9x40aBBz5sxh0qRJjBw5kqFDh3Lv3j3Wr1+vzkVZon///nz22WdMmDCBgQMHcvPmTbZu3aoeMQng7e2NhYUF8+bNIz4+Hmtra44dO0ZISAjGxsYagafyhIWFsXLlSjw8PGjatCm7d+/WmHptZ2dHt27d+PDDDxk7dixDhw5l9OjR1KtXj+DgYP7880/efvtt9bHPmjWLgIAARowYQUBAANnZ2fzwww+VWvm8xIwZM0hLS+Prr7/m0KFD9OnTBysrK65fv87OnTvJyclh0aJF6ryOANOmTSMsLIwxY8bwyiuvoK+vz/r16zE3N9cImulSzsjIiMDAQFasWMGUKVPo0aMHOTk5bNmyBVNTU4YOHVrpY6tukydPZu/evWzZsoWBAwdWaBr6uHHjmDhxIgEBAQwePBhjY2MOHDhATEwM//nPf4CiVc79/PxYs2YN8fHxdO3alfj4eDZu3IiTk5M6z+fRo0fZunUrI0aMUI/Afffdd5k9ezbLly9n+vTpVX7s4tF6vODL2YgTrF2wjG59nkWZn8/v+w7h5NaQNl2KPivJd+4RczUa18aNsHGw07keQI++fmxevpYNS76nRbvWpCYl88f+MBq3akabrh3U5foMH8iNi1dZM38ZXXv3RE/fgKMHDmNoZEjvFyu+yJUQVaE2nB96enr0DxjGpuVrWTX3K9r16IyqsJBT4ce4m3iHYRMC0C8n/7QQT0ptOD8A+o8ZzqZv/8t3ny+hQ6+u5OXk8n8Hw9HT16f/mLpzvyb+eVx6tOLOmWuc++9+nLu3olCpLMqD6WyLQ9uiNFbZyRmk37yD1dMOmNpY6lxPoaeHx4Au/PXTIc6uCKZB+yaoVCpun7pC9t00PIf3QE+HhVeFEHWTQlWZFVWEKDZ79myCgoIeWe7SpUsAHDt2jMWLF3PhwgWcnJyYNm0aCxcuxNnZWb0IT2FhIcuXL+fnn38mKSmJZs2a8c4777BmzRqysrLU5U6dOsXChQu5ePEiRkZGNGrUiJdffpnIyEjWrVvHkSNHsLOzw9fXV6P9wMBA4uPjCQ0NZenSpWXmPwTo1KmTul5UVBRLly7l5MmTKJVK9esNGTJEo05kZCSLFi0iMjISKysrxo0bx/nz5zl9+rTG4jsVdeTIETZu3MiFCxdIT0+nQYMG9OzZk8DAwFIX+4mOjmb+/PkcP34cIyMjhg8fDsCqVavU/x66lissLGTdunVs376duLg49PX1adeuHVOnTqVVq4qvNOvp6anx3pYlLi4OPz8/hgwZwpdffvnIdnUpHxERwbhx4/Dw8GDnzp0VWpwnLCyMVatWce3aNXJzc2nSpAnjxo3TWE09Pz+f1atXs3PnTuLj47GxsaFr165MmzYNJycnsrOzGTBgAFlZWezduxdra2t13TFjxnD27Fm2bdtG8+bNde5XiQMxpytcR2i6l3iHkE1B3Lh8DSMjI5q2bkGf4QPU+chO/36coDU/MeTVl2jXvZPO9UpEHjtNeMgBkm7fw9zKgjZdOtCznz9Gxpqfw+Q79/j1591cu3AZlUrF003d6TN8oIxCEzWqtpwf1/+6wqFd+4iPLlrIz/FpF3r1701Tr4p/bwpRVWrL+fHXmXMc3vMbibG3MDQyxM2zMc8N64+941NP/k34B1t97UBNd6HOy7qbxvXg46TduI2+kQH1mzrT6PkOGFmYAnD79FUu//w7TYd156l2jXWuVyL1WgIxoWfJiC+aMWfhZEvDZ1pj07TsxWyPL9iGST0LWk984Qkc8f+Wzc++W9NdqBKjDs2v6S6U6Z/yHlc1CWqKGvdw0FEIUTkS1BRCCCGEqHoS1BSifP+UgJsENeseScwlhBBCCCGEEEIIIYSoUyTxkBDVqKCggOTkZJ3KWlpaYmJi8oR7VDWSk5M1kteXxcTEBEtLy0eWqy51td9CCCGEEEIIIcT/OglqClGNEhIS8PPz06nsvHnzePHFF59wj6rGsGHDiI+Pf2Q5XXNjVpe62m8hhBBCCCGEEOJ/nQQ1RY17nMVz6hp7e3vWrl2rU9nGjRs/ulAtsWDBAnJzcx9ZzsHBoRp6o7u62m8hhBBCCCGEEOJ/nQQ1hahGxsbG+Pj41HQ3qlz79u1ruguVUlf7LYQQQgghhBBC/K+ThYKEEEIIIYQQQgghhBB1igQ1hRBCCCGEEEIIIYQQdYoENYUQQgghhBBCCCGEEHWKBDWFEEIIIYQQQgghhBB1igQ1hRBCCCGEEEIIIYQQdYoENYUQQgghhBBCCCGEEHWKBDWFEEIIIYQQQgghhBB1igQ1hRBCCCGEEEIIIYQQdYoENYUQQgghhBBCCCGEEHWKBDWFEEIIIYQQQgghhBB1igQ1hRBCCCGEEEIIIYQQdYpBTXdACCGEEOJJa/9LeE13QYha7Y1WuTXdBSFqre9sn6/pLgghhCiFjNQUQgghhBBCCCGEEELUKRLUFEIIIYQQQgghhBBC1CkS1BRCCCGEEEIIIYQQQtQpEtQUQgghhBBCCCGEEELUKRLUFEIIIYQQQgghhBBC1CkS1BRCCCGEEEIIIYQQQtQpEtQUQgghhBBCCCGEEELUKRLUFEIIIYQQQgghhBBC1CkS1BRCCCGEEEIIIYQQQtQpEtQUQgghhBBCCCGEEELUKRLUFEIIIYQQQgghhBBC1CkS1BRCCCGEEEIIIYQQQtQpBjXdAVH7zZ49m6CgoHLL+Pn5sXz58mrqkTZfX1+cnZ1Zv349AIGBgcTHxxMaGlptfaiK19y/fz9bt27l/Pnz5OTk4OjoSPfu3Rk7diwNGzbUqY2Sf69Lly5VSbnK8vT0LHd/yWcmLi4OPz8/rf2GhobY2NjQrVs3pk2bRoMGDQDKLK9QKLC0tMTd3Z2AgAAGDhxYNQci/qek3E1i75ZfiL50FQDP1i14YeQgzK0sdW5j5w9bSLp9h/Gz/lXp9q+c+4uwPb9x60YsCj0FDd3d8H+xLw093Cp/cEI8pjvpGWz4v//jwq1bAHi7uhLYtQtWpqY6t/H9kXASUlP5eOAArX0f7Aji+t17Wts7NXJjxnO91X+Pir/F1pMnuZmUhJmREZ3d3RnZsQMmhoaVOCohqkZOcgbX954g7XoiADbNXGj0QkeMLMo/P3Stl3bjNjd+Pc39+HsYmBph29yVp/29MTQ3KbPtzMRkzizbQ8NnvHjaz/sxj1CIx3MnKYl1QUFcuHIFgHYtWxI4ZAjWlrrfY323aRO37txhzrRppe6/n5XFjM8+I2DwYJ7p3FljX1xiIm9//nmp9d597TXat2qlcz+EELWHBDWFzt577z3q169f6j5HR8dq7k35Xn/9dbKzs2u6GzrLy8tj1qxZhISE0Lp1ayZMmIC1tTVXrlwhKCiI7du3s2DBAvz9/Wu6qxXi7u7O66+/Xuq+hz8zHTp0YMSIEeq/K5VKrl69ysaNGzl69Ci7du3CysqqzPIqlYrY2Fg2b97MzJkz0dfXp1+/flV8ROKfLOt+JmvmL6OgQEmP531RqQr5fd8hbsfd4vWP3kLf4NGXzFPh/8epI0dx8/SodPvRl66y7uvvcHBqQO+h/SgoKOR46O/89z9LmTB7Ki7uT1f5sQvxKBk5OXy2Zw8FhYUMaNOGQpWKPZGRxCYnM3fIYAz09R/ZxqGLlwj96yLNHRto7VOpVMSnptLB7Wk6NWqksc/O0kL9/1Hxt/g8OJhGdna81LkTSfcz2Xv+PNfv3mXOwAEoFIrHP1ghKig/K5fI/+5DVVCIS89WqFQq4sLPk5mYQtvJ/dEr4/zQtV7q9QTOr/0NA1MjGj7TGoVCQXzEBVKvJ9Lm9b4YmhprtV1YUMiln39HVVD4RI9dCF1kZGbyyTffUFBQwEB/fwoLC9l98CAxt27xxTvvYKDDPVbo0aMcjIigeePGpe5XKpV8vWYN6ffvl7o/tviBXOCQIVhZWGjsa+TiUsEjEkLUFhLUFDrz9/fHpY584Xfr1q2mu1Ah8+fPJyQkhJkzZzJhwgSNfa+//joTJkxg+vTpbN++/ZEjIGsTOzs7Bg0apFPZhg0bllq2YcOGfPLJJ2zevJlJkyY9svyLL75I3759WbZsmQQ1RYX88WsYaSmpvPnpuzg4FQVdnBs9zY+LVnD6j+N07OVTZt3CwkIO7/mN0F/2PXb7IZuCsK5fj9c+nIGRsREA3j4dWfLhPA7sCOaVdyZX1SELobOQyHMk38/kP8OH4lL8gLOxgz1fBO/l8OXL+DVvXmbdwsJCgs6cZfupU2WWuZtxn9x8JR3c3OjRtEmZ5Tb83/9ha2HBvwcOwKj4R7CdhQVrfv+DP2PjaOuq26wGIapS/O9R5KZl0X7qIMwc6gFg6WLP+TW/cvv0VRw7ln7vpmu9a7uPodBT0Oa1vpjaFj3gtW3pyulvdhEbFon7Cx212o47HEnW7dQqP1YhKiM4NJTk1FQWvPceLsWzrxo//TSfL1tG2LFj+Jfz262wsJAd+/fz8969ZZZJTk3lq7VruXz9epllYhMS0NfX5/mePXUKogoh6gbJqSlEDYuOjmbDhg3069dPK6AJYGtry5IlS1AoFMydO7cGeliz+vbtC8Dp06d1Ku/s7EzHjh25du0a98t4UitEac4dO00jz8bqgCNA45ae2DZw4NyxM2XWy8/LZ/mchYTu3Evbrh2wrG9d6fazM7NIjL1Fq45t1QFNAAtrS9yaehBz9cZjHqUQlRNx7RotnBzVAU0ALxcXHOtZc/Ra2T8i85RK3tsRxM8nT9G9SRNszM1KLReXkgKAU73Sz5+StqxMTfFt1kwd0ARoXjzy/2ZSUoWOSYiqcjfyOvUaNVAHJgHqN3bC1N6Ku5HRj1UvJ+U+WbdTcfD2UAc0Aczs62HTvCG3T1/VajczMZmYQ5G4+rZ5/IMTogr8cfo0LZo0UQc0AVo3a4ajgwMR5dzj5+XnM+s//2FbSAg9OnbEpl49rTJ//vUX0+fO5WZ8PM/36lVmW7GJiTxlZycBTSH+YSSoKarc3r17GTx4MK1bt6Z///4cOnSI8ePHExgYqC7j6+ur8feytqtUKjZt2sSwYcPw9vbGy8uL559/nu+++w6VSlVmHwIDA/H19QWKcjB6enqW+Wfp0qXqelevXmXKlCl06NCBNm3aMGrUKMLDw7Xaj4iIYNSoUbRt2xZ/f3+2bdtWqfcK4JdffkGlUhEQEFBmGVdXV/z9/Tlx4gSJiYnq7efPn+fVV1/F29ubHj16sGrVqlLfF13KqVQqvv32W/r06YOXlxc+Pj7MnDmThISESh9bVdDTK/qaKigo0LmOmVnRj+byPiOl2bFjB56enuzfvx9fX1/atGmj/nzcvHmTWbNm0bNnT1q1akWnTp14/fXXuVKcF6hEXl4eS5cu5bnnnqN169b06dOH7777TqP/ubm5fPXVV/j6+tKqVSv8/PxYsmQJeXl5FeqvqDrZmVmk3E3CyU17NLqTqwsJMXFl1lUqleRm5zDyjbEMnRCAvp72NENd2zc2NWHaF+/j0+cZrXJZ9zPR05fLtqh+93NzuZOeQSN7O619bnZ2RN/TzoNZIr+ggKy8PKb5+zH52WfU3+kPi01OBsC5OGiak5+vVcbIwID3+r7AkHaauQFvJBW9vn0F8rIJUVXys3PJSb6PhbOt1j4LR1vu3yo92K5rvbz0TADMn9JOAWVqY4kyM5fctEz1tsKCQi5v/4P6TZxwaKudCkWI6nY/K4s79+7hXsr6AI0aNiQ6NrbMuvn5+WTl5DB93DimBAaWeg2Jv32bVk2aMH/WLDq1KTuQH5eQgEvxQzClUolSqazE0Qghaht5TCF0lp6eTnLxj46HWVtbo6+vz86dO5k1axZeXl7MnDmT69evM3XqVGxsbHB1da3wa3799desXLmSIUOGMGLECDIzM9m5cyeLFi3C3Ny83EBgCRsbG+bPn6+1fenSpSQmJtKjRw8ALl26xEsvvYSdnR2vvfYahoaG7Nmzh0mTJrFo0SL1iMGIiAgmTpyIm5sb06dPJzk5mc8//xyFQlFmztHynD17FgMDA7y8vMot16VLF0JCQjh16hT9+vXjypUrBAYGYmVlxeTJk8nPz2fNmjVagTFdy61cuZJly5YREBCAp6cncXFxrFu3jvPnz7Nnzx70dciX9rD8/PxSPzOGhoZY6vjj8+jRowC0aNFCp/LZ2dmcOHECFxcXnV/jYR988AFjxozBwsKCtm3bcu/ePUaMGIGFhQVjxoyhfv36/PXXX2zdupWoqChCQ0MxLF6gYsqUKRw5coQBAwYwbtw4IiMjWbRoEUlJSbz33nsUFBTw2muvcfr0aUaMGIGHhwfnz59n5cqV/PXXX6xYsUJywtWA9JQ0AKzq19PaZ1nPipysbLKzsjE1017wwcTUhOlfflDuOVKR9u2estcqkxh7i5ir0TRp1UzHIxKi6qRkFgVMbMzMtfbVNzMjKzePzNxczI218/qZGRnx9aiR6JcRzCwRl5KCiaEh648e5ei16+TmK3GwsmRkx474NC49MHM3I4MLtxLY8H//R0Ob+nRwk3yzovrlpWUBYGSlPQrZyMqUgux8lNl5GJgaVaqenmHRz7WCXO1Af35WblFbGdkYWxedn3Hh58hOSqfFGF9UhRV7uCvEk5CcmgqAjbX2SPz6VlZkZWeTmZWFuZn2uWBmaso3H39c7j3Wc9270/eZZwBIKn6th+Xn53P73j3qW1vzwaJFXI+JAYpGi746fDhP2Wk/tBNC1A0S1BQ6GzJkSJn7du7cSdOmTZk/fz7u7u789NNPGBkV3by5u7szd+7cCgc18/Pz1dOyv/zyS/X24cOH07VrV8LDw3UKapqZmWnlXly9ejWxsbF8/PHHtG3bFoC5c+diY2NDUFCQeqTfmDFjGDt2LJ9//jn+/v4YGRmxcOFC7O3t2bJlCxbFSaZ9fHwYO3ZspYKad+/exdraWv1+lcXBwQGAO3fuAKhHEG7evFm96E6fPn0YPHiwRj1dy+3evZuePXvy4Ycfqrc5OjqyadMm4uPjKxWUPnPmDF27dtXa3qlTJ/VK9SXy8vI0AqBpaWmcOXOGhQsXYm5uzujRo8str1QqiY2NZfny5SQnJzN79uwK97dEv379mD59uvrv3333HWlpafz00094ePz949rc3JzvvvuOy5cv07JlSw4fPsyRI0eYMWOGeoGk0aNHk5+fz8aNG5kyZQoHDhzg6NGjrF69Wh1QB2jdujUff/wxBw8erHMLQv0T5ObkAGBopL16skHxtvy8vFKDmgqF4pFB/8dpPy8nl+2rNwDQo69fua8jxJOQXTxq0qiUKXtGxZ/9PKWy1KCmQqFAX4cHNbEpKeTk55OVm8fkZ58hKy+PfefOs/RgKAWFhVp5NjNycpj602Z1v17p5lNq/4R40gryis4PfUPtz59e8WeyIF+pFdTUtZ7ZU/XQNzHkXtRNXHp5qR98FuQrSbkSD0BhftGIs8zbKcQc/BOPgZ0xtjYnJ0XS8Iial5NbFHwv7beOUfGggNz8fLQfm+l2j6XLdPJbd+5QUFDA1Zs3GeTvz5DevbkRH8+ugwf599df859Zsyq0CrsQovaQuz+hswULFmBXxlMsV1dXzp07R1JSEpMmTdK4aI0cOVJjireuDA0NiYiIIP+hKWgpKSlYWFiQlZVV4TYBwsPDWbx4MYMGDVIHRVNSUjh+/DiBgYHk5OSQUxyAAOjduzfz5s3j3LlzuLm5ERUVxYQJE9QBTSgaRenp6VmpHI4qlUqnUZAlF2yVSkVhYSHh4eH06tVLYxVxDw8PunfvTmhoKIDO5QAaNGjAsWPH+PHHH+nXrx92dnaMGjWKUaNGVfiYSnh6epYaXHxwFfMSwcHBBAcHa21v0qQJc+bMoUGDBjqVd3d3Z/HixY+1SFDHjpoJ9ydNmsTQoUOxtf17ilhOTo56CkzJZzEsLAw9PT3GjBmjUX/WrFm88cYbmJub8+uvv2JjY0PLli01grK9evVCX1+fsLAwCWrWgJJMBU9qlGxl28/LzWPDN6tJjL1Fz37+NPIsfcVPIZ6kklQeT3IUuV/zZqhUKp5r2VK9zcfDg5nbfmbj/x2jW2MPjWmHCoWCqf6+KAsK2Xf+PJ/vCWGqvx+d3RuV1rwQT476C/7J1NPT18e5W0tiDp7l0pYjNHzGC1WhipsHzlCYVxTMVOjroSos5PL237FycyhzYSIhakJ1XEMexdzUlOF9+9KmeXOauLkB0KF1axq7uTFv+XJ2HThAYDkDeIQQtZcENYXO2rVrV+7q57du3QKKVqV+kJGRkdY2XRkaGhIWFsbBgweJjo7m5s2bpKUVTeOsaL5EgBs3bvDWW2/RpEkTPv30U/X22OJcLuvXr9caQVgiISFBPcW4tFGL7u7uREZGVrhPDg4OxMbGolQqy33SWDJC08HBgdTUVLKyssrsR0mwUtdyAO+++y5vvPEGX3zxBfPmzaNly5b4+voyYsQI7O21p8PqwtraGh+fsleMflD37t0ZP348UHTTY2RkhKOjI05OTo8sn5iYyOrVq0lPT2fOnDl07ty5Uv0t8WDwskR+fj5fffUVUVFRxMTEEBcXp86TWVhYCEB8fDy2trYaAW8Ae3t79XsYExNDcnJyqSNYgRrPYfq/ytikaIRZfil5TZXFo2lMTEyqtf3srGw2fP0dMVejadejM/4vVj5QL8TjMC2+9uWVkn8sr/h70PQRsw0epXcpKUaMDAzo0aQJ20+dJi4lBdcHvpstjI3pWjxyvrN7I2Zu+5l1R49KUFNUO33jovOjMF8793dh8TljYKI9Sr8i9Vx926DMyeNWxAX1AkI2zV1w6dmKG/tPY2BqTFz4eTITUmjzWl/yM4seziuzi0bIFeQpyc/MwcDMWFLciGpnUjyKv7Tc8XnFg1fMHuMeSxd2NjYMe+EFre1tmzfHzsaGqIdy5Ash6g4JaooqV1qw0biUKWmleXAxFZVKxeTJkzl06BDt27fH29ubkSNH0rFjR8aOHVvhft2/f58pU6agUCj49ttvNQIIJa8bEBBQ5ii5xo0bc/v2bQCNkZwlSgJbFdWhQweOHj1KZGQk7dq1K7PcyZMnUSgUeHv/vUCCrv3QpVyzZs3Yv38/4eHhHDp0iPDwcL755hvWrl3Lli1bNKZdPwn29vY6B0BLK+/n58fw4cOZOHEia9eupX379pXuy8NJyE+ePMn48eMxMzPDx8eHoUOH0qJFC2JiYjSC47osZlRQUICbmxv//ve/S91f2ihW8eRZ2xaljshIy9Dal5GajomZKUYmun2PVUX7mekZ/LB4JYkx8XTo5cPAl4fLD1FRY2yLH9SkljJDIiUrCzNjI0wMtYM2VcHatCglQ045CzoYGRjg7erK/vNRpGfnYGX6ZH8cC/EgY+ui8yMvI1trX156NvqmhuiXknqkIvUUCgUe/TrRsJcX2ffSMbY2x6S+BTd+PQ16CozrmZNyOR5VQSFnl+/Rai8+PIr48Cg6zhyGSX0Lrf1CPEl2xem5UtPTtfalpKdjZmqqDnzWBGsLC7JK+a0k/jdN8JAZc3WNBDVFlXErHsp/48YNrX2xsbHq/VAUNHr4aZ1SqSQlJUU9qvDkyZMcOnSIyZMnM23aNI1yqampFRr9qVKpmDlzJteuXWPVqlVadZ2dnQHQ19fXCqxdvXqVuLg4TE1NcXZ2RqFQcPPmTa3XiIsre3Xk8vTv35/ly5ezZs2aMoOaiYmJ7Nu3j/bt2+Ps7IxKpcLCwuKR/ahfv75O5QoKCrh48SIWFhb4+fnh51eUty8kJIQZM2awbdu2x8pRWR2sra1ZtGgRo0aN4u2332bPnj1aIyYr65tvvsHExITg4GBsbGzU21euXKlRzsnJiYiICDIzMzE3/zszUFRUFGvWrOGNN97AxcWF8+fP06VLF43gaX5+Pr/99pvWNHtRPUzNTKlnZ0PCTe3z+FZMHM5ulRttXpn2c3Ny1AHNrr170Xe0TIcSNcvc2Bh7S8tSVzm/ce8e7pUczV8iOTOTL4JD6OrhwdD2mtfB+OJFHxwsLYlPSeXLvXsZ2KYNvVtqjuzMyc9HoQBD/fIXJBKiqhmYGmFsY1HqKuf3E5KwdC49dVNF6t358zpGlqbUc3fEyOLv3MtpNxKxcLZF39CARn077PiNCAABAABJREFUoszWvLfOv5/Npa3hOHi74+DdGEMLCfiL6mduZoa9rS3RpfxWio6NxaMSefsr6rfff+eXAwd47403cH7qKfX2wsJCEu/do/HTstCcEHWV3PmJKtOsWTNcXV3ZvHmzRr7Lffv2qadOl7CzsyM6OlpjBGFoaCi5xYmkoWjqNBSNkHzQ1q1byc7ORlnOqI2HLVmyhNDQUN5880169eqltd/BwYFWrVoRFBSkHo0JRYGm999/n6lTp6JUKrGxsaFjx47s2rWLew/8uDtz5gxRUVE69+dBbm5ujBs3jt9++40VK1Zo7U9NTWXq1Knk5+fz0UcfAUVP7Hv37k14eDhXHpguERcXR1hYmPrvupYrKCjg5Zdf5osvvtB47TZt2gDaIxdrKy8vL8aPH09CQgILFiyosnZTU1OxsbHRCGhmZGQQFBQE/D1Cs1evXhQWFrJt2zaN+ps2bWLv3r3Y2dnh6+tLamoqmzZt0iizefNmZsyYoV7tXVS/lu3bcO3CJe4m/P0dcDXqEkmJd/DqXPYo6qpuf/f6n4sDmj0loClqjU6N3DgfH098Sqp627m4OBJS0/B5zJH8NubmZOXlEXrxIlkPPPC8l3Gfw5cu09LZiXpmZjSwtiIrL48Df/2F8oGR8XczMjh2PZrmjo6PPQ1eiMqwa/k0qddukXU3Vb0t5eotsu+mY9+67JQIutaL/yOKa7uPUVjw9yybpIuxpN+4g1PnZgBYOttRv7GTxh+rp4uCNyY2ltRv7FTqokRCVIfObdpw7tIl4h/4nRV58SIJd+7g8xizq3T1lJ0dd5OS+DU8XGP73sOHyczKols19EEI8WTIlU3o7MCBA+Wu7j1o0CDmzJnDpEmTGDlyJEOHDuXevXusX79enYuyRP/+/fnss8+YMGECAwcO5ObNm2zdulU9YhLA29sbCwsL5s2bR3x8PNbW1hw7doyQkBCMjY3JzMzUqd9hYWGsXLkSDw8Pmjb9f/buPK6m9A/g+Oe27yVJipSQJRRZspTJvs1YBpEsMyYzdrP8hlkMwzBjmGFkG4TBWMtaCGHsZixjGXtIKVsl7dv9/ZHuuCqKtJjv+/Xyeumc5zn3+5zu6dz7Pc9Sk23btqkNvbawsKBFixZ89dVXDBo0iF69etGvXz/MzMwICgri77//5pNPPlG1/fPPP8fb25s+ffrg7e1NcnIyy5cvf6mVz3OMGzeOR48eMXv2bPbt20eHDh0wMTEhLCyMzZs3k5KSwqxZs6hVq5aqzpgxY9i/fz8DBgxg8ODBaGpqsnLlSgwNDdV6wRaknI6ODj4+PixYsIARI0bQqlUrUlJSWLduHfr6+vTq1eul21bchg8fzo4dO1i3bh1vv/32Kw1Dz+Hu7s7ixYsZM2YMLVu25P79+2zcuFGV2M55L3p6etKyZUu+//57rl69Sr169Th9+jSbN29mxIgRmJmZ0bt3bzZt2sSUKVO4cOEC9evX58qVK6xbt466devSs2fPV45XvJxWnTw5c+RPlv04jxYd3iIjPZ1DO/dhbVeFBs2y30cx9x4Qfu0GttXtMbfMu/fNqxz/3p1o/j76F3oG+lhVqcyZI3/mOo5z88a5tgnxur3t3ICDV6/yXVAQXerXIy0jk+1nz2JfwYKWNbIfPt6Nj+dK9F1qWlWkYiGn0hjSogU/hezmm81b8axdi+T0NELO/4OmhoLBLbJHUGhqaDC4eXPm79vP5G3baVWjOo9TUgm5cAGNp8oJUdwqt3Li3unrnFu6C5uWTmRlZBBx8DxGNuWxdM5O+ifHPCb+1j1Mqlqib25c4HoAVdzrcfH3/fyzcg/l61QlJS6ByEMXKFfTGkvnaiXSZiEK4+22bfnjxAmmzJ1LV09P0tLT2bZ3L9VsbWnl6grA3QcPuBwWhmO1alTMZ3Hal1W/Vi1c69dn54EDJCQmUsvBgeu3brH/+HGc69TBvUmTIn09IUTxkaSmKLDp06c/d/8777xDixYt8Pf356effmLWrFlYW1szffp0Zs6cqVa2f//+xMXFsXHjRqZMmUKtWrXw8/PD399f1cvTwsKCX3/9lZkzZ7JgwQJ0dHSwt7fnp59+4uzZs/z22288ePAg3xXZc5w7dw6lUsn169cZNWpUrv1NmjShRYsWuLi4sGbNGubOncuyZcvIyMjA3t6e77//nh5PrYbn5OTEypUrmTVrFn5+fpiYmDBy5EjOnz/PqVOnCno61WhpaTF16lTat2/P6tWrWb58OfHx8VhZWdG1a1d8fHxyLfZTqVIl1qxZw4wZM1iyZAk6Ojr07t0bgEWLFhW63OjRozEzMyMgIIAffvgBTU1NGjZsyI8//vja59MsSnp6ekyePJkhQ4bw9ddfs3nzZnResefOqFGjyMzMJDg4mH379mFpaUnz5s1577336NKlC8eOHaNdu3ZoaGgwf/585s2bx7Zt29i6dSu2trZMnDiRfv36AdkJ5OXLlzNv3jx27drF1q1bsbS0pF+/fowYMQJ9ff0XRCNeF0MTY4ZOGE3wmk3s3bwDHR0darvUo0Pvbmg9eTBz80oYm/x/p8d7/Qud1CzQ8S9fByAlKZlN/r/neRxJaoqSYKKvzzdvd+O3I0fZ8NdJdLW0cK1aFe9mTdHW1ATgUlQ0C/cf4MPWHoVOaja2t+OTDu3YfPoMa46fQFtLkzqVKuHVpAk25cxU5VrVrIG2piZbzpxh5dFj6Gpp4WRjQ5/GrlibmeV7fCFeJx0jfep/0ImwoBPc2nMaTR0tyte2xb6jKxpa2ddH/M27XNl4iJrvtlQlNQtSD8DCyQ7Hvu5E/HGOsOATaBvpU7mVE1U86qMoI6NpxH+bqbExk8eOZUVgIOuDg9HV1qZx/fp4v/OOqvPLxevXWbBqFR8NGFDkSU2AMYMHs3HHDg79+SfHTp/GzNSUnh060L19e5m3XIgyTKF8mSWkhSgkT09PbGxs8l1ZXAjx6vaEv1xSXYj/gkZbDr64kBD/YR85pb64kBD/Ub+W71jSIQhRqpnUr1/SIRSJ0vx9qq3tq0+H9SaSR3tCCCGEEEIIIYQQQogyRYafC1HEMjMziYmJKVBZY2Nj9PTKxkqUMTExqgVxnkdPTw9jY+NiiKhgymrcQgghhBBCCCGEyJ8kNYUoYlFRUbRp06ZAZadPn15mFoZ59913iYyMfGG5Hj168P333xdDRAVTVuMWQgghhBBCCCFE/iSpKYpFaGhoSYdQbCpUqMCyZcsKVLZ69eqvOZqi8+OPP5Ka+uL5tiwtLYshmoIrq3ELIYQQQgghhBAif5LUFKKI6erq0rx585IOo8g1atSopEN4KWU1biGEEEIIIYQQQuRPFgoSQgghhBBCCCGEEEKUKZLUFEIIIYQQQgghhBBClCmS1BRCCCGEEEIIIYQQQpQpktQUQgghhBBCCCGEEEKUKZLUFEIIIYQQQgghhBBClCmS1BRCCCGEEEIIIYQQQpQpktQUQgghhBBCCCGEEEKUKZLUFEIIIYQQQgghhBBClCmS1BRCCCGEEEIIIYQQQpQpktQUQgghhBBCCCGEEEKUKZLUFEIIIYQQQgghhBBClClaJR2AEEKIorHk+p6SDkGI0uudtiUdgRClm9xDhMiX78OdJR2CEKXaWuqXdAjiP0p6agohhBBCCCGEEEIIIcoUSWoKIYQQQgghhBBCCCHKFElqCiGEEEIIIYQQQgghyhRJagohhBBCCCGEEEIIIcoUSWoKIYQQQgghhBBCCCHKFElqCiGEEEIIIYQQQgghyhRJagohhBBCCCGEEEIIIcoUSWoKIYQQQgghhBBCCCHKFElqCiGEEEIIIYQQQgghyhRJagohhBBCCCGEEEIIIcoUSWoKIYQQQgghhBBCCCHKFElqCiGEEEIIIYQQQgghyhStkg5AwPjx49m0adNzy7Rp04b58+cXU0S5eXp6YmNjw8qVKwHw8fEhMjKS0NDQYouhKF5z165drF+/nvPnz5OSkkKlSpVo2bIlgwYNokqVKgU6Rs7v6/Lly0VS7mU5Ojo+d3/OeyYiIoI2bdrk2q+trY25uTktWrRgzJgxWFlZAeRbXqFQYGxsTLVq1fD29ubtt98umoYUg8zMTBYvXsz69euJj4/H1dWViRMnYm1tXdKhiVIkJeYxYTv+5FFYNADmtSpj36kxOkb6BT7G1U1HSH7wiPofdMq1L+56FLf2nCYhKgYtPW0snOywa98QTR3t7NePTeDPHzc+9/j1hnbArFqlQrRKiKITe/8hO9Zt4cblawA41q9Dp77vYGhiXOBjbF6+jod37/H+56Ny7Yu8eZvdG7cRfu0mCg0Fdo4OdOrbHQsrS7VyYRevsndTMFG3I9HT18OpsTNte3RBR0/31RooxCso6XtIjrSEZG6GnCLm0m2y0jMwsi6PXQdXTGwrvFoDhXhFpeUaeRz5gJu7ThIffg+FQoGpvRX2nRpjUMH01RoohCgRktQsRSZMmEC5cuXy3FepUun6Evvhhx+SnJxc0mEUWFpaGp9//jnBwcHUr1+foUOHYmpqytWrV9m0aRMBAQH8+OOPtG3btqRDLZRq1arx4Ycf5rnv2feMq6srffr0Uf2ckZHBtWvXWL16NUePHmXr1q2YmJjkW16pVHL79m3Wrl3LZ599hqamJl26dCniFr0e8+fPZ968eQwZMoQKFSqwcOFCPvroIwIDA9HU1Czp8EQpkJ6UytmlO1FmZlHZ3QmlUknEwfMkRsfiPLwrGgV4n0T/dYXoP69gal8x176461Gc89+FkU157Ds2IvVREneO/ENC5EPq+3ZCoVCgbahLzd6tctXNysjg+rbjaBvqYVjJvEjaK0RhJSUk4j9jHpmZGbTq6IlSmcWhnfu4G3GHD7/+GE2tF3+kPHnwGCf/OIqdo0OufQ+i77H0h7no6OjQult7AI6E7GfxtDmM+PZ/mJhlf9kMu3iVZTPnY1O1Ch3e7caj2DiO7v6DyBu3GTphNAqFomgbLkQBlIZ7CEBGajpnF+8k7XESNi3qoKWny51jFzm3dCfOH3XF0Crv7xlCvG6l5RpJuv+Is4t3oqmjhe1bDQCIPPwPf/8aTMNR76BrYlC0DRdCvHaS1CxF2rZtS+XKlUs6jAJp0aJFSYdQKDNmzCA4OJjPPvuMoUOHqu378MMPGTp0KGPHjiUgIOCFPSBLEwsLC955550Cla1SpUqeZatUqcLkyZNZu3Ytvr6+Lyzfs2dPOnfuzLx588pMUnP9+vW4u7vz+eefA9kJ3VmzZhEWFkaNGjVKODpRGkQeukDqoyQajX4HA0szAIwrV+C8fwh3T12jUuP8/y4os7K4vf8st/aeybdM2I4/0TUzpP4HndDUzr716poacn3rMWKvRmJeszKaOtpUdMmd7Lm+/TjKzCxq9XFHW196oomScThkP49i4xj57f+wtM7u2W9jX5UVsxZw6vAJGns0z7duVlYWB7bvJnTLznzLHAnZT3pqGh9MGE0l2+zPQtXq1GTRlJ84sms/Hftm3492rt+CmXk53h8/Cu0nvW9MzcuxfdVGrp6/RM16tYuqyUIUWGm4hwBEHDhH8oNH1BvaETP77Ou0Qn07/pwZQMTBczj2di+aBgtRSKXlGok88g9ZaRk08O2EkXV5AMwcrDkzfzuRhy9QrVPjommwEKLYyJya4o1348YNVq1aRZcuXXIlNAHKly/PnDlzUCgUTJ06tQQiLFmdO3cG4NSpUwUqb2NjQ+PGjbl+/ToJCQmvM7Qik5KSQlRUFEqlEoDU1FQgewi+EAD3z4ZhZm+l+qANUK66NfoVTLh/9ka+9TLTMzjlt41be85g6eyAjmnuJ/yZ6RnoGOlh1bim6oM2oOppkBgVk+/xE6NjuHP0IhUb1cD0yRdUIUrCueOnsHesrkpoAlSv60h5K0vOHT+db730tHTmT5pJ6OYdOLu5Ylwu7+F9MfcfYmBkqEpoAlS2t0Xf0IC7kVGqYxkaG+Hq0UyV0ASwf9LzMzo88pXaKMTLKg33EKVSyd3T1zB3rKxKaALoGBtg36kxJna5e7cJUVxKwzUC2UPgtQx1VQlNAOPKFmgZ6JJ0N/ZVmiiEKCGS1CyDduzYQffu3alfvz5du3Zl3759vP/++/j4+KjKeHp6qv2c33alUsmaNWt49913cXFxoV69enTs2JFff/1VlQDKi4+PD56enkD2HIyOjo75/ps7d66q3rVr1xgxYgSurq40aNAALy8vDh48mOv4R44cwcvLC2dnZ9q2bcuGDRte6lwBbNmyBaVSibe3d75lbG1tadu2LX/++SfR0dGq7efPn+e9997DxcWFVq1asWjRojzPS0HKKZVK/Pz86NChA/Xq1aN58+Z89tlnREVFvXTbioKGRvafgczMzALXMTDI/kDxvPdIfnbt2kWvXr1wcXGhUaNGDBkyhJMnT6qVycrKwt/fn44dO+Lk5ESrVq2YOnWqWhJ13LhxODo6cuDAAdW2uLg4WrZsSbt27UhKSlJt79SpE1euXOHXX3/lwIED+Pv74+bmhp2dndrrHj9+HEdHRzZt2kS3bt2oV68eEyZMAOD+/ftMnjyZNm3a4OTkRKNGjRg4cGCu2JVKJb/99htdu3alfv36eHp6MnPmTLXpGgrSPlF80pNTSYlJwMimfK59RpXKk3DnYb51lRlZZKamUaufB469W6HQyD30VVNbC6fB7bFt3UBte86HbF0zo3yPf3P3KTS0taja1qWgzRGiyCUnJhF7/yHWdrlHk1jbViYqPCLfuhkZGaQmp9D3o0H0GuqNpkbeQwzLV6xAUmISifGPVduSEhJJSU7B2DR7ahRtHW0GffwhHl3bq9WNepLMNLOQ6RlE8Sst95DU2ATSHiVhVj17vnClUklmWjoA1s1qPbcnnBCvU2m5RgD0y5uQkZRKWsK/n8vTk1LJSElDuxBzewohSg8Zfl6KxMfHExOTd48dU1NTNDU12bx5M59//jn16tXjs88+IywsjNGjR2Nubo6trW2hX3P27NksXLiQHj160KdPHxITE9m8eTOzZs3C0NDwuYnAHObm5syYMSPX9rlz5xIdHU2rVtlzxF2+fJn+/ftjYWHBsGHD0NbWZvv27fj6+jJr1ixVj8EjR47wwQcfYGdnx9ixY4mJieG7775DoVDkO+fo85w5cwYtLS3q1av33HLNmjUjODiYkydP0qVLF65evYqPjw8mJiYMHz6c9PR0/P39SUtLU6tX0HILFy5k3rx5eHt74+joSEREBL/99hvnz59n+/btLzW3Y3p6ep7vGW1tbYyNC7Zww9GjRwGoU6dOgconJyfz559/Urly5QK/Ro4TJ04wbtw43N3d6d27N8nJyaxatYohQ4YQFBSkWqzpyy+/ZMuWLXTv3p3Bgwdz/fp11qxZw6lTp1izZg26urp8/fXXHD16lG+//ZagoCD09PSYMmUKMTExrFq1SpV4Bfj44485ePAgP//8M0qlkiZNmjBnzpx84/z222/p2bMnvXv3xtrampSUFLy9vXn8+DHe3t5UrFiRmzdvsmbNGoYOHcqePXsoXz77g9rkyZNZs2YNb731Fv369ePGjRv4+/tz8+ZN/Pz8Ctw+UXzSHmUnwHXymEdJx0SfzOR0MpLT0NLXybVfU08b1497oaFZ8GeEKbEJPLoRTVjwnxhUNKN8nbz/didGxxBzMQKbVnVljidRouJjHwFgUs4s1z5jMxNSkpJJTkpG3yD3F0I9fT3Gfv/lC+9xrTq14fKZC6xftJJOXt2B7KHmmpqauLXLe8hs7IMYbly6xs51m7G0qURtl+ff54V4HUrLPST5YTwA2oZ6hO34k+g/r5CZko5eeWOqdW5C+doFWxBTiKJWWq4RgMruTsRcus3ldX9QrUv2UPOwHX+hoamBTfOCfRcSQpQuktQsRXr06JHvvs2bN1OzZk1mzJhBtWrV+P3339HRyf7DX61aNaZOnVropGZ6erpqWPb333+v2t67d2/c3Nw4ePBggZKaBgYGueZeXLJkCbdv32bixIk4OzsDMHXqVMzNzdm0aZMq4TRgwAAGDRrEd999R9u2bdHR0WHmzJlUqFCBdevWYWSU/WStefPmDBo06KWSmvfv38fU1FR1vvJjaZm9uuq9e/cAVD1M165dq1p0p0OHDnTv3l2tXkHLbdu2DXd3d7766ivVtkqVKrFmzRoiIyNfKil9+vRp3Nzccm1v0qSJaqX6HGlpaWoJ0EePHnH69GlmzpyJoaEh/fr1e275jIwMbt++zfz584mJiWH8+PGFjjc4OBg9PT0WLFigmrC7efPmjB49mgsXLlClShWOHz9OYGAgkydPxsvLS1XXw8OD999/n7Vr1zJo0CDMzc2ZOHEi48aNY9GiRTg5OamS5A0bNlR73dDQUJKSklAqlejr6/PTTz9hapr/CoeNGjXi66+/Vov71q1bLFmyRJWkh+x5R7/55htOnjxJ+/btuXbtGmvXrqVPnz5MmTJFVc7Q0JCFCxdy7do1Hj58WKD2ieKT05Pl6SFLOTSeLH6SmZ6R54dthUKBQrPgC5OkJ6WqVjjX0NHEoVvTPF8X4M7xy6ChwLqZzBEoSlZqSgqA2pDvHFpPtqWnpeWZ1FQoFAV6aGdWvhweXduxffVG5n2T/aBUoaGB1/AhakPScyQlJPLT/759EpcOXb175hmfEK9babmHZKRkP0y/tec0Ck0NHLo2BYWCiIPn+WfVXpyGtKfck16cQhSn0nKNAOiZGVGldX2ubzvGqV+2PglCQe3+rdWGpAshyg5JapYiP/74IxYWFnnus7W15dy5czx8+BBfX1+1BF3fvn3VhngXlLa2NkeOHCE9PV1te2xsLEZGRmrDdwvj4MGD/PTTT7zzzjuqpGhsbCwnTpzAx8eHlJQUUp58QQJo164d06dP59y5c9jZ2XHhwgWGDh2qSmhCdi9KR0fHlxqeq1QqC/SFSuvJTVWpVJKVlcXBgwfx8PBQW0XcwcGBli1bEhoaClDgcgBWVlYcP36cFStW0KVLFywsLPDy8lJLbBWWo6NjnsnFp1cxzxEUFERQUFCu7TVq1GDSpElYWVkVqHy1atX46aefXmqRICsrKxITE5k6dSr9+/fHwcEBR0dHdu3apSoTEhKCQqHAw8NDLalap04dKlSowP79+1VJv86dOxMUFMTSpUsxMTGhVq1ajBo1Su01Z86cyeLFi2nVqhX16tVj/vz5fP755yxZsoTr169z/vx5PDw8MDf/d9hi48bqk4R37tyZZs2aqSXVn+6Jm3Ot7N+/H6VSmWvqh/fff5/OnTtja2vLmjVrCtw+UUxyplEojkWTFVDLy4OszCzuHP2Hc/4h1PbywMLJTq1YZnoG905fp3ztKuiVy394uhDFQXWJvMaVxfcEBnNgewh2jg64ejRHmZXFiX2HWb9wOV7Dh1DL2UmtvEKhoM+Hg8jMyODYnoMsm7mAvh8Ooq5rg3xeQYjXpJTcQ7IysoDs5Kbrxz1VC8uVr1WFP2cFcDPkpCQ1RckoJdcIZE/rc3vfWUztK2LVxBFllpKo45e4tOYAtfu/JT2ahSiDJKlZijRs2PC5q5/fuXMHQDVEN4eOjk6ubQWlra3N/v372bt3Lzdu3ODWrVs8epQ9zOxl5ku8efMmH3/8MTVq1ODbb79Vbb99+zYAK1euzNWDMEdUVJRq4Za8ei1Wq1aNs2fPFjomS0tLbt++TUZGhipxmZecHpqWlpbExcWRlJSUbxw5ycqClgP43//+x0cffcS0adOYPn06devWxdPTkz59+lChQoVCtwuypyVo3jz/FWef1rJlS95//30g+8ugjo4OlSpVwto67w+4T5ePjo5myZIlxMfHM2nSJJo2bfpS8Q4YMIBDhw6xatUqVq1aReXKlXnrrbd49913qVWrFgDh4eEolUpat26d5zEMDQ3Vfp40aRLt27fn/v37zJ8/Xy3hf/LkSVVCc9GiRWhqanL58mX27t3LokWLiI+Px9/fny1btqglNZ/+fw6FQsGvv/7K6dOnCQ8PJzw8XPVAICsr+4tEZGT2vG7PztVpYmKiSjQXtn3i9dPUzf67k5Wee17ZrIwMALT0iqYHmLa+LhXq2wNg4VSVU3M2cz3oRK6k5qOwaLLSMnJtF6Ik6OplJ0fSn5lWBSDjSQ8cPT29lz5+clIyh3aGYmNny5DPRqjmeq7XxIWFU35i8/J1fPqjI1pPLe6mb2hAvSbZc83WdXVm7tffE7x2kyQ1RbErLfcQTe3sB/gWdauqEpoAWvo6mNeqzL3T18lMS0dTejSLYlZarpGM5DQiDp7HqHJ56r3fAcWTe02F+nacmb+dq5sOU65GbzS0Cj8lmBCi5EhSswzKK9lY0Dn4nl4MRqlUMnz4cPbt20ejRo1wcXGhb9++NG7c+KV6iiUkJDBixAgUCgV+fn5qX3ByXtfb25u2bdvmWb969ercvXsXQK0nZ46cxFFhubq6cvToUc6ePZtrWPLT/vrrLxQKBS4u/y7IUdA4ClKuVq1a7Nq1i4MHD7Jv3z4OHjzIL7/8wrJly1i3bh0ODg6FaVahVahQocAJ0LzKt2nTht69e/PBBx+wbNkyGjVqVOgYjIyMWLVqFWfOnGHPnj388ccfrFy5ktWrVzNjxgy6detGVlYWhoaGqvknn/Xse/2ff/5R9ZTctWsX9evXV+3bu3cvACNGjFD11v3+++/p0aMHc+fOxcDAADs7O1VCNcezPXvDwsLo168f6enptGzZks6dO1O7dm2USiUjRoxQlSvIYkuFbZ94/XRNs3tCpj1OzrUvLT4ZTX3t1/IlUFNbC/NaVbhz5CLpiSloG/77NzPmcgQKLQ3MHfN/0CVEcTEtn91L/fGjx7n2PY6LR89AHx29l//b9fDufTIzMqjX1EWV0ATQ1NKifjNXQjZs5X7UPSrZ2uRZX1tHG8cGdTm25w8SHydgaCy9m0XxKS33EB2T7IeiT99LcugY6YMSMlMlqSmKX2m5RlJiE1BmZFGhfjVVQhNAQ1MTywYO3Nj5F0n3H2FUSRadE6IskdXPy5Cc3l83b97MtS+nJ2QODQ2NXAvVZGRkEBsbq/r5r7/+Yt++fQwfPpzff/+dL774gnfffRcbGxvi4uIKFZtSqeSzzz7j+vXr/Pjjj7l6jtrYZH8R0dTUpHnz5mr/LC0tSUtLQ19fHxsbGxQKBbdu3cr1GhER+a+u+jxdu3ZFU1MTf3//fMtER0ezc+dOGjVqhI2NDeXKlcPIyOiFcRS0XGZmJhcuXCAqKoo2bdowdepUDhw4wM8//8zjx49faXX34mJqasqsWbPIzMzkk08+eampAG7cuMHZs2dxdnbm008/ZevWrQQFBWFiYsKyZcuA7PdKYmIiTk5Oud4r8fHx6Ov/O2dbQkICEydOpGbNmvTq1Ytly5ap9ebNeQDwdJLSxMSEOXPmoKGhwePHjxk4cOAL4168eDHx8fEEBgbyyy+/MHLkSNq0aaO2ojmg6vX67PV49+5dxo4dy19//VWo9onioaWvg665UZ6rbyZEPcTYJu9pQQoq6X4cJ37cwJ1jl3Lty0xNBwUonukVEB9+D2MbC7T0nj8XsBDFQd9AHzMLc6Ju5b4P3wmPwMbu1Ybr5YyiyMrK/dBWqXpAqOR+1F1mffYtx0MP5SqXmpICCgVa+cxRK8TrUlruIYZWZii0NEi6F5erXEpsAhramnkmPIV43UrLNaKh9ST1kde9RpmV859XikUIUfwkqVmG1KpVC1tbW9auXas23+XOnTtVQ6dzWFhYcOPGDbUehKGhoaSmpqp+zklcVq9eXa3u+vXrSU5OJuPJcICCmDNnDqGhoYwcORIPD49c+y0tLXFycmLTpk2q3piQvVjRF198wejRo8nIyMDc3JzGjRuzdetWHjx4oCp3+vRpLly4UOB4nmZnZ8eQIUPYvXs3CxYsyLU/Li6O0aNHk56erlocRqFQ0K5dOw4ePMjVq1dVZSMiIti/f7/q54KWy8zMZODAgUybNk3ttRs0yB4m93TPlNKsXr16vP/++0RFRfHjjz8Wuv7UqVMZPnw4iYmJqm3VqlXDxMREdQ48PT0Bcv2uQkNDGTNmDNu2bVNtmzFjBnfv3mXy5Mn873//w9TUlC+//FKV0G/WrBkAa9asUTvWvXv3VL0qAwICciUnnxUXF4e+vr7aUP20tDTWrl0L/NtDM+e9/+zrBQYGsmPHDoyMjArVPlF8LOpWJe76HZLux6m2xV67Q/L9eNUwppelZ25CRkoaUScuk/VUb96U2AQenL+Jqb0VWrr/9lDIyswk6W4chtbSU0CUHnUbNeD6P5e5H/XvPfzahcs8jL5Hvab5j4IoCEsbK4zNTDh96Djpaf/O852els6ZI39iYGSIpbUV5pYWpCQn8+f+I2Q+9Rkl9kEMF/76GztHB3RfYRi8EC+rNNxDNHW0KV/blphLESTe/bcTQ0rMYx5eDMe8dhW13mlCFKfScI0YWJqhY6JP9KmrZKb/ew/JTM/g7unraBnqYlDR7JViEUIUP3mcXYrs2bPnuat7v/POO0yaNAlfX1/69u1Lr169ePDgAStXrlTNRZmja9euTJkyhaFDh/L2229z69Yt1q9fr+oxCeDi4oKRkRHTp08nMjISU1NTjh8/TnBwMLq6umqJp+fZv38/CxcuxMHBgZo1a7Jt2za1odcWFha0aNGCr776ikGDBtGrVy/69euHmZkZQUFB/P3333zyySeqtn/++ed4e3vTp08fvL29SU5OZvny5S+18nmOcePG8ejRI2bPns2+ffvo0KEDJiYmhIWFsXnzZlJSUpg1a5baMOQxY8awf/9+BgwYwODBg9HU1GTlypUYGhqq9YItSDkdHR18fHxYsGABI0aMoFWrVqSkpLBu3Tr09fXp1avXS7etuA0fPpwdO3awbt063n777UINQx8yZAgffPAB3t7edO/eHV1dXfbs2UN4eDg//PADkJ0YbNOmDf7+/kRGRuLm5kZkZCSrV6/G2tpaNc/n0aNHWb9+PX369FFNK/C///2P8ePHM3/+fMaOHYuHhweenp4EBgaSmppKkyZN+Pvvv9myZQt16tShadOmLF26lPfee4/FixfnG7e7uzuhoaEMGzaMjh078vjxYzZv3kx4eDiA6lqpXbs2vXv3ZuXKldy7dw83NzfViujdu3enVq1aODo6Fqh9onhVbuXEvdPXObd0FzYtncjKyMied8mmPJbO2VNDJMc8Jv7WPUyqWqJvblzgY2toauDQtRlXNhzk7K87sHRxICMpNbtHgYYie4Xap6TGJaLMzELPVIbQitKjVSdPzhz5k2U/zqNFh7fISE/n0M59WNtVoUGz7PtAzL0HhF+7gW11e8wtC97zRkNDg67e77Jm/jIWTf2Zhq2aoszK4uTB49yPvse7Q73RfNKbs0v/ngQsWc2S7+fi7OZKUmISx/cezD5G/7JzLxVvltJyD7Hv6MqjG9GcW7oL6+a10dDQJPLoP2hoa2LXvvDTBglRVErDNaLQ0MChWzMu/r6PMwuCsGpUA6VSyd2TV0m+/wjH3q3QKMDiskKI0kWSmqXI9OnTn7v/nXfeoUWLFvj7+/PTTz8xa9YsrK2tmT59OjNnzlQr279/f+Li4ti4cSNTpkyhVq1a+Pn54e/vr+rlaWFhwa+//srMmTNZsGABOjo62Nvb89NPP3H27Fl+++03Hjx4kO+K7DnOnTuHUqnk+vXruVaeBmjSpAktWrTAxcWFNWvWMHfuXJYtW0ZGRgb29vaqOQ5zODk5sXLlSmbNmoWfnx8mJiaMHDmS8+fPc+rUqYKeTjVaWlpMnTqV9u3bs3r1apYvX058fDxWVlZ07doVHx+fXIv9VKpUiTVr1jBjxgyWLFmCjo4OvXv3BmDRokWFLjd69GjMzMwICAjghx9+QFNTk4YNG/Ljjz++9vk0i5Kenh6TJ09myJAhfP3112zevFltcZ7nadmyJQsWLGDRokXMnz+f1NRUatSoobaaukKhYM6cOSxZsoTNmzcTGhqKubk57du3Z8yYMVhYWJCcnMzXX3+Nubk5n3zyier4PXr0ICAggCVLltChQwdq167N7NmzmT9/Plu3biUkJIRKlSrx0Ucf8cEHH6Cnp4euri7Xrl3DwMAg37i9vLyIj49nw4YNTJ06FQsLC5ydnfHz88PLy4tjx44xePBgAL799lvs7OzYsGEDoaGhWFtbM2LECIYOHVrg9onip2OkT/0POhEWdIJbe06jqaNF+dq22Hd0VU0YH3/zLlc2HqLmuy0L9WEboKKLAxpaGtw+cI6woD/R1NHCzKESVds1xKCCqVrZjKTsHvWaRTRpvhBFwdDEmKETRhO8ZhN7N+9AR0eH2i716NC7m2oBn5tXwtjk/zs93utfqKQmQJ1G9Rny6XD2bd3JnoAgACpVrYzPWF9q1qutKufcvDFa2lr8EbyXHes2o62ri0PtGrTt2QULK8uia7AQhVBa7iF65Yxo8GEXbu78i4iD50EJpnYVse/oWujXFKIolZZrxKJuVeq914Hw0DPc3H0SACPr8tQd1BbzmjKPuRBlkUL5Mktci1LH09MTGxubfFcWF0LkT6lUolAoSjqMV+a1b0ZJhyBEqTXUIe9F6oQQ2ZZc31PSIQghhCij1r71v5IOoUjsCX+5TlTFoa3tq03386aSiVWEEP95b0JCUwghhBBCCCGE+C+R4eeizMnMzCQmJqZAZY2NjdErI4sGxMTEqBaceR49PT2MjUvPEKKyGrcQQgghhBBCCCHKLklqijInKiqKNm3aFKjs9OnT6dmz52uOqGi8++67REZGvrBcjx49+P7774shooIpq3ELIYQQQgghhBCi7JKk5hsiNDS0pEMoNhUqVGDZsmUFKlu9evXXHE3R+fHHH0lNTX1hOUvL0rUQQlmNWwghhBBCCCGEEGWXJDVFmaOrq0vz5s1LOowi16hRo5IO4aWU1biFEEIIIYQQQghRdslCQUIIIYQQQgghhBBCiDJFkppCCCGEEEIIIYQQQogyRZKaQgghhBBCCCGEEEKIMkWSmkIIIYQQQgghhBBCiDJFkppCCCGEEEIIIYQQQogyRZKaQgghhBBCCCGEEEKIMkWSmkIIIYQQQgghhBBCiDJFkppCCCGEEEIIIYQQQogyRZKaQgghhBBCCCGEEEKIMkWSmkIIIYQQQgghhBBCiDJFq6QDEEIIIYQQQgghhBBC5K1NmzbP3b93795iiqR0kaSmEEK8IX4t37GkQxCi1DpBRkmHIESptuC8bkmHIESp9ZFTakmHIIQQIg+S1BRCCCGEEEIIIYQQopT6r/bEfBGZU1MIIYQQQgghhBBCCFGmSFJTCCGEEEIIIYQQQghRpkhSUwghhBBCCCGEEEIIUaZIUlMIIYQQQgghhBBCCFGmSFJTCCGEEEIIIYQQQghRpkhSUwghhBBCCCGEEEIIUaZIUlMIIYQQQgghhBBCCFGmSFJTCCGEEEIIIYQQQghRpkhSUwghhBBCCCGEEEIIUaZIUlMIIYQQQgghhBBCCFGmSFJTCCGEEEIIIYQQQghRpmiVdABCFKXx48ezadMmtW3a2tqUL1+eJk2a4OvrS40aNVT7fHx8iIyMJDQ0tLhDLVJpaWnExsZSsWLF1/Yanp6eAGX6XGVlZXHnzh0qV65c0qGIMuDXNWu4c+8ek8aMeWHZMxcvErhzJ2G3b6OhoUENOzu8unalhp3dS5W7Hh7Omq1buXzjBhoaGtRxcMCnRw+sX+M1LkRhbF6+jod37/H+56OKrN6tK2HsDtxO5I3b6BvqU9ulHp7dO2FobKRWbuG3PxF5MzxX/TqN6tNvxHuFa4gQr8HiPw4SFRfHxLe7vbDshcg7rP/rL249fIiBjg5Nq1Wjb2NX9LS11cp9GbiJsPsPctVvYm/HuPbtCn08IUrS1U1HSH7wiPofdHrleimxCfz548bn1qs3tANm1Srl2h6+/2+i/7xCk896FyoOIUTpIUlN8UaaMGEC5cqVAyA5OZnw8HACAgLYtWsXixcvpmnTpgB8+OGHJCcnl2SorywyMpL33nuPYcOG0bNnz5IOp9RKSEhg8ODBeHh4MGpU4b6Ei/+e0KNH2XvkCLWrV39h2X+uXuX7BQuobGVFv27dyMzMZNfBg0yaPZvJY8dS/UnCsqDl7ty9y+RffkFXW5teHTsCEBQaysTZs5kxfjzmpqavq9lCFMjJg8c4+cdR7BwdiqzejUtXWfHTQvT09fHo2g6FhoKjIQcIu3QV3y/Gom9oAIBSqeReVDS1XOpRt1F9tWOYWZi/fKOEKCL7Ll0m9OIlaleyemHZC5F3+C4oCHsLC/o3bcLDhER2nD9P2P37THq7GwqFAsh+30fGxeFqV5Um9vZqx7B4Kulf0OMJUZKi/7pC9J9XMLUv3IPa/OppG+pSs3erXOWzMjK4vu042oZ6GFbKfX+IuRJJ+N6/0THRL1wDhBCliiQ1xRupbdu2uXrj+fj40KtXL8aOHcuePXswNDSkRYsWJRRh0YmIiODmzZslHUapFxcXx7lz5/Dw8CjpUEQplpWVReCuXWzcsaPAdVYEBlLezIzvPv0UXR0dANybNOHj775j7fbtfDVyZKHKBe3fT2pqKpPHjsX+yd+xejVr8sXMmQSFhuLTo0dRNlmIAsvKyuLA9t2EbtlZ5PW2rw5EodDggy/GUL5iBQDqNKzPvG9mcGD7bjr2fQeAuAcxpKemUdulHs7NG798Y4QoYllZWWw6fYaAkycLXGfVsWOUNzLim7e7oaOV/bXMwsgI/0OH+ft2BM62VQC4/ziB1PQMXO3saFWzxisfT4iSoMzK4vb+s9zae6ZI62nqaFPRJffDsuvbj6PMzKJWH3e09XXV9kWduMz1bdn7hRBlm8ypKf4zKlWqxOeff05MTAwBAQElHY4QopRJS0/n8x9+YENwMK0aN8bczOyFdRKSkrgVGUkzFxdVohLAzMSE2tWrc/nGjUKVA7j34AHGRkaqhCaAQ9WqGBkacjsqqghaKkThpaelM3/STEI378DZzRXjcgXrMVyQerEPYrgXGYVz88aqhCZAhUoVcWxQl9OHT6i23bsT/WSf5Su2SIiik5aRwYTATWz86yQta9TA/EnP4hfVMdHXx7NWLVUCEqB2pewhsrcePlRti4iNBcDaLP/rrjDHE6K4ZaZncMpvG7f2nMHS2QEd0xdfI69SLzE6hjtHL1KxUQ1M7dV7TZ/z38W1zUcxc7DC0Fp6+AtR1klSU/yndOzYER0dHQ4ePAhk997MmSsSsuem/O6772jTpg1OTk54eHgwefJkHj16pCozfvx42rVrx+nTp+nZsyf169enY8eOrFmzJtfrHT16lKFDh9K0aVPq1q1Lq1atmDhxIvHx8WrH69ixI6tXr6Zx48Y0btyYP/74o0D1AwMDGThwIJA95N7R0VF13EePHjFlyhRatWqFk5MTnTp1YsWKFSiVyiI5l4GBgTg6OnLp0iVGjx6Ni4sLzZo144cffiAzM5NNmzbRoUMHnJ2d8fLy4tKlS6q6c+fOpU6dOoSFheHj40ODBg3w9PRk/vz5ZGZmqr3OhQsXGDVqFM2bN6du3bq4ubnxySefEB0drVYuISGBadOm0bp1axo0aEC3bt3YsGEDAMePH6dNmzYA+Pn54ejoSERERKHae+LECby9vXF1dcXFxQUvL6885xcNDAyke/fu1KtXj2bNmjF+/Hju3bun2j9z5kwcHR1ZvXq1altaWhrdunWjadOm3L17t1BxiaKTnp5OUkoKY4cMYYSPDxoaL75FGujp8fNXX9Hlqb8jOR4nJKD55BgFLQdgVaECCYmJPHr8+N8yiYkkJSdjZmLyMk0T4pVlZGSQmpxC348G0WuoN5oamkVWLz42+x5bsXLu4brmlhYkJSTyKCY7qXM3IjuxX8E6e/hhWkrqS7VHiKKUnplJUloaY9q2YfhbrQt0/9DR0mJC5070aOiitv3mw+x5MysYG6u23Y6JAcDmydRKKenpr3Q8IYqbMiOLzNQ0avXzwLF3KxQaBZsK4WXr3dx9Cg1tLaq2dcm1LyUuAYe3m1F3UDu0dGWuWSHKOhl+Lv5TdHV1sbW1VUuwPe3bb79l+/btDBw4kCpVqnD16lVWr17NrVu38Pf3V5WLi4tj6NCheHh40LNnT0JCQpg0aRLx8fEMGzYMgEOHDvHBBx/QsGFDRo8ejUKh4PDhw6xbt45Hjx4xZ84c1fGioqJYsGABI0eO5N69ezg7OxeofuPGjfnwww9ZuHAhffv2pVGjRgAkJSUxYMAAoqKi6N+/P1ZWVhw7doxp06Zx8+ZNvvnmmyI7p76+vjRq1Ijx48cTEhKCv78/V65c4fLlywwaNAilUsmCBQsYPXo0wcHBaD3pPaBUKhkyZAg1atTgs88+4/jx48yZM4fo6Gi+/fZbAC5fvkz//v2pWrUqvr6+6Ovrc+rUKbZs2cKtW7fYuDF7UvC0tDS8vb25evUqffr0oVatWhw4cICvvvqK5ORkOnfuzIQJE5g+fTrt2rWjXbt2mJsX/MlsWFgYw4YNo3bt2owbNw6A9evXM3z4cFatWoWrqyuQnTCdO3cuHTp0oE+fPty9e5dVq1Zx4sQJNm7ciLm5OaNGjWLPnj3Mnj2bDh06YGFhwbx587hy5Qo///zza13sSTyfgb4+v0yciKZmwZI1ABoaGlSyzN1j7FZkJFdu3KBB7dqFKgfwTtu2nDp/nl9WrGDgk6HmqzZvRlNTk06tWxeyVUIUDT19PcZ+/2Whro+C1tN58qUyNY8EZVJCIgCPHz3G1Lwc9+5Eo6Ony461mzl34jTpqWmUq1Cetj27UL9pw0LFJkRRMdDRYbZXX7UHVIV1//Fj/rkTxapjx6hiXg5Xu6qqfRGxsehpa7Py6FGOXg8jNT0DSxNj+jZuTPPqec9t+7zjCVHcNPW0cf24FxqahbtGXqZeYnQMMRcjsGlVF12T3D07G43pjkYh72VCiNJLkpriP8fExITw8NyrpgJs27aNXr168fHHH6u2GRgYcPDgQRITEzE0NAQgPj6egQMH8uWXXwLQr18/Bg0axPz58/Hy8sLU1JTly5dTqVIlli1bhs6T4ab9+/enb9++qp6iOVJSUpg+fTqdO3dWbStI/SpVqtC8eXMWLlyIs7Mz77yTPefY0qVLuXHjBgEBAarem/379+enn35i0aJF9O3bl1q1ar3yuQRwdnbm559/BqBz5864ublx5MgRtm7dqlppPjExkYULFxIREYHdk8VQsrKycHJyws/PD4VCwYABA/j0009Zv349gwYNwsHBgd9//x2FQsFvv/2G2ZOhwH379iU9PZ2goCDi4uIwMzNj48aNXLp0iZkzZ9KtWzdVuQEDBvDrr78yYMAA2rZty/Tp03F0dFSdp4Lau3cvSUlJ+Pn5qZKhnTt3xsvLi4sXL+Lq6srt27eZN28evr6+fPLJJ6q6Xbp0oWfPnixcuJAvvvgCXV1dpk2bhre3NzNmzGDQoEEsWbKELl26qP3+RfFTKBSFTtjkJSU1lXkrVwLZCcrClrMwN6dHhw74b9jA/77/HshOin78/vtqQ9KFKE4ve30UpJ6ltRW6+nr8c/Is7p3bqhYzSU9L59qFywBkPOmZdjcyirSUVFKSknl36ABSkpM5uvsAGxb9RlZmpsyzKUqEQqFA8xUW4XmcksLo39cC2T0uB7dorjaE/HZsLCnp6SSlpjH8rdYkpaWx89x55u4NJTMrK9c8my86nhDFTaFQoNAs/DXyMvXuHL8MGgqsm9XOc78kNIV4s8jwc/Gfk5GRke/qj1ZWVgQHBxMYGKga4j127FgCAgJUCc0cOT0yATQ1NRk4cCApKSkcOXIEgEWLFhEQEKBKSALExsZiZGREUlJSrtfO6e2Xo7D1nxYSEkLNmjWpUKECMTExqn9tnyRO9u3b99z6hdH2qWSMsbEx5ubm2NnZqRKagGrRpvv376vV9fX1VftdDBkyBKVSqYpv0qRJhIaGqhKakD3MXFc3e7LvnPOwf/9+zM3N6dq1q6qcQqFgxowZrF69+pVX+7Syyh4SOWXKFM6fPw9AuXLl2LVrFz4+PgDs3r2brKwsPD091c65hYUFtWvXZv/+/arjNWzYEB8fH7Zu3cro0aMxNzcv0t6zouSkpqUx49dfuRUZyTvt2lGnRt4LOjyv3Lrt21m8di017e0ZNWgQI3x8cKhaldn+/pw8d664miJEsdHU0qJ5+9bcuXmbDYtWEn37DlHhEaxdsIy01DQA1XDexh7N6erdi34j3qNOo/o0bNkU3y/HUa5CeXau30pWliz6IMoehULB6LaeDH+rNZXLmfHd9mCOh/0713Kb2rUY0rI549q3o4m9Pa0dHfm2+ztYmhiz+tjxXO/7Fx1PiDdVZnoG905fp3ztKuiVMyrpcIQQxUAe2Yn/nLi4uHyHHk+aNImxY8cyYcIEvv76a5ydnWnXrh29evXC+Km5iMzMzLCwsFCrW7Vq9rCeyMhIIDvRefv2bebMmcO1a9cIDw9/7nyJ5cuXV/u5sPWfFh4eTkpKCm5ubnnujyrCxUaePQ9aWlp5tgXI9aHbwUF9yNSz51ChUBAbG8uiRYu4fPky4eHh3LlzRzUvaM7xIiMjsbW1zZW8tLGxeZWmqXTs2JHdu3cTHBxMcHAwFSpUwMPDgx49eqiS0Tm9f728vPI8hra2+pw948aNY9euXURERPDzzz9jalqwRTdE6ZWYlMT3ixZxJSyMt5o1w+upJHtByyUmJbF1714cbG2ZOGqUKpHTvGFDvpg5k0Vr1jCvVq1c7ychyrq33u5ASlIyR/f8wbkTpwBwbFCXVh092R2wHQOj7AeLTd5qkauuto42zm6u7Nu6i3uR0VhVsS7W2IV4VUa6urg9+UzUtJo9n23YyG9Hj9K0mj0A7erUyVVHR0uLVjVqEHDyFBGxsdg+9dnrRccT4k31KCyarLQMLJzsSjoUIUQxkaSm+E9JSEjg9u3btM5nXjo3Nzf27dun+nf48GGmT5/O8uXLCQwMVCVD80oo5CTYchJ4S5cuZcaMGdjb2+Pq6kr79u1p0KABK1euZNu2bbnqPzs8r7D1n5aZmUmjRo0YOXJknvst85jb72XlNaywoD0jnz2Pz57D4OBgPv30UywtLWnWrBnu7u44OTlx6NAhFi1apKqXmZn5yr0xXxTnL7/8wuXLl9m9ezd//PEHgYGBbNy4kU8++QRfX19V7AsWLEBPT++Fx7x16xYPn6xEGhISIkPPy7hHjx8zbf58bkZE0LZFC4b27Zvne/JF5aLv3ycjI4PmjRqpLTShpaVFS1dXVm/ZQuTdu9jJMHTxhlEoFHTu1wP3zm15ePc+JuZmlLMwZ3dgEAoNDUzNyz23vqFJ9oPHtFRZOEiUbTpaWrjY2rLr/AXik1Mw0c//M4Wpvj4AKRkZRXI8Icq6mMsRKLQ0MHeUz0lC/FdIUlP8p+zcuROlUqlaCftpaWlpXLx4ESsrK7p06UKXLl3Iyspi2bJlzJgxg6CgINVQ4wcPHqjNsQlw8+ZNILu3YWpqKnPnzqVp06b4+/urFscB1BYIys+r1rexsSExMZHmzZurbX/06BFHjx5V9Ygsabdv36Z69eqqn58+hwCzZs2iatWqBAQEYGDw70TfzyZ1ra2tuXz5cq7jHzhwgODgYD777LNXivPOnTvcuXMHV1dXHB0dGTlyJNHR0QwaNIilS5fi6+ur6hVaqVIlatdWn8PnwIEDGBn9OwQmIyODL774AjMzM7p3787ixYvp0qUL7dq1e6U4RclITklRJSo7v/UWg3r2fOlyOdd6XkNos570UFYWYexClBZnj5/C2NQY+1o1MDL9d2TEzcvXsa5aGW0dbeJj41g+cwH1mjbkrbc7qNV/EH0PgHIV1EcKCFFaRcbG8f2OHbzdoAHt6qr3xExJT0ehAG1NDWISE5kWFIybgwO9GqkvhhUZFweApbFxgY8nxJssPvwexjYWaOnpvLiwEOKNIHc28Z9x7949fvnlFypWrKhaTOZpsbGx9O3bV60HoIaGBvXq1VP9P4dSqWT16tWqnzMyMlixYgXGxsa4ubmRkpJCcnIydnZ2agnJixcvcuLECVWd/BSmfl5Duz09Pbl06RIHDhxQO+6CBQsYM2YMV69ezfe1i9PKJ4uk5Fi2bBlaWlp4enoC2VMFWFtbqyU0o6KiCAkJAbJ7aAK4u7vz4MEDdu/erXa8FStWsH//fsqVK5fvEPiCWLhwIYMHD1Yb/m9lZYWlpaXqffHWW28B2XOh5gyPh+zf2UcffcSKFStU25YuXcqFCxeYMGECY8aMwcHBgcmTJxP35MuJKFuWrl/PzYgIOrVunW9Cs6DlqlSqRDlTU/YfP07ak4VRANLS0/njxAmMjYyo8mSOVyHeJEd27WfbqgDV33WAy39fIPxqGE09WwJgUs6MlORk/vrjKCnJyapycQ9jOXXoOPa1amBsalLssQvxMqxMTUhKS2PPxYtkPPW+v//4McfDblC7UiX0dXQwNzQkKS2N0EuXSEpLU5V78DiBA5evUNfGGjMDgwIfT4g3VVZmJkl34zC0znuaMSHEm0l6aoo30p49eyhXLnuoWmpqKmFhYWzevJnU1FQWL16c5/DgnGTn77//TnJyMi4uLsTFxbFq1SosLCzo1KmTWvn58+cTGRlJjRo12LFjB6dPn+a7775DX18ffX19GjRoQGBgIEZGRtjb23P16lU2bNigSoIlJibmO4+iqalpgevntHPr1q0olUp69OjBsGHDCAkJYcSIEXh5eVGjRg1OnjzJli1bcHd3x93dvcjO9avYtGkTCQkJNGzYkIMHD7Jv3z5GjBih6vXo7u5OcHAwEydOpF69ekRERLB+/XqSn3yZTUxMBLLnsQwICGDcuHF4e3tjb2/P/v37OXz4MNOmTUNTUxMzMzM0NDTYu3cv1tbWtG/fvsDzWHp7e7Nlyxa8vb3p27cvpqamHDt2jBMnTjB69GgAatasiY+PDytXriQuLo62bduq3j+GhoaMGTMGgOvXr+Pn50fLli3p0qULAN988w0DBw7ku+++48cffyzScyyK1t0HD7gcFoZjtWpUtLAgIjqag3/+iYG+PnaVK/PHk4cOT3Nv0qTA5TQ0NHivd29+WrqUL2fO5C03N7Kysth37Bh37t5lhI+P2oMOIUqTmHsPCL92A9vq9phbWry4wlNadW7D2vnLWDVnMXUa1ifuYQyHd+2nulMtGrj9u5Be1wG9WeO3lF+/m4OrhxtpKakc23sQDU1Nug7oVdRNEqLI3I2P50r0XWpaVaSiiQmaGhoMbt6c+fv2M3nbdlrVqM7jlFRCLlxAQ0PB4Bb/jrYZ0qIFP4Xs5pvNW/GsXYvk9DRCzv+D5lPlCnM8IUqj5JjHxN+6h0lVS/TNjV9c4RmpcYkoM7PQM5UFgoT4L5FvRuKNNH36dNX/tbW1qVixIp6ennzwwQfY2+c/SfqUKVOoUqUKQUFBBAUFoa+vj5ubG+PGjcu1uNDSpUuZNGkSmzZtonr16vj5+akNH54zZw7Tp08nICCAtLQ0bGxs8PX1xcHBgVGjRnHs2DE6dOjwbAiFru/g4ICPjw+BgYGcO3eOpk2bYmtry7p16/jll1/YuXMn69atw9ramuHDh+Pr66vW67Qk+fn5MW/ePEJCQqhSpQpTpkyhT58+qv2TJk3CwMCA0NBQtmzZgpWVFd27d6ddu3b069ePY8eOUadOHfT09Fi5ciWzZ88mKCiIx48f4+DgwOzZs1XJaH19fcaNG8fSpUuZOnUqtra2NG3atEBxOjo6smzZMubNm4e/vz8JCQnY2dnx9ddf4+3trSr35ZdfUq1aNdauXcsPP/yAsbExrq6uqt6YWVlZfPnllygUCrXVzps2bco777zDli1b6NKlS75zvoqSd/H6dRasWsVHAwZQ0cKCi9euAZCUnMyCVavyrOPepEmBywE0adCAr0aOZOOOHax5MtWCfeXKfP7hh7jksViEEKXFzSthbPL/nR7v9S90UrOuawN6DxvIweA97Fi7GUMTI1p29MS9S1u1e1adhvXoP+p9DmzfTciGbWjraGPnWJ3273alQqWKRd0kIYrMpahoFu4/wIetPahokt2juFXNGmhrarLlzBlWHj2GrpYWTjY29GnsirWZmapuY3s7PunQjs2nz7Dm+Am0tTSpU6kSXk2aYFPu33IFPZ4QpVH8zbtc2XiImu+2fKmkZkZS9pzKmnqymKIQ/yUK5dPjJIUQLzR+/Hg2bdqU5xyOomDmzp2Ln58fe/fupbIseFJk4s+eLekQhCi1TpjlP+WHEAIabTlY0iEIUWp95CSLkAnxPGvf+l9Jh1Ak9oSfKukQ8tXWtuGLC/0HlY7uWkIIIYQQQgghhBBCCFFAMvxciP+omJgYtQUZ8qOnp4exceGHgJR2cXFxpD+1EEt+tLW1MZMhW0IIIYQQQgghRKkiSU0h/qPeffddIiMjX1iuR48efP/998UQUfEaNWqUaiX552nSpEmuVdqFEEIIIYQQQghRsmROTSH+o06ePElq6ovnB7K0tKR69erFEFHxOn/+PPHx8S8sZ2JigpOTUzFE9OpkTk0h8idzagrxfDKnphD5kzk1hXg+mVPz9ZM5NfMmPTWF+I9q1KhRSYdQospKolIIIYQQQgghhBC5yUJBQgghhBBCCCGEEEKIMkWSmkIIIYQQQgghhBBCiDJFkppCCCGEEEIIIYQQQogyRZKaQgghhBBCCCGEEEKIMkWSmkIIIYQQQgghhBBCiDJFkppCCCGEEEIIIYQQQogyRZKaQgghhBBCCCGEEEKIMkWSmkIIIYQQQgghhBBCiDJFkppCCCGEEEIIIYQQQogyRZKaQgghhBBCCCGEEEKIMkWSmkIIIYQQQgghhBBCiDJFq6QDEEIIUTR8H+4s6RCEKLV+pWNJhyBEqXbinVYlHYIQpdf1PSUdgRBCiDxIT00hhBBCCCGEEEIIIUSZIklNIYQQQgghhBBCCCFEmSJJTSGEEEIIIYQQQgghRJkiSU0hhBBCCCGEEEIIIUSZIklNIYQQQgghhBBCCCFEmSJJTSGEEEIIIYQQQgghRJkiSU0hhBBCCCGEEEIIIUSZIklNIYQQQgghhBBCCCFEmSJJTSGEEEIIIYQQQgghRJkiSU0hhBBCCCGEEEIIIUSZIklNIYQQQgghhBBCCCFEmSJJTSGEEEIIIYQQQgghRJmiVdIBCPEyxo8fz6ZNm9S2aWtrU758eZo0aYKvry81atRQ7fPx8SEyMpLQ0NDiDrVIpaWlERsbS8WKFV/ba3h6egKU6XOVlZXFnTt3qFy5ckmHIsqwq5uOkPzgEfU/6PRa6iVGx3B63naqtK5H1TYuRR6HEK/Tr2vWcOfePSaNGfPCsuevXGFdUBC3IiMx0NOjmYsLXl27oqerW6hy9x8+ZOSkSc99rYmjR1P3qfu/ECVh8/J1PLx7j/c/H/Va6kXfvsPCKbNw79wWz+7Z94bYBzH89L9vn1vvvf+NwL6WXB+i5L2Oz1hx16O4tec0CVExaOlpY+Fkh137hmjqaKuVe3TzLjdDTpEQ+QAtfR3K17alalsXtA31XqlNQoiSIUlNUaZNmDCBcuXKAZCcnEx4eDgBAQHs2rWLxYsX07RpUwA+/PBDkpOTSzLUVxYZGcl7773HsGHD6NmzZ0mHU2olJCQwePBgPDw8GDWqcF8mhMgR/dcVov+8gql94R4gFLReVmYWlzceQpmZ9VriEOJ1Cj16lL1HjlC7evUXlj1/5QpT/fyoVqUK3m+/zcO4OIL37+d6eDjfjh2LQqEocDljIyNG+Pjkeo209HSWbdyIqZERVW1siry9QhTGyYPHOPnHUewcHV5LvczMTAKWriYzI1Ntu6GRIb2Geucqn56eTtDqQAxNjLCqIteHKHmv4zNW3PUozvnvwsimPPYdG5H6KIk7R/4hIfIh9X07qe41cWFRnF+2Gy19Haq0ro9CoSDyyD/EhUXT4MPOaOvr5jq2EKJ0k6SmKNPatm2bqzeej48PvXr1YuzYsezZswdDQ0NatGhRQhEWnYiICG7evFnSYZR6cXFxnDt3Dg8Pj5IORZRByqwsbu8/y629Z15rvYgDZ0m6G1fkcQjxOmVlZRG4axcbd+wocJ1VmzdTvlw5Jo0di452dm8Zi3LlWLp+PWcuXsSlTp0Cl9PT1cW9SZNcr7E8IIDMzExGDRqEkYFBEbRUiMLLysriwPbdhG7Z+Vrr/RG0h/t3onNt19HTxbl541zbg9cEkpmZSW9fH/QN5foQJed1fsYK2/EnumaG1P+gE5ra2SkOXVNDrm89RuzVSMxrZn9fvL7tOAoNBQ2GdUa/vAkA5evacuqXrdzef5ZqnXJfQ0KI0k3m1BRvnEqVKvH5558TExNDQEBASYcjhCgjMtMzOOW3jVt7zmDp7ICOacG+/BW2XmJ0DOH7zmLr2aBI4xDidUpLT+fzH35gQ3AwrRo3xtzMrEB1TIyMaNO8uSpRCah6eN6KjCxUubzcioxk54EDtG7atEA9R4V4HdLT0pk/aSahm3fg7OaKcTnT11Iv+vYdDmwPoXW3DgU6fvTtOxzdc5CGLZtgV7NwPUeFKEqv8zNWZnoGOkZ6WDWuqUpoAqoenYlRMQCkxCaQdDcOSxcHVUITwKCCGea1q3D31LVXaaIQooRIUlO8kTp27IiOjg4HDx4Esntv5swVCdlzU3733Xe0adMGJycnPDw8mDx5Mo8ePVKVGT9+PO3ateP06dP07NmT+vXr07FjR9asWZPr9Y4ePcrQoUNp2rQpdevWpVWrVkycOJH4+Hi143Xs2JHVq1fTuHFjGjduzB9//FGg+oGBgQwcOBDIHnLv6OioOu6jR4+YMmUKrVq1wsnJiU6dOrFixQqUSmWRnMvAwEAcHR25dOkSo0ePxsXFhWbNmvHDDz+QmZnJpk2b6NChA87Oznh5eXHp0iVV3blz51KnTh3CwsLw8fGhQYMGeHp6Mn/+fDIz1YdNXbhwgVGjRtG8eXPq1q2Lm5sbn3zyCdHR6r0REhISmDZtGq1bt6ZBgwZ069aNDRs2AHD8+HHatGkDgJ+fH46OjkRERBS4rcePH8fR0ZFNmzbRrVs36tWrx4QJEwC4f/8+kydPVr1nGjVqxMCBAzl58qTaMZRKJb/99htdu3alfv36eHp6MnPmTLXpD7KysvD396djx444OTnRqlUrpk6dSkJCQoFjFUVPmZFFZmoatfp54Ni7FQoNRZHXy8rM4krAYcrVsMbSOe8vmC8bhxCvU3p6OkkpKYwdMoQRPj5oaLz4I6SOtjZfDB9Ozw7qCZibT/4uVzA3L1S5vKzbvh0dHR36dO1aqPYIUZQyMjJITU6h70eD6DXUG00NzSKvl5mZyaZla3Co60gDN9cCHX9PYBDaOtq06dG5QOWFeF1e52csTW0tnAa3x7a1+sPinGSmrpkRAGnxiQAYViyX6xj65sZkJKaS+iixUO0SQpQ8GX4u3ki6urrY2tqqJdie9u2337J9+3YGDhxIlSpVuHr1KqtXr+bWrVv4+/urysXFxTF06FA8PDzo2bMnISEhTJo0ifj4eIYNGwbAoUOH+OCDD2jYsCGjR49GoVBw+PBh1q1bx6NHj5gzZ47qeFFRUSxYsICRI0dy7949nJ2dC1S/cePGfPjhhyxcuJC+ffvSqFEjAJKSkhgwYABRUVH0798fKysrjh07xrRp07h58ybffPNNkZ1TX19fGjVqxPjx4wkJCcHf358rV65w+fJlBg0ahFKpZMGCBYwePZrg4GC0tLL/vCiVSoYMGUKNGjX47LPPOH78OHPmzCE6Oppvv82e0P7y5cv079+fqlWr4uvri76+PqdOnWLLli3cunWLjRs3AtnJaG9vb65evUqfPn2oVasWBw4c4KuvviI5OZnOnTszYcIEpk+fTrt27WjXrh3mz/kynJ9vv/2Wnj170rt3b6ytrUlJScHb25vHjx/j7e1NxYoVuXnzJmvWrGHo0KHs2bOH8uXLAzB58mTWrFnDW2+9Rb9+/bhx4wb+/v7cvHkTPz8/AL788ku2bNlC9+7dGTx4MNevX2fNmjWcOnWKNWvWoKsr8/mUBE09bVw/7oWGZuGe9xWmXsTBcyQ/jKfOAE+UWXk/eHjZOIR4nQz09fll4kQ0NQuWrMnL/YcPuXDtGis3baJKpUo0rl//lcrdiozk5PnzdPX0xNy0YD3jhHgd9PT1GPv9l4W+PgpT79COvTy8e5/+I98jK5/7x9Oib9/h8t8XaNHhLUzM5PoQJas4PmPlSIlN4NGNaMKC/8Sgohnl69gCoPGkF2dmanquOulJqQCkPU5G19SwUDEKIUqWJDXFG8vExITw8PA8923bto1evXrx8ccfq7YZGBhw8OBBEhMTMTTMvpnFx8czcOBAvvzySwD69evHoEGDmD9/Pl5eXpiamrJ8+XIqVarEsmXL0NHRAaB///707dtX1VM0R0pKCtOnT6dz53+fmBekfpUqVWjevDkLFy7E2dmZd955B4ClS5dy48YNAgICVL03+/fvz08//cSiRYvo27cvtWrVeuVzCeDs7MzPP/8MQOfOnXFzc+PIkSNs3bpVtdJ8YmIiCxcuJCIiAjs7OyC7V6KTkxN+fn4oFAoGDBjAp59+yvr16xk0aBAODg78/vvvKBQKfvvtN8yeDGns27dv9uT2QUHExcVhZmbGxo0buXTpEjNnzqRbt26qcgMGDODXX39lwIABtG3blunTp+Po6Kg6T4XVqFEjvv76a9XPwcHB3Lp1iyVLltCqVSvV9ipVqvDNN99w8uRJ2rdvz7Vr11i7di19+vRhypQpqnKGhoYsXLiQa9eu8fDhQwIDA5k8eTJeXl6qMh4eHrz//vusXbuWQYMGvVTc4tUoFAoUmoXvFVnQeol3Ywnf+zcObzdF19SQlNi8e+a+bBxCvE4KheKVEpqPExNVK5fr6OgwpHdvtaHmhS0HEHLoEBoaGnR0d3/puIQoCi97fRS03r3IKPZt3UUX716Ympcj9kHMC+uc2HcIhYYGTdu0emFZIV631/0ZK0d6Uip//pjdGUJDRxOHbk1VQ9INKpqhqafNgwu3qOxRT7V4UGZ6BrFXs6c5yUrPKHSMQoiSJd1AxBsrIyNDdbN6lpWVFcHBwQQGBqqGeI8dO5aAgABVQjNHTo9MAE1NTQYOHEhKSgpHjhwBYNGiRQQEBKgSkgCxsbEYGRmRlJSU67VdXdWHDBW2/tNCQkKoWbMmFSpUICYmRvWvbdu2AOzbt++59Qsj55gAxsbGmJubY2dnp0poAqpFm+7fv69W19fXV+13MWTIEJRKpSq+SZMmERoaqkpoQvYw85weiznnYf/+/Zibm9P1qWGGCoWCGTNmsHr16nx/34XVuLH6JOGdO3fm6NGjtGzZUrUtLS1N9f+n41Mqlfg8szrv+++/z9atW7G1tSUkJASFQoGHh4fa76xOnTpUqFCB/fv3F0kbROmizMriSsAhTOwsqdTY8cUVhHjDKBQKxjwZul7Fyoqpfn4cP3Pmpculpadz8M8/aVSvHhWe9JQX4k2UlZVF4NI12FavRmOP5gWqk56Wzpmjf1HL2YlyFoUfsSJEmaWAWl4e1OzdCgNLM875h/Dg/E0ANDQ1sWlRl4TIh1xe9weJ0TEk3HnIpTX7yUrLTmYqZJSMEGWO9NQUb6y4uLh8hx5PmjSJsWPHMmHCBL7++mucnZ1p164dvXr1wtjYWFXOzMwMCwsLtbpVq1YFIPLJwgWamprcvn2bOXPmcO3aNcLDw7l7926+cZV/5stXYes/LTw8nJSUFNzc3PLcHxUVVaDjFMSz50FLSyvPtkD2B/CnOTiozx347DlUKBTExsayaNEiLl++THh4OHfu3FHNC5pzvMjISGxtbXMlL21sbF6labnk9b5RKBT8+uuvnD59mvDwcMLDw0lPT88VH6DqpZrDxMQEE5PsCcnDw8NRKpW0bt06z9d+Nqku3gwRB8+TGBVLg2GdSU9MASAjOXuoU2ZaBumJKWgZ6BZZYl6I0sbIwIDmDRsC0MzFhU+mTWNFQABNnZ1fqtz5K1dITU3FzcWlOMIXosQc2hFKdEQkQyeMIfFxdg//lCcPU9PS0kl8nICBkaHa/SPs0lXSU9NwauxcEiELUWK09XWpUN8eAAunqpyas5nrQSewcLIDwNazARkpadw58g/3z94AwLx2ZSq7O3Fz1ym09GUKKCHKGklqijdSQkICt2/fzjdx5Obmxr59+1T/Dh8+zPTp01m+fDmBgYGqpJZ2HkPechJYOQm8pUuXMmPGDOzt7XF1daV9+/Y0aNCAlStXsm3btlz1nx1mVNj6T8vMzKRRo0aMHDkyz/2WlpbPrV8YeQ2PKmgC5tnz+Ow5DA4O5tNPP8XS0pJmzZrh7u6Ok5MThw4dYtGiRap6mZmZxZL0ebatYWFh9OvXj/T0dFq2bEnnzp2pXbs2SqWSESNGqMX3IllZWRgaGqrm13yWzKf5Zoq9EokyM4sz87fn2hd58AKRBy/Q+LN30StnVALRCVG8dLS1aVi3LjsPHCA+IQETo7zf988rd/rCBbS0tHCpU6e4whaiRFw9f5HMjEwWTfkp177DO0M5vDOUj2dMVOuReeXsP2hqaVGzfu3iDFWIUkVTWwvzWlW4c+Qi6YkpaBvqoVAocOjShCoe9Uh+EI+uqSF65Yy4GXIKNBTomknnAiHKGklqijfSzp07USqVqpWwn5aWlsbFixexsrKiS5cudOnShaysLJYtW8aMGTMICgpSDR9+8OCB2hybADdv3gSyexumpqYyd+5cmjZtir+/v2pxHEBtgaD8vGp9GxsbEhMTad5cfTjSo0ePOHr0qKpHZEm7ffs21atXV/389DkEmDVrFlWrViUgIAADAwNVuWeTutbW1ly+fDnX8Q8cOEBwcDCfffbZa4geFi9eTHx8PDt27FDrhZlXfJDd3qd7p969e5fp06czYMAAbGxsOHToEE5OTqremzl27tyJra3ta2mDKFn2nRuTkZymti09IZnL6w9i6VINS5fqaBvplVB0QrwekXfvMm3+fN5p25b2rdTn9UtJTUWhUKCtpVXgck+7cuMG1WxtMdDXf+3tEKIkdezbneRE9emIEuMfs3HxKhq4ueLcvDFGJsZq+8Ov3cDGrgp6cn2I/4Ck+3GcX76byq3qYd1MfS2BzNR0UIBCK7vDwr2/w9Ax1sesWiV0jP69Ph7djMbIprxq/k0hRNkhk0aIN869e/f45ZdfqFixomoxmafFxsbSt29ftR6AGhoa1KtXT/X/HEqlktWrV6t+zsjIYMWKFRgbG+Pm5kZKSgrJycnY2dmpJSQvXrzIiRMnVHXyU5j6eQ3t9vT05NKlSxw4cEDtuAsWLGDMmDFcvXo139cuTitXrlT7edmyZWhpaeHp6QlkTxVgbW2tltCMiooiJCQE+LcHpLu7Ow8ePGD37t1qx1uxYgX79++nXLly+Q6BfxVxcXHo6+urkpaQnRxfu3atWnweHh4ArFmzRq1+YGAgO3bswMjISNXmBQsWqJUJDQ1lzJgxL+ydK8omYxsLylW3VvtnUrUiAHrmxpSrbi0fpMUbx8rCgqTkZHYfOqR2L7z/8CHHzpyhdvXq6OvpFbhcjoyMDCKiorB/Mo+zEG8yG7sqVK/rqPbPtkY1AMwrlKd6XUe0df4dEZOZkcH9O9FUqirXh/hv0DM3ISMljagTl8l6atRUSmwCD87fxNTeCi3d7Gsk8vAFrm87Tlbmv98THl66TfzNe1g3LZrFVYUQxUu+QYkybc+ePZQrVw7I7vUYFhbG5s2bSU1NZfHixejp5e75lJPs/P3330lOTsbFxYW4uDhWrVqFhYUFnTp1Uis/f/58IiMjqVGjBjt27OD06dN899136Ovro6+vT4MGDQgMDMTIyAh7e3uuXr3Khg0bVMnRxMRETE1N84zf1NS0wPVz2rl161aUSiU9evRg2LBhhISEMGLECLy8vKhRowYnT55ky5YtuLu7415KVoTdtGkTCQkJNGzYkIMHD7Jv3z5GjBihmgvT3d2d4OBgJk6cSL169YiIiGD9+vUkJycD2ecAwMvLi4CAAMaNG4e3tzf29vbs37+fw4cPM23aNDQ1NTEzM0NDQ4O9e/dibW1N+/bt8z3/BeXu7k5oaCjDhg2jY8eOPH78mM2bNxMeHq4WX+3atenduzcrV67k3r17uLm5qVZE7969O7Vq1cLR0ZE2bdrg7+9PZGQkbm5uREZGsnr1aqytrXn//fdfKVbxeiXHPCb+1j1Mqlqib2784gpC/IfcffCAy2FhOFarRkULCzQ1NRny7rvMW7mSb+bMwb1xYx4nJrLrjz/QUCgY8u67AAUul+NBbCwZmZlYPLkvClEWxNx7QPi1G9hWt8fc0uLFFV5S3MNYMjMyMTWX60OULS/7GUtDUwOHrs24suEgZ3/dgaWLAxlJqdw5dgk0FDh0baoqW8W9Hhd/388/K/dQvk5VUuISiDx0gXI1rbF0rvY6miWEeM0kqSnKtOnTp6v+r62tTcWKFfH09OSDDz7A3t4+33pTpkyhSpUqBAUFERQUhL6+Pm5ubowbNy7XIjFLly5l0qRJbNq0ierVq+Pn50e7du1U++fMmcP06dMJCAggLS0NGxsbfH19cXBwYNSoURw7dowOHTrkG0tB6zs4OODj40NgYCDnzp2jadOm2Nrasm7dOn755Rd27tzJunXrsLa2Zvjw4fj6+qr1Oi1Jfn5+zJs3j5CQEKpUqcKUKVPo06ePav+kSZMwMDAgNDSULVu2YGVlRffu3WnXrh39+vXj2LFj1KlTBz09PVauXMns2bMJCgri8ePHODg4MHv2bFUyWl9fn3HjxrF06VKmTp2Kra0tTZs2zS+0AvHy8iI+Pp4NGzYwdepULCwscHZ2xs/PDy8vL44dO8bgwYMB+Pbbb7Gzs2PDhg2EhoZibW3NiBEjGDp0KJA9D+mcOXNYsmQJmzdvJjQ0FHNzc9q3b8+YMWNyLcgkSpf4m3e5svEQNd9tKUlNIZ5x8fp1FqxaxUcDBlDxyd8y9yZN0NbSYsuePfwWGIiuri5ONWvi1bUr1hUrquoWtBxAwpMHSTL0XJQlN6+Escn/d3q81/+1JjVzhqrr6cuUJqJseZXPWBVdHNDQ0uD2gXOEBf2Jpo4WZg6VqNquIQYV/u3cYOFkh2NfdyL+OEdY8Am0jfSp3MqJKh71UZSS701CiMJRKHOWFxZCqBk/fjybNm3Kcw5HUTBz587Fz8+PvXv3UlmGCb52XvtmlHQIQpRav5bvWNIhCFGqnTDLf7ocIf7rllzfU9IhCFGqrX3rfyUdQpHYE36qpEPIV1vbhiUdQqkkjyOEEEIIIYQQQgghhBBligw/F+INFxMTo1rI5nn09PQwNn7zhtPGxcWRnp7+wnLa2tqYmZm9/oCEEEIIIYQQQgjxyiSpKcQb7t133yUyMvKF5Xr06MH3339fDBEVr1GjRqlWkn+eJk2a5FqlXQghhBBCCCGEEKWTzKkpxBvu5MmTpKamvrCcpaUl1atXL4aIitf58+eJj49/YTkTExOcnJyKIaLXR+bUFCJ/MqemEM8nc2oKkT+ZU1OI55M5NV8/mVMzb9JTU4g3XKNGjUo6hBJV1hOVQgghhBBCCCGEyE0WChJCCCGEEEIIIYQQQpQpktQUQgghhBBCCCGEEEKUKZLUFEIIIYQQQgghhBBClCmS1BRCCCGEEEIIIYQQQpQpktQUQgghhBBCCCGEEEKUKZLUFEIIIYQQQgghhBBClCmS1BRCCCGEEEIIIYQQQpQpktQUQgghhBBCCCGEEEKUKZLUFEIIIYQQQgghhBBClCmS1BRCCCGEEEIIIYQQQpQpktQUQgghhBBCCCGEEEKUKVolHYAQQoiiMdShbUmHIESplbllX0mHIESp1sTjrZIOQYhSa0lJByCEECJP0lNTCCGEEEIIIYQQQghRpkhSUwghhBBCCCGEEEIIUaZIUlMIIYQQQgghhBBCCFGmSFJTCCGEEEIIIYQQQghRpkhSUwghhBBCCCGEEEIIUaZIUlMIIYQQQgghhBBCCFGmSFJTCCGEEEIIIYQQQghRpkhSUwghhBBCCCGEEEIIUaZIUlMIIYQQQgghhBBCCFGmSFJTCCGEEEIIIYQQQghRpkhSUwghhBBCCCGEEEIIUaZIUlMIIYQQQgghhBBCCFGmaJV0AKJ0Gj9+PJs2bVLbpq2tTfny5WnSpAm+vr7UqFFDtc/Hx4fIyEhCQ0OLO9QilZaWRmxsLBUrVnxtr+Hp6QlQps9VVlYWd+7coXLlyiUdSoGtW7cOf39/7t27h5OTE19//TU1a9Ys6bBEKbZ5+Toe3r3H+5+PKrJ6V89dZP/23dy5eRuFhoIq1exo27MzVRzs1MpF3rzN7o3bCL92E4WGAjtHBzr17Y6FleWrNEmIIrP4j4NExcUx8e1uLyz79+3bbDp1mrAHD9BQKKhhaUmfxq7UeHKvvf/4MaN/X/vcY3zdrQt1rK0BuHbvHhv+OsmV6LtkKrOoWr48PRu64GJr++oNE6II/LpmDXfu3WPSmDGvXO/+w4eMnDTpufUmjh5N3Sefy29ERLB682auh4ejqalJw7p16f/225iZmBS6HUK8Llc3HSH5wSPqf9CpyOqlxDwmbMefPAqLBsC8VmXsOzVGx0hfrdzjyAfc3HWS+PB7KBQKTO2tsO/UGIMKpi/fICFEiZGkpniuCRMmUK5cOQCSk5MJDw8nICCAXbt2sXjxYpo2bQrAhx9+SHJyckmG+soiIyN57733GDZsGD179izpcEqthIQEBg8ejIeHB6NGFS7ZU1ICAwOZOHEivXr1ok6dOixZsoT333+fHTt2YGRkVNLhiVLo5MFjnPzjKHaODkVW78bla/w2+1csra1o16sLmZlZnAg9xNIf5jJ0/GgqV6sKwIPoeyz9YS46Ojq07tYegCMh+1k8bQ4jvv0fJmbyoVuUrH2XLhN68RK1K1m9sOw/d6L4YcdOKpcrh1fjxmQqswi58A/fbtvON293o7qlJcZ6egx/q3WuummZGaw4fBRjfT1sy5cH4E5cHN9u246Jnh7dXZzR0dLiwOXL/LhzF2PbtaWJvX0Rt1aIwgk9epS9R45Qu3r1IqlnbGTECB+fXOXT0tNZtnEjpkZGVLWxASAiOpqJP/+MuakpvTt3Jik5maB9+7gcFsYPn3+Onq7uyzdMiCIS/dcVov+8gql94TqRPK9eelIqZ5fuRJmZRWV3J5RKJREHz5MYHYvz8K5oaGoCkHT/EWcX70RTRwvbtxoAEHn4H/7+NZiGo95B18Tg1RsohChWktQUz9W2bdtcvfF8fHzo1asXY8eOZc+ePRgaGtKiRYsSirDoREREcPPmzZIOo9SLi4vj3LlzeHh4lHQoBbZ+/XqqV6/OtGnTADA3N2fcuHH89ddftG7dumSDE6VKVlYWB7bvJnTLziKvF7xmE6blzBj21Th0dHUAcGnemDlfTWdPYBCDPx0OZCcw01PT+GDCaCrZZv/9rVanJoum/MSRXfvp2Pedl2ydEK8mKyuLTafPEHDyZIHr/Hb0KOaGhkzp3h1d7eyPne41avDJ+g2s+/MvvuzSGT1tbVrVrJGr7oojR8nIymSk51sYPUnGrDl+Ak2FBlN7dMfMIPvLZ5vatfjfxgB+P35CkpqixGRlZRG4axcbd+wo0np6urq4N2mSa/vygAAyMzMZNWgQRk+uhXVBQWhqaDBp7FjKPemZWc3Wlh8WLuSPEydo36pVIVslRNFRZmVxe/9Zbu09U+T1Ig9dIPVREo1Gv4OBpRkAxpUrcN4/hLunrlGpsWN2uSP/kJWWQQPfThhZZz8sM3Ow5sz87UQevkC1To1fpmlCiBIkc2qKQqtUqRKff/45MTExBAQElHQ4QrxQSkoKMTExqt7EKSkpQPaUCkLkSE9LZ/6kmYRu3oGzmyvG5QrWI7Ig9ZITk4i+fQenxs6qhCaAkakxdjUdCL92U7Ut5v5DDIwMVQlNgMr2tugbGnA3MurlGyjEK0jLyGBC4CY2/nWSljVqYG744t4sCamphD98SLNq1VQJTQBTAwNqV6rElei7+dYNf/iQXefP4+FYk9qVKgGgVCq5GBVFgyqVVQlNAB0tLRra2nL3UTzxZXzUiCib0tLT+fyHH9gQHEyrxo0xNzN7rfVuRUay88ABWjdtqtazU0tTk1aNG6sSmgB1nuy/dedOgdsjRFHLTM/glN82bu05g6WzAzqmBesRWdB698+GYWZvpUpoApSrbo1+BRPun72h2pYS8xgtQ11VQhPAuLIFWga6JN2NfbnGCSFKlCQ1xUvp2LEjOjo6HDx4EMjuvZkzVyRkz0353Xff0aZNG5ycnPDw8GDy5Mk8evRIVWb8+PG0a9eO06dP07NnT+rXr0/Hjh1Zs2ZNrtc7evQoQ4cOpWnTptStW5dWrVoxceJE4uPj1Y7XsWNHVq9eTePGjWncuDF//PFHgeoHBgYycOBAIHvIvaOjo+q4jx49YsqUKbRq1QonJyc6derEihUrUCqVRXIuAwMDcXR05NKlS4wePRoXFxeaNWvGDz/8QGZmJps2baJDhw44Ozvj5eXFpUuXVHXnzp1LnTp1CAsLw8fHhwYNGuDp6cn8+fPJzMxUe50LFy4watQomjdvTt26dXFzc+OTTz4hOjparVxCQgLTpk2jdevWNGjQgG7durFhwwYAjh8/Tps2bQDw8/PD0dGRiIiIQrX3xIkTeHt74+rqiouLC15eXnnOLxoYGEj37t2pV68ezZo1Y/z48dy7d0+1f+bMmTg6OrJ69WrVtrS0NLp160bTpk25e/ffL8udOnUiJiaG6dOnc/bsWWbNmkW1atVU0yfkiIiIwNHRkeXLl9OvXz+cnJwYPHiw6rzMmjWLjh07Uq9ePVxcXOjTpw979+7NFfuWLVvo1asXzs7OuLu7M3HiRGJiYgrVPlH8MjIySE1Ooe9Hg+g11BtNDc0iq6err8eYaV/QvEPrXPuSEhLR0Pz3dly+YgWSEpNIjH+sViYlOQVjU5kTTZSM9MxMktLSGNO2DcPfao2Gxos/QhpoazOrbx+61K+Xa9/jlBQ0NRT51l3351/oaGnRx9VVtU2hUDCtZ0+8mzXNVf7xk4dVBYlLiKKWnp5OUkoKY4cMYYSPT4Hfhy9bb9327ejo6NCna1e17WMGD+b9Pn3Utt2KjATA4sl0UkKUBGVGFpmpadTq54Fj71YonvP3v7D10pNTSYlJwMimfK59RpXKk3Dnoepn/fImZCSlkpbw7wOw9KRUMlLS0H5m7k0hRNkgw8/FS9HV1cXW1lYtwfa0b7/9lu3btzNw4ECqVKnC1atXWb16Nbdu3cLf319VLi4ujqFDh+Lh4UHPnj0JCQlh0qRJxMfHM2zYMAAOHTrEBx98QMOGDRk9ejQKhYLDhw+zbt06Hj16xJw5c1THi4qKYsGCBYwcOZJ79+7h7OxcoPqNGzfmww8/ZOHChfTt25dGjRoBkJSUxIABA4iKiqJ///5YWVlx7Ngxpk2bxs2bN/nmm2+K7Jz6+vrSqFEjxo8fT0hICP7+/ly5coXLly8zaNAglEolCxYsYPTo0QQHB6OllX35KpVKhgwZQo0aNfjss884fvw4c+bMITo6mm+//RaAy5cv079/f6pWrYqvry/6+vqcOnWKLVu2cOvWLTZu3AhkJwW9vb25evUqffr0oVatWhw4cICvvvqK5ORkOnfuzIQJE5g+fTrt2rWjXbt2mJubF7iNYWFhDBs2jNq1azNu3Dgge2j48OHDWbVqFa5Pvrz6+fkxd+5cOnToQJ8+fbh79y6rVq3ixIkTbNy4EXNzc0aNGsWePXuYPXs2HTp0wMLCgnnz5nHlyhV+/vlntcWehgwZwq5du1i3bh0bNmygRo0aLFiwQHUOnzVnzhw8PT3p1q0burq6KJVKhg0bxj///MOAAQOwtbUlOjqatWvXMnLkSDZv3qxKhC9evJiZM2fSqFEjPv74Yx4+fMiKFSu4ePEia9asQUtLq0DtE8VPT1+Psd9/iaZmwZKZhamnoaGBRcUKubZH375D+LUb1HCqpdrWqlMbLp+5wPpFK+nk1R2Aneu3oKmpiVs790LFJkRRMdDRYbZXXzQLkTTU0NCgkmnunsvhDx9y5e5d6uez2Fz4w4ecuhVOl/r1KGdoqLbP0sQ4V/lHSUn8efMm1mamqmHqQhQnA319fpk4sdD3j5epdysykpPnz9PV0xPzPK6vHDGPHnH1xg1+27SJcqameLq5FSo2IYqSpp42rh/3UnuIW1T10h4lAaCTx3yYOib6ZCank5Gchpa+DpXdnYi5dJvL6/6gWpfsoeZhO/5CQ1MDm+Z1ChWbEKJ0kKSmeGkmJiaEh4fnuW/btm306tWLjz/+WLXNwMCAgwcPkpiYiOGTLynx8fEMHDiQL7/8EoB+/foxaNAg5s+fj5eXF6ampixfvpxKlSqxbNkydHSyh23279+fvn37qnqK5khJSWH69Ol07txZta0g9atUqULz5s1ZuHAhzs7OvPNO9px1S5cu5caNGwQEBKiSVv379+enn35i0aJF9O3bl1q1alEUnJ2d+fnnnwHo3Lkzbm5uHDlyhK1bt6pWmk9MTGThwoVERERgZ2cHZM/F5OTkhJ+fHwqFggEDBvDpp5+yfv16Bg0ahIODA7///jsKhYLffvsNsydDm/r27Ut6ejpBQUHExcVhZmbGxo0buXTpEjNnzqRbt26qcgMGDODXX39lwIABtG3blunTp+Po6Kg6TwW1d+9ekpKS8PPzUyXuOnfujJeXFxcvXsTV1ZXbt28zb948fH19+eSTT1R1u3TpQs+ePVm4cCFffPEFurq6TJs2DW9vb2bMmMGgQYNYsmQJXbp0Ufv9Axw+fJi4uDggOwk8Y8YMbJ5Mqp+XSpUqMXPmTBSK7KfBf//9N3/99ReTJ0/Gy8tL7Xc2dOhQjhw5gqOjI48ePWLu3Lm0atWKRYsWqb6kVK5cma+++orDhw9TrVq1ArVPFD+FQlHoL6SvUi8tJZWAJasAaNW5jWq7WflyeHRtx/bVG5n3zYzs19DQwGv4ELUh6UIUJ4VCgaaiYD1rniclPZ35+/YD8Lazc55ldv9zEQ2Fgg5OdV94vMysLObt209qegbvuOR9PCFet+K8f4QcOoSGhgYd3Z//kGvc1KmkpKSgoaHByIEDMTXO/UBAiOKiUChQaBb+HlKQeplp6QBoaudObWg86cCQmZ6Blr4OemZGVGldn+vbjnHql61PCimo3b+12pB0IUTZIWN0xEvLyMhQJX2eZWVlRXBwMIGBgaoh3mPHjiUgIECV0MyR0yMTQFNTk4EDB5KSksKRI0cAWLRoEQEBAaqEJEBsbCxGRkYkJSXlem3Xp4aqvUz9p4WEhFCzZk0qVKhATEyM6l/btm0B2Ldv33PrF0bOMQGMjY0xNzfHzs5OldAEVIs23b9/X62ur6+v2u9iyJAhKJVKVXyTJk0iNDRUldCE7OHUuk96tOSch/3792Nubk7Xp4YzKRQKZsyYwerVq/P9fReUlVX2SrlTpkzh/PnzAJQrV45du3bh82Rlz927d5OVlYWnp6faObewsKB27drs379fdbyGDRvi4+PD1q1bGT16NObm5rl6z/7+++989NFHlCtXji+++AKlUslnn31GSkoKd+/eZe3atURFqc9T6OrqqtbWBg0a8Oeff9KzZ0/VtszMTLKysoDsZDPAkSNHSE1NxdvbW+1Lyttvv01gYCBNmjQpVPvEmystNY1Vvywh+vYd3Du3wd7x3znR9gQGs/W39dhWt+ddXx96DfWmsr0t6xcu59KZ8yUYtRCvJjU9g5m7Qrj1MIa3nRtQx7pSrjJpGRkcvHqVRnZVqfCCJEzWk4TmuYhI3Ko74F6z5usKXYhSIS09nYN//kmjevWoUD7/BExmZibv9+7NmCFDcKpZk1+WLyeoCD+zClGq5EwJVoCvKTd3n+La5qOY2Fri2Nedmr1bYVzZgktrDvDw4u3XG6cQ4rWQnpripcXFxeU7THbSpEmMHTuWCRMm8PXXX+Ps7Ey7du3o1asXxk99STEzM8PCwkKtbtWqVQGIfDIHkKamJrdv32bOnDlcu3aN8PBwtfkSn1X+mQ95ha3/tPDwcFJSUnDLZ8jOs8mwV/HsedDS0sqzLYAqmZbDwcFB7ednz6FCoSA2NpZFixZx+fJlwsPDuXPnjmpe0JzjRUZGYmtrmyt5+bxejYXRsWNHdu/eTXBwMMHBwVSoUAEPDw969OihSkbn9P59ukfk055d3GfcuHHs2rWLiIgIfv75Z0yfGop1+/Ztpk2bRq1atVi5ciUGBgbcvn2blStXMnXqVGrVqsWUKVOYN28elSr9++U6r/e1lpYWa9eu5cSJE9y6dUv13gBU5zHnfOec/xy6urrUrVv3pdon3jzJScmsmv0r4ddu0LBVU9r27KK279DOUGzsbBny2QjV/Gr1mriwcMpPbF6+jk9/dERL3ieijElMTWXGzl1cib5L61o16ds47xVmL9y5Q2p6Bs2qVXvu8dIzM/HbG8qJGzdpUKUyw1t7vI6whShVzl+5QmpqKm4uLs8tp6mpqVox3c3FhYmzZ7MuKAhPNzf09fSKI1Qhio2mbvZnoqz0zFz7sjIyANDS0yYjOY2Ig+cxqlyeeu93QPHkM1aF+nacmb+dq5sOU65GbzS0Ct/rWghRciSpKV5KQkICt2/fpnXr1nnud3NzY9++fap/hw8fZvr06SxfvpzAwEBV0iivBE5Ogi0ngbd06VJmzJiBvb09rq6utG/fngYNGrBy5Uq2bduWq/6zw3gKW/9pmZmZNGrUiJEjR+a539LS8rn1CyOv4UcF7Rn57Hl89hwGBwfz6aefYmlpSbNmzXB3d8fJyYlDhw6xaNEiVb3MzMxX7o35ojh/+eUXLl++zO7du/njjz8IDAxk48aNfPLJJ/j6+qpiX7BgAXoF+OB969YtHj7MngA8JCREbej5H3/8QXp6OkOHDsXgyUq5//vf/zh79iwbNmzAzMwMY2NjWrRooXbMZ38XMTEx9O7dm3v37tGiRQs8PT2pVasWNjY29O7dW1UuJ/bnncPCtk+8WRLjH7P8p4VEh0fi6tGctwf2Vnu/PLx7n8yMDOo1dVFbMEJTS4v6zVwJ2bCV+1H3qGRbNA8ahCgO8cnJTAvewa0HD2lTuxbvt2qZ79/JM+G30dbUxNm2Sr7HS0lPZ1bIbs5HROJiW4Vx7duh9RJDf4Uoa05fuICWlhYudQo+959CoaCZszNXwsK4c/cuDs88eBWirNM1NQIg7XFyrn1p8clo6mujqaPN44gHKDOyqFC/miqhCaChqYllAwdu7PyLpPuPMKokc9sLUZZIUlO8lJ07d6JUKlUrYT8tLS2NixcvYmVlRZcuXejSpQtZWVksW7aMGTNmEBQUpBpq/ODBA7U5NgFu3rwJZPd2S01NZe7cuTRt2hR/f3+1hV2eXiAoP69a38bGhsTERJo3b662/dGjRxw9ejRXj7yScvv2bapX/3f46tPnEGDWrFlUrVqVgIAAVXIPyJXUtba25vLly7mOf+DAAYKDg/nss89eKc47d+5w584dXF1dcXR0ZOTIkURHRzNo0CCWLl2Kr6+vqldopUqVqF27dq44jIyMVD9nZGTwxRdfYGZmRvfu3Vm8eDFdunShXbt2avWeTg7p6Ogwe/ZsevToQVxcHO+//z76+s9f7fD3338nIiKC5cuXq/XaPXXqlFq5nN6e4eHh2Nvbq7anpaXx2Wef0a1bt0K1T7xZUlNSVAlNt3YedO7XI1eZnL9RWVnKXPuUqh7aufcJUVolp6WpEpqd6jkxsPnzFyu5fPcu9hUsMHhqypinZWZl8fPuPZyPiKRZNXtGeL4lCU3xn3Hlxg2q2dpikMfnlsSkJCbMnEkzZ2f6v/222r7kJyNLdPK5roQoy7T0ddA1N1Jb5TxHQtRDjG2yR8NpaD35PpDXZyxlVs5/XlucQojXQ+bUFIV27949fvnlFypWrKhaTOZpsbGx9O3bV60HoIaGBvXq1VP9P4dSqWT16tWqnzMyMlixYgXGxsa4ubmRkpJCcnIydnZ2agnJixcvcuLECVWd/BSmfl5Duz09Pbl06RIHDhxQO+6CBQsYM2YMV69ezfe1i9PKlSvVfl62bBlaWlp4enoC2VMFWFtbqyU0o6KiCAkJAbJ7aAK4u7vz4MEDdu/erXa8FStWsH//fsqVK5fvEPiCWLhwIYMHD1Yb/m9lZYWlpaXqffHWW28B2XOhKp/6YHHx4kU++ugjVqxYodq2dOlSLly4wIQJExgzZgwODg5MnjxZtShQ48aN0dDQYN26dWrxPnjwgNTUVAB27Nih6umZn5zjPZ04ViqVrFqVvchLznuoefPmaGtrs379erXYd+7cyc6dOwvdPvFm2bZy45OEpnueCU0ASxsrjM1MOH3oOOlPJr4HSE9L58yRPzEwMsTS2qq4QhbilfkfOsytBw/pWICEZkZmJpGxsdhb5D9XYODJU5y9HUETeztGtfGUhKb4z8jIyCAiKgr7ynkvGGdoYIC2lhYHjh8n4ak54xOTkth39CgVypenspXcP8SbyaJuVeKu3yHpfpxqW+y1OyTfj6dC/eyOBgaWZuiY6BN96iqZ6f9+f8xMz+Du6etoGepiUNGsmCMXQrwq6akpnmvPnj2UK1cOyO71GBYWxubNm0lNTWXx4sV5Dp/NSXb+/vvvJCcn4+LiQlxcHKtWrcLCwoJOnTqplZ8/fz6RkZHUqFGDHTt2cPr0ab777jv09fXR19enQYMGBAYGYmRkhL29PVevXmXDhg2qJFhiYqLaPIpPMzU1LXD9nHZu3boVpVJJjx49GDZsGCEhIYwYMQIvLy9q1KjByZMn2bJlC+7u7ri/YOXJ4rJp0yYSEhJo2LAhBw8eZN++fYwYMULVK9Dd3Z3g4GAmTpxIvXr1iIiIYP369SQnZw/TyFnoxsvLi4CAAMaNG4e3tzf29vbs37+fw4cPM23aNDQ1NTEzM0NDQ4O9e/dibW1N+/bt8z3/z/L29mbLli14e3vTt29fTE1NOXbsGCdOnGD06NEA1KxZEx8fH1auXElcXBxt27ZVvX8MDQ0ZM2YMANevX8fPz4+WLVvSpUv2nITffPMNAwcO5LvvvuPHH3+kZs2aeHt7s3LlSj744APatGlDWFgY69evx9LSkj59+jBr1iwGDBjA8uXL843b3d2dlStXMmzYMN59913S09PZsWMH58+fR0NDQ3X+ypcvz4gRI5g9ezbvvfcebdu2JTo6mlWrVtG0aVM8PT3R0NAoUPtE6RRz7wHh125gW90ec0uLF1d44t6daP4++hd6BvpYVanMmSN/5irj3Dw7Cd/V+13WzF/Goqk/07BVU5RZWZw8eJz70fd4d6g3mlpy6xal0934eK5E36WmVUUqmpgQERvLoavXMNDVwa58eQ5eyf0gsFXNfxfDe5CQQEZmFuXz6bH+OCWFbWfPoqWpgZONDYevXc9VprG9HXoy56wohe4+eMDlsDAcq1WjokXB7x85HsTGkpGZicWTz6t5eb93b6b4+THx559p07w5GZmZ7Dl8mLj4eMZ/9NFrnWJIiFeVHPOY+Fv3MKlqib758xeKe1blVk7cO32dc0t3YdPSiayMjOz5M23KY+mcvfaAQkMDh27NuPj7Ps4sCMKqUQ2USiV3T14l+f4jHHu3QkMelAlR5sg3I/Fc06dPV/1fW1ubihUr4unpyQcffKA2vPZZU6ZMoUqVKgQFBREUFIS+vj5ubm6MGzcu1yIsS5cuZdKkSWzatInq1avj5+enNnx4zpw5TJ8+nYCAANLS0rCxscHX1xcHBwdGjRrFsWPH6NChQ76xFLS+g4MDPj4+BAYGcu7cOZo2bYqtrS3r1q3jl19+YefOnaxbtw5ra2uGDx+Or6+vWq/TkuTn58e8efMICQmhSpUqTJkyhT59+qj2T5o0CQMDA0JDQ9myZQtWVlZ0796ddu3a0a9fP44dO0adOnXQ09Nj5cqVzJ49m6CgIB4/foyDgwOzZ89WJaP19fUZN24cS5cuZerUqdja2tK0adMCxeno6MiyZcuYN28e/v7+JCQkYGdnx9dff423t7eq3Jdffkm1atVYu3YtP/zwA8bGxri6uqp6Y2ZlZfHll1+iUCjUVjtv2rQp77zzDlu2bKFLly60bt2aL774Amtra9atW8e0adMoX748ffv2ZeTIkZiammJqasrWrVsxNTXlwYMHecbt7u7O1KlT8ff35/vvv8fU1JS6deuybt06vv76a44fP64q+9FHH1GhQgV+++03vv/+eypUqECfPn0YNWqU6v3yovaJ0uvmlTA2+f9Oj/f6FyqpefNydvIlJSmZTf6/51nGuXn2wil1GtVnyKfD2bd1J3sCggCoVLUyPmN9qVmvdp51hSgNLkVFs3D/AT5s7UFFExMuPllMLyk1jYX7D+RZ5+mkZsKTHvT62nkPkb1+7z7pGdkjC/wPHc6zzC+VvCSpKUqli9evs2DVKj4aMOClkpoJTx6g5jX0PEedGjX4YvhwNgQHs2bbNjQ0NKjt4MDYwYNlLk1R6sXfvMuVjYeo+W7LQic1dYz0qf9BJ8KCTnBrz2k0dbQoX9sW+46uagv/WNStSr33OhAeeoabu08CYGRdnrqD2mJeM+9e0EKI0k2hVMrEEaJkjB8/nk2bNuU5h6MomLlz5+Ln58fevXupnM9wJPFiSqXyjei9sCf81IsLCfEf1WjLwZIOQYhSTdPjrZIOQYhSy/fhzpIOQYhSbe1b/yvpEIpEaf4+1da2YUmHUCqVjm5mQghRgt6EhKYQQgghhBBCCPFfIsPPhXhFMTExqoV2nkdPTw9j48INpSgL4uLiSE9Pf2E5bW1tzMzMXn9AQgghhBBCCCGEeONJUlOIV/Tuu+8SGRn5wnI9evTg+++/L4aIiteoUaNUK8k/T5MmTXKt0i6EEEIIIYQQQgjxMmROTSFe0cmTJ0l9srjB81haWlK9evViiKh4nT9/nvj4+BeWMzExwcnJqRgi+u8qzXPACFHSZE5NIZ5P5tQUIn8yp6YQzydzar5+Mqdm3qSnphCvqFGjRiUdQomSRKUQQgghhBBCCCGKmywUJIQQQgghhBBCiP+zd99xWdX9H8df7KWAKLhRXGjiwJnkSMS9SnPlKneZmU1X9euubs2dWm7LkebCkavcqTlSc6a4FygqCILs8fsDuW4vL1AQEKn38/HokZzz/ZzzPYdzONf1Od8hIpKnKKkpIiIiIiIiIiIieYqSmiIiIiIiIiIiIpKnKKkpIiIiIiIiIiIieYqSmiIiIiIiIiIiIpKnKKkpIiIiIiIiIiIieYqSmiIiIiIiIiIiIpKnKKkpIiIiIiIiIiIieYqSmiIiIiIiIiIiIpKnKKkpIiIiIiIiIiIieYqSmiIiIiIiIiIiIpKnWOZ2BUREJHvMvbA1t6sg8vxq75fbNRB5ziXkdgVEnluzaZHbVRCRZ6BO2HOcInPP7Qo8n9RSU0RERERERERERPIUJTVFREREREREREQkT1FSU0RERERERERERPIUJTVFREREREREREQkT1FSU0RERERERERERPIUJTVFREREREREREQkT1FSU0RERERERERERPIUJTVFREREREREREQkT1FSU0RERERERERERPIUJTVFREREREREREQkT1FSU0RERERERERERPIUJTVFREREREREREQkT7HM7QpI1gwfPpzVq1ezbds2SpQokaVt9ezZk8DAQLZv354tdcvq9jZu3MjSpUs5c+YMsbGxFClShIYNGzJgwADc3NyMyiYlJREUFJTpc+Dv78+IESNYuHAhdevWTbfcgQMH6NWrF2PGjKFDhw4mP1+/fp0mTZrwzjvvMGTIEEPctWvXKFmyZOYOPINSf/cPs7KyomDBgtSpU4cBAwZQvnx5o/Vp/U5+/PFH5s6dy7179+jVqxf9+/dn+PDh7Nu3DysrKxYsWMALL7yQI8cg8ryJCY3g4qY/Cb94EwCXiiXwaFkb63x22R53bvUfRN8Jp2r/libr4iKjufzbEULPXCMpPoF8xQpSunktHN1ds3B0Illz93YIm5at5VLAeQA8q75Ayy7tcXDMny1x506cZuf6LQRdvoaZuRkly5TGr0MrSpYtbVTuytmLbPFfT+Cla9g52FHJuwq+r7TEIX++7DtYkUx6Xu6Pmf+ZRODlqyb7eaFmVboN7pOFIxTJmlshISxcvZq/z50DoEblyvR89VWc8j/+HnlS3O2QEN75v/977DY+e/ddKj/yvQggNDycD//7X2pVqcLbPXo8xVGJSG5TUlOeS5MnT2bmzJm8/PLLDB48GFtbW86dO8fKlSvZsGEDy5Ytw93dHYDIyEjeeOMNGjVqZJRQzE5ly5Zl3Lhx1KhRI831Li4ujBs3Dk9PT8Oy77//ntWrV7Nly5YcqVOqESNGUKBAAQCio6O5evUqq1at4tdff2XOnDlGydpBgwYRHR1t+DkgIIAxY8ZQvXp1hg4dSsWKFZk5cybbt2/njTfeoEyZMpQuXTpH6y/yvIiPiuX4vM0kJyZRoqEXycnJXN99kvs371L97TaYW1hkW9zNQ2e5+edZnDwKm6xLiI3n+JzNxEVEUfylF7C0tSFo/2lOzNtM9bfa4FCkQLYfu8iTREXeZ/6470hMTKBBC1+Sk5PYs3kHwdeDGPTp+1hYpv2RMqNxlwLOs3DKbNyKFaFpx9YkJiZxcPse5n0zjX7D36VEmVIp5c6cY8Gkmdja2dGoTVPMzM3Y99suLp45x4CR72HnYP/MzolIqufl/khOTubWjZtU9K5C5ZpVjfblXMglZ0+CyGNE3L/PF1OnkpiYSDs/P5KSkvhl2zauBgXx3w8/xDKdeyQjcfnz5WNwz54msXHx8fywciVO+fJRqnjxNLc/9+efuR8Vla3HKiLPlpKa8ty5ceMGc+bMoWfPnowePdpoXZs2bejevTuTJk1iypQpAISFhXHixAkaNWqUY3UqVKgQ7du3T3e9vb29yfp9+/aRmJiYY3VK5efnZ9JCtWfPnnTs2JH33nuPrVu34uDgAMBLL71kVO7s2bMADBw4EF9fXyAloezs7MyIESNyvO4iz5PAPaeIDY+i5rvtsXdzBiB/CVdOzv+N4CPnKVrbM8txyUlJXNt5nCvbjqZbj+u7ThB9J5wq/Vrg7FEEANeqpflzwiqu7z6BZ6eG2XK8Ipmx97edhN8N453/fIxbsZTrsrhHKRZMnMGRvQep3cgnS3Ebl67GqYAzA0cPw9rGGgBvn9p8O3oMW/038MaHbwOw/id/zMzM6T9yKAULp7RcfqFGVb77fBy71m+hRZf0n9UiOeV5uT/C7oQSHxtHJe8qVPepndOHLZJhG7ZvJzQsjPEjRlCiSMq1Xq5UKb7+7jt2HjiA3yPfUTITZ2tjQ8M6dUxif1y1isTERIb07k0+e9MXXr8fPMix06ez8ShFJDdoTE157hw7dozExESTBByAt7c3VatW5ejRo8++YnlI0aJF+eSTTwgNDWXVqlXplouPjwcwJD1Tlz38s8i/xe3jF3H2KGJITAIUKFcMO1dHbh+/lOW4xPgEjkz/hStbj+JWvSzWTqYfsJOTkwn+6zwuniUMCU0A6/z2eLSsjWNp05adIs/CiQNH8PAsZ0i8AJSr7EnBIm6cOPBXluKi70dx81oQXrWrGxI2APmc8lO6Qlmunr8MwN07odwKvEF1n9qGhCaAa9HCeFarzF97D2bX4YpkyvNwfwDcCkoZAsW1qPEwTSK5be+RI7xQvrwhMQlQtWJFirq58ceRI9kedyUwkM27dvFy3bpUKlfOZP3de/f4cdUqOrRo8ZRHJCLPCyU1/yU2bdpEjx49qFmzJl5eXvj6+jJu3Dji4uJMym7fvp3WrVtTpUoV2rZty7p160zKnD9/nsGDB1OrVi2qVatG165d2b17d7bUNTWhtnr16jTrt3DhQnbu3AmkjHXZpEkTAKZPn46npyfXr18H4MqVK3zyySc0bNgQLy8v6tSpw6BBgzj3YDyWh926dYvBgwdTvXp1fHx8+PLLL4mMjDSsP3DgAJ6envj7+6dZ5+vXr+Pp6cm0adMA8PX15eDBgwQGBhqWv//++3h5eXHv3j2j2IiICKpUqcI333yTyTP1eC1atMDa2tro99KzZ09Di8yePXsaWmP26tULT09PPD09jeo9fPhwQ6y/vz+vvPIKVapU4cUXX2T48OHcunXL5Bz8+OOPdOvWDS8vL954441Mx69Zs4bJkyfTsGFDqlSpQqdOndi/f7/J8a1du5aOHTtSvXp1GjZsyGeffUZoaKhRmSftMzOCgoIYMmQI9evXp0qVKrRq1Yo5c+aQlJRkVO6vv/7izTffxNvbG29vb/r06cPx48cN63///Xc8PT0ZOnSoUdynn36Kp6cnv//++1PVT7ImPjqWmNBI8hUvaLIuX9GCRAaFZDkuOSGJxNg4KnZrhGenBpiZm5nExN6NJC48CudyxVJikpNJjEt5+VDsxYrpthYVyUnR96O4ezuEYqVNx60u5l6CG1evZynOxs6Wof8diU/zl03KRUXex9wi5ePqvbvhABQuUcSknItbIaIi7xMeejfDxyWSHZ6X+wMg+PoNAFyLpbwAi4uJzfTxiGS3yKgobt25Q5k05hnwKFmSS9euZWscwLL167G2tqZzmzZprp/7888UKlCA9n5+GTwKEXleqfv5v8CKFSsYPXo0vr6+fPjhh8THx7NlyxbmzZsHwMcff2woe/v2bd599106d+5M165dWbt2LR999BEJCQl06NABSBmH8fXXX6dQoUIMHDgQKysr1q9fz4ABA5g4cSKtWrXKUn3r1q1LiRIl+PXXXzl8+DDNmjXjpZdeonbt2jg5OWFt/b+31GXLlmXEiBGMGTOGpk2b0rRpU1xcXLhz5w6dO3cmX7589OjRgwIFCnD69GmWL1/OqVOn2L59O1ZWVobtfPbZZ1SqVIkPPviAs2fP8tNPP3Hu3DkWLFiAmZlp4uFJRo4cycSJE7l79y4jRozA09OToKAgNmzYwNatWw3nEuC3334jLi6Otm3bZum8PcrGxgZ3d3fOnDmT5vpBgwbh4eHBsmXLGDRoEKVLl8bc3JyZM2ca6p06bun06dOZNm0azZs3p3PnzgQHB7N48WIOHjzIypUrcXH53zhN3377Lb6+vrRt2xYbG5unirezs6NPnz7Ex8czf/58Bg4cyM6dOw1jh86ZM4cJEyZQs2ZN3n//fUJCQliwYAGnT59m6dKlWFpaZmqfTxIfH0+/fv2IiYnhjTfewNHRkV27djFhwgQSExMZNGgQAHv37mXgwIFUrFiRoUOHEhcXh7+/P927d+eHH36gVq1aNGzYkFdffZXVq1eze/duGjRowJ49e1i+fDldu3alYUN1Lc4NceEp4ylZO5q2nrR2tCMxOp6E6Dgs7ayfOs7C1opa73c0+gL6qOiQlJceVg62XNz0Jzf/PEtiTDy2BfNTplUdClbKmYnHRB4nNZnoWMDZZF1+Z0dioqKJjorGzt7uqeMKFTadBOvmtSCunr9Eea+KAFjbpDy3Y9NI1ERF3gcgIjwCJxeNOyvPzvNyf0BKS01rWxs2/byGEwf/Ij42jgKuBfHr0JqqddMeF14kp4WGhQHg4uRksq6AoyNR0dHcj4rC4ZEu4k8bdyUwkMMnT9LG1zfN2N1//slff//N148Zy1NE8g7dxf8C8+fPx9vbm++//96QoHv99ddp0qQJu3fvNkpqxsXF8dlnn9G9e3cAunTpQvv27Zk4cSLt2rXD0tKSr776ChcXF1avXo39g4dIjx496N27N19//TV+fn5GicfMsra2Zu7cubz//vv8/fffLFmyhCVLlmBhYUGtWrUYMGAA9evXB1LGuvTz82PMmDF4enoaxrVcvHgx4eHhLFmyhLJlyxq27eDgwOzZszl79iyVK1c2LPf09GThwoWGB1vhwoWZNm0aO3bsMLRszAw/Pz8WLFhAbGysoU5ly5bF2dmZTZs2GSU1N27cSJkyZXJkhnFHR0euXjWdARNSxtcMDg5m2bJl+Pj4GCYUWrlypVG9r127xnfffceAAQP44IMPDPGtW7emQ4cOzJw5k5EjRxqWFy1alAkTJhiutczGJycns3LlSsO1Vbx4cYYNG8aWLVvo3Lkz4eHhTJs2jQYNGjBr1iwsHkzCUqJECUaPHs3evXspU6ZMpvb5JKdPn+bChQt8++23tHjQTaVTp07069ePS5dSuhcnJSXx+eefU6VKFRYvXmyoV48ePXjllVf46quvWLNmDZAyudOePXv48ssvWbZsGZ9++imlSpXik08+yXCdJHultoa0sDJ9LJo/+LuQGJ9gktTMTJyZmRlmFo9/SZIQk9I6/crWvzCzMKdsm7pgZsb13Sf5e/E2vN5sRoEHrThFnpXYmBgArKytTNZZPlgWHxdnkrR52jhIaWG2au5iABq0SumR4VasCDZ2tvx9+DgNW/kZnjPxcfGcPxUAQMKDYVVEnpXn5f4ACA68QVxMLDFR0bzWrwcx0dHs27KLFbMWkpSYqHE2JVfExKa8iErr+6H1g0YmsfHxPDr41dPG/bZnD+bm5rRIo6FA2INu5+2aNMGjhGkraRHJe9T9/F9g3bp1zJ4926jFYUhICI6OjkQ9Mtubo6MjXbp0MfxsbW1Nly5duHPnDidPnuTu3bscPHiQRo0aERMTQ2hoKKGhody7d4+mTZty584dTpw4keU6e3h44O/vz8KFC+nVqxdly5YlMTGRAwcO0LdvX2bPnv3Y+AEDBrB3716jhGZMTAzm5imX/KPH/cYbbxi9qev5YAa91G7u2cHKyormzZuzb98+wsNT3s6Hhoayf/9+WrdunW37eVhCQsJTtTR92JYtW0hKSsLX19fw+w4NDaVQoUJUqlTJ5BzVqlXLaJ+ZjW/UqJEhoQlQsWJKC4Tbt28D8McffxAbG0v37t0NiUOAdu3a4e/vT506dTK9zydxc3PDzMyMWbNmsXv3buLi4jAzM2PevHmGYQP+/vtvrl27hp+fH+Hh4YZ9xsTE0LhxY06fPk1wcDAATk5O/N///R9XrlyhU6dOBAcHM3bsWKPjlmcsOTnl/5m9XZ42Lh1JCSnDGSTExFFtYCsK1yhHYe+yVOvfEks7Gy7/djh7diSSCYbLPJPPk6eNi4uNY/HUudy8FkTDVk3w8EwZD83C0hKfZi8TdPkaK2Yt4ua1IG5cvc7PM34gLjblhUDqc17kWXle7g+A2o18aNO9I90G9+GFmlWpUb8uA0YNo4BrQTYvX2cyZI7Is5D84GLP/D2S+bi4+Hh2//knNatUwbWg6dBAc5cvxyl/fjpqLE2Rfwy11PwXsLKy4s8//2T9+vVcvHiRq1evEhKSMs5b8eLFjcqWLFnSpBl+yQfjmAQGBhq+LCxatIhFixalub8bN25kS73NzMyoW7euoQVhUFAQq1atYtasWXz77be0b9+ewoXTnzQjPj6eyZMnc+rUKa5evcr169cNs5E/+qGuTJkyRj87OTnh5OREYGBgthxLqnbt2rFs2TK2bt1Kx44d2bx5MwkJCdne9TxVWFhYprpZpyW1pWfXrl3TXP9wN37AZH9ZjU99O5v6O0v9nZQqVcqonI2NjaH1bWb3+SRFihTho48+YtKkSfTr1w97e3vq1atHq1ataNmyJRYWFoZ9jhs3jnHjxqW5naCgIMM16+fnR7Nmzfjtt9/o1q0bNWqoW1husnjQrTUpPtFkXVJCAgCWtqbXzdPGpVsPq5REfaHKpbCyszEst7SzxqViCW79dYHEuHgs0mjZI5JTbGxTrsX4NMa5TnjQWtnW1jZb4qKjolk8ZTZXz1+iRoO6+HUwfunXuF1zYqKi2bf1d04cTJkkwrNaZRq08GXLqvXY59NEd/JsPU/3R53GppNsWllbUb1eLXas+5VbgTcpUlKt/eXZsn0wHFVacyXEPWhdb5/GPfI0cSfPniU2NpZ63t4mMXsPH+bPY8f4eMAAomNjiY7931Am8QkJ3IuMxN7WVl3SRfIY3bH/Al9++SWLFy/mhRdeoHr16rRv3x5vb2++/PJLkwRkWm/CUt+SmZubG5KC3bt3xy+dgZXLpTHDXGYsWrSI2NhY+vXrZ7S8WLFiDBkyBBsbGyZOnMjRo0dp3rx5mts4dOgQffv2xd7eHh8fHzp27MgLL7zA1atX+c9//mNSPr3jfrglYHaoWbMmxYoVY9OmTXTs2JFNmzbh5eVlkqDLDpGRkVy7do2XX345S9tJTSbOmDEjzQ/lj3r0nGU2/kmtbFK397i3tpndZ0b07duXNm3asGXLFnbt2sXevXvZtm0ba9asYe7cuYZ9Dh06lOrVq6e5jYeT51FRUfz9998A7Nmzh6ioKLXUzEU2TvkAiIuINlkXdy8aCzurNBOJTxuXHmvHlISMlYPpdWudzw6SITFWSU15tpwKpoxRGREeYbIuIuwetvZ2WNvamKzLbNz9exH8OGkmN68GUquRD+16dTL5W29mZkarbq/SsJUfIcG3cXRxpkAhF7b4b8DM3Fzjacoz9zzdH+lxcMwPQFysJg6SZ6/QgzHxwx6ZLBVSZiG3t7MzJDCzGvfXqVNYWlrincawXsdOnwZgXBo9/v44fJg/Dh/ms3ffpXL58hk4KhF5Xiip+Q8XGBjI4sWLad++vUnrsTt37piUv3HjBsnJyUYfki5fvgyAu7s7rq4pA5VbWFjg4+NjFHv+/HmuX7+OnZ3p2D+ZsXXrVo4fP87rr7+eZpKnQoUKQNpvvVNNnToVW1tbNmzYYNTyb+bMmWmWDwwMpPxDD7DULvWpE+VkFzMzM1q1asWCBQsICgri8OHDRmOaZqfNmzeTnJxsmB3+aaW25i1atCiVKlUyWrdr1y7y5cuXo/GPKlq0KJDSGtPDw8OwPC4ujo8++oi2bdtm+z7DwsI4c+YMNWrUoEePHvTo0YOoqCiGDx/Or7/+SkBAgGGfqYn0hx0/fpzw8HCja3bSpEkEBgby8ccfM378eCZNmsTo0aMzVS/JPpZ21ti45EtzlvPIGyHkL14oW+PS41DEGTNLc6JuhZmsi7kbibmVRZoJT5GcZGdvh3MhF25cMZ3FOejqdYqXTnsCq8zExcbEGBI29Zo2olW3V9Pc5vEDR8jvlB+PiuXJ55TfsPxywAWKlSqR5viEIjnpebk/7t0N48cJM6hStwaN2xm/9L9z8xYABVxNu+OK5DQHe3tcCxbk0nXTa/3StWuUTef71tPEnb10iTLu7tin8X20nZ8f9WvVMln+9XffUbViRdo2aUKpR3oxisjzTwMP/cOljt34aOvJXbt2cfnyZRIedI9MFRISwrZt2ww/R0VFsXTpUooXL06lSpVwc3PDy8uL1atXG8YHhJSu3iNHjuTdd9812WZmtW3blqioKMaOHWvSTTwpKYkVK1bg6OhI7dopg52ntgx8uGxqt+uHE5oRERGsXr0awNDiNNWKFSuMfk6dGT4rCUFzc/M0xy5q27Yt8fHxjB8/nuTkZFq2bPnU+0jPrVu3mDp1KoULF85y1/bGjRsDMGvWLEOrXUiZPOett95iwYIFORr/KB8fH6ysrFi+fLnR9jZv3szmzZtzZJ979+6ld+/ebN++3bDM3t7ekGC3sLDAy8sLV1dXFi1axP379w3lIiMjee+99xgxYoThWj18+DA//fQTnTt3pm/fvnTs2JGffvqJQ4cOZapekr0KVS5F2IUgom6HGZbdPR9E9O17uFb1yPa4tFhYW1GwkjuhZ65zP/iuYXlMaAQhp6/iUqkkZhozUHJB5ZrVuPB3ALdv/O/Zf/5UACE3b1HlMbMqZzTul0UrHyRsGqab0AT449ed/LJ4ldFzPODYKa6eu0hd3/pPe3giWfI83B+OBZyJiY7m0O/7iIn+X++BsJC7HNlzAI+K5cnv5JiVwxR5anWrVeNEQACBD31/PH7mDDdu3cKnZs1siUtISOD6jRvpTgBUokgRqlasaPIfQAEnJ6pWrEg+9ZoSyXPUUvMfYvLkyTg4mI4j1bRpU4oVK8bMmTOJjY2lSJEiHD9+nNWrV2NjY2OUfIGUsSQ//vhjevfujbOzM6tWreLGjRt89913hm7Bo0ePpnfv3nTs2JFu3brh7OzMhg0bOHbsGB988AEFCmSt61eHDh3YvXs3y5Yt46+//qJFixYUKVKEkJAQNm3aREBAABMnTjS04nR2dsbc3Jxt27ZRrFgxmjVrRsOGDZkzZw5Dhw6lfv363L59m5UrVxpapz563IcOHeLtt9+mUaNGHDlyhDVr1tCyZUvq1av31Mfh4uLCn3/+yfz586lZsybVqlUDUia+KV++PBs3bqRu3bqPHRc0I7Zu3Wo457GxsVy8eJE1a9YQGxvLnDlzstz9ukKFCvTs2ZNFixYRFhaGn58fYWFhLF68GAcHB4YOHZqj8Y8qWLAggwcPZsqUKfTp0wc/Pz9u3rzJ4sWLqVu3Lr6+vpibm2frPhs3boyHhwejRo3i1KlTuLu7c/HiRX766Sfq1atneGkwevRohg0bRocOHXjttdewsbFhxYoVBAUFMWHCBCwtLYmNjWXUqFG4uLjw4YcfAvDhhx+ydetWRo0axbp167BJowuO5LwSDby49dcFTsz7leL1vUhKSOD67pPkK14Qt+opk45Fh0Zw78otHEu5YeeSP8NxmeHRohbhl25yYt6vFPOphLm5BYH7/sbcyoLSzdL/4C+Skxq09OXoH3/yw/jveKl5YxLi49mzeQfFSpek2osp12XorTtcPX8J93IeuLgVynDcraCbHNt3CFt7O4qULMHRP/402X/qrM0NWjXh5+9/YPG3c3ihRlXCQkLZ++tOynlVpFo90xY4Is/C83J/tOnRiaXT5zH762+p1agecTGx7N+2G3MLC9r06PiMzoaIqXZ+fvx+8CBfTptGG19f4uLj+WXbNsq4u9PgQevJ4Dt3CLh4Ec8yZShcqFCG41LduXuXhMREQ7d1Efl3UFLzH2L9+vVpLi9TpgyzZ89m7NixLFy4kOTkZNzd3Rk5ciQJCQl8/fXXnDx5Ei8vLwDKli1Ljx49+Pbbb7lx4wYVKlRg1qxZNGjQwLBNb29vli5dyrRp0/jhhx9ISEjAw8ODsWPH8uqr6beuyChzc3OmTJnC2rVrWbt2LYsXLyYiIgInJydq1qzJF198QdWqVQ3l7ezsGDZsGPPmzeOrr77C3d2dIUOGkJiYyMaNG9mxYwdubm74+PjQp08fWrduzf79+2natKlhG5MnT2bevHl8/fXXODs789ZbbzF48OAsHUe/fv0ICAhg0qRJdOjQwZDUhJTWmpMmTaJNmzZZ2gfAmDFjDP+2srKicOHC+Pr60r9/f6Pu2VkxatQoypQpw88//8w333xD/vz5qVWrFkOHDjWaYT6n4h/11ltv4erqysKFCxk7diyurq507tyZIUOGGJLv2blPe3t75s+fz9SpU/nll1+4c+cOrq6uvP7667zzzjuGci1atMDJyYkZM2bw/fffY25uTvny5ZkxY4ah9ei0adO4dOkS48ePx9ExpcVEgQIF+Oijjxg1ahRTpkzhk08+yfQ5kayzzmdH1f4tubjhIFe2/oWFtSUFK7nj0aIW5pYprWzvXQ7m7Mo9VHitviGpmZG4zLAtkI9qg1pzefMhru8+CcngVLowHi1qGfYp8qw5OOan34h32bh0NdvWbMLa2ppK3lVo3qktlg8mX7t89iKr5y/h1T6vG5I2GYoLuABATFQ0q+cvSXP/qUmbyrWq0WlgL3Zv3Mqmn9fg4JiP+i18adjaTzOfS655Xu6PF2pU4fUhfdm1fgu/rfgFK2srSnuWo9lrbXAtmrWX6CJZ4ZQ/P1+89x4L/P1ZvnEjNlZW1K5ale7t2xsm8Dx94QIzFi/mrR49DEnNjMSlinzQaCWtruci8s9llvxw30wReSZmz57NtGnT2LNnD05OTrldHfmH6Loj7VnXRQT6lU17cjsREZEnqROmtkAij+P4UKOjvOze8eO5XYV0/VPOcXbTK22RZywuLg5/f3/8/PyU0BQREREREREReQp65SQ5LjExkdDQ0AyVzZ8/f5bHgHxeBQcHM2bMGM6fP8+VK1cYP3680fqYmBgiIiIytC0XFxfDpDPydO7fv09UVFSGyrq6uuZwbUREREREREQkM5TUlBx348aNDM8iPmbMGDp06JDDNcodTk5OHDp0iISEBD7//HOqVKlitH7jxo2MGDEiQ9vatm0bJdKZ2U8yZv78+UyfPj1DZQMCAnK4NiIiIiIiIiKSGUpqSo5zdXXlhx9+yFDZ1Fmk/4lsbW3Zs2dPuuvr16+f4fOkloNZ98orr1CzpmaSFhEREREREcmLlNSUHGdjY4OPj09uV+O55+bmhpubW25X41+jZMmSlCxZMrerISIiIiIiIiJPQRMFiYiIiIiIiIiISJ6ipKaIiIiIiIiIiIjkKUpqioiIiIiIiIiISJ6ipKaIiIiIiIiIiIjkKUpqioiIiIiIiIiISJ6ipKaIiIiIiIiIiIjkKUpqioiIiIiIiIiISJ6ipKaIiIiIiIiIiIjkKUpqioiIiIiIiIiISJ6ipKaIiIiIiIiIiIjkKZa5XQEREckeswu2yO0qiDy3BlzYnNtVEHmu6Rkikr6Dzgm5XQWR55pfbldA/rXUUlNERERERERERETyFCU1RUREREREREREJE9RUlNERERERERERETyFCU1RUREREREREREJE9RUlNERERERERERETyFCU1RUREREREREREJE9RUlNERERERERERETyFCU1RUREREREREREJE9RUlNERERERERERETyFCU1RUREREREREREJE9RUlNERERERERERETyFCU1RUREREREREREJE9RUlNERERERERERETyFMvcroA82fDhw1m9ejXbtm2jRIkSWdpWz549CQwMZPv27dlSt6xub+PGjSxdupQzZ84QGxtLkSJFaNiwIQMGDMDNzc2obFJSEkFBQZk+B/7+/owYMYKFCxdSt27ddMsdOHCAXr16MWbMGDp06GDy8/Xr12nSpAnvvPMOQ4YMMcRdu3aNkiVLZu7AMyj1d/8wKysrChYsSJ06dRgwYADly5c3Wp/W7+THH39k7ty53Lt3j169etG/f3+GDx/Ovn37sLKyYsGCBbzwwgs5cgwieU14RAQ/rV3LX6dOEZeQgFf58vTq0IHChQrlSKz/r7+y7Y8/+O6LL0zW3bx9m0Vr1vD3uXPEJyRQvnRpXm/XjvKlS2flEEWyJC4ymkubD3H3bCBJ8Qk4lSlKmdZ1sHPJn22xGS2XGBfPlW1HuX38EgnRsdi7OVOqiTcunln7vCSSnZ7Fc+X85css37iRgEuXSExMpFTx4nRs0YIalSvn1GGJZMrd2yFsWraWSwHnAfCs+gItu7THwfHxz46niVvz4zJCgm/R95MhJuvOnTjNzvVbCLp8DTNzM0qWKY1fh1aULFv66Q9ORHKNWmpKrpk8eTLDhg3D3t6ewYMHM3LkSBo0aMDKlStp3749V69eNZSNjIykc+fOJgm+7FS2bFnGjRtH7dq101zv4uLCuHHjaNq0qWHZ999/T58+fXKsTqlGjBjBuHHjGDduHKNHj6Z169b8/vvvdOzYkQMHDhiVHTRoECNHjjT8HBAQwJgxYyhevDiffvopzZs3Z+bMmWzfvp0uXbrw4YcfUloJEhEA4uPjGTtzJgeOHaNZgwZ0atmSC1ev8sW33xJx/362xx49fZpVmzalue5eZCT/9+23nAgIoGWjRnRr25bboaF8MXUqVwIDs3ysIk8jKSGRUwu2EnLqCkXreuLexJvIwDscn7OJ+KjYbInNaLnkpCROLdhK0B+nca3qgUfzWpAMpxZu5e75oBw7ByKZ8SyeK0HBwfzf1KkE3rzJq82a8Xq7dsTHxzNu1iwOHjuW04co8kRRkfeZP+47rl+8TIMWvtRv/jIBx07x48QZJCYkZGvc4d37Ofz7vjTXXQo4z8Ips4mJiqZpx9Y0bteC0Ft3mPfNNK5fvJItxyoiz5ZaakquuHHjBnPmzKFnz56MHj3aaF2bNm3o3r07kyZNYsqUKQCEhYVx4sQJGjVqlGN1KlSoEO3bt093vb29vcn6ffv2kZiYmGN1SuXn52fSQrVnz5507NiR9957j61bt+Lg4ADASy+9ZFTu7NmzAAwcOBBfX18gJaHs7OzMiBEjcrzuInnJroMHuXj1KqMGD6ZqxYoAeFeuzEdjxrBh+3a6tm2bbbFb9+7lhxUrSEjnb8j2ffu4Gx7OB/36UadaNQDqVqvGe199xarNm3m/b9/sOGSRTAn+6zyRgSF49WlGgXLFAHDxLM6RqWsJ3HOK0s1qZDk2w+UOnyf8UjAVOjWgsHdZAArXKs+hiau4uv2YIVYkNz2L58pP69ZhYWHBVx9+SAFHRwD8XnqJD8eMYfHatYZniEhu2fvbTsLvhvHOfz7GrVgRAIp7lGLBxBkc2XuQ2o18shyXlJTErvVb2L52c7r12Lh0NU4FnBk4ehjWNtYAePvU5tvRY9jqv4E3Pnw7uw5ZRJ4RtdSUXHHs2DESExNNEnAA3t7eVK1alaNHjz77iuUhRYsW5ZNPPiE0NJRVq1alWy4+Ph7AkPRMXfbwzyKS4o8jRyjs6mr48ghQvHBhvCpUYO+RI9kW+9X06cz5+WcqV6iARzrDV9wOCQEw2l4hFxdKFi3K1SC1QpPccfv4JWwL5jdKGNq7OuNctii3j1/MltiMlgs+ch77IgUMCU0ACytLPFrWpmDFnBkWRiSzcvq5kpyczOnz56lWsaIhoQlgbWVFTS8vgm/fJjwiIpuPSiRzThw4godnOUNiEqBcZU8KFnHjxIG/shwXHxfP9/83ge1rNlG9Xi3yF3Ay2Vb0/ShuXgvCq3Z1Q0ITIJ9TfkpXKMvV85ezeJQikhuU1PwH2bRpEz169KBmzZp4eXnh6+vLuHHjiIuLMym7fft2WrduTZUqVWjbti3r1q0zKXP+/HkGDx5MrVq1qFatGl27dmX37t3ZUtfUhNrq1avTrN/ChQvZuXMnkDLWZZMmTQCYPn06np6eXL9+HYArV67wySef0LBhQ7y8vKhTpw6DBg3i3LlzJtu8desWgwcPpnr16vj4+PDll18SGRlpWH/gwAE8PT3x9/dPs87Xr1/H09OTadOmAeDr68vBgwcJDAw0LH///ffx8vLi3r17RrERERFUqVKFb775JpNn6vFatGiBtbW10e+lZ8+ehhaZPXv2NLTG7NWrF56ennh6ehrVe/jw4YZYf39/XnnlFapUqcKLL77I8OHDuXXrlsk5+PHHH+nWrRteXl688cYbmY5fs2YNkydPpmHDhlSpUoVOnTqxf/9+k+Nbu3YtHTt2pHr16jRs2JDPPvuM0NBQozJP2mdmeHp6MmXKFAYNGoSXlxetW7cmISGB+Ph4Zs2aRbt27ahWrRpVq1alXbt2rFy50mQbu3btokePHnh7e/PSSy8xbNgww/WaaseOHXTt2pVq1apRu3ZthgwZwqVLl56qzpK9Ll27hkca4/Z6lCzJrTt3iIyKypbY26Gh9O3cmRFvvYWtjU2a2yvi6gpA0EPXc0JCAiF371LAyfTDusizEBkUQr5iBU2WOxQrSExoJPHR6XdBz2hsRsolJSYScf02zmWLGtYnxqW8xHOrVoYSDb0yfWwiOSGnnytmZmaM/fhjer7yikm5iAefcy0sLJ7+AESyKPp+FHdvh1CstOm1XMy9BDeuXk8jKnNxCQkJxEbH0OWt3nTs1x0Lc9Nr3sbOlqH/HYlP85dN1kVF3sfcQqkRkbxI3c//IVasWMHo0aPx9fXlww8/JD4+ni1btjBv3jwAPv74Y0PZ27dv8+6779K5c2e6du3K2rVr+eijj0hISKBDhw5AyjiMr7/+OoUKFWLgwIFYWVmxfv16BgwYwMSJE2nVqlWW6lu3bl1KlCjBr7/+yuHDh2nWrBkvvfQStWvXxsnJCWvr/709K1u2LCNGjGDMmDE0bdqUpk2b4uLiwp07d+jcuTP58uWjR48eFChQgNOnT7N8+XJOnTrF9u3bsbKyMmzns88+o1KlSnzwwQecPXuWn376iXPnzrFgwQLMzMwyfQwjR45k4sSJ3L17lxEjRuDp6UlQUBAbNmxg69athnMJ8NtvvxEXF0fbx3Qxeho2Nja4u7tz5syZNNcPGjQIDw8Pli1bxqBBgyhdujTm5ubMnDnTUG93d3cgJWE8bdo0mjdvTufOnQkODmbx4sUcPHiQlStX4uLiYtjut99+i6+vL23btsXmQUIms/F2dnb06dOH+Ph45s+fz8CBA9m5cycFChQAYM6cOUyYMIGaNWvy/vvvExISwoIFCzh9+jRLly7F0tIyU/vMqAULFlCjRg1Gjx5NTEwMlpaWfPjhh2zatIlu3brRs2dP7t69y/Llyxk1ahSurq6GYRE2bNjABx98QPny5RkyZIjh2E6cOIG/vz+Ojo74+/szcuRI6tWrx0cffUR4eDhLly6lc+fOLF++HA8Pj0zXWbJHTGwsUdHRuDg7m6xzzp8yGP2d0FDy2dtnOXbiyJFYWj7+Eexbrx67//yTWUuW0K9LFxzs7PD/9VfuRUYy6MGLHpFnKTEunsToeKwdTe8B63x2AMSG3cfKzjRRn9FYcwvzjJWztCA5MRkbJweu7TxO4B9/Ex8Zg7WjHaX8vClSq0KWjlUkOzyr54pbQdOXAGH37nHw+HGKFS6c5vZFnpV7d8MBcCzgbLIuv7MjMVHRREdFY2dv99Rxtna2vDd21GMT+Obm5hQq7Gqy/Oa1IK6ev0R5r4ppRInI805JzX+I+fPn4+3tzffff29I0L3++us0adKE3bt3GyU14+Li+Oyzz+jevTsAXbp0oX379kycOJF27dphaWnJV199hYuLC6tXr8b+wQehHj160Lt3b77++mv8/PyMEo+ZZW1tzdy5c3n//ff5+++/WbJkCUuWLMHCwoJatWoxYMAA6tevD6SMdenn58eYMWPw9PQ0jGu5ePFiwsPDWbJkCWXL/q/rmYODA7Nnz+bs2bNUfmjGR09PTxYuXGhIJBQuXJhp06axY8cOQ8vGzPDz82PBggXExsYa6lS2bFmcnZ3ZtGmTUVJz48aNlClTJkdmGHd0dDSaVOlhL730EsHBwSxbtgwfHx/D7O8rV640qve1a9f47rvvGDBgAB988IEhvnXr1nTo0IGZM2caTT5UtGhRJkyYYLjWMhufnJzMypUrDddW8eLFGTZsGFu2bKFz586Eh4czbdo0GjRowKxZswwfUEqUKMHo0aPZu3cvZcqUydQ+M8rS0pLvvvsOW1tbIOUlwPr16+nfv7/Rfvz8/GjZsiW7d++mUaNGJCUlMWbMGCpUqMDy5csN8VWqVOHNN9/kl19+oX379nz99de0atWKSZMmGbbVuXNnWrduzYQJE/juu+8yXWfJHlExMQDYPPQyJFXq37vYNFqWP03skxKaAA729nRu1YqpCxcyeuJEw/I3X3tNs9lKrkiISWkJaWFlev2mLkt60FryaWMzWi45IWUs2hsHzpCUkIi7b3Us7ay5eTCAc/5/ACixKbnuWT5XHpaYmMh3ixYRGxvLKw9NcCmSG2IfXMtW1qbXsuWDZfFxcSZJzczEmZmZPVWL5LiYWFbNXQxAg1Z6YSySF6mN9T/EunXrmD17tlGLw5CQEBwdHYl6pFuLo6MjXbp0MfxsbW1Nly5duHPnDidPnuTu3bscPHiQRo0aERMTQ2hoKKGhody7d4+mTZty584dTpw4keU6e3h44O/vz8KFC+nVqxdly5YlMTGRAwcO0LdvX2bPnv3Y+AEDBrB3716jhGZMTAzm5imX9aPH/cYbbxglEnr27Alg6OaeHaysrGjevDn79u0jPDzl7WJoaCj79++ndevW2bafhyUkJDxVS9OHbdmyhaSkJHx9fQ2/79DQUAoVKkSlSpVMzlGtWrWM9pnZ+EaNGhkSmgAVH4wVdfv2bQD++OMPYmNj6d69u9EHlHbt2uHv70+dOnUyvc+Mqlq1qiEhCeDq6srhw4d5++3/DRyenJxMwoMZF+8/mH305MmT3L59m86dOxvF+/j4sGLFCtq3b8/evXuJjIzEz8/PqM4WFha8+OKL7Nmzx7BdyT2Pu5+edK9lJfZR2/ftY/ycORQuWJC3evRg6JtvUqNyZX5ctYrfsmkoEJGn8rhL+UnXeUZjn1Au6UFSMzbsPlX7taDYixVxq1YGrz7NsXN15PJvR0hOTn58XUSekWf5XElKSmL6okUcP3MGn5o1afTghbZIbkn9U5zZz0FPG5dRcbFxLJ46l5vXgmjYqgkenuVyZD8ikrPUUvMfwsrKij///JP169dz8eJFrl69SsiDSSaKFy9uVLZkyZImrYRKPpioIjAw0JAUXLRoEYsWLUpzfzdu3MiWepuZmVG3bl1DC8KgoCBWrVrFrFmz+Pbbb2nfvj2FCxdONz4+Pp7Jkydz6tQprl69yvXr1w2zkSclJRmVLVOmjNHPTk5OODk5ERgYmC3Hkqpdu3YsW7aMrVu30rFjRzZv3kxCQkK2dz1PFRYW9lTdrB+W2tKza9euaa63eqSVwKP7y2p8aouD1N9Z6u+kVKlSRuVsbGwMrW8zu8+MSutcWltbs27dOvbs2cPly5e5cuWKIZmZ+qU5vTpDSqL04ToPGzYs3f2Hhobi5ub2VHWXjIuLj+d+dLTRMtsH12FcvGlLs9Sxf+0eSlhnV2x6lq1fT0FnZ758/33DuJs+NWowduZMFq5eTZ1q1XB+aFIIkeyUGJ9AYoxxKzAL6wctJR8kFB8tD2Bhk/bf3ozGZrRcckLK88KpTBHsCv7vPjC3MMe1ahmubjtK1K0wHAoXeMxRimSf5+G5Eh8fz9SFCzl49CjVX3iBwT16ZPIoRLKfjW3KZ5j4NFoWJzxo3W+bxn3wtHEZER0VzeIps7l6/hI1GtTFr0POND4RkZynpOY/xJdffsnixYt54YUXqF69Ou3bt8fb25svv/zSJAGZ1tuu1MSMubm5ISnYvXt3/Pz80txfuXJZe5O16EGXmH79+hktL1asGEOGDMHGxoaJEydy9OhRmjdvnuY2Dh06RN++fbG3t8fHx4eOHTvywgsvcPXqVf7zn/+YlE/vuLN78PSaNWtSrFgxNm3aRMeOHdm0aRNeXl5pJruyKjIykmvXrvHyyy9naTupycQZM2Zk6MPBo+css/GpifMn1edxb2Yzu8+MevTYYmNjef311zl9+jR169alXr16vPHGG9SpU8fovGemzl9++SUl0hj4H1KS7ZLz/jhyhBmLFxste61lS+zt7Lj7yERfgGFZehP02NvZPXVsWsIjIgi7d48WjRqZTCTUqE4d/jp1ivOXL1PrQcJcJLvdOXGZsyv3GC1zb1INCzsr4u6ZTmwSF5GSzElrLEwAS1vrDMVmtFxyYsrfU+t8pn//rRxSliXGquW7PDu5/VyJiY1lwpw5nAgIoEblyrzft2+GhjoRyWlOBVNeLkWER5isiwi7h629Hda2pmMxP23ck9y/F8GPk2Zy82ogtRr50K5XpxxrDSoiOU9Pun+AwMBAFi9eTPv27Rk3bpzRujt37piUv3HjBsnJyUZ/vC9fvgyAu7s7rg9m3LWwsMDHx8co9vz581y/fh07O+MxTzJr69atHD9+nNdff92oG3KqChVSxsF6XLJq6tSp2NrasmHDBqPWdTNnzkyzfGBgIOXLlzf8nNqlPnWinOxiZmZGq1atWLBgAUFBQRw+fNhoTNPstHnzZpKTkw2zwz+t1Na8RYsWpVKlSkbrdu3aRb58+XI0/lFFi6bMZnv16lWjiXPi4uL46KOPaNu2bbbvMz2bNm3i5MmTfP3117z22muG5cHBwenW+VEjRoygRo0ahjq7uLiY3FsHDhwgKSkpS2PVSsZVrViRUYMHGy0rXKgQpy9c4NK1ayblL1+/TmFX18dOtuBRsuRTxz7K8kFyPfGRFucASQ9eQiWpa63kIOdyxfDq08xoma1LfsIvBxMZFGpS/v6NEGwL5k9zkqBU+YoVzFBsRstZO9lzPzjMpFzM3ZQvwDbODukfoEg2y83nSmJiIpPmzeNEQAAvenszpFcvJTTluWFnb4dzIRduXDGd5Tzo6nWKly6ZrXGPExsTY0ho1mvaiFbdXs30NkTk+aIxNf8BUsdufLT15K5du7h8+bLJGH0hISFs27bN8HNUVBRLly6lePHiVKpUCTc3N7y8vFi9erVR4iY+Pp6RI0fy7rvvZnncv7Zt2xIVFcXYsWNNuoknJSWxYsUKHB0dqV27NvC/1nMPl03tdv1wQjMiIoLVq1cDGFqcplqxYoXRz6kzw2clIWhubm5Sf0g5vvj4eMaPH09ycjItW7Z86n2k59atW0ydOpXChQtnuWt748aNAZg1a5bRGGSnT5/mrbfeYsGCBTka/ygfHx+srKxYvny50fY2b97M5s2bc2Sf6QkLCwNM76+FCxcCGO4FLy8vXFxc8Pf3N3QLAzh8+DD+/v5ERUXh4+ODjY0Nc+fOJf6h7mTBwcG8/fbbRpMvSc5ycXKiasWKRv8VLlSIutWqERQczPEzZwxlA4ODOXn2LC/VqPHYbWYl9lEO9vaUK12aA3/9xb3ISMPy5ORktv3xB5YWFlR4KOEvkt1sHO0pUK6Y0X92LvkpVLkU0bfDuXs+yFA26nYYYRdu4Fr18ddkRmMzWs61qgf3g0K5e+5/w8gkRMdx668L5C9ZCJt0Wo2K5ITcfK6s2ryZY6dPU6d6dYY+Moa8yPOgcs1qXPg7gNs3/vfd8vypAEJu3qJK3fTvg6eNS88vi1Y+SGg2VEJT5B9CT7w8ZPLkyTg4mLY6aNq0KcWKFWPmzJnExsZSpEgRjh8/zurVq7GxsTGM/ZfKycmJjz/+mN69e+Ps7MyqVau4ceMG3333naFb8OjRo+nduzcdO3akW7duODs7s2HDBo4dO8YHH3xAgQJZG6OqQ4cO7N69m2XLlvHXX3/RokULihQpQkhICJs2bSIgIICJEycaWnE6Oztjbm7Otm3bKFasGM2aNaNhw4bMmTOHoUOHUr9+fW7fvs3KlSsNrVMfPe5Dhw7x9ttv06hRI44cOcKaNWto2bIl9erVe+rjcHFx4c8//2T+/PnUrFmTatWqASkT35QvX56NGzdSt27dx44LmhFbt241nPPY2FguXrzImjVriI2NZc6cOVnufl2hQgV69uzJokWLCAsLw8/Pj7CwMBYvXoyDgwNDhw7N0fhHFSxYkMGDBzNlyhT69OmDn58fN2/eZPHixdStWxdfX1/Mzc2zdZ/p8fHxwdLSko8//pju3btjaWnJjh072LNnD1ZWVobrzNramuHDh/PJJ5/QrVs32rVrx/3791m4cCFly5alU6dO2Nvb8/777zNmzBi6dOlCu3btSEhIYMmSJcTGxvLJJ59kS53l6fnWq8fm339n8vz5tG3SBBtra37Zto0CTk60epBIBwi7d4/jZ85QqnhxSj1ogZvR2Ix6o2NHvpg6lRHjx9O0fn1srKz446+/OHvxIl3bttV4mpIritSqQNC+M5xeuoMSDbywsLLk+u6TWDvaU/ylyoZycZHR3D0XRL6iBXAo4pKp2IyWc3+5GiGnr/L3Tzso7vMCVg623PgzgISYOMq0rvPsTorIY+T0cyXi/n3WbduGpYUFVSpUYM+hQyZ1qFOtmslQJiLPUoOWvhz9409+GP8dLzVvTEJ8PHs276BY6ZJUe7EmAKG37nD1/CXcy3ng4lYow3EZdSvoJsf2HcLW3o4iJUtw9I8/TcpU96md9YMVkWdKSc08ZP369WkuL1OmDLNnz2bs2LEsXLiQ5ORk3N3dGTlyJAkJCXz99decPHkSLy8vAMqWLUuPHj349ttvuXHjBhUqVGDWrFk0aNDAsE1vb2+WLl3KtGnT+OGHH0hISMDDw4OxY8fy6qtZf6tlbm7OlClTWLt2LWvXrmXx4sVERETg5OREzZo1+eKLLwyTqwDY2dkxbNgw5s2bx1dffYW7uztDhgwhMTGRjRs3smPHDtzc3PDx8aFPnz60bt2a/fv307RpU8M2Jk+ezLx58/j6669xdnbmrbfeYvAj3YQyq1+/fgQEBDBp0iQ6dOhgSGpCSmvNSZMm0aZNmyztA2DMmDGGf1tZWVG4cGF8fX3p37+/UffsrBg1ahRlypTh559/5ptvviF//vzUqlWLoUOHGs0wn1Pxj3rrrbdwdXVl4cKFjB07FldXVzp37syQIUMMyffs3mdaKlSowNSpU5k+fTqTJk3CwcGB8uXL88MPP7BkyRIOHjxIfHw8VlZWtG/fnvz58zNz5kwmTpyIo6MjjRs35oMPPjAk6N944w0KFy7MDz/8wOTJk7G1taVy5cqMHz+emjUz9+FMsp+VlRWfDhnCotWrWbd1K+bm5rxQvjy9Xn2V/A+9VAoMDua7RYt4rWVLw5fPjMZmVPnSpfny/fdZtn49q3/7jYSEBEoWLco7vXrRoLY+dEvuMLe0oErf5lza+CfXfz+JmZkZTmWKUKZlbazs/5c0iboVxtkVu3FvUs2Q1MxobEbLWdpZU21AKy7/doQbfwaQFJ9I/uIFqfCqD47umnBNng85/Vw5f+WKoffHvOXL06xDpbJlldSUXOXgmJ9+I95l49LVbFuzCWtrayp5V6F5p7ZYPpjc8/LZi6yev4RX+7xuSGpmJC6jLgdcACAmKprV85ekWUZJTZG8xyw5WYNyieSE2bNnM23aNPbs2aPJX+SZuHf8eG5XQeS5NSBkc25XQeS5Nrtgi9yugshz66CzJh4TeRw/98wPB/A8ep6/TzlqgtA0aUxNkRwQFxeHv78/fn5+SmiKiIiIiIiIiGQzdT+XbJGYmEhoqOlMpWnJnz9/lseAfF4FBwczZswYzp8/z5UrVxg/frzR+piYGCIiIjK0LRcXF8MESfJ07t+/T1RUVIbKurq65nBtRERERERERCS7KKkp2eLGjRsZnkV8zJgxdOjQIYdrlDucnJw4dOgQCQkJfP7551SpUsVo/caNGxkxYkSGtrVt2zZKlCiRE9X815g/fz7Tp0/PUNmAgIAcro2IiIiIiIiIZBclNSVbuLq68sMPP2SobLly5XK4NrnH1taWPXv2pLu+fv36GT5PajmYda+88oom3xERERERERH5B1JSU7KFjY0NPj4+uV2N556bmxtubpqR9VkpWbIkJUuWzO1qiIiIiIiIiEg200RBIiIiIiIiIiIikqcoqSkiIiIiIiIiIiJ5ipKaIiIiIiIiIiIikqcoqSkiIiIiIiIiIiJ5ipKaIiIiIiIiIiIikqcoqSkiIiIiIiIiIiJ5ipKaIiIiIiIiIiIikqcoqSkiIiIiIiIiIiJ5ipKaIiIiIiIiIiIikqcoqSkiIiIiIiIiIiJ5imVuV0BERLLHQeeE3K6CyPMrJLcrIPJ8GxCyOberIPLcmk2L3K6CyPPNPbcrIP9WaqkpIiIiIiIiIiIieYqSmiIiIiIiIiIiIpKnKKkpIiIiIiIiIiIieYqSmiIiIiIiIiIiIpKnKKkpIiIiIiIiIiIieYqSmiIiIiIiIiIiIpKnKKkpIiIiIiIiIiIieYqSmiIiIiIiIiIiIpKnKKkpIiIiIiIiIiIieYqSmiIiIiIiIiIiIpKnKKkpIiIiIiIiIiIieYqSmiIiIiIiIiIiIpKnKKkpIiIiIiIiIiIieYplblfgeTB8+HBWr17Ntm3bKFGiRJa21bNnTwIDA9m+fXu21C2r29u4cSNLly7lzJkzxMbGUqRIERo2bMiAAQNwc3MzKpuUlERQUFCmz4G/vz8jRoxg4cKF1K1bN91yBw4coFevXowZM4YOHTqY/Hz9+nWaNGnCO++8w5AhQwxx165do2TJkpk78AxK/d0/zMrKioIFC1KnTh0GDBhA+fLljdan9Tv58ccfmTt3Lvfu3aNXr17079+f4cOHs2/fPqysrFiwYAEvvPBCjhyDPNmhQ4cYP348Z8+epXjx4gwdOpSmTZvmdrXkOXX/XgS/rviFs8f/Jj4+njIVy9Oy6yu4uBXKkdhd63/j0K79fDD+s8du+15YONM+/YZK1b3o0Pf1TB+XSFbFhEZwcdOfhF+8CYBLxRJ4tKyNdT67bInLaLmIwDtc/vUw967ewszMDCePIni0rI29q1N2HarIU4uLjObS5kPcPRtIUnwCTmWKUqZ1Hexc8mdbbEbLRQaFcGnzISIC72Bmbo6LZwk8WtR64j0rkhNuhYSwcPVq/j53DoAalSvT89VXccr/+Hsjo3Enz55l2YYNXAkMxN7Wlhe9venapg22Njbpbnv20qUE3brF/w0dmsWjE5Hcopaa/2CTJ09m2LBh2NvbM3jwYEaOHEmDBg1YuXIl7du35+rVq4aykZGRdO7c2STBl53Kli3LuHHjqF27dprrXVxcGDdunFGy6fvvv6dPnz45VqdUI0aMYNy4cYwbN47Ro0fTunVrfv/9dzp27MiBAweMyg4aNIiRI0cafg4ICGDMmDEUL16cTz/9lObNmzNz5ky2b99Oly5d+PDDDyldunSOH4Ok7cKFC/Tp0wdLS0s+/vhjnJ2deffddzl+/HhuV02eQwnx8SycMptTh49Rp/FL+LZvQeDlq8wbN52oyPvZHnvuxGl2rPs1Q3Vbt2A5MfejMn1MItkhPiqW4/M2E3HtNiUaelG8QWVCzlzj5A+/kZSYmOW4jJaLuh3O8TmbuX/zLu6Nq1Hy5apEXL/Dsdkbib2n+0NyV1JCIqcWbCXk1BWK1vXEvYk3kYF3OD5nE/FRsdkSm9FyUbfCODZ7IzFhkZTy9aZ4vUqEnL7KsdkbSYyLz7FzIJKWiPv3+WLqVM5fvkw7Pz/a+Ppy+ORJvv7uOxISErIcd/LsWb6aPp3EhAS6t2tHwzp12Lp3L19//z3Jyclpbnv7vn1s++OPbD9WEXm21FLzH+rGjRvMmTOHnj17Mnr0aKN1bdq0oXv37kyaNIkpU6YAEBYWxokTJ2jUqFGO1alQoUK0b98+3fX29vYm6/ft20fiY74sZRc/Pz+TFqo9e/akY8eOvPfee2zduhUHBwcAXnrpJaNyZ8+eBWDgwIH4+voCKQllZ2dnRowYkeN1l8dbt24dsbGxTJs2DRcXF5o2bcpLL73Epk2bqFq1am5XT54zf/3xJ0GXr9H7g7coV9kTgApVX2D6Z9+w97edNO3QOtti/9z5BxuWrCIx4cl/447+8SfnT53JwpGJZE3gnlPEhkdR89322Ls5A5C/hCsn5/9G8JHzFK3tmaW4DJf742+S4hKoNqAl+YoVBMC5bDGOfr+ewL2nKNMy7RenIs9C8F/niQwMwatPMwqUKwaAi2dxjkxdS+CeU5RuViPLsRktd3nrX5iZm1Otf0us89sDkK94IU4t2ErwkQsUe7Fijp0HkUdt2L6d0LAwxo8YQYkiRQAoV6oUX3/3HTsPHMDvke9XmY1bvGYNBQsU4P/eew9rKysAChUowLzlyzl6+jTeD/WYS0pKwv/XX1m5aVNOHrKIPCNqqfkPdezYMRITE00ScADe3t5UrVqVo0ePPvuK5SFFixblk08+ITQ0lFWrVqVbLj4+5W13atIzddnDP0vuiY6OBiAwMBCAmJgYAKytrXOtTvL8OnHgL1zcChmSkgCuRQtTplIFThw4km2xP074nnULl+NRsTxFSz1+yI+I8HtsWLqal9s2f4ojEsket49fxNmjiCHhCFCgXDHsXB25ffxSluMyWi4mNAJLBxtDQhMgf4lCWNrbEBV8N2sHKZJFt49fwrZgfkOyEcDe1RnnskW5ffxitsRmtJy5uTlu1csaEpoATh6FAbive0Wesb1HjvBC+fKGxCRA1YoVKermxh9H0v98lZG4uPh4HPPlo4mPjyGhCVCpXDkArjz4DpBa9pNvvmHFxo00qF0bF2fn7DpEEcklSmpmwqZNm+jRowc1a9bEy8sLX19fxo0bR1xcnEnZ7du307p1a6pUqULbtm1Zt26dSZnz588zePBgatWqRbVq1ejatSu7d+/OlrqmJtRWr16dZv0WLlzIzp07gZSxLps0aQLA9OnT8fT05Pr16wBcuXKFTz75hIYNG+Ll5UWdOnUYNGgQ5x6MafKwW7duMXjwYKpXr46Pjw9ffvklkZGRhvUHDhzA09MTf3//NOt8/fp1PD09mTZtGgC+vr4cPHiQwMBAw/L3338fLy8v7t27ZxQbERFBlSpV+OabbzJ5ph6vRYsWWFtbG/1eevbsaWiR2bNnT0NrzF69euHp6Ymnp6dRvYcPH26I9ff355VXXqFKlSq8+OKLDB8+nFu3bpmcgx9//JFu3brh5eXFG2+8ken4NWvWMHnyZBo2bEiVKlXo1KkT+/fvNzm+tWvX0rFjR6pXr07Dhg357LPPCA0NNSrzpH1mRlBQEEOGDKF+/fpUqVKFVq1aMWfOHJKSkozK/fXXX7z55pt4e3vj7e1Nnz59jLqL//7773h6ejL0kfFvPv30Uzw9Pfn9998Ny1q2bGlYd+3aNT788ENsbGx49dVXTern6+vL6NGjGTlyJFWrVqVhw4aEhoaSnJzM0qVLee211/D29qZKlSq0aNGC2bNnm3RpOXbsGP3796dWrVrUrVuXAQMGEBAQkKnjk9xz4+r1NJOMxUqV4O7tEKIf0/07M7FhIXdp0+M1eg0biI1t+mM9QUq3c2cXZxq09M3EkYhkn/joWGJCI8lXvKDJunxFCxIZFJKluMxs366gIwlRscRFRv9vP1GxJMTEYaVxAiWXRQaFGCXcUzkUK0hMaCTx0el3Qc9obEbLVezaiHLtXjQqc/9Gymc8Wye9eJdnJzIqilt37lAmjTkSPEqW5NK1a1mKs7ayYuTbb9OhufHL38sPvs+6urgYlsXHxxMVE8N7b77J4J49MTdXOkQkr9NdnEErVqzgvffeI3/+/Hz44Yd8/PHHFC9enHnz5hm6cKe6ffs27777LnXr1uXjjz/GxsaGjz76yCiZFxAQQJcuXTh//jwDBw5k2LBhJCQkMGDAADZu3Jjl+tatW5cSJUrw66+/0rhxY7744gu2bt1KeHg4YNxKrWzZsobEXNOmTRk3bhwuLi7cuXOHzp07c+jQIXr06MHnn39OmzZt2LNnD3369DG0UEz12WefcffuXT744AOaNGnCTz/9xNtvv53uOCZPMnLkSMqUKUOBAgUMY222adOG+Ph4tm7dalT2t99+Iy4ujrZt2z7VvtJjY2ODu7s7Z86k3e1z0KBBdOnSxfDvsWPHMm7cOKN6p66fPn06I0aMwN3dnREjRtClSxe2bNlC165dTRKJ3377LcWKFWPkyJGGY8ps/JYtW+jTpw/vvvsu169fZ+DAgdy9+78383PmzDFcn++//z6vvvoq69atY+DAgYYxajKzzyeJj4+nX79+nDp1ijfeeINPP/0UDw8PJkyYwOzZsw3l9u7dS8+ePYmIiGDo0KG89dZbBAUF0b17dw4dOgRAw4YNefXVV9m8ebMh4bxnzx6WL19O165dadiwoWF73t7e9OjRg9OnT9OsWTMuX77MjBkz0h3ndMOGDQQEBDBy5Eg6d+6Mi4sLU6ZM4f/+7/8oV64cI0aM4P3338fGxoaJEyeyZMkSQ+yhQ4fo3r07Fy5coF+/frz11lucP3+eXr16GV4UZOT4JHfExcQSExWNo7PpZCP5nByBlGRkdsQO+fIT6vrWx8zM7LF1OrbvEGdP/E2Hvq9jYakRYyR3xIWnJOStHe1N1lk72pEYHU9CtOkL1IzGZWb7JRp6YePkQMCy37l/M5T7N0M5s2wX5hbmFPfRhHySexLj4kmMjk/7On6QcI8NS3t85YzGPu0+Yu9FcefkZc4s/x1rRzsK1ypvUkYkp4SGhQHg4mT6GamAoyNR0dHcjzJ9afy0cbdDQth54AA/rlpFyaJFqf3QcFP2dnZM/ewz6tVIfygIEclb9A0pg+bPn4+3tzfff/+94Uvo66+/TpMmTdi9ezcff/yxoWxcXByfffYZ3bt3B6BLly60b9+eiRMn0q5dOywtLfnqq69wcXFh9erV2NunfDDp0aMHvXv35uuvv8bPzy9L3WOtra2ZO3cu77//Pn///TdLlixhyZIlWFhYUKtWLQYMGED9+vWBlLEu/fz8GDNmDJ6enoZxLRcvXkx4eDhLliyhbNmyhm07ODgwe/Zszp49S+XKlQ3LPT09WbhwIZYPvngXLlyYadOmsWPHDkPLxszw8/NjwYIFxMbGGupUtmxZnJ2d2bRpEx06dDCU3bhxI2XKlMmRGcYdHR2NJlV62EsvvURwcDDLli3Dx8fHMPv7ypUrjep97do1vvvuOwYMGMAHH3xgiG/dujUdOnRg5syZRpMPFS1alAkTJhiutczGJycns3LlSsO1Vbx4cYYNG8aWLVvo3Lkz4eHhTJs2jQYNGjBr1iwsLCwAKFGiBKNHj2bv3r2UKVMmU/t8ktOnT3PhwgW+/fZbWrRoAUCnTp3o168fly6ldC1MSkri888/p0qVKixevNhQrx49evDKK6/w1VdfsWbNGiBlcqc9e/bw5ZdfsmzZMj799FNKlSrFJ598YrTf8+fPc/r0acP233777TSHZUgVExPD999/T+HCKV204uPjWbx4Ma1bt2bs2LGGcp06daJevXrs3r3bcK9/8803ODs7s2rVKgoUKABAo0aNaNWqFUuWLOHDDz/M8PHJs5c6NIGVjenfXivrlO5McbGmiZunic1IgjIyPIINS/yp37IJRd0f30VdJCelTipiYWV63Zo/uJYT4xOwtLN+qrjMbN/WOR8lX67KhV/2c2Tqg14w5mZUev3lNFuviTwrCTHpX8epy5LSmaAno7FPu4/Dk/1JjE0AczM8OzXQ7OfyTMXEprQeTuu7bWp38dj4eB5tP/w0cRH37/PO//2fIe7NTp2MuqSbmZkZPn+LyD+DWmpm0Lp165g9e7ZRq5qQkBAcHR2JeuQNkaOjo6F1HqT8Qe3SpQt37tzh5MmT3L17l4MHD9KoUSNiYmIIDQ0lNDSUe/fu0bRpU+7cucOJEyeyXGcPDw/8/f1ZuHAhvXr1omzZsiQmJnLgwAH69u1r1DouLQMGDGDv3r1GCc2YmBhDM/1Hj/uNN94wJDQhpWs2YOjmnh2srKxo3rw5+/btM7Q6DQ0NZf/+/bRunf4EHlmRkJDwxNZUT7JlyxaSkpLw9fU1/L5DQ0MpVKgQlSpVMjlHtWrVMtpnZuMbNWpkSGgCVKyYMhj87du3Afjjjz+IjY2le/fuRg/2du3a4e/vT506dTK9zydxc3PDzMyMWbNmsXv3buLi4jAzM2PevHmGYQP+/vtvrl27hp+fH+Hh4YZ9xsTE0LhxY06fPk1wcDAATk5O/N///R9XrlyhU6dOBAcHM3bsWKPjPnbsGF26dOHKlSv897//JX/+/EyePJkLFy4AsGjRIv7++2+jerq7uxsSmpByzf3xxx/85z//MSp39+5d8uXLZ7gPQkJCOH78OG3btjUkNCHlPly1ahX9+/fP1PFJ7jEj/fv9SX8KshL7qHWLVpDPMT+N2zbLXKBIdkvtcZHZR2FG4zKx/ctbjnB+zT4c3d3w7NKQCp0akL9EIc4s3UXI6bS7MIo8U4+7jp/8EMlYbCb2kZSYRNl29ajYtRHOZYsSsOx3Aveeenw9RLJRaq+9zH6fepo4MzMzhj7oWl6ySBG+mj6dA5pHQuQfTS01M8jKyoo///yT9evXc/HiRa5evUpISMoYT8WLFzcqW7JkSaPkXuoySJmsJDUpuGjRIhYtWpTm/m7cuJEt9TYzM6Nu3bqGFoRBQUGsWrWKWbNm8e2339K+fXujBM6j4uPjmTx5MqdOneLq1atcv37dMBv5o+MglilTxuhnJycnnJycDBO0ZJd27dqxbNkytm7dSseOHdm8eTMJCQnZ3vU8VVhYGC4PjcXyNFJbenbt2jXN9VYPvUEETPaX1fjUN5ypv7PU30mpUqWMytnY2Bha32Z2n09SpEgRPvroIyZNmkS/fv2wt7enXr16tGrVipYtW2JhYWHY57hx4xg3blya2wkKCjJcs35+fjRr1ozffvuNbt26UeOhriSJiYkMHz6c5ORkFi5cSNmyZXF0dOSdd97hvffe4+uvv+arr76id+/eRi18CxY0beljZWXFzp072bZtG5cuXeLKlSuGpHrqB670zilg2P6+ffsydXySc+Lj4omJjjZaZv2glWVCvGkrl/gHLV9s7WzT3F5WYtNy/MARTh85Tvd3+xEbE0tszP/GYUuIT+B+RCS2drbqki7PhIVNyt/7pPhEk3VJD4YrsbQ1fSZkNC4ho+Wi47i++yT5ShSkSt/mmD34POVatTRHv1/PudV7KVC+E+aWaoUjOSsxPoHEGOOW+xbWD1pKJphex4nxKddx6j3xqIzGPs0+zC3MKeyd0kChUJXSHJ+9ictb/qJwrQpYplMfkexka5Mydnha8zzEPfjcZG9r+hnpaeLy2dvj8+D7wIve3nzw3/+yYNUq6lav/vQHICLPNX0byqAvv/ySxYsX88ILL1C9enXat2+Pt7c3X375pUkCMq23SamJD3Nzc0NSsHv37vj5+aW5v3IPZmt7WosWLSI2NpZ+/foZLS9WrBhDhgwxjAd49OhRmjdPe0bdQ4cO0bdvX+zt7fHx8aFjx4688MILXL161aTVGqR/3NndxL9mzZoUK1aMTZs20bFjRzZt2oSXl1eayaSsioyM5Nq1a7z88stZ2k5qMnHGjBnYpvHQftSj5yyz8U8a9Dp1e49785nZfWZE3759adOmDVu2bGHXrl3s3buXbdu2sWbNGubOnWvY59ChQ6mezoePh5PnUVFRhpaWe/bsISoqytBS89KlS1y8eJEuXboYWhs3bdqUN954gx9//JH+/fsDmFz/j5775ORk3n77bXbs2EHNmjXx9vamS5cu1K5dm969exvKZeacZvT4JOecOPgXq+cvMVrWuF1zbO3tiAgLNymfuix/GmNmAtja2T11bFrOn0wZx/enqXPTqPsRThw8Qp+PB+NRUeOiSc6zccoHQFxEtMm6uHvRWNhZYWFtmhzJaFxGy0Vcv0NyQhKuVcsYEpoA5hYWuFUry6XNh4i6HU6+oll7ESnyJHdOXObsyj1Gy9ybVMPCzoq4e6Zj/KVe22mNhQlgaWudodiMlkuPmZkZhbxKce/KLaJvh5O/RKF0y4pkl0IPejCFPTLRK8Dde/ewt7MzJDCzIy6VtZUVNSpXZvOuXdyLjMQxX76nPQQReY4pqZkBgYGBLF68mPbt25u0rrpz545J+Rs3bpCcnGyU3Lh8+TKQ0rXV1dUVSEme+Pj4GMWeP3+e69evY2eXtbFutm7dyvHjx3n99deNuuOmqlChAsBjk1VTp07F1taWDRs2GLX8mzlzZprlAwMDKV/+f1+wU7vUu7u7P+1hpMnMzIxWrVqxYMECgoKCOHz4sNGYptlp8+bNJCcnG2aHf1qprXmLFi1KpUqVjNbt2rWLfE94yGY1/lFFixYFUlpjenh4GJbHxcXx0Ucf0bZt22zfZ1hYGGfOnKFGjRr06NGDHj16EBUVxfDhw/n1118JCAgw7DM1kf6w48ePEx4ebnTNTpo0icDAQD7++GPGjx/PpEmTGD16NGD8IuFhH374IUePHuXo0aN4eXlRs2bNx9b70KFD7Nixg7fffttotvWEhATCwsIMrbAfPqePGj9+PE5OTtSuXTtTxyc5p5yXJ70/eMtomYtrQS6fvUjQ1esm5W9cDcTFrRB2Dul/WSzqXuKpYx9Vv6UvVV80vTYXTJxB2cqe1G/hS5GSxdOIFMl+lnbW2LjkS3OW88gbIeQvnnZiJKNxGS1nbvng73mS6QSEyclJqf/I0DGJZIVzuWJ49TEeGsTWJT/hl4OJDDKdSPH+jRBsC+bHyi79BEy+YgUzFJuRcgnRcfz1/S8U8iqNR3PjZ0libEoLN3MrtWiWZ8PB3h7XggW5dN30M9Kla9com853xYzGBQYH89/vv6e9nx/NGjQwKhcTG4uZmRlW6tki8o+lMTUzILWb6aOtJ3ft2sXly5cNM0WnCgkJYdu2bYafo6KiWLp0KcWLF6dSpUq4ubnh5eXF6tWrjcbPi4+PZ+TIkbz77rsm28ystm3bEhUVxdixY026iSclJbFixQocHR0NSZbU1mkPl03tdv1wQjMiIoLVq1cDGFqcplqxYoXRz/PmzQPIUkLQ3NzcpP6Qcnzx8fGMHz+e5ORkWrZs+dT7SM+tW7eYOnUqhQsXznLX9saNGwMwa9Yso9ngT58+zVtvvcWCBQtyNP5RPj4+WFlZsXz5cqPtbd68mc2bN+fIPvfu3Uvv3r3Zvn27YZm9vb0hwW5hYYGXlxeurq4sWrSI+/f/N3tnZGQk7733HiNGjDBcq4cPH+ann36ic+fO9O3bl44dO/LTTz8ZZhD38PDAzc2NTZs2EfZg9kRIuYYjIyMBCAgIeOKM46mxj97/y5cvJzo62nCvFi5cmIoVK7JhwwbD9iFlkqeFCxdy586dTB2f5CxHZyfKVfY0+s/FrRCVa1blzo1bnD8VYCh7+0YwF0+fpUqdx8+UmZXYR7kVK2JSv3KVPY3qnpkkqUhWFapcirALQUTdDjMsu3s+iOjb93Ct6pHluIyUs3dzxtrRjptHzhm62kJKt9vgvy5g6WCDfWHnLB+ryJPYONpToFwxo//sXPJTqHIpom+Hc/d8kKFs1O0wwi7ceOx9AmQ4NiPlLO2sMbe0IPjIeeKjHxq+JDqOm4fOYeOSD3s356yeBpEMq1utGicCAgh86Lvv8TNnuHHrFj6PaWCQkbgihQoRFR3Nlj17jL5D3w4JYf/Ro1QqVw47NRoQ+cfSK4uHTJ48GQeHR+ddS+myWqxYMWbOnElsbCxFihTh+PHjrF69GhsbG6PkBKSMJfnxxx/Tu3dvw0zIN27c4LvvvjO0Ghs9ejS9e/emY8eOdOvWDWdnZzZs2MCxY8f44IMPjCYaeRodOnRg9+7dLFu2jL/++osWLVpQpEgRQkJC2LRpEwEBAUycONHQitPZ2Rlzc3O2bdtGsWLFaNasGQ0bNmTOnDkMHTqU+vXrc/v2bVauXGlonfrocR86dIi3336bRo0aceTIEdasWUPLli2pV6/eUx+Hi4sLf/75J/Pnz6dmzZpUq1YNSJn4pnz58mzcuJG6detmeQzCrVu3Gs55bGwsFy9eZM2aNcTGxjJnzpwst56rUKECPXv2ZNGiRYSFheHn50dYWBiLFy/GwcHBqAVgTsQ/qmDBggwePJgpU6bQp08f/Pz8uHnzJosXL6Zu3br4+vpibm6erfts3LgxHh4ejBo1ilOnTuHu7s7Fixf56aefqFevniFpOHr0aIYNG0aHDh147bXXsLGxYcWKFQQFBTFhwgQsLS2JjY1l1KhRuLi48OGHHwIpLTC3bt3KqFGjWLduHTY2NowePZqhQ4fSrVs3unTpwv3791m6dCkRERGMGjWKqVOnMmDAAGbMmGEYd/ZR3t7e5MuXjzFjxhAYGIiTkxMHDhxg48aNJvf/iBEj6NevHx07dqRTp06Ym5uzePFiHB0d6d+/P1ZWVhk6Psk9NRu+yP7tu1k240fqt2iMlbU1ezZvx9HZGZ9mjQzlIsMjOH/qDEVKFqdIyWKZihXJi0o08OLWXxc4Me9Xitf3IikhIWV8y+IFcaueMsRHdGgE967cwrGUG3Yu+TMcl9FyZubmlG37IqeX7ODojA0UqVme5ORkgg+fI/p2OJ6dGmCuF0OSi4rUqkDQvjOcXrqDEg28sLCy5Pruk1g72lP8pcqGcnGR0dw9F0S+ogVwKOKSqdiMlivb7kVOzPuVY7M2UrR2BZISk7h5MIC4iGgqv+GX5UkwRTKjnZ8fvx88yJfTptHG15e4+Hh+2baNMu7uNKhVC4DgO3cIuHgRzzJlKFyoUIbjLCwsePO11/hu0SI+//ZbGtauTcT9+/z6+++Ym5nx5muv5dpxi0jO07fnh6xfvz7N5WXKlGH27NmMHTuWhQsXkpycjLu7OyNHjiQhIYGvv/6akydP4uXlBUDZsmXp0aMH3377LTdu3KBChQrMmjWLBg81h/f29mbp0qVMmzaNH374gYSEBDw8PBg7diyvvvpqlo/F3NycKVOmsHbtWtauXcvixYuJiIjAycmJmjVr8sUXX1C1alVDeTs7O4YNG8a8efP46quvcHd3Z8iQISQmJrJx40Z27NiBm5sbPj4+9OnTh9atW7N//36aNm1q2MbkyZOZN28eX3/9Nc7Ozrz11lsMHjw4S8fRr18/AgICmDRpEh06dDAkNSGlteakSZNo06ZNlvYBMGbMGMO/raysKFy4ML6+vvTv39+oe3ZWjBo1ijJlyvDzzz/zzTffkD9/fmrVqsXQoUONZpjPqfhHvfXWW7i6urJw4ULGjh2Lq6srnTt3ZsiQIYbke3bu097envnz5zN16lR++eUX7ty5g6urK6+//jrvvPOOoVyLFi1wcnJixowZfP/995ibm1O+fHlmzJhhaD06bdo0Ll26xPjx43F0dASgQIECfPTRR4waNYopU6bwySef0Lx5c2bMmMGMGTOYNGkStra2vPjii4b6V61alVGjRlGkSJF0612oUCFmz57NhAkTmDFjBtbW1nh4eDBp0iSOHz9uaIVZqFAhXnzxRRYsWMDUqVP57rvvsLGxoXbt2nz00UeGYScycnySeyytrHjzo8Fs/nktuzdtx8zcHA/PcrTs0h77fP976XX7xk1Wzf2Jxu2aG5KaGY0VyYus89lRtX9LLm44yJWtf2FhbUnBSu54tKhlmJjn3uVgzq7cQ4XX6huSmhmJy0y5QpVLUaVPc65uP8rlLYeBlO64lXv74VKhxDM8IyKmzC0tqNK3OZc2/sn1309iZmaGU5kilGlZGyv7/3U9j7oVxtkVu3FvUs2Q1MxobEbLOXsUwevNplzddpTLvx0BMzOcShemYteXNZamPHNO+fPzxXvvscDfn+UbN2JjZUXtqlXp3r69YfLR0xcuMGPxYt7q0cOQ1MxIHEDDOnWwsrRk7datLPT3x8bGBq8KFejapg3FNAGnyD+aWXKyBh+SvGn27NlMmzaNPXv24OSU8Qk4RB726Pi3ednWq0dyuwoiz625F7bmdhVERCSPml2wRW5XQeS55vhQg6m87N7x47ldhXT9U85xdtOYmpInxcXF4e/vj5+fnxKakiX/lISmiIiIiIiIyL+Jup/nEYmJiYSGms50mJb8+fP/Y2dQDg4OZsyYMZw/f54rV64wfvx4o/UxMTFERERkaFsuLi6alCWL7t+/T1RUVIbKpna/FhERERERERHJKiU184gbN25keBbxMWPG0KFDhxyuUe5wcnLi0KFDJCQk8Pnnn1OlShWj9Rs3bmTEiBEZ2ta2bdsoUULjb2XF/PnzmT59eobKBgQEPLmQiIiIiIiIiEgGKKmZR7i6uvLDDz9kqGzqLNL/RLa2tuzZsyfd9fXr18/weVLLwax75ZVXqFmzZm5XQ0RERERERET+ZZTUzCNsbGzw8fHJ7Wo899zc3HBzc8vtavxrlCxZkpIlS+Z2NURERERERETkX0YTBYmIiIiIiIiIiEieoqSmiIiIiIiIiIiI5ClKaoqIiIiIiIiIiEieoqSmiIiIiIiIiIiI5ClKaoqIiIiIiIiIiEieoqSmiIiIiIiIiIiI5ClKaoqIiIiIiIiIiEieoqSmiIiIiIiIiIiI5ClKaoqIiIiIiIiIiEieYpnbFRAREREREREREZG0NWnS5LHrt23b9oxq8nxRUlNE5B9i7oWtuV0FERERkX+cASGbc7sKIs+1n6ma21WQfyklNUVERERERERERJ5T/9aWmE+iMTVFREREREREREQkT1FSU0RERERERERERPIUJTVFREREREREREQkT1FSU0RERERERERERPIUJTVFREREREREREQkT1FSU0RERERERERERPIUJTVFREREREREREQkT1FSU0RERERERERERPIUJTVFREREREREREQkT1FSU0RERERERERERPIUJTVFREREREREREQkT1FSU0RERERERERERPIUy9yuQG7Zv38/vXv3xtnZmd27d2NtbW203tfXl+LFi7No0aIcq0NISAh2dnbY29tny/aGDx/O6tWrCQgIyJbtPezAgQP06tWLd955hyFDhqRZxtfXF4Dt27dn+/6zQ1JSEkFBQZQoUSJTcanHPmbMGDp06JDp/V67do2SJUtmOi4jevbsycGDB42W2djY4OrqSv369Rk0aBBFixY1Wv/otZ2cnMyECRNYuXIlsbGxfPTRR7z88ssMHz6cY8eOYWdnx6ZNm3BxccmRYxB53sRFRnNp8yHung0kKT4BpzJFKdO6DnYu+bMtNqPl7t+8y6XNhwi/HIyFtSXO5YpRumkNbAvky9ZjFsmqZ3HfPOzqzmPc/PMsdT7qlJ2HIZJleoaIpO95elZEXLvNlW1/ce/KLZKTknEoUgB33+q4eGbuu6KI5K5/bUvNX375BXt7e8LCwnIlCbdr1y5atGhBaGhotm2zS5cujBs3Ltu2908SGRlJ586dWb16daZjy5Yty7hx46hdu3amYz/77DNGjhyZ6bjMGjdunOG/ESNG0KhRI9asWUP79u25cOGCUdmRI0cyaNAgw887d+5k7ty5VK9enVGjRlGvXj2++eYbDh06xMCBA/nggw+U0JR/jaSERE4t2ErIqSsUreuJexNvIgPvcHzOJuKjYrMlNqPlom6HcWz2RsIvB1Pc5wVKNPAi4tptjs7cQExoRI6dA5HMehb3zcNCzwZydduxnDgUkSzRM0Qkfc/TsyLqdjjH524m6lY4JV+uSulmNVP2sXArd05dyfKxisiz869sqRkXF8dvv/1G+/btWb9+PatXr6ZFixbPtA7Hjx/n3r172bpNb29vvL29s3Wb/xRhYWGcOHGCRo0aZTq2UKFCtG/f/qn2u2fPHooXL/5UsZmRVv06depE165dGTp0KOvWrcPcPOUdhp+fn1G51Ja977//Pp6enoZllSpVYvDgwTlcc5HnS/Bf54kMDMGrTzMKlCsGgItncY5MXUvgnlOUblYjy7EZLXdp0yESY+OpNqAljqUKA+DmXZbDU9ZwcfMhXni9cY6dB5HMeBb3TaobBwO48MsBkhOTcu6ARJ6SniEi6XuenhWXfz2MmbkZ1d9qjXX+lF6TRepU4MjUtVzafIhClUtlxyGLyDPwr2ypuWvXLu7du0fdunWpX78+e/bs4fbt27ldLZFsValSJQYOHMi5c+fYsWNHuuXi4+MBcHBwMFr28M8i/xa3j1/CtmB+wwdmAHtXZ5zLFuX28YvZEpuRckmJidw9F4RzuWKGL6MA1vnsKFyjLCF/XyUhOi7LxyuSHZ7FfQNwYv6vnF+zD+eyRXAoph4E8vzRM0Qkfc/LsyI5OZnwSzcpUL64IaEJYGFliUvFksSERBAXGf20hykiz9i/Mqn5yy+/YGZmRu3atWnatCkJCQmsXbv2iXF//fUXb775pqFFZJ8+fTh+/LhRmeTkZJYuXcprr72Gt7c3VapUoUWLFsyePZvk5GQgZezL6dOnA9CkSRN69uxpiA8ICODtt9+mVq1aVK1alc6dO7N161ajffTs2ZO+ffsyefJkvL29qVevHgEBAQwfPtzQ0i5VcHAwI0eOpH79+nh7e9OxY0eT7eWUadOmUaVKFS5fvszAgQPx9vamdu3afPLJJ9y9e9eobGRkJP/97395+eWXqVatGm3btmXFihVGZcLDw/nyyy9p0KABXl5etGzZkgULFhjO68P73LJlCy+99BLe3t6sWLGCJk2aADB9+nQ8PT25fv06AFeuXOGTTz6hYcOGeHl5UadOHQYNGsS5c+cM2zxw4ACenp74+/sb/bx3716++OIL6tWrR7Vq1ejduzdnzpwxxHl6ehIYGMjBgwcN8V26dKF+/fokJRm/Nbxw4QKenp789NNP2XDm/6dt27YA7N6927DM19fXcM35+voaXYu+vr4m9Z42bRqQMibp/PnzadGiBV5eXjRo0ICvvvqKyMhIk3O1evVq2rZtS5UqVRgxYkSm4590biHlXlu4cCFt2rShatWq+Pr6MmHCBKKj//chJCP7zIyAgAD69u3Liy++SNWqVXn11VdZuXKlSbkdO3bQtWtXqlWrRu3atRkyZAiXLl0yrF+6dCmenp4mw0X07dsXLy8vk2OVZycyKIR8xQqaLHcoVpCY0Ejio9PvHpXR2IyUi4+MITkxCYciBUzK2bo4QlIy929m3/AlIlnxLO4bgJiwSMq2e5HKvZtiaWOVPZUXyUZ6hoik73l5VpiZmeE9uC0eLU2HFkuIikkpY/GvTJOI5En/uu7nkZGR7Ny5k+rVq1OoUCEaNWqEtbU1a9asoV+/funG7d27l4EDB1KxYkWGDh1KXFwc/v7+dO/enR9++IFatWoBMGXKFGbOnMmrr75K586duX//PmvWrGHixIk4ODjQvXt3unTpQmRkJFu2bGHEiBGUL18eSOmS3qtXL/Lly8ebb76Jg4MDa9euZfDgwXz22Wd0797dUJ8jR45w7do1PvroI65fv065cuVM6hwWFkbnzp0JCwuje/fulCxZkvXr1/POO+8wffp0k27IOSEpKYlevXpRq1YtPvnkE06cOMHKlSuJiYnh22+/BVKGA+jevTvnzp2jc+fOVKxYkV27djF69Giio6Pp1asXUVFR9OjRgxs3bvD6669TpEgR9u/fz3//+18uX77M559/bthnQkICn332GW+++SZxcXFUqFCBESNGMGbMGJo2bUrTpk1xcXHhzp07dO7cmXz58tGjRw8KFCjA6dOnWb58OadOnWL79u1YWaX/pWn06NG4ubnx9ttvEx4ezty5c+nfvz87duzA0tKScePGMWbMGAoUKMCgQYOoUaMG9+/f56uvvuLPP/+kbt26hm1t2LABS0tLWrZsma3nv2TJktjZ2aWbJBs5ciRr1qwxXItubm7Ex8cb1Ts1UT5q1CjWrl3LK6+8whtvvMGFCxdYunQpR44cYenSpdjY2Bi2+5///IcOHTrQqVMnihUrlun4J51bgC+++IKlS5fSuHFjunXrxqVLl5g/fz6XL182JGozs88nCQ0NpW/fvhQoUIC33noLGxsbNmzYwKhRo7CxsTEkkP39/Rk5ciT16tXjo48+Ijw8nKVLl9K5c2eWL1+Oh4cHXbt2ZdOmTSxYsIBXXnmFChUqsHz5cvbs2cMHH3xAxYoVM/FbluySGBdPYnQ81o6mk7dZ57MDIDbsPlZ2ptdNRmPNLcwzVM7WOWUSh8TYeJNyCQ8+uKsVgTwPnsV9kxpbc+grmFtYZGf1RbKNniEi6XvenhW2aUwuFBcZzZ1TV7FzdUqzHiLyfPrXJTV//fVXYmNjadasGQD58uXDx8eHnTt3cvz4capWrWoSk5SUxOeff06VKlVYvHgxFg/+SPbo0YNXXnmFr776ijVr1hAfH8/ixYtp3bo1Y8eONcR36tSJevXqsXv3brp37463tzeenp5s2bIFPz8/w2zcX331FWZmZqxcuZIiRYoA0K1bN7p168a4ceNo2bKlYcKWqKgoxo8fT7Vq1dI91jlz5nDz5k2WLFlCzZo1AejQoQNt2rRh5syZzySpmZCQQKtWrRg+fDgAXbt2JTg4mK1btxIdHY2dnR0rV67kzJkzTJgwwZAY6tKlCz169GD27Nn06NGDefPmcenSJVatWmVIsr3++utMmjSJWbNm0aVLF0MiKCkpiTfffJMBAwYY6lGwYEHGjBmDp6enYfzJxYsXEx4ezpIlSyhbtqyhrIODA7Nnz+bs2bNUrlw53WMrWLAgS5YsMVwP1tbWTJw4kQMHDvDSSy/Rvn17vv32W6MxOVu1asWYMWPYtGmTUVJz48aN1KtXL0cm5HF0dCQsLCzNdX5+fpw+fdrkWny03gcOHMDf358vvviCrl27GuIbNWpE3759+fnnn+ndu7dhec2aNfn0008NP2c2/knn9vz58/z888907tyZL7/80hDn4ODAzJkzOX/+PCEhIZna55Ps37+f27dvM2PGDKpUqQKk3E9du3bl7NmzQMpLk6+//ppWrVoxadIkQ2znzp1p3bo1EyZM4LvvvsPMzIyvv/6atm3b8sUXXzBx4kS++eYbatSo8diXK5KzEmJSvvxZWJk+GlOXJcWZfkHMTGxGy1naWWPn6khowHUS4xKwsP5f+ZDTV1PKJWhMQcl9z+K+SaWEpjzP9AwRSd/z/qxISkwiYMVukuISKNmoSqbjRST3/OvaVa9fvx6Apk2bGpal/ju1e/Gj/v77b65du4afnx/h4eGEhoYSGhpKTEwMjRs35vTp0wQHB2NlZcUff/zBf/7zH6P4u3fvki9fPqKiotKt1507dzh27Bjt27c3JDQBbGxs6Nu3LzExMfzxxx+G5ba2tobESnp27txJ5cqVDQnN1O3Nnj2bqVOnPjY2Oz3a+rBSpUokJCQYEm07d+7ExcWFNm3aGMqYmZkxbtw4fvrpJ8zMzPjtt9+oUKECrq6uhvMfGhpqSMw+OmZkRmYqHzBgAHv37jVKaMbExBgm1Hnc7wugWbNmhqRb6nEBjx2ftWDBgtSrV48tW7aQmJgIpFxfly5dMjr+7JSQkICZmVmWtvHbb79hZmZGo0aNjM7/Cy+8gKurKzt37jQq/+j5z2z8k87tzp07SU5ONhq6AVK6b69btw53d/dM7/NJUu/LiRMncujQIRITE7G2tsbf358PPvgASGnRHRkZiZ+fn9E+LSwsePHFF9mzZw8JCQlASivaYcOGcejQIXr06EFSUhLffPON4fqTXPS42+VJ91JGYzNQrmSjqsSFR/H34m1EXL9D1K0wzvrvJSYkZdZaM/Os3dci2epZ3DcieYGeISLpew6fFclJSZxdsZuwc0G4VvWgcA3THpAi8vz6V7XUvHXrFvv376d06dKYmZkZxlWsWLEiZmZmbNy4kZEjR2JtbW0Ud/VqyhvNcePGmYyBlyooKIjChQtjZWXFzp072bZtG5cuXeLKlSuEh4cDGI39+KjAwEAAPDw8TNalJt2CgoIMy5ydnZ+Y/AgMDMTX19dkeVr7eJLUbrqpCZm0JCQkpDm5zKOtD1PPb2pSLzAwEHd3d5PE28Ozhl+9epWYmBjq1auX5r5v3Lhh9HPBgqZjrqQlPj6eyZMnc+rUKa5evcr169cN9Xp03MtHpXdcT4pr27Yte/bs4c8//+TFF19kw4YN2NjY5EjL2cTERO7du/dUv/OHXb16leTkZF5++eU01z/6e3/03GQ1/tFzm3q/lC5d2qico6Mjjo6OT7XPJ6lRowa9evVi0aJF7Nu3D2dnZ+rXr0/btm0N+0j9WzFs2LB0txMaGoqbmxuQMj7uunXrOHnyJB9++CHu7u6ZqpM8vcT4BBJjjCdJSG3JkpSQmGZ5AIt0xvHLaGxm9lG4RjniIqK4su0oR79PeSHnWMoNjxa1OLf6DyzVNUqesdy6b0SeN3qGiKQvLz0rkhISObP8d0JOXqFAheJU6FT/qbYjIrnnX5XU3LhxI0lJSVy+fNkwcczDwsPD2bp1K61atTJanppIGTp0KNWrV09z22XKlCE5OZm3336bHTt2ULNmTby9venSpQu1a9d+YjfXxyU8U/f/8PiOFhloVp+YmJjlFnqpUhNF9+/fT7dMREQERYsWNVn+pDpkpJ6JiYnUrFmTd955J831qUmiVBlp7Xbo0CH69u2Lvb09Pj4+dOzYkRdeeIGrV6+atLZNy9O2qGvatCmff/45mzZt4sUXX2TTpk28/PLL5MuX76m29zjnz58nPj4+y2M0JiUl4eDgYBir8lGPjk356PWZ2fgnndvUxPPjZHafGTFq1Ch69uzJr7/+yu+//86vv/7K+vXr6dKlC//5z38M9+qXX35p6Mr/KCcnJ8O/b9++zZUrVwDYtm0bffv2VUvNZ+TOicucXbnHaJl7k2pY2FkRd8+0lXZcRMrYY2mN5wRgaWudodiMlktVslFVitapyP3gu1g52GLv6sSNPwMAsEtjPCiRnJRb943I80bPEJH05ZVnRWJcPH8v3k7Y+Ru4VCxBpdcba5gTkTzoX5XUTJ31fOzYsSYJpDNnzjBt2jRWr15tktRMbTGYmvx62PHjxwkPD8fW1pZDhw6xY8cO3n77bYYOHWook9rVumTJkunWLXUfFy9eNFmXOmvyw93SM6JYsWKGlmMPW716NYcPH+azzz4zaZWanhIlSmBra8v58+fTXH/t2jWioqIMkx5ltp4BAQEmy3ft2sXGjRv56KOPKF68OPfv3zc5/+Hh4ezbt49SpUpler9Tp07F1taWDRs2GLUMnDlzZqa3lRkODg40btyYHTt20K1bNwIDAw0zhGe3zZs3A6SZxM+M4sWLs2fPHry8vAwJ7of38aQWhlmNf1Tq5EPXrl0zGj4gODiYMWPG0KNHj2zf5507dzh37hz16tWjf//+9O/fn7t37zJ48GCWL19uuE4hpaXpo9fqgQMHSEpKMrrn/u///o/4+HiGDRvG5MmTWbBgAW+++Wam6iVPx7lcMbz6NDNaZuuSn/DLwUQGmc4Ie/9GCLYF8z924Ph8xQpmKDaj5ULOXAOgYMWSOJUubCh373IwVvlssS2oL6TybOXmfSPyPNEzRCR9eeFZkZSYxOklOwg7f4NCVUrj2bmBEpoiedS/pknQpUuXOHnyJHXq1OGVV17Bz8/P6L+BAwfi6urK3r17CQ4ONor18vLC1dWVRYsWGbVUjIyM5L333mPEiBFYWFgYxoh8dCby5cuXEx0dbdR1O7U1VmoLTVdXV7y8vFi3bh03b940lIuLi+OHH37A2tqal156KVPH3LBhQ06cOMHJkycNy+Lj45k3bx4nT57McEITUrr/NmjQgAMHDnD06FGT9QsWLACMxyrNTD3v3LnDli1bTLa5c+dOChQogK+vL2fOnGHXrl1GZWbMmMHQoUM5d+7cY/eR2nLw4a7hYWFhuLi4GCU0IyIiWL16NZCx1oBPYm5unmZ39LZt2xIcHMysWbPInz8/jRo1yvK+HnX+/Hl+/PFHKleunG63/YxKHcZgxowZRsu3b9/O0KFD+eWXX3I0/lGp52vp0qVGy/39/dm0aRP58uXL9n36+/vzxhtvcOLECcOyAgUKUKpUKczMzDA3N8fHxwcbGxvmzp1LfPz/BiwPDg7m7bffZsKECYZWyevXr2f79u0MHjyYQYMGUa9ePaZMmWJouSk5y0R9o6oAAKEBSURBVMbRngLlihn9Z+eSn0KVSxF9O5y75/833EfU7TDCLtzAterjh3HIaGxGy9366wJnV+0h4aHZayMDQ7h94jLFXqyYbS3xRTIqN+8bkeeJniEi6csLz4qrO45x92wQBb1KUbFLQyU0RfKwf01LzdQJgl577bU011tZWdGxY0dmzpzJ2rVrTdaNHj2aYcOG0aFDB1577TVsbGxYsWIFQUFBTJgwAUtLS7y9vcmXLx9jxowhMDAQJycnDhw4wMaNG7GxsTFKiKYm0ubOnUvDhg1p0qQJo0ePpnfv3rz22mt069YNBwcH1q1bx6lTpxg9erRJa7MnGTRoEL/++iu9e/emR48euLm5sWHDBi5cuMD8+fMztS2Ajz/+mKNHj/Lmm2/SsWNHPD09iY6O5vfff2f37t106NDhqZJzXbt2ZdWqVQwbNozu3bvj4eHBzp072bt3L//973+xsLBg4MCB/PbbbwwePJiuXbtSvnx5Dh8+zNq1a2nYsCENGzZ87D5SxyDdtm0bxYoVo1mzZjRs2JA5c+YwdOhQ6tevz+3bt1m5ciV37twBHt/VPqNcXFw4c+YMS5YsoU6dOoaEd4MGDXB2dmbjxo106NAhUwnmtDx8zUZFRREQEMDatWuxs7Nj/PjxWf7g2qhRI5o0acL8+fMJDAykXr16BAYG8tNPP1GsWDH69u2bo/GPqlSpEp06dWLRokXcunWLevXqGWZEf+WVV6hYsSKenp7Zus9XXnmFH374gUGDBtGtWzcKFy7MyZMnWbNmDa+++ioODg44ODjw/vvvM2bMGLp06UK7du1ISEhgyZIlxMbG8sknnwAp42p+9dVXlC9f3tAy8/PPP6dt27aMGjWKRYsW6ctGLilSqwJB+85weukOSjTwwsLKkuu7T2LtaE/xlyobysVFRnP3XBD5ihbAoYhLpmIzWq74S5UJ+fsKJ+b/SmHvciRExxK45xT2bs4Ue6icSG57FveNSF6gZ4hI+p6XZ0V8VCyBu09iZmGOc5mi3Dp2yaRMocruWFhrTGeRvOBfldTMnz8/zZo1S7dM586dmT17tqGl3sNatGiBk5MTM2bM4Pvvv8fc3Jzy5cszY8YMGjduDEChQoWYPXs2EyZMYMaMGVhbW+Ph4cGkSZM4fvw4Cxcu5M6dOxQqVIjWrVvz22+/4e/vz8GDB2nSpAne3t4sXbqUqVOnMn/+fJKSkqhYsSLffffdU00iU7BgQZYtW8bEiRP5+eefiYuLo2LFisyfP/+pWu65u7uzatUq5syZw++//86KFSuwtbXFw8ODMWPG8Oqrr2Z6m5Ayk/uiRYuYMmUKGzZsICIigrJlyzJlyhTDzOnOzs4sW7aMqVOnsnnzZpYtW0axYsV4++23GTBgwBPHIbSzs2PYsGHMmzePr776Cnd3d4YMGUJiYiIbN25kx44duLm54ePjQ58+fWjdujX79+9/qpanDxsyZAiff/45//3vfxk8eLAhqWltbU3z5s1ZtmxZtsx6/vHHHxv+bWNjQ9GiRenYsSP9+/encOHCj4nMGDMzM7799lvmzp3LmjVr2L59Oy4uLjRr1oyhQ4dSqFChHI1Py3/+8x9Kly7NihUr2L59O8WKFWPw4MH069cvR/bp5ubGwoULmTp1Kj///DNhYWEUL16cd955h/79+xvKvfHGGxQuXJgffviByZMnY2trS+XKlRk/fjw1a9YEUsbcDAsLY/r06Yaxcj08POjfvz/ff/89S5YsoXv37pk+J5J15pYWVOnbnEsb/+T67ycxMzPDqUwRyrSsjZX9/7o2Rd0K4+yK3bg3qWb4wJ3R2IyWc3R3pXLvplzZcoRLmw9haWeNa/UylGrijaUmT5HnyLO4b0TyAj1DRNL3vDwrIq7fJik+pUfehXX70yzjVPo1JTVF8giz5MfNUCMiOebzzz9n27Zt7Nq1K0MTP4k8Sdcd43K7CiIiIiIi8i/zc+OPn1woD7h3/HhuVyFdjlWr5nYVnkv/mjE1RZ4nYWFhbN68mVdeeUUJTRERERERERGRTPrXdD8XU7dv385QOXt7exwcHHK4Nv8Op06dYu7cuRw/fpzY2FiTLsb3798nKioqQ9tydXXNiSr+q0RERBATE/PEchYWFkYTSomIiIiIiIhI7lJS81+sfv36GSr3zjvvMGTIkByuzb9D/vz52bdvHzY2NkyYMIGiRYsarZ8/fz7Tp0/P0LYCAgJyoor/Kl9//XWaY+g+qnjx4mzfvv0Z1EhEREREREREMkJJzX+xH374IUPlSpYsmcM1+fdwd3dn//60B6SGlBm2UyeTkZzXr18/2rVr98RyNjaarEJERERERETkeaKk5r+Yj49PbldBHlGyZEklkZ+hcuXKGWakFxEREREREZG8QxMFiYiIiIiIiIiISJ6ipKaIiIiIiIiIiIjkKUpqioiIiIiIiIiISJ6ipKaIiIiIiIiIiIjkKUpqioiIiIiIiIiISJ6ipKaIiIiIiIiIiIjkKUpqioiIiIiIiIiISJ6ipKaIiIiIiIiIiIjkKUpqioiIiIiIiIiISJ6ipKaIiIiIiIiIiIjkKUpqioiIiIiIiIiISJ6ipKaIiIiIiIiIiIjkKUpqioiIiIiIiIiISJ6ipKaIiIiIiIiIiIjkKUpqioiIiIiIiIiISJ6ipKaIiIiIiIiIiIjkKUpqioiIiIiIiIiISJ6ipKaIiIiIiIiIiIjkKUpqioiIiIiIiIiISJ6ipKaIiIiIiIiIiIjkKUpqioiIiIiIiIiISJ6ipKaIiIiIiIiIiIjkKUpqioiIiIiIiIiISJ6ipKaIiIiIiIiIiIjkKZa5XYGctH//fnr37o2zszO7d+/G2traaL2vry/Fixdn0aJFOVaHkJAQ7OzssP9/9u47LIqrbeDwj94RaQoIig2MWLAGFQti7xor1qjRWGLKm0SN0S+J0UQxie21Y41YsYsVMVaMLYixYKWoiCIgfWH5/kA2rosKCgJ5n/u6uBJmzjlzzjjDzD57irFxoZQ3ceJEtm3bxrVr1wqlvOeFhIQwePBgxo0bx/jx4/NM4+XlBUBQUFChH78wKJVK7t27R4UKFQqUL7ftM2fOpGfPngU+bmRkJI6OjgXOlx+DBg3izJkzatsMDAywsbGhWbNmjB49Gjs7O7X9L17b2dnZ+Pr6smXLFtLT0/nyyy9p2bIlEydO5K+//sLIyIjAwEAsLS2LpA1ClBZpcU+5FfgnCbceAGDpWgHnDg3RNzUqlHz5TZdwJ4Y7B86TFP0IXSN9rGo4UdHbHT0Tw8JqqhBvLCMpldv7zvLkejRKRSZlKttRuVMjjCzNCi1vftOlPk7kduBZ4m/fJztTiZmjDZXa1sfcyaZQ2yzE6xT38yPtSRJ/zt7yymPVGtEOi8p2r0wjRFEp7nsk19PoR9zZf47EiIdoaWlRxrk8zh0aYmxTprCaKoR4h/7VQc1du3ZhbGxMfHw8QUFBtG/f/p0e/+jRo/znP/9h27ZthRbU7Nu3Lx4eHoVS1r9NUlISQ4cOpUWLFi8Nyr5MlSpVmDVrFvXq1SvwcadOncrt27eLNDgOMGvWLNX/p6SkEB4eztatWwkMDMTf358qVaqo9k+ePBkjo38e4MHBwSxfvpyWLVvi7e1N/fr1+fnnnzl79izjxo3DxsZGAprif54iJZ3QFfvIzlJSobkb2dnZRB0LI/nBE+qO6Yy2js5b5ctvuvhb9wlbeRBdI30cW9ZGS0uL6JN/E3/rAXVGd0TPyOCdnRMhXqTMzOLy6kOkPkrAoVlNdAz0iT4eRuiyQOqN74ae8cuvz/zmzW86RXIaocsCyUxT4NCsJnpG+kSfusKlFfuo+3EnTMrLc028GyXh+aFnYkD13p4ax1BmZnJzVwh6JoaY2Mk9IYpHSbhHAFJiEwhdtg8dfV2cWtUBIPrE3/y1dC/1xnfDwLxwPrMLId6df21QMyMjgwMHDtCtWzd2797Ntm3b3nlQMzQ0lMTExEIt093dHXd390It898iPj6eS5cu0aJFiwLntba2plu3bm903OPHj+Pg4PBGeQsir/r17t2bfv36MWHCBHbu3Im2ds6MEt7e3mrpcnv2fv7557i4uKi21ahRg7FjxxZxzYUoHaKPXyY9IYX6n3TD2NYCALMKNoT5HSDm/A3sGrq8Vb78pru5KwQtbS3qjOqIkZU5AFY1nTg/byeRwaFU7tCw6E6CEK8Rc+EGSdGPcfuwLWWr2gNg6eLA+Xk7iD5+mUptX/7lYH7z5jfdg7PXyUhMpYZPK6xrVgTAqmZFzv26jYigv6gxoFWRnQchnlcSnh86+nqUc6+icYybu0PIzlLi2qe5fCkmik1JuEcAok/+jTIjkzofdcDU3goAiyr2XPzvbqJPXJZ3LCFKoX/tnJpHjx4lMTGRxo0b06xZM44fP05sbGxxV0uIQlWjRg1GjRpFeHg4R44ceWk6hUIBgImJidq2538X4n9dbOgtLJzLq16GAcpWtcfIxpzY0NtvnS8/6dKeJJESE4+texVVQBPA2MYCyxqOxJy/8fYNFeItxIbextDKTBVshJzr06KKHbGhtwolb37TpT1JAqBstX/SGVqYYmxrQXLMkzdvpBAFVBKeH3lJfhDHvVNXKFe/GmWcy79R24QoDCXlHkmLe4quiYEqoAlgVsEaXWMDUuS5IUSp9K8Nau7atQstLS0aNmxImzZtyMzMZMeOHa/Nd+HCBYYNG6bqEfnhhx8SGhqqliY7Oxt/f38++OAD3N3dqVWrFu3bt2fp0qVkZ2cDOXNfLliwAIDWrVszaNAgVf5r164xZswYGjRoQO3atenTpw+HDh1SO8agQYMYPnw4v/76K+7u7nh4eHDt2jUmTpyo6mmXKyYmhsmTJ9OsWTPc3d3p1auXRnlFZf78+dSqVYs7d+4watQo3N3dadiwIV9//TVPnqg/GJKSkpgxYwYtW7akTp06dOnShc2bN6ulSUhI4IcffsDT0xM3Nzc6dOjA6tWrVef1+WMePHiQpk2b4u7uzubNm2ndujUACxYswMXFhaioKADu3r3L119/TfPmzXFzc6NRo0aMHj2a8PBwVZkhISG4uLgQEBCg9vuJEyf47rvv8PDwoE6dOgwZMoSrV6+q8rm4uBAdHc2ZM2dU+fv27UuzZs1QKpVqbbt58yYuLi78/vvvhXDm/9GlSxcAjh07ptrm5eWluua8vLzUrkUvLy+Nes+fPx/ImZPUz8+P9u3b4+bmhqenJ9OnTycpKUnjXG3bto0uXbpQq1YtJk2aVOD8rzu3kHOvrVmzhs6dO1O7dm28vLzw9fUlNTVVlSY/x8yvqKgoXFxcWLVqFf3798fNzY2hQ4cCOdfvnDlzaN++PbVq1cLd3Z0+ffpw+PBhjXJ27NhBr169qFu3Ls2bN2fq1KnExcWppQkICKB79+7UqlWL999/n4kTJ/Lw4cMC11kUDkVqOmlxSZg6WGnsM7WzIune47fKl990GYnJAJiUK6uRzsjSjMzkdNITkvPfMCEKWdK9x2ofBnOZ2FuRFpeEIjX9rfPmN11u4D819p9RMcqsLNITktE3kyGE4t0oKc+PvNw5eB5tPV0qessoL1F8StI9YmRlTmZKOhlJ/3yWUKSkk5mWgd5r5vYUQpRM/8rh50lJSQQHB1O3bl2sra1p0aIF+vr6bN++nREjRrw034kTJxg1ahSurq5MmDCBjIwMAgIC8PHxYeXKlTRo0ACA3377jcWLF9OjRw/69OlDcnIy27dvZ86cOZiYmODj40Pfvn1JSkri4MGDTJo0iWrVqgE5Q9IHDx6Mqakpw4YNw8TEhB07djB27FimTp2Kj4+Pqj7nz58nMjKSL7/8kqioKKpWrapR5/j4ePr06UN8fDw+Pj44Ojqye/duxo0bx4IFCzSGIRcFpVLJ4MGDadCgAV9//TWXLl1iy5YtpKWlMXfuXCBnOgAfHx/Cw8Pp06cPrq6uHD16lClTppCamsrgwYNJSUlh4MCB3L9/nwEDBlC+fHlOnz7NjBkzuHPnDtOmTVMdMzMzk6lTpzJs2DAyMjKoXr06kyZNYubMmbRp04Y2bdpgaWnJo0eP6NOnD6ampgwcOJCyZcty5coVNm3axOXLlwkKCkJPT++lbZsyZQq2traMGTOGhIQEli9fzsiRIzly5Ai6urrMmjWLmTNnUrZsWUaPHk29evVITk5m+vTp/PnnnzRu3FhV1p49e9DV1aVDhw6Fev4dHR0xMjLSCAjmmjx5Mtu3b1ddi7a2tigUCrV65wbKv/nmG3bs2EH37t0ZOnQoN2/exN/fn/Pnz+Pv74+BwT/Dlr7//nt69uxJ7969sbe3L3D+151bgO+++w5/f39atWpF//79uX37Nn5+fty5c0cVqC3IMfNr7ty5eHl50aVLFwwMDMjOzmbUqFH8/fffDBw4ECcnJx48eMCGDRsYN24c27dvV53DZcuW4evrS/369fn88895/Pgxq1ev5sqVK/j7+6Orq8uCBQuYP38+7dq1o0+fPsTExLBu3TrOnDnDli1bZH7TYpCRkAKAfh5zKembG5GVqiAzNQNdI/03ypffdNp6Odd+VrpCI50iJSeQk/E0FYMy0stavHtZGQqyUhV5X8fPPgymxyfnOcQ1v3m1dbTzfYzyDarz8OJNrm87QdWuHuga6RMZ/BeK5DQqeLq9VVuFyK+S8vx4sfzkB3HEXYnCwbOmzBMoilVJukcqNHcj7mok1zb+QeVOOUPNbwWeRVtHG4cm771dQ4UQxeJfGdTcv38/6enptG3bFgBTU1OaNGlCcHAwoaGh1K5dWyOPUqlk2rRp1KpVi3Xr1qHzbDLhgQMH0r17d6ZPn8727dtRKBSsW7eOTp068dNPP6ny9+7dGw8PD44dO4aPjw/u7u64uLhw8OBBvL29VatxT58+HS0tLbZs2UL58jnDQPr370///v2ZNWsWHTp0UAU0UlJSmD17NnXq1HlpW5ctW8aDBw9Yv3499evXB6Bnz5507tyZxYsXv5OgZmZmJh07dmTixIkA9OvXj5iYGA4dOkRqaipGRkZs2bKFq1ev4uvrq+pZ2LdvXwYOHMjSpUsZOHAgK1as4Pbt22zdulUVIBowYAC//PILS5YsoW/fvri6ugI5/17Dhg3jo48+UtXDysqKmTNn4uLiopp/ct26dSQkJLB+/Xq1hXRMTExYunQp169fp2bNmi9tm5WVFevXr1ddD/r6+syZM4eQkBCaNm1Kt27dmDt3rtqcnB07dmTmzJkEBgaqBTX37t2Lh4dHkQSszM3NiY+Pz3Oft7c3V65c0bgWX6x3SEgIAQEBfPfdd/Tr10+Vv0WLFgwfPpwNGzYwZMgQ1fb69evz7bffqn4vaP7XndsbN26wYcMG+vTpww8//KDKZ2JiwuLFi7lx4waPHz8u0DHzy87ODl9fX7S0tAD466+/OHv2rMZx6taty4gRIzh58iQuLi4kJCQwf/58PD09WbJkiaptFSpUYMqUKZw4cYLKlSuzcOFCPvroI7744gtVWZ06daJnz54sXryYyZMnF7jO4u1kZeQEEXX0NB+L2s+C7FmKTI0X7vzmy28643IW6Bjq8ejyXSq0qKW6BrMUmTwJjwZAqcgseAOFKASZaS+/jnO3KTM0A/IFyVuQY+ga6VPR252rG//gr8V7VOmqdGmMpUuF/DVKiLdUUp4fL5Z/L+QaaGth/36NArVHiMJWku4RQwtTHFvW5uau05yft/NZIi1qDGiZ5wgBIUTJ968cfr57924A2rRpo9qW+/+5w4tf9PfffxMZGYm3tzcJCQnExcURFxdHWloarVq14sqVK8TExKCnp8fJkyf5/vvv1fI/efIEU1NTUlJSXlqvR48e8ddff9GtWzdVQBPAwMCA4cOHk5aWxsmTJ1XbDQ0NqVWr1ivbGhwcTM2aNVUBzdzyli5dyrx5816ZtzC92PuwRo0aZGZmqgJtwcHBWFpa0rlzZ1UaLS0tZs2axe+//46WlhYHDhygevXq2NjYqM5/XFycKjD74pyRDRu+fiLnjz76iBMnTqgFNNPS0lQL6rzq3wugbdu2qsBUbruAV87PamVlhYeHBwcPHiQrKwvIub5u376t1v7ClJmZqQp+vKkDBw6gpaVFixYt1M7/e++9h42NDcHBwWrpXzz/Bc3/unMbHBxMdna22tQNAMOHD2fnzp04OTkV+Jj51aBBA7XzWadOHf7880969uyp2paVlaWaYiA5OWc48MmTJ0lPT8fHx0etbV27diUgIIBGjRpx8OBBlEolXl5eanW2tramRo0ab1xn8ZZyp7go6G2U33z5TKeto4ND05okRT/m2sY/SH4QR9K9x1z1D0aZkRPM1NL5Vz66RWnyquv4dc+i/ObNR7oHZ6/z99ogDC3NqP5BM1z7tcDStQI3d4dw73TeoxeEKHQl5PnxvCxFJg8v3MSqhiOGZU0LWDEhClkJukfuHDzPje2nMHeyxaVvc6r39sSsgjVX/Y/y+EpkASsohCgJ/nU9NR8+fMjp06epVKkSWlpaqnkVXV1d0dLSYu/evUyePBl9ffVvgiIiIgCYNWsWs2bNyrPse/fuUa5cOfT09AgODubw4cPcvn2bu3fvkpCQAKA29+OLoqNzetk4Oztr7MsNut27d0+1zcLCQhV8e1WZXl5eGtvzOsbr5A7Tzcx8eS+gzMzMPBeXebH3Ye75zQ3qRUdH4+TkpBF4e37V8IiICNLS0vDw8Mjz2Pfv31f73coqf9+mKRQKfv31Vy5fvkxERARRUVGqer047+WLXtau1+Xr0qULx48f588//+T9999nz549GBgYFEnP2aysLBITE9/o3/x5ERERZGdn07Jlyzz3v/jv/uK5edv8L57b3PulUqVKaunMzc0xNzd/o2PmV169aXV1ddmwYQNnzpzh7t27qusV/rnvc+tcsWJFtbwGBgaqHsG5f2ue7/H5vFdNhyCKjo5BznlXKrI09imf/U3UNdT8t8lvvswClO/kVYfMtAzunfxbNbm9ZY0KVGjuxp3959GV1WvFO5ClyCQrLUNtm47+s56SmZrXcdazHsS598SL8pu3IMe4c/AC+mWMqTu6Izr6OdtsajsTtvogtwP/xNqtomrIuhBFpSQ9P3Il3HqAMiMTa7dK+W2GEEWmpNwjmakZRB0Lw7SCFbWGt0Pr2edsm9qVuPjf3YRvO0HZar3R1tXRKEf878g6+vLFd4tdHiOOxb8wqLl3716USiV37txRLRzzvISEBA4dOkTHjh3VtucGUiZMmEDdunXzLLty5cpkZ2czZswYjhw5Qv369XF3d6dv3740bNjwtcNcXxXwzD3+8wGN53t6vUxWVtZb99DLlRsoyu11lpenT59iZ2ensf11dchPPbOysqhfvz7jxo3Lc7+tra3a768L+AKcPXuW4cOHY2xsTJMmTejVqxfvvfceERERGr1t85KfY+SlTZs2TJs2jcDAQN5//30CAwNp2bIlpqaF/235jRs3UCgUqqH5b0qpVGJiYqKaq/JFL85N+eL1WdD8rzu3uYHnVynoMfPrxbbFxcXRu3dvHj58SNOmTfHy8sLV1RUHBwd69+6tVh949f2Qm2bRokUYGhq+Uf1E4TMok3NvZjxN1diXkZiKjpGeKmjyJvkKUr6WlhZVOjXCsUUtUh8lYlDGBMOyptw5cB60tTCwkPk0RdF7dOkO17ccV9vm1LoOOkZ6ZCRqjnLIvbbzmtMMQNdQP19585suIykVxdNU7JvU0Lg3y9WrypNr0TyNjMWqhlM+WivEmytJz49ccdei0NLVlmkYRIlQUu6Rp1GPyM5UYlO7siqgCTmjZGzrVOH2vrOkxCZgaidz2wtRmvzrgpq5q57/9NNPGgGkq1evMn/+fLZt26YR1MztMZgb/HpeaGgoCQkJGBoacvbsWY4cOcKYMWOYMGGCKk3uUGtHR8eX1i33GLdu3dLYd/t2Tm+c54el54e9vb2q59fztm3bxrlz55g6dapGr9SXqVChAoaGhty4cSPP/ZGRkaSkpKgWPSpoPa9du6ax/ejRo+zdu5cvv/wSBwcHkpOTNc5/QkICp06d0uj9lh/z5s3D0NCQPXv2qPW+W7x4cYHLKggTExNatWrFkSNH6N+/P9HR0aoVwgvbvn37APIM4heEg4MDx48fx83NTRXgfv4YTk6v/mD4tvlflLv4UGRkpNr0ATExMcycOZOBAwcW+jFfZv369URFRbFq1Sq1nsTnz59XS5cb8I+IiFDrOZuRkcGXX35Jly5dVH8H7OzsVEPucx09erRIAt/i9XSN9DGwNM1zBc6k+48xc7B+q3wFKf/hX7fQNzPCorKdWi+zhDsPMHWwynPOKCEKm0VVe9w+bKu2zdDSjIQ7MSTdi9NIn3z/MYZWZnkuEpTL1N4qX3nzky4zNacXaXaW5siJbGW22n+FKEol6fmRKzHiIWYO1uga5u8zgBBFqaTcI9q6zwKZeTwbsrOVuf+TrzYJIUqOf9XEXLdv3yYsLIxGjRrRvXt3vL291X5GjRqFjY0NJ06cICYmRi2vm5sbNjY2rF27Vq2nYlJSEp9++imTJk1CR0dHNUfkiyuRb9q0idTUVLWh27k90XJ7aNrY2ODm5sbOnTt58OCBKl1GRgYrV65EX1+fpk2bFqjNzZs359KlS4SFham2KRQKVqxYQVhYWL4DmpAz/NfT05OQkBAuXryosX/16tWA+lylBanno0ePOHjwoEaZwcHBlC1bFi8vL65evcrRo0fV0ixatIgJEyYQHh7+ymPk9q57fmh4fHw8lpaWagHNp0+fsm3bNiB/vQFfR1tbO8/h6F26dCEmJoYlS5ZgZmZGixYt3vpYL7px4warVq2iZs2aLx22n1+50xgsWrRIbXtQUBATJkxg165dRZr/Rbnny9/fX217QEAAgYGBmJqaFvoxXyav+z47O5t169YB/0zZ0KRJE/T09Ni0aZNaz+x9+/apgs+tWrUCYMmSJWpprly5wscff6y6z8S7Z12zIvE375ESG6/a9uTGPVJjE7Gp/fLpHfKbL7/pok9c5uauEJTPBWseX40k8c5D7Bu/XY9sIfLLwNyYslXt1X6MLM2wrlmR1NgEntz4Z7qclNh44m/ef+V9AuQ7b37S6RrpY+ZozaPLd1Ekp6nSZWdn8+DsdbR0tDGvqD7CQ4iiUlKeHwDKrCxSYuIxsZfeZqLkKAn3iLGtBfrmRjw4H66azgRypjaJuXATXRMDjMtZvHVbhRDv1r+qu0fuAkEffPBBnvv19PTo1asXixcvZseOHRr7pkyZwmeffUbPnj354IMPMDAwYPPmzdy7dw9fX190dXVxd3fH1NSUmTNnEh0dTZkyZQgJCWHv3r0YGBioBURzA2nLly+nefPmtG7dmilTpjBkyBA++OAD+vfvj4mJCTt37uTy5ctMmTJFo7fZ64wePZr9+/czZMgQBg4ciK2tLXv27OHmzZv4+fkVqCyAr776iosXLzJs2DB69eqFi4sLqamp/PHHHxw7doyePXu+UXCuX79+bN26lc8++wwfHx+cnZ0JDg7mxIkTzJgxAx0dHUaNGsWBAwcYO3Ys/fr1o1q1apw7d44dO3bQvHlzmjdv/spj5M5BevjwYezt7Wnbti3Nmzdn2bJlTJgwgWbNmhEbG8uWLVt49OgR8Oqh9vllaWnJ1atXWb9+PY0aNVIFvjw9PbGwsGDv3r307NmzQAHmvDx/zaakpHDt2jV27NiBkZERs2fPfutpCFq0aEHr1q3x8/MjOjoaDw8PoqOj+f3337G3t2f48OFFmv9FNWrUoHfv3qxdu5aHDx/i4eGhWhG9e/fuuLq64uLiUqjHfJnmzZuzdu1aRo0axQcffIBCoSAwMJCwsDC0tbVV15GVlRVjx47lt99+48MPP8Tb25sHDx6wbt06GjdujJeXF9ra2gwaNIi1a9cSHx+Pt7c38fHxrFu3DhMTE7Ue4OLdquDpxsMLN7m0Yj8OzdxQZmbmzL3kYIVt3ZzewqlxT0m8+xDzirYYWZrlO19B0jk2r8WV9cH8vfYQVu9VJC0+iejjlylb3R7bupXf7UkR4gXlG1Tn3qmrXPE/QgVPN3T0dIk6Foa+uTEOTWuq0mUkpfIk/B6mdmUxKW9ZoLz5TVe5U2MurdjHhf/uwq6RC9p6ujy6dIfEuw+p1LaezKcp3pmS8vwASI9PJjtLiWEZGfkhSo6ScI9oaWtTpcv7XFl/hIuL9lC+fjWys7OJORdOamwCLr090c7H9G9CiJLlXxfUNDMzo23bti9N06dPH5YuXarqqfe89u3bU6ZMGRYtWsR///tftLW1qVatGosWLVL1rrK2tmbp0qX4+vqyaNEi9PX1cXZ25pdffiE0NJQ1a9bw6NEjrK2t6dSpEwcOHCAgIIAzZ87QunVr3N3d8ff3Z968efj5+aFUKnF1dWXhwoVvtIiMlZUVGzduZM6cOWzYsIGMjAxcXV3x8/N7o557Tk5ObN26lWXLlvHHH3+wefNmDA0NcXZ2ZubMmfTo0aPAZULOSu5r167lt99+Y8+ePTx9+pQqVarw22+/qVZOt7CwYOPGjcybN499+/axceNG7O3tGTNmDB999NFr52A0MjLis88+Y8WKFUyfPh0nJyfGjx9PVlYWe/fu5ciRI9ja2tKkSRM+/PBDOnXqxOnTp9+o5+nzxo8fz7Rp05gxYwZjx45VBTX19fVp164dGzduLJRVz7/66ivV/xsYGGBnZ0evXr0YOXIk5cqVe+vytbS0mDt3LsuXL2f79u0EBQVhaWlJ27ZtmTBhAtbWeQ8NKaz8efn++++pVKkSmzdvJigoCHt7e8aOHcuIESOK7Jh5ad68OdOnT8fPz4+ffvqJMmXKULNmTTZu3Mi3335LSEiIKu3HH3+MjY0Na9as4aeffsLGxoY+ffowfvx41TX8zTffULlyZTZs2MDPP/+MmZkZDRo0YMKECWpD7cW7pW9qRO2RHbi15wx3D11AR18XqxpOOLdvoJo0PvFODNe3HKf6B81UL9z5yVeQdNZulXDp25yoPy5xa+8Z9EyNqODphmOL2mpzQAlRHLR1dag1vB239/5J1B9haGlpUaZyeSp3aIie8T9Dz1MexnN98zGcWtdRBTXzmze/6cydbKgzqiN3Dp4nMjgUZZYSY1sLXPp4agR6hChKJeX5AZCZkg6ATh4LrwhRXErKPWJdsyK1PmxHRNBF7hw8B+RMeVJziDeW1WUOWiFKI63sV61eI4R4K9OmTePw4cMcPXo0Xws/CfE2+h2ZVdxVEEIIIYQQQvyP2dDqq9cnKgWezJ9b3FV4qbLjZURfXqTLhxBFJD4+nn379tG9e3cJaAohhBBCCCGEEEIUon/V8HOhKTY2Nl/pjI2NMTExKeLa/G+4fPkyy5cvJzQ0lPT0dHx8fNT2Jycnk5KSkq+ybGxsiqKK/1OePn1KWlraa9Pp6OioLSglhBBCCCGEEEKIkkuCmv9yzZo1y1e6cePGMX78+CKuzf8GMzMzTp06hYGBAb6+vtjZ2ant9/PzY8GCBfkq69q1a0VRxf8pP/74Y55z6L7IwcGBoKCgd1AjIYQQQgghhBBCvC0Jav7LrVy5Ml/pHB0di7gm/zucnJw4ffr0S/d3796d+vXrv8Ma/W8bMWIEXbt2fW06AwOD16YRQgghhBBCCCFEySBBzX+5Jk2aFHcVxAscHR0liPwOVa1aVbUivRBCCCGEEEIIIf4dZKEgIYQQQgghhBBCCCFEqSJBTSGEEEIIIYQQQgghRKkiQU0hhBBCCCGEEEIIIUSpIkFNIYQQQgghhBBCCCFEqSJBTSGEEEIIIYQQQgghRKkiQU0hhBBCCCGEEEIIIUSpIkFNIYQQQgghhBBCCCFEqSJBTSGEEEIIIYQQQgghRKkiQU0hhBBCCCGEEEIIIUSpIkFNIYQQQgghhBBCCCFEqaJb3BUQQgghhChqI6p4F3cVhCjRlt88VNxVEEIIIYQoEOmpKYQQQgghhBBCCCGEKFUkqCmEEEIIIYQQQgghhChVJKgphBBCCCGEEEIIIYQoVSSoKYQQQgghhBBCCCGEKFUkqCmEEEIIIYQQQgghhChVJKgphBBCCCGEEEIIIYQoVSSoKYQQQgghhBBCCCGEKFUkqCmEEEIIIYQQQgghhChVJKgphBBCCCGEEEIIIYQoVSSoKYQQQgghhBBCCCGEKFUkqCmEEEIIIYQQQgghhChVJKgphBBCCCGEEEIIIYQoVSSoKYQQQgghhBBCCCGEKFV03ybz6dOnGTJkCBYWFhw7dgx9fX21/V5eXjg4OLB27dq3quSrPH78GCMjI4yNjQulvIkTJ7Jt2zauXbtWKOU9LyQkhMGDBzNu3DjGjx+fZxovLy8AgoKCCv34hUGpVHLv3j0qVKhQoHy5bZ85cyY9e/Ys8HEjIyNxdHQscL78GDRoEGfOnFHbZmBggI2NDc2aNWP06NHY2dmp7X/x2s7OzsbX15ctW7aQnp7Ol19+ScuWLZk4cSJ//fUXRkZGBAYGYmlpWSRtEK936NAh5s2bR2RkJJUrV2bSpEk0aNCguKslSrGMpFRu7zvLk+vRKBWZlKlsR+VOjTCyNCvSvEIUt+TEp+zfvIvroX+jUCio7FqNDv26Y2lrXSR5j+4+wNmjp/li9tRXlp0Yn8D8b3+mRl03eg4fUOB2CVEY3sWz4U2OERH8Fw/+vE6jL3u/dRuFeFNyfwghCttb9dTctWsXxsbGxMfHF0sQ7ujRo7Rv3564uLhCK7Nv377MmjWr0Mr7N0lKSqJPnz5s27atwHmrVKnCrFmzaNiwYYHzTp06lcmTJxc4X0HNmjVL9TNp0iRatGjB9u3b6datGzdv3lRLO3nyZEaPHq36PTg4mOXLl1O3bl2++eYbPDw8+Pnnnzl79iyjRo3iiy++kIBmMTp9+jTjxo2jQoUKfPXVV2RkZDBy5Eiio6OLu2qilFJmZnF59SEeX76LXWMXnFq7kxT9iNBlgShS0ossrxDFLVOhYM1vS7l87i8atWqKV7f2RN+JYMWsBaQkJRd63vBLVziyc3++6rZz9SbSklMK3CYhCsu7eDa8yTHirkcTcfivQm2rEAUl94cQoii8cU/NjIwMDhw4QLdu3di9ezfbtm2jffv2hVm31woNDSUxMbFQy3R3d8fd3b1Qy/y3iI+P59KlS7Ro0aLAea2trenWrdsbHff48eM4ODi8Ud6CyKt+vXv3pl+/fkyYMIGdO3eirZ3zPYC3t7dautyevZ9//jkuLi6qbTVq1GDs2LFFXHPxOps3b8bExIR58+ahq6vLe++9R58+fQgODsbHx6e4qydKoZgLN0iKfozbh20pW9UeAEsXB87P20H08ctUaluvSPIKUdwunPyTe3ciGfLFx1StmfO8q177PRZM/ZkTB4Jp07NToeX9M/gke9ZvJSsz67X1unjyT25cvvoWLRPi7b2LZ0NBj3H/zDVu7gohO0tZFE0WIt/k/hBCFIU37ql59OhREhMTady4Mc2aNeP48ePExsYWZt2EKHY1atRg1KhRhIeHc+TIkZemUygUAJiYmKhte/53UXzS0tJIS0vjyZMnqt8B9PT0irNaohSLDb2NoZWZ6oUZwNjGAosqdsSG3iqyvEIUt0shF7C0tVYFJQFs7MpRuUZ1LoWcL7S8q3z/y841m3B2rYZdxVdPefM0IZE9/tto2aXdG7RIiMLzLp4NBTnGJb/93Nh+Cosq5TGxlxFDonjJ/SGEKApvHNTctWsXWlpaNGzYkDZt2pCZmcmOHTtem+/ChQsMGzZM1SPyww8/JDQ0VC1NdnY2/v7+fPDBB7i7u1OrVi3at2/P0qVLyc7OBnLmvlywYAEArVu3ZtCgQar8165dY8yYMTRo0IDatWvTp08fDh06pHaMQYMGMXz4cH799Vfc3d3x8PDg2rVrTJw4UdXTLldMTAyTJ0+mWbNmuLu706tXL43yisr8+fOpVasWd+7cYdSoUbi7u9OwYUO+/vprVYAmV1JSEjNmzKBly5bUqVOHLl26sHnzZrU0CQkJ/PDDD3h6euLm5kaHDh1YvXq16rw+f8yDBw/StGlT3N3d2bx5M61btwZgwYIFuLi4EBUVBcDdu3f5+uuvad68OW5ubjRq1IjRo0cTHh6uKjMkJAQXFxcCAgLUfj9x4gTfffcdHh4e1KlThyFDhnD16j89LVxcXIiOjubMmTOq/H379qVZs2YolerfqN28eRMXFxd+//33Qjjz/+jSpQsAx44dU23z8vJSXXNeXl5q16KXl5dGvefPnw/kzEnq5+dH+/btcXNzw9PTk+nTp5OUlKRxrrZt20aXLl2oVasWkyZNKnD+151byLnX1qxZQ+fOnalduzZeXl74+vqSmpqqSpOfYxbEtWvXGD58OO+//z61a9emR48ebNmyRSPdkSNH6NevH3Xq1KFhw4aMHz+e27dvq/b7+/vj4uKiMV3E8OHDcXNzU2trhw4dyMzMZPLkydy8eZNp06ZhaWlJu3aaH4BdXFz47bffGD16NG5ubnTq1InMzEwUCgVLliyha9eu1KlTh9q1a9O1a9c863706FEGDhyIu7s7TZs25bPPPlPdL/ltnyjZku49xtTeSmO7ib0VaXFJKFJfPozqbfIKUdzuR0TlGWS0r1iBJ7GPSX3F8O+C5I1//ITOAz9g8GejMDA0eGWddq7ehIWlBZ4dvArQEiEK37t4NhTkGGnxSVTp+j41h7RB10C+yBXFS+4PIURReKPh50lJSQQHB1O3bl2sra1p0aIF+vr6bN++nREjRrw034kTJxg1ahSurq5MmDCBjIwMAgIC8PHxYeXKlapFO3777TcWL15Mjx496NOnD8nJyWzfvp05c+ZgYmKCj48Pffv2JSkpiYMHDzJp0iSqVasG5AxJHzx4MKampgwbNgwTExN27NjB2LFjmTp1qtpQ0/PnzxMZGcmXX35JVFQUVatW1ahzfHw8ffr0IT4+Hh8fHxwdHdm9ezfjxo1jwYIFGsOQi4JSqWTw4ME0aNCAr7/+mkuXLrFlyxbS0tKYO3cukDMdgI+PD+Hh4fTp0wdXV1eOHj3KlClTSE1NZfDgwaSkpDBw4EDu37/PgAEDKF++PKdPn2bGjBncuXOHadOmqY6ZmZnJ1KlTGTZsGBkZGVSvXp1JkyYxc+ZM2rRpQ5s2bbC0tOTRo0f06dMHU1NTBg4cSNmyZbly5QqbNm3i8uXLBAUFvbI33JQpU7C1tWXMmDEkJCSwfPlyRo4cyZEjR9DV1WXWrFnMnDmTsmXLMnr0aOrVq0dycjLTp0/nzz//pHHjxqqy9uzZg66uLh06dCjU8+/o6IiRkZFGQDDX5MmT2b59u+patLW1RaFQqNU7N1D+zTffsGPHDrp3787QoUO5efMm/v7+nD9/Hn9/fwwM/vng9v3339OzZ0969+6Nvb19gfO/7twCfPfdd/j7+9OqVSv69+/P7du38fPz486dO6pAbUGO+TpxcXEMHz6csmXL8vHHH2NgYMCePXv45ptvMDAwUAWQAwICmDx5Mh4eHnz55ZckJCTg7+9Pnz592LRpE87OzvTr14/AwEBWr15N9+7dqV69Ops2beL48eN88cUXuLq6qo7bqVMndu/ezZEjRzh+/Dh2dnasWLGCMmXK5FnP1atXU69ePaZMmUJaWhq6urr85z//ITAwkP79+zNo0CCePHnCpk2b+Oabb7CxsVFNy7Bnzx6++OILqlWrxvjx41EoFPj5+XHp0iUCAgIwNzfPV/tEyZWVoSArVYG+ueYCdfqmRgCkxyejZ6R5b7xNXiGKW0ZaOmkpqZhbaP7tNC1jDuQEI41MNK/vguYd/8PX6Oi+/jX1r1NnuX7pb0Z/+3m+0gtRVN7Fs0FbR7tAx6g/oTvaOjpv3ighConcH0KIovJGb3/79+8nPT2dtm3bAmBqakqTJk0IDg4mNDSU2rVra+RRKpVMmzaNWrVqsW7dOnSe/QEZOHAg3bt3Z/r06Wzfvh2FQsG6devo1KkTP/30kyp/79698fDw4NixY/j4+ODu7o6LiwsHDx7E29tbtRr39OnT0dLSYsuWLZQvXx6A/v37079/f2bNmkWHDh1UC7akpKQwe/Zs6tSp89K2Llu2jAcPHrB+/Xrq168PQM+ePencuTOLFy9+J0HNzMxMOnbsyMSJEwHo168fMTExHDp0iNTUVIyMjNiyZQtXr17F19dXFRjq27cvAwcOZOnSpQwcOJAVK1Zw+/Zttm7dqgqyDRgwgF9++YUlS5bQt29fVSBIqVQybNgwPvroI1U9rKysmDlzJi4uLqr5J9etW0dCQgLr16+nSpUqqrQmJiYsXbqU69evU7NmzZe2zcrKivXr16uuB319febMmUNISAhNmzalW7duzJ07V21Ozo4dOzJz5kwCAwPVgpp79+7Fw8OjSBbkMTc3Jz4+Ps993t7eXLlyReNafLHeISEhBAQE8N1339GvXz9V/hYtWjB8+HA2bNjAkCFDVNvr16/Pt99+q/q9oPlfd25v3LjBhg0b6NOnDz/88IMqn4mJCYsXL+bGjRs8fvy4QMd8ndOnTxMbG8uiRYuoVasWkHM/9evXj+vXrwM5X5r8+OOPdOzYkV9++UWVt0+fPnTq1AlfX18WLlyIlpYWP/74I126dOG7775jzpw5/Pzzz9SrV0/jy5ULFy6oFgVSKpV88803vPfeey+tp66uLgsXLsTQ0BCA2NhYdu/ezciRI/niiy9U6by9venQoQPHjh2jRYsWKJVKZs6cqQqw5uavVasWw4YNY9euXXTr1i1f7RMlV2ZaznQTOnqaj9DcbcoMRaHnFaK4qabuMNDX2Kenn/MFZkZ6RqHkzU+AMinhKXvWB9CsQ2vsnF49RF2IovYung0FPYYEbERJIfeHEKKovNHw8927dwPQpk0b1bbc/88dXvyiv//+m8jISLy9vUlISCAuLo64uDjS0tJo1aoVV65cISYmBj09PU6ePMn333+vlv/JkyeYmpqSkvLyYU2PHj3ir7/+olu3bqqAJoCBgQHDhw8nLS2NkydPqrYbGhqqAisvExwcTM2aNVUBzdzyli5dyrx5816ZtzC92PuwRo0aZGZmqgJtwcHBWFpa0rlzZ1UaLS0tZs2axe+//46WlhYHDhygevXq2NjYqM5/XFycKjD74pyR+Vmp/KOPPuLEiRNqAc20tDTVgjqv+vcCaNu2rSroltsu4JXzs1pZWeHh4cHBgwfJyspZPODvv//m9u3bau0vTJmZmWhpab1VGQcOHEBLS4sWLVqonf/33nsPGxsbgoOD1dK/eP4Lmv915zY4OJjs7Gy1qRsgZ/j2zp07cXJyKvAxXyf3vpwzZw5nz54lKysLfX19AgICVMHCEydOkJSUhLe3t9oxdXR0eP/99zl+/DiZmZlATi/azz77jLNnzzJw4ECUSiU///yz6voDOHz4MIMHDyY9PZ3p06ejp6fHtGnTePz4MampqaxZs0Zj2Hft2rVVAUkAGxsbzp07x5gxY1TbsrOzVfVITs5ZtTcsLIzY2Fj69Omjlr9JkyZs3ryZbt26Fah9ooR71Z+E1/29eJu8QhQzrVdcwK+/9N8874t2rt2MqbkZrbq0LVhGIYrSu3g2yDNElFZyfwghClmBe2o+fPiQ06dPU6lSJbS0tFTzxLm6uqKlpcXevXuZPHky+vrq38RHREQAMGvWLI058HLdu3ePcuXKoaenR3BwMIcPH+b27dvcvXuXhIQEALW5H1+U2xMrr6GbuUG3e/fuqbZZWFioBT9eVqaXl+YcTW8yPDR3mO6rAhaZmZl5Li7zYu/D3PObG9SLjo7GyclJI/D2/KrhERERpKWl4eHhkeex79+/r/a7lZXmfCR5USgU/Prrr1y+fJmIiAiioqJU9Xpx3ssXvaxdr8vXpUsXjh8/zp9//sn777/Pnj17MDAwKJKes1lZWSQmJr71kOCIiAiys7Np2bJlnvtf/Hd/8dy8bf4Xz23u/VKpUiW1dObm5pibm7/RMV+nXr16DB48mLVr13Lq1CksLCxo1qwZXbp0UR0j92/FZ5999tJy4uLisLW1BXLmx925cydhYWH85z//wcnJSZUuKSmJyZMnq3qtWltbk5yczMyZM/nqq68YMGAAP/74I5MnT1b7982rt6++vj47d+7k+PHj3Llzh7t376qCmbl/l3LPacWKFTXy5/ZgL2j7RPHKUmSSlabe80xH/9m3/XmsyJylyPn7rvOSuZneJq8Q75IiQ0Hac/MrA+g/62WZqdDsTaN41vvF0MhQY9/b5s1LaMh5rpwPxeeTEaSnpZOe9s88aZmKTJKfJmFoZChD0kWRKK5ngzxDRGkg94cQ4l0q8Jve3r17USqV3LlzR7VwzPMSEhI4dOgQHTt2VNueG0iZMGECdevWzbPsypUrk52dzZgxYzhy5Aj169fH3d2dvn370rBhw9cOc31VwDP3+M/P76iTjy7nWVlZb91DL1duoCg3EJKXp0+fYmdnp7H9dXXITz2zsrKoX78+48aNy3P/i0GU1wV8Ac6ePcvw4cMxNjamSZMm9OrVi/fee4+IiAiN3rZ5yc8x8tKmTRumTZtGYGAg77//PoGBgbRs2RJTU9M3Ku9Vbty4gUKhUJuj8U0olUpMTExUc1W+6MW5KV+8Pgua/3XnNjfw/CoFPWZ+fPPNNwwaNIj9+/fzxx9/sH//fnbv3k3fvn35/vvvVffqDz/8oBrK/6Ln58KMjY3l7t27QE6vzOHDh6vafu7cOeLj4/n888+xtrYGYOjQoZw9e5aDBw8SFhaGjo6OWq9z0Dz36enpDBgwgCtXrtC4cWM8PDwYOnQojRo1Ugv45tb9VfdiQdsnitejS3e4vuW42jan1nXQMdIjI1GzJ3rG05wgUF7zOQHoGuq/cV4h3qVLZy6wzW+92rZWXdthaGzE0/gEjfS528zymDMTwNDI6I3z5uVGWM4817/PW55H3c9z6cx5PvxqLM6u1fJdphD5VVzPBnmGiNJA7g8hxLtU4KBm7qrnP/30k0YA6erVq8yfP59t27ZpBDVzewzmBr+eFxoaSkJCAoaGhpw9e5YjR44wZswYJkyYoEqTO9Ta0dHxpXXLPcatW7c09uUOL31+WHp+2Nvbq3pWPW/btm2cO3eOqVOnavRKfZkKFSpgaGjIjRs38twfGRlJSkqKatGjgtbz2rVrGtuPHj3K3r17+fLLL3FwcCA5OVnj/CckJHDq1Kk8e5e9zrx58zA0NGTPnj1qvdsWL15c4LIKwsTEhFatWnHkyBH69+9PdHS0aoXwwrZv3z6APIP4BeHg4MDx48dxc3NTBbifP8bzPQyLIv+LchcfioyMVJs+ICYmhpkzZzJw4MBCP+ajR48IDw/Hw8ODkSNHMnLkSJ48ecLYsWPZtGmT6jqFnN6SL16rISEhKJVKtXvu//7v/1AoFHz22Wf8+uuvrF69mmHDhgH/fNHxYoB35syZXL16lcjISNq3b686Fy8TGBhIWFgYP/74Ix988IHauXpe7hcSef3NmDRpEvXq1Stw+0Txsqhqj9uH6kNbDS3NSLgTQ9K9OI30yfcfY2hl9sqFfkztrd44rxDvSlU3F4Z88bHaNksbK+5cv8W9iCiN9PcjorG0tc5zkaBcdk4V3jjvi5p18KL2+/U1tq+es4gqNV1o1t6L8o4OeeQU4u0V57NBniGipJP7QwjxLhWom9zt27cJCwujUaNGdO/eHW9vb7WfUaNGYWNjw4kTJzQ+7Lu5uWFjY8PatWvVeiomJSXx6aefMmnSJHR0dFRzRL64EvmmTZtITU1VG7qdG6jIDVzY2Njg5ubGzp07efDggSpdRkYGK1euRF9fn6ZNmxakyTRv3pxLly4RFham2qZQKFixYgVhYWEFCj7o6+vj6elJSEgIFy9e1Ni/evVqAI1eY/mt56NHjzh48KBGmcHBwZQtWxYvLy+uXr3K0aNH1dIsWrSICRMmEB4e/spj5PZee35oeHx8PJaWlmoBzadPn7Jt2zYgf70BX0dbWzvP4ehdunQhJiaGJUuWYGZmplp9ujDduHGDVatWUbNmzZcO28+v3GkMFi1apLY9KCiICRMmsGvXriLN/6Lc8+Xv76+2PSAggMDAQExNTQv9mAEBAQwdOpRLly6ptpUtW5aKFSuipaWFtrY2TZo0wcDAgOXLl6N4bphiTEwMY8aMwdfXV9UTcvfu3QQFBTF27FhGjx6Nh4cHv/32m6rnZu3atTEyMiIgIICMjH+GwcTHx6sWrTh58mSeX4Q872V/l9asWQP8M6WEm5sblpaWGsc7d+4cAQEBpKSkFKh9ovgZmBtTtqq92o+RpRnWNSuSGpvAkxv/TGmSEhtP/M372NR+9VQVb5NXiHfF3KIMVWu6qP1Y2lpTs35tHt1/yI3L/3yRGns/hltXrlOrUb1Xlvk2eV9ka19eo35Va7qo1b0gQVIhCqI4nw3yDBElndwfQoh3qUA9NXMXCHq+p9Lz9PT06NWrF4sXL2bHjh0a+6ZMmcJnn31Gz549+eCDDzAwMGDz5s3cu3cPX19fdHV1cXd3x9TUlJkzZxIdHU2ZMmUICQlh7969GBgYqAVEcwNpy5cvp3nz5rRu3ZopU6YwZMgQPvjgA/r374+JiQk7d+7k8uXLTJkyRaO32euMHj2a/fv3M2TIEAYOHIitrS179uzh5s2b+Pn5FagsgK+++oqLFy8ybNgwevXqhYuLC6mpqfzxxx8cO3aMnj17vlFwrl+/fmzdupXPPvsMHx8fnJ2dCQ4O5sSJE8yYMQMdHR1GjRrFgQMHGDt2LP369aNatWqcO3eOHTt20Lx5c5o3b/7KY+TOQXr48GHs7e1p27YtzZs3Z9myZUyYMIFmzZoRGxvLli1bePToEfDqofb5ZWlpydWrV1m/fj2NGjVSBZY8PT2xsLBg79699OzZ8617tz1/zaakpHDt2jV27NiBkZERs2fPfutAU4sWLWjdujV+fn5ER0fj4eFBdHQ0v//+O/b29gwfPrxI87+oRo0a9O7dm7Vr1/Lw4UM8PDxUK6J3794dV1dXXFxcCvWY3bt3Z+XKlYwePZr+/ftTrlw5wsLC2L59Oz169MDExAQTExM+//xzZs6cSd++fenatSuZmZmsX7+e9PR0vv76ayBn3snp06dTrVo1Vc/MadOm0aVLF7755hvWrl2LpaUln376qarnadeuXXn48CH+/v5oa2szefJkZs+ezeDBg/Hz86N69ep51rtJkybo6ury1Vdf4ePjg66uLkeOHOH48ePo6emprnN9fX0mTpzI119/Tf/+/enatSvJycmsWbOGKlWq0Lt3b4yNjfPVPlGylW9QnXunrnLF/wgVPN3Q0dMl6lgY+ubGODStqUqXkZTKk/B7mNqVxaS8ZYHyClES1W/+PqeDjrFx0SqatW+Fnr4+x/cFYW5hQZO2/7y/JCU85cblq5R3dKC8o32B8gpRWr2LZ4M8Q0RpJfeHEKIoFDioaWZmRtu2L19lsk+fPixdulTVU+957du3p0yZMixatIj//ve/aGtrU61aNRYtWkSrVq0AsLa2ZunSpfj6+rJo0SL09fVxdnbml19+ITQ0lDVr1vDo0SOsra3p1KkTBw4cICAggDNnztC6dWvc3d3x9/dn3rx5+Pn5oVQqcXV1ZeHChW+0iIyVlRUbN25kzpw5bNiwgYyMDFxdXfHz83ujnntOTk5s3bqVZcuW8ccff7B582YMDQ1xdnZm5syZ9OjRo8BlQs5K7mvXruW3335jz549PH36lCpVqvDbb7+pVk63sLBg48aNzJs3j3379rFx40bs7e0ZM2YMH3300WvnYDQyMuKzzz5jxYoVTJ8+HScnJ8aPH09WVhZ79+7lyJEj2Nra0qRJEz788EM6derE6dOn36jn6fPGjx/PtGnTmDFjBmPHjlUFNfX19WnXrh0bN24slFXPv/rqK9X/GxgYYGdnR69evRg5ciTlypV76/K1tLSYO3cuy5cvZ/v27QQFBWFpaUnbtm2ZMGGCas7Hosqfl++//55KlSqxefNmgoKCsLe3Z+zYsYwYMaJIjmlra8uaNWuYN28eGzZsID4+HgcHB8aNG8fIkSNV6YYOHUq5cuVYuXIlv/76K4aGhtSsWZPZs2dTv37OcMMffviB+Ph4FixYoJor19nZmZEjR/Lf//6X9evX4+Pjw9ChQzE3N2fVqlX8/PPPmJmZ4e3tzYQJEyhfvjwVKlRg/vz5r2xL9erVmTdvHgsWLOCXX37BxMSEatWqsXLlStavX8+ZM2dQKBTo6enRrVs3zMzMWLx4MXPmzMHc3JxWrVrxxRdfYGxsnO/2iZJNW1eHWsPbcXvvn0T9EYaWlhZlKpencoeG6Bn/M7Qp5WE81zcfw6l1HdWLeX7zClES6erpMezLsezbsINjgUFoaWvj7FKVDn27YWz6z+JxsfcfsHX577Tq2k4V1MxvXiFKq3fxbJBniCit5P4QQhQFrexXra4jRAk3bdo0Dh8+zNGjR/O18JMQecnOzv5XDPnud2RWcVdBiBJrRJWCf7EpxP+S5TcPFXcVhBBClFIbWn31+kSlwJP5c4u7Ci9VdvyE1yf6H/RmS08LUQLEx8ezb98+unfvLgFN8Vb+DQFNIYQQQgghhBDif0mBVz8X6mJjY/OVztjYGBMTGVpVGC5fvszy5csJDQ0lPT0dHx8ftf3JycmkpKTkqywbG5uiqOL/lKdPn6oW3XkVHR0dtQWlhBBCCCGEEEIIId6UBDXfUrNmzfKVbty4cYwfP76Ia/O/wczMjFOnTmFgYICvry92dnZq+/38/FiwYEG+yrp27drrE4lX+vHHH/OcQ/dFDg4OBAUFvYMaCSGEEEIIIYQQ4t9OgppvaeXKlflK5+joWMQ1+d/h5OTE6dOnX7q/e/fustjKOzRixAi6du362nQGBjI5txBCCCGEEEIIIQqHBDXfUpMmTYq7CuIFjo6OEkR+h6pWrapakV4IIYQQQgghhBDiXZCFgoQQQgghhBBCCCGEEKWKBDWFEEIIIYQQQgghhBCligQ1hRBCCCGEEEIIIYQQpYoENYUQQgghhBBCCCGEEKWKBDWFEEIIIYQQQgghhBCligQ1hRBCCCGEEEIIIYQQpYoENYUQQgghhBBCCCGEEKWKBDWFEEIIIYQQQgghhBCligQ1hRBCCCGEEEIIIYQQpYoENYUQQgghhBBCCCGEEKWKbnFXQAghROFYatW+uKsgRIn10c19xV0FIUq0RWEGxV0FIUqsc908i7sKQggh8iA9NYUQQgghhBBCCCGEEKWKBDWFEEIIIYQQQgghhBCligQ1hRBCCCGEEEIIIYQQpYoENYUQQgghhBBCCCGEEKWKBDWFEEIIIYQQQgghhBCligQ1hRBCCCGEEEIIIYQQpYoENYUQQgghhBBCCCGEEKWKBDWFEEIIIYQQQgghhBCligQ1hRBCCCGEEEIIIYQQpYoENYUQQgghhBBCCCGEEKWKBDWFEEIIIYQQQgghhBCligQ1hRBCCCGEEEIIIYQQpYoENYUQQgghhBBCCCGEEKWKbnFXQAhReDIyMli1ahW7d+8mIiICbW1tKlWqRPv27RkyZAgGBgaqtElJSWRkZGBpafnKMidOnMi2bdu4du1ageoSEhLC4MGDNbZra2tjbm6Oi4sLI0eOxNPTs0Dl5srIyODJkyeUK1cOgICAACZNmsSaNWto3LjxG5UpxMPHj1mzbRt/h4cDUK9mTQb16EEZM7NX5rt68yb+u3ZxMyICU2NjGtSuTZ+OHTE3NVVLN3n2bG5GRGjkb1S3Ll8MH55n2Uv9/bn38CH/N2HCG7ZKiMIXvu0kqY8SqD2yw2vTpsU95VbgnyTcegCApWsFnDs0RN/UqEDlpz1J4s/ZW155rFoj2mFR2S6frRCiaCz74xj34+OZ2rXLa9M+THzKutOn+fvePQDcnZwY5PE+5kY590fs06d8sn7DK8v4tksn3rO3B+DOo0f8HnKGW7Gx6Ghp4+7kyIDGjShjbPyWrRLi7TyJfUzgxh3cvnYDAJfa79GhbzdMzF/9jnX3+i0OBuwm+nYkRiZG1HCvhVf3DpiY5bxjPXkUxy9fff/KMj78aizOrtUA2LBoFZf/vKiRxr6SIx9P/eINWiaEKE4S1BTiXyIzM5Phw4dz8eJFunfvTt++fcnKyuLs2bP88ssvBAUFsWbNGvT19QkLC+Pjjz/G19e3yAOAbdq0oU2bNqrfs7KyuHXrFuvXr2fUqFGsXbuW+vXrF6jM6OhoPvzwQ0aNGkXPnj0BaNiwIbNmzaJKlSqFWn/xv+NpcjLfzZtHVlYWXb29USqV7Dp8mIh795jxn/+gq5v3I/NyeDgzFi7E2MiIHm3boq2tzd4jR7h8/To/fP45ps8+SGZnZxMVE0OD2rVpXKeOWhk2L/lyIejUKQ6fPEmNqlULt7FCvIUHZ6/z4M/rlHEu99q0ipR0QlfsIztLSYXmbjn3wbEwkh88oe6Yzmjr6OS7fD0TA6r31vwiTJmZyc1dIeiZGGJi9+ov6oQoakeuXiPoylVq2JV/bdqnaWn8sHs3WUolXerUQZmdze7QUCLj4pjeozu6OjqYGRoyplVLjbwZWZmsPnEKMyNDnKysAIh68oRpO3ZhaWLMB/Xrk5KRwd5Ll7geE8PMXj0x1NMr5NYKkT8pScn4zVpIVlYmnu29yM5WcnzfEWKi7jH628/Reck71u2r4az+ZTGGRka06NwGLW0tTh04yq2r4Xw0+VOMTIwxMTWh1wgfjbwKhYI9vwdgYm5KeUcH1faHUfdxqupMw5ZN1NIbm5m+WIQQohSQoKYQ/xKBgYGcOXOG+fPn07ZtW9X2wYMHs3z5cmbPns2WLVsYMGAA169f5+HDh++kXi4uLnTr1k1je5s2bejbty+LFy9m2bJlBSozKiqKO3fuqG1zdHTE0dHxbaoq/sftCQoiLj6e2ZMmUaF8zofRqhUr8uPChQSHhODdtGme+VZu3oyWtjY/fP455W1sAGhUpw5fzZzJtv37GdSjBwCxcXGkp6fTsHZtmjdq9Mq6KJVKAvbvZ0tgYCG2UIi3k61UEhkcyt3DF/OdJ/r4ZdITUqj/STeMbS0AMKtgQ5jfAWLO38CuoUu+y9fR16Ocu+YXVzd3h5CdpcS1T3P0jAzyyClE0VMqlWy7cJGt587lO8/e0EvEJSXzc+9eVChbFoCqtjbM2BPI0evXaV2jBoZ6enhWr6aRd/XJU2Qqsxjn1QrTZyNxNv95Fh1tLaZ17YLFsy/UKttYMytwP8euh9Om5nuF0FIhCu7EgWASnsQz7vuvsLXPecdycK7I6jmLOH/iDA1bNMkz3+7fA9DS0mbk5AlYlct5x3qvXm0WTpvF0d0Had+3G/qGBtRt0lAj717/ALKysuj90SCMTHLuh6zMTOJiH9G8oXeeeYQQpY/MqSnEv8SFCxcAaJpH4GXAgAHo6elx8eLFd1yrl6tTpw7Ozs789ddfxV0VIQA4cf4871WrpgpoAtR2dcXO1paT58/nmSf28WMi79+nRaNGqoAmgEO5ctSrVYujZ86otkXev6/a9yoZCgVf//wzm/fuxbNhQywtLN6iVUIUjixFJucX7OLuoYvY1q2Cfpn8DWWNDb2FhXN5VUAToGxVe4xszIkNvf3W5Sc/iOPeqSuUq1+NMs6v7xknRFHIyMxkUsA2tpw9R7Nq1bA0yd/1e/LmTd6zt1MFNAFqVaiAnUUZTt289dJ8EY8fsz8sjBYu1alh9890Czo6OnhWq6YKaAKq/RFxcQVtlhCF5lLIeZxdqqoCmgBVa7pgVd6WSyEX8szz5FEcD6PvU7dJQ1VAE8DGrhwudWpy4cSZPPMBPIi8x6lDx6jXrBGVqv/zZdijB7FkZWZhYy/PCyH+LSSoKcS/hImJCQAbN27U2GdsbMz58+eZNWsW8+fPZ9KkSUBOL04vLy9VurCwMD788EPc3d3x9PRkyZIlZGdnF1mdjYyMNMo/deoUI0aMoHHjxtSsWRNPT0+mTp1KYmIikDN3Zu5cnZMmTcLFxUW13cXFhZCQEFVZqampzJkzBy8vL9zc3PDy8sLX15fU1NQ3qu+ZM2fw8fGhQYMGuLu7069fP4KCgjTSBQQE0L17d2rVqsX777/PxIkT1XrG+vr64uLiwu+//67alpGRQZcuXWjcuDExMTFvVD/x5pJSUnj46BGV8+jt6+zoyO3IyDzzxSUkAOBopzmHX3lra54mJfH4yRNAM6iZlp6eZ5kKhYKUtDQ+HTaMsYMGoa0tj2pR/LIzlWSlZ+DavwUuvT3R0tZ6bR5FajppcUmYOlhp7DO1syLp3uO3Kh/gzsHzaOvpUtHbPf+NEaKQKbKySMnIYIJ3a8a0apmvv9tJ6ek8THyKs421xr5K1tbcfvTopXk3/nkWfV1d+jRooLb9k9ZeDGum/uX23cc595mVqQytFcUjNTmFJ7GPsa9UQWOfvVMF7kdE5Zkv8UnOO1a5CpoBSEtba1KSkkmIe5Jn3kMBe9DT16N1j45q2x/ey5nb2cYu510sIy3vdzEhROkhw8+F+Jfo2rUrK1eu5OeffyYgIABvb288PDxwd3dHX18ffX19IGfYd2xsLBs3bmT06NHUqlULgPDwcAYNGoS5uTljxoxBoVDg5+dHRkZGkdQ3JiaG69evU69ePdW248ePM3LkSOrVq8cnn3yClpYWJ06cYOPGjSQkJDB37lwaNmzI6NGjWbx4MX379n3pfJwZGRkMGzaMixcv0rNnT9zc3AgNDWXZsmWcO3eONWvWoFeAuaVu3brFqFGjqFGjBp999hkAmzZtYsyYMaxbt44Gzz5YLFiwgPnz59OuXTv69OlDTEwM69at48yZM2zZsgVLS0vGjx/PoUOH+O2332jXrh3W1tYsXLiQ69ev8+uvv6oWPxLvTlx8PACWZcpo7Ctrbk5KairJKSmYvLDQQu59lZpHgPJpUhIA8YmJWJUtS9T9+xgaGrImIICTFy6Qnp6OrbU1/Tp3pulz17GxkRHzpk5FJ4+5BoUoLjqGejT4vBfaOvkPsmckpACgb67Za03f3IisVAWZqRnoGum/UfnJD+KIuxKFg2dNDPI4hhDvirG+Pr/164tOAb6EepKcDIClsYnGvrLGxqSkZ5Ccno6JgfqUChGPH3P+bgSdateirIlm3ufLvx7zkHWnT1PWxBgvV5eXphWiKOUGJ83LWmjsM7MwJy0lldSUVIyM1ReP0zfIeU9PzyPwmJKUc/88TXhKGcuyavseRN7j2l+XadquFeYW6u91MVE5XzD/efQkl0LOk5qcgmkZc5p38sbDu/mbNVAIUawkqCnEv0S1atVYsGABkydPJjw8nPDwcBYtWoSxsTFeXl6MGzcOZ2dnXF1dqVu3Lhs3bqRJkyaqhYLmz58PwIYNG7B71uusXbt2dO/e/a3qlZqaStxzQ54UCgU3b97E19cXpVLJuHHjVPtWrVqFnZ0dK1euVAWLBgwYQN++fTl27BiQM3dmkyZNWLx4MXXr1s1zvk6ArVu3cuHCBSZNmsTQoUNVZVWtWpXZs2ezadMmfHw0JxV/mcOHD5OSksKCBQtUK8Z37NiRfv36ceXKFRo0aEBkZCQLFy7ko48+4osv/lk9sVOnTvTs2ZPFixczefJkDAwMmDFjBj4+PsyaNYshQ4awfPlyOnXqRMeOHV9WBVGEcntN5l53z9N/FvxOVyh48eOjY/nyGBkacuavv+jepg1aWjm9yzIUCkKvXlX9P+T01ExLSyM5LY1xgwaRnJpKYHAw81atIisrSzXPppaWlgQ0RYmjpaWFlk7+ek/mysrIufZ19DRfN7WfLQqRpchE10j/jcq/F3INtLWwf79GgfIJUdi0tLTQ0SrY9Zv67Nmgn8cCKfrPngEZmZkaQc2Df19BW0uLdm41X1n+5xs3k6ZQoK2lxVivVqrV1IV419LT0gDQ09fsTKD7bJsiI0MjqGlrXx4DI0P+PhdK847eqncsRYaCG5evAZD57D563pkjx9HS1qZxa82F5XJ7asbei6HLoN5kZWZy/vgZ9q4PID01jZZd2mrkEUKUbBLUFOJfpGXLlhw5coTDhw8THBzMyZMniY2NZffu3Rw8eJDly5fTKI8FSpRKJceOHaNFixaqgCZAlSpVaNasWZ5DrPNrxYoVrFixQmN7zZo1WbFihVp9lixZQmJiolpg6cmTJ5iampKSklKg4wYFBWFqaqoRuBw8eDCLFi0iKCioQEHN8s/mWfzhhx8YPnw4bm5ulC1blv3796vSHDx4EKVSiZeXl1og19ramho1ahAcHMzkyZMBqFevHoMGDWLNmjWcO3cOS0tLpk2bVqA2isKTOw2CVgE/lOrq6tLZy4vNe/cyb/VqurdpgzI7m027d5P2rJdzboDSu2lTlEol7Zr/0xOgaf36fDFjBuu2b6dZgwYy1Fz8u+ROL1Kw2ypfshSZPLxwE6sajhiWlWG1ovR5k+dORmYmx8LDqV+pIjZmZi9Nl6VU8mGzpujqaHPk6jXmHw4iPiWFjrVrvXW9hSgo1aOggO9YOrq6NGnbkiM79rF5yVqad/ImO1vJoW17yUjPecd68b1JkaHg4qmzuNZ1o6y1pUaZbg3r4uDsqBYkrePRgOUz5xG86wANWzbBRFZBF6JUkaCmEP8yBgYGdOzYUdXj7/Lly/j5+bF7926mTZtGYB6rKcfHx5OSkoKTk5PGvsqVK79VULNbt250796d7Oxs7ty5w9KlSzE0NGTGjBm4urqqpdXR0SEyMpK5c+dy48YNIiIi3nh+yaioKBwdHTWGmOvr6+Po6Eh0dHSBymvfvj0HDx5k79697N27FxsbG1q0aEGPHj1UQ88jIiIA6NevX55lvFiXzz77jP379xMVFcWvv/5KmTyGPot3w/BZT5i8plvI7WlpbGiYZ95e7durel2efLbqbX03N7p6e+O/cyemz4ast2nWTCOvvp4ezRs2ZEtgIJH371PRwaFQ2iNESaDzbOigUpGlsU+ZmQmArmH+pwF5XsKtBygzMrF2q/TG9ROiOBk9eyfIeHYvPC8jK+eeMXph9MDle/dIV2TyfuXKryxbR1tbtWL6+5Ur8387d7Hp7FlaubpolClEUTMwzHnHUuTxjpX5rEe/4UvesVp1bUdaSiqnDv3BpTM5iza61KmJZ3svDm7djbGp+hiaW1fDUaRn4Nawbp7l1W5cT2OblpYW9Zt7EHHjNpE37+Ba1y3fbRNCFD8JagrxL5CSksKSJUuoWbMmbduqD5uoWbMmc+bMITExkT/++IMnT/KeUBsg7dnwkOcplcq3qlvucHHIWZm9RYsW9OrViyFDhrBx40YqVaqkSrtixQpmzZqFs7MzDRo0oG3bttSpU4e1a9eya9euAh33VQscKZXKAs2nCTkByXnz5nHt2jUOHjzIH3/8QUBAAFu2bOGLL77go48+Up2rRYsWvfTl7Hl3797l8bMJ/A8cOCBDz4uR9bOVZ+OfLUj1vCeJiRgbGakCny/S0tJiSM+edPP25kFsLFYWFthYWbFh1y60tbWxttTsKfC8Ms9626QX0fy1QhQXgzI5vV0ynmouzpaRmIqOkR46eQxHzI+4a1Fo6Wpj6aK58IQQpUHuwj3xeYxEeZKSgrGBPoYvvKtcjIhET0eHuk6ai9q9jJaWFo2dnbn+IIZ78QlUsbV5fSYhClEZq5x3rKcJTzX2PY1PxNDYCH3Dl79jdezfg+YdvXkcE4u5pQVlrS05GLAHLW1tjfk0r4f+jY6uLtVrF2xaEhPzZ8+rdHkXE6K0kXFuQvwLGBgYsGLFCtauXfvSNFWrVkVLSyvPYFvZsmUxNTXl7t27GvuiovJekfBNVahQgR9//JH4+Hg+//xzMp/1UEhPT2f+/Pk0btyY3bt3M336dAYPHkydOnXUhnLnl4ODA5GRkShemGsnIyODqKgotWH2+XHv3j3Onj2Li4sL48aNY9OmTRw5coRKlSqphtc7POtlZ2dnR5MmTdR+FAoFBs8FxTIzM5k8eTIWFhaMHDmSwMBADh48WOB2isJhYmyMjZUVt/O43m9HRlIlj17MuU6cO8fl8HAszM1xrVIFG6uclZ7/vnGDyo6O6OvpERcfz+c//siWPHpKRz/rjZybT4h/C10jfQwsTdVWOc+VdP8xZg6aqz7nV2LEQ8wcrNE1lF5nonQyMTDAxswsz1XO7zx6RGUbzeDjtZgYnG2sMc6jt2VyejqfbtiIf8gZjX2583ca5DF/pxBFzcjYCAtrS+7f1XzHuhcRhUOllwfpQ0POc/tqOKZlzKhYvbJqSPmdazexr1hBY57OiBu3cajkiGEec8hmZWay8P9ms33VRo19j+7nvIvlNWRdCFGySVBTiH8BHR0dOnbsyJkzZ9ixY4fG/vj4ePbv30+TJk0wMjJSzT+T27NQS0uLNm3acOzYMcLDw1X5oqKiCA4OLvT6ent707lzZ9XQeMjpJZqamkqlSpXQfe6l+8qVK5w5k/OCnhsAzZ2j8FW9SL28vEhKSuL3339X275+/XqSk5Np2bJlgeq8ePFihg4dqjYcvnz58tja2qrOZ6tWrYCcuUGf7yl65coVPv74Y1avXq3atmLFCi5fvsykSZOYMGECVapU4bvvviP+2Src4t1rXKcOl65dUwUZAUKvXuX+w4c0eW518hftCQrCb/NmsrL+GWJ7LiyMa7du0dYzZ5J6SwsLUlJTCTp5kpTUf3qtPYqLIzgkhJrVq1PW3LwIWiVE8bKuWZH4m/dIiY1XbXty4x6psYnY1HZ+ozKVWVmkxMRjYi8fPkXp1si5EmHR0UQ/iVdtuxQVxf34BJpUqaKWNjMri+gnT3C2zvsLMBMDA/S0dfjj+nWS0v9ZLTo5PZ0jV69iY2aGQx6rTwvxLtSsX4ebf18j9v4/71g3Ll/j8YOH1MpjSHiuk/uD2bVuq9o71rW/LhMRfovGXurT+mRlZhJ77wF2FfPuwa+jq4u+vj6hIeeIf/zPyLXUlFROHfwDS1trKlSu+KZNFEIUE/m6Toh/iYkTJxIaGspXX33Fzp078fT0xNTUlIiICAICAlAoFEydOhVAtXq3v78/jx49okuXLkyYMIHg4GAGDhzI0KFD0dHRYe3atZiYmOQ5z+DbmjRpEseOHWPhwoW0b98eJycn6tSpQ0BAAKampjg7OxMeHs7mzZtVQcPk5GTKlClD2WdDhXfu3El2djY9evTQKL93795s27aNn376ievXr+Pm5kZYWBgBAQHUrVuX3r17F6i+Pj4+7NixAx8fH/r27UuZMmU4ffo0Z86c4ZNPPgGgevXqDBo0iLVr1xIfH4+3tzfx8fGsW7cOExMTJkyYAMDNmzdZsGABzZo1o1OnTgBMmzaNwYMH8+OPPzJ79uw3Pq/izXX19uaPM2f4Yf58Ont5kaFQsOvwYSo7OeH5bN7UmEePuHbrFi6VK1POOqeXWbc2bfhlxQp+XrKERnXqEBsXx+6gIOrUqIFnw4aq8of36YPvsmV8++uvtG7ShNS0NPb/8Qc62tp8WMDrUYiSKDXuKYl3H2Je0RYjy5xpFSp4uvHwwk0urdiPQzM3lJmZRB0Lw9TBCtu6VV5TYt7S45PJzlJiWEYWcxClR0xiItcfxFC9fDnKPfsSq2vdOhwLD+fHPXvoVLsWGZlZ7A4NxdnGmmbVqqrlf5SURGaWUjVsPS/DmjXlx917+L8dO/FydSVTqeTwlSskpKbydYf2BV6oRYjC4tnBi4sn/2Tl7IU0bdeKTIWC4/uOYF/JkTrv53xxHPfwERE3buNU1RlL25x3LM+Ordnw35Wsm7uM9+rVJv5xHCf2B1PVzZU6Hg3UjhH/+AlZmVkaQ9Kf16F/D5bPnMuymXN5v3XOwo1nj54kKfEpQ74YLfeIEKWQ9NQU4l/C0tKSgIAAJkyYQHx8PAsXLuT//u//2L17N23btmXXrl2q+Ss9PDzo0KEDR48e5YcffiA9PR07Ozv8/f2pV68ey5cvZ+XKlfTo0YM+ffoUSX2tra358ssvSUtLUwVb586di5eXF1u3bmXGjBmcPHmSjz76CF9fXwBOnz4N5KzKPmjQIMLCwpgxYwb37t3TKF9fX59Vq1YxbNgwTp48yYwZMzhz5gyjRo1i9erVBZ5T08XFhZUrV1KxYkX8/Pz44YcfCA8P59tvv2XMmDGqdN988w3Tpk0jLi6On3/+mfXr19OgQQPWr19PlSpVUCqVfPPNN2hpaamtdt64cWO6devGzp07i6R3rHi9MmZmfPfpp1R0cGDT3r0EBgfTsHZtJo4erbperty8ycK1a7ly86YqX+O6dflk6FDiExNZHRDAiXPn6Nq6NV+MGKG2KmfD2rX5cuRIDPX1+X3HDnYHBVHN2ZkfPv+cCuXLv/P2ClHYEu/EcH3zMRLv/NMTR9/UiNojO2BS3pK7hy5w7+QVrGo4UXOIN9q6Om90nMyUnF5oOm+4yJAQxeHq/Qf890gwV+8/UG0zNzJiWtcuOFlasvnsOfaFhdGgYkUmdmiPno76/ZHb+9JI7+VTLrxnb8ekTh0wNTBgw59/EnD+PHZlyvB/XbviJgvRiWJkYm7GiEmfUN7RgcPbAzl18A9quNdi8KcfofvsHevO9VtsXf47d67fUuWr2aAOvUcNJikhkcAN2wkNOU+z9l70H/uhxsrnqck589MaGr18XvsKzk4M+89YrGxtOLJjH0d27qOstSXDvx6Hs0vVl+YTQpRcWtmvWk1DCCFEqZEYGlrcVRCixPro8b7iroIQJdqisLwX6hBCwLlunsVdBSFKNG+nl08jUJo8mT+3uKvwUmXHTyjuKpRI0lNTCCGEEEIIIYQQQghRqsicmkKIfIuNjc1XOmNjY0xMTIq4Nm8vPj5eY3X0vOjp6WFhYVH0FRJCCCGEEEIIIUS+SFBTCJFvzZo1e30iYNy4cYwfP76Ia/P2xo8fr1pZ/VUaNWrE2rVr30GNhBBCCCGEEEIIkR8S1BRC5NvKlSvzlc7R0bGIa1I4vv76axITE1+bzvzZKqVCCCGEEEIIIYQoGSSoKYTItyZNmhR3FQqVm5tbcVdBCCGEEEIIIYQQb0AWChJCCCGEEEIIIYQQQpQqEtQUQgghhBBCCCGEEEKUKhLUFEIIIYQQQgghhBBClCoS1BRCCCGEEEIIIYQQQpQqEtQUQgghhBBCCCGEEEKUKhLUFEIIIYQQQgghhBBClCoS1BRCCCGEEEIIIYQQQpQqEtQUQgghhBBCCCGEEEKUKhLUFEIIIYQQQgghhBBClCoS1BRCCCGEEEIIIYQQQpQqusVdASGEEIXjo8f7irsKQpRYS63aF3cVhCjZWhR3BYQoyTKLuwJCCCHyID01hRBCCCGEEEIIIYQQpYoENYUQQgghhBBCCCGEEKWKBDWFEEIIIYQQQgghhBCligQ1hRBCCCGEEEIIIYQQpYoENYUQQgghhBBCCCGEEKWKBDWFEEIIIYQQQgghhBCligQ1hRBCCCGEEEIIIYQQpYoENYUQQgghhBBCCCGEEKWKBDWFEEIIIYQQQgghhBCligQ1hRBCCCGEEEIIIYQQpYoENYUQQgghhBBCCCGEEKWKBDWFEEIIIYQQQgghhBCligQ1hRBCCCGEEEIIIYQQpYpucVdACFEwGRkZrFq1it27dxMREYG2tjaVKlWiffv2DBkyBAMDA1XapKQkMjIysLS0fGWZEydOZNu2bVy7dq1AdQkJCWHw4MEa27W1tTE3N8fFxYWRI0fi6elZoHJzZWRk8OTJE8qVKwdAQEAAkyZNYs2aNTRu3PiNyhTibYRvO0nqowRqj+zw2rRpcU+5FfgnCbceAGDpWgHnDg3RNzUqlPKFKE5L/f259/Ah/zdhwmvTPnz8mDXbtvF3eDgA9WrWZFCPHpQxM1NLd/HKFQL27eNWZCTa2tpUq1SJfp07U61SJbV0NyMi8N+5k2u3b6Otrc17VaowqEcP7J89K4QobsV5fzzvbnQ0k2fPpnvbtvTu2PGt2iREYdq+aiOPYx4y/Ovxr037JPYxgRt3cPvaDQBcar9Hh77dMDE3e2meV5UffSeSg1t2EXHjDlraWlRyqUKHvt2xLm/75g0SQhQb6akpRCmSmZnJ8OHDmT9/PnXq1OHLL7/k008/pUKFCvzyyy8MGTKEjIwMAMLCwujQoQPhz16Si1KbNm2YNWuW6ufHH3+kd+/ehIWFMWrUKM6dO1fgMqOjo+nSpQsnTpxQbWvYsCGzZs2iSpUqhVl9IfLlwdnrPPjzer7SKlLSCV2xj6eRsVRo7oaDZ00eX40kbOUBlFlZb12+EMUp6NQpDp88ma+0T5OT+W7ePG7cuUNXb286e3lxLiyMHxcuJDMzU5Xu7/Bwflq0iJTUVPp36cIH7dvzIDaW//vtN27cuaNKdy8mhu/mzeNudDS92renR9u23Lh7l6m//UZcQkJhN1WIAivO++N5WVlZ/HfdOjJf8swRoricO3aac3+cylfalKRk/GYtJOrWHTzbe9GsXUuu/XWZVXMWkfXcPZLf8h89eMiKn+fzIPIeLbu0pUWnNkTfimDZjLkkxsszRIjSSHpqClGKBAYGcubMGebPn0/btm1V2wcPHszy5cuZPXs2W7ZsYcCAAVy/fp2HDx++k3q5uLjQrVs3je1t2rShb9++LF68mGXLlhWozKioKO688KLu6OiIo6Pj21RViALLViqJDA7l7uGL+c4Tffwy6Qkp1P+kG8a2FgCYVbAhzO8AMedvYNfQ5a3KF6I4KJVKAvbvZ0tgYL7z7AkKIi4+ntmTJlGhfHkAqlasyI8LFxIcEoJ306YArA4IwMrCgh//8x8M9PUBaN6oEZ//+CMbdu9myrhxOeUFB5Oens53n36Kc4UKANSqXp3Jvr7sCQpiUI8ehdlkIfKtJNwfz9t24ABR9+8XQsuEKBxKpZKjuw8StGNfvvOcOBBMwpN4xn3/Fbb2OfeIg3NFVs9ZxPkTZ2jYokmByj95IBhFegYjJ32CnVPOM6Tye9VZ8sMvnNwfTPu+mp9nhBAlm/TUFKIUuXDhAgBNn73kPm/AgAHo6elx8eLFd1yrl6tTpw7Ozs789ddfxV0VId5IliKT8wt2cffQRWzrVkG/jHG+8sWG3sLCubwqoAlQtqo9RjbmxIbefuvyhXjXMhQKvv75Zzbv3Ytnw4ZYWljkK9+J8+d5r1o1VcAGoLarK3a2tpw8fx6ApJQU7kZH8767uypgA2Bhbk6NqlW5dvufe+bho0eYmZqqApoAVSpWxNTEhEgJ4IhiUlLuj1x3o6PZtn8/Pdu3f7uGCVFIFBkK/vt/vgRtD6SuRwPMypbJV75LIedxdqmqCmgCVK3pglV5Wy6FXChw+XGxjzE2NVEFNAEqODthZGJMTLQ8Q4QojSSoKUQpYmJiAsDGjRs19hkbG3P+/HlmzZrF/PnzmTRpEpDTi9PLy0uVLiwsjA8//BB3d3c8PT1ZsmQJ2dnZRVZnIyMjjfJPnTrFiBEjaNy4MTVr1sTT05OpU6eSmJgI5MydmTtX56RJk3BxcVFtd3FxISQkRFVWamoqc+bMwcvLCzc3N7y8vPD19SU1NbXAdQ0JCcHFxYVt27bRpUsXatWqpTqPsbGxfPfdd7Ru3Ro3Nzfq16/P4MGDNYbWZ2dns2bNGjp37kzt2rXzrI9SqcTPz4/27dvj5uaGp6cn06dPJykpqcB1FkUrO1NJVnoGrv1b4NLbEy1trdfmUaSmkxaXhKmDlcY+Uzsrku49fqvyhSgOCoWClLQ0Ph02jLGDBqGt/fpXyKSUFB4+ekTlPHrYOzs6cjsyEgBjQ0N+nTKFTs89q3I9TUpC57ljlbexISk5mYSnT/9Jk5xMSmoqFubmb9I0Id5aSbk/IGfY+eL166nt6krzhg3fsEVCFK7MzEzSU9Po+/EQeo3wQUdb57V5UpNTeBL7GPtKFTT22TtV4H5EVIHLtypnQ0pyCsmJ/zxDUpKSSUtNw6yMPEOEKI1k+LkQpUjXrl1ZuXIlP//8MwEBAXh7e+Ph4YG7uzv6+vroP/sGv02bNsTGxrJx40ZGjx5NrVq1AAgPD2fQoEGYm5szZswYFAoFfn5+qnk4C1tMTAzXr1+nXr16qm3Hjx9n5MiR1KtXj08++QQtLS1OnDjBxo0bSUhIYO7cuTRs2JDRo0ezePFi+vbtS/369fMsPyMjg2HDhnHx4kV69uyJm5sboaGhLFu2jHPnzrFmzRr09PQKXO/vv/+enj170rt3b+zt7UlLS8PHx4enT5/i4+NDuXLluHPnDv7+/owYMYJDhw5hZZUTwPruu+/w9/enVatW9O/fn9u3b+Pn58edO3dYsGABAN988w07duyge/fuDB06lJs3b+Lv78/58+fx9/dXW+xJFC8dQz0afN4LbZ38fweYkZACgL65Zq9LfXMjslIVZKZmoGuk/0blC1EcjI2MmDd1Kjo6r/8gmisuPh4AyzKaPWbKmpuTkppKckoKJsbG2NlqLtBwNzqa67dvU6dGDdW2bt7enA8LY97q1Qx+NtR83fbt6Ojo0KFly4I1SohCUlLuD4Adhw5x/+FD/jNiBEqlsmANEaKIGBoZ8ulP3xToHkl8kjPHpXlZC419ZhbmpKWkkpqSipGxUb7L9+zQmmsXL7NpyVo69OsOwL5NO9DR0cGjTfN8100IUXJIUFOIUqRatWosWLCAyZMnEx4eTnh4OIsWLcLY2BgvLy/GjRuHs7Mzrq6u1K1bl40bN9KkSRPVSuHz588HYMOGDdjZ2QHQrl07unfv/lb1Sk1NJS4uTvW7QqHg5s2b+Pr6olQqGffcXE+rVq3Czs6OlStXqoKwAwYMoG/fvhw7dgzImTuzSZMmLF68mLp16+Y5XyfA1q1buXDhApMmTWLo0KGqsqpWrcrs2bPZtGkTPj4+BW5P/fr1+fbbb1W/7927l7t377J8+XK1ldwdHR2ZNm0a586do23btty4cYMNGzbQp08ffvjhB1U6ExMTFi9ezI0bN3j8+DEBAQF899139OvXT5WmRYsWDB8+nA0bNjBkyJAC11kUDS0tLbR0CtZ7MitDAYCOnuYjVls3Z1uWIhNdI/03Kl+I4qClpVWgD6MAaenpAKq/9c/Tf/aFU7pCgclL8i5cuxbICWTmsra0pEe7dvht3sxXP/0EgLa2Np8PH642JF2Id6mk3B+R9++zNTCQYb17Y1W2LLGPH+eRW4h3703ukfS0NAD09DU7KOg+26bIyMDI2Cjf5VtYlaVF5zbs/n0LC6fNyqmbtjb9xgxTG5IuhCg9pGuIEKVMy5YtOXLkCL/++ivdunXDxsaGlJQUdu/eTbdu3Thz5kye+ZRKJceOHaNFixaqgCZAlSpVaNas2VvVacWKFXh4eKh+mjdvzrBhw1T7GjVqpEq7ZMkStm7dqvYS/+TJE0xNTUlJSSnQcYOCgjA1NdUIXA4ePBhTU1OCgoLeqD0NXxiu1bFjR06dOqV2np7v3Zpb7+DgYLKzsxk0aJBa/uHDh7Nz506cnJw4cOAAWlpatGjRgri4ONXPe++9h42NDcHBwW9UZ1GC5E63ILFK8T8ud+oRLa2C3QzpGRnMWrqUu9HRdGvThveqVVPt27h7N8s2bKC6szPjhwxh7KBBVKlYkd/8/Dh36VKh1l+IolTY94dSqWTRunW4VKmiWmBIiNJM9TpVwHvkVQ4F7GXnmk04VXXmg48G0WuEDxWcndi0eBVXL4YV2nGEEO+O9NQUohQyMDCgY8eOdOzYEYDLly/j5+fH7t27mTZtGoF5rLwZHx9PSkoKTk5OGvsqV678xgFAgG7dutG9e3eys7O5c+cOS5cuxdDQkBkzZuDq6qqWVkdHh8jISObOncuNGzeIiIggJibmjY4bFRWFo6OjxhBzfX19HB0diY6OfqNyLS0tNbZpaWmxdOlSLly4QEREBBERESgUOT3ycod35R6vUqVKannNzc0xfzbXW0REBNnZ2bR8yTDJ3HlTRemlY5BzPSoVWRr7lJmZAOgaFnxaBCFKG8NnU2nkNcVJxrO/n8aGhmrbk1NS+GnJEq7fukWr99+nX+fOavt2Hj5MFScnpo4fr5q3sEm9ekz29WWJvz8LXV3faNoRId61wr4/dh4+zN3oaL7/7DMSn83RnfRsPu/0jAwSk5IwMzEp1ACREEXJwDDnHlHkcY9kPhsVY/jCPfIqqSmpHN8XhEMlJ4Z9OVb1DKnVyJ3FP/zC9lUb+c9sF3TlGSJEqSJBTSFKiZSUFJYsWULNmjVp27at2r6aNWsyZ84cEhMT+eOPP3jy5MlLy0l7NpTjeW8751LucHHIWZm9RYsW9OrViyFDhrBx40a1IN+KFSuYNWsWzs7ONGjQgLZt21KnTh3Wrl3Lrl27CnTcVy1wpFQq3/iD7YvDV27dukX//v1RKBQ0a9aMjh07UqNGDbKzsxk7dqwqXVaWZhArr3qZmJio5td8kcynWfoZlDEFIOOp5mJVGYmp6BjpoZPHUCoh/m2sy5YFIP7ZInDPe5KYiLGRkSqwA5Dw9Ckz/vtf7kRF4d20KSP69lULwDyIjSUzM5Mm9eurLcSiq6tLswYN+H3HDqJjYqgkw9BFKVDY98fFv/8mMyuLyb6+GuXtOnyYXYcPs+D//g8bK81F7IQoicpY5dwjTxOeaux7Gp+IobER+ob5f29+HBNLVmYmtRq7qz1DdHR1qf1+Aw5s3kns/YfYOTm8feWFEO+MBDWFKCUMDAxYsWIF7u7uGkHNXFWrVuXYsWN5fmtZtmxZTE1NuXv3rsa+qKgojW1vo0KFCvz444+MHTuWzz//nE2bNqGrq0t6ejrz58+ncePG+Pn5oav7z5+guXPnFvg4Dg4OXLx4EYVCoRbAzMjIICoqigYNGhRKe5YtW0ZiYiKBgYFqAdoXg7D29vYAREZGUqVKFdX2mJgYZs6cycCBA3FwcOD48eO4ubmpem/m2rdvX549aUXpomukj4Glqdoq57mS7j/GzMG6GGolxLtnYmyMjZUVt/N4xtyOjKTKc3/vUtPSVAGbjq1aMaRnT408uc+MvL6IUz77kuvlX3UJUbIU9v0xqEcPkl+Yxifh6VMWrFmDZ8OGNG/UiDLmsrqzKD2MjI2wsLbk/l3Ne+ReRBQOlRwLVN4/zxDNJ0W26rkiTxEhShuZU1OIUkJHR4eOHTty5swZduzYobE/Pj6e/fv306RJE4yMjFTfQOZ++NPS0qJNmzYcO3aM8PBwVb6oqKgimcfR29ubzp07q4bGQ04v0dTUVCpVqqQW0Lxy5YpqLtDMZ8Nzc3tLvqoXqZeXF0lJSfz+++9q29evX09ycvJLh3gXVHx8PEZGRqqgJeQETjds2AD800OzRYsWAPj7+6vlDwgIIDAwEFNTU7y8vABYtGiRWpqgoCAmTJhQ4N6qomSyrlmR+Jv3SImNV217cuMeqbGJ2NR2Lr6KCfGONa5Th0vXrhH93DQjoVevcv/hQ5rUr6/atmLTJu5ERdGhZcs8AzYAjnZ2lC1ThuCQENXwXMgZqvvHmTOYmZriWL580TVGiEJWmPdHFScnaru6qv24Vq4MQDlra2q7uqoWIBKitKhZvw43/75G7P1/7pEbl6/x+MFDajWuV6CybB3KY2ZhzoXjISgy/nmGKDIUXDz5J8amJtjayzNEiNJGemoKUYpMnDiR0NBQvvrqK3bu3ImnpyempqZEREQQEBCAQqFg6tSpwD/zQvr7+/Po0SO6dOnChAkTCA4OZuDAgQwdOhQdHR3Wrl2LiYlJnnM6va1JkyZx7NgxFi5cSPv27XFycqJOnToEBARgamqKs7Mz4eHhbN68WRWETU5OpkyZMpR9Nixr586dZGdn06NHD43ye/fuzbZt2/jpp5+4fv06bm5uhIWFERAQQN26dendu3ehtKN58+YEBQUxatQo2rdvz9OnT9m+fTsRERGqOgPUqFGD3r17s3btWh4+fIiHh4dqRfTu3bvj6uqKi4sLrVu3xs/Pj+joaDw8PIiOjub333/H3t6e4cOHF0qdxbuTGveUxLsPMa9oi5GlGQAVPN14eOEml1bsx6GZG8rMTKKOhWHqYIVt3SqvKVGI0inm0SOu3bqFS+XKlLPO6ZHc1dubP86c4Yf58+ns5UWGQsGuw4ep7OSE57Pe9FEPHnDszz8xNjKiUoUK/JHHgnfNGzVCW1ubD3v35pcVK/jG15dWHh4olUqOnD7NvZgYxg4apPaFmRAlSVHfH0KUdnEPHxFx4zZOVZ2xtM25Rzw7eHHx5J+snL2Qpu1akalQcHzfEewrOVLn/fqvKVGdtrY2nX0+wP+/K1ky/VfqeTYmW6nk3LEQYh885IMRPujIM0SIUkfuWiFKEUtLSwICAli1ahWHDx9m4cKFpKamYmtrS9u2bRk9ejS2trYAeHh40KFDB44cOcLp06dp27YtdnZ2+Pv7M2vWLJYvX46+vr4q8LdkyZJCr6+1tTVffvklU6ZMYerUqaxatYq5c+cyc+ZMtm7dSkZGBg4ODnz00UdUqVKF8ePHc/r0adq1a0eVKlUYNGgQAQEBXLp0icaNG2uUr6+vz6pVq1i4cCGBgYHs3LmT8uXLM2rUKD7++ONCWyyiX79+JCYmsnnzZqZPn461tTV169ZlwYIF9OvXj9OnTzN06FAAvv/+eypVqsTmzZsJCgrC3t6esWPHMmLECCCnx+zcuXNZvnw527dvJygoCEtLS9q2bcuECROwtpahyaVN4p0Yrm85TvUPmqmCmvqmRtQe2YFbe85w99AFdPR1sarhhHP7Bmjr6rymRCFKpys3b7Jo3To+HjhQFbQpY2bGd59+yuqAADbt3YuBnh4Na9fGp1s31d/oKzduAJCSmsqidevyLDs3aNOoTh2mjBvHlsBA/J/1bHeuUIGvR4/G/b33irqJQryxd3F/CFGa3bl+i21+6+nx4QBVUNPE3IwRkz5hr/82Dm8PRF9fnxrutWjXu8sbLejzXv3aDPvPGI7s3MehrXsAsKtYgUGffkT1WjUKtT1CiHdDK/tVK20IIYQoNfodmVXcVRCixFpq1b64qyCEEKKUOmORWdxVEKJE83Yq2HQAJdWT+QVf5+FdKTt+QnFXoUSSOTWFEEIIIYQQQgghhBCligw/F0KoiY2NzVc6Y2NjTExMirg2by8+Ph7FcwtKvIyenh4WFhZFXyEhhBBCCCGEEEK8NQlqCiHUNGvWLF/pxo0bx/jx44u4Nm9v/PjxqpXVX6VRo0asXbv2HdRICCGEEEIIIYQQb0uCmkIINStXrsxXOkdHxyKuSeH4+uuvSUxMfG06c3Pzd1AbIYQQQgghhBBCFAYJagoh1DRp0qS4q1Co3NzcirsKQgghhBBCCCGEKGSyUJAQQgghhBBCCCGEEKJUkaCmEEIIIYQQQgghhBCiVJGgphBCCCGEEEIIIYQQolSRoKYQQgghhBBCCCGEEKJUkaCmEEIIIYQQQgghhBCiVJGgphBCCCGEEEIIIYQQolSRoKYQQgghhBBCCCGEEKJUkaCmEEIIIYQQQgghhBCiVJGgphBCCCGEEEIIIYQQolSRoKYQQgghhBBCCCGEEKJU0S3uCgghhBBCFLUzFpnFXQUhSrRG8fKxQAghhBCli/TUFEIIIYQQQgghhBBClCoS1BRCCCGEEEIIIYQQQpQqEtQUQgghhBBCCCGEEEKUKhLUFEIIIYQQQgghhBBClCoS1BRCCCGEEEIIIYQQQpQqEtQUQgghhBBCCCGEEEKUKhLUFEIIIYQQQgghhBBClCoS1BRCCCGEEEIIIYQQQpQqEtQUQgghhBBCCCGEEEKUKhLUFEIIIYQQQgghhBBClCoS1BRCCCGEEEIIIYQQQpQqEtQUQgghhBBCCCGEEEKUKhLUFEIIIYQQQgghhBBClCq6xV0BIUqajIwMVq1axe7du4mIiEBbW5tKlSrRvn17hgwZgoGBgSptUlISGRkZWFpavrLMiRMnsm3bNq5du1aguoSEhDB48GCN7dra2pibm+Pi4sLIkSPx9PQsULm5MjIyePLkCeXKlQMgICCASZMmsWbNGho3bvxGZZZUGzduxM/Pj4cPH+Lm5sa3335L9erVi7ta4l8gfNtJUh8lUHtkh9emTYt7yq3AP0m49QAAS9cKOHdoiL6pUVFXU4hCtX3VRh7HPGT41+Nfm/ZJ7GMCN+7g9rUbALjUfo8OfbthYm72RuUnJz7l4NY9XL0YhkKhwL5iBdp+0AXHKpXeuD1CFLWl/v7ce/iQ/5sw4bVpHz5+zJpt2/g7PByAejVrMqhHD8qYqd8zk2fP5mZEhEb+RnXr8sXw4YVTcSGKQFE8Q8IvXSF490Hu3YlES1sLx8qV8O7Z8ZXPhoLUQwhRMklQU4jnZGZmMnz4cC5evEj37t3p27cvWVlZnD17ll9++YWgoCDWrFmDvr4+YWFhfPzxx/j6+hZ5ALBNmza0adNG9XtWVha3bt1i/fr1jBo1irVr11K/fv0ClRkdHc2HH37IqFGj6NmzJwANGzZk1qxZVKlSpVDrX9wCAgKYOnUqvXr14r333mP58uUMHz6cwMBATE1Ni7t6ohR7cPY6D/68Thnncq9Nq0hJJ3TFPrKzlFRo7kZ2djZRx8JIfvCEumM6o62j8w5qLMTbO3fsNOf+OEUll9c/K1KSkvGbtZCsrEw823uRna3k+L4jxETdY/S3n6Ojq/kq+qry09PSWP7zfJ7GJ9KkTQsMTYwJOXwMv1kLGf3t55SrYFcobRSiMAWdOsXhkyepUbXqa9M+TU7mu3nzyMrKoqu3N0qlkl2HDxNx7x4z/vMfdJ/dM9nZ2UTFxNCgdm0a16mjVobNa75sF6I4FcUz5Pa1G6z5bSm29uVp06sTWVlKzgQdZ8XP8xkx8RMqVK74VvUQQpRcEtQU4jmBgYGcOXOG+fPn07ZtW9X2wYMHs3z5cmbPns2WLVsYMGAA169f5+HDh++kXi4uLnTr1k1je5s2bejbty+LFy9m2bJlBSozKiqKO3fuqG1zdHTE0dHxbapaIm3atImqVasyY8YMACwtLfnss884e/YsLVu2LN7KiVIpW6kkMjiUu4cv5jtP9PHLpCekUP+TbhjbWgBgVsGGML8DxJy/gV1Dl6KprBCFRKlUcnT3QYJ27Mt3nhMHgkl4Es+477/C1r48AA7OFVk9ZxHnT5yhYYsmBSr/j72HefQglg+/GouzS06AqFYjd3756geOBR7mg5ED37B1QhQ+pVJJwP79bAkMzHeePUFBxMXHM3vSJCqUz7lnqlasyI8LFxIcEoJ306YAxMbFkZ6eTsPatWneqFGR1F+IwlSUz5C9/tsoU9aCUVM+Q99AHwD3Jg2ZO2UmhwL2MPQ/Y96qHkKIkkvm1BTiORcuXACg6bMXxucNGDAAPT09Ll68+I5r9XJ16tTB2dmZv/76q7irUqKlpaURFxdHamqq6ncAPT294qyWKKWyFJmcX7CLu4cuYlu3CvpljPOVLzb0FhbO5VUBTYCyVe0xsjEnNvR2EdVWiMKhyFDw3//zJWh7IHU9GmBWtky+8l0KOY+zS1XVh1GAqjVdsCpvy6WQCwUqPzs7mwsnzlC9dg1VQBPArIw57ft2o2L1ym/RQiEKV4ZCwdc//8zmvXvxbNgQSwuLfOU7cf4871WrpgpoAtR2dcXO1paT58+rtkXevw+AQ7nXjxQQorgV5TMkNTmFB5H3cGtYVxXQBDAtY0al6lWIuHHnreshhCi5JKgpxHNMTEyAnPkXX2RsbMz58+eZNWsW8+fPZ9KkSUBOL04vLy9VurCwMD788EPc3d3x9PRkyZIlZGdnF1mdjYyMNMo/deoUI0aMoHHjxtSsWRNPT0+mTp1KYmIikDMcO3euzkmTJuHi4qLa7uLiQkhIiKqs1NRU5syZg5eXF25ubnh5eeHr66sKEBbUmTNn8PHxoUGDBri7u9OvXz+CgoI00gUEBNC9e3dq1arF+++/z8SJE9V6xvr6+uLi4sLvv/+u2paRkUGXLl1o3LgxMTExqu0dOnQgLi6OmTNnEhoaypw5c6hcubLGtAFRUVG4uLiwatUq+vfvj5ubG0OHDgVy5k+dM2cO7du3p1atWri7u9OnTx8OHz6sUfcdO3bQq1cv6tatS/PmzZk6dSpxcXEFap8oubIzlWSlZ+DavwUuvT3R0tZ6bR5FajppcUmYOlhp7DO1syLp3uOiqKoQhSYzM5P01DT6fjyEXiN80NF+/XQJqckpPIl9jH2lChr77J0qcD8iqkDlxz+K4+mTBKrWdAVygpwZaekANPZqptbrU4jiplAoSElL49Nhwxg7aBDa2q//2JWUksLDR4+onMeoGWdHR25HRqp+fzGomZaeXkg1F6LwFeUzxMDIkAkzJtOkXUuNdClJyWjr/HPvvUk9hBAlmww/F+I5Xbt2ZeXKlfz8888EBATg7e2Nh4cH7u7u6Ovro6+f8+1fmzZtiI2NZePGjYwePZpatWoBEB4ezqBBgzA3N2fMmDEoFAr8/PzIyMgokvrGxMRw/fp16tWrp9p2/PhxRo4cSb169fjkk0/Q0tLixIkTbNy4kYSEBObOnUvDhg0ZPXo0ixcvpm/fvi+djzMjI4Nhw4Zx8eJFevbsiZubG6GhoSxbtoxz586xZs2aAvV2vHXrFqNGjaJGjRp89tlnQM7Q8DFjxrBu3ToaNGgAwIIFC5g/fz7t2rWjT58+xMTEsG7dOs6cOcOWLVuwtLRk/PjxHDp0iN9++4127dphbW3NwoULuX79Or/++qtq8SOAYcOGsX//fjZu3MjmzZupVq0aixYtUs1L9aK5c+fi5eVFly5dMDAwIDs7m1GjRvH3338zcOBAnJycePDgARs2bGDcuHFs375dFRhetmwZvr6+1K9fn88//5zHjx+zevVqrly5gr+/P7q6uvlqnyi5dAz1aPB5L7WX5NfJSEgBQN9cs1envrkRWakKMlMz0DXS19gvRElgaGTIpz99g04B5n5NfJIAgHlZC419ZhbmpKWkkpqSipGxUb7KfxwTC4CJmSn7Nu7g7B+nSE9Nw9LWmg79uuNa161gjRKiCBkbGTFv6tQC3TNx8fEAWJbR7D1W1tyclNRUklNSMDE2Jur+fQwNDVkTEMDJCxdIT0/H1tqafp0707SA86wLUdSK+hliXc5GI82DyHtE3LhNNTfXt6qHEKJkk6CmEM+pVq0aCxYsYPLkyYSHhxMeHs6iRYswNjbGy8uLcePG4ezsjKurK3Xr1mXjxo00adJE1eNv/vz5AGzYsAE7u5zFCtq1a0f37t3fql6pqalqPf0UCgU3b97E19cXpVLJuHHjVPtWrVqFnZ0dK1euVAVhBwwYQN++fTl27BiQM3dmkyZNWLx4MXXr1s1zvk6ArVu3cuHCBSZNmqTqsThgwACqVq3K7Nmz2bRpEz4+Pvlux+HDh0lJSWHBggWqwF3Hjh3p168fV65coUGDBkRGRrJw4UI++ugjvvjiC1XeTp060bNnTxYvXszkyZMxMDBgxowZ+Pj4MGvWLIYMGcLy5cvp1KkTHTt2VDvuiRMniH/2QSE7O5tZs2bh4ODw0nra2dnh6+uLllZOD7y//vqLs2fP8t1339GvXz9Vurp16zJixAhOnjyJi4sLCQkJzJ8/X9VDN/eFqUKFCkyZMoUTJ05QuXLlfLVPlFxaWlpo6by+d+bzsjIUAOjoaT52tZ8F17MUmRLUFP/f3r3HVVXlfRz/cDkgN7kIRBGKUoJBkYFgZGKI10rGmdQa1BzLzEZEa7RRx3w1ajn2lKkxqQlSmLcUk0zES/pgU4iOFunjLa+gphESJlflPH8AJ0+ggeYF+r5fL/5wr73XXmvDce/z22v91i3LwsKiwV8Cy2pSfdjUfvllXb2torwcO3u7etVfWj1DYNOqtVhZWdH7qT9iaWnB5+s28+GcRJ5+8XnuClRuWrk1XM1npma0Zc3z26Vsql8il1VU4EDVSM3S0lLOl5YyctAgzpeUkL5lC7OTk7l48aLybMot5XrfQ36pvLSMlQsWAfBw767X1A4RubVp+rnIL3Tp0oXNmzczc+ZMYmJi8PDwoLi4mDVr1hATE0N2dnadx1VWVrJ161YiIyNNAU0APz8/OnXqdE1tSkxM5MEHHzT9dO7cmb/85S+msrBLHlznzZvHypUrzR6Iz549i6OjI8XFxQ0672effYajo2OtwOXgwYNxdHSsc9r4lXhV54eaMmUKu3fvBsDV1ZWMjAwGDRoEwIYNG6isrCQqKoqCggLTj7u7O+3atWPLli2m+h544AEGDRpEWloao0aNws3NjcmTJ5udc/HixYwYMQJXV1cmTJiA0Whk7NixlJaWcvr0aZYuXcqp6ilcNUJDQ00BTajKXbp9+3bTKvFQtQJ9ZWUlAOfPnwfgiy++oKysjNjYWLMHpj59+pCamkpYWFiD+idNSE2KiIbFQkUaNdOfvcVv84d/oeICAKXFJQybEM8DncK4P6IDz/w9Djt7Ozau/PQ3OY/IzVKTTqg+n5nohx5iaL9+vPTMM4QFB/NIx45MfeklPN3dWfTxx6ZnFJHG6mrvIeVl5SyavYDvck/SuXdXsxzMItL0aKSmSB1sbW3p3bu3acTfnj17SEpKYs2aNUyePJn0OlaxLCwspLi4mJYtW9Yqa9OmTYMDgJeKiYnhD3/4A0ajkaNHjzJ//nyaNWvGa6+9RkBAgNm+VlZW5ObmMmvWLL799luOHz9ull+yIfLy8vDx8ak1xdzGxgYfHx9OnDjRoPp69uzJhg0bWLt2LWvXrsXDw4PIyEj69u1rmnp+/PhxALMRkZf6ZVvGjBlDRkYGeXl5zJw5E+dLpmzl5uaarlFKSgr29vbk5uaSkpLC1KlTCQgIYMqUKSQkJJgFouua/m1tbc3SpUvJzs7m2LFjHD9+3LTgUM2XkJrr0apVK7NjbW1tCQwMvKr+SdNgZVv1e62suFirrPJCVaDGupl+99K02DazBapG0vzSherRy82aNat3fYbql3X3hARj5/BzKgc7ezsC7g9i1xfbKS8tw6b6vCKNTTPbqr/dutIWlVdUfWbsqz8z3ep4YW5jMNC5QwdWpKeTe+oUra4wK0XkVnc195CS4hIWvT2f498e4YGHw4n+46PXv6EiclMpqClSrbi4mHnz5hEYGEj37t3NygIDA3nzzTcpKioiMzOTs2fPXraemkDXpa71bXnNdHGoWpk9MjKSP/3pTzz99NMsW7YMX19f076JiYnMmDGD1q1bExoaSvfu3QkODiYlJYVPPvmkQee90gJHlZWVDQ7AGQwGZs+ezf79+9mwYQOZmZmkpqayYsUKXnrpJZ577jnTtXr33Xfr9WX32LFj/PBD1SIr69evN5t6npmZSUVFBc8++yz29lVfgMeNG0dOTg4fffQRLi4uODk51Vrt/pfTUgoKCujXrx9nzpzhoYceIioqioCAALy9venXr5/ZNYErv1FuaP+kabB1dgSg/FztBbbKi0qwsjNgVcf0KpHGzLmFKwDnfjxXq+xcYRHN7O0aFIBsXr1KrYOTY60yh+aOYDRSVqagpjRe7q5Vn5nC6oUdL3W2qAh7OztT4PNynJ2cACi7TvncRW6Uht5DzhedI/mtuXx3/AShkRH0GdzvN5spICK3Lk0/F6lma2tLYmIiKSkpl93nrrvuwsLCos5glKurK46Ojhw7dqxWWV5eXq1t1+LOO+9k2rRpFBYW8uKLL3KheqRXWVkZc+bMITw8nDVr1jB16lQGDx5McHBwrdW368Pb25vc3FwqqkcH1CgvLycvL89sdGN9nDx5kh07duDv78/IkSNZvnw5mzdvxtfXl8TERNM5oSqvZUREhNlPRUUFtpc8zF+4cIEJEybg4uLCsGHDSE9PZ8OGDbXOe+mKozY2Nrz99tu4uLhQWFhI//79sbOrnYvnUosXLyYvL4/58+czd+5cxowZQ69evUzXvUbN9agZjVmjvLyc+Ph4Nm7c2KD+SdNhbWeDrZtjnauc/3TqB5y83W9Cq0SuLzt7O1zc3Th1rPY98OTxPLx9a6/wfCW3ed+OlbU1Z05+V6vsbH4B1gZDnQFPkcbCwd4ejxYtOFLHc+OR3Fz8qmcDFRQW8uK0aayoY+bQierZOR4tWlzfxopcZw25h5SVlpoCmg92iyTm6f4KaIr8TiioKVLNysqK3r17k52dzerVq2uVFxYWkpGRQUREBHZ2dqZA2aWj87p168bWrVs5ePCg6bi8vLzrkicxOjqaxx57zDQ1HqpGiZaUlODr62u2svfevXtNuUBrAnE1oxGvNIo0KiqKn376iQ8//NBs++LFizl//jxdunRpUJvnzp3LkCFDzKbDe3l54enpabqejzzyCFCVG/TSkaJ79+5lxIgRvP/++6ZtiYmJ7Nmzh/HjxxMfH4+fnx+vvvqqaVGgDh06YGlpybJly8z6mZ+fT1l1Mv709HTTSM/Lqanvrrt+zsljNBpZtKgqAXnNNY2IiMBgMLB8+XKztq9bt45169Y1uH/StLgHtqLw0EmKvy80bTv77UlKvi/C477WN69hItdRYEgwh/5vP9+f+vn//W/37OeH785wb/gDDarLppktAe2DOJCzhzMnfs6FfPb7H9i3azcB7YPMXmKJNEbhwcF8s3+/KTgJkLNvH6fOnCGielVzNxcXiktK+OyLLygu+XkGQH5BAVu2bSOwbVtcmze/4W0X+a3V9x7yScqK6oBmZ3o/1fdmNFVEbhJNPxe5xN///ndycnIYN24caWlpPPzwwzg6OnL8+HFSU1OpqKjglVdeAX7Ou7hkyRLy8/N5/PHHiY+PZ8uWLQwcOJAhQ4ZgZWVFSkoKDg4OdeZHulbjx49n69atJCQk0LNnT1q2bElwcDCpqak4OjrSunVrDh48yEcffWT6onf+/HmcnZ1xrZ7ilJaWhtFopG/f2g8A/fr1Y9WqVUyfPp0DBw4QFBTE7t27SU1N5f777zebel0fsbGxrF69mtjYWAYMGICzszNZWVlkZ2czatQoANq2bcugQYNISUmhsLCQ6OhoCgsLWbRoEQ4ODsTHxwNw6NAh3nnnHTp16sSjj1bly5k8eTKDBw9m2rRpvPHGG7Rt25bY2FhSUlIYNmwYXbt25fDhwyxfvhxPT0/69+/Pm2++ycCBA0lOTr5suzt37kxKSgrDhw/niSeeoKKigvT0dHbv3o2lpaVpoaAWLVrw17/+lbfffpuhQ4cSHR3Nd999x6JFiwgPDycqKgpLS8t69U8at5KCcxQdO0PzVp7YuVVNBbzz4SDO7DrEN4kZeHcKovLCBfK27sbRuwWe9/vd5BaLXLuCM/kc//YILe9qjZtn1ejjh3tF8dUX21n4RgIP9XiECxUVfL5uM3f4+hDcMaTB5+jRrw9H931L0owEHuzWGUsra77c+L8YbAx0U+40aWRO5+ez//Bh/Nu04Tb3qs9Mn+hoMrOzmTJnDo9FRVFeUcEnmzbRpmVLHq7OPw7wTP/+/M977zFp5ky6RkRQUlpKRmYmVpaWDG3g85nIreBq7yFnTn7H11/uoJm9HV4+d/LVF9tr1X1/RIcb2hcRuXEU1BS5hJubG6mpqSQnJ7Np0yYSEhIoKSnB09OT7t278/zzz+Pp6QnAgw8+SK9evdi8eTNZWVl0796d22+/nSVLljBjxgwWLFiAjY2NKfA3b96837y97u7ujB07ln/84x+88sorJCcnM2vWLF5//XVWrlxJeXk53t7ePPfcc/j5+REXF0dWVhY9evTAz8+PQYMGkZqayjfffEN4eHit+m1sbEhOTiYhIYH09HTS0tLw8vJi+PDhjBgxosE5Nf39/Vm4cCEJCQkkJSXx008/4evry6RJk8xWWJ84cSJt2rRh6dKl/Otf/8LJyYnQ0FDTaMzKykomTpyIhYWF2Wrn4eHhxMTEsHr1ah599FG6dOnChAkTuOOOO1i2bBmvvfYaLVq0YMCAAYwcORJnZ2ecnZ1JS0vD2dmZ/Pz8OtvduXNnpk6dSlJSEtOnT8fZ2ZnAwECWLVvGpEmT2LZtm2nfESNG4OHhwQcffMD06dPx8PCgf//+xMXFmQLLv9Y/afyKjp7mwIrPaftEJ1NQ08bRjvuG9eLwp9kc27gLKxtrWrRrSeueoVhaW/1KjSK3vqMHDrMqaTF9h/7Z9IXUobkTz44fxdolq9j0cTo2Nja0a38vPfo9jvVVLIzm6u7GcxNHs37FJ3y+bjNGo5FWbdvQo18f0zlFGou9hw7x7qJFjBg40BTUdHZy4tXRo3k/NZXla9diazDQ4b77iI2JMXvu6nDffYwdNoxV69fz4erV2BgM3HP33fy5Tx+8b7vtZnVJ5Kpd7T3k6P5DAJQWl7AqaXGddSuoKdJ0WRivtBKIiMjvgNFobBJ5d57cPONmN0HklvWsX/TNboLILS2sUGMdRC4n2+XCr+8k8jsW3bJhKWVuVWfnzLrZTbgs1zjN6KuLEg+JyO9eUwhoioiIiIiIiPye6JWsyA32/fff12s/e3t7HBwcrnNrrl1hYWGt1dHrYjAYcHFxuf4NEhEREREREZEmT0FNkRusU6dO9dpv5MiRxMXFXefWXLu4uDjTyupXEhYWRkpKyg1okYiIiIiIiIg0dQpqitxgCxcurNd+Pj4+17klv42XX36ZoqKiX92vefPmN6A1IiIiIiIiIvJ7oKCmyA0WERFxs5vwmwoKCrrZTRARERERERGR3xktFCQiIiIiIiIiIiKNioKaIiIiIiIiIiIi0qgoqCkiIiIiIiIiIiKNioKaIiIiIiIiIiIiTczo0aPx9/fn7Nmztcpefvll/P39GTFiRK2y8+fPc8899/Diiy/eiGYCkJub2+BjFNQUERERERERERFpYjp06ABATk5OrbJt27ZhMBjYvn07Fy9eNCvLycnh4sWLhIeH35B2/vvf/2bo0KENPk5BTRERERERERERkSbmckHNo0ePcurUKR577DHOnTvHnj17zMp37twJQFhY2A1p55dfflkrsFofCmqKiIiIiIiIiIg0MXfffTcuLi58/fXXZtuzsrKwtLTk+eefx8LCgi+//NKsfNeuXXh6etK6desb2dwGU1BTRERERERERESkibGwsCA0NJRvvvnGbHtWVhYBAQH4+vri7+9PVlaWqcxoNJKTk2MapXnx4kUWLFhAjx49CAoKolOnTkyePJmCggLTMdu2bcPf359Vq1bx+OOPc++99zJ+/HgAsrOziY2NJTQ0lPbt2/Pkk0/y2WefmY6NiooiOzubEydO4O/vz5w5c+rdPwU1RUREREREREREmqAOHTpQWFjI0aNHgaqgZXZ2tilfZseOHdm5cyfl5eUAHDp0iB9//JGOHTsCMGbMGN544w3atm3L+PHj6dmzJytWrOCpp56iqKjI7Fz//Oc/CQsLY+zYsXTt2pXDhw8zfPhwjEYjY8aM4W9/+xslJSW88MIL7NixA4AJEybQpk0bXF1dmTFjBt26dat336yv9eKIiIiIiIiIiIjI9dG1a9crlm/atOmyZTUjLr/++mt8fX05cOAAP/zwgyloGR4eTnJyMjt37qRjx47s2rXLdFxmZiYZGRkMHjyYiRMnmuoMCQlh9OjRzJ07l3HjxpltnzRpkunf7733HsXFxbzzzju4ubkB0Lt3b5588kn27t1LaGgo0dHRvP/++5SVlRETE9Og66KgpohIE7H0kXG/vpOIiEhdWt7sBojcuqJvdgNE5IZwjYu/2U24vI/TrvrQgIAAnJycyMnJISYmhqysLKysrAgNDQWqRnJaWVmRnZ1tGrXp5eVFq1atWLhwIQDDhw83q7NXr17MmjWLTZs2mQU1axYmquHl5QXAlClTeOaZZwgKCsLV1ZWMjIyr7s+lFNQUERERERERERG5RV1pJOavsbS0JCQkxLRYUFZWFkFBQTg6OgLg5OREu3bt+O9//wvAV199ZZqanpeXR/PmzXF3d69Vr5+fH5mZmWbbakZj1ujZsycbNmxg7dq1rF27Fg8PDyIjI+nbt68pqHotlFNTRERERERERESkiQoNDWXfvn2UlZWxY8cO09TzGuHh4eTk5FBQUMCRI0dMU9aNRuNl66ysrMRgMJhts7KyMvu3wWBg9uzZpKWlERcXxx133EFqaiqxsbHMnz//mvuloKaIiIiIiIiIiEgTFRYWRkVFBenp6RQVFZlGYtbo2LEjxcXFfPrppxiNRlO5t7c3RUVF5Ofn16rzyJEj3H777Vc878mTJ9mxYwf+/v6MHDmS5cuXs3nzZnx9fUlMTLzmfimoKSIiIiIiIiIi0kQFBgZib2/P0qVLMRgMhISEmJWHhIRgbW3NqlWr8Pb2xsfHB4CoqCgA5s2bZ7b/xo0bOXLkCF26dLnieefOncuQIUM4ffq0aZuXlxeenp5YWv4ckrS0tKSysrLB/VJOTRERERERERERkSbK2tqa9u3b85///IfQ0FCaNWtmVu7g4MC9997Lrl276Nu3r2l7ZGQkXbt25YMPPuD06dOEh4dz9OhRlixZgo+PT60FhH4pNjaW1atXExsby4ABA3B2diYrK4vs7GxGjRpl2s/NzY3t27eTlJRESEgIwcHB9eqXRmqKiIiIiIiIiIg0YTUrk/8yn2aNminnNfk0ASwsLJg1axbx8fHs27eP119/nfXr1zNgwABWrFhB8+bNr3hOf39/Fi5cSKtWrUhKSmLKlCkcPHiQSZMm8cILL5j2e/bZZ/H19eWtt95i5cqV9e6ThfFKWT9FREREREREREREbjEaqSkiIiIiIiIiIiKNioKaIiIiIiIiIiIi0qgoqCkiIiIiIiIiIiKNioKaIiIiIiIiIiIi0qgoqCkiIiIiIiIiIiKNioKaIiIiIiIiIiIi0qgoqCkiIiIiIiIiIiKNioKaIiIiIiIiIiIi0qgoqCkiIiIiIiIiIiKNioKaIiIiIiIiIiIi0qgoqCkiIiIiIiIiIiKNioKaIiIiIiIiIiIi0qgoqCkiIiIiIiIiIiKNyv8DxIvpVTIQ65kAAAAASUVORK5CYII=" + "image/png": "iVBORw0KGgoAAAANSUhEUgAABTUAAAN2CAYAAAAolW1tAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3QUZRfA4V/apvfeGyGUFHrvXYr0LkVRQEFAEVRUQIo0QRARUJrSUTqh9yodQicJpJIKSUglyWa/P+KOhAREP6Tofc7hALszs7PJzs7Mfe97r45Go9EghBBCCCGEEEIIIYQQrwjdF70DQgghhBBCCCGEEEII8VdIUFMIIYQQQgghhBBCCPFKkaCmEEIIIYQQQgghhBDilSJBTSGEEEIIIYQQQgghxCtFgppCCCGEEEIIIYQQQohXigQ1hRBCCCGEEEIIIYQQrxQJagohhBBCCCGEEEIIIV4pEtQUQgghhBBCCCGEEEK8UiSoKYQQQgghhBBCCCGEeKVIUFMIIYQQQgghhBBCCPFKkaCmEEIIIYQQQgghhBDilSJBTSGEEEIIIYQQryyNRvOX1yksLARArVb/rfWFEEK8eDoa+QYXQgghhBBCCPGSKyws5Pr165w9exYdHR0MDQ2ZMWMGa9aswcfH57Hr6OjooKOj88Rt5+XloVKp/ondFkII8Q+RTE0hhBBCvBLUajUFBQUvejeEEEI8B4mJiWzbto28vDzlsd27d9OrVy8WL17M7du3KVu2LMOHD8fGxqbYug/n7ejq6pYIaD548IDdu3cTERHBnDlzqFatGqNGjSIpKemffVNCCCGeKcnUFEIIIcQ/JjExkaysLK5fv8769etZvHjxi94lIYQQr4CFCxeyZMkSfv31V9zd3QFo2bIlWVlZfPPNN/j5+WFmZoaOjg56enrKeoWFhejqFuXuJCUlERERAUD16tXR19cH4ObNm/Tq1QtTU1P8/Pzw8PCgWrVqNGjQADMzs+f8ToUQQvxd+i96B4QQQgjx6svKysLU1FT5/4kTJ5g8eTLh4eG8+eabWFlZoaenR1paGlZWVspyGo1GmRqovQl9VE5ODrm5uVy9epU1a9ZQsWJFevfujbm5+T/9toQQQrwgnTt3plGjRjg4OKBWq9HT08PIyAhXV1eqV69ebFnt1HGNRoOuri63b99m6tSpHD9+HAMDA4yNjSlXrhyDBw+mevXqmJubU79+fXbs2EHv3r0ZOHAgGo3mT6eoCyGEeLlIUFMIIYQQ/5cvv/ySDRs2sGXLFjw9PdFoNPzwww8kJyczduxYGjVqhJmZGV27dsXCwqLYuo9m2Ny/f7/YMmfOnOHTTz/F0dERExMToqOj8fHxkYCmEEL8i2g0GiUgqWVnZ4ednV2x5by8vLh06RLffPMNvr6+VK1ala+++oq0tDQWLlyImZkZiYmJfPzxx6SkpDBu3Djc3Ny4dOkS69atY+LEiSxcuBBbW1usra0xNjamcuXKABLQFEKIV5AENYUQQgjxt2in+LVv3546deooGZjJycncvXuXSpUq0b1792JBy0elp6ezZMkSduzYQWpqKn5+frRu3ZrWrVtjY2ODjY0N9vb2nDt3ji5dujBp0iRl+qAQQoh/h9Ia+ajVai5cuEBqaiqVKlVi0qRJ7Nq1CwMDAxYuXEi3bt2oWrUqpqamXL9+naysLMzMzDh27Bg3btxg2bJlSsCyVq1a1K9fnw4dOrB+/XqGDh2Ku7s7eXl5EswUQohXmNwVCCGEEOJv0WbUBAcHF7spdHBwwMvLi4SEBOLj41Gr1bi6ujJr1iwyMzOZMGECarWavLw8vv76a/bs2UObNm1wdHTk5MmTTJ48mQsXLvD111/j4OCAhYUFKpWKt99+GwcHhxf1doX4R2kz1Z6mS7MQrwJteRGNRoOenl6xz/XDU72zsrIICwsjKSkJb29v/Pz8AEhLS2PatGlER0ezZ88eWrVqhZ2dHStWrGD48OH07dsXAwMDypQpw86dO0lLS8POzo7Tp09jYWFB5cqViYmJ4caNG1y6dImwsDAAjh49yuDBg/Hw8KCwsFCaAwkhxCtMgppCCCGE+FNqtRqgWNblowGY5ORkrK2t+eabbzhz5gz379+nWbNmlC9fno0bN3L06FFiYmKYMGECenp6nD59ml9++YXJkyfTvHlzLCwsGDhwIEuXLmXatGm0b9+e+vXr4+rqSm5urpKhKXXPxMskMzOT5ORkvL29izUo+TNqtbpYLVkJZoqXzaFDh1i1ahX9+/endu3aj/18P+47+dHyIo8un5eXx/Tp0wkJCSE7Oxtzc3OMjIzo2rUrgwYNwtzcnMqVKxMREUF+fj4tW7akXLlyrFixAkCp4+zm5kZeXh4xMTH4+/uTkpJCcnIylStXJicnBxMTE5ydnfHw8GD06NGULVsWfX19HBwcMDMz49atW3/p2BVCCPHykKCmEEIIIZQsMaDUG7uHb0zT09PR09NTOsRmZmbSs2dP8vLy2LVrF8nJybi5uXH58mWGDx9O3bp1AahcuTI3b94kNzcXIyMj1q1bh6+vL507dwaKsnViYmKU19m8eTN169bF29sbgLi4OFxcXCSoKV4ad+/epVevXtjb27NixYoSx442Uw0oEdx59P8RERHcvn0bU1NTateu/c/uuPjPevj7MykpiStXrhAZGYm1tTX16tXDzs5OWSYlJYVDhw5Rq1atYp9J7edaV1e3WDD+0e/msLAwDh06xJkzZ1Cr1dSsWZNu3bphYWGBRqNh1apVrF+/noEDB1KlShUyMzNZsGABy5cvp1u3blhbW+Ps7ExWVhaxsbHY2Njg6OiIlZUVt2/fJiMjA3NzcxwcHDA2NiYiIoJmzZpha2uLSqWiX79+NG/eHBMTEywtLbGxsSEmJobk5GTUajW2trY4ODgQHh5OQUEBKpXq+f4yhBBC/N8kqCmEEEK84u7cucNvv/1GtWrV8PDw+FtBvz/LElu3bh2bN2/mxo0bmJubU6VKFd566y0qVqyImZkZzs7OXL16laysLCZOnMiBAwcYOXIkzs7OBAUFAeDi4gLAjRs3CA4OJikpieTkZPr160dMTAxJSUnKjWbt2rWpWbMmurq6ODs7A3DlyhWqV6+uBF+FeNFsbW2ZPHkyxsbGpT7/uEw1gCNHjnD8+HFatWrF6tWr2b59O2q1GjMzM/r370/v3r1LNNYS4v+lo6NDRkYG3377LTt27CA/Px9jY2Oys7OxtLSkX79+vPHGGwBUrFgRY2PjYoNN2m1oP9eZmZkkJiZibGysfMdD0SDUJ598QnZ2Np6enhQWFjJr1iyOHz/O3LlzMTU1ZcOGDdSsWZP+/fsrx1DVqlWJi4tTsjBdXV3R1dUlLCyMoKAgjI2N8fT0JDo6mvv372Nubo61tTUODg7K9PKgoCA2bdqEnZ0dFStWLLbvP/30EydPnmTu3LnY29vj7e1NdHQ02dnZEtQUQohXkAQ1hRBCiFdAYWEhMTExaDQavLy8gD+yYo4ePcrYsWOZNm0aHh4exdZTq9XKck9q2HP79m1CQ0O5f/8+FStWpEqVKspz27dv59tvv6Vy5coMGzaM+Ph4li9fTlxcHHPmzMHR0RF3d3d+++03bt26RWBgIB4eHlhYWBAREUFeXh4qlQo3NzcArl69SnBwMO7u7oSGhmJgYEC3bt3w9PTE3d0dOzs7dHR0ePDgAQDOzs5YW1sTGhqqvG8hXhbVqlUr9fGCggJu3LjB6dOnSUpKolKlStStW1cJ1ly8eJENGzawefNmypQpw9y5c9HR0WHx4sXMmzcPDw8P2rRpI9Nixd+mVqtLfO8nJSUxdOhQbt++zZtvvkmtWrUwMTEhJiaGhQsXMmPGDHJzc3n77bdxd3fH1NSU6Oho4I8s/qioKH7++Wf27dtHcnIyBgYGVKhQgSFDhlCzZk309fWZNm0aqampTJ48mXLlymFiYsKiRYs4f/48KSkpmJqa4ujoyNGjR5k1axb169dHo9Eog2Za9vb2WFtbc+3aNeUxPz8/jhw5wr1793B1dcXCwgI3Nzdu376NWq2mVq1alC9fnpUrVxIYGEj58uXJyclh7969rFixgsaNG+Pl5UV2djb29vbs3buXu3fvKs3uhBBCvDokqCmEEEK8pNRqNRs2bOCXX37h+vXrGBgYYGNjQ+3atenbty9lypQBIDAwEF1dXVJTUwGKZVw+ekP76E1uZmYm48aN48iRI6hUKjQaDWq1msGDB9O1a1dMTU1ZunQp/v7+fP7559jZ2aGnp0eNGjW4ffu28lraeoLh4eEEBgYq2Zvh4eHk5+ejUqlwdnbGzMyMS5cu0bNnT8qWLcv27dvp2LEjbdq0oaCgQKmbuWjRIkJDQ5k1axZ2dnY4OzsrWTgy9Vw8T9rSDE8KLN66dQsTExOcnJyUqbkLFizg559/xszMDB0dHX7++WeqV6/OiBEjCA4OJjAwECjK9vzqq6+UoL+NjQ29evXi2LFjtGnT5rm8R/Hv89tvv/Hzzz/z/fffFwuMf//991y5coUVK1YoncEBypUrR9WqVWnXrh1btmyhV69eSuAxISGB1NRUrK2tSU9PZ/r06URGRtK+fXu8vb25efMmK1asYMaMGXzzzTd4e3sTHx+Pg4MDjo6OWFtbAzBkyJBi+/jhhx8yffp0li9fzvLly4GiOpl2dnZ06tSJQYMGYWtri6OjIzdv3lTWK1++PJs2bSI5ORkAExMTvLy82LlzJ0lJSfj4+PDRRx/x3nvv0b9/f+rXr09hYSFXrlyhZs2afPHFF8p6rVq1wsvLC0dHx3/ulyGEEOIfI0FNIYQQ4iWUmZnJd999x8aNG6lXrx6dO3fGwMCAc+fOsW7dOk6ePMn333+Pr68vzs7OGBoaEhUVpWRFardx9OhR9u/fr9wQNmnShK5duypTuufMmcPBgwcZMWIEtWrVIicnh+nTp7N582bq16+Pr68vRkZGREVFcfnyZerVq0deXh7Vq1encePGyv56e3ujUqm4ceMGAGZmZnh6enL9+nWys7OVm2PtNHWAevXq8e2337J161batGmjBDSvXr3KvHnz8Pb2Rl9fHysrK1xdXdmzZw9QMlArxP/j4bqX2hqBD3u4NENiYiKZmZm4ublhaGgIwN69exk6dCj9+/fnk08+QUdHhzVr1vDdd9/Ro0cPevbsiZGREceOHWPChAlkZ2ezdu1afHx80NPTw8DAQGl0olKpcHJywt3dnfDwcOX1hfgrNBoNx44dY//+/WRlZSnZwYmJiWzdupXXX3+dgIAAZVkdHR0KCgqwsbFh5cqVymwAAB8fH44ePUpsbCzW1tasXLmSffv2MX78eHr06KEMlJmYmDB//nzCwsLw9vamefPmzJo1i759+1KuXDn09PTw8fGhatWqBAYG4ujoSPny5fnuu++4d+8ely5dIjY2ltTUVI4cOcKSJUsIDg6mSpUquLm5ceHCBeUYKVu2LAUFBSQmJgJgbGyMt7c3d+/e5c6dOzg7O1O3bl02bNjAr7/+yvnz5zEyMqJnz560aNGi2DT5mjVrUrNmzef3yxFCCPFMSVBTCCGEeAmtX7+eZcuWMXr0aLp06aLU1uvUqRN16tThww8/ZOzYscyZM0fJZIyOjiYzMxMbGxsKCwtZtGgR27dvx8XFhQoVKnDr1i2+//57YmJiGDduHCqVikuXLlG3bl369OmjvPaSJUtIS0vDwcEBgDfeeIMxY8YwZMgQLCws0NfXx9vbm4CAABo0aEDdunVxdnbG0tKSiIgI4I/MmUOHDnH//n3s7e2xtbXFzc2NkydPAuDv78+7777Ld999R69evWjRogW6urps3LgROzs7xowZA4BKpcLf35+4uDjS09OxtLR8nr8K8S/3Z6UZYmJimD17NseOHVOmqzZo0IA+ffrg4+ODm5ubks0GRdN7f/75ZypUqMD48eOV7Xh6epKZmcmcOXPYvXs3jRs3xsXFhfT0dABlMMLOzg4nJydu3rzJgwcPlOCpEI8qrRGVNivTzs4OgNTUVCWoefToUbKysmjUqBEGBgbFMji1g0ragGZ+fj4GBgb4+fmxa9cuIiMjCQwMxMnJiUGDBtGxY0cApd7l9evX0dXV5datWwD06NEDa2trdu3aRWpqKgkJCRw6dIilS5dSqVIllixZgpGRETk5OVhaWtK6dWvlfTVo0IA333yTpKQkVCoV3t7eHDx4kLt37ypdzAFu3rypZPg7OjpiaWlJbm6u8rPx9fVl9OjRMjAg/lFqtZqcnByleeJfWU9XV/dPZwIIIZ5MgppCCCHESyYtLY2FCxfSoEED3nrrLeVx7Q1s69atlYwu7Y1rmTJluHHjBsnJydjY2LBhwwYWLFjAm2++Sf/+/TE1NSU/P5/Zs2eze/duwsLCqFy5MhUqVGDVqlUMHz6cOnXqoNFocHR0JDg4WHndZs2a4ejoyJUrV7h16xaRkZHExcWxYsUK9u3bx/r163F1dcXOzk5pKGFkZISnpyfZ2dkkJiYqGZ9eXl4cOHCAe/fuYWNjw9ChQ7GwsGDr1q18//335OfnExQUxPDhw4vVKhw6dChDhw59Tr8B8W/wpM7jD4uJieHs2bPcuHEDCwsLGjduTLly5YCibOcZM2YQGhrKoEGDsLe35/Tp06xevRo9PT0+//xzXFxcsLa2VoI5enp6REVF0a9fP2U/oCh42qxZM+bOncuFCxdo0aIFbm5uREdHk5KSgp2dnZL15urqytmzZ4mOjsbPz++f/DGJV1hpAXldXV0SEhI4e/YsAO3atcPBwYFFixaRnZ0NFAVT/ow2yOLv76/UdIaigTUoaty2YcMGzpw5Q2xsLPb29ujq6hIVFQWAubk5Xbt2pWvXrsTFxaFWq1GpVCxdupSff/6Zo0ePUrVqVbp160bz5s15//33KSwsJDk5mY0bNwIo2aR2dnbk5eVx8+ZNnJ2dsbGxoW7dunh5eSnHeJMmTZQBM+3P5uG/hXhWQkNDOXDgAJGRkfTt25c+ffowevRo+vTpU+Lzpi1fApQIXGqPXe06d+/excjISBmEEEI8HQlqCiGEEM/Zw1NdH6adBrhnzx7u3bvHa6+9BqBkojx8A9usWbNi65YrV05pnABFHdErVarE8OHDMTIyUpazsbEhOzub6OhoKleuzIABA7hz5w6HDh3iwIED5OXlAeDo6Ejbtm0ZNWoUenp6BAUFUalSpWKZYz/88AOzZs3i6tWr1K5dG1dXV06cOEFycjL29vY4OjpiZGREREQENWvWRE9PT8k4vXHjBrVr16awsJC+ffvSunVr1Gq11DUTf9njgpePBny0U1e1xxmgNNnSaDRYWFiQlJTEqlWr+PLLL2nSpAmJiYns2bOHr776ig4dOqCjo0Pbtm2pUaMG9vb2AFhYWODk5MTFixfJyMhAR0cHY2NjdHV1i5WDgKLgjJ2dnTJt1tvbm71793L79u1iQU1vb28KCgoIDw/Hz8+v2D6Lf7/CwkLld/64DC61Wq00ooqKisLDw4MmTZrg4eHB5cuXuX37Nvr6+ri7uzN69GicnZ2Vc0FWVtaf7oP22PHx8UGlUinNggC2bt3K3LlzMTExoVatWjRq1IjatWtTp04d7ty5A0Bubi7bt2+nfPnyVKhQQVm3evXq/PTTT6hUKmxtbQkICOCnn34iNDQUFxcX4uLiiI2NZdy4cUpGprZJnY+PDwAGBgYsXry41P0V4llJTU1l/fr1VKlSRWledfPmTUaOHMmDBw8IDg7GysqK2bNnU6ZMmVK/ox8uX/IwjUbD3r17ycrKQq1WM3nyZKysrBg3bhwNGzaU73wh/gIJagohhBBPoFaruX79Op6enk89tejPGotoHy8sLCQ+Ph4LCwvMzc0pKCjAwMBAueE0NjYutvyTlCtXjpycHCVY8v777zNs2DASExPZsWMHx48f5+jRo6SlpaGrq0t8fDwArq6uzJs3j8zMTC5fvkxiYiJ5eXn8+uuvLF68mM6dO2NmZsb06dN5/fXXadCgAVAUIMrKykJXVxcDAwMA3NzcSE9P5/r169jb22NhYYGRkRF37txRgjUdO3akadOmSpMj7XvTZpwK8SSldXN+3PTx2NhYVq9ezeHDh8nOziY4OJiuXbtSu3ZtADIyMvj444+pUKECQ4cOxcbGhtTUVEaMGMGpU6do2LChEgTdsWMHjo6OlC1bloyMDBo1alQsm8bDw4OjR48SFRVF2bJlcXBwICoqSikHoR2YyM3NVbKmAdzd3YGiG+Xq1asr2/Px8cHIyIgbN27w2muvyQ3uv5S2MZuurm6x7/mH/63RaJRzw8Ofg5UrVzJ//nwsLS0xMjJi8+bNbNq0icmTJ9OsWTPs7e355JNP0NfXp169egBKMypt4PFxnym1Wk1KSgrW1ta4u7tjbW1NbGwsarWawsJC5s6di5mZGTNmzMDX11dZT6VSERsbS0pKCvr6+kydOhU7OzsGDRqEl5cXd+7c4bvvvsPLy0s5B0ydOpVmzZqxe/duEhMTKVu2LIMHD6ZOnTrKlPiAgAAla1OI5yUmJobNmzdjZ2dHUFAQ+vr6/PLLL8TExDBx4kTatGmDgYEB3t7exdZ7+DiNiIjg0qVLZGdnU7NmTeV4yc/PZ8+ePWzZsoXAwEC6d+9OYGCgEriX73shnp4ENYUQQojfxcbGEhERwZUrVzh9+jQ3b94kPT2dgoIC5s+fT+PGjYtdrD4u0PDwyHxpy+zdu5cFCxZw48YNTE1NKV++PN26dSsWvNDX11du6B4X1Hy4Hpr2ojouLk7Zh9u3b/P1118THR2Ns7Mzb731Fq1ataJLly7ExMSQm5uLkZER169fx8PDg7p16yrbNjIy4pNPPiEuLo5KlSpx4cIF9uzZQ7du3Shbtiw3b95kx44ddOnSBX9/f6BoCnyFChWU9+vn58e+ffuKBX+cnJxwcnL6i78Z8V9UWkbzo8HLW7duYWZmxo4dO9ixYwdOTk7Mnj2b1NRUvvrqK27evEnNmjWxsLBgz549bN++nZkzZ9K6dWsiIyNJS0ujY8eOSrkFd3d3tm7dqnxm3d3deeedd/jxxx85fPgwAJaWlri7uxMcHEz37t0pW7YsHh4eaDQabt68SUBAAIGBgRw5ckTJSNYey7GxsYSHh1OrVi2gKBhqYWFBWFhYsffl5ORETk4OV65c+Qd+suL/ERcXx5UrV7hw4QLXrl3j/PnzzJs3j7p16xb7Tn4a2u/6R4WGhrJ8+XLOnj2Lvr4+derUoXPnzgQGBgJw8eJFpkyZQu/evenZsyfGxsZcvXqViRMncuHCBSpWrEiFChXw8vLi1KlTynbLly8PwPXr15XXL422HvP06dPx9/fHxcWF+Ph4UlJSKCgo4N69e7Rp00YJ0BQUFLBkyRKSk5MxNzfn1q1b1KhRg88//5xFixbx9ddfU1BQQHZ2NoGBgYwZMwY3NzfUajUmJia8/vrrvP7660/9cxPieShXrhwLFy7E3NxceczKygp9fX2CgoIwMTFRHk9JScHU1BRjY2N0dHTIyspi6tSpbN++HZVKhb6+PnPmzKFbt26MHDkSPT09qlevzpYtW7C3t+fjjz9+EW9RiH8FCWoKIYT4z8rNzWXhwoWsW7eOzMxMHjx4oDxXsWJF+vTpg7OzM/b29kqNvcLCwhJ1kB6+kc3KyuLatWvExcXh6elJpUqVir3mkSNHGD9+PP7+/nz++edkZGQQEhLChx9+iK6uLi1btsTMzAy1Wk1GRsYT9//hm2cnJyesrKyUZkFmZmaMHDmShIQEpbO5k5MTmZmZWFhYEBsbS3Z2NpGRkQwePJhmzZrx9ttvY2BgQEpKCuvXr8fOzk7JIp09ezYrV65k//79bNiwAUtLSzp06ED//v2VC/4OHTrQoUMHZZ9UKlWxqbfi3y02NparV69y69YtCgoKqF69+hO7CmszmkubnvdopnNaWhpWVlb88MMPODk50a5dO9LS0mjdujWNGzcmNjYWb29vypYtS2FhIcuXL+fEiRNMmDCBJk2aoFKp+Pjjj3n77beZOXMm5cqVw8vLCx8fHz799FP27t2Lh4cHenp6VKxYkeDgYKytrdHV1eXdd9+lRYsWREZGcv36dWJiYoiNjWXlypXcv39fyVYzNDTk6tWrdOrUibZt2xISEsLs2bOxtLTEwsKCmJgYpk+fjo2NjRLAcXFx4cGDB1y8eBH4o1mLr68v69evVzLrpInEi3PlyhXWrl3LqVOniIuLIz8/H1NTU1xcXPDx8aFnz57KQM3DWfgP/x+KD3Dl5+cTERGBqakpq1at4ujRo9SvX5/Ro0dz5coVxo0bR2FhIS1btiQ3N5cdO3awdetWfvjhB6pWrUpERAS6urp06dJFCSy6uLhQt25dJcPfwMAAV1dXsrKylBrGVlZWVKpUiaNHjxIXF4erq2ux/dKWS7hy5Qo3btxQZg14e3tz9epV4uPjCQgIwMfHh5UrV2JgYECZMmU4efIkhw4donLlypw9e5Z169ZRo0YN2rdvT61atTh37hyGhob4+fkp2ckajUamjIuXhrbkg66urnI8qFQqXFxcii3n4eFBQUEBs2fPxtXVlfbt23Pp0iUmTJjA0qVLqV27Nvn5+UydOpUtW7YwYsQIatSowf3799m1axc//vgj7u7udOvWTdl22bJln/v7FeLfRIKaQggh/rN0dHSwtLSkcePGVKhQgYCAAI4dO8acOXNo0aIFgwYNKjHd9eEOs+Hh4WRnZyuBy40bNzJ37lzu3r2LmZkZ+fn5NGjQgK+++gqVSkVeXh7z5s3Dzc2Nr776Sqkf+fbbb9O5c2fmzZtHgwYN8PHxwcDAgPDw8Cd2P16zZg1nzpxh2LBheHh44OrqSlRUFHl5eYSGhnL79m3effddunXrpqxz7tw57ty5g7m5OUlJSZQrV462bduydOlSTp48ibOzM5GRkejr6zNmzBiCg4NRq9UEBATw5ZdfkpKSgr29vTLlXPw35eTksGHDBi5cuMD58+dJSEigoKAAMzMzLC0tSU5OZuXKlfTo0YPhw4eXuo0nZTTr6OgQGhrKggULOHnyJBYWFgwcOJBZs2bRtGlTGjRogLW1NRUrVuTAgQOMGjWKXr16AUWBpF27dtGqVSvatWsHFAVr0tLScHFx4ejRo+zfv5933nmHUaNGsXjxYs6cOcPhw4fJzMwEigJEQ4YMoXPnzujr6+Pn50dgYKCyPY1Gw8CBAzl9+jQajQY3Nzesra2VJil16tRh2rRpjB07ljfeeAMPDw+SkpKwsrJi6tSpBAUFKa+zePFi5eb24U7U2oEU8WJoB6siIyNZt24dnp6eTJs2DVNTUxwdHbG2tsbU1BRDQ8MS34fa36NarSY2NhZdXV0lmAdw9uxZ+vfvT8uWLbl16xbBwcF4e3uj0WiYN28e6enpzJ49Gz8/P4yMjBg1ahQdOnTg66+/ZtmyZVSoUAFjY2PeeustGjVqhJWVFaamplSuXJnAwEBMTU2LvebNmzeV7OCuXbty+fJlli9fztChQ4uVVVGpVFy+fJnffvuNZs2aKQHTihUrsnnzZm7cuEGlSpUYOnQoCxcuZOHChUDRoFqfPn1o3bo14eHhODs7K9t0dHRU6kM/TKbXipfJ4waOrl69yp49e+jUqRN79+5l2rRp6Onp8dtvv1GrVi0MDAxwdnZGT0+P1NRUABISEti2bRsjR46kb9++yrZq166tNJpr3bo17u7uGBsbo1arS9RfFkI8PQlqCiGE+M8yNDSkV69eaDQa9PX10dPTw9TUlDlz5ig1Jx++0E1KSmLSpEm0a9eOhQsXcu3aNerXr8+CBQvYu3cv48aNo3nz5nTu3Bk9PT3OnDnD3LlzMTU15dNPPyU9PZ0LFy4wa9YsHB0dycnJISwsjNjYWHJzc4mIiOD69esEBgbi5ubGb7/9Rvfu3ZWprQ9n+RgYGHDlyhV27txJ586d8fDwoGzZshw9epT79+9jamqKpaUl+/fvp1atWhgbG3Py5EmWLVuGiYkJN2/eZNu2bZQrV46hQ4dSv359QkJCKCgooE6dOtStW1fpuqwN5JaWtSD+mwoKCpg4cSIAb775Jp6enri5uSkdkO/du8cXX3zB/PnzadWqlVKiQBso0g4K3Lx5E0NDQxo1alQsMBQTE8PkyZNJSUlh0KBB5OTksGrVKgAePHhAeno6VlZWuLu7c+XKFSpXrqxkqN26dQuNRsP169cZOXKkkmGWm5uLra0tlSpVUmq4NmjQgAYNGpCWlsaNGzcoLCwkISGBqVOn8uOPP9K5c2d27drFL7/8wsSJE/H09OTBgweEh4eTkJCAtbU1Ojo6ODo6YmZmRmhoKFB0rLz++utUqVKFkJAQ7t27h7+/PzVq1FCyL7UezeYWLwft9225cuWwsrLC2tqa1q1bP9W658+f57vvvuPUqVMYGBhgb29PixYtGDJkCEZGRnh7e2NiYsKuXbtYuHAhNWrUwMDAgNTUVA4ePMiXX36pBL4zMzO5d+8ejo6OnD59mitXrlClShU++eQT1q1bx/Hjx0lPTycnJwcoyvoaM2YMtWrVUr6vL126pAQ127Zty6VLl1i2bBk6Ojq89dZbSlOr0NBQ5syZg1qtpn379lhaWgJF2WkPHjxQyps0aNCAgIAAEhMTcXZ2xsrKSnnv2gZaQrxoj2si96ikpCQuXbpEdHQ09vb2tGrVSsmaP3XqFPPnz6dGjRrUr18fT09Phg0bRvXq1fnyyy9xcHAAigaitINaly9fJicnB39/fyIiIjh79iyhoaHExMQQERGBgYEBsbGxeHp64ujoqJQDkqCmEH+PBDWFEEL8J6jVamVq0cOBykcvIrUBh9u3bwPFs0l0dXXZvXs3J0+epHr16rz33nvY2NgAsHjxYipVqsTkyZOVDrM1a9YkJSWFTZs20bNnT2Va+LfffsvXX39NUlIShYWFWFhYEBAQQK1atTAxMUFfX5+WLVsyf/58jh49Sq9evYpNezcwMCAhIYG9e/dSsWJFKleuDBQ1U9ixYwexsbHUq1ePN998k9mzZ/PWW29hbm5OXl4ezZo1480332TRokVKQXpTU1Pq1KlDnTp1/okfvXgFxMTEUFhYiKen51Mtb25uTlBQEFFRUfTv37/UrvVDhw7ls88+Y/v27Xh7e6NSqdDV1eXq1atMnTqVCxcuYGpqilqtxs3NjU8++YQaNWoAsGnTJq5cucK0adNo06YNUBSM+eSTT7h16xb37t3D09MTHx8fDA0NlQxLKLp5tbS05OLFi7i4uNCwYUPKlSuHh4cH9vb2FBYWKrXQUlJSuHz5Mo0aNSo2Vf7QoUOcOHECjUaDo6Mjp06don///rRp0wZdXV3Onj1LTk6OEthVqVTUr1+fjIwMcnJylACrm5sbgwYN+hu/EfG8aaefQtFnSPvd7+joiL29Pbdu3QL+KJugXfbRDuXXr19n/Pjx5OTkMHLkSKysrNi3bx8//vgjKSkpfPLJJ8o2tQ2stJ+Xq1evYmJiws6dO9m9ezdhYWEkJydTWFiIh4cHtWrVUs4DXbp0oUuXLiQmJnL79m0MDAw4f/48X3/9NevWraNWrVo4OztjZ2en1GbV1lEePnw4hoaGLF26lI0bNxIQEEBmZibh4eG4uLjw9ddf07hxY6XBVbVq1Th06FCx49zGxkY5/wnxLGkHcaOiovj000/x9/dn3LhxyufxUYWFhaWWMXm0iZx2QPhhS5cu5eeffyYrKwsrKyvu3bvHzz//zMKFC7G2tqZMmTIYGRkRHx9PtWrVKFOmDJ6enty9e1fZF2tra+zs7JTviLS0NAwNDenXrx96enrKAJy3tzfjx4/H1dUVV1dX9PT08PLyUsoGWVhYSFM4If4GCWoKIYR4qT148IDVq1dz9uxZ5s6d+7e38/CF7eMuGjUaDYaGhjg6OhIXF8fdu3extbVVlre2tiYwMJBLly7x7rvvUrFiRQCSk5OJioqiW7du5Obmcv78eS5dusTt27c5cuQIOTk5XL16lQoVKmBqakpBQQF9+/bFyckJd3d37OzsUKlU3Lt3T5kK2LZtW06cOMGMGTNwcnKiSZMmaDQa8vLyiI+P55tvviE1NZVRo0YpQVQvLy9yc3MJCwujXr169O3bl7JlyxIaGoqtrS3BwcH4+vqiq6vLpEmT/vbPUrz6Hq4De+/ePVq3bk3fvn354IMPStw0aoM92uCNtiSDu7s7oaGhJCYm4ujoqHRx1gbgy5Urh6OjI7GxsUq2THR0NGPGjCE3N5epU6fi5ubG9evXWb58OV9++aVS7/LKlSv4+PgoAU0oqjPZu3dvPv30U5KTkwHw9/fnwYMHpKWlKcvZ2tpibW2Nubk5U6dOVaYHa4/5qVOnolKp+PDDD9m2bRtTp05l3LhxVK9eHR0dHc6ePcuBAwdo06YN+fn51KhRg6VLl7J27Vr27NlDXl4egYGBDBw4UOmkDvDRRx+V+rN+OFvo4Xpt4sXRDnI9HLx83PRTMzMz3NzcCAsLU2pTPul3+NNPPxEREcGiRYuU7MgOHTowduxY1q1bR+PGjWnRogVubm7KeebhTEcrKytCQ0Np2rQpwcHB+Pv74+rqipWVFfn5+cqyERERJCUlUbt2bSXY6Ofnx+bNm0lMTATAwcEBHx8fjh07xoIFC/D29qZly5ZYW1srU9p3795NZGQk7u7udO/enRo1aii1NrXfBQYGBqUOXAjxVz18/RUVFcX58+e5cuUKBgYG1K1blzp16ijPGxkZERMTU2ywQbuNh+sua/9+9NouKiqKkJAQDh8+THp6On5+fvTu3Ztq1aqhp6fHqVOnmDdvHq1bt6ZLly4YGRmxc+dOVq5cyfHjx2nTpg12dnaYmZkRFhamfI+XLVuW3377jdjYWGxsbDA1NcXT05PIyEhyc3NxdHREV1eXFi1aMGbMGOW4NTc3JzU1lbNnz5Keno6bmxs+Pj5cvHhRKY8i5wch/joJagohhHghnnY0Whsksba2LlFzSBtseVLAMjExEQcHB3777TeWL19OREQEbm5uvP3221SvXr1YAEetVqOvr69csMbFxRULaurp6eHq6kpkZCRqtVpZ786dO1hbW7NgwQJ+/PFH9PT0cHBwwMPDg86dO+Pp6Unt2rUpLCzEysoKY2Nj+vfvX2xf79y5w6effkrDhg0ZMmQIvr6+TJw4kY8++oj33nuPGjVqUKNGDXJzczl58iS3b99m1KhRSo0/KMrU/OKLL2jUqBFQlKVQu3btYoEXIRITEzlx4oRSi8/a2pqlS5fi6OhY6hS9xwV7/P39CQkJ4fr168pU2UeP6Xv37gEogfcjR44QGxvLkiVLlHWCgoKoUKECPXr0ICQkBD8/P5KTk5VtPVzXtnr16mg0GqU8hLbm3507d5TXNDMzo0GDBuzfv59NmzbRp08f5bkzZ86wbNkyevfuTWFhId26dePQoUN89dVXeHl5KQHSxo0b89FHH6FSqSgsLKR27doEBwdjaGj4xGmMBQUFxQJl2p+JNER5NrKysvjxxx/x9/fntdde+0tZTQ8vW9rv4+bNm+zatYuYmBgqVarE66+/rgwyeXl5ARAWFkbFihU5ffo0V69e5fr16xw9epSvvvqK1157jfT0dK5du0aNGjWoUqUK8Ed22Ouvv87OnTs5cOAALVq0oGzZsly+fLlYQN7FxQUjIyMcHByYOnUqeXl56Ovro6urS0pKCrNmzaJKlSr06tWLH3/8ka1bt/LNN99QpkwZpaFQREQEo0aNAoqmgr/77rt89tlnLFy4kFatWtGyZUugaLps+fLllY7oj5Lgivh/lXZ8av//ww8/8Msvv5CXl4e1tTWZmZn89NNP1KhRg5kzZ2JjY4OjoyO+vr5ERUUp54FHm8vFx8cTGRmJrq6ukm2vHQCeNWsWV69epXLlylhbW7Nnzx4GDBjA/PnzqV+/PseOHcPMzIxOnTop56OyZcvSvXt3bG1tgaJBBhcXF8LCwsjLy8PQ0JCgoCB27NhBQkICQUFBqFQqfH192bFjB8nJyfj5+WFjY0NSUpLSREzr9OnTfPDBB4wfP56uXbtStmxZsrOzlYE6IcRfJ0FNIYQQz1VoaCjh4eF06tTpqZY3MDCgR48eqNXqYgHNR7sjZ2ZmkpOTU6ye14EDB3j33Xfp168fcXFxPHjwgCpVqnDkyBGGDBnCzJkzady4cbGsNSgKDh45coSYmBiCgoKULAGAMmXKcOjQIaUrLIClpSWGhoY4OzvzzTffYGJiooze6+rqcunSJe7fv4+/vz/Nmzfnu+++Y+3atXTv3h21Wk16ejrLli0jNDSUESNGKNv18/Nj3rx5hISEcPToUbZs2UJBQQHlypXjrbfeomnTpsWmUllaWtK7d++n+0WIf40nNZN6mPZzvnDhQvbt24ePj4+S9VWtWrVS18nKyuL8+fOcPXuW3NxcGjRooEwR1wYUb968CfwR/NTT0yMrK4tff/2V7OxsJVstNzeXq1evYmRkRMWKFbl48SLXr1/nypUrXLt2jYKCAk6cOMHIkSMxMzMjOjpa2R4UHfNOTk5K9k5eXh4uLi6Ym5sTHR1dbNp3x44dCQkJ4auvvuLatWvUrl2bjIwMpexC37590dXVxcTEhO+//56DBw9y9epVrK2tqVSpEhUqVMDIyKjY94x2yvqT6rSVNjVSPDsGBgYsWLCAVq1a8dprrxULmBQWFiqf8UcD8dpASF5eHnl5eRw+fJh9+/aRl5dHr169cHV1Ze7cucrnaMuWLcTFxfHuu+8qmZr6+voMGDAAtVqNkZERjo6O+Pn50bVrV6Vsw927d8nNzcXExEQJiGs/Ey4uLnh7eyvHi7+/P+np6SQlJSn76ezsTL169fj55585cOAAjRs3BooC+zt27GDbtm3Uq1cPKCrvEBoayscff4ynpycpKSloNBreeust3nzzTeCPga0NGzYUywYV4p+Qlpam1Al3dHR8bEmbkSNHsn37dnr37k3r1q1xcHBArVazbds25s+fz8CBA5k3bx6Ojo44Oztz8eJFYmJi8PLyQkdHh/v37/PTTz+xfv16kpKS0NHRUYKTffv2xdnZmfXr13P8+HFGjx5N+/btUalUtGnThrVr15Kfnw+At7c3aWlpjB8/ntatW2NmZoaxsTFBQUFKZrKJiQkeHh6EhoaSnZ2Nubk5gYGBAEqNWT09PcqUKUNaWhpxcXHUrFmTzp078+233/LNN98o12XXr19n6tSpWFtbK7MQnJ2defDgAbdu3aJBgwYymCDE3yBXXkIIIZ6r77//npSUFNq2bVsiSPm4KZraYMLDdHR0iIyM5Mcff+TAgQM8ePAAb29vXnvtNdq1a4eDgwPm5uZUrFiRn376iR49evDee+/h4ODAkSNHGDp0KNu2baNx48Ylph8GBAQAf9TVfJi/vz85OTnFbkQdHBzw9vYmNjYWJyenYiPzGRkZjBgxgpo1azJz5kzeeOMNDhw4wLhx4zhy5AgBAQHcunWLPXv28Oabb1K9evVir6etydezZ09MTU0l40soTp48yeDBgxkxYgT9+vUrdZmHa41pg/MODg4kJycrx59GoyE/P5+rV6/i7Oys3MxlZGQwY8YMtm/frnQzXr16NW3atGHy5Mn4+vqip6dHZGQkUNTx9datW0RERHDmzBlOnz7NO++8Q9euXYGixlzp6emkpKQQHBysZGBrm1z16NEDV1dXAHx8fDh16hRRUVFKwEhHR4fo6GilvllGRga2trZ4eHgQFxdHRkYGxsbGFBQUYGhoyNixY1m1ahVHjx5l27Zt6OnpUbVqVYYPH16sdqixsTGvvfbaU3dolszLF0M7sOXi4kJqairp6elYWloWK42g/Q7XBjj19fWV5z/44APi4+OpUaMGx48fx9jYmPDwcC5cuIBGo6FatWrMmTMHPT09Zs6cycaNG6lXrx61a9fGw8MDAwMDypQpw9SpU4GiMgfaGsjaz4mZmRnm5uZKbb2HM8osLS0xMjJSnitTpgxQPMvY2NiYvn37smvXLkaOHEn37t2pWLEit27dYtmyZTRt2lTJtHRzc2PNmjXs2rWL+Ph4XFxcqFy5slIr+WES0BTPwqOZl+fOnWPnzp2cOXOGyMhIsrOzMTIywtramtzcXKpVq8aUKVOUjGeAX3/9lZCQEMaOHUuvXr2KbX/IkCHcvXuXPXv2kJCQgKOjI15eXuTn5xMREaH8e9GiRfz666906NCBGjVqkJGRwcaNG1m6dCkeHh707NmT7OxsMjMziw0sBAYGKhmZAC1btiQjI4O5c+eyYMECsrOzgaJzVfny5Zk3bx7W1tZ4eXmxb98+0tPTlcEMgNjYWKAoqOnp6YlGo+HOnTvo6OgwYMAALly4wI8//si+ffuwsrLizp07mJqaMmvWLOW61t/fnzlz5lC1alUJaArxN0lQUwghxHP1+eefF2t6o/WkQEFiYiJff/01vr6+DB48GCiacjR+/HjCw8Pp0qULVlZWHDhwgBkzZhAWFsaUKVNwc3PDxMQEBwcH+vXrp3SprFChAtWqVePq1avFLtK1f2s7NWuDNQ9n/WhvGLXTX6Eo6NqlSxdCQkKYNGkSX3zxBUZGRty9e5cFCxaQkpJCly5dgKKby1mzZrFhwwYOHTrEyZMncXNz491336VXr14lithrWVhYPP0PWfyraT+zXl5efPnllyWmjz78mS5t6riRkRGFhYWMGTMGNzc3xo4dy5kzZxgxYgQTJ06ka9eu5OXl8eOPP7Ju3TqGDRtG69atUavVrFq1ilWrVtGxY0cqV66Mvb09p06donr16mRkZKBSqcjLywOgf//+vP/++8AfWaKWlpbo6+vz6aefUqtWLYyNjTE3N8fc3JybN29y9+5dAFq0aKHcpH766acYGhpSUFDAmjVrSEtL4/79+0rNW1dXV44ePaqUmtBOUfTz82Ps2LFERESgo6ODp6fnEzMptSUlHm38Il4s7WdHe37w9vbm9u3bpKSkYGlpqXzWz5w5w6pVqzh//jwqlYpGjRrRvn17KlSoABR9r2unhw4cOJA2bdpw8uRJJkyYAMCgQYOUaeadOnVi586dREREULt2bby8vDA1NSU7O1vJUC6NtbU1fn5+hISEEB8frwwGQFFDtjt37uDo6EheXh4eHh6YmpoSHx+vlFbRaDS4uLgwY8YMVq1axfbt21m+fDlmZma0atWK4cOHK9nIUHRe0A4aCPFPSEhI4P79+3h4eChlRLTnmG3btrFq1Spq1arFsGHDcHNzw9raGn19fXbv3s2yZctYsmQJgwYNUmYThISE4O3tTYMGDYA/yotomwANHz6csWPHKq/v7e2Nnp4e169fp2nTply4cIEffviBdu3aMXr0aGW5oKAg2rVrx4ULF+jZsyf16tVjw4YNjBs3jmXLlqGjo4O7u7ty/Ve3bl2MjY3p06cPvXr14tq1a8TExJCVlcXNmzf5+eefWbBgAZ999hmenp7k5OQQHx+Pn58flpaWWFpaEhcXR3Z2tnKdqaury7Vr15SGXN999x0HDx7kwIED5OXl0bJlS+rUqVPsO8TKykoZqBBC/D0S1BRCCPGPKa3mpba7+MM0Gg23bt3i6NGjXLp0CQMDA+XiT6VSkZmZyfnz57lz544S1Ny6dSu//fYbU6dOpV27dujp6dG/f3+mTZvGTz/9RN26dWnTpg0ODg6Eh4dja2ur3Bybm5vj7e3NmTNnSE1NVTq4am+OtVMNY2JiSnTLdHR0xMLCgujoaOXCVaPRULt2bd5++21++uknLl++jL+/P6mpqURFRTFq1CglA1PbYXrYsGEMGDBAgpXiL9PeUDo6OtKuXbvH1iyLi4vj9u3bGBkZKY0Rzpw5w9SpU9HT0yMpKYlKlSqho6ODn58fenp6xer7rVmzhqZNm/Lee+8pj3300Ue0b9+esmXLoqenh5ubG4mJibz33ntUr14dS0tLIiMj+emnn9i5cyd6enoMGDBAOcYqVqzI+vXrlRpkD1u6dClnz55l3rx51K5dm759+/LDDz9w48YNmjZtSkREBDdu3KBChQrcvn2b+/fvA9C4cWOsrKyws7Mr9v61/9ZmxGl/do+WrtCS7MsXQ3ueeFwTpYcbWtnY2BAcHMzJkydJSEhQPkNnzpxRuiO3bt2a5ORkVq1axbZt25g0aRKNGzemUqVKAJQvX57u3bsDKLVSz549i5OTkxJY0Q4UaDOxHB0dcXFx4erVq098L9pz14YNG5g5cyZTpkzBwMCAjIwMNm/eTExMDAMGDEClUqFSqbCwsODChQukpaXh4OCAjo4OhYWFVKtWjYoVKxIbG4uZmVmx4KgQ/6ScnBy2bdvG9u3buXjxIlCUZezt7U379u1p1aqVEqCsWLEienp6NGjQgP79+xfbTlBQEGFhYezdu5e2bdvi4+PD9evXCQ8Pp0aNGri5uRUb4NYOOFlaWgIox6KHhwdmZmZK2QYnJyc++ugjWrRoARSVSLl+/TobNmygsLBQmWHj7+/P3Llz2bhxI/Hx8cTExBAaGsqJEyeYP38+ixYtom7duiQlJZGRkUFAQIAySwdg+/bt3Lt3j4KCAlxcXDA1NSUqKoqCggIMDAxwcHDg4sWLJCUl4eXlhaWlJTVq1MDe3l75zlKpVLRo0ULZVyHEP0OCmkIIIYp5eLrq/6u0wEF2djYHDhzA1NRUaWhz8eJFPvvsM/Lz83FyciI9PZ0tW7bQo0cPvvjiC2xsbAgICCA0NBSNRkNGRgb79+/Hx8eHDh06FHu9IUOGsHLlSvbs2UO7du3w9PQkJCSEtLQ0JYCoUqlwd3fnwYMHSvfKh9+/rq4unp6exMXFkZSUpHSC1dZt8vLyIjY2lvT0dCXrTU9Pjw8++IAGDRoQEhJCdHQ0AQEBDBkyhJo1ayoX7A/XHZSApvgzj+vS/HCzhIyMDKV+K8DevXv59ttvuXXrllKyoFq1asyYMYPAwEDWrl3LG2+8QUBAAMOHD1dqwpqYmBAZGcmDBw9ITEwkLy+PGjVqKN8JGo1GqTem5ePjw5kzZwgICKBq1aqo1WrKlClDlSpVGDNmDIsXLyYrK4thw4ZhY2NDzZo1qVSpEvPnz8fe3p4aNWqQlZXFjh072LhxIx06dFCm9g0cOBAHBwfWr1/PvHnzsLe357333sPExIQPP/xQyQjt2LEjHTt2fOLP8eGfl0zx+/8VFBRw9+5dJRD3VzxcZuThv0uj0WhYvXo1ixcvJjExkebNmyvNcyIjI6lbt67SQCc1NZUlS5bg6emJsbEx77zzDj179mTatGk0btxYCW5rp8JqNBqMjIzw8fFhz549ZGdnY21tDRQ12DE2NiYmJkYZvHJ3dyc0NJS4uDilTEJpGjZsSPfu3Vm7di3h4eHUrVuX9PR09uzZQ5s2bYplZXXs2FE59rS0x7exsbFyLAjxrEVHR7No0SJq1KhB27ZtAbh//z5z585l586dBAUF8eGHH2JjY0NkZCQhISGMGTOG1NRUJYDp7OyMSqVSSipA0TlLm+3u6+tLeHi4EgTNz88nNTVVKYXycL3yR2m/F1xcXLCxsSEmJgYAd3d33n77bRITE5k2bRqnTp0iISEBNzc3XF1diY+PV45ZX19fPvroIzIzM8nLy8PGxoYzZ84wZMgQNm3aRL169Rg3bhw3b95k6tSplClThvT0dLZv305KSgo1atRAX18fMzMzCgoKOH/+PF26dMHAwIBOnTpx79495TrO1taWxYsXP9tfkhDiqUhQUwgh/sNiY2O5fPkyFy9e5OrVqyQlJWFpaUm9evVo1apVsQwnLW2tsj+rK3f37l0uXLhAZGQkHh4eNGzYEJVKRVxcHKNHjyYoKIhGjRpx7949Zs6cia6uLnPmzMHW1pbMzEx++OEHpQi7hYUFrq6u7Nmzh6SkJBwdHUlMTCyRvaLRaLCwsMDNzU25GdVOJ7x9+zYeHh5KcMPZ2RldXV3Cw8OLBWm0Qc0KFSqwY8cO5Qb24YwCW1tbzp49S2pqqtIxWht40nYpF/9ND3fqflpP6uD86LbS09M5fPiw0vV+8eLFzJgxg61bt+Ln50d0dDSTJ0+mTJkyvP/++5ibm7N7925WrVpF06ZNad26NcHBwXh7e5OUlKQ0TNA2Q4mKiiI3N5fs7GxUKhUZGRnKzaU2sKkNpJqbmytTe8PCwqhXr55Sn9PGxoYJEyYwffp01qxZg1qtZuLEifj6+jJs2DBGjx7NiBEjCA4OBiAiIoLGjRsXm05oZmbGG2+8QZs2bbCwsFB+Fps2baKgoKDYYERpXccfJoHMv+/h88Tly5e5ffs2eXl5WFpa0rRpU3r27Imnp2exhmvaYHxp54lHG7ydPHmSa9euYWFhQZMmTXBzc1PW3b59OzNnzqRq1aoMGTKEmzdvsn79egoKCpRalOnp6Zw7d47BgwdTrlw5Zdt+fn7079+f7777jgsXLlCpUiWMjY1JS0tTmmvp6Ogog1aRkZG4uroqx7CnpyexsbGkpKTg5uam1GG9ceOGck54XEOikSNHUqlSJbZt28bmzZuxtramd+/e9OzZUwmcAgwbNqzUn7l8XsWzEBsbi5WVFWZmZspnU/u5/fXXX1m3bp3SeAqKzidr1qzhvffeo0ePHsW+d/v27cuHH37ItGnT8PHxoUGDBjg6OuLg4MCNGzeUbWiXj46O5sSJE3h7eyuDAA4ODhQUFJCTk1Ns2dJojy0LCwtcXFy4fPkymZmZmJmZcf78ecaPH8/9+/dp0qQJtWrVonnz5owdO5YNGzYQExODn58fmzZtIiMjgzfeeEMZzHB0dMTAwEAZSHj99deZNWsWw4YNo0yZMmRlZXHnzh3eeust5Tzr4uLCzJkz8fT0VNbTNuMSQrx4EtQUQoj/oMjISN555x1iYmKwtLRUGt2ULVuWmJgYvvvuO9asWcP48eNp1qxZsZu30jrLPur48eNMmDCB1NRUrK2tSUpKIjg4mLlz5+Lu7k5AQACZmZlA0VSjixcv0qlTJ3x8fDA0NMTBwUFpxgBFF77u7u6o1Wpu3bqFo6MjRkZG5OTkkJiYqDQ2UavV6Ovr4+LiQnR0NBkZGbi6umJoaMiNGzdo2LBhsam7NjY2xS7GH+bt7U1BQQE3btwoEaT8/PPP0dfXV14X5Cb0vy4/P5/33nuPqKgoduzY8aeBzYePKe1np7Tg5t69e1m/fj0xMTHUr18fKJqmHRAQgLe3t9IAJCoqCj8/Pw4fPkxWVhbvv/++EqyvVasW7du3x83NTdl+2bJlOXr0KHfu3FGmbfv5+XH69GlSU1OxtLQsdnxoNBrl+Dp9+jSLFy9m3LhxShBJOzVQR0dHyUp2cHDgww8/5M6dO/zyyy/k5uYyZcoU6tSpwy+//MKGDRu4cOEC5ubmtG3blgYNGhQLVIaGhrJixQref/99rK2tycvLIzk5mTVr1uDk5IS9vb2yrHQdf/ZKO0/4+PhQvXp1dHV1OX36NMuWLSMuLq5EM5Anff5jYmIYNmwY/fv35/z58+zfvx99fX3i4+NZu3YtixcvxsnJidzcXBYsWICbmxuzZs1Stt+gQQMGDBhAXFwcarWa2NhYdHV1CQgIUI4h7d8BAQGoVCquXLlCpUqV8Pb2Ji4ujnv37imDYk5OTso5om7dusoAVvny5dm/fz9JSUm4ubkp9ZQvXbpEkyZNSg1qal/bwsKCjh070rJly1Ib3QnxT/vmm29YuHAhrVq1YuzYsdjY2CgB+5iYGLZv306jRo2UqdFXr17l559/pmHDhrz77rvFtqVWqzEzM2P8+PEcPnyYWrVqAX+UZbh+/Tq5ubnk5ORw69YtQkNDOXToEDExMUyaNEnZjqOjI+bm5sXqyJYmPz+fmJgYDAwMcHd3x8PDgxMnTnDr1i2CgoJYs2YNsbGxzJ8/v9j1WX5+PgUFBYSFheHn58eRI0cICQnh2rVrNGvWjAcPHrBu3ToKCgpo3rw5AK1bt6ZChQps3bqVqKgoXF1dqVGjBpUrV1aOXXNzc5o1a/bsfjlCiGdKrgCFEOI/SNsxtnz58nz99deYmZlhYmKCSqXC0NCQy5cvM3jwYCZOnIiXl5eSsalWq/ntt9/Ys2ePkvnYtWtXAgMDlWBJREQEQ4cOxcvLi08//RQ3NzcuXLjAZ599xvTp05kwYQJOTk6cOHGC5ORkZQrqmjVruH79Ou7u7sqUQG3XWRMTE2V0/caNG9SuXZuAgAD27NlDTEwMjo6OSsAFULKITE1NsbKywtHRUQm6aNnY2GBhYcGpU6eKPa69SW3Xrh1OTk40bNgQKH6T/qSph+K/SV9fH11dXRITE0lLS8PW1vaJy2s/Z2lpaSQkJGBra1ssSAewZ88exo8fj4uLC3Xq1OHo0aNK9nJ0dDTe3t44OTlhYmLC1atXadasGSqVivz8fL799lu6du2KtbU1hYWFlC9fHktLS2Xqb1BQENu2bSM+Pl4JfpYvX54dO3YQHx9PtWrVqFy5MkeOHOHGjRv4+/srx9eFCxc4deoUurq6uLm5YW5uTlRUVLH3peXi4sK3337LoEGDuH//PmlpadjZ2eHs7MyQIUOe+DMyMTFhy5YtHD16lG7dumFiYqLUUhw1atSf/ozF/6e084SpqalSDzI3N5cJEyawbds2Dhw4oGQ1paenc+rUKY4cOUJERASmpqa0atWKtm3bolKpsLe359q1a8ybNw8DAwMmTpyIp6cnx44dY+LEiSxevJhRo0aRnZ3N7du3GTx4sBLQzM/Pp06dOpQvX564uDgyMzNRqVTKsffooICFhQUqlYqkpCSgqM7e3r17i2X629vbY2dnpwTwtdsIDg5m48aNREdHU6VKFWUQ69y5c8Djp80/vA8S0BQvSr9+/SgoKGDx4sUYGRkxYcIEJYh49OhRYmNj+eyzz5Tlr169Sk5OjlLS5+GgvXY2irOzM507d1bqjGsz/H/77TcaNmzI/fv30dPTw9bWFkdHR/T19RkwYAAfffQR7dq1w8jIiPLly3PhwgViYmLw9fUtdTDv1KlTTJgwgS5duvDOO+/g4eGhDGoHBQVx7949nJyc8PDwAIrKGh08eJDDhw8DRQNirVu3ZsSIEVhbW3PgwAH27NlDTk4OZcqUYcKECcogIYCXl5fS1E4I8eqRoKYQQvwHmZubY29vT3x8PN7e3iVuzgICApgxYwZvvvkmP//8s9Iddtu2bcyePRtra2tcXFw4duwYv/zyC2PGjKFXr17o6+uzdu1a8vLymDNnDu7u7gD4+vri4OCgXIC6ubmRnZ1NZGQk9vb2TJgwgR9//JGLFy9y9uxZUlJSlHp577zzDiNHjsTZ2Rlra2uuXbsGFDUH2blzJ+vXr1eaoABs3ryZc+fOKUEQMzMz7O3tOXv2LPDHDae1tTWNGzemoKCgRCYqFNVt0u6/EH9GmxV26NAhYmNj/zTgtmnTJn744QciIyMxMjKibNmydO3alddeew0TExPu3bvH7NmzcXR0ZObMmTg5OQEwe/ZslixZwsWLF2nYsCG2trbFpv+1bNmSuLg4Fi5cyNGjR4GiGrLaepYffvghjo6OyrRxbZ0yKAr45OfnExsbS+3atenZsycbN25k2rRpfPjhh5iZmREaGsqPP/5IrVq1imUqnz9/Xqlj9ig7OzvWr19f6s/h4XIWDzeKKSwspEyZMvz000+sX7+ekJAQcnJy8PPzY/To0bRq1eppfzXib/qz84ShoSE9evRgw4YNXL16lXbt2pGXl8fMmTP57bffsLGxwcbGhsuXL3P48GEyMjLo2bMnRkZGSjb99u3blQxILy8v1qxZw9mzZ8nMzCQpKQmVSoW5ubnymtrPR1BQEIcPHyYlJQVnZ2dsbW25fPmyMq1cO8iVn5+v1NODosYm2sYh2sZBNjY2uLq6cunSpWKv4e/vDxQN5gEEBgayceNG5bzwZzMWhHiRbGxsGDx4MElJSWzatAmVSsWECROU8j5BQUE0btxYWT40NBR9fX2lqWFpWchQ1AwrLy8PHR0dDAwMlFI+TZo0oW3btjg4OCjT1tPT0/niiy+U2uhNmzalSZMmnDp1isOHD+Pr61tsSrw2e/POnTtERUXx4MEDADw8PFCpVMrgdK1atZgxYwaff/45TZo0ISoqimPHjlGuXDlycnJYv349AwcOxN3dnc8//5yOHTsqTRqllrkQ/z4S1BRCiP8gfX193N3duXDhAnFxcSWCd9pu3mXLlmX37t0MHz6cjIwMxo4dS7NmzXjvvfewtrbG1NSUzz//nOnTp+Pr60vdunW5fv06Pj4+SlaXdrpT/fr1lZtDbZ3LsLAwqlevjqOjo9K5NiIiAo1GQ1ZWFvPmzWPjxo00b94cT09PXFxciIiIAKBevXq88cYbLF26lKioKFq0aEFKSgrbt2+natWqSr0jKysrqlWrRmxsbLHpTmZmZowaNep5/LjFf4S2Y3J4eLhSK7I0W7duZdy4cVSpUoUhQ4aQlpbG+vXr+eyzz7h79y4DBw7kzJkzREREMG7cuGK1YNu3b09ISAjnz58HioLzbm5u3L59G41Gg6WlJe+//z49e/YkLCyMsLAw7t69S1RUFJs3b8bc3JzPP/9cCdhoM9gAPD09lWnAhYWFBAUF8dlnn7FgwQIGDRqEqakpWVlZVKlSpdiUwq+//horKyulGURptNPXH617+bhyFtrHatasSXBwMGq1GlNT06f5NYhnpLTzxMNZVTo6OlhYWGBkZKR8t8+bN49169bx8ccf06JFC4yNjcnPz+ett95iy5YtNGnSBHd3d7y9vUlNTVWCjdqAePny5Tl48CB3797F1NQUc3PzYln22sYiPj4+rF27ltjYWBo2bEitWrXYuXMnrVq1omHDhsr559ixYwBK3cCHa7hqmZub4+7uTnp6erHAfOXKlbl+/bqynHb/hHhVmJubM2XKFDIyMli3bh329vZ4enqSlJTEyJEjgT/KniQkJKCjo0N2drbSgRyKjs0LFy5w9uxZrl+/TlRUFHfu3GHmzJk0bNgQNzc31Go1rq6u1K1bt9jr29nZ8fbbbzN06FAOHjxI06ZNadSoEXv27GHVqlUEBgZSrVq1Yt3CMzMz2bRpE05OTkpTLW9vb6ytrbl69SoAnTp1IiMjg82bN3P+/HkcHBxo0aIFPXv2VBptaUuZaDQaKlas+I//rIUQL44ENYUQ4j+qQoUKbNmyhZiYmBJBTW1Nsbp167J06VISExPZtWsXpqamjBs3rthI92uvvcb27dvZsWMHdevWxdramrS0NOUm9+Fp29p/+/r6YmRkpNys3r17l/PnzxMQEKAEW6CodtrZs2cxNTXF0NAQHx8fDh48SFZWFhYWFowYMQJHR0e2bt2qTGVs2LAh/fv3V5o6GBoa8sEHH/wzP0QhHuLl5YWBgUGxQMijUlJSWLRoER4eHsybNw9jY2N0dHRo2bIlQ4cOZeXKlbRr104JvmunpGuPSVdXV6pUqaKUTbC0tMTT05MzZ86Qlpam1J7U19enfv36xabY1a9fn4iICB48eIC5uTnW1tYcPnyYGjVqUK5cOWxtbVGpVFy8eJHMzEwsLCzo06cPtWvX5uDBg+Tm5hIYGEjlypWV7wCNRqOUaHiSh2tt/lWlZX+K50N7noiOjlaCmlo6OjrK50Ib7Dt58iTNmzcv0UTD3d2dK1euEB8fj7u7O2XLluXUqVPcu3cP+COIHRQUxJYtW5Rs4TJlynD58mWldrJ22qtGo0Gj0XDr1i0aNmxI3759OXjwIB999BH9+vWjTJkynD59mrVr19K9e3el7l6ZMmWwsLAoNi3c2NiYSZMmSV1k8a+kr6/P1KlTGTp0KIsXL0ZfXx9/f3/q1KkDFDVZMzAwwMzMjMLCQuLi4nB2dqagoAB9fX3Onj3LtGnTyMjIoFKlSjg7O3Pz5k3Cw8Np2LAhLi4uWFlZKddz2mNTrVZjYGCAp6en0kEdis6TQ4cOZdCgQYwdO5aPP/4YNzc39PT0iIyM5KeffuL8+fO8++67+Pn5AX/U4tQ2GLK2tmbEiBH07NkTOzu7J9bwleNaiH8/CWoKIcR/lDZ4ePPmTeXi9lHaC8pjx44pWY5r1qwhJiaGK1euEBcXR1ZWFvr6+piZmZGRkYGXl5dys6odwdfT0yM1NZUffviB8uXL06hRIywtLZVsmbi4OIYPH06TJk145513MDIy4urVq/z4449UqFABHx8fdHR0sLKy4t69eyQnJyuBzv79+9OuXTsMDQ2LNaoQ4nmzs7PD1ta2RP1WKJ4Nc+PGDQYNGoSJiYky9drGxoY333yT4cOHc/z4cVxcXICiLBn4Y0DAzMwMV1dX7t69S15eHkZGRri5uZGbm0tsbCzW1tZMnDhRqVlob29Pamoq58+fJzk5mTfeeEMJIPXu3Ztly5YxdOhQevTowahRo+jevXux4BEUBYK0dXUf9fB0cZmO+++jPU9ERkZSt25d5XecmZnJiRMnWL16NdWqVVMyIX/66ScMDQ2Ji4vj9OnTHD9+nOPHj5OSkoKNjY1SEzYwMJD8/Hzl/9rPkTajKjIyksaNG9O+fXtGjx7N8uXL+eijjygoKCA8PJzVq1djZmamrF+xYkXmzp3LsmXLWLlyJRkZGVhaWtK/f3+GDh2qfJ6NjY1L1FF++PWF+LdRq9VYWVkxY8YMvvzySw4ePEi9evWKDUwBlCtXju3btxMWFka1atWUx6tUqcIPP/yAgYEBtra2nD9/nosXLyrnOUdHRxwdHYmIiCiWja/9rjAzMyMlJYWaNWsq+1S7dm0WLVrEJ598wpAhQ/Dy8kJHR0c5h3366af06dNHWd7Q0JC1a9eWGOB6uASKEOK/S4KaQgjxH+Xm5oaJiUmp3b+1N3jahjhXrlyhYsWKJCQksHz5ctzd3QkMDKRz5874+PhgY2ODubk5ZmZmVKtWjYULF3Lu3DmCgoKKjaCvWrWKgQMHYmFhgaurK4mJiWg0GipXrszgwYNZt24dI0eOJC8vj+zsbKpWrVosg6Z///7069evxIWsNAwRLwMzMzOcnJyIjIxUavtpaT/DD3cGB4rVci1btqwy/TswMBCVSkVERIQyoKC9Ybx//z4At27doly5cjg6OqKnp0dYWBiBgYFUqVKF3bt30717d2rVqkVeXh5nz56lRYsWdOjQQQnw9O/fX+liW7FiRYyNjfn4449LfW8ajaZY7ctHSUDz30nbCGrv3r1kZ2dz4cIFIiIiSElJITMzkxo1avDVV19hb29PYWEhhoaGXLlyhblz53Lnzh3s7e15//33cXNzY8CAASQmJgIoNV1jY2OBP44L7UBadHQ0AG3btuXQoUMsWrSIy5cvExQUxPnz5/H19SU2NpabN2+SnZ2NiYkJNWrUoEKFCsTGxmJlZaXUoRXiv0x7DWZra4uVlRUAGzZswNzcnHfeeUc5N1WtWhUdHR2OHTtGz549lceNjY0xNjZWtufn54e9vT23b99Wtuvq6sqJEyeUwQTtNdzt27eZN28eAN26dSu2XzVq1CAkJITjx48TGhqKsbExZcuWJSgoCDs7uxLvQzL2hRCPI0FNIYT4j7KxscHBwaHUrDLtxaz2plBPTw9TU1N0dHQYN24ctWvXxsDAAAMDA2UK4u7du3n33XepU6cOnp6e/Pjjj1SuXBknJycyMzP5/vvvefDggdLgw9zcnFOnThEdHY2npycjRoygcePGXL58GTMzM8qXL4+fn1+xDBptIEiIl5G+vj4eHh5cvHiR5ORk3NzcSl3G2NiY5ORkJVipzeI0MjLC0tKSjIwMypYtS/ny5dmyZQudOnXC3d0dPT09MjMzlWP2+vXrlCtXDgcHB4yNjblw4QKdOnWia9eu+Pr6smnTJq5du4a1tTUDBgygVatWxQYEtIMQj9JOO3yYjo7OE6f4iX8na2trPD09OXHiBAkJCXh7e1OvXj2uXbvG1atXqVixopLRpaurS0pKCgMGDMDc3JwhQ4YQFBSEh4cH8fHxwB9BTC8vL/T09IiNjVWC9RqNBjMzM2WqamZmJmZmZkr92S1btrBhwwbKly/P+PHjiYmJwcHBodhUcjMzM8qVK/f8f1BCvKS055fr16+zd+9eateuTXp6Ot988w1WVlZ07doVKMrKbtq0KQcPHuTMmTNUq1ZNOTYflpCQQGpqKvfv3ycvLw8TExM8PDw4cOAAW7ZsQaVSER4ezq1bt4iOjkatVjNx4kSlBMTDjI2Nadq0KU2bNn0uPwshxL+TBDWFEOI/ytjYGBcXF65cuaLcPGppA4kFBQVA0fTTChUqoKury4kTJ2jWrFmxbX311Vekp6cr9Y2mTZvG6NGjeeONN/D39ycvL4/U1FRmzJiBt7c3AF26dKFBgwZKMXcoauLwpAYrQrzsHq5BWFpQ08nJCScnJy5cuMC9e/eKZZNFRUVx9+5dpUlDv379+PLLL3n33Xfp1asXDg4OrF69mtjYWPT09Dh//jwdOnTA2tqagICAYo10qlSpQpUqVf50f7UBqYcHD/5u7Uvx72NiYoKlpSVmZmb88MMPODg4oK+vT25uLps2bWLixIns2rWLOXPmEBgYyLlz50hLS2PGjBnF6rkeOHAAXV1dJSBibW2Nu7s70dHRpKamYmdnR35+PiqVCgcHB+7evauclywsLOjduzddu3ZVas3CH/VmhRCPp/1u//XXX8nMzGTs2LEUFhbSr18/JkyYgJWVFc2bN8fMzIzBgwdz9uxZxowZw1dffaUMehUUFJCens7JkydZuHAhKSkpfPrpp8prmJubo9Fo+OqrrzAwMMDFxQV/f3/69etHzZo1KVOmjJR4EEL8Y+SqVQgh/qN0dXXx9vbm+PHjxMfH4+fnV6yzLcD+/fuBogBJpUqVqF+/PitXrsTAwIAGDRqgUqlYuXIl0dHRTJkyBTs7OzQaDZUqVWLlypXs3r2bixcv4ubmRt26dQkODlamqTZu3PiFvG8h/kmP1qpVq9Ul6os1adKExYsXs2fPHvr06UNeXh6ZmZksX74cIyMjJRjZunVrDAwMmD9/PlOmTCE/P586derw+eefs2TJEmWKrqenJ8uWLSt1f7QNG7T78OiNpdxoiifR1dXFy8uLY8eOkZ+fr5RUMDU1pXfv3uTn5zNjxgzef/99VqxYgYGBAfr6+pw8eRJnZ2clk/+HH35AT0+PCxcucP78eZo0aYKDgwMRERGkp6djZ2enBNNXrFhRan3khwOaQoinFx8fT0hICM2bN8fFxQVDQ0OmTZvGJ598wujRo1mwYAHVq1cnICCAL774gtmzZzN48GDKly9P5cqVMTQ05MaNG5w7dw5nZ2cWLlxIw4YNKSwsBIoaRtaoUQM3NzecnZ1f8LsVQvzXSFBTCCH+wwICAoCiDLGHp3oXFhaSkJDA6tWrCQoKUpqEjB8/nu+//55NmzaxYcMGCgoKMDY2ZvTo0bRt2xb4I0hib29P79696d279wt4Z0K8GNpatWFhYQDFpu7l5uaio6ND+/btCQ8PZ/Lkyezbt49KlSpx/vx5bt68yQcffECtWrWUAYbmzZvToEEDLl26hKurK87OzhQWFvLNN98o0261waDSpgr+P13HhYA/zhNhYWH4+PgAf2T49u/fn5ycHObMmcNHH33EmDFjaN++PYsWLWL79u0YGhpy//59BgwYgLe3N7/++qtyjpgzZw6WlpbF6soC0vBNiGdEex5ZsWIFWVlZdOnSBUNDQ/Lz86lbty6ffvop48aNY9iwYXz77bfUrFmT1q1b4+/vz759+7h48SL79+8nMzMTFxcX+vXrR+PGjZVrQu0x6+Pjo3w3CCHE8yZXuUII8R/m6+uLrq4uly5dombNmiQlJZGUlMT169dZv349arWaDz74AFtbWzQaDU5OTnz55Zd06dKF6OhonJ2dKVeuXLFpr0L8l2lr1V67do2IiAgSEhK4c+cOd+7c4datW2RmZtK/f3+mT5/O+vXrCQkJYcOGDfj4+PDxxx/z2muvAX8MDmzZsgVTU1Ol5phGo+HatWtERUWVaLwgNS/FP0F7nggPD6dly5ZA0edTG9gcMGAAeXl5zJ8/nxkzZjBq1Cjq1q3L2bNn8fT0pEqVKvj7+2NgYEDz5s2Bos+xtbX1C3tPQvwX6OjokJyczK5duwgKCqJq1aoASrO41q1bU1BQwOjRo/nwww/5+uuvqV27Nr6+vvj6+pKZmYm+vr406RFCvNR0NNorEiGEEP85SUlJdOrUidzcXMqUKUNUVBRpaWlKJ9kBAwaU2khECFG6wsJCBg4cyNGjR3FxcSElJYW8vDwADA0N8fLy4uOPP6ZOnToASrOgR2kzbHr27Mn58+d55513qFSpEklJSSxbtgyVSsX333+Pu7v7c31/4r8nKSmJ1q1bExwczOLFi4s9p/2cZmZmcvXqVby9vaXWpRAvkaVLlzJt2jQ+//xz3njjDQoLC5UMSyg6B0VGRmJpaVmskZwQQrwqJFNTCCH+wywsLAgICCA9PZ2yZcvSpUsXAgMD8fPzK3bRK4R4Orq6unh4eODl5YWXlxedOnUiMDCQ8uXL4+DgUGJ5bfdzbW2yR7MtJ06cyNKlS9m1axcrVqwAoHr16nz44YcS0BTPhaWlJRUrVsTe3r5E3WXtv83MzErtbiyEeHHy8vI4duwYzZs3p0mTJgAlru1UKhVly5Z9EbsnhBDPhGRqCiGEEEI8J482DnoSbQApLy+PiIgIJdNTBhyEEEIIIYSQoKYQQgghxDNXWFioZF/q6upKIFIIIYQQQohnTIKaQgghhBBCCCGEEEKIV4qkDQghhBBCCCGEEEIIIV4pEtQUQgghhBBCCCGEEEK8UiSoKYQQQgghhBBCCCGEeKVIUFMIIYQQQgghhBBCCPFKkaCmEEIIIYQQQgghhBDilSJBTSGEEEIIIYQQQgghxCtFgppCCCHEM9a0aVOaNm36ondDiJeWHCNCPJ4cH0I8nhwfQoiHSVBTCCGEEEIIIYQQQgjxStF/0TsghBBCCCGEEEIIIYR49j755BM2btxY7DEDAwMcHBxo3Lgxw4YNw9LS8h957by8PFJTU3F0dPxHti9BTSGEEEIIIYQQQggh/sU+/fRTrK2tAXjw4AHh4eGsXbuWS5cusXr1avT09J7p68XFxfHWW28xaNAgOnXq9Ey3rSVBTSGEEEIIIYQQQggh/sWaNWuGm5tbsce8vLz48ssvOXz4MI0bN36mrxcbG0tkZOQz3eajpKamEEIIIYQQQgghhBD/MTVr1gQgLCzsBe/J3yNBTSGEEEIIIYQQQggh/mMSEhIA8PDwUB4LDw9nyJAhVKtWjeDgYHr06MGRI0eKrZeXl8fkyZNp2rQpAQEBNGzYkC+//JL09HQANmzYQN++fYGiae/+/v7/yP7L9HMhhBBCCCGEEEIIIV5STZs2feLz+/bt+9Nt3L9/n3v37gGQn59PREQEkyZNomLFijRp0gSAGzdu0KtXL+zs7Bg0aBAGBgZs27aNgQMHMnPmTFq3bg3AhAkT2LZtG3379sXd3Z2wsDBWrlxJVFQUS5YsoXr16gwePJgFCxbQvXt3qlat+n/+BEqno9FoNP/IloUQQjxXe6PPvehdEOKltShi74veBSFeaj/YtnrRuyDES+uUVcGL3gUhXmrNPKq86F14JnocmP6id+GxkifteuLzTwpqltb9XMvIyIiff/6Z4OBgAPr06UNCQgKbN2/GxMQEgIKCAvr160dkZCQHDhxApVIRHBxM586dGTt2rLKt2bNnc+TIEX7++WdMTU05efIkffv2ZcqUKdIoSAghhBBCCCGEEEKI/5qnycT8MzNmzMDOzg4oytSMi4tj5cqV9O7dmx9++IHy5ctz6tQp+vTpQ25uLrm5ucq6zZs3Z8qUKVy6dImqVavi5OTE9u3bCQgIoFmzZlhYWDBixAhGjBjxf+/nXyFBTSGEEEIIIYQQQggh/sWqVKlSovv5a6+9RosWLZg4cSLTpk0DYPny5SxfvrzUbcTHxwMwfvx4RowYwaeffsoXX3xBpUqVaN68OZ07d8bc3PyffSMPkaCmEEIIIYQQQgghhBD/MdbW1tSsWZM9e/agVqsB6N27N82aNSt1+TJlygBQu3ZtDhw4oPw5duwYU6ZMYdmyZWzYsAEbG5vnsv8S1BRCCCGEEEIIIYQQ4j+osLAQAAcHBwD09PSoU6dOsWXCw8OJjY3F2NiYvLw8rl27hpOTE23atKFNmzYUFhaydOlSpk+fTkhICH369Hku+677XF5FCCGEEEIIIYQQQgjx0khJSeG3336jfPnyuLq6EhAQwMaNG0lMTFSWyc/PZ8yYMQwbNoyCggJSU1Pp3r07CxcuVJbR1dUlMDBQ+TcUBUfhj6DpP0EyNYUQQgghhBBCCCGE+Bfbu3cv1tbWAGg0GhISEli3bh05OTl88MEHAHz++ef069ePzp0707NnT6ysrAgJCeHixYuMHDlSWb9du3asWrWKnJwcKleuTFpaGitWrMDOzo7XXnsNQFl2y5YtaDQaOnbsiL7+sw1DSlBTCCGEEEIIIYQQQoh/sSlTpij/1tPTw9LSksDAQCZPnkzt2rUBqFy5MqtXr2bu3LksXbqUgoICvL29mTp1Kh07dlTWnzhxIu7u7oSEhBASEoKxsTG1a9fmgw8+UOpp+vr60qdPHzZs2MClS5eoWbMmHh4ez/Q96Wg0Gs0z3aIQQogXYm/0uRe9C0K8tBZF7H3RuyDES+0H21YveheEeGmdsip40bsgxEutmUeVF70Lz0SPA9Nf9C481prGo1/0LryUpKamEEIIIYQQQgghhBDilSJBTSGEEEIIIYQQQgghxCtFgppCCCGEEEIIIYQQQohXigQ1hRBCCCGEEEIIIYQQrxTpfi6EEEL8LjX5LjvWbub2jXAA/IMq8Fr39phamD/1NjYtW8vdxCQGfPx+ieeibt5iz4ZtxN2OwdjUmPKVA2nS4TVMzc0eu72EmDssmDiTBq2b0aTDa3/9TQnxjOTey+DWjtOk30oAwKacG96vVUdlZvzU2wjbeJyclHSC3vnjs5ybmsnpGb8+cb3At1ti5eNc4vEH97M5N2cTNuXd8e9S/6n3Q4hnLenuXX7euJGrYWEAVKlYkT4dO2Jp/uTzx4Vr19iwcye3YmLQ1dXFz8uLHm3b4ufl9dh1ouLiGDNjBh1atKBr69bFnrseEcHqrVuJiI7GzMSEakFBdGvdGguzx59nhHgeXpZrrL9zLSaEeHlJUFP8Xz755BM2btz4xGWaNm3K999//5z2qKQmTZrg6urK8uXLAejTpw9xcXHs37//ue3Ds3jNXbt2sW7dOi5fvkxubi7Ozs7Uq1ePfv364e7u/lTb0P6+bty48UyW+6tiY2Np2rTpUy27b98+gFKXNzAwwMbGhrp16zJ8+HCcnJyeuH0dHR3Mzc3x8fGhd+/evP766//HuxD/VtmZWSyZPg+1uoD6rZqg0RRydOcBEmPvMPiLD9HT//NT5tkjv3H28Am8/H1LPHf7ehg/zVqAkbExDds2R0dXhxO7D3HrehgDx4zA2NSkxDpqtZr1i1eiLlA/k/coxN+Vn/2A0MU70agLcWsQgEajIfbIZbISUqn0Xlt09fT+dBsJZ26ScPomlt6OxR43MDWkbNeSAcnCggIitp7EwNQIU2ebUrcZvvk4BTl5f+9NCfGMZGRl8eW336JWq3m9WTMKCwvZum8f0Xfu8NVHH6H/mPPH1bAwps6fj5uTEz3btUOtVrPryBHGz57NlyNGUKaUwKZareb7FSsoUJc8L1wJC+OrefMwMTamY4sW6Orqsv3AAa7cvMnEDz/EzKTkeUaI5+Flucb6O9diQoiXmwQ1xTPx6aefYm1tXepzzs4lMytepMGDB5OTk/Oid+Op5eXl8fHHH7N9+3aCgoJ4++23sbS0JCwsjI0bN7J+/XpmzJhBs2bNXvSu/ikbGxumT59e7LEpU6YARZ+hR5e9d+8eANWqVaNbt27KcwUFBYSHh7Ny5UpOnDjBli1bsLCwUJ5/dHmNRkNMTAxr1qxh1KhR6Onp0aZNm2f+/sSr7djug6SnpjF0wmgcXIoC5a7envw0cz7njp2iesM6j123sLCQQ9v2sH/zzscus23lBnR0dHlnzHBsHe0BqFAliHnjpnNo2x5adW9fYp3DIXtJvpPwf74zIf5/cUev8CA9m6rD2mPiYAWAuZs9l5fsJvFcOM7V/R+7rqawkJiDoUTtu1Dq83oqAxwrl7xJjdh2Eo26kHLdGmBgbFji+cTzEaTevPO33o8Qz1LI/v3cS0tjxqef4vb7QGsZT08mz5vHwZMnaVa3bqnr/bRhA7ZWVkz+6CMMVSoAGtSowYeTJ7Nm2zY+Hzq0xDobd+8mNj6+1O0t/eUXdHR1mfjhhzjZF51nagQHM3rKFDbu2kWfjh2fxdsV4i97Wa6x/s61mBDi5SZBTfFMNGvWDDc3txe9G0+l7mMuLF9W06dPZ/v27YwaNYq333672HODBw/m7bffZsSIEaxfvx5//8ffVL4MTExMaN+++MXCnDlzAEo8DihBTXd391Kfd3d358svv2TNmjUMHDiw2OOlLd+pUydat27NvHnzJKgpSrh08hze/mWUi22AMhX9sXVy4NLJ84+94M7Py2fhpG9IjL1DpTrVibh2s8QyqSn3SIqLp1rDOspFNIC9syP+wRU5f+xUiQvphJg7HNq2m0btWrJv4/Zn9C6F+HuSQ29h5e2kBDQBrMu4YGxvQXLo7ccGNdX5BVyYH0J2QioOlX1Ju1V6MOZRWQn3uHPiGo5V/bD0dirxfF5GNre2ncSjSTBRe87/rfckxLNy7Nw5Kvj5KQFNgKBy5XB2cOD4uXOlBjUzs7OJioujTePGSkATwMrCgvJlyhB6/XqJdaLi4ti4axedWrViXUhIseeS794lJj6eZnXrKgFNAFdHR6oEBnLo1CkJaooX5mW4xvo712JCiJefNAoS4iV2+/ZtVqxYQZs2bUoENAFsbW2ZM2cOOjo6TJo06QXs4YvV+vc6UufOnXuq5V1dXalevToRERFkZmb+k7smXjE5WdmkJt/Fxavk4IyLhxvx0bGPXbegoIAHObl0f7cfnd/ujZ5uyWm491PTAXB0KxmcsXGwIzszi/R7qcpjarWajUtX41vRn+Da1f7OWxLimcnPeUDuvUzMXG1LPGfmbEvmnbuPXVdTUIj6QR7lejbEv2t9dHR1nuo1I/ecQ9dAH89mlUt9PmzTCQytTHFrEPB0b0KIf0hmdjZJKSn4lFIKyNvdndsxMaWuZ2JkxDeff06bJk1KPJeRmYmebvHbNLVazYJVqwgqV44G1auXWOdeetF5xr2UGVJOdnZkZGZyNzW1xHNC/NNelmusv3otJoR4NUhQUzxXO3bsoEOHDgQFBdG2bVsOHDjAgAED6NOnj7JMkyZNiv3/cY9rNBpWr15Nly5dqFy5MoGBgbRq1YoffvgBjUbz2H3o06cPTX6/gIyNjcXf3/+xf+bOnausFx4ezpAhQ6hWrRrBwcH06NGDI0eOlNj+8ePH6dGjB5UqVaJZs2b88ssvf+tnBbB582Y0Gg29e/d+7DIeHh40a9aM06dPk5DwxzTVy5cv89Zbb1G5cmXq16/PwoULS/25PM1yGo2G7777jpYtWxIYGEidOnUYNWoU8Y+Z/vS86P5+wa8upa7U45j8Xk/qSZ+Rx9m1axedO3emcuXKVK1alTfffJOzZ88WW6awsJAlS5bQqlUrAgICqF+/PpMmTSoWRP3ggw/w9/fn0KFDymNpaWnUq1eP5s2bk52d/Zf3Tfx/tBe6FtZWJZ4zt7IgNzuHnOzSy1YYGRsxYupnBFQvPfgCoDI0AOBB7oMSz2VnZgGQkZ6hPHZ0xz7uJibzep+uT/0ehPin5KUXfSepLErWGlNZGKPOyX9sXUs9IwOqfdgZ+0Dvp369rIR73LsWi3NNfwxLec2kCxGk3oylbOd6T1XLU4h/0r20NABsLC1LPGdtYUF2Tg5ZpZzXdXV1cXZwKLFeVFwcN2/fxt/Hp9jjm/fuJT4pibe7dy91P1S/Z3vmPCh5nsn4/Rok7f79P39DQjxjL8s11l+9FhNCvBpk+rl4Ju7fv69MFX6UpaUlenp6bNq0iY8//pjAwEBGjRrFrVu3GDZsGDY2Nnh4ePzl15w9ezYLFiygY8eOdOvWjaysLDZt2sTMmTMxNTV9YiBQq7QajwBz584lISGB+vWLGhfcuHGDXr16YWdnx6BBgzAwMGDbtm0MHDiQmTNnKhmDx48f55133sHLy4sRI0Zw7949Jk+ejI6OzmNrjj7JhQsX0NfXJzAw8InL1apVi+3bt3P27FnatGlDWFgYffr0wcLCgvfee4/8/HyWLFlCXl7xm86nXW7BggXMmzeP3r174+/vT2xsLD///DOXL19m27Zt6L2gm8oTJ04AUKFChadaPicnh9OnT+Pm5ob5n3QjfdSpU6f44IMPaNCgAV27diUnJ4cVK1bw5ptvEhISojRr+uyzz9i8eTMdOnSgf//+REREsHr1as6dO8fq1asxNDTkiy++4MSJE0yYMIGQkBCMjIyYOHEi9+7dY8WKFUrgVTw/D3JzATBQGZR4Tv/3x/Lz8jA2KdnlWUdH50+PAQcXJwyNjbh6NpQGrZuho6Pz+zbzCb9S1JCrID8fgKS4eA5s2UWb3p2xtLEmNaX071Yhnhd1XtFnU8+g5GWj7u/NHdT5Begbq0o8r6Ojg47e02Vnat05eQN0dXCpVb7Ec3mZOURsO4Vb/UDMXEpmjgrxvOX+HkRUqUp+/lUGvwdR8vMxfcptzfu9sWX7h2qlx8THs37HDt7s2hVba2uS75bMjnZ3csLYyIhTFy/SoXlz5TyTl5+vTGXP+/08I8Tz9LJcYzm7ez71tZgQ4tUhQU3xTHR8Qo2eTZs2UbZsWaZPn46Pjw+rVq1SLvx8fHyYNGnSXw5q5ufnK9Oyp06dqjzetWtXateuzZEjR54qqFlajcdFixYRExPD2LFjqVSpEgCTJk3CxsaGjRs3KgGnN954g379+jF58mSaNWuGSqXi66+/xt7enrVr12JmZgZAnTp16Nev398KaiYnJ2NpaVnqhfLDHBwcAEhKSgJQMkzXrFmjNGpq2bIlHTp0KLbe0y63detWGjRowOeff6485uzszOrVq4mLi/tbQem/Ii8vr1jQPD09nfPnz/P1119jampKz549n7h8QUEBMTExfP/999y7d49PPvnkL+/D9u3bMTIyYv78+cpFUJ06dRg2bBhXrlzB3d2dkydPsmHDBr788kt69OihrNuwYUMGDBjAmjVr6NevHzY2NowdO5YPPviAhQsXEhAQoATJq1Sp8pf3Tfz/tIm72t/ts6anr0+dFo04sHknvyxcToM2zdBoCtm7cTt5D4oGEXR1dSksLGTD4tV4lPF5YtF8IZ4r5QD5519KnV9A0vkIbMu7Y2RtVuL58M0nMDAzwqNJ8D+/M0I8Be3Mj//3/PEgL4/pP/xAVFwcHVq0oIKfH1A0A2T+ihX4+/o+tuEQgL6+Pm2bNOGX7dv59qef6NC8OYUaDeu2bSP398HqFzUILf7bXpZrrKddTgjxapGgpngmZsyYgZ2dXanPeXh4cOnSJe7evcvAgQOLBei6d+9ebIr30zIwMOD48ePkPzKalpqaipmZ2d+evnvkyBFmzZpF+/btlaBoamoqp06dok+fPuTm5pL7+2gjQPPmzZkyZQqXLl3Cy8uLK1eu8PbbbysBTSjKovT39/9bNRw1Gs1TXYDq/54po9FoKCws5MiRIzRs2LBY53lfX1/q1avH/v37AZ56OQAnJydOnjzJTz/9RJs2bbCzs6NHjx7FAnf/pJCQEEIeKYgP4Ofnx/jx43Fycnqq5X18fJg1a9bfahLk5OREVlYWkyZNolevXvj6+uLv78+uXbuUZXbv3o2Ojg4NGzYsFlStUKEC9vb2HDx4kH79+gFF9UBDQkJYvHgxFhYWlCtXjvfff/8v75d4NgyNijor5+eVnEJb8HuWmpGR0f/1Go1fb0ludg4n9h7m0qmiOrD+wRWp36oJe9Zvw8TMlKM79pMQG8fbnw4nK6PoOyP39++zvLx8sjIyMTEz/cduDIQojd7vU/YK80uW+igsKABA36hkBs7fkX4rgcK8AuwCvEo8l3TxFnevRFOhT1PUD/JRP/jjGkBTUEh+Vi56RgYyJV08V0aGReePR2e5wB+ZkSZ/cv7Iys5m6sKF3Lx1i8a1atGjbVvluS379hEVF8eEDz7g/u/Xkpk5RVN1H+TlcT8zE3PTovNC51atyMrJYcfBgxz/vTxO1YAAXm/WjNVbtmAmM0HEC/CyXGP9leWEEK8OCWqKZ6JKlSpP7H5+584dAGWKrpZKpSrx2NMyMDDg4MGD7Nu3j9u3bxMVFUX670XS/069xMjISD788EP8/PyYMGGC8njM7wXely9fzvLfpwQ9Kj4+HoPfpxiVlrXo4+NDaGjoX94nBwcHYmJiKCgoUAKXpdFmaDo4OJCWlkZ2dvZj90MbrHza5QBGjx7Nu+++y1dffcWUKVOoWLEiTZo0oVu3btg/1GHzn1KvXj0GDBgAFI3yqlQqnJ2dcXFx+dPlExISWLRoEffv32f8+PHUrFnzb+3DG2+8wdGjR1mxYgUrVqzAzc2Nxo0b06VLF8qVKwdAdHQ0Go2GRo0alboNU9PiF0rjx4+nRYsWJCcn8/333/9pRq7451jaFmVSl1ZLKSPtPkYmxqh+vyj/u3R0dGjdsyMNWjfjbmIyFjZWWNvZsGdDCDq6uljaWBN2+RrqAjULJ84qsf6xnfs5tnM/H04fi7Wdzf+1L0L8FYaWRQN1eRkla57l3c9Bz9gAvVKmFf4d927EoqOvi41/yWuK1LA4AK4u31fiueTQ2ySH3ibw7ZZY+ZRslCLEP8Xu95k4pdWrTL1/HxNjYyXwWZr0jAy++v57ImNjaVa3Lm93715s4OrC1asUqNWM+frrEutu3bePrfv28d348djb2qKjo0O/Tp1o36wZCcnJ2FpZYW9ry5qtW9HV1cXORs4d4vl7Wa6x/spyQohXhwQ1xXNVWrDR8AkXeg97uBmMRqPhvffe48CBA1StWpXKlSvTvXt3qlevrmTC/RWZmZkMGTIEHR0dvvvuu2KjhdrX7d27N80eqm/0sDJlypCYmAhQLJNTq7Cw8C/vE0C1atU4ceIEoaGhT5yWfObMGXR0dKhc+Y8i2k+7H0+zXLly5di1axdHjhzhwIEDHDlyhG+//ZalS5eydu1afH19/8rb+svs7e2pU+fpp+I+unzTpk3p2rUr77zzDkuXLqVq1ap/eR/MzMxYsWIFFy5cYO/evRw+fJjly5ezcuVKpk+fTrt27SgsLMTU1JTvvvuu1G08+lm/evWqklW8a9cugoKC/vJ+iWfD2MQYKzsb4qNKduC8Ex2Lq9ffG3x5WOjJc5hbmuNdzg8zyz9qukbeiMDF0w0DlQGtuncgJ6t4pnnW/Qx+/XEFwbWrUalOdcws/lo9WCH+X/rGKgxtzErtcp4Zfxdz19Jnavwd96OTMHe1Q9+o5CCPe4NAHCqVPN9cXrIbKz8X3OoHYOosQRvxfJmamGBva8vt2JLnj9sxMfg+oURPTm6uEtBs3bgx/Tp1KrFMn44dSzQaSs/I4Luff6Z+9eo0qFEDSwsLAI6dPYuVhQUV/fyw+v0xgKvh4fi4uys1PoV4nl6Wa6y/spwQ4tUhRSPEc+Hl5QUUZUM+SpsJqaWrq1tiCk9BQQGpqanK/8+cOcOBAwd47733WLVqFWPGjKFLly64urqS9nsXyqel0WgYNWoUERERzJgxo0TmqKurK1BUh6hOnTrF/jg4OJCXl4exsTGurq7o6OgQFRVV4jViS7nQfRpt27ZFT0+PJUuWPHaZhIQEdu7cSdWqVXF1dcXa2hozM7M/3Y+nXU6tVnPlyhXi4+Np2rQpkyZN4tChQ3zzzTdkZGT8X93dnxdLS0tmzpyJWq1m5MiRf6sUwO3btwkNDaVSpUp89NFHbNmyhZCQECwsLFi6dClQ9FnJysoiICCgxGfl/v37GBv/UQA9MzOTsWPHUrZsWTp37szSpUv/VjaveHYqVg0m4uoNkuMTlcfCr9zgbkISgTX//1qnx3cdZOuK9cUGaG5cvEJ02C1qNqkHgKuXO2Uq+hf74+FX1AHXxt6WMhX95YJbvBB2FT1Ji7hDdnKa8lhq+B1yku9jH/T0nc2fpFCtJjsxDVOX0gOTJg5WWJdxKfEHQGVujHUZFwyM/79sHyH+jprBwVy6cYO4xD/OH6HXrxOflESdJwykLl63jsjYWF5r1KjUgCaAr4cHQeXKFftT7vfO6I52dgSVK6cEK0P272fJL78UO8+cvXyZG7du0eL35pdCvAgvwzXWX1lOCPHqkKCmeC7KlSuHh4cHa9asKVbvcufOncrUaS07Oztu375dLINw//79PPi9uySgBC7LlClTbN1169aRk5NDwe81vp7GnDlz2L9/P0OHDqVhw4YlnndwcCAgIICNGzcq2ZhQ1KxozJgxDBs2jIKCAmxsbKhevTpbtmwhJSVFWe78+fNcuXLlqffnYV5eXrz55pvs2bOH+fPnl3g+LS2NYcOGkZ+fzxdffAEUTato3rw5R44cISwsTFk2NjaWgwcPKv9/2uXUajV9+/blq6++KvbawcFFTRpelYLagYGBDBgwgPj4eGbMmPGX1580aRLvvfceWVlZymM+Pj5YWFgoP4MmTZoAlPhd7d+/n+HDh7N161blsenTp5OYmMiXX37J6NGjsbS05LPPPiu1Jpd4Puq/1gRjExOWzpjHsV0HOLRtN2vnL8PFy53gWkU3pfeSUrhw/DT3klL+ZGulbL91U5LvJLBizo+cPnicPeu3sXreUsoElCO4drVn/XaEeKbc6gegb2zIpcW7iD16heiDF7m2+gBmrrZK9mTOvQwSz0eQc6/kFMOn8SAtC426ECPLkg2ChHiZvd6sGabGxkycO5dt+/ezYdcuvlmyBB8PD+pXK/p+T0xJ4fCpUyT+fo0Ym5DAkdOnMTE2xsvNjcOnTpX481e1b96c2Ph4pi1cyN5jx1i9dSuzFi8muHx56lev/kzfsxB/xctyjSXXYkL8+8j0c/FM7N2794ndvdu3b8/48eMZOHAg3bt3p3PnzqSkpLB8+XKlFqVW27ZtmThxIm+//Tavv/46UVFRrFu3TsmYBKhcuTJmZmZMmTKFuLg4LC0tOXnyJNu3b8fQ0LBY4OlJDh48yIIFC/D19aVs2bJs3bq12NRrOzs76taty+eff06/fv3o3LkzPXv2xMrKipCQEC5evMjIkSOV9/7xxx/Tu3dvunXrRu/evcnJyWHZsmV/q/O51gcffEB6ejqzZ8/mwIEDtGzZEgsLC27dusWmTZvIzc1l5syZSl1HgOHDh3Pw4EHeeOMN+vfvj56eHsuXL8fU1LRY0OxpllOpVPTp04f58+czZMgQ6tevT25uLmvXrsXY2JjOnTv/7ff2vL333nvs2LGDtWvX8vrrr/+laehvvvkm77zzDr1796ZDhw4YGhqyd+9eoqOjmTZtGlDU5bxp06YsWbKEuLg4ateuTVxcHCtXrsTFxUWp83nixAnWrVtHt27dlLICo0eP5pNPPuH7779nxIgRz/y9iz9namHO258OY/vqjezbtAOV6n/s3XlYVGX7wPHvsAw7KJsIiAgqLoDiluJWgFlqLrmn5Guamfa6VGb7a2XZ61ZmrpmWS24p5oKaCiimP3dDMDdEBQRF2ZR9md8fwOQ4oAMiS+/9uS6v4pz7eeY5wxzOmfs8i5LmPl70HPwSBsV/p65dukrQyl8Y8NorWNuXb8hty3atGPzGq4QH72f3hm2YWZrT5QU/uvUOqDUPB8T/LqW5Cd6vv8jVXce5vv8M+koDbJq70OiFdugZFC3Mk37tFpd+PUzTQV0wsS7/NAn5mUUPL/UradEhIaqKlYUFn02Zws9bt7IpOBgjQ0Pae3szol8/9X3uX9HRLFm7ljdHjqSerS1/XbkCQGZWFkvWri213m4dOpSrHc+0bs2kf/2L3/bt4+etW7GysKCvvz/9n39erjOiWtWUeyy5FxPin0ehqsiKKkIUe//99wkKCnps3MWLFwE4duwY8+fP5/z58zg6OjJ58mTmzp2Lk5OTehGewsJCFi9ezK+//srdu3dp1qwZ7777LitXriQzM1Mdd+rUKebOncuFCxdQKpU0atSIV199lYiICFavXs2hQ4ewtbXFz89Po/7AwEDi4+MJCQlh4cKFZc5/CNChQwd1uaioKBYuXMjJkyfJz89Xv96AAQM0ykRERDBv3jwiIiKwtLRk9OjRREZGcvr0aY3Fd8rr0KFDrFu3jvPnz5Oeno6DgwPdunUjMDCw1MV+YmJimD17NsePH0epVDJ48GAAli1bpv596BpXWFjI6tWr2bJlC3Fxcejr69OmTRsmTZqEp6dnhY8J/u7dWNp7ExcXh7+/PwMGDODrr79+bF26xB85coTRo0fj7u7Otm3byrU4T1hYGMuWLSM6OpqcnByaNGnC6NGjNVZTz8vLY8WKFWzbto34+Hisra3p1KkTkydPxtHRkaysLF566SUyMzPZvXs3VlZW6rIjR47k7NmzbN68mebNm+vcrhL7b5wudxkh/lesiN5f3U0QokZbbvNCdTdBiBrreB3dR4EJ8b8owOXJpxGoCYaFzq7uJpRpw3PvVXcTaiRJaopq93DSUQhRMZLUFKJsktQU4tEkqSlE2SSpKcSjSVLz6ZOkZumkj7UQQgghhBBCCCGEEKJWkTk1hahCBQUFJCcn6xRrYWGBsbHxU25R5UhOTtZYRbAsxsbGWFiUf561p6W2tlsIIYQQQgghhPhfJ0lNIapQQkIC/v7+OsXOmjWLl19++Sm3qHIMGjSI+Pj4x8bpOjdmVamt7RZCCCGEEEIIIf7XSVJTVLsnWTyntrGzs2PVqlU6xTZu3Pgpt6byzJkzh5ycnMfG2dvbV0FrdFdb2y2EEEIIIYQQQvyvk6SmEFXIyMgIX1/f6m5GpWvbtm11N6FCamu7hRBCCCGEEEKI/3WyUJAQQgghhBBCCCGEEKJWkaSmEEIIIYQQQgghhBCiVpGkphBCCCGEEEIIIYQQolaRpKYQQgghhBBCCCGEEKJWkaSmEEIIIYQQQgghhBCiVpGkphBCCCGEEEIIIYQQolaRpKYQQgghhBBCCCGEEKJWkaSmEEIIIYQQQgghhBCiVpGkphBCCCGEEEIIIYQQolaRpKYQQgghhBBCCCGEEKJWMajuBgghhKgcK6L3V3cThKixxroHVHcThKjRxkXvqe4mCFFz3a3uBghRswW4tKnuJoj/UdJTUwghhBBCCCGEEEIIUatIUlMIIYQQQgghhBBCCFGrSFJTCCGEEEIIIYQQQghRq0hSUwghhBBCCCGEEEIIUatIUlMIIYQQQgghhBBCCFGrSFJTCCGEEEIIIYQQQghRq0hSUwghhBBCCCGEEEIIUatIUlMIIYQQQgghhBBCCFGrSFJTCCGEEEIIIYQQQghRq0hSUwghhBBCCCGEEEIIUatIUlMIIYQQQgghhBBCCFGrSFJTCCGEEEIIIYQQQghRqxhUdwOEEEKImiI7+R5Xd58g7WoiANbNnGn0YnuU5iaPLJd8KZ7YsD+5H38XFAosG9jRsEcbLF3sKlS/rvUJUZVSku6ye+NvxFy8AoCHdwteHNoPM0uLR5a7fO4vwnbu4+a1WBR6Chq4uRLwci8auLtqxGWk32Pfll1cOBtJXl4ejg2deX7QS1px8ddi2ffrDm5cuYZCT4GrhzsvDu2PrYN9ZR6uEOVSU64fqdEJXN9/hvsJyRgYG2Lr6Yrr823QVxpW4tEKUX4VPUcedDnoCFl30vB+/UWtfWnXbnHt99Pcj7+DgYkSm+YuNAzwwdDMWCPuXvwdru09RfqN2ygUCqwaOdDoxfaY2lk92QEKIaqFQqVSqaq7EaJme//99wkKCnpkjL+/P4sXL66iFmnz8/PDycmJNWvWABAYGEh8fDwhISFV1obKeM29e/eyadMmIiMjyc7Opn79+nTp0oVRo0bRoEEDneoo+X1dvHixUuLKKy4uDn9/f51iDxw4AFBqvKGhIdbW1nTu3JnJkyfj4ODwyPoVCgUWFha4ubkxYsQI+vbt+wRHUTsNC51d3U2o1fIyczizaDuqgkIcOzVHpVIRFx6JcR1zWk/og56+fqnlUmMSObdiD6b2dXBo1wRVgYqbx/4iNz2LVuNexKKBXbnq17U+UT5j3QOquwm1Wub9DJZ8No+Cgnw6+ndDpSrk8J5Q6tjUZfwnb6NvUPpz8piLV1g5exH2jg607foMBQWFHA85zL20NMa+Pwlnt4YA5GRns/SL+dxLTce3R3eMzUw5diCc9JQ0xn/yNvWc6wNwJ/E2iz+bi1KpxPf5ZwE48nsYKpWKiZ+/h2Ud+VJaUSui91d3E2qtGnP9iE7g3Mq9mDvZUK9NY3LSMrl55DzmjjZ4j3sRhUJRZe+JEA+q6DnyoMSTl7i89QhWjeppJTVTryYQuWofBiZKHDs1R6FQEH/kPAYmRrQa3wtDEyMAMpPSOLNoB/pKA5w6twAg/o/zqFQq2vy7H0aWppV/8P8jNjz3XnU3oVLU5O9T/5T3uLJJT02hsw8++IC6deuWuq9+/fpV3JpHGz9+PFlZWdXdDJ3l5uYyffp0goOD8fb2ZuzYsVhZWXH58mWCgoLYsmULc+bMISCg5n8pt7a2ZvZszYvBrFmzgKLP0MOxycnJALRr144hQ4ao9+Xn53PlyhXWrVvH0aNH2b59O5aWlur9D8erVCpiY2PZsGED06ZNQ19fn969e1f68Yl/rvjDUeSkZdJ2Uj9M7esAYOFsR+TK37l1+gr123uUWu7qruMYWZnR+s0+6CuLLqv2bdw59U0Q1/adxuu1nuWqX9f6hKhKf/weRlpKKm99/h72jkUPmZwaNeTneUs4/cdx2nf3LbVc8PogrOrW4Y2Pp6I0UgLg49ueBR/PYv/WXfzr3QkAHAo+wJ3EJF57byKNPBoD4NXBh/nvfUH47gMMen0kUJTAzMvJ5fUPJlHfxRkAtxZNWfbFfI7sDeOFof2e6vsgRGlqzPVj9wmM6pjh/fqL6BsW1WdkZUb09v8j5XI81k2dn+K7IETZKnqOAKgKC4kNi+D6gbNlxkTvOIZCT0GrN3phYlP0fcGmpQunv9tObFgEbi+2L2rHkfMU5ubTatyLmDvaAFDH3ZGzi3cS/0eUOk4IUXtIUlPoLCAgAGfn2nEz1Llz5+puQrnMnj2b4OBgpk2bxtixYzX2jR8/nrFjxzJlyhS2bNmCh0fZF/2awNTUlH79NL9ULliwAEBrO6BOajZo0KDU/Q0aNOCzzz5jw4YNjBs3TmN7afEvv/wyvXr1YtGiRZLUFOWSFHGVOo0c1DfbAHUbO2JiZ0lSREypN9x5WTlkJCTj1KWl+gspgNLcBKtGDqRciS9X/eWpT4iqdO7YaRp5NFYnNAEat/TAxsGec8fOlJrUzMrIJDH2Jp2ff1ad0AQwt7LAtak70VFFIwVUKhVn/jhOU+/m6oQmgIWVJS8M7Yee/t9TwCcn3cXU3Eyd0ARwbuSCiZkpt+ITKvWYhdBVTbh+FOTlozQ3xtazoTqhCWDVqB4AGQnJktQU1aYi5whAQV4+Z5fsIjMxBXsfd1Kvav+dz065T+atVBw6NFUnNAFM7epg3bwBt05fUScrs5PvYWBmpE5oAlg422JgakTmrZRKOlohRFWShYKEqGYxMTGsXbuW3r17ayU0AWxsbFiwYAEKhYKZM2dWQwurV69evQA4ffq0TvFOTk60b9+e6Oho7t+//zSbJv5B8rJyyE6+j7mTjdY+8/o23L95t9RyBkaGtJv6Mk6dW2rXmZmNQk+vXPXrWp8QVSkrI5OUpLs4umonRBxdnEm4EVdqOSMTYyZ/9SG+PZ/V2pd5P0OdrEy9k8y9lDQat2wGFCU5c7NzAHjGr4tGwtSmnh2ZGZlkpN/TqCs7KxsLK0uEqGo15fqhb2iA57+ex+XZVhoxGQlFD4+N6piX78CEqCQVPUcAVPmFFOTk0mx4dzwGd0Whpz2FQm56BgBm9bRHFJpYW5CfkUNOWlGMiY0l+Zk55N7/e0RfXmYO+dm5GJZjbk8hRM0h345Epdu9ezf9+/fH29ubPn36EBoaypgxYwgMDFTH+Pn5afxc1naVSsX69esZNGgQPj4+eHl58cILL7B8+XIeNR1sYGAgfn5+QNEcjB4eHmX+W7hwobrclStXmDhxIu3ataNVq1YMGzaM8PBwrfqPHDnCsGHDaN26NQEBAWzevLlC7xXAb7/9hkqlYsSIEWXGuLi4EBAQwIkTJ0hMTFRvj4yM5LXXXsPHx4euXbuybNmyUt8XXeJUKhXff/89PXv2xMvLC19fX6ZNm0ZCQvX2fNErvqkvKCjQuYypadF8OOWdMnjr1q14eHiwd+9e/Pz8aNWqlfrzcf36daZPn063bt3w9PSkQ4cOjB8/nsuXL2vUkZuby8KFC3n++efx9vamZ8+eLF++XKP9OTk5fPPNN/j5+eHp6Ym/vz8LFiwgNze3XO0VlSc3LRMAZSlzKSktTSjIyiM/S/v3o9DTw8TWUmsOpozEZNKv38bSxb5c9etanxBVKT0lDQDLunW09lnUsSQ7M4usTO0pX/T09LCtZ6c1z2Vi7E1uXInBpXEjAO7eSgLAzMKcPRt/48u3PuCLCdP55v2ZXDgbqVG264v+WNWtw6Zla0iMvUli7E02LVuNvr4+nXp0q4zDFaJcasr142HZKfe5dfoK0TuPY1qvDjYtXMp/cEJUgop+hgH0jQ1p9/ZA7LwalVm/XnHP5IKcPK19eZlFD8hy7xVdo5y7eWJkZcbFjYfISEwmIzGZCxsPoqevh5Nvi/IdmBCiRpDh50Jn6enp6qHCD7OyskJfX59t27Yxffp0vLy8mDZtGlevXmXSpElYW1vj4lL+m6lvv/2WpUuXMmDAAIYMGUJGRgbbtm1j3rx5mJmZPTIRWKK0OR4BFi5cSGJiIl27dgXg4sWLvPLKK9ja2vLGG29gaGjIzp07GTduHPPmzVP3GDxy5Aivv/46rq6uTJkyheTkZL788ksUCkWZc44+ytmzZzEwMMDLy+uRcR07diQ4OJhTp07Ru3dvLl++TGBgIJaWlkyYMIG8vDxWrlyplRjTNW7p0qUsWrSIESNG4OHhQVxcHKtXryYyMpKdO3eir8ME3k/D0aNHAWjRQrcbjaysLE6cOIGzszMWFo9ekbcsH330ESNHjsTc3JzWrVtz584dhgwZgrm5OSNHjqRu3br89ddfbNq0iaioKEJCQjA0LFpVdOLEiRw6dIiXXnqJ0aNHExERwbx587h79y4ffPABBQUFvPHGG5w+fZohQ4bg7u5OZGQkS5cu5a+//mLJkiUykX81KMgtuhF+cMheCb3iBVAK8vIxMFFq7S+troubix6GOHf3euL6S6tPiKqUk50NgGEpqycbFG/Ly83FxPTxvVxys3PYsmItAF17FS36ll08B/aBoGD09fXpNfxl9PQUHN4TyrqFPzLq7fE0blk0NLGOTV269+nBznW/sug/Rdd2hZ4ewyaM1hiSLkRVqYnXj7zMHE7M+bUoRqmP+0vPlFpeiKrwJOeIQqFAof/o+2LTenXQNzbkTtR1nLt7qe+jC/LySblcNI1DYV4+AMZ1zGnwrDfRO/6P099tL26EguavPKsxJF0IUXvI1U3obMCAAWXu27ZtG02bNmX27Nm4ubnxyy+/oFQWXZjc3NyYOXNmuZOaeXl56mHZX3/9tXr74MGD6dSpE+Hh4TolNUub43HFihXExsby6aef0rp1awBmzpyJtbU1QUFB6p5+I0eOZNSoUXz55ZcEBASgVCqZO3cudnZ2bNy4EXPzoqE8vr6+jBo1qkJJzaSkJKysrNTvV1ns7Yue2N++fRtA3YNww4YN6oWaevbsSf/+/TXK6Rq3Y8cOunXrxscff6zeVr9+fdavX098fHyFktLlkZubq5E0T0tL48yZM8ydOxczMzOGDx/+yPj8/HxiY2NZvHgxycnJvP/++xVuS+/evZkyZYr65+XLl5OWlsYvv/yCu7u7eruZmRnLly/n0qVLtGzZkoMHD3Lo0CGmTp3K+PHjARg+fDh5eXmsW7eOiRMnsn//fo4ePcqKFSvUCXUAb29vPv30Uw4cOFArFoT6xynp1fuE+eSC3Hyi1hwgIyEF52e9qNPI4YnqL7M+IaqQ+uP7hA9ccnNyWfvdChJjb9Ktd4B6/sz84i+b2ZlZTJn1ESZmRddgj9aefDP9C/Zv2aVOau7fGszBnb/j6uFOu+6+qAoLOR76B5uW/sSwCaNp1trzidooRLnVxOuHApoN605hQSE3j57n3MrfaT6sO7aerk/WSCEqopLOkbLo6evj1LklNw6c5eLGQzR41gtVoYrr+89QmFt0fVEUT3dybd9pYkMjsGpUD4cOHqgKVSQcu8CF9Qdp/spz2DRv8HQaKYR4aiSpKXQ2Z84cbG1tS93n4uLCuXPnuHv3LuPGjdNI0A0dOlRjiLeuDA0NOXLkCHl5mkMJUlJSMDc3JzMzs9x1AoSHhzN//nz69eunToqmpKRw/PhxAgMDyc7OJru4VwpAjx49mDVrFufOncPV1ZWoqCjGjh2rTmhCUS9KDw+PCs3hqFKpdOoFaVD8JFOlUlFYWEh4eDjdu3fXWHne3d2dLl26EBISAqBzHICDgwPHjh3j559/pnfv3tja2jJs2DCGDRtW7mOqiF27drFr1y6t7U2aNGHGjBk4ODjoFO/m5sb8+fOfaJGg9u01Vz4cN24cAwcOxMbm7ye42dnZ6qHxJZ/FsLAw9PT0GDlypEb56dOn8+abb2JmZsbvv/+OtbU1LVu21EjKdu/eHX19fcLCwiSpWQ30jYp6mxXmaU9zUJhfdENsYKzdS+1B+Vm5RK3eT/r129Rr1wTXHm2eqP5H1SdEVTIyNgKKemM+LL+4B46xsfEj68jKzGLtt8u5cSWGNl2fIeDlv/9GGxbfM7Ro20qd0AQwMTWhWWtPzhw5QW52DgWFhRzeE4KTqwujp01U/w326uDD0i/ms+2njbw7xwMDw0efq0JUppp4/TA0McLOu2i4rq1nQ04v2Eb0ruOS1BTVojLOkcdx8WtFfnYuN4+cJykiBgDr5s44d/Pk2t7TGJgYkZ+VS1x4JObONniN6amet9bO25Wzi3dyOegP6jYZjJ5B9YxOE0JUjCQ1hc7atGnzyNXPb968CRStSv0gpVKptU1XhoaGhIWFceDAAWJiYrh+/TppaUVze5V3vkSAa9eu8fbbb9OkSRM+//xz9fbY2FgA1qxZw5o1a0otm5CQoB5iXFqvRTc3NyIiIsrdJnt7e2JjY8nPz1cnLktT0kPT3t6e1NRUMjMzy2xHSbJS1ziA9957jzfffJOvvvqKWbNm0bJlS/z8/BgyZAh2dnblPq7y6tKlC2PGjAGKegMplUrq16+Po6PjY+MTExNZsWIF6enpzJgxg2eeeeaJ2vJg8rJEXl4e33zzDVFRUdy4cYO4uDj1PJmFhYUAxMfHY2Njo5HwBrCzs1O/hzdu3CA5OZlOnTqV+trVPYfp/yojq6LfWcmcSw/KTc9C38QQ/VKG3qpj7mcR+dM+Mm4m49ChKY37ddLo1Vbe+h9XnxBVycqmaBTCvbR7WvvupaZjbGqCsjjxWZqM9Hv8NH8piTfiadfdl76vDtb4PFvWLZpz08xCeyETM0tzUKnIyckhLTmVgvx8vJ7xUSc0AfQNDPDu2I7fN28nKeE29V2cKnysQpRXTbt+PEzf0ADrZg24eeQv8jKyMTR79AMIISrbk36GdaFQKHDv3YEG3b3IupOOkZUZxnXNufb7adBTYFTHjMxbqajyC7HzdtNYeFFPXx/7Vu7E7DlJZlIa5vWtn6gtQoiqJUlNUelKSzYaGZX9ZedBDy6molKpmDBhAqGhobRt2xYfHx+GDh1K+/btGTVqVLnbdf/+fSZOnIhCoeD777/X6FVS8rojRowos5dc48aNuXXrFoBGT84SJYmt8mrXrh1Hjx4lIiKCNm3K7ol18uRJFAoFPj4+6m26tkOXuGbNmrF3717Cw8MJDQ0lPDyc7777jlWrVrFx40aNYddPg52dHb6+vo8PLCPe39+fwYMH8/rrr7Nq1Sratm1b4bboPbTC9MmTJxkzZgympqb4+voycOBAWrRowY0bNzSS47osZlRQUICrqyv/+c9/St1vaSmr91YHAxMlRtbmpa7AeT/hLhZOpfdSB8jPyVN/IXXs3AL33h2eqH5d6hOiKpmYmlDH1pqE69qrnN+8EYeTa9kPLnOys9UJzU49utNruPZUNvWc6qNvYMDtm4la+1LuJGNgaIiZhTkZ6UWjIQoLte8zVOprWvkfeArxJGrK9SMzKZXIn/bh3NULx47NNOIKcvJAAQrpgSaqwZOcI7q6/edVlBYm1HGrj/KBVczTriVi7mSDvqEBegbF9/elXUNUhSX/88RtEUJULVn9XFQaV1dXoKg35MNKekKW0NPT01qoJj8/n5SUFPXPJ0+eJDQ0lAkTJvDLL7/w4YcfMmjQIJycnEhNTS1X21QqFdOmTSM6Opo5c+Zo9Rx1cirq1aGvr4+vr6/GP3t7e3JzczExMcHJyQmFQsH169e1XiMuTvvLni769OmDvr4+K1euLDMmMTGRPXv20LZtW5ycnKhbty7m5uaPbYeucQUFBURFRZGQkIC/vz8zZ87k4MGDfPPNN9y7d++JVnevKlZWVsybN4+CggLeeeedCk0FUJbvvvsOY2Njdu3axbx583jjjTfo2rUr9+5p9lpydHTk7t27ZGRkaGyPiorinXfe4cqVKzg7O5OamkrHjh01Pmft27cnNTVVPZ+rqHq2LRuSGn2TzKRU9baUKzfJSkpXD+MrTfT2o0VfSH2bPzIBqWv9utYnRFVq2bYV0ecvkpRwS73tStRF7ibexuuZsh/I7Vjza3FCs1upCU0ApbERzXw8uRQRxe34v3urpyTd5cKZSJr5eKKnp4e9kwMWdSw5c/gYebl/T02Tl5vH2SMnMDU3w95R5p0VVa8mXD+MrS3Jz84l4fhFCh94yJqdcp87kdewauSAgZFMzSCqR0XPEV3F/xFF9I5jFBb83Wnj7oVY0q/dxvGZoiS/qX0dlJYmJJ6+TEHxXM5QtKDQrTPRGJgZYVqvzhO3RQhRtSSpKSpNs2bNcHFxYcOGDRrzXe7Zs0c9dLqEra0tMTExGj0IQ0JCyMnJUf9ckrhs3LixRtlNmzaRlZVFfn4+ulqwYAEhISG89dZbdO/eXWu/vb09np6eBAUFqXtjQtGQ4w8//JBJkyaRn5+PtbU17du3Z/v27dy5c0cdd+bMGaKionRuz4NcXV0ZPXo0+/btY8mSJVr7U1NTmTRpEnl5eXzyySdA0RCLHj16EB4ezuXLl9WxcXFxhIWFqX/WNa6goIBXX32Vr776SuO1W7VqBWj3XKypvLy8GDNmDAkJCcyZM6fS6k1NTcXa2hpr67+Ho9y7d4+goCDg7x6a3bt3p7CwUCsJvH79enbv3o2trS1+fn6kpqayfv16jZgNGzYwdepU9Wrvouo5d/XEwMSIcz/uJe5wFDfC/uSv9aGYO9lg37qop3JW8j1unYkmK7kooZ15O5XbZ66ib2KIuaMNt85Ea/0rT/3lqU+IqtT1RT9MTE1ZNWcRf+wN5eDO39m45CccXRvQqmNRz/jk23c4e+QEybeLro+3byby59GTGJua4NDAmbNHTmj9K9FzcF+MTUxYOXsRB3f+TvjuEH74+jsMlYb0KJ5/U09Pjz4jBpGUeJtlM7/hyL6D/LE3lCWfzyMp8Ta9hg9A/xHTuAjxtNSE64eevh7ufTqSmZhCxPLd3Py/v7gRcpazS3aCngL3Pk82NY8QT6Ii50h5NOjmReatVM6v2U/C8YvE/H6Kv34JpW5TR+xbuwGg0NPD/aWOZCWlcXbJLuL/OE/c4SjOLt5JVlIa7r07oKfDOgdCiJpF7vyEzvbv3//I1b379evHjBkzGDduHEOHDmXgwIHcuXOHNWvWqOeiLNGnTx+++OILxo4dS9++fbl+/TqbNm1S95gE8PHxwdzcnFmzZhEfH4+VlRXHjh0jODgYIyMjrd5wZQkLC2Pp0qW4u7vTtGlTduzYoTH02tbWls6dO/Pxxx8zatQoBg4cyPDhw6lTpw67du3izz//5J133lEf+/Tp0xkxYgRDhgxhxIgRZGVl8dNPP1Vo5fMSU6dOJS0tjW+//ZbQ0FB69uyJpaUlV69eZdu2bWRnZzNv3jyaNft7ONHkyZMJCwtj5MiR/Otf/0JfX581a9ZgZmam0QtWlzilUklgYCBLlixh4sSJdO3alezsbDZu3IiJiQkDBw6s8LFVtQkTJrB79242btxI3759n2gYeolu3brxww8/MHnyZLp06UJSUhK//vqrOrFd8ln08/OjS5cufP3111y+fBkvLy/OnDnDtm3bmDhxInXq1GHw4MEEBQXxxRdfEBUVhbe3N5cuXWLjxo20bNmSl19++YnbKypGaW6C9+svcnXXca7vP4O+0gCb5i40eqGdetL49Gu3uPTrYZoO6oKJtQVpMUXDZQuy8rj06+FS663n465z/eWpT4iqZGZpwdgPJhG8PogD23ajVCpp7uNFz8EvqRfmuXbpKkErf2HAa69gbW/LtYtFSZnszCyCVv5Sar2tfYsWZqtra824j6bw+687OLwnFJVKRcOmbvQc3Bdr+7+HJrZo683odycQun0P+7cULRZXv6EzgVPG0dSr+dN8C4QoU024fpTE6xnoEXvwHFd3nUBfaUAd9/o07NEGUzurp/wuCFG2ipwj5WHr6YrH0G7EHTrH1eDjGJqb4NzVkwbdvTXmz7Rt2RCv13pyI+Qs1/adAsDc0YaWowKwblr22hFCiJpLoarIaivif8r777+v7pH2KBcvXgTg2LFjzJ8/n/Pnz+Po6MjkyZOZO3cuTk5O6kV4CgsLWbx4Mb/++it3796lWbNmvPvuu6xcuZLMzEx13KlTp5g7dy4XLlxAqVTSqFEjXn31VSIiIli9ejWHDh1S9357sP7AwEDi4+MJCQlh4cKFfP/992W2u0OHDupyUVFRLFy4kJMnT5Kfn69+vQEDNIfMRUREMG/ePCIiIrC0tGT06NFERkZy+vRpjcV3yuvQoUOsW7eO8+fPk56ejoODA926dSMwMLDUxX5iYmKYPXs2x48fR6lUMnjwYACWLVum/n3oGldYWMjq1avZsmULcXFx6Ovr06ZNGyZNmoSnp2eFjwmKkn1Aqe9NXFwc/v7+DBgwgK+//vqxdekSf+TIEUaPHo27uzvbtm1DWbyy7uNs3bqVDz74gNWrV2ssNpSTk8O3335LcHAwKSkp2Nvb07FjR1577TV69+7NK6+8ou5Fm5OTw6JFi9ixYwd37tzBxcWFV155heHDh6t7vN6/f59Fixaxd+9ebt++jb29PX5+fkycOPGJkuPDQmdXuKwQ/3Rj3UufL1kIUWRF9P7qboIQQohaasNz71V3EypFTf4+9U95jyubJDVFlXg46SiEqHw1+SIsRHWTpKYQjyZJTSGEEBX1T0m41eTvU/+U97iy1Y6J8oQQQgghhBBCCCGEEKKYzKkpRCUrKCggOTlZp1gLCwuMjY2fcosqR3JysnpBnEcxNjbGwqJ88+A8TbW13UIIIYQQQgghhCibJDWFqGQJCQn4+/vrFDtr1qxaszDMoEGDiI+Pf2ycrnNjVpXa2m4hhBBCCCGEEEKUTZKaoko8yeI5tY2dnR2rVq3SKbZx48ZPuTWVZ86cOeTk5Dw2zt7evgpao7va2m4hhBBCCCGEEEKUTZKaQlQyIyMjfH19q7sZla5t27bV3YQKqa3tFkIIIYQQQgghRNlkoSAhhBBCCCGEEEIIIUStIklNIYQQQgghhBBCCCFErSJJTSGEEEIIIYQQQgghRK0iSU0hhBBCCCGEEEIIIUStIklNIYQQQgghhBBCCCFErSJJTSGEEEIIIYQQQgghRK0iSU0hhBBCCCGEEEIIIUStIklNIYQQQgghhBBCCCFErSJJTSGEEEIIIYQQQgghRK0iSU0hhBBCCCGEEEIIIUStYlDdDRBCCCGEeNo6pMotjxCP5B5Q3S0QosZaEb2/upsghBCiFNJTUwghhBBCCCGEEEIIUatIUlMIIYQQQgghhBBCCFGrSFJTCCGEEEIIIYQQQghRq0hSUwghhBBCCCGEEEIIUatIUlMIIYQQQgghhBBCCFGrSFJTCCGEEEIIIYQQQghRq0hSUwghhBBCCCGEEEIIUatIUlMIIYQQQgghhBBCCFGrSFJTCCGEEEIIIYQQQghRq0hSUwghhBBCCCGEEEIIUatIUlMIIYQQQgghhBBCCFGrSFJTCCGEEEIIIYQQQghRqxhUdwOEEEKImiw7+R5Xd58g7WoiANbNnGn0YnuU5iY613E56AhZd9Lwfv1FrX334u9wbe8p0m/cRqFQYNXIgUYvtsfUzqrSjkGIynD77l1WBwVx/vJlANq0bEnggAFYWVg8stzZv/5i6549XI2NRU9Pjyaurgzr04cmrq4acZGXLrFx1y6ux8djamxMRx8fhvXpg7GREQBJd+/y1owZj3ytTydNomWTJhU+RiEqKiXpLrs3/kbMxSsAeHi34MWh/TCzfPT58aBtP23k7q3bjJn+b6191y9dZd/WncTHxGJiZkJzHy/8+r+ImYW5RlxG+j32bdnFhbOR5OXl4djQmecHvUQDd9cnOj4hntTTup/KTrnPiTm/PrKc19ie1HGrD0DW3XRidp8kNSYBVX4hFg3scH2+LZYudhU4KiFEdZOkZg3w/vvvExQU9MgYf39/Fi9eXEUt0ubn54eTkxNr1qwBIDAwkPj4eEJCQqqsDZXxmnv37mXTpk1ERkaSnZ1N/fr16dKlC6NGjaJBgwY61VHy+7p48WKlxJVXXFwc/v7+OsUeOHAAoNR4Q0NDrK2t6dy5M5MnT8bBweGR9SsUCiwsLHBzc2PEiBH07dv3CY6iahUUFPDDDz+wadMm0tPTadeuHZ9++imOjo7V3TRRw+Vl5hDx4x5UBYU4d/NEpVIRFx5JRmIKrSf0QU9f/7F1JJ68ROKJS1g1qqe1LzMpjYgf9qCvNMDluVYAxP9xnj+XB9Pm3/0wsjSt9GMSoiLuZWTw2XffUVBQQN+AAAoLC9lx4AA3bt7kq3ffxcCg9FvK85cv8/WSJTg7ODD8pZcoKChgb3g4M779ls+mTKFxcWIz8tIlZn7/PW4NGjCib1/upqYSHBZG9I0bfD5lStE1yNyciYGBWq+Rm5fHql9/xcrcnIZOTk/zbRCiVJn3M1g5exEFBfl0fcEPlaqQw3tCuRV3k/GfvI1+GefHg06F/x+nDh3F1cNda1/Mhcv8PH8pxiYmdO/TA4WegqO/H+TqhcuM+3AKJmZF14qc7GxW/Hch91LT8e3RHWMzU44dCGfl7EWM/+Rt6jnXr/RjF0IXT/N+ytDMiKaDu2rFF+bnE73jGIZmxpjVty5qR0Y2ET/sJj87D6cuLTE0URJ/9C/O/biH1m/2xszBunIOWAhRZSSpWYN88MEH1K1bt9R99evXrJuQ8ePHk5WVVd3N0Flubi7Tp08nODgYb29vxo4di5WVFZcvXyYoKIgtW7YwZ84cAgICqrupj2Vtbc3s2bM1ts2aNQso+gw9HJucnAxAu3btGDJkiHpffn4+V65cYd26dRw9epTt27djaWmp3v9wvEqlIjY2lg0bNjBt2jT09fXp3bt3pR/f07B48WIWLVrE6NGjsbOzY+nSpbz55pts3boVfR1uosT/rvjDUeSkZdJ2Uj9M7esAYOFsR+TK37l1+gr123uUWVZVWEhsWATXD5wtu/4j5ynMzafVuBcxd7QBoI67I2cX7yT+jyjcXmxfmYcjRIXtCgkhOTWVOR98gHPxQ7DGDRvy5aJFhB07RkDnzqWW+3nrVmzq1OHLd9/FSKkEoFuHDrz95Zds2LmTj996C4C127ZhU7cuM6ZMQWloCIBt3br8uGkTZ//6C58WLTA2MqJbhw5ar/HTli0UFBTw71GjMDeVBwGi6v3xexhpKam89fl72DsWnR9OjRry87wlnP7jOO27+5ZZtrCwkIM79xHy254yY3au24pCocfrH07Gpl5Rb7IWbbxZ9J/ZHNy5jxeG9gPgUPAB7iQm8dp7E2nk0RgArw4+zH/vC8J3H2DQ6yMr65CFKJeneT+lrzSkno/2w4DoncdQFRTSbEg3DE2KevwnnrxEbnoWzUc8h23LhgDYtGzIqW+CuBHyJ81fee7JDlQIUeUkqVmDBAQE4OzsXN3N0EnnMr681FSzZ88mODiYadOmMXbsWI1948ePZ+zYsUyZMoUtW7bg4VH2RbUmMDU1pV+/fhrbFixYAKC1HVAnNRs0aFDq/gYNGvDZZ5+xYcMGxo0bp7G9tPiXX36ZXr16sWjRolqT1Ny0aRPdunVj+vTpQFFCd968eVy9epUmMkxRPEJSxFXqNHJQ34AD1G3siImdJUkRMWXehBfk5XN2yS4yE1Ow93En9WpCqXHZyfcwMDNSJzQBLJxtMTA1IvNWSqUeixBP4o/Tp2nRpIk6oQng3awZ9e3tOXL6dKlJzfuZmVyPj6f3c8+pE5oAdSwtad64MREXLgBFPS0tzc3p0KqVOqEJ0LxxUVLmenw8Pi1alNqu6/Hx7Dl4kGefeUYdL0RVO3fsNI08GqsTmgCNW3pg42DPuWNnykxq5uXmsWzmN9yKu0lr3/ZE/3VJKyblTjK34xNo191XndAEsKtfD49WLTnzx3FeGNoPlUrFmT+O09S7uTqhCWBhZckLQ/uhpy9LKYjq87Tvpx6WkZjMzaN/Ua9tE6wa/X1eZqfcL3rtJn+P1jKuY46pfR0y5L5LiFpJrm7iHy8mJoa1a9fSu3dvrYQmgI2NDQsWLEChUDBz5sxqaGH16tWrFwCnT5/WKd7JyYn27dsTHR3N/fv3n2bTKk12djYJCQmoVCoAcnJygKIh+EKUJS8rh+zk+5g72WjtM69vw/2bd8ssq8ovpCAnl2bDu+MxuCsKPUWpcSY2luRn5pB7/++e73mZOeRn52JYjjmmhHia7mdmcvvOHdxKmaalUYMGxMTGllrO1NiYbz7+mN5+flr77t2/j75e0W2o0tCQDydM4OWePTVirsXFAWBnXfZwwI07d6JUKhnSp4/OxyNEZcrKyCQl6S6OrtodExxdnEm4EVdm2fz8fHKyshn65igGjh2Bvp726JH0lDQA6jk7aO2ztrcl834GackppN5J5l5KGo1bNgOKRtjkZhfd7zzj1+WRvUWFeJqq4n7qYdf2nUbP0ICGAT4a201sikalZSWlq7cVFhSQk5aB0kJ6+gtRG0lSsxbavXs3/fv3x9vbmz59+hAaGsqYMWMIfGCeKT8/P42fy9quUqlYv349gwYNwsfHBy8vL1544QWWL1+uTgCVJjAwEL/iLylxcXF4eHiU+W/hwoXqcleuXGHixIm0a9eOVq1aMWzYMMLDw7XqP3LkCMOGDaN169YEBASwefPmCr1XAL/99hsqlYoRI0aUGePi4kJAQAAnTpwgMTFRvT0yMpLXXnsNHx8funbtyrJly0p9X3SJU6lUfP/99/Ts2RMvLy98fX2ZNm0aCQm6PXF8WvSKv1QWFBToXMa0eHjfoz4jZdm7dy8DBw7Ex8eHtm3bMnr0aE6dOqURU1hYyMqVK3nhhRfw9PSka9euzJw5UyOJOnXqVDw8PDh48KB6W2pqKl26dKFHjx5kZmaqt7/44otcunSJ5cuXc/DgQVauXEmnTp1wfWiRimPHjuHh4UFQUBAvvfQSXl5e6iH9SUlJfPbZZ/j7++Pp6Unbtm159dVXtdquUqlYvXo1ffr0wdvbGz8/P+bOnasxXYMuxyeqX25a0WdIWcq8lkpLEwqy8sjPyi21rL6xIe3eHoidV6NHvoZzN0+MrMy4uPEQGYnJZCQmc2HjQfT09XDyLb1nmhBVLTk1FQBrK+3Fq+paWpKZlUXGA39zS+jp6VHf3l6r3PX4eC7FxODh5lbq6yXdvUvYsWP8tGULDerXp723d6lx1+PjORUZSY/OnUttmxBVoSTpaFm3jtY+izqWZGdmkZVZ+pRNxibGTPn6Izzb+5S6H0BpVPQANqc4QfmgzPsZANxLu8fdW0kAmFmYs2fjb3z51gd8MWE637w/kwtnI8t1TEJUpqq4n3pQRmIyyX/FUf8ZD625yR3aNcWsfl0uBf1B+o0kMpPSuLz1D/IysnHu6lmOoxJC1BQy/LwGSU9PVw8VfpiVlRX6+vps27aN6dOn4+XlxbRp07h69SqTJk3C2toaFxeXcr/mt99+y9KlSxkwYABDhgwhIyODbdu2MW/ePMzMzB6ZCCxR2hyPAAsXLiQxMZGuXYsmbr548SKvvPIKtra2vPHGGxgaGrJz507GjRvHvHnz1D0Gjxw5wuuvv46rqytTpkwhOTmZL7/8EoVCUeaco49y9uxZDAwM8PLyemRcx44dCQ4O5tSpU/Tu3ZvLly8TGBiIpaUlEyZMIC8vj5UrV5Kbq3nR1TVu6dKlLFq0iBEjRuDh4UFcXByrV68mMjKSnTt3VtvcjkePHgWgRRlD+x6WlZXFiRMncHZ2xuIxK94+7Pjx40ydOpVu3boxePBgsrKyWLt2LaNHj2bXrl3qxZo++ugjfvvtN/r378+//vUvoqOjWb9+PadPn2b9+vUYGRnxySefcPToUT7//HN27dqFsbExX3zxBcnJyaxdu1adeAV4++23CQ8P55tvvkGlUtGhQwf1kP3SfP7557z88ssMHjwYR0dHsrOzGTFiBPfu3WPEiBHUq1ePa9eusX79esaOHcv+/fuxsSl6+vzZZ5+xfv16nnvuOYYPH05MTAwrV67k2rVrfP/99zofn6h+Bbl5AOgbal8q9YoXfSjIy8fARKm1X6FQoNB/fG8C4zrmNHjWm+gd/8fp77YXV66g+SvPagxJF6I6ZRf3blcqtT/rJcPFc/LyMNOxrkXFiw72K2Ue63sZGeoVzpVKJaMHD9YYkv6g3w8fRk9Pjxe6ddPhlYV4OnKyswEwVGp/Tg2Kt+Xl5mJiqt37XqFQPPb+z97RASMTY86fiqBbrwAUCkVxnXlciSpajDI/L4/s4oenB4KC0dfXp9fwl9HTU3B4TyjrFv7IqLfH07hlzZ5iSfwzVcX91INuHrsIegocOzbX2mdgoqRhgA8XNh7iz6W71NvdX3oGa4/aMQ2cEEKTJDVrkAEDBpS5b9u2bTRt2pTZs2fj5ubGL7/8ov5y4ebmxsyZM8ud1MzLy1MPy/7666/V2wcPHkynTp0IDw/XKalZ2hyPK1asIDY2lk8//ZTWrVsDMHPmTKytrQkKClInnEaOHMmoUaP48ssvCQgIQKlUMnfuXOzs7Ni4cSPm5uYA+Pr6MmrUqAolNZOSkrCysir1y9iD7O3tAbh9+zaAuofphg0b1As19ezZk/79+2uU0zVux44ddOvWjY8//li9rX79+qxfv574+PgKJaXLIzc3VyNpnpaWxpkzZ5g7dy5mZmYMHz78kfH5+fnExsayePFikpOTef/998vdhuDgYIyNjVmyZIn6ptzX15dJkyYRFRVFgwYNOHbsGFu3buWzzz5j2LBh6rLdu3dnzJgxbNiwgVGjRmFtbc2nn37K1KlTWbZsGZ6enuokeZs2bTReNyQkhMzMTFQqFSYmJsyfPx+rR/Tqadu2LZ988olGu69fv86KFSvUSXoomnf0P//5D6dOneL555/nypUrbNiwgSFDhvDFF1+o48zMzFi6dClXrlzh7t27Oh2fqAFKeiKX7166XK7tO01saARWjerh0MEDVaGKhGMXuLD+IM1feQ6b5trDfYWoaiW98kv+bldUTm4us5cv53p8PP2ff54WpcxprFAomDx6NPn5+ew5eJCZ33/PlNGjeab4XqJEbl4e4SdO0NbLCzsbeQAgqo/6UvGE50dZ9A0M8H3+WUJ/28PmZWvo1jsAlaqQ/UHB5OYUPUDX09MjPy8fgOzMLKbM+ki9IrpHa0++mf4F+7fskqSmqB5VcD9VoiAvn9tnorFp3gDjuuZa+xNPXuLy1iOYOtTFuUtL9Az0uX02muidx0ChwLFjs6ffSCFEpZKkZg0yZ84cbG1tS93n4uLCuXPnuHv3LuPGjdNI0A0dOlRjiLeuDA0NOXLkCHl5eRrbU1JSMDc31xi+Wx7h4eHMnz+ffv36qZOiKSkpHD9+nMDAQLKzs8kufqoN0KNHD2bNmsW5c+dwdXUlKiqKsWPHqhOaUNSL0sPDo0LDc1UqlU69IA2KnxSqVCoKCwsJDw+ne/fuGivPu7u706VLF0JCQgB0jgNwcHDg2LFj/Pzzz/Tu3RtbW1uGDRumkdh6mnbt2sWuXbu0tjdp0oQZM2bg4OCgU7ybmxvz58+v0CJBDg4OZGRkMHPmTF555RXc3d3x8PBg79696pjff/8dhUJB9+7dNZKqLVq0wM7OjrCwMHXSr1evXuzatYsff/wRS0tLmjVrxr///W+N15w7dy4//PADXbt2xcvLi8WLFzN9+nRWrFhBdHQ0kZGRdO/eHesH5mxr315zxelevXrRsWNHjaT6gz1xS86VsLAwVCqV1tQPY8aMoVevXri4uLB+/Xqdj09UL/3iIX+FedpTMxTmF315NDCu+Lys+Vm5xIVHYu5sg9eYniiKp4Kw83bl7OKdXA76g7pNBqNnUD29uIUoYVzce/zhEQhQlFyEovkzHyUjM5Ovly3j0tWrPNexI8PKmAPT3NQU3+IHUx19fHjnq6/4ecsWraRm5KVL5OTk0Mmn7GG7QlQFI+Oi8yOvlPMjv7iHmvFjzo/Hea5vT7Izszi6/xDnjhfNge7RqiVdX/Bj35admJqbcS+1aI7AFm1bqROaACamJjRr7cmZIyfIzc5BaSyjQUTVetr3Uw9Ku5pIYW4+tp6upe6/tu8MSitTWo/vhX5xT2o770ZE/ryPmN0nsPVsiFLmNBeiVpGkZg3Spk2bR65+fvPmTQD1EN0SSqVSa5uuDA0NCQsL48CBA8TExHD9+nXS0ormBqrIfInXrl3j7bffpkmTJnz++efq7bHFiwisWbOGNcXDzh6WkJCgXriltF6Lbm5uRERElLtN9vb2xMbGkp+fr05clqakh6a9vT2pqalkZmaW2Y6SZKWucQDvvfceb775Jl999RWzZs2iZcuW+Pn5MWTIEOzs7LTKV7YuXbowZswYoKg3gVKppH79+jg6Oj42PjExkRUrVpCens6MGTN45plnKtSGkSNHcvjwYdauXcvatWtxdnbmueeeY9CgQTRrVvRk9MaNG6hUKp599tlS6zAz0xzgOGPGDJ5//nmSkpJYvHixRsL/1KlT6oTmsmXL0NfX5+LFixw4cIBly5aRnp7OypUr+e233zSSmtalLEqhUChYvnw5Z86c4caNG9y4cUP9QKCwsBCA+Ph4AK25Oi0tLbG0tKzQ8YnqY2RV9GAl9572XGi56Vnomxiqb4grIutuOqr8Quy83dQJTQA9fX3sW7kTs+ckmUlpmNcve5EUIaqCbfEDndT0dK19KenpmJqYqBOfpUm7d4+vFi/mWlwcAZ07M3boUJ16tSkNDWnTsiV7Dh4k/f59LB942HkmKgoDA4MyV0UXoqpY2RSdH/fS7mntu5eajrGpyRMnEhUKBb2GD6BbrwDu3krC0roOdW2t2bd1Fwo9Pays65KVUfSA1cxCu3eamaU5qFTk5EhSU1S9p30/9aDki3EoDPRKHUqeez+LvHtZOPo213q9em0ak3IxnnuxSdg0f7qj54QQlUuSmrVQaclGXefge3AxGJVKxYQJEwgNDaVt27b4+PgwdOhQ2rdvX6GeYvfv32fixIkoFAq+//57jafSJa87YsQIAkqZQwugcePG3Lp1C0CjJ2eJksRRebVr146jR48SERGhNSz5QSdPnkShUODzQK8PXduhS1yzZs3Yu3cv4eHhhIaGEh4eznfffceqVavYuHEj7u7u5TmscrOzs8PXV/eVLx+O9/f3Z/Dgwbz++uusWrWKtm3blrsN5ubmrF27lrNnz7J//34OHTrEmjVrWLduHbNnz+all16isLAQMzMz9fyTD3v4s37+/Hl1T8m9e/fi/cCCEgcOHABg4sSJ6t66X3/9NQMGDGDhwoWYmpri6uqqTqiWeLhn79WrVxk+fDh5eXl06dKFXr160bx5c1QqFRMnTlTH6bLYUnmPT1QfAxMlRtbmpa7KeT/hLhZOpfes15WeQXEis1D7b7pKVVjyP0/0GkJUBjNTU+xsbIiJ017FOSY2FvdHTJ+SlZ2tTmj2eu45Rr38slZM/K1bfLV4Mf0CAnj+gSk+oGgOToVCgeFDDyUvxcTg5uKCqYn0qBHVy8TUhDq21iRc1z4/bt6Iw8n1yacRiTh2GgsrCxo1a4K51d/zmV+7GI1jQ2cMlYbUc6qPvoEBt28mapVPuZOMgaFhqQlPIZ62p30/9aD0G7excLLFwFh72jG94vt7VYH2dzlV8b2YqpR7MiFEzSarn9ciJb2/rl27prWvpCdkCT09Pa1hYvn5+aSkpKh/PnnyJKGhoUyYMIFffvmFDz/8kEGDBuHk5ERq8UqnulKpVEybNo3o6GjmzJmj1XPUyckJKEoW+fr6avyzt7cnNzcXExMTnJycUCgUXL9+Xes14kr5MqWLPn36oK+vz8qVK8uMSUxMZM+ePbRt2xYnJyfq1q2Lubn5Y9uha1xBQQFRUVEkJCTg7+/PzJkzOXjwIN988w337t17otXdq4qVlRXz5s2joKCAd955p0JTAcTExBAREUHr1q1599132b59O7t27cLS0pJVq1YBRZ+VjIwMPD09tT4r6enpmDzwBfb+/ft8+umnNG3alIEDB7Jq1SqN3rwlDwAeTFJaWlqyYMEC9PT0uHfvHq+++upj2/3DDz+Qnp7O1q1b+e6773jrrbfw9/fXWNEcUPd6ffh8vHXrFlOmTOHkyZPlOj5R/WxbNiQ1+iaZSanqbSlXbpKVlI6dt+4rcZbG1L4OSksTEk9fpqB4LjQomg/q1ploDMyMMK1X54leQ4jK8kyrVpy7eJH44oePABEXLpBw+za+j3jI9eOmTVyLi+PFZ58tNaEJ4GBrS2ZWFvsOHyY//+9zIenuXf7v7FmaN26MyQMPSvPz84lLSKDRI0a3CFGVWrZtRfT5iyQl/H1+XIm6yN3E23g9U/YDdV0d2RvGjrVbNB6eXvwzihuXr/KMXxcAlMZGNPPx5FJEFLfjE9RxKUl3uXAmkmY+nujpyVc/UT2e5v1UicKCAjJvpWLmWPoIFwMTJRYNbLkTdZ28jL87pKhUKhJPXkKhr4dlQ/tKaYsQourIla0WadasGS4uLmzYsEFjvss9e/aoh06XsLW1JSYmRqMHYUhICDnFK5gC6sRl48aNNcpu2rSJrKwsjS8Wj7NgwQJCQkJ466236N69u9Z+e3t7PD09CQoKUvfGhKLFij788EMmTZpEfn4+1tbWtG/fnu3bt3Pnzh113JkzZ4iKitK5PQ9ydXVl9OjR7Nu3jyVLlmjtT01NZdKkSeTl5akXh1EoFPTo0YPw8HAuX76sjo2LiyMsLEz9s65xBQUFvPrqq3z11Vcar92qVSuAWnOT6eXlxZgxY0hISGDOnDnlLj9z5kwmTJhARkaGepubmxuWlpbq98DPzw9A63cVEhLC5MmT2bFjh3rb7NmzuXXrFp999hnvvfceVlZWfPTRR+qEfseOHQFYv369Rl23b99WfzHYsmWLVnLyYampqZiYmGgM1c/NzWXDhg3A3z00Sz77D7/e1q1b2b17N+bm5uU6PlH9nLt6YmBixLkf9xJ3OIobYX/y1/pQzJ1ssG9d1Ls6K/ket85Ek5WsPfTwURR6eri/1JGspDTOLtlF/B/niTscxdnFO8lKSsO9dwd1rwIhqlvfgADMTEz4YuFCdoaEsHXvXr5ZuRI3Fxe6tmsHwK07dzh0/Di3iq/fcYmJhJ84gamJCa7Ozhw6flzrHxQ9eBo9aBA3bt7kPwsWsPfQIX7dvZsP585FT6Fg9KBBGm25k5JCfkGBeli8ENWt64t+mJiasmrOIv7YG8rBnb+zcclPOLo2oFXHoqR/8u07nD1yguTbdx5TWyn19/In6WYiaxf8wImwI+zbspP1i1bR2LMZrTq1U8f1HNwXYxMTVs5exMGdvxO+O4Qfvv4OQ6UhPV4u/1zoQlSWp3k/VSInNQNVQSHGVmX3SHbr/QwFOXmcWbyD2IMRxB85T8Ty3aRFJ9LQv7XMpylELSTDz2uQ/fv3P3J17379+jFjxgzGjRvH0KFDGThwIHfu3GHNmjXquShL9OnThy+++IKxY8fSt29frl+/zqZNm9Q9JgF8fHwwNzdn1qxZxMfHY2VlxbFjxwgODsbIyEgj8fQoYWFhLF26FHd3d5o2bcqOHTs0hl7b2trSuXNnPv74Y0aNGsXAgQMZPnw4derUYdeuXfz555+888476mOfPn06I0aMYMiQIYwYMYKsrCx++umnCq18XmLq1KmkpaXx7bffEhoaSs+ePbG0tOTq1ats27aN7Oxs5s2bpzEMefLkyYSFhTFy5Ej+9a9/oa+vz5o1azAzM9PoBatLnFKpJDAwkCVLljBx4kS6du1KdnY2GzduxMTEhIEDB1b42KrahAkT2L17Nxs3bqRv377lGoY+evRoXn/9dUaMGEH//v0xMjJi//793Lhxg//+979AUWLQ39+flStXEh8fT6dOnYiPj2fdunU4Ojqq5/k8evQomzZtYsiQIeppBd577z3ef/99Fi9ezJQpU+jevTt+fn5s3bqVnJwcOnTowJ9//slvv/1GixYteOaZZ/jxxx957bXX+OGHH8psd7du3QgJCeGNN97ghRde4N69e2zbto0bN24AqM+V5s2bM3jwYNasWcPt27fp1KmTekX0/v3706xZMzw8PHQ6PlEzKM1N8H79Ra7uOs71/WfQVxpg09yFRi+0Uy/gk37tFpd+PUzTQV0wsbZ4TI2abFs2xOu1ntwIOcu1facAMHe0oeWoAKybSi80UXNYWVjw2ZQp/Lx1K5uCgzEyNKS9tzcj+vVT34P8FR3NkrVreXPkSOrZ2vLXlSsAZGZlsWTt2lLr7dahg/q/hgYG/LZ/P6u3bsXIyAjPpk0Z1qcPjvXqaZS5X/w3V4aei5rCzNKCsR9MInh9EAe27UapVNLcx4ueg1/CoPj8uHbpKkErf2HAa69gbV++4bYt27Vi8BuvEh68n90btmFmaU6XF/zo1jtA48F4XVtrxn00hd9/3cHhPaGoVCoaNnWj5+C+5X5NISrT076fAsjPLOq8o/+IRYcsXexo9UYvru07TWxYBIUFhZja18FjSFd1clUIUbsoVBVZDUZUqvfff5+goKDHxl28eBGAY8eOMX/+fM6fP4+joyOTJ09m7ty5ODk5qRfhKSwsZPHixfz666/cvXuXZs2a8e6777Jy5UoyMzPVcadOnWLu3LlcuHABpVJJo0aNePXVV4mIiGD16tUcOnQIW1tb/Pz8NOoPDAwkPj6ekJAQFi5cWOb8gAAdOnRQl4uKimLhwoWcPHmS/Px89esNGDBAo0xERATz5s0jIiICS0tLRo8eTWRkJKdPn9ZYfKe8Dh06xLp16zh//jzp6ek4ODjQrVs3AgMDS13sJyYmhtmzZ3P8+HGUSiWDBw8GYNmyZerfh65xhYWFrF69mi1bthAXF4e+vj5t2rRh0qRJeHp6VviY4O/ejaW9N3Fxcfj7+zNgwAC+/vrrx9alS/yRI0cYPXo07u7ubNu2TWNxnscJCwtj2bJlREdHk5OTQ5MmTRg9erTGaup5eXmsWLGCbdu2ER8fj7W1NZ06dWLy5Mk4OjqSlZXFSy+9RGZmJrt378bKykpdduTIkZw9e5bNmzfTvHlzcnJyWLx4Mdu3bycpKYn69evTt29fXn/9dYyNjVmwYAFXrlxhwYIFnDhxgldffZVZs2bx8gPDJFUqFcuXL2fz5s3cunULW1tbWrduzeTJkxk2bBitW7dm6dKlQNHveeXKlWzevJn4+HgcHR3p378/Y8eOVb9Pjzu+ihoWOrvCZYX4p1tu80J1N0GIGu14Hd1H6Ajxv2ZF9P7qboIQNdqG596r7iZUipr8feqf8h5XNklq/kM8nHQUQuhOpVLptBJvTVeTL8JCVDdJagrxaJLUFKJsktQU4tH+KQm3mvx96p/yHle22jGRnxBCPEX/hISmEEIIIYQQQgjxv0Tm1BS1TkFBAcnJyTrFWlhYYPzAiqk1WXJyssaqlmUxNjbGwqL888w8LbW13UIIIYQQQgghhKi9JKkpap2EhAT8/f11in14bsSabNCgQcTHxz82Tte5MatKbW23EEIIIYQQQgghai9Jav5DPMniObWNnZ0dq1at0im2cePGT7k1lWfOnDnk5OQ8Ns7e3r4KWqO72tpuIYQQQgghhBBC1F6S1BS1jpGREb6+vtXdjErXtm3b6m5ChdTWdgshhBBCCCGEEKL2koWChBBCCCGEEEIIIYQQtYokNYUQQgghhBBCCCGEELWKJDWFEEIIIYQQQgghhBC1iiQ1hRBCCCGEEEIIIYQQtYokNYUQQgghhBBCCCGEELWKJDWFEEIIIYQQQgghhBC1iiQ1hRBCCCGEEEIIIYQQtYokNYUQQgghhBBCCCGEELWKJDWFEEIIIYQQQgghhBC1iiQ1hRBCCCGEEEIIIYQQtYpBdTdACCFE5Vhu80J1N0EIIYQQQgghhKgS0lNTCCGEEEIIIYQQQghRq0hSUwghhBBCCCGEEEIIUatIUlMIIYQQQgghhBBCCFGrSFJTCCGEEEIIIYQQQghRq0hSUwghhBBCCCGEEEIIUatIUlMIIYQQQgghhBBCCFGrSFJTCCGEEEIIIYQQQghRq0hSUwghhBBCCCGEEEIIUatIUlMIIYQQQgghhBBCCFGrSFJTCCGEEEIIIYQQQghRq0hSUwghhBBCCCGEEEIIUatIUlMIIYQQQgghhBBCCFGrGFR3A0Tt9v777xMUFPTIGH9/fxYvXlxFLdLm5+eHk5MTa9asASAwMJD4+HhCQkKqrA2V8Zp79+5l06ZNREZGkp2dTf369enSpQujRo2iQYMGOtVR8vu6ePFipcRVlIeHxyP3l3xm4uLi8Pf319pvaGiItbU1nTt3ZvLkyTg4OACUGa9QKLCwsMDNzY0RI0bQt2/fyjkQ8Y9z++5dVgcFcf7yZQDatGxJ4IABWFlYVEq5C9HRrN+xg+gbNzA3NaWdtzdDevXC0txcIy76xg3Wb9/OxZgY9PT0aOHuTuCAATjWq1eJRytE+VT0/HjQ8vXruXn7NjMmT66U+h9VnxBVKSXpLrs3/kbMxSsAeHi34MWh/TCzfPT5oWu565eusm/rTuJjYjExM6G5jxd+/V/EzELz+nH53F+E7dzHzWuxKPQUNHBzJeDlXjRwd628gxWiArKT73F19wnSriYCYN3MmUYvtkdpblIp5e7F3+Ha3lOk37iNQqHAqpEDjV5sj6mdVZl1ZyQmc2bRTho860VDf58nPEIhRHWQpKaoFB988AF169YtdV/9+vWruDWPNn78eLKysqq7GTrLzc1l+vTpBAcH4+3tzdixY7GysuLy5csEBQWxZcsW5syZQ0BAQHU3tVzc3NwYP358qfse/sy0a9eOIUOGqH/Oz8/nypUrrFu3jqNHj7J9+3YsLS3LjFepVMTGxrJhwwamTZuGvr4+vXv3ruQjErXdvYwMPvvuOwoKCugbEEBhYSE7Dhzgxs2bfPXuuxgYlH7J1LVc1OXLfLVoEaYmJgx4/nn09PQIDg0l6tIlvnj7bcxNTQG4eesWn333HUaGhgx84QUAdoWE8Om33zL7/fextir75lyIp6Wi58eDQo4e5cCRIzRv3LhS6n9UfUJUpcz7GaycvYiCgny6vuCHSlXI4T2h3Iq7yfhP3ka/jPND13IxFy7z8/ylGJuY0L1PDxR6Co7+fpCrFy4z7sMpmJgVXT9iLl5h9bfLsXd0oMfA3hQUFHI85DA//nchY9+fhLNbwyp7T4R4UF5mDhE/7kFVUIhzN09UKhVx4ZFkJKbQekIf9PT1n6hcZlIaET/sQV9pgMtzrQCI/+M8fy4Pps2/+2FkaapVd2FBIRd/PYyqoPDpHbgQ4qmTpKaoFAEBATg7O1d3M3TSuXPn6m5CucyePZvg4GCmTZvG2LFjNfaNHz+esWPHMmXKFLZs2fLYHpA1ia2tLf369dMptkGDBqXGNmjQgM8++4wNGzYwbty4x8a//PLL9OrVi0WLFklSU2jZFRJCcmoqcz74AOfi3r+NGzbky0WLCDt2jIAy/nboWm7V5s0o9PT44u23cbCzA6BDq1a8N2sWQXv3EjhgQFF9YWHk5OTw2ZQpNCr+u+rVtCkfzp3LrpAQdZwQVami5wdAYWEhW/fu5dfduyulfl3qE6Iq/fF7GGkpqbz1+XvYOxZ9fp0aNeTneUs4/cdx2nf3faJyO9dtRaHQ4/UPJ2NTr+j60aKNN4v+M5uDO/fxwtCie57g9UFY1a3DGx9PRWmkBMDHtz0LPp7F/q27+Ne7E57q+yBEWeIPR5GTlknbSf0wta8DgIWzHZErf+fW6SvUb1/6dxhdy8UfOU9hbj6txr2IuaMNAHXcHTm7eCfxf0Th9mJ7rbrjDkaQeSu10o9VCFG1ZE5NIWqwmJgY1q5dS+/evbUSmgA2NjYsWLAAhULBzJkzq6GF1atXr14AnD59Wqd4Jycn2rdvT3R0NPfv33+aTRO10B+nT9OiSRN1QgXAu1kz6tvbc+QRnzFdyiXdvUtsQgLdO3RQJzQBnOrVo42XFwePH1dvu33nDhbm5uqEJoB7w4aYm5kRm5BQKccqRHlV9PzIzctj+n//y+bgYLq2b491nTpPVL+u9QlRlc4dO00jj8bqxCRA45Ye2DjYc+7YmScql3InmdvxCbT2ba9OaALY1a+HR6uWnPmj6PqRlZFJYuxNPNu3Vic0AcytLHBt6s6NK9cq63CFKLekiKvUaeSgTkwC1G3siImdJUkRMU9cLjv5HgZmRuqEJoCFsy0GpkZk3krRqjcjMZkboRG4+LV6sgMTQlQ7SWqKKrV792769++Pt7c3ffr0ITQ0lDFjxhAYGKiO8fPz0/i5rO0qlYr169czaNAgfHx88PLy4oUXXmD58uWoVKoy2xAYGIifnx9QNAejh4dHmf8WLlyoLnflyhUmTpxIu3btaNWqFcOGDSM8PFyr/iNHjjBs2DBat25NQEAAmzdvrtB7BfDbb7+hUqkYMWJEmTEuLi4EBARw4sQJEhMT1dsjIyN57bXX8PHxoWvXrixbtqzU90WXOJVKxffff0/Pnj3x8vLC19eXadOmkVDNCRY9vaI/YQUFBTqXMS0e4vuoz0hZ9u7dy8CBA/Hx8aFt27aMHj2aU6dOacQUFhaycuVKXnjhBTw9PenatSszZ87USKJOnToVDw8PDh48qN6WmppKly5d6NGjB5mZmeVum3gy9zMzuX3nDm6lzE/bqEEDYmJjn6hccloaAA1KmY7DwdaWe/fvczel6Kbbwc6O+xkZpN27p465l5FBZlYWdR6YZkGIqlLR8wMgLy+PzOxspowezcTAQPXf7YrWr0t9QlSlrIxMUpLu4uiqPWLJ0cWZhBtxT1QuPaXo+lHP2UErztrelsz7GaQlp2BkYszkrz7Et+ezWnGZ9zPQ05dzRVSPvKwcspPvY+5ko7XPvL4N92/efeJyJjaW5GfmkHv/7ynG8jJzyM/OxfChuTcLCwq5tOUP6jZxxL61e0UPSwhRQ8jwc1Ep0tPTSU5OLnWflZUV+vr6bNu2jenTp+Pl5cW0adO4evUqkyZNwtraGhcXl3K/5rfffsvSpUsZMGAAQ4YMISMjg23btjFv3jzMzMwemQgsYW1tzezZs7W2L1y4kMTERLp27QrAxYsXeeWVV7C1teWNN97A0NCQnTt3Mm7cOObNm6fuMXjkyBFef/11XF1dmTJlCsnJyXz55ZcoFIoy5xx9lLNnz2JgYICXl9cj4zp27EhwcDCnTp2id+/eXL58mcDAQCwtLZkwYQJ5eXmsXLmS3NxcjXK6xi1dupRFixYxYsQIPDw8iIuLY/Xq1URGRrJz5070y5gH51Hy8vJK/cwYGhpioeOiE0ePHgWgRYsWOsVnZWVx4sQJnJ2ddX6NEsePH2fq1Kl069aNwYMHk5WVxdq1axk9ejS7du1SL9b00Ucf8dtvv9G/f3/+9a9/ER0dzfr16zl9+jTr16/HyMiITz75hKNHj/L555+za9cujI2N+eKLL0hOTmbt2rXqxKuoOsmpqQClzldZ19KSzKwsMjIzMXvod6NrOaWyqNdMVk6OVty94oR3ano6NnXr0i8ggNORkXz388+8WjzUfO22bejr6/Pis89W9BCFqLCKnh8ApiYmfPfpp4+8TpSnfl3qE6IqlSQdLevW0dpnUceS7MwssjKzMDE1qVA5pZEhADnZ2tePzPsZANxLu4eVdV1sH+jJWSIx9iY3rsTQxLNZuY5LiMqSm1b0sF5ZyryWSksTCrLyyM/KxcBEWeFyzt08Sb4Qy8WNh3DrXTTU/Oruk+jp6+Hkq/k9IS78HFl302kx0g9VYfk7OQghahZJaopKMeARc7xt27aNpk2bMnv2bNzc3Pjll1/UX/Dd3NyYOXNmuZOaeXl56mHZX3/9tXr74MGD6dSpE+Hh4TolNU1NTbXmXlyxYgWxsbF8+umntG7dGoCZM2dibW1NUFCQOuE0cuRIRo0axZdffklAQABKpZK5c+diZ2fHxo0bMS9ezdjX15dRo0ZVKKmZlJSElZWV+v0qi729PQC3b98GUPcw3bBhg3rRnZ49e9K/f3+NcrrG7dixg27duvHxxx+rt9WvX5/169cTHx9foaT0mTNn6NSpk9b2Dh06qFeqL5Gbm6uRAE1LS+PMmTPMnTsXMzMzhg8f/sj4/Px8YmNjWbx4McnJybz//vvlbm9wcDDGxsYsWbIEhUIBFP1uJ02aRFRUFA0aNODYsWNs3bqVzz77jGHDhqnLdu/enTFjxrBhwwZGjRqFtbU1n376KVOnTmXZsmV4enqqk+Rt2rQpd9vEk8suTjaWdq4pDYu/UOblYVbBcg0cHDAxNub4n3/Sv0cP9WcoNy+PiAsX1P8PYGttzYCePVm5eTPvFf9909PT4+0xYzSGpAtRVSp6fgAoFIrHJiDLU78u9QlRlXKyswEwVBpq7TMo3paXm6uV1NS1nL2jA0Ymxpw/FUG3XgHq60debh5Xoi4CkF98/XhYbnYOW1asBaBrL/9yH5sQlaEgt+jzqW+onXrQK14MqyAvXyupWZ5yxnXMafCsN9E7/o/T320vDlLQ/JVnNYakZ9xK4caBP3Hv+wxGVmZkp8h0VELUdpLUFJVizpw52NralrrPxcWFc+fOcffuXcaNG6fxpWXo0KEaQ7x1ZWhoyJEjR8h76CYuJSUFc3PzCg/fDQ8PZ/78+fTr10+dFE1JSeH48eMEBgaSnZ1NdvFNKECPHj2YNWsW586dw9XVlaioKMaOHatOaEJRL0oPD48KzeGoUql0+vJWsiqsSqWisLCQ8PBwunfvrrGKuLu7O126dCEkJARA5zgABwcHjh07xs8//0zv3r2xtbVl2LBhGom78vLw8Cg1uWhZyvDaXbt2sWvXLq3tTZo0YcaMGTg4OOgU7+bmxvz58yu0SJCDgwMZGRnMnDmTV155BXd3dzw8PNi7d6865vfff0ehUNC9e3eNpGqLFi2ws7MjLCyMUaNGAUXzge7atYsff/wRS0tLmjVrxr///e9yt0tUjpLpCEq+LFZ2OQMDA/r4+bE5OJjvfv6Z/j16UKhSsWnnTrKLe0aXnOsbd+5k6969NG/cmIDOnSksLOT3w4f5duVK3h4zhraP6bktRGWr6PlRU+oX4mkqmc2m/NcP3crpGxjg+/yzhP62h83L1tCtdwAqVSH7g4LJzSm6fpQ2DUNuTi5rv1tBYuxNuvUOoJFH43K1T4hKo/6wP71y1/adJjY0AqtG9XDo4IGqUEXCsQtcWH+Q5q88h03zBqgKC7m05TCWrvZlLkwkhKh9JKkpKkWbNm0eufr5zZs3AdRDdEsolUqtbboyNDQkLCyMAwcOEBMTw/Xr10krnreuIvMlXrt2jbfffpsmTZrw+eefq7fHFs/ltWbNGq0ehCUSEhIwLO5NUlqvRTc3NyIiIsrdJnt7e2JjY8nPz1cnLktT0kPT3t6e1NRUMjMzy2xHSbJS1ziA9957jzfffJOvvvqKWbNm0bJlS/z8/BgyZAh2dtpDnXRhZWWFr2/pq4E+rEuXLowZMwYouvlXKpXUr18fR0fHx8YnJiayYsUK0tPTmTFjBs8880yF2jty5EgOHz7M2rVrWbt2Lc7Ozjz33HMMGjSIZs2KhnTduHEDlUrFs2UMETYz0+zHNGPGDJ5//nmSkpJYvHjxY3vkiqfH2MgIQGvqBfi7B6WpsfETlRv4wgtkZGWxOyyMI8Vzsbb19KRvQADrt2/H3NSUjMxMth84gLuLC5/++9/qL6q+bdrw4dy5LFu/nkXNmqn/3ghRFSp6ftSU+oV4moyMiz6/eaV8fvOLe5oZl/L5LU+55/r2JDszi6P7D3HueNHCWR6tWtL1BT/2bdmJqbnm/UVWZhZrv13OjSsxtOn6DAEvl/9hrhCVRb94CoXCPO058Avz8wEwMNa+r9G1XH5WLnHhkZg72+A1pieK4nsnO29Xzi7eyeWgP6jbZDDxf0SRkZBCqzd6kZdR1EklP6topEBBbj55GdkYmBrJAzYhahlJaooqVVqy0aj4y8zjPLgYjEqlYsKECYSGhtK2bVt8fHwYOnQo7du3V/eEK4/79+8zceJEFAoF33//vcbNZ8nrjhgxgoCAgFLLN27cmFu3bgFo9OQsUVhYWO42AbRr146jR48SERHxyGHJJ0+eRKFQ4OPjo96mazt0iWvWrBl79+4lPDyc0NBQwsPD+e6771i1ahUbN27E3f3pTrJtZ2encwK0tHh/f38GDx7M66+/zqpVq2jbtm2522Bubs7atWs5e/Ys+/fv59ChQ6xZs4Z169Yxe/ZsXnrpJQoLCzEzM+P7778vtY6HP+vnz59X9yreu3cv3t7e5W6XqBy2xdNDpKana+1LSU/H1MREnXipaDmFQsGol1+mX0AAiUlJ2NSpg52NDRt27EBPTw9ba2tib94kPz8f37ZtNXreGBgY0KVdO9b99hvxt27hKsPQRRWq6PlRU+oX4mmysin6/N5Lu6e1715qOsamJiiNtT+/5SmnUCjoNXwA3XoFcPdWEpbWdahra82+rbtQ6OlhZf33FEcZ6ff4af5SEm/E0667L31fHSxJGlGtjKyKRrDl3svS2pebnoW+iSH6pUzDoGu5e3F3UOUXYuftpk5oAujp62Pfyp2YPSfJTEoj5VI8qoJCzi7eqVVffHgU8eFRtJ82COO65lr7hRA1lyQ1RZVwdXUFinpDPiw2Nla9H4qG0DzcWyM/P5+UlBR1r8KTJ08SGhrKhAkTmDx5skZcampquXp/qlQqpk2bRnR0NMuWLdMq6+TkBBQNDX04sXblyhXi4uIwMTHByckJhULB9evXtV4jLq70lS8fp0+fPixevJiVK1eWmdRMTExkz549tG3bFicnJ1QqFebm5o9tR926dXWKKygo4MKFC5ibm+Pv74+/f9GcTMHBwUydOpXNmzdXaI7KqmRlZcW8efMYNmwY77zzDjt37tSYIkAXMTEx3Lt3j9atW9O6dWveffddrly5wogRI1i1ahUvvfQSTk5OHD58GE9PT61h9Hv27NHoFXv//n0+/fRTmjZtipeXF6tWraJnz56S2KwmZqam2NnYEFPKuRoTG4t7GfPGlqfcH6dOUcfSkpZNmmisYn7+yhXcGjRAaWio7pFd2gOIwuKHQjKlvahqFT0/akr9QjxNJqYm1LG1JuG69uf35o04nFxLvyctT7mIY6exsLKgUbMmmFv9vdDhtYvRODZ0Vs/LmZOdrU5odurRnV7Dy57zXoiqYmCixMjavNRVzu8n3MXCqfQpzHQtp2dQnMgsZdEflaqw5H9o1Ks9+Vma3zHz7mdxcVM49j5u2Ps0xtBcRgUIUdtoT8AixFPQrFkzXFxc2LBhg8Z8l3v27FEPnS5ha2tLTEyMRg/CkJAQch5YNTi1eKXUxo015wfatGkTWVlZ5BcPSdDFggULCAkJ4a233qJ79+5a++3t7fH09CQoKEjdGxOKFiv68MMPmTRpEvn5+VhbW9O+fXu2b9/OnTt31HFnzpwhKipK5/Y8yNXVldGjR7Nv3z6WLFmitT81NZVJkyaRl5fHJ598AhQ9ze/Rowfh4eFcvnxZHRsXF0dYWJj6Z13jCgoKePXVV/nqq680XrtVq1ZA6fM41UReXl6MGTOGhIQE5syZU+7yM2fOZMKECWRkZKi3ubm5YWlpqX4P/Pz8ALR+VyEhIUyePJkdO3aot82ePZtbt27x2Wef8d5772FlZcVHH31U6vBLUTWeadWKcxcvEv/AeR5x4QIJt2/j+4jevbqW2xUSwsrNmzV6nZ+KjOTi1as837UrAA3q16eulRVhx46ph91C0RDcQ8ePY2FuToOH5pAVoipU9PyoKfUL8TS1bNuK6PMXSUr4+/N7JeoidxNv4/VM2SNtdC13ZG8YO9Zu0bh+XPwzihuXr/KMXxf1th1rfi1OaHaThKaoUWxbNiQ1+iaZSanqbSlXbpKVlI6dd6MnKmdqXwelpQmJpy9TkPf3d8CCvHxunYnGwMwI03p1sHCypW5jR41/lg3rAWBsbUHdxo6lLkokhKjZ5KwVlWL//v2PXN27X79+zJgxg3HjxjF06FAGDhzInTt3WLNmjdbccH369OGLL75g7Nix9O3bl+vXr7Np0yZ1j0kAHx8fzM3NmTVrFvHx8VhZWXHs2DGCg4MxMjLSSDw9SlhYGEuXLsXd3Z2mTZuyY8cOjR5Stra2dO7cmY8//phRo0YxcOBAhg8fTp06ddi1axd//vkn77zzjvrYp0+fzogRIxgyZAgjRowgKyuLn376qUIrn5eYOnUqaWlpfPvtt4SGhtKzZ08sLS25evUq27ZtIzs7m3nz5qnndQSYPHkyYWFhjBw5kn/961/o6+uzZs0azMzMNJJmusQplUoCAwNZsmQJEydOpGvXrmRnZ7Nx40ZMTEwYOHBghY+tqk2YMIHdu3ezceNG+vbtW65h6KNHj+b1119nxIgR9O/fHyMjI/bv38+NGzf473//CxStcu7v78/KlSuJj4+nU6dOxMfHs27dOhwdHdXzfB49epRNmzYxZMgQdQ/c9957j/fff5/FixczZcqUSj928Xh9AwI4dPw4XyxcSB8/P3Lz8thx4ABuLi50bdcOgFt37nDx6lU83NyoV7w4mi7lAPr16MH8H3/kv8uW0aFVK5KSk9kZEkKr5s3p2r49UPSQ4LXBg5n/4498NHcuz3XqRGFhIaH/93/cvHWLiYGBj5xfV4inpaLnR2XWL0RN1fVFP84eOcGqOYvo3PM58vPyOLwnFEfXBrTqWHSvkXz7DjeuxODSuBHW9rY6l4Oilcs3LF7F2gU/0KKNN6l3k/ljbxiNPZvRqlPR+XH7ZiJ/Hj2JsakJDg2cOXvkhFY7W/u2r4J3Qwhtzl09uX0mmnM/7sWpiyeF+flF82A62WDfumgaq6zke6Rfv41lQ3tMrC10LqfQ08P9pY789UsoZ5fswqFtE1QqFbdOXSYrKQ2PwV3R02HhVSFE7aRQVWRFFSGKvf/++wQFBT027uLFiwAcO3aM+fPnc/78eRwdHZk8eTJz587FyclJvQhPYWEhixcv5tdff+Xu3bs0a9aMd999l5UrV5KZmamOO3XqFHPnzuXChQsolUoaNWrEq6++SkREBKtXr+bQoUPY2tri5+enUX9gYCDx8fGEhISwcOHCMuc/BOjQoYO6XFRUFAsXLuTkyZPk5+erX2/AAM0n4REREcybN4+IiAgsLS0ZPXo0kZGRnD59WmPxnfI6dOgQ69at4/z586Snp+Pg4EC3bt0IDAwsdbGfmJgYZs+ezfHjx1EqlQwePBiAZcuWqX8fusYVFhayevVqtmzZQlxcHPr6+rRp04ZJkybh6elZ7mPx8PDQeG/LEhcXh7+/PwMGDODrr79+bL26xB85coTRo0fj7u7Otm3byrU4T1hYGMuWLSM6OpqcnByaNGnC6NGjNVZTz8vLY8WKFWzbto34+Hisra3p1KkTkydPxtHRkaysLF566SUyMzPZvXs3VlZW6rIjR47k7NmzbN68mebNm+vcrhLpFViMSmi6eesWP2/dyl/R0RgZGuLTsiUj+vXDyqLo5jrs2DGWrF3LmyNH8uwDi049rlyJP06d4rd9+0hISsLKwoKu7drR//nnMXrocxh56RK/7t5N9I0bADRydmZAz574tGjxlN8BIcpW0fPjQRP/8x/srK2Z8cDUMbrWX976RPkcr6P7KBeh7U7ibYLXB3HtUjRKpZKm3i3oOfglzCyLPr+nDx8naOUvDHjtFdp06aBzuRIRx04THryfu7fuYGZpTquO7ejWOwClUdH143joH+xYs/mRbfxi5beVe9D/Q1ZE76/uJtR6mUlpXN11nLRrt9BXGlC3qRONXmiH0twEgFunr3Dp18M0HdSFem0a61yuRGp0AjdCznIvvmjEnLmjDQ2e9ca6adnzkGen3OfEnF9x8W9FQ3+fMuPE42147r3qbkKlGBY6u7qbUKZ/yntc2SSpKardw0lHIUTFSFJTCCFERUlSU4iySVJTiEf7pyTcJKlZ+9SOyfCEEEIIIYQQQgghhBCimEzMJUQVKigoIDk5WadYCwsLjI1rxwp8ycnJGpPXl8XY2BiLRwwjrGq1td1CCCGEEEIIIcT/OklqClGFEhIS8Pf31yl21qxZvPzyy0+5RZVj0KBBxMfHPzZO17kxq0ptbbcQQgghhBBCCPG/TpKaoto9yeI5tY2dnR2rVq3SKbZx48aPD6oh5syZQ05OzmPj7O3tq6A1uqut7RZCCCGEEEIIIf7XSVJTiCpkZGSEr69vdTej0rVt27a6m1AhtbXdQgghhBBCCCHE/zpZKEgIIYQQQgghhBBCCFGrSFJTCCGEEEIIIYQQQghRq0hSUwghhBBCCCGEEEIIUatIUlMIIYQQQgghhBBCCFGrSFJTCCGEEEIIIYQQQghRq0hSUwghhBBCCCGEEEIIUatIUlMIIYQQQgghhBBCCFGrSFJTCCGEEEIIIYQQQghRq0hSUwghhBBCCCGEEEIIUatIUlMIIYQQQgghhBBCCFGrSFJTCCGEEEIIIYQQQghRqxhUdwOEEEJUjnF391R3E4Sosca6B1R3E4So0VZE76/uJgghhBBClIv01BRCCCGEEEIIIYQQQtQqktQUQgghhBBCCCGEEELUKpLUFEIIIYQQQgghhBBC1CqS1BRCCCGEEEIIIYQQQtQqktQUQgghhBBCCCGEEELUKpLUFEIIIYQQQgghhBBC1CqS1BRCCCGEEEIIIYQQQtQqktQUQgghhBBCCCGEEELUKpLUFEIIIYQQQgghhBBC1CqS1BRCCCGEEEIIIYQQQtQqktQUQgghhBBCCCGEEELUKpLUFEIIIYQQQgghhBBC1CoG1d0AUfO9//77BAUFPTLG39+fxYsXV1GLtPn5+eHk5MSaNWsACAwMJD4+npCQkCprQ2W85t69e9m0aRORkZFkZ2dTv359unTpwqhRo2jQoIFOdZT8vi5evFgpcRXl4eHxyP0ln5m4uDj8/f219hsaGmJtbU3nzp2ZPHkyDg4OAGXGKxQKLCwscHNzY8SIEfTt27dyDkT8T8lOvsfV3SdIu5oIgHUzZxq92B6luYnOdVwOOkLWnTS8X3+xwvWfWbyD+3F3tcrbeDakxSvPleeQhKg0KUl32b3xN2IuXgHAw7sFLw7th5mlhc51bPtpI3dv3WbM9H9r7Vv6+Xzir93Q2t6irTfDJ76m/jkj/R77tuziwtlI8vLycGzozPODXqKBu2v5D0qISlJTrh/Jl+KJDfuT+/F3QaHAsoEdDXu0wdLF7gmOTognV1POkQdlJCZzZtFOGjzrRUN/n3IekRCiJpCkptDZBx98QN26dUvdV79+/SpuzaONHz+erKys6m6GznJzc5k+fTrBwcF4e3szduxYrKysuHz5MkFBQWzZsoU5c+YQEBBQ3U0tFzc3N8aPH1/qvoc/M+3atWPIkCHqn/Pz87ly5Qrr1q3j6NGjbN++HUtLyzLjVSoVsbGxbNiwgWnTpqGvr0/v3r0r+YjEP1leZg4RP+5BVVCIczdPVCoVceGRZCSm0HpCH/T09R9bR+LJSySeuIRVo3oVrl+lUpF5Ow2bFi7YtGyoUYdxHbPKOVghyinzfgYrZy+ioCCfri/4oVIVcnhPKLfibjL+k7fRN3j8LeWp8P/j1KGjuHq4a+1TqVTcTkikmY8XLdt6a+yrY2ut/v+c7GxW/Hch91LT8e3RHWMzU44dCGfl7EWM/+Rt6jnXrPsR8b+hplw/UmMSifp5H6b2dXB9vg2qAhU3j/1FxA+7aTXuRSwaSGJTVI+aco48qLCgkIu/HkZVUFgpxyiEqB6S1BQ6CwgIwNnZubqboZPOnTtXdxPKZfbs2QQHBzNt2jTGjh2rsW/8+PGMHTuWKVOmsGXLlsf2gKxJbG1t6devn06xDRo0KDW2QYMGfPbZZ2zYsIFx48Y9Nv7ll1+mV69eLFq0SJKaolziD0eRk5ZJ20n9MLWvA4CFsx2RK3/n1ukr1G9f9rmnKiwkNiyC6wfOPnH9OSn3KczNx6aFC/V8tJM/QlSHP34PIy0llbc+fw97x6Ke806NGvLzvCWc/uM47bv7llm2sLCQgzv3EfLbnjJjUu8kk5eTS3MfL1r7ti8z7lDwAe4kJvHaexNp5NEYAK8OPsx/7wvCdx9g0OsjK3iEQlRcTbl+XN11HCMrM1q/2Qd9ZdHXPPs27pz6Johr+07j9VrPSjleIcqrppwjD4o7GEHmrdQnOCohRE0gc2oKUc1iYmJYu3YtvXv31kpoAtjY2LBgwQIUCgUzZ86shhZWr169egFw+vRpneKdnJxo37490dHR3L9//2k2TfzDJEVcpU4jB/XNMEDdxo6Y2FmSFBFTZrmCvHxOf7+D6/vPYt/aHaWV6RPVn3E7FQATW6snOh4hKtO5Y6dp5NFYndAEaNzSAxsHe84dO1NmubzcPBbPmEvItt207tQOi7qlf65v3ywaLmhX377MulQqFWf+OE5T7+bqhCaAhZUlLwztR8OmbuU9LCEqRU24fuRl5ZCRkIytl6s6oQmgNDfBqpED6TduP9lBCvEEasI58qCMxGRuhEbg4teqwsckhKgZJKkpKt3u3bvp378/3t7e9OnTh9DQUMaMGUNgYKA6xs/PT+PnsrarVCrWr1/PoEGD8PHxwcvLixdeeIHly5ejUqnKbENgYCB+fn5A0RyMHh4eZf5buHChutyVK1eYOHEi7dq1o1WrVgwbNozw8HCt+o8cOcKwYcNo3bo1AQEBbN68uULvFcBvv/2GSqVixIgRZca4uLgQEBDAiRMnSExMVG+PjIzktddew8fHh65du7Js2bJS3xdd4lQqFd9//z09e/bEy8sLX19fpk2bRkJCQoWPrTLo6RX9mSooKNC5jKlp0Q3Poz4jpdm6dSseHh7s3bsXPz8/WrVqpf58XL9+nenTp9OtWzc8PT3p0KED48eP5/Llyxp15ObmsnDhQp5//nm8vb3p2bMny5cv12h/Tk4O33zzDX5+fnh6euLv78+CBQvIzc0tV3tF5cnLyiE7+T7mTjZa+8zr23D/pvb8liVU+YUU5OTSbHh3PAZ3RaGneKL6M2+lAGBqX5T8KcjNK/fxCFGZsjIySUm6i6Or9mgNRxdnEm7ElVk2Pz+fnKxshr45ioFjR6CvV/oQw1txRdcaO8eiYYW52TlaMal3krmXkkbjls2Aor/xJXHP+HV5ZG9RIZ6WmnL9MDAypN3Ul3Hq3FK7jsxsFHrytU9Uj5pyjpQoLCjk0pY/qNvEEfvWMiJGiNpOhp8LnaWnp5OcnFzqPisrK/T19dm2bRvTp0/Hy8uLadOmcfXqVSZNmoS1tTUuLi7lfs1vv/2WpUuXMmDAAIYMGUJGRgbbtm1j3rx5mJmZPTIRWMLa2prZs2drbV+4cCGJiYl07doVgIsXL/LKK69ga2vLG2+8gaGhITt37mTcuHHMmzdP3WPwyJEjvP7667i6ujJlyhSSk5P58ssvUSgUZc45+ihnz57FwMAALy+vR8Z17NiR4OBgTp06Re/evbl8+TKBgYFYWloyYcIE8vLyWLlypVZiTNe4pUuXsmjRIkaMGIGHhwdxcXGsXr2ayMhIdu7cib4Oc908LC8vr9TPjKGhIRYWui0scfToUQBatGihU3xWVhYnTpzA2dlZ59d42EcffcTIkSMxNzendevW3LlzhyFDhmBubs7IkSOpW7cuf/31F5s2bSIqKoqQkBAMDQ0BmDhxIocOHeKll15i9OjRREREMG/ePO7evcsHH3xAQUEBb7zxBqdPn2bIkCG4u7sTGRnJ0qVL+euvv1iyZAkKhfYNm3i6ctMyAVBaavcAUFqaUJCVR35WLgYmSq39+saGtHt7IHr6ZX9hLE/9mbdT0Tcy4GrwCZIiYijMzcfY2pyGPdpg30p6oomql56SBoBl3Tpa+yzqWJKdmUVWZhYmptqLMRibGDPl648eew25fTMRpbERuzds49zxM+Tl5FLXzoaAl3vj/UwbAO7eSgLAzMKcPRt/4+Sho+RkZWNtb8uLw/rTrLXnEx6pEOVXk64fJraWWjEZicmkX79N3SZOOh+TEJWpJp0jAHHh58i6m06LkX6oCsvXAUIIUfNIUlPobMCAAWXu27ZtG02bNmX27Nm4ubnxyy+/oFQWXTjc3NyYOXNmuZOaeXl56mHZX3/9tXr74MGD6dSpE+Hh4TolNU1NTbXmXlyxYgWxsbF8+umntG7dGoCZM2dibW1NUFCQuqffyJEjGTVqFF9++SUBAQEolUrmzp2LnZ0dGzduxNzcHABfX19GjRpVoaRmUlISVlZW6verLPb2RUPybt8uGj5U0oNww4YN6kV3evbsSf/+/TXK6Rq3Y8cOunXrxscff6zeVr9+fdavX098fHyFktJnzpyhU6dOWts7dOigXqm+RG5urkYCNC0tjTNnzjB37lzMzMwYPnz4I+Pz8/OJjY1l8eLFJCcn8/7775e7vSV69+7NlClT1D8vX76ctLQ0fvnlF9zd/36ia2ZmxvLly7l06RItW7bk4MGDHDp0iKlTp6oXSBo+fDh5eXmsW7eOiRMnsn//fo4ePcqKFSvUCXUAb29vPv30Uw4cOFDrFoT6JyjpDalvqH1Z1CteAKUgL7/UG26FQoFC/9GJ6PLUn3ErlYKcfPKzc/EY3JX87FxuHjnPxY2HUBWqZJ5NUeVysrMBMFQaau0zKN6Wl5tbalJToVDo9FDsVnwCudk5ZGdmMWjsSLKzsji67yCbl62msKCA1r7tyS5eAPBAUDD6+vr0Gv4yenoKDu8JZd3CHxn19ngat6w9806Lf4aadP0orezFzUUjjpy7P/rhuRBPS006RzJupXDjwJ+4930GIyszslNkqiohajtJagqdzZkzB1tb21L3ubi4cO7cOe7evcu4ceM0EnRDhw7VGOKtK0NDQ44cOUJenubQy5SUFMzNzcnMzCx3nQDh4eHMnz+ffv36qZOiKSkpHD9+nMDAQLKzs8ku/gIH0KNHD2bNmsW5c+dwdXUlKiqKsWPHqhOaUNSL0sPDo0JzOKpUKp2+8BkUX5RVKhWFhYWEh4fTvXt3jVXE3d3d6dKlCyEhIQA6xwE4ODhw7Ngxfv75Z3r37o2trS3Dhg1j2LBh5T6mEh4eHqUmFx9cxbzErl272LVrl9b2Jk2aMGPGDBwcHHSKd3NzY/78+U+0SFD79pqLVIwbN46BAwdiY/P3sJbs7Gz10PiSz2JYWBh6enqMHKm5UMX06dN58803MTMz4/fff8fa2pqWLVtqJGW7d++Ovr4+YWFhktSsDiVTFTytTrLlqL9++6aoVCocOzZXb7PzbsTpBduI2X0C+1aNZBihqFLqj+9T7EXevrsvqsJCnvH/+2GPV4c2LPzka/Zs2o53x7bk5+UDkJ2ZxZRZH2FiVvQA0qO1J99M/4L9W3ZJUlNUvRp0/XhQQW4+UWsOkJGQgvOzXtRp5PD4QkI8DTXkHFEVFnJpy2EsXe0fuTCREKJ2kaSm0FmbNm0eufr5zZs3gaJVqR+kVCq1tunK0NCQsLAwDhw4QExMDNevXyctrWgYXHnnSwS4du0ab7/9Nk2aNOHzzz9Xb4+NjQVgzZo1Wj0ISyQkJKiHGJfWa9HNzY2IiIhyt8ne3p7Y2Fjy8/PVicvSlPTQtLe3JzU1lczMzDLbUZKs1DUO4L333uPNN9/kq6++YtasWbRs2RI/Pz+GDBmCnZ1duY8LiqYl8PXVbY6zLl26MGbMGKDoi7NSqaR+/fo4Ojo+Nj4xMZEVK1aQnp7OjBkzeOaZZyrU3hIPJi9L5OXl8c033xAVFcWNGzeIi4tTz5NZWFgIQHx8PDY2NhoJbwA7Ozv1e3jjxg2Sk5NL7cEKVPscpv+r9I2Kzu3CPO25WwvzixIpBsbavdSeRv31n2mmXd7QAHsfd24c+JPM26mYOVhXuC1ClJeRsRFQ1BvzYfnFPWSMjY2f6DU6PNdZa5uh0pDWndoRun0vt+MTMSx+YNqibSt1QhPAxNSEZq09OXPkBLnZOSiL2ytEVahJ148S+Vm5RK3eT/r129Rr1wTXHm0q/PpCPKmaco7EhUeSkZBCqzd6kZdR1IElP6toXuaC3HzyMrIxMDWSaaCEqGUkqSkqXWnJRiMj3b5gPLiYikqlYsKECYSGhtK2bVt8fHwYOnQo7du3Z9SoUeVu1/3795k4cSIKhYLvv/9e4wtYyeuOGDGizF5yjRs35tatWwAaPTlLlCS2yqtdu3YcPXqUiIgI2rQp+6bz5MmTKBQKfHx81Nt0bYcucc2aNWPv3r2Eh4cTGhpKeHg43333HatWrWLjxo0aw66fBjs7O50ToKXF+/v7M3jwYF5//XVWrVpF27ZtK9wWvYd6wZ08eZIxY8ZgamqKr68vAwcOpEWLFty4cUMjOa7LYkYFBQW4urryn//8p9T9pfViFU+fkVVRIjr3XpbWvtz0LPRNDNEvZehtVdZvaFY0tLcgN7/C7RCiIqxsiqZWuZd2T2vfvdR0jE1Nnloi0cyyaG7k3JwcLItXTjezMC8lzhxUKnJyJKkpqlZNu37k3s8i8qd9ZNxMxqFDUxr36yRJGlGtaso5knIpHlVBIWcX79SKiw+PIj48ivbTBmFcV/saI/53jHWXEXO1jSQ1RaVxdXUFinpDPiw2Nla9H4qSRg8vVJOfn09KSoq6V+HJkycJDQ1lwoQJTJ48WSMuNTW1XL0/VSoV06ZNIzo6mmXLlmmVdXIqmjxdX19fK7F25coV4uLiMDExwcnJCYVCwfXr17VeIy6u7NVfH6VPnz4sXryYlStXlpnUTExMZM+ePbRt2xYnJydUKhXm5uaPbUfdunV1iisoKODChQuYm5vj7++Pv78/AMHBwUydOpXNmzc/0RyVVcHKyop58+YxbNgw3nnnHXbu3KnVY7KivvvuO4yNjdm1axfW1n/3kFu6dKlGnKOjI0eOHCEjIwMzMzP19qioKFauXMmbb76Js7MzkZGRdOzYUSN5mpeXx759+7SG2YuqYWCixMjavNQVOO8n3MXCqfSpNyq7/py0DM6t+h1770a4+LXWiMu6U9RLXW62RVUzMTWhjq01Cde1r3M3b8Th5Fqx0Rgl0lNS+WnuEryeacNzfXtq7LuTWDRKoa6dDUZGRugbGHD7ZqJWHSl3kjEwNCw14SnE01RTrh8A+Tl56oSmY+cWuPfu8ESvLURlqCnnSKNe7cnP0vz+mXc/i4ubwrH3ccPepzGG5k826kAIUfVkUi5RaZo1a4aLiwsbNmzQmO9yz5496qHTJWxtbYmJidHoQRgSEkJOTo7659TUVKCoh+SDNm3aRFZWFvn5uvdWWrBgASEhIbz11lt0795da7+9vT2enp4EBQWpe2NCUaLpww8/ZNKkSeTn52NtbU379u3Zvn07d+7cUcedOXOGqKgondvzIFdXV0aPHs2+fftYsmSJ1v7U1FQmTZpEXl4en3zyCVA0PLtHjx6Eh4dz+fJldWxcXBxhYWHqn3WNKygo4NVXX+Wrr77SeO1WrVoB2j0XayovLy/GjBlDQkICc+bMqbR6U1NTsba21kho3rt3j6CgIODvHprdu3ensLCQzZs3a5Rfv349u3fvxtbWFj8/P1JTU1m/fr1GzIYNG5g6dap6tXdR9WxbNiQ1+iaZSanqbSlXbpKVlI6dd6Mqqd/IyoyC7FwSTlwiP/vvG+/s1PvcOnUZK3cHlBbaq3sK8bS1bNuK6PMXSUr4+xp5JeoidxNv4/XMkw1ttaxbh+ysLE4eOqpeDAgg9W4Kpw8fo1GzJlhYWaI0NqKZjyeXIqK4Hf/3VB0pSXe5cCaSZj6eteZ6Jf5ZasL1AyB6+9GihKZvc0loihqlJpwjFk621G3sqPHPsmE9AIytLajb2LHUxYaEEDWbnLVCZ/v373/k6t79+vVjxowZjBs3jqFDhzJw4EDu3LnDmjVr1HNRlujTpw9ffPEFY8eOpW/fvly/fp1Nmzape0wC+Pj4YG5uzqxZs4iPj8fKyopjx44RHByMkZERGRkZOrU7LCyMpUuX4u7uTtOmTdmxY4fG0GtbW1s6d+7Mxx9/zKhRoxg4cCDDhw+nTp067Nq1iz///JN33nlHfezTp09nxIgRDBkyhBEjRpCVlcVPP/1UoZXPS0ydOpW0tDS+/fZbQkND6dmzJ5aWlly9epVt27aRnZ3NvHnzaNbs77n2Jk+eTFhYGCNHjuRf//oX+vr6rFmzBjMzM41esLrEKZVKAgMDWbJkCRMnTqRr165kZ2ezceNGTExMGDhwYIWPrapNmDCB3bt3s3HjRvr27ftEw9BLdOvWjR9++IHJkyfTpUsXkpKS+PXXX9WJ7ZLPop+fH126dOHrr7/m8uXLeHl5cebMGbZt28bEiROpU6cOgwcPJigoiC+++IKoqCi8vb25dOkSGzdupGXLlrz88stP3F5RMc5dPbl9JppzP+7FqYsnhfn5xIVHYu5kg33roukXspLvkX79NpYN7TGxtqj0+gHc+3bkr7Wh/LksGId2TSnIzePm0b9Q6OnR+KWOlXrMQuiq64t+nD1yglVzFtG553PkABqknwABAABJREFU5+VxeE8ojq4NaNWx6O9s8u073LgSg0vjRljbl6/nTZ+Rg1n//Y8s/3IB7bp3Ijc7h/87EI6evj59Rv59Deo5uC/XLlxh5exFdOrRDT19A47uP4ih0pAeL1d8gTghnkRNuH5k3k7l9pmr6JsYYu5ow60z0Vr11PN5ulMJCVGWmnCOCCH+mSSpKXQ2a9asR+7v168fnTt3ZuXKlcyfP5958+bh6OjIrFmzmDt3rkbsK6+8QmpqKr/++itffPEFzZo14/vvv2flypXqXp62trYsX76cuXPnsmTJEpRKJY0aNWL+/PlERESwevVq7ty5U+aK7CXOnTuHSqUiOjqaf//731r7O3ToQOfOnfHx8WH9+vUsXLiQVatWkZ+fT6NGjfj6668ZMGCAOt7T05M1a9Ywb948vv/+eywtLXnrrbeIjIzk9OnTur6dGgwMDJg5cybPP/8869at46effiI9PR0HBwf69OlDYGCg1mI/9evXZ/369cyePZsVK1agVCoZPHgwAMuWLSt33KRJk6hTpw5btmzhv//9L/r6+rRp04Y5c+Y89fk0K5OxsTGfffYZo0eP5pNPPmHbtm0oixeXqKh///vfFBQUEBwcTGhoKPb29vj6+vLaa6/Ru3dv/u///o8ePXqgp6fH4sWLWbRoETt27GD79u24uLjw6aefMnz4cKAogfzTTz+xaNEi9u7dy/bt27G3t2f48OFMnDgRExOTyngbRAUozU3wfv1Fru46zvX9Z9BXGmDT3IVGL7RDz0AfgPRrt7j062GaDupS7htuXeoHsG3RkBaBftwIiyBm70n0DPWp06g+rj3bYGr3/+zdd1RURxvA4d/SexMVUBBExAKCCio2Euy9RcWCxmhMMbZUTfHTaDQxphh77FFjBazYsfeoiSX2RhcREOltvz+ADSugYKEk73OO58i9M3dnll3uve99Z8bsZXZZiGIzNDFmxMQxBK0NZP/mnejo6FC3oSsd+nZDK/fB5d3rtwlc9ju93hpY4qBmvUauDBw9nEPb97Jn4za0dbSxd65F+ze6Utm6qqqcuaUFI78Yx55N2zi66wBKpZIatWvSoW/3Er+mEC9LeTh/PLqTMy1DVkoG1zcdLfQ4EtQUZaU8fEeEEP9OCuXzLCEtRAn5+PhQrVq1IlcWF0K8ON8DM8u6CUKUWzLxuxBPt+TWvrJughBCiApq3euflnUTXop9Ic+XpFQa2tq92HQ//1Yy8ZAQQgghhBBCCCGEEKJCkeHnQrxkWVlZxMbGFqussbExenoVY5W92NhY1YI4T6Onp4exccmGjLxKFbXdQgghhBBCCCGEKJoENYV4ySIjI2nTpk2xys6YMaPCLAzzxhtvEB4e/sxyvXr14ttvvy2FFhVPRW23EEIIIYQQQgghiiZBTVEqgoODy7oJpaZy5cosX768WGVr1ar1ilvz8nz//fekpaU9s1yVKlVKoTXFV1HbLYQQQgghhBBCiKJJUFOIl0xXV5fmzZuXdTNeusaNG5d1E55LRW23EEIIIYQQQgghiiYLBQkhhBBCCCGEEEIIISoUCWoKIYQQQgghhBBCCCEqFAlqCiGEEEIIIYQQQgghKhQJagohhBBCCCGEEEIIISoUCWoKIYQQQgghhBBCCCEqFAlqCiGEEEIIIYQQQgghKhQJagohhBBCCCGEEEIIISoUCWoKIYQQQgghhBBCCCEqFAlqCiGEEEIIIYQQQgghKhQJagohhBBCCCGEEEIIISoUCWoKIYQQQgghhBBCCCEqFK2yboAQQoiXY4Rj27JughDlVpN4ueQR4qnkHCJEkZbc2lfWTRBCCFEIydQUQgghhBBCCCGEEEJUKBLUFEIIIYQQQgghhBBCVCgS1BRCCCGEEEIIIYQQQlQoEtQUQgghhBBCCCGEEEJUKBLUFEIIIYQQQgghhBBCVCgS1BRCCCGEEEIIIYQQQlQoEtQUQgghhBBCCCGEEEJUKBLUFEIIIYQQQgghhBBCVCgS1BRCCCGEEEIIIYQQQlQoEtQUQgghhBBCCCGEEEJUKBLUFEIIIYQQQgghhBBCVCgS1BRCCCGEEEIIIYQQQlQoWmXdAAETJkwgMDDwqWXatGnD/PnzS6lFBfn4+FCtWjVWrVoFgJ+fH+Hh4QQHB5daG17Ga+7evZsNGzZw6dIlUlNTsba2pmXLlgwdOhRbW9tiHSPv93Xt2rWXUu55OTs7P3V/3mcmLCyMNm3aFNivra2NhYUFLVq0YOzYsVhZWQEUWV6hUGBsbEzNmjUZNGgQ3bt3fzkdKQVZWVksXryYDRs2kJCQgIeHB5MmTcLGxqasmybKmbgHD9m5fgt3rt0EwLlBPTr174GhiXGxj7F5xXoe3o9m+Gejn1ouKjSChVN/oHXntvj07PTCxxPiVYt++JDfAgP5+8YNABrVr49fr16YGhf/+/Hr2rVEREczeezYAvtuhYSwdutWrt25g4aGBvUcHfHr1QubqlUBePDwIR9MnvzU408aM4b6Tk7F75QQL8mrPn/cvnKD/YFBRIaGo6evh4unO217dUFHT1etXFLCY/b67+Dqn5fIyMjApkZ12r/RDVtH+xfqnxAvKjX2Mbd3nuHR7SgALOpUx6GTJzpG+sU+xo3A46TEPKLB2wWvm2KvhxN68C8Swx+CQoGJbWVqtGuEiV1ltXKPw2O4u/ssCSHRKBQKTB2scOjkiUFl0xfroBCiTEhQsxyZOHEi5ubmhe6ztrYu5dY83bvvvktKSkpZN6PY0tPT+eyzzwgKCqJBgwaMGDECU1NTbty4QWBgIP7+/nz//fe0bdu2rJtaIjVr1uTdd98tdN+TnxkPDw/69eun+jkzM5ObN2+yZs0aTpw4wdatWzExMSmyvFKpJDQ0lHXr1vHJJ5+gqalJly5dXnKPXo358+czb948hg0bRuXKlVm4cCHvvfceAQEBaGpqlnXzRDmRnJjEspnzyMrKpFVHH5TKbI7uOsD9sAje/epDNLWefco8e+QkZw+fwN7Z8anlsrKy8F+6hqzMrJdyPCFetcdJSUz55ReysrLo3rYt2dnZbNu/n5CICKZ//DFaxfh+BJ84wf7jx6lbq1aBfRH37zPll1/Q1damT8eOAOwIDmbSzz8zc8IELExNMTYyYpSfX4G66RkZLN+0CVMjI2pUq/binRWihF71+eP2lRssnzWfajVs6fBGNx7FxXNi72HC74QyYuIYFAoFAGmpqSz5bg6P4xNo3s4bPUMDTu0/wrKZ83j3qw+pWr183U+I/46M5DQuLN2FMiub6q1dUCqVhB25RFJUHO7vd0WjGNfjUX9cJ+rMdUwdqhbYF38nissr92JQxQz79o1QZimJOHWFC4t34jayE8a2OYHN5AePuLB4F5o6Wti97gZA+LG/+evXIBqN7oGuicHL7bgQ4pWToGY50rZtW6pXr17WzSiWFi1alHUTSmTmzJkEBQXxySefMGLECLV97777LiNGjGDcuHH4+/s/MwOyPLG0tKRHjx7FKmtra1toWVtbW6ZMmcK6desYOXLkM8v37t2bzp07M2/evAoT1NywYQOtW7fms88+A3ICuj/88AO3b9/GSTJ6RK5jew7yKC6eD77+lCo2OZnL1RxqsPKHBZw7dhpP7+ZF1s3OzubQ9r0Eb9lVrNc6vGMfDyKiXtrxhHjVdgQHExsfz/cTJ1I9N7O/Vo0afDNvHgdPnaLtU64LsrOzCdi9m007dxZ9/IMHSUtLY8q4cTjkXgu51q7N57NmsSM4GL9evdDT1aV1kyYF6q7w9ycrK4vRQ4diZCA3pKL0verzx64NWzCzMGf4hNFo62gDYGphzvbVm7hx6Sq1XesCcDhoPzFRD3jr01E4OOc8PHBt0pAfP53KkZ37eePtwS+ry0KUSPjRy6Q9SqbxmB4YVDEDwLh6ZS4t28P9czex9iz6/kuZnU3owQvc2/9nkWVu7ziNrqkh7u91RVMnJ8RRpZEjZ38K5O7ec7i+1SGnHcf/Jjs9E7eRnTCyqQSAmaMNf87fTvixy9Ts5PlyOiyEKDUyp6b417tz5w6rV6+mS5cuBQKaAJUqVWL27NkoFAqmTZtWBi0sW507dwbg3LlzxSpfrVo1PD09uXXrFomJia+yaS9NamoqkZGRKJVKANLS0oCcIfhC5Ll46hwOzrVUN6QAteo7U8mqChdPnS+yXkZ6BvMnzyJ4807cvTwwNn/68KWo0AgObd/Da906vJTjCVEajp07Rz0nJ1VAE6BBnTpYV6nC8aecP9IzMvjsu+/YGBREK09PLMzMCi0XHRODsZGRKqAJ4FijBkaGhoRGRhZ5/Hvh4ew6dIjXmjYtNANUiNLwKs8fGekZGBob4eHdTBXQBHDIzeiMCgkHckbUnD92mtoN6qoCmgDGpiZ07N+DGrVrvnA/hXheDy7cxszBShXQBDCvZYN+ZRMeXLhTZL2sjEzOzd3GvX1/UsXdER3Tgg+uMlLSSIqMxdLVXhXQBNAx0sfUwYqEkGjVttTYx2gZ6qoCmgDG1S3RMtAl+X7cC/ZSCFEWJKhZAe3cuZOePXvSoEEDunbtyoEDBxg+fDh++YZk+fj4qP1c1HalUsnatWt54403aNiwIa6urnTs2JFff/1VFQAqjJ+fHz4+PkDOHIzOzs5F/pszZ46q3s2bNxk1ahQeHh64ubnh6+vLkSNHChz/+PHj+Pr64u7uTtu2bdm4ceNzvVcAW7ZsQalUMmjQoCLL2NnZ0bZtW86cOUNU1D/ZU5cuXeKtt96iYcOGtGrVikWLFhX6vhSnnFKpZO7cuXTo0AFXV1eaN2/OJ598QuRTbtZKg4ZGzp+BrKynD4PNzyA3E+Zpn5Gi7N69mz59+tCwYUMaN27MsGHDOHv2rFqZ7Oxsli1bRseOHXFxcaFVq1ZMmzZNLYg6fvx4nJ2dOXTokGpbfHw8LVu2pF27diQnJ6u2d+rUievXr/Prr79y6NAhli1bhpeXF/b29mqve+rUKZydnQkMDKRbt264uroyceJEAB48eMCUKVNo06YNLi4uNG7cmCFDhhRou1Kp5LfffqNr1640aNAAHx8fZs2apTZdQ3H6J0pXSlIycQ8eYmNfMFvexq46kSFhRdbNzMwkLSWV/u8Npc+IQWhqFD2EKisri8Dla3Gs74ybl8cLH0+I0pCYnEx0TAw1C5l72sHWljuhoUXWzcjIIDk1lXHDhjHKz091znmSVeXKJCYl8ejxY9W2x0lJJKekYJZvapQnrd++HR0dHfp17VqCHgnx8rzq84e2jjZDP3wX767t1bZH5gYzzSwtAIiPieVx3CNq1a8D5FyPpKfmPMRt6tPyqdmiQrxKGSlppMYmYlStUoF9RtaVSIx4WGRdZWY2WWnp1BngjXPfVig0FAXKaOlq4zG+N9Va1C/42smpKPKdd/QrmZCZnEZ6Ykq+MmlkpqajXYK5PYUQ5YcMPy9HEhISiI2NLXSfqakpmpqabN68mc8++wxXV1c++eQTbt++zZgxY7CwsMDOzq7Er/nzzz+zcOFCevXqRb9+/UhKSmLz5s388MMPGBoaPjUQmMfCwoKZM2cW2D5nzhyioqJo1aoVANeuXWPgwIFYWlryzjvvoK2tzfbt2xk5ciQ//PCDKmPw+PHjvP3229jb2zNu3DhiY2P55ptvUCgURc45+jR//vknWlpauLq6PrVcs2bNCAoK4uzZs3Tp0oUbN27g5+eHiYkJ77//PhkZGSxbtoz09HS1esUtt3DhQubNm8egQYNwdnYmLCyM3377jUuXLrF9+/bnmtsxIyOj0M+MtrY2xsVcuOHEiRMA1KtXr1jlU1JSOHPmDNWrVy/2a+Q5ffo048ePp3Xr1vTt25eUlBRWr17NsGHD2LFjh2qxpi+++IItW7bQs2dP3nzzTW7dusXatWs5d+4ca9euRVdXl6+++ooTJ07w9ddfs2PHDvT09Jg6dSqxsbGsXr1aFXgF+PDDDzly5Ag//fQTSqWSJk2aMHv27CLb+fXXX9O7d2/69u2LjY0NqampDBo0iMePHzNo0CCqVq3K3bt3Wbt2LSNGjGDfvn1UqpRzoTZlyhTWrl3L66+/zoABA7hz5w7Lli3j7t27zJ07t9j9E6UrIe4RACbmZgX2GZuZkJqcQkpyCvoGBS949fT1GPftF8X6Dh/duZ+H9x8w8IO3yM4u/KFASY4nRGmIjY8HwMK0YBaZuYkJySkpJCUnY1jI0G8DfX1+mTTpmZ/nHm3bcu7SJX5ZuZIhvXoBsHrzZjQ1Nen02muF1rkXHs7ZS5fo6uNTaNuEKA2ldf7IExcTy52rN9m1fjNVqllTt2HO9e3D+w8AMDQ2Ytf6Lfxx+ARpKalYVLGkk29P6ri7PEfvhHhx6Y9yEg10CpmvUsdEn6yUDDJT0tHS1ymwX1NPG48P+6ChWXQulkJDA33Lgg+/kqJiSbgXjbnTP3MtV2/tQuzVUK6tP0zNLjlDzW/v/AMNTQ2qNS/evZAQonyRoGY50iv3Ir4wmzdvpnbt2sycOZOaNWvy+++/o6OT84e/Zs2aTJs2rcRBzYyMDNWw7G+//Va1vW/fvnh5eXHkyJFiBTUNDAwKzL24ZMkSQkNDmTRpEu7u7gBMmzYNCwsLAgMDVQGnwYMHM3ToUL755hvatm2Ljo4Os2bNonLlyqxfvx4jIyMAmjdvztChQ58rqPngwQNMTU1V71dRqlSpAkB0dM4QhbwM03Xr1qkW3enQoQM9e/ZUq1fcctu2baN169Z8+eWXqm3W1tasXbuW8PDw5wpKnz9/Hi8vrwLbmzRpolqpPk96erpaAPTRo0ecP3+eWbNmYWhoyIABA55aPjMzk9DQUObPn09sbCwTJkwocXuDgoLQ09NjwYIFqkntmzdvzpgxY7h8+TK2tracOnWKgIAApkyZgq+vr6qut7c3w4cPZ926dQwdOhQLCwsmTZrE+PHjWbRoES4uLqogeaNGjdReNzg4mOTkZJRKJfr6+vz444+YPuUGuHHjxnz11Vdq7b537x5LlixRBekhZ97R//3vf5w9e5b27dtz8+ZN1q1bR79+/Zg6daqqnKGhIQsXLuTmzZs8fPiwWP0TpSstNRVAbWhfHq3cbRnp6YXelCoUimLdkEaHR3Jg6266DOqDqYU5cTGFP8Qq7vGEKC2puVN2FHYe1cmdxiMtIwPDQuoW9/NsaWFBrw4dWLZxI5/mXpNoaGjw4fDhakPS89tz9CgaGhp0bN26mD0R4uUrjfNHnuTEJH789Ovc19Oh66DeqtdNzR0Rsj8wCE1NTToP6I2GhoKjuw6wZs5Shn74LrXqV5x548W/R1Z6BgCa2gVDDxq5i2hlZWQWGtRUKBQoNAtmZxbnNa9tzBkNWN37n8QWPTMjbF9rwK1tJzn3y9bcRiioO/A1tSHpQoiKQ4Ka5cj333+PpaVlofvs7Oy4ePEiDx8+ZOTIkWo3Fv3791cb4l1c2traHD9+nIyMDLXtcXFxGBkZqQ3fLYkjR47w448/0qNHD1VQNC4ujtOnT+Pn50dqaiqpuReAAO3atWPGjBlcvHgRe3t7Ll++zIgRI1QBTcjJonR2dn6u4blKpbJYF4x5K7cqlUqys7M5cuQI3t7eaquIOzo60rJlS4KDgwGKXQ7AysqKU6dOsXLlSrp06YKlpSW+vr5qga2ScnZ2LjS4aFLIUL0dO3awY8eOAtudnJyYPHkyVvnmSXta+Zo1a/Ljjz8+1yJBVlZWJCUlMW3aNAYOHIijoyPOzs7s3r1bVWbPnj0oFAq8vb3Vgqr16tWjcuXKHDx4UBX069y5Mzt27GDp0qWYmJhQp04dRo8erfaas2bNYvHixbRq1QpXV1fmz5/PZ599xpIlS7h16xaXLl3C29sbCwsLVR1PT/VJwjt37kyzZs3Ugur5M3HzvisHDx5EqVQWmPph+PDhdO7cGTs7O9auXVvs/onSkzeTQl6w/WXLzs4mYOla7GrVlCGAosLJm2rkVX0/IGcYecDu3dStVYu2LVqQnZ3NnqNH+XnZMj4cPpzGT4y2SM/I4MiZMzR2daVyJbkRFWXnVZ8/8lMoFPR7dyhZmZmc3HeE5bMW0P/dodT3cCMzIxOA1OQUxs34An3DnAQCZ3cXfvpsKvv8d0hQU5QN1ZekdF4uKz2Ty6v2kxQZR/XXXDFz+Oce5+7ec4QeuICpQ1WsmjijzFYSeeoqV9ceou7A16lUt+A0K0KI8k2CmuVIo0aNnrr6eUREBIBqiG4eHR2dAtuKS1tbm4MHD7J//37u3LnDvXv3ePQoZxjN88yXePfuXT788EOcnJz4+uuvVdtDc+fbWrVqVYEMwjyRkZGqhVsKy1qsWbMmFy5cKHGbqlSpQmhoKJmZmarAZWHyMjSrVKlCfHw8ycnJRbYjL1hZ3HIAn376Ke+99x7Tp09nxowZ1K9fHx8fH/r160flypVL3C/ImZagefPiBUhatmzJ8OHDgZyLYh0dHaytrbGxsXlm+aioKJYsWUJCQgKTJ0+madOmz9XewYMHc/ToUVavXs3q1aupXr06r7/+Om+88QZ16uTMARUSEoJSqeS1IoYbGhqq5wJNnjyZ9u3b8+DBA+bPn68W8D979qwqoLlo0SI0NTW5du0a+/fvZ9GiRSQkJLBs2TK2bNmiFtTM//88CoWCX3/9lfPnzxMSEkJISIjqgUB2djYA4eE581s9OVeniYmJKtBc0v6J0qGrlzPkP+OJaSMAMnMzDPT09J77+Ed3BhMVFs6IiWNJepzzcCY1Nxienp5B0uNEDIwMS+WmWIiS0sudEuPJaVUgJ7gIYPAC34+k5GS27t+Po50dk0aPVs272bxRIz6fNYtFa9cyr04dtcXdLl2/TlpaGl4NGz736wrxMrzq80d++oYGuDbJ+czX93BnzlffErQukPoebmjnXv/Ua+ymCmgC6BvoU8fdhfPHz5CemoaOnkxxI0qXpm7O3+7sjILz92dn5gTjtfRezuKdmSnpXP5tHwn3oqnq4YR9u0Zq+8KOXMKoeiVch3dQzbVZuYE9f87fzo3AY5g79UVDS0bLCFGRSFCzAios2FjcOfjyLwajVCp5//33OXDgAI0bN6Zhw4b0798fT0/P58oUS0xMZNSoUSgUCubOnat2AZf3uoMGDaJt27aF1q9Vqxb3798HUMvkzJMXOCopDw8PTpw4wYULFwoMS87vjz/+QKFQ0DDfDVJx21GccnXq1GH37t0cOXKEAwcOcOTIEX755ReWL1/O+vXrcXR0LEm3Sqxy5crFDoAWVr5Nmzb07duXt99+m+XLl9O4ceMSt8HIyIjVq1fz559/sm/fPg4fPsyqVatYs2YNM2fOpFu3bmRnZ2NoaKiaf/JJT37W//77b1Wm5O7du2nQoIFq3/79+wEYNWqUKlv322+/pVevXsyZMwcDAwPs7e1VAdU8T2b23r59mwEDBpCRkUHLli3p3LkzdevWRalUMmrUKFW54iy2VNL+idJhWiknC/fxo8cF9j2OT0DPQP+FbgRvXLpCVmYWi6b+WGDfsV3BHNsVzIczJ2FuWTCgLkRZs8zNUo9PSCiwLy4hAQN9fVXg83lEPXhAZmYmzRs3VltISEtLi5YeHqzZsoXw+/exz/fg9/zly2hpadGwmPNBC/GqvOrzR1G0dbRxdqvPyX2HSXqciEnuyumGxkYFyhqaGIFSSVqaBDVF6dM1zflMpj9OKbAvPSEFTX1tNAuZvqGk0hNTuLRiL0kRsVg1qU2tHl5qD4tTHiagzMymcoOaaosHaWhqUsXNkTu7/iD5wSOMrOVaTIiKRIKaFUhe9tfdu3cL7AsNDVXLDtPQ0CiQUZGZmUlcXJwqq/CPP/7gwIEDvP/++4wdO1atXHx8fImyP5VKJZ988gm3bt1i0aJFBepWq5YzQbOmpmaBwNrNmzcJCwtDX1+fatWqoVAouHfvXoHXCAsrevXIp+natSvz589n2bJlRQY1o6Ki2LVrF40bN6ZatWoolUqMjIye2Q5zc/NilcvKyuLq1asYGRnRpk0b2rRpA+TM1Th+/Hg2btz4XHNUliZTU1N++OEHfH19+eijj9i+fbvaFAHFcefOHR4/foy7uzvu7u58/PHH3Lx5k0GDBrF8+XK6detGtWrVOHr0KC4uLgWG0e/atUstKzYxMZFJkyZRu3ZtXF1dWb58OR06dFAFNvMeAOQPUpqYmDB79mx8fX15/Pgx48ePf2a7Fy9eTEJCAjt37lT7nm3btk2tXF7Wa2hoqFqQ+v79+8yYMYPBgweXqH+i9Ogb6GNmaUHkvYJ/ZyJCwqhm/2LDkTr270lKkvqUHkkJj9m0eDVuXh64N/fEyKRkC28JUVoMDQyoXKkSdwo5D98JDcXxBf9u5Y2iKOyhYXbu3/EnH+dev3OHmnZ2GOjLarWibL3q88eDyPv89uMiWnbyoalPS7V9aampoFCgpa1F1WrWaGppER0RVeAYcTGxaGlrFxrwFOJV09LXQdfCqNBVzhMjH2JcrfDp10oiMy1DFdC0aVEPxy5NCpTR0MoNZBayUKNSmZ33nxduixCidBW9jJgod+rUqYOdnR3r1q1Tm+9y165dqqHTeSwtLblz545aBmFwcDBpuZP9Q87QacjJkMxvw4YNpKSkkJk7HKA4Zs+eTXBwMB988AHe3t4F9lepUgUXFxcCAwNV2ZiQs1jR559/zpgxY8jMzMTCwgJPT0+2bt1KTEyMqtz58+e5fPlysduTn729PcOGDWPv3r0sWLCgwP74+HjGjBlDRkaGanEYhUJBu3btOHLkCDdu3FCVDQsL4+DBg6qfi1suKyuLIUOGMH36dLXXdnNzA1DLTCnPXF1dGT58OJGRkXz//fclrj9t2jTef/99kpKSVNtq1qyJiYmJ6j3w8fEBKPC7Cg4OZuzYsWqBxJkzZ3L//n2mTJnCp59+iqmpKV988YUqoN+sWTMA1q5dq3as6OhoVValv78/KSkFnxznFx8fj76+vtpQ/fT0dNatWwf8k6GZ99l/8vUCAgLYuXMnRkZGJeqfKF31G7tx6+9rPIj852/UzcvXeBgVjWvTorO8i6OavS216jur/bNzqgmAReVK1KrvXOgiE0KUF03d3Lh47Rrh+c7hF65eJTI6mubPkbmfn621Neamphw8dUo1nB1yhrYfPn0aYyMjbPPN+5yZmUlYZGSRCwgJUdpe5fnDooolqSkpnDl4nKx81+ZxMbFc/uMv7J0d0dXTQ0dPlzoNXbh+4TLR4ZH/lHvwkKvnL1GnoUuFud4U/z6W9WsQfyuC5Afxqm1xNyNIeZBA5QYOL3z8W1tP5AQ0m9ctNKAJYFDFDB0TfaLO3SAr45/vUlZGJvfP30LLUBeDqmYv3BYhROmSTM1yZN++fU9d3btHjx5MnjyZkSNH0r9/f/r06UNMTAyrVq1Sm2cKcrITp06dyogRI+jevTv37t1jw4YNqoxJgIYNG2JkZMSMGTMIDw/H1NSUU6dOERQUhK6urlrg6WkOHjzIwoULcXR0pHbt2mzbtk0t28LS0pIWLVrw5ZdfMnToUPr06cOAAQMwMzNjx44d/PXXX3z00Ueqvn/22WcMGjSIfv36MWjQIFJSUlixYsVzrXyeZ/z48Tx69Iiff/6ZAwcO0KFDB0xMTLh9+zabN28mNTWVH374QW0Y8tixYzl48CCDBw/mzTffRFNTk1WrVmFoaKiWBVuccjo6Ovj5+bFgwQJGjRpFq1atSE1NZf369ejr69OnT5/n7ltpe//999m5cyfr16+ne/fuJRqGPmzYMN5++20GDRpEz5490dXVZd++fYSEhPDdd98BOYHBNm3asGzZMsLDw/Hy8iI8PJw1a9ZgY2OjmufzxIkTbNiwgX79+qkycD/99FMmTJjA/PnzGTduHN7e3vj4+BAQEEBaWhpNmjThr7/+YsuWLdSrV4+mTZuydOlS3nrrLRYvXlxku1u3bk1wcDDvvPMOHTt25PHjx2zevJmQkBAA1Xelbt269O3bl1WrVhEdHY2Xl5dqRfSePXtSp04dnJ2di9U/UfpadfLhz+NnWP79PFp0eJ3MjAyO7jqAjb0tbs1yPuex0TGE3LyDXS0HLKq8eGaBEBVF97ZtOXz6NFPnzKGrjw/pGRls27+fmnZ2tPLwAOB+TAzXbt/GuWZNqhax8GFhNDQ0eKtvX35cupQvZs3idS8vsrOzOXDyJBH37zPKz09tTuyYuDgys7JUw+KFKGuv8vyhqalJl4G98V+yhiXfzsHdy4PkpGRO7T+ChoYGXQf+cw3ZoW937l69ybKZ8/Bq1xoNTS1O7DuEto427XqXfIFHIV6W6q1ciD5/i4tLd1OtpQvZmZk581tWq0QV95zRTSmxj0m4F41JjSroWxR/9EpydDzR52+jqa+NkU0l7p+/VaBM1YaOKDQ0cOzWjCu/H+DPBTuwauyEUqnk/tkbpDx4hHPfVmgUY3FZIUT5IkHNcmTGjBlP3d+jRw9atGjBsmXL+PHHH/nhhx+wsbFhxowZzJo1S63swIEDiY+PZ9OmTUydOpU6deowd+5cli1bpsrytLS05Ndff2XWrFksWLAAHR0dHBwc+PHHH7lw4QK//fYbMTExRa7InufixYsolUpu3bpVYOVpgCZNmtCiRQsaNmzI2rVrmTNnDsuXLyczMxMHBwfVHId5XFxcWLVqFT/88ANz587FxMSEDz74gEuXLnHu3Lnivp1qtLS0mDZtGu3bt2fNmjWsWLGChIQErKys6Nq1K35+fgWG/VpbW7N27VpmzpzJkiVL0NHRoW/fvgAsWrSoxOXGjBmDmZkZ/v7+fPfdd2hqatKoUSO+//77Vz6f5sukp6fHlClTGDZsGF999RWbN29WW5znaVq2bMmCBQtYtGgR8+fPJy0tDScnJ7XV1BUKBbNnz2bJkiVs3ryZ4OBgLCwsaN++PWPHjsXS0pKUlBS++uorLCws+Oijj1TH79WrF/7+/ixZsoQOHTpQt25dfv75Z+bPn8/WrVvZs2cP1tbWvPfee7z99tvo6emhq6vLzZs3MTAwKKrZ+Pr6kpCQwMaNG5k2bRqWlpa4u7szd+5cfH19OXnyJG+++SYAX3/9Nfb29mzcuJHg4GBsbGwYNWoUI0aMKHb/RNkwNDFmxMQxBK0NZP/mnejo6FC3oSsd+nZDK/fB0d3rtwlc9ju93hooQU3xn2JqbMyUceNYGRDAhqAgdLW18WzQgEE9eqgerF65dYsFq1fz3uDBJQpqAjRxc+PLDz5g086drM3NWHeoXp3P3n23wLyZibkPkmTouSgvXvX5w725J1raWhwO2s/O9ZvR1tXFsa4TbXt3wdKqiqqcuaUFI78Yx55N2zi66wBKpZIatWvSoW93OWeJMqVjpE+Dtztxe8dp7u07j6aOFpXq2uHQ0UO1ME/C3ftc33SU2m+0LFFQ89GdnCkXslIyuL7paKFlqjbMudeyrF8D17c6EBL8J3f3ngXAyKYS9Ye2xaK2ZP8LUREplM+zxLUod3x8fKhWrVqRK4sLIYqmVCr/FatO7wt5vqC/EP8FTeLlOa4QT3ParPjTDgnxX7Pk1r6yboIQ5dq61z8t6ya8FOX5fqqt3YtNZ/JvJROrCCH+8/4NAU0hhBBCCCGEEOK/RNIWRIWTlZVFbGxsscoaGxujp6f3ilv0csTGxqoWnHkaPT09jI3LzyrJFbXdQgghhBBCCCGEqLgkqCkqnMjISNq0aVOssjNmzKB3796vuEUvxxtvvEF4ePgzy/Xq1Ytvv/22FFpUPBW13UIIIYQQQgghhKi4JKj5LxEcHFzWTSg1lStXZvny5cUqW6tWrVfcmpfn+++/Jy0t7ZnlqlSp8swypamitlsIIYQQQgghhBAVlwQ1RYWjq6tL8+bNy7oZL13jxo3LugnPpaK2WwghhBBCCCGEEBWXLBQkhBBCCCGEEEIIIYSoUCSoKYQQQgghhBBCCCGEqFAkqCmEEEIIIYQQQgghhKhQJKgphBBCCCGEEEIIIYSoUCSoKYQQQgghhBBCCCGEqFAkqCmEEEIIIYQQQgghhKhQJKgphBBCCCGEEEIIIYSoUCSoKYQQQgghhBBCCCGEqFAkqCmEEEIIIYQQQgghhKhQJKgphBBCCCGEEEIIIYSoULTKugFCCCGEEEIIIYQQQojCtWnT5qn79+/fX0otKV8kqCmEEP8STeLlT7oQRTltllnWTRCiXGu85UhZN0GIcmuJS1m3QAghRGHkDlgIIYQQQgghhBBCiHLqv5qJ+Swyp6YQQgghhBBCCCGEEKJCkaCmEEIIIYQQQgghhBCiQpGgphBCCCGEEEIIIYQQokKRoKYQQgghhBBCCCGEEKJCkaCmEEIIIYQQQgghhBCiQpGgphBCCCGEEEIIIYQQokKRoKYQQgghhBBCCCGEEKJCkaCmEEIIIYQQQgghhBCiQpGgphBCCCGEEEIIIYQQokKRoKYQQgghhBBCCCGEEKJCkaCmEEIIIYQQQgghhBCiQtEq6wYI8TJNmDCBwMBAtW3a2tpUqlSJJk2aMHLkSJycnFT7/Pz8CA8PJzg4uLSb+lKlp6cTFxdH1apVX9lr+Pj4AFTo9yo7O5uIiAiqV69e1k0RFcCva9cSER3N5LFjn1n28++/51ZISIHtTdzd+Wj4cNXPV2/dYu22bdwKCcHIwACPBg3o17kzJkZGavUuXb/O+h07uBcejoGeHs0aNsS3a1f0dHVfvGNCvASbV6zn4f1ohn82+pllF379I+F3C34/6jVuwIBRbxEXE8uPn3791GO89ekoHOo4Fdh+aPse/jh0ko++n1T8xgvxii0+fITI+Hgmde/2zLIJKSmsO32Gs/fukZ6ZhYNlJQY0bYLTE9d0VyOjWH/mDLcePMBIVxePGjV4w8MDE309tXKXwyPY8Mcf3Hv4EAMdHZrWrEl/Tw/0tLVfah+FeBE3Ao+TEvOIBm93embZ8/O3kRj2sMD2Si41qDfw9RKXi70eTujBv0gMfwgKBSa2lanRrhEmdpWfszdCiLIkQU3xrzRx4kTMzc0BSElJISQkBH9/f3bv3s3ixYtp2rQpAO+++y4pKSll2dQXFh4ezltvvcU777xD7969y7o55VZiYiJvvvkm3t7ejB797Jtw8d8WfOIE+48fp26tWs8sq1QqCbt/H48GDWjq5qa2r7KFher/l2/cYPq8eRjo69OrfXs0NDQIOnCAy9evM/XDDzEyMAByAprT5s6lpq0tg7p352F8PEEHD3IrJISvx41DoVC83M4KUUJnj5zk7OET2Ds7PrOsUqkkOjKKOg1dqd+4gdo+M8uc74ehkSF9RgwqUDcjI4MdawIwNDHCyrZagf03Ll7hwNbdGJuaPmdPhHj5Dly9RvCVq9S1tnpm2ZT0dKZs3UZccjKdXV0x1NVl9+XLTN2+g2969cQ29xzyd0QEM4J2YqCjQ8+G7mgoNNh58SKXIyKY0rMHRrkPvC6HR/DNjh04WFoysGkTHiYmsfPSJW4/eMDk7t3k/CHKhag/rhN15jqmDs9OxlAqlSRHP6JSPTsq1a+htk/PzLDE5eLvRHF55V4Mqphh374RyiwlEaeucGHxTtxGdsLYVgKbQlQ0EtQU/0pt27YtkI3n5+dHnz59GDduHPv27cPQ0JAWLVqUUQtfnrCwMO7evVvWzSj34uPjuXjxIt7e3mXdFFGOZWdnE7B7N5t27ix2nQexsaSlpeHZoAGtmzQpstzyjRtRaGgw9cMPsaqcc9HcxM2NT2fMIHD3bvx69QJg9ebNVDI3Z/K4cejkZtZYmpuzdMMG/rxyhYb16r1AD4V4ftnZ2RzavpfgLbuKXSc+JpaMtHTqNnTFvblnoWV09HQL3Re0NoCsrCz6jvRD39BAbd+Zg8fZ8bs/WZlZJeuEEK9IdnY2gef/xP/s2WLX2frnX0Q+esSXXbtSz8YaAC/HmoxZu46tf/7FKJ+c7LIVx46jUCiY0qM7VrlBfE97eyb4+7P53HkGezUDYPXJk1QyMuJ/3buho5Vzm2dpZMSyo8f4KzQMdzvbl9llIUpEmZ1N6MEL3Nv/Z7HrpMUlkp2eSaV6dlRtWPSDtOKWu73jNLqmhri/1xVNnZzvSJVGjpz9KZC7e8/h+laHYrdNCFE+yJya4j/D2tqazz77jNjYWPz9/cu6OUKIciY9I4PPvvuOjUFBtPL0xMLMrFj1QiMjAaj2lOkfHjx8SGhkJN5NmqgCmnl1Grm6cuj0aVUbTIyMaNO8uSqgCagyRu+Fh5e0W0K8FBnpGcyfPIvgzTtx9/LA2Lx42ZHREVEAVLauUqLXiwqN4MS+IzRq2QT72uo3qCtmzWfrbxtwqOOEdQ2ZTkSUvfTMTCYGBLLpj7O0dHLC4okgfGGUSiWHr1/H3dZWFdAEMDMwwK9ZM+rkZno+ePyY0Ng4Wjs5qQKaANXMzWhkZ8fh6zdUbTDR18enTh1VQBOgrnXOse89LDgsV4jSkpWRybm527i370+quDuiY/rs7whAUnQ8APqWTz/nFKdcRkoaSZGxWLraqwKaADpG+pg6WJEQEl2sNgkhyhcJaor/lI4dO6Kjo8ORI0eAnOzNvLkiIWduym+++YY2bdrg4uKCt7c3U6ZM4dGjR6oyEyZMoF27dpw/f57evXvToEEDOnbsyNq1awu83okTJxgxYgRNmzalfv36tGrVikmTJpGQkKB2vI4dO7JmzRo8PT3x9PTk8OHDxaofEBDAkCFDgJwh987OzqrjPnr0iKlTp9KqVStcXFzo1KkTK1euRKlUvpT3MiAgAGdnZ65evcqYMWNo2LAhzZo147vvviMrK4vAwEA6dOiAu7s7vr6+XL16VVV3zpw51KtXj9u3b+Pn54ebmxs+Pj7Mnz+frCz1rJvLly8zevRomjdvTv369fHy8uKjjz4iKipKrVxiYiLTp0/ntddew83NjW7durFx40YATp06RZs2bQCYO3cuzs7OhIWFlai/p0+fZtCgQXh4eNCwYUN8fX0LnV80ICCAnj174urqSrNmzZgwYQLR0f9cJM2aNQtnZ2fWrFmj2paenk63bt1o2rQp9+/fL1G7xMuTkZFBcmoq44YNY5SfHxoaxTtFPhnUTE1LK1AmNvdviK21dYF9VpaWPE5M5GFcHDra2nz+/vv07qCeKXA39/Oafzi7EKUpMzOTtJRU+r83lD4jBqGpoVmsevfDcr4flW1yvh/pqQW/H4XZF7ADbR1t2vTqXGBf/MM4ug5+gyHj30FXT+aZFWUvIyuL5PR0xrZtw/uvv1as88eDx4nEJiXTIHdkkVKpJDUjA4B29evRpm5dAGKTkgBUQ9Hzq2pqwuPUVB4mJqKjpcXEzp3o1aihWpm7D2MAqGxs/Nz9E+JFKTOzyUpLp84Ab5z7tkKhUbypEJLvxwFgUCUnWJmVnvHc5bR0tfEY35tqLeoX2JeRnIqimNd9QojyRYafi/8UXV1d7Ozs1AJs+X399dds376dIUOGYGtry40bN1izZg337t1j2bJlqnLx8fGMGDECb29vevfuzZ49e5g8eTIJCQm88847ABw9epS3336bRo0aMWbMGBQKBceOHWP9+vU8evSI2bNnq44XGRnJggUL+OCDD4iOjsbd3b1Y9T09PXn33XdZuHAh/fv3p3HjxgAkJyczePBgIiMjGThwIFZWVpw8eZLp06dz9+5d/ve//72093TkyJE0btyYCRMmsGfPHpYtW8b169e5du0aQ4cORalUsmDBAsaMGUNQUBBaudkDSqWSYcOG4eTkxCeffMKpU6eYPXs2UVFRfP11zoIR165dY+DAgdSoUYORI0eir6/PuXPn2LJlC/fu3WPTpk1ATlBw0KBB3Lhxg379+lGnTh0OHTrEl19+SUpKCp07d2bixInMmDGDdu3a0a5dOyxKEBy6ffs277zzDnXr1mX8+PEAbNiwgffff5/Vq1fj4eEB5ARM58yZQ4cOHejXrx/3799n9erVnD59mk2bNmFhYcHo0aPZt28fP//8Mx06dMDS0pJ58+Zx/fp1fvrpp1e62JN4OgN9fX6ZNAlNzeIFa/KERUaip6fHbwEBHD9/nrS0NKpYWuLbtSstcr+TOjo6AKQUEvB8nJgIQHxCApVy5wLO8+DhQy7fvMmqwEBsra3xbNCgQH0hSoOevh7jvv2ixN+P6IgodPR02bluMxdPnycjLR3zypVo27sLDZo2KrROVGgE1/66TIsOr2NiVjDrZvTUz9DUkktYUX4Y6Ojws29/NEsQFInKfdhloq/P6hMnCb56lZT0DKqamuDn1YzGNXLmBdTN/aynZBQM0jxOTQUgPjmFSk8sOPfg8WP+johk9cmT2FqY42Ffo0B9IUqLpp42Hh/2QUOzZIHD5Oh4NHW1uB10hgcX7pCdnomehRE12jWiilvNEpVTaGigb2lS4DWSomJJuBeNuVPBuZuFEOWfXBGK/xwTExNCClmlGGDbtm306dOHDz/8ULXNwMCAI0eOkJSUhKFhzkTTCQkJDBkyhC+++AKAAQMGMHToUObPn4+vry+mpqasWLECa2trli9frgpoDBw4kP79+6syRfOkpqYyY8YMOnf+JyOlOPVtbW1p3rw5CxcuxN3dnR49egCwdOlS7ty5g7+/vyp7c+DAgfz4448sWrSI/v37U6dOnRd+LwHc3d356aefAOjcuTNeXl4cP36crVu3qlaaT0pKYuHChYSFhWFvbw/kzD3l4uLC3LlzUSgUDB48mI8//pgNGzYwdOhQHB0d+f3331EoFPz222+Y5Q4F7t+/f87iETt2EB8fj5mZGZs2beLq1avMmjWLbt26qcoNHjyYX3/9lcGDB9O2bVtmzJiBs7Oz6n0qrv3795OcnMzcuXNVwdDOnTvj6+vLlStX8PDwIDQ0lHnz5jFy5Eg++ugjVd0uXbrQu3dvFi5cyOeff46uri7Tp09n0KBBzJw5k6FDh7JkyRK6dOmi9vsXpU+hUJQ4YAM5mZqpqakkpabygZ8fSSkp7Dx4kF9WrCArK4vWTZpga2WFvp4ep//6i57t2qkWa0jPyOBC7kOW9CduWB8nJfHB5MlATlB0WN++akPShShNz/v9uB8eSXpqGqnJKbwxYjCpKSmc2HuIjYt+Izsrq9C5NE8fOIpCQ4OmbVoVekwJaIryRqFQoFnCRXiS09MB2PDHH2hpaDC0eXM0FAq2X7jAD7v3MLFzJ1yrV6e6uTn6OtqcvnOHHu5u/5w/MjO5EJYzJUl6VqbasR+npjLm93UA6Ghp8WaL5mpD0oUobQqFAoVmyReqSrofT1ZaJpmp6Tj3bUVmajoRx//m2vrDKLOVqvkzi1vuSVnpGVzbmHNfVd3b9fk7KIQoM5JjLf5zMjMzi1z90crKiqCgIAICAlRDvMeNG4e/v78qoJknLyMTQFNTkyFDhpCamsrx48cBWLRoEf7+/qqAJEBcXBxGRkYkJycXeO28bL88Ja2f3549e6hduzaVK1cmNjZW9a9t27YAHDhw4Kn1SyLvmADGxsZYWFhgb2+vCmgCqkWbHjx4oFZ35MiRar+LYcOGoVQqVe2bPHkywcHBqoAm5Awz181d5TPvfTh48CAWFhZ07dpVVU6hUDBz5kzWrFnzwqt9WlnlzGs1depULl26BIC5uTm7d+/Gz88PgL1795KdnY2Pj4/ae25paUndunU5ePCg6niNGjXCz8+PrVu3MmbMGCwsLF5q9qwoXW1btOCtvn35aPhwmri58XqzZkz76COqWFqyevNmsrOz0dLSoquPD7dDQvhl5UruhYdzJyyMn5YuJTX3xvbJgJFCoWBs7lB4Wysrps2dy6k//yyDHgrx/Dy9m9N1UB8GjHqLeo0b0KhlU0Z+MR7zypXYtWEr2dnZauUz0jP488Qf1HF3wdxSplsQ/14ZudPtJKelM7lHd7yda9OqthOTunXFUFeXdafPAKClqUmXBq7ceRDDnOADhDx8yN2YGH7eu4+03IdhT2aIKhQKxrT14f3XX6O6uRnfbA/i1O07pdo/IV4Ga8/aOHZvSr2Br2NZvwZWjZ1we7cLehZG3Nl5BmXuOaS45fLLSs/k8qr9JEXGUd3bFTMHq9LunhDiJZBHduI/Jz4+vsihx5MnT2bcuHFMnDiRr776Cnd3d9q1a0efPn0wzjcXkZmZGZaWlmp1a+QOEwrPXchDU1OT0NBQZs+ezc2bNwkJCXnqfImVKlVS+7mk9fMLCQkhNTUVLy+vQvdH5s4B+DI8+T5oaWkV2hegwM2ro6P6U9Mn30OFQkFcXByLFi3i2rVrhISEEBERoZoXNO944eHh2NnZFQheVqv2coaRdOzYkb179xIUFERQUBCVK1fG29ubXr16qYLRedm/vr6+hR5D+4kMu/Hjx7N7927CwsL46aefMDUt3qIbovxp17JlgW062tq09vRk086dhEZGUqNaNfp07KjK4jyeuzpuYxcXurdty9qtWzEyUJ8038jAgOaNcobnNmvYkI+mT2elvz9N3d1feZ+EeFmavN6iwDZtHW3cvTw4sHU30eFRWNnaqPbdvnqDjLR0XDzdS7GVQpS+vMzJJg72GOn+Mzesoa4ujezsOHLjBqkZGehpa9O7USOS0tLZdekSJ27eAqBRDTu6ubmx7vQZtfoARrq6eOVeYzWt6cAnGzfx24kTNK3pUEq9E+LlsG5acGSZprYWVRo6ErL/L5Kj4zG0sih2uTyZKelc/m0fCfeiqerhhH27wqdDEUKUfxLUFP8piYmJhIaG8tprrxW638vLiwMHDqj+HTt2jBkzZrBixQoCAgJUwdAnA1TwT4AtL4C3dOlSZs6ciYODAx4eHrRv3x43NzdWrVrFtm3bCtR/MkurpPXzy8rKonHjxnzwwQeF7q9SpWSr0D5NYcMRi5sZ+eT7+OR7GBQUxMcff0yVKlVo1qwZrVu3xsXFhaNHj7Jo0SJVvaysrBfOxnxWO3/55ReuXbvG3r17OXz4MAEBAWzatImPPvqIkSNHqtq+YMEC9PT0nnnMe/fu8TB3JdI9e/bI0PN/IdPcByFpuZmYCoWCob1706NtW6IePKCSmRmVK1Vi3bZtaGhoYPmUeV51tLVpVL8+uw4dIiExEZMn5k4ToqIxNMn5fqQ/Mc/s9Qt/o6mlRe0GdcuiWUKUmrwV0k309QvsMzXQR6lEFdRUKBQMae5FD3c3Ih8lUMnIkMrGxqw/fQYNhQLLp5wTdLS0aGhnx+5Ll0lIScVE/9nXKEKUd9qGOd+brPTMEpdLT0zh0oq9JEXEYtWkNrV6eL3S+wghxKslQU3xn7Jr1y6USqVqJez80tPTuXLlClZWVnTp0oUuXbqQnZ3N8uXLmTlzJjt27FANNY6JiVGbYxPg7t27QE62YVpaGnPmzKFp06YsW7ZMtTgOoLZAUFFetH61atVISkqiefPmatsfPXrEiRMnVBmRZS00NJRatWqpfs7/HgL88MMP1KhRA39/fwzyZbE9GdS1sbHh2rVrBY5/6NAhgoKC+OSTT16onREREURERODh4YGzszMffPABUVFRDB06lKVLlzJy5EhVVqi1tTV166rfjB86dAijfDccmZmZfP7555iZmdGzZ08WL15Mly5daNeu3Qu1U5S+2Ph4ps2bR/NGjXijUye1feG5mdWVczOXj509i5mJCfWdnDAz+Wei+r9v3qSmrS062tqE37/P9Pnz6dG2Le1bqc8nmJqWhkKhQFvmRRMVREJcPCtmLcC1aSNe795BbV9MVDQA5pXVM/tDbt6hmr0teoUEeoT4N7G1sEBbU5OwuLgC+x4kPEZbSxOT3Iekx2/ewsxAn3o2Npjmux66EhmJQ2VLdLS0CI+L59udO+nu5ka7+vXUjpeakYFCAdolXKRFiLKU9iiJi8v3UKWBA3Y+7mr7UmJyFtrSMzcqdjmAzLQMVUDTpkU9HLs0eeX9EEK8WnJmE/8Z0dHR/PLLL1StWlW1mEx+cXFx9O/fXy0DUENDA1dXV9X/8yiVStasWaP6OTMzk5UrV2JsbIyXlxepqamkpKRgb2+vFpC8cuUKp0+fVtUpSknqFza028fHh6tXr3Lo0CG14y5YsICxY8dy48aNIl+7NK1atUrt5+XLl6OlpYWPjw+QM1WAjY2NWkAzMjKSPXv2ADkZmgCtW7cmJiaGvXv3qh1v5cqVHDx4EHNz8yKHwBfHwoULefPNN9WG/1tZWVGlShXV5+L1118HcuZCzRseDzm/s/fee4+VK1eqti1dupTLly8zceJExo4di6OjI1OmTCE+Pr7EbRNly8LMjOSUFIKPHyc5JUW1PSY2loOnTlG/dm3McwOYO4KDWbZxo+pzC3D20iWu3b6tCmBaWVqSnJLC3qNH1f5GPHj4kJN//kndWrXQL0YmsBDlgYm5GakpKfxx+ASp+b4f8Q/jOHf0FA51nDA2/SfAn5WZyYOIKKxrVC+L5gpRqvS0tWlcw47zISGExf4T2IxOeMzZeyF41KihusbYceECy48eJyvfNcy5eyFci7pP+9wAppWpCcnp6ey7coXMfOeZB48fc+r2HepaW6Ofb552Ico7XVNDslLTiTxznczUdNX21PhE7p+9gamjFTrGBsUuB3Br64mcgGbzuhLQFOJfQtI9xL/Svn37MDc3B3KyHm/fvs3mzZtJS0tj8eLFhQ4Pzgt2/v7776SkpNCwYUPi4+NZvXo1lpaWdHoiC2v+/PmEh4fj5OTEzp07OX/+PN988w36+vro6+vj5uZGQEAARkZGODg4cOPGDTZu3Ki6QE1KSipyHkVTU9Ni18/r59atW1EqlfTq1Yt33nmHPXv2MGrUKHx9fXFycuLs2bNs2bKF1q1b07p165f2Xr+IwMBAEhMTadSoEUeOHOHAgQOMGjVKlfXYunVrgoKCmDRpEq6uroSFhbFhwwZScm+Ok5KSgJx5LP39/Rk/fjyDBg3CwcGBgwcPcuzYMaZPn46mpiZmZmZoaGiwf/9+bGxsaN++fbHnsRw0aBBbtmxh0KBB9O/fH1NTU06ePMnp06cZM2YMALVr18bPz49Vq1YRHx9P27ZtVZ8fQ0NDxo4dC8CtW7eYO3cuLVu2pEuXLgD873//Y8iQIXzzzTd8//33L/U9Fi/X/ZgYrt2+jXPNmlTNnU92eL9+zFq8mK9++ok2zZuTkprK7sOH0dTQ4K2+fVV1e7Rrx49Ll/LdokU0cXPjQWws24ODcatbl1aeOStAa2pqMuyNN5i3ahX/mz2b1p6ePE5KYvfhw2goFAx7440y6bcQxREbHUPIzTvY1XLAokrO96Pr4L6snbuUX7+ZjYe3F+mpaZzcfwQNTU26Du6jVj/+YRxZmVmYWpiXRfOFeKXuJyRwPeo+ta2qUjX3YdfAZk35OzKSqdu309HFBS1NDXZdvIS2lib9m3iq6nZ3d+fnvfuYuWs3nvb2xCQ+JujCJRrYVqdl7ogXTQ0N3mzenPkHDjJl23ZaOdXicWoaey5fRkNDwZstmhfaLiHKi5TYxyTci8akRhX0LXKmKHHs3owrqw/w16IgrDxqk5WeQcSJKyg0NKjVrZmqbnHKJUfHE33+Npr62hjZVOL++VsF2lDUKulCiPJLgpriX2nGjBmq/2tra1O1alV8fHx4++23cXAoepL0qVOnYmtry44dO9ixYwf6+vp4eXkxfvz4AosLLV26lMmTJxMYGEitWrWYO3eu2vDh2bNnM2PGDPz9/UlPT6datWqMHDkSR0dHRo8ezcmTJ+nQocOTTShxfUdHR/z8/AgICODixYs0bdoUOzs71q9fzy+//MKuXbtYv349NjY2vP/++4wcOVIt67QszZ07l3nz5rFnzx5sbW2ZOnUq/fr1U+2fPHkyBgYGBAcHs2XLFqysrOjZsyft2rVjwIABnDx5knr16qGnp8eqVav4+eef2bFjB48fP8bR0ZGff/5ZFYzW19dn/PjxLF26lGnTpmFnZ0fTpk2L1U5nZ2eWL1/OvHnzWLZsGYmJidjb2/PVV18xaNAgVbkvvviCmjVrsm7dOr777juMjY3x8PBQZWNmZ2fzxRdfoFAo1FY7b9q0KT169GDLli106dKlyDlfRdm7cusWC1av5r3Bg1VBTc8GDfjk7bcJ3LOHNVu2oKOtTT0nJwZ27061qlVVdZu6uzPmzTfZsncvKwMCMDU2pnubNvRs317tO9m6SRO0tbTYsm8fvwUEoKuri0vt2vh27YpNvuMJUd7cvX6bwGW/0+utgaqgZr1GrgwcPZxD2/eyZ+M2tHW0sXeuRfs3ulLZWv3znJKUDICezPkn/oWuRkax8OAh3n3NWxXUrGxszNc9e7D21Gm2X7iAUqmkjpUVA5s1VZWBnMV+RrfxYeuff7LqxElM9fXp6taAHu7uauePVrWd0NbUZEtuOV0tLVyqVaOfpwc2Zmal3WUhSiTh7n2ubzpK7TdaqoKalvVqUM/Ph5CDF7iz+w80tDUxc7DGvkMjDCqbqeoWp9yjO1EAZKVkcH3T0ULbIEFNISoehTL/OEkhxDNNmDCBwMDAQudwFMUzZ84c5s6dy/79+6leXYYZviwJFy6UdROEKLdOmz19MQEh/usabzlS1k0Qotx6zyXt2YWE+A9b9/qnZd2El2JfyLmybkKR2to1KusmlEvlI11LCCGEEEIIIYQQQgghikmGnwvxHxUbG6u2YElR9PT0MDY2LoUWla74+HgyMjKeWU5bWxszGbIlhBBCCCGEEEKUKxLUFOI/6o033iA8PPyZ5Xr16sW3335bCi0qXaNHj1atJP80TZo0KbBKuxBCCCGEEEIIIcqWzKkpxH/U2bNnSUt79vxAVapUoVbuypr/JpcuXSIhIeGZ5UxMTHBxcSmFFr04mVNTiKLJnJpCPJ3MqSlE0WROTSGeTubUfPVkTs3CSaamEP9RjRs3LusmlKmKEqgUQgghhBBCCCFEQbJQkBBCCCGEEEIIIYQQokKRoKYQQgghhBBCCCGEEKJCkaCmEEIIIYQQQgghhBCiQpGgphBCCCGEEEIIIYQQokKRoKYQQgghhBBCCCGEEKJCkaCmEEIIIYQQQgghhBCiQpGgphBCCCGEEEIIIYQQokKRoKYQQgghhBBCCCGEEKJCkaCmEEIIIYQQQgghhBCiQpGgphBCCCGEEEIIIYQQokKRoKYQQgghhBBCCCGEEKJC0SrrBgghhHg5TptllnUThCi3msTLJY8QT3O6R6uyboIQ5detfWXdAiGEEIWQTE0hhBBCCCGEEEIIIUSFIkFNIYQQQgghhBBCCCFEhSJBTSGEEEIIIYQQQgghRIUiQU0hhBBCCCGEEEIIIUSFIkFNIYQQQgghhBBCCCFEhSJBTSGEEEIIIYQQQgghRIUiQU0hhBBCCCGEEEIIIUSFIkFNIYQQQgghhBBCCCFEhSJBTSGEEEIIIYQQQgghRIUiQU0hhBBCCCGEEEIIIUSFIkFNIYQQQgghhBBCCCFEhSJBTSGEEEIIIYQQQgghRIWiVdYNEOJ5TJgwgcDAQLVt2traVKpUiSZNmjBy5EicnJxU+/z8/AgPDyc4OLi0m/pSpaenExcXR9WqVV/Za/j4+ABU6PcqOzubiIgIqlevXtZNERXY5hXreXg/muGfjX5m2aSEx+z138HVPy+RkZGBTY3qtH+jG7aO9mrlbly8wsHte4m4G4pCQ4FtTXva9u6sKhcXE8uPn3791Nd669NRONRxemoZIV61X9euJSI6msljxz6z7NVbt1i7bRu3QkIwMjDAo0ED+nXujImR0XMd/88rVwjYtYvboaFoaGjgZG+Pb9euONnbv0iXhHhpXsX54/aVG+wPDCIyNBw9fT1cPN1p26sLOnq6auWedZ4Rojy4EXiclJhHNHi70zPLpiemcHfPOWKvhpKdkYmRTSXsO3hgYlf5uY4fez2c0IN/kRj+EBQKTGwrU6Ndo6ceTwhRfkmmpqjQJk6cyMyZM5k5cyZffvklXbp04fDhw/Tp04dTp06pyr377rt8/vnnZdjSFxceHk63bt04duxYWTelXEtMTKRfv34Fgt5ClMTZIyc5e/hEscqmpaay5Ls5XPrjT5q83oI2vTqTEPeIZTPncT8sUlXuzrWb/Pbzr6Qmp9CuTxde796R2OgYln43h7Db9wAwNDKkz4hBBf51H9oPTS0tTCzMsLKt9kr6LERxBZ84wf7jx4tV9vKNG0ydM4eI+/fp1b49HVq35tT58/zv559JTE4u8fH/vnGDbxcsIDklhQHduvFGx45EPXjA5J9/5ubdu8/bJSFemldx/rh95QbLZ80nKzOLDm90w725J2cOnmDljwtRKpWqcsU5zwhR1qL+uE7UmevFKpuZlsGFxbuIuXQX66bO1GjbiLSEZC4u3UVSVFyJjx9/J4rLK/eSmZKOfftG1PBxJyU2gQuLd/I49MFz90kIUXYkU1NUaG3bti2Qjefn50efPn0YN24c+/btw9DQkBYtWpRRC1+esLAw7soN2zPFx8dz8eJFvL29y7opogLKzs7m0Pa9BG/ZVew6h4P2ExP1ICeD0rkWAK5NGvLjp1M5snM/b7w9GICgtYGYmpvxzpfj0dHVAaBhc09mfzmDfQE7ePPj99HR08W9uWeB1whaG0BWVhZ9R/qhb2jwEnoqRMllZ2cTsHs3m3buLHad5Rs3otDQYOqHH2JVOScLpombG5/OmEHg7t349epVouOvDAigkpkZ33z8Mbo6Od+j1k2a8OE337Bu+3a+/OCD5+ydEC/mVZ4/dm3YgpmFOcMnjEZbRxsAUwtztq/exI1LV6ntWhco3nlGiLKizM4m9OAF7u3/s9h1wg5dJCXmEa4jOmLmYAVA5Qb2nJnlT9iRizj3bV2i49/ecRpdU0Pc3+uKpk5OKKRKI0fO/hTI3b3ncH2rw3P1TQhRdiRTU/zrWFtb89lnnxEbG4u/v39ZN0cIUUFkpGcwf/IsgjfvxN3LA2Nz02fWUSqVnD92mtoN6qpuSAGMTU3o2L8HNWrXBCAlKZmo0AhcPN1VN5oARqbG2Nd2JOTm3SJfIyo0ghP7jtCoZRPsazs+fweFeAHpGRl89t13bAwKopWnJxZmZs+s8+DhQ0IjI/Fu0kQV0ASoVrUqjVxdOXT6dImOn5iczL3wcJo1bKgKaAKYmZhQt1Ytrt2580J9FOJ5vcrzR0Z6BobGRnh4N1MFNAEcnHPOB1Eh4cCLnWeEeNWyMjI5N3cb9/b9SRV3R3RMn/2AVqlUcv/8TSycq6sCmgA6xgY4dPLExP6f6biKc/yMlDSSImOxdLVXBTQBdIz0MXWwIiEk+gV7KYQoCxLUFP9KHTt2REdHhyNHjgA52Zt5c0VCztyU33zzDW3atMHFxQVvb2+mTJnCo0ePVGUmTJhAu3btOH/+PL1796ZBgwZ07NiRtWvXFni9EydOMGLECJo2bUr9+vVp1aoVkyZNIiEhQe14HTt2ZM2aNXh6euLp6cnhw4eLVT8gIIAhQ4YAOUPunZ2dVcd99OgRU6dOpVWrVri4uNCpUydWrlypNhzpRQQEBODs7MzVq1cZM2YMDRs2pFmzZnz33XdkZWURGBhIhw4dcHd3x9fXl6tXr6rqzpkzh3r16nH79m38/Pxwc3PDx8eH+fPnk5WVpfY6ly9fZvTo0TRv3pz69evj5eXFRx99RFRUlFq5xMREpk+fzmuvvYabmxvdunVj48aNAJw6dYo2bdoAMHfuXJydnQkLCyt2X0+dOoWzszOBgYF069YNV1dXJk6cCMCDBw+YMmWK6jPTuHFjhgwZwtmzZ9WOoVQq+e233+jatSsNGjTAx8eHWbNmkZKSoiqTnZ3NsmXL6NixIy4uLrRq1Ypp06aRmJhY7LaKly8zM5O0lFT6vzeUPiMGoamh+cw68TGxPI57RK36dYCc3396ahoATX1a4undHABdfT3GTv+c5h1eK3CM5MQkNDSLPh3vC9iBto42bXp1fo5eCfFyZGRkkJyayrhhwxjl54eGxrMvIWNzz6m21tYF9llZWvI4MZGHcXHFPr6Bnh4/ffklXfKdz/M8TkxEsxhtEuJVeJXnD20dbYZ++C7eXdur1Y/MDWaaWVoAL3aeEeJVU2Zmk5WWTp0B3jj3bYVCQ/HMOmlxiaQ/Ssaslk3OMZRKstIzALBpVgdrz3/uh4pzfC1dbTzG96Zai/oF9mUkp6KQc4gQFZIMPxf/Srq6utjZ2akF2PL7+uuv2b59O0OGDMHW1pYbN26wZs0a7t27x7Jly1Tl4uPjGTFiBN7e3vTu3Zs9e/YwefJkEhISeOeddwA4evQob7/9No0aNWLMmDEoFAqOHTvG+vXrefToEbNnz1YdLzIykgULFvDBBx8QHR2Nu7t7sep7enry7rvvsnDhQvr370/jxo0BSE5OZvDgwURGRjJw4ECsrKw4efIk06dP5+7du/zvf/97ae/pyJEjady4MRMmTGDPnj0sW7aM69evc+3aNYYOHYpSqWTBggWMGTOGoKAgtLRy/rwolUqGDRuGk5MTn3zyCadOnWL27NlERUXx9dc5C6Jcu3aNgQMHUqNGDUaOHIm+vj7nzp1jy5Yt3Lt3j02bNgE5wehBgwZx48YN+vXrR506dTh06BBffvklKSkpdO7cmYkTJzJjxgzatWtHu3btsLCwKHFfv/76a3r37k3fvn2xsbEhNTWVQYMG8fjxYwYNGkTVqlW5e/cua9euZcSIEezbt49KlSoBMGXKFNauXcvrr7/OgAEDuHPnDsuWLePu3bvMnTsXgC+++IItW7bQs2dP3nzzTW7dusXatWs5d+4ca9euRVdX92nNE6+Inr4e4779Ak3NZ9+M5nl4P2f+JUNjI3at38Ifh0+QlpKKRRVLOvn2pI67CwAaGhpYVi04AX1UaAQhN+/g5FKn0ONHhUZw7a/LtOjwOiZmz878EeJVMdDX55dJk0r0/dDJzaZMSUsrsO9x7kOc+IQEKpmbF+v4GhoaWFepUmD7vfBwrt+5g1vdusVumxAv06s8fzwpLiaWO1dvsmv9ZqpUs6ZuQ1fg+c8zQpQGTT1tPD7sU6LgesrDnOQObUM9bu88Q9SZ62SlZqBXyZianZtQqa5tiY6v0NBA39KkwPakqFgS7kVj7iRzlgtREUlQU/xrmZiYEBISUui+bdu20adPHz788EPVNgMDA44cOUJSUhKGhoYAJCQkMGTIEL744gsABgwYwNChQ5k/fz6+vr6YmpqyYsUKrK2tWb58ueoGbuDAgfTv31+VKZonNTWVGTNm0LnzPxlXxalva2tL8+bNWbhwIe7u7vTo0QOApUuXcufOHfz9/VXZmwMHDuTHH39k0aJF9O/fnzp1Xs5FrLu7Oz/99BMAnTt3xsvLi+PHj7N161bVSvNJSUksXLiQsLAw7HNXoc3OzsbFxYW5c+eiUCgYPHgwH3/8MRs2bGDo0KE4Ojry+++/o1Ao+O233zDLHXLYv39/MjIy2LFjB/Hx8ZiZmbFp0yauXr3KrFmz6Natm6rc4MGD+fXXXxk8eDBt27ZlxowZODs7q96nkmrcuDFfffWV6uegoCDu3bvHkiVLaNWqlWq7ra0t//vf/zh79izt27fn5s2brFu3jn79+jF16lRVOUNDQxYuXMjNmzd5+PAhAQEBTJkyBV9fX1UZb29vhg8fzrp16xg6dOhztVu8GIVCUaIbUoDU3Azc/YFBaGpq0nlAbzQ0FBzddYA1c5Yy9MN3qVXfudC66alp+C9ZDUCrzm0KLXP6wFEUGho0bdOq0P1ClJbn+X7YWlmhr6fH6b/+ome7digUOZkz6RkZXMh96JiekfHcxwdITUtj3qpVAPRo27bE9YV4GUrr/JGcmMSPn+Y8ENbW0aHroN5qQ9KfVJzzjBClQaFQoNB8dnZmfpmp6QDc23cehaYGjl2bgkJB2JFL/L16Py7D2mOem8X5PMcHyErP4NrGnPut6t6uJa4vhCh7kmMt/rUyMzNVN1BPsrKyIigoiICAANUQ73HjxuHv768KaObJy8gE0NTUZMiQIaSmpnI8d2XWRYsW4e/vrwpIAsTFxWFkZERyISu7enh4qP1c0vr57dmzh9q1a1O5cmViY2NV/9rm3tgdOHDgqfVLom2+m0VjY2MsLCywt7dXBTQB1aJNDx6orx44cuRItd/FsGHDUCqVqvZNnjyZ4OBgVUATcoaZ52Us5r0PBw8exMLCgq5du6rKKRQKZs6cyZo1a4r8fZeUp6f6Qi2dO3fmxIkTtGzZUrUtPT1d9f/87VMqlfj5+anVHz58OFu3bsXOzo49e/agUCjw9vZW+53Vq1ePypUrc/DgwZfSB1E6MjMyAUhNTuHtz8fSqGUT3Jt7MnzCaPQN9Nnnv6PQeulp6az+ZQlRoRG07txGbT61PBnpGfx54g/quLtgblnyjGMhypqWlhZdfXy4HRLCLytXci88nDthYfy0dCmpuX9DnyeQmSctPZ2Zv/7KvfBwerRrR7185yMhyrvnOX8oFAr6vZszxL2KjRXLZy3g8h9/FXr84pxnhCjPsjOzgZzgpts7nanaqBZVGzri9nYntPR1ubvn7DOO8HRZ6ZlcXrWfpMg4qnu7qs3bKYSoOCRTU/xrxcfHFzn0ePLkyYwbN46JEyfy1Vdf4e7uTrt27ejTpw/GxsaqcmZmZlhaWqrVrVGjBgDh4TlzGWlqahIaGsrs2bO5efMmISEh3L9/v8h25Q1TzlPS+vmFhISQmpqKl5dXofsjIyOLdZziePJ90NLSKrQvkJOdmZ+jo/riJk++hwqFgri4OBYtWsS1a9cICQkhIiJCNS9o3vHCw8Oxs7MrELysVu3lDhcp7HOjUCj49ddfOX/+PCEhIYSEhJCRm2GUv32AKks1j4mJCSYmOcNdQkJCUCqVvPbaa4W+9pNBdVG+aec+jKjX2E1tVXJ9A33quLtw/vgZ0lPT0NH7Z0qBlOQUVv/8KyE379CoVVPa9u5S6LFvX71BRlo6Lp7ur7QPQrxKfTp2JCklhZ0HD3I8dw7ixi4udG/blrVbt2Jk8OzFIgqTlJzMt4sWcf32bV5v1gzffA+7hKgInuf8oW9ogGuThgDU93BnzlffErQukPoebmrHLu55RojyTFM7577Csn4NtPX/+R5o6etgUac60edvkZWegeZTspWLkpmSzuXf9pFwL5qqHk7Yt2v00tothChdEtQU/0qJiYmEhoYWGTjy8vLiwIEDqn/Hjh1jxowZrFixgoCAAFVQS1u74EkyL4CVF8BbunQpM2fOxMHBAQ8PD9q3b4+bmxurVq1i27ZtBeo/mZVS0vr5ZWVl0bhxYz744INC91cpZO6x51VYNk1xMyOffB+ffA+DgoL4+OOPqVKlCs2aNaN169a4uLhw9OhRFi1apKqXlZX10rIxn+bJvt6+fZsBAwaQkZFBy5Yt6dy5M3Xr1kWpVDJq1Ci19j1LdnY2hoaGqvk1nyTzaVYsJrkr3BoaGxXYZ2hiBEolaWn/3JQmJTxmxY8LiQoJx8O7Od2H9C3yM339wt9oamlRu4HMEygqLoVCwdDevenRti1RDx5QycyMypUqsW7btpw5AJ9j3uNHjx8zff587oaF0bZFC0b0718q5wYhXqaSnj+epK2jjbNbfU7uO0zS40TVcUpynhGiPNMxyXnQr22oV3CfkT4oISut5EHN9MQULq3YS1JELFZNalOrh5d8R4SowCSoKf6Vdu3ahVKpVK2EnV96ejpXrlzBysqKLl260KVLF7Kzs1m+fDkzZ85kx44dquHDMTExanNsAty9exfIyTZMS0tjzpw5NG3alGXLlqkWxwHUFggqyovWr1atGklJSTRv3lxt+6NHjzhx4oQqI7KshYaGUqvWP8Oe8r+HAD/88AM1atTA398fg3xZO08GdW1sbLh27VqB4x86dIigoCA++eSTV9B6WLx4MQkJCezcuVMtC7Ow9kFOf/Nnp96/f58ZM2YwePBgqlWrxtGjR3FxcVFlb+bZtWsXdnZ2r6QP4tWoWs0aTS0toiOiCuyLi4lFS1tbdaOZlpqqutH0audN5wG9nnrskJt3qGZvi56+/itpuxCl4djZs5iZmFDfyQmzfH/z/r55k5q2tugU8vDwaVJSU1UBzc6vv87Q3r1fdpOFKBXFPX88iLzPbz8uomUnH5r6tFQrl5aaCgoFWtpaqp9Lcp4RojwztDJDoaVBcnR8gX2pcYloaGsWGvB8msy0DFVA06ZFPRy7NHlJrRVClBWZU1P860RHR/PLL79QtWpV1WIy+cXFxdG/f3+1DEANDQ1cXf9ZPTKPUqlkzZo1qp8zMzNZuXIlxsbGeHl5kZqaSkpKCvb29moByStXrnD69GlVnaKUpH5hQ7t9fHy4evUqhw4dUjvuggULGDt2LDdu3CjytUvTqtxFHPIsX74cLS0tfHx8gJypAmxsbNQCmpGRkezZswf4JwOydevWxMTEsHfvXrXjrVy5koMHD2Jubl7kEPgXER8fj76+vipoCTnB8XXr1qm1z9vbG4C1a9eq1Q8ICGDnzp0YGRmp+rxgwQK1MsHBwYwdO/aZ2bmifNHR06VOQxeuX7hMdPg/0z3EPXjI1fOXqNPQRfU3ZduqTbk3mq2feaOZlZnJg4gorGtUf6XtF+JV2xEczLKNG9Uy2c9eusS127dp36rkC2At3bCBu2FhdHrtNQloigqtuOcPiyqWpKakcObgcbLyXVPGxcRy+Y+/sHd2RFcvJ7BTkvOMEOWdpo42leraEXs1jKT7cartqbGPeXglBIu6tig0ShbOuLX1RE5As3ldCWgK8S8hmZqiQtu3bx/m5uZATtbj7du32bx5M2lpaSxevBg9vYJP7/KCnb///jspKSk0bNiQ+Ph4Vq9ejaWlJZ06dVIrP3/+fMLDw3FycmLnzp2cP3+eb775Bn19ffT19XFzcyMgIAAjIyMcHBy4ceMGGzduVAUykpKSMDU1LbT9pqamxa6f18+tW7eiVCrp1asX77zzDnv27GHUqFH4+vri5OTE2bNn2bJlC61bt6Z169Yv7b1+EYGBgSQmJtKoUSOOHDnCgQMHGDVqlGouzNatWxMUFMSkSZNwdXUlLCyMDRs2kJK7MmhSUhIAvr6++Pv7M378eAYNGoSDgwMHDx7k2LFjTJ8+HU1NTczMzNDQ0GD//v3Y2NjQvn37It//4mrdujXBwcG88847dOzYkcePH7N582ZCQkLU2le3bl369u3LqlWriI6OxsvLS7Uies+ePalTpw7Ozs60adOGZcuWER4ejpeXF+Hh4axZswYbGxuGDx/+Qm0Vr1ZsdAwhN+9gV8sBiyo588x26Nudu1dvsmzmPLzatUZDU4sT+w6hraNNu9x5zKIjovjrxB/oGehjZVudP4+fKXBs9+b/LFAV/zCOrMwsTC3MS6djQrwE92NiuHb7Ns41a1I1dx7mHu3a8ePSpXy3aBFN3Nx4EBvL9uBg3OrWpdUTi7I9S1hUFEfOnMFAXx/76tU5nPvwL7/WTeQmVZRPz3v+0NTUpMvA3vgvWcOSb+fg7uVBclIyp/YfQUNDg64D+wAlP88IUd6kxD4m4V40JjWqoG+Rs8aBQ0cPHt2J4uLS3dg0r4uGhibhJ/5GQ1sT+/aNS3T85Oh4os/fRlNfGyObStw/f6tAmaoNHQupKYQozySoKSq0GTNmqP6vra1N1apV8fHx4e2338bBwaHIelOnTsXW1pYdO3awY8cO9PX18fLyYvz48QUWiVm6dCmTJ08mMDCQWrVqMXfuXNq1a6faP3v2bGbMmIG/vz/p6elUq1aNkSNH4ujoyOjRozl58iQdOnQosi3Fre/o6Iifnx8BAQFcvHiRpk2bYmdnx/r16/nll1/YtWsX69evx8bGhvfff5+RI0eqZZ2Wpblz5zJv3jz27NmDra0tU6dOpV+/fqr9kydPxsDAgODgYLZs2YKVlRU9e/akXbt2DBgwgJMnT1KvXj309PRYtWoVP//8Mzt27ODx48c4Ojry888/q4LR+vr6jB8/nqVLlzJt2jTs7Oxo2rTpC7Xf19eXhIQENm7cyLRp07C0tMTd3Z25c+fi6+vLyZMnefPNNwH4+uuvsbe3Z+PGjQQHB2NjY8OoUaMYMWIEkDO/3OzZs1myZAmbN28mODgYCwsL2rdvz9ixYwssyCTKl7vXbxO47Hd6vTVQdVNqbmnByC/GsWfTNo7uOoBSqaRG7Zp06NtdVebutZwL59TkFAKX/V7osfPfbKYkJQOgp1+yYVVClKUrt26xYPVq3hs8WBXUbOruzpg332TL3r2sDAjA1NiY7m3a0LN9+xKfo67cvAlAckoKC1avLrSMBDVFefW85w/IOT9oaWtxOGg/O9dvRltXF8e6TrTt3QVLq5z500t6nhGivEm4e5/rm45S+42WqqCmnrkRbu924e6uPwg7cgmUYGpfFYeOHqoyxfXoTs5UD1kpGVzfdLTQMhLUFKLiUSjzlhcWQqiZMGECgYGBhc7hKIpnzpw5zJ07l/3791O9ugyjfdX2hZwr6yYIUW41iZfnuEI8zWmzoqfLEeK/bsmtfWXdBCHKtXWvf1rWTXgpyvP9VFu7RmXdhHKpfKRxCSGEEEIIIYQQQgghRDFJ2oIQ/3KxsbFqCzQURU9PD2Pjkg3jqAji4+PJyMh4ZjltbW3MzMxefYOEEEIIIYQQQgjxwiSoKcS/3BtvvEF4ePgzy/Xq1Ytvv/22FFpUukaPHq1aSf5pmjRpUmCVdiGEEEIIIYQQQpRPMqemEP9yZ8+eJS0t7ZnlqlSpQq1atUqhRaXr0qVLJCQkPLOciYkJLi4updCiV6c8zwEjRFmTOTWFeDqZU1OIosmcmkI8ncyp+erJnJqFkyt8If7lGjduXNZNKFMVPVAphBBCCCGEEEKIgmShICGEEEIIIYQQQgghRIUiQU0hhBBCCCGEEEIIIUSFIkFNIYQQQgghhBBCCCFEhSJBTSGEEEIIIYQQQgghRIUiQU0hhBBCCCGEEEIIIUSFIkFNIYQQQgghhBBCCCFEhSJBTSGEEEIIIYQQQgghRIUiQU0hhBBCCCGEEEIIIUSFIkFNIYQQQgghhBBCCCFEhSJBTSGEEEIIIYQQQgghRIUiQU0hhBBCCCGEEEIIIUSFolXWDRBCCCGEeNWyDh0o6yYIUa418X69rJsgRLm1pKwbIIQQolCSqSmEEEIIIYQQQgghhKhQJKgphBBCCCGEEEIIIYSoUCSoKYQQQgghhBBCCCGEqFAkqCmEEEIIIYQQQgghhKhQJKgphBBCCCGEEEIIIYSoUCSoKYQQQgghhBBCCCGEqFAkqCmEEEIIIYQQQgghhKhQJKgphBBCCCGEEEIIIYSoUCSoKYQQQgghhBBCCCGEqFAkqCmEEEIIIYQQQgghhKhQJKgphBBCCCGEEEIIIYSoUCSoKYQQQgghhBBCCCGEqFC0yroBonyaMGECgYGBatu0tbWpVKkSTZo0YeTIkTg5Oan2+fn5ER4eTnBwcGk39aVKT08nLi6OqlWrvrLX8PHxAajQ71V2djYRERFUr169rJtSbOvXr2fZsmVER0fj4uLCV199Re3atcu6WaIc27xiPQ/vRzP8s9HPLJuU8Ji9/ju4+uclMjIysKlRnfZvdMPW0R6AuJhYfvz066ce461PR+FQJ+fv6roFK7h85s8CZWzsbXlv0kcl7osQL9viw0eIjI9nUvduzyx7NTKK9WfOcOvBA4x0dfGoUYM3PDww0ddTKxed8JjVJ0/yd0QEAA3t7PDzaoaJvr5aub9CQwk8d57bMTFoKBQ4ValCP08PnF7huVuIkvh17VoioqOZPHZskWUePHzIB5MnP/U4k8aMoX7u9fajx49Zs2UL5y9fJj0zExcnJ4b07k1VS0u1OnfCwlizeTO3QkLQ1NSkUf36DOzeHTMTkxfulxAvy43A46TEPKLB252eWTY9MYW7e84RezWU7IxMjGwqYd/BAxO7ymrl4m9Fcm/feRIjY9HS08bSxR779o3Q1NEGIDUukTPfb3rqa7mO6IBZTevn75gQotRJUFM81cSJEzE3NwcgJSWFkJAQ/P392b17N4sXL6Zp06YAvPvuu6SkpJRlU19YeHg4b731Fu+88w69e/cu6+aUW4mJibz55pt4e3szevSzgz3lQUBAAJMmTaJPnz7Uq1ePJUuWMHz4cHbu3ImRkVFZN0+UQ2ePnOTs4RPYOzs+s2xaaipLvpvD4/gEmrfzRs/QgFP7j7Bs5jze/epDqla3xtDIkD4jBhWom5GRwY41ARiaGGFlW021PTosErtaDni+1lytvIGxfF5F2Ttw9RrBV65S19rqmWX/johgRtBODHR06NnQHQ2FBjsvXuRyRARTevbASFcXgMepqUzdvp2s7Gy6ubmRrVSy/cIFQmNjmdarJ1qamrnHi+S7nbuobm6Or6cnWcps9lz+m6+3bed/3btRq0qVV9p3IZ4l+MQJ9h8/Tt1atZ5aztjIiFF+fgW2p2dksHzTJkyNjKhRLee8kJGRwbcLFxIRHU3X119HX0+P7cHBTJk9m+8mTMDY0BCAsKgoJv30ExampvTt3JnklBR2HDjAtdu3+e6zz9DL/b4JUZai/rhO1JnrmDo8+0FUZloGFxbvIv1xMtVa1ENLT5eIk1e4uHQX7u91xdAq5z41/lYkF5ftxqhaJRw6NibtUTIRx/8mMfwhDUZ2QqFQoG2oS+2+rQq8RnZmJre2nULbUA9Da4uX3l8hxKslQU3xVG3bti2Qjefn50efPn0YN24c+/btw9DQkBYtWpRRC1+esLAw7t69W9bNKPfi4+O5ePEi3t7eZd2UYtuwYQO1atVi+vTpAFhYWDB+/Hj++OMPXnvttbJtnChXsrOzObR9L8FbdhW7zuGg/cREPcjJtHTOuYl1bdKQHz+dypGd+3nj7cHo6Oni3tyzQN2gtQFkZWXRd6Qf+oYGAGRlZhL7IIbWnm0LrSNEWcnOzibw/J/4nz1b7Dorjh1HoVAwpUd3rExNAfC0t2eCvz+bz51nsFczAIIuXCQ2MYnv+vaheu7D1FpVKjN9x04OXb9Om7p1AfjtxAksDA2Z2rMnuto5l7GtnZz4aMNG1p/5gy+6dH6ZXRai2LKzswnYvZtNO3cWq7yeri6tmzQpsH2Fvz9ZWVmMHjoUI4Oc88Kh06e5HRLCF6NG0aBOHQAa1q/PJzNmsCM4GN9uORnT63fsQFNDg8njxmGem5lZ086O7xYu5PDp07RvVTCgI0RpUWZnE3rwAvf2/1nsOmGHLpIS8wjXER0xc8h5kFa5gT1nZvkTduQizn1bA3B75xl0zQxp8HYnNHPPDbqmhtzaepK4G+FY1K6Opo42VRsWfFh9a/splFnZ1OnXGm19CfwLUdHInJqixKytrfnss8+IjY3F39+/rJsjxDOlpqYSGxuryiZOTU0FcqZUECJPRnoG8yfPInjzTty9PDA2N31mHaVSyfljp6ndoK4qoAlgbGpCx/49qFG7ZpF1o0IjOLHvCI1aNsG+9j8X2TFRD8jKzKKyzbOz4IQoLemZmUwMCGTTH2dp6eSERW4Q/mkePH5MaGwcrZ2cVAFNgGrmZjSys+Pw9Ruqbcdv3aKejbUqoAngWr061mamnLh1G4DEtDRCHj6kWc2aqoAmgKmBAXWtrbkedf9ldFWIEkvPyOCz775jY1AQrTw9sTAze67j3AsPZ9ehQ7zWtKlapufxc+eoWrmyKqAJUK1qVVxq1+bYuXOqbVqamrTy9FQFNAHq5R7nXu60DkKUhayMTM7N3ca9fX9Sxd0RHdNnn0OUSiX3z9/Ewrm6KqAJoGNsgEMnT0zsq6qOrWOkh5VnbVVAE1BlgiZFxhb5GklRsUScuELVxk6YOsh1lxAVkQQ1xXPp2LEjOjo6HDlyBMjJ3sybKxJy5qb85ptvaNOmDS4uLnh7ezNlyhQePXqkKjNhwgTatWvH+fPn6d27Nw0aNKBjx46sXbu2wOudOHGCESNG0LRpU+rXr0+rVq2YNGkSCQkJasfr2LEja9aswdPTE09PTw4fPlys+gEBAQwZMgTIGXLv7OysOu6jR4+YOnUqrVq1wsXFhU6dOrFy5UqUSuVLeS8DAgJwdnbm6tWrjBkzhoYNG9KsWTO+++47srKyCAwMpEOHDri7u+Pr68vVq1dVdefMmUO9evW4ffs2fn5+uLm54ePjw/z588nKylJ7ncuXLzN69GiaN29O/fr18fLy4qOPPiIqKkqtXGJiItOnT+e1117Dzc2Nbt26sXHjRgBOnTpFmzZtAJg7dy7Ozs6EhYWVqL+nT59m0KBBeHh40LBhQ3x9fQudXzQgIICePXvi6upKs2bNmDBhAtHR0ar9s2bNwtnZmTVr1qi2paen061bN5o2bcr9+//c3Hbq1InY2FhmzJjBhQsX+OGHH6hZs6Zq+oQ8YWFhODs7s2LFCgYMGICLiwtvvvmm6n354Ycf6NixI66urjRs2JB+/fqxf//+Am3fsmULffr0wd3dndatWzNp0iRiY9UvqJ7VP1H6MjMzSUtJpf97Q+kzYhCaGprPrBMfE8vjuEfUqp9zo6lUKklPTQOgqU9LPL2bF1l3X8AOtHW0adNLPbMsOiLnO1nZOudiPO94QpSljKwsktPTGdu2De+//hoaGs++hIxNSgLA1qLgcL6qpiY8Tk3lYWIiiWlpRCc8xqGyZYFy9paW3ImJAcBAW5sf+vejSwPXAuUep6aiqaEoYa+EeDkyMjJITk1l3LBhjPLzK9b3ozDrt29HR0eHfl27qm2/ExqKQyHzmDvY2hIdE0NicjIAY998k+H9+qmVuRceDoBlvgcGQpQ2ZWY2WWnp1BngjXPfViiK8fc6LS6R9EfJmNWyyTmGUklWegYANs3qYO2Zc7+mqa2Fy5vtsXvNTa1+XjBT16zoqXvu7j2HhrYWNdo2fK5+CSHKngw/F89FV1cXOzs7tQBbfl9//TXbt29nyJAh2NracuPGDdasWcO9e/dYtmyZqlx8fDwjRozA29ub3r17s2fPHiZPnkxCQgLvvPMOAEePHuXtt9+mUaNGjBkzBoVCwbFjx1i/fj2PHj1i9uzZquNFRkayYMECPvjgA6Kjo3F3dy9WfU9PT959910WLlxI//79ady4MQDJyckMHjyYyMhIBg4ciJWVFSdPnmT69OncvXuX//3vfy/tPR05ciSNGzdmwoQJ7Nmzh2XLlnH9+nWuXbvG0KFDUSqVLFiwgDFjxhAUFISWVs7XV6lUMmzYMJycnPjkk084deoUs2fPJioqiq+/zlmY5Nq1awwcOJAaNWowcuRI9PX1OXfuHFu2bOHevXts2pQzaXZ6ejqDBg3ixo0b9OvXjzp16nDo0CG+/PJLUlJS6Ny5MxMnTmTGjBm0a9eOdu3aYVHIzWpRbt++zTvvvEPdunUZP348kDM0/P3332f16tV4eHgAOQHTOXPm0KFDB/r168f9+/dZvXo1p0+fZtOmTVhYWDB69Gj27dvHzz//TIcOHbC0tGTevHlcv36dn376SW2xp2HDhrF7927Wr1/Pxo0bcXJyYsGCBar38EmzZ8/Gx8eHbt26oauri1Kp5J133uHvv/9m8ODB2NnZERUVxbp16/jggw/YvHmzKhC+ePFiZs2aRePGjfnwww95+PAhK1eu5MqVK6xduxYtLa1i9U+UPj19PcZ9+wWams8OZuZ5eP8BAIbGRuxav4U/Dp8gLSUViyqWdPLtSR13l0LrRYVGcO2vy7To8DomZuoZoffDIgE4c+g4F0+dIyUpGSNTE1p3aYtX29bP2TshXoyBjg4/+/ZHswTBGt3cv7EpGRkF9j3OzZiPT05BRysdAAsDwwLlzA0MSE5LJyktDUNdXaxNC2ZQhzx8yPX792lQgRavE/8uBvr6/DJpUonOH0+6Fx7O2UuX6Orjg0W+z3lqWhrJKSmFZn+aGRsDEBMbqxqqnif20SNu3LnDb4GBmJua4uPl9dxtE+JFaepp4/FhHzQ0i38OSXmYk3yibajH7Z1niDpznazUDPQqGVOzcxMq1bUttF5qXCKP7kRxO+gMBlXNqFTPrtBySVGxxF4Jo1qr+uiaPDtzVAhRPklQUzw3ExMTQkJCCt23bds2+vTpw4cffqjaZmBgwJEjR0hKSsIwd0LzhIQEhgwZwhdffAHAgAEDGDp0KPPnz8fX1xdTU1NWrFiBtbU1y5cvR0dHB4CBAwfSv39/VaZontTUVGbMmEHnzv9kPhWnvq2tLc2bN2fhwoW4u7vTo0cPAJYuXcqdO3fw9/dXBa0GDhzIjz/+yKJFi+jfvz918g0FehHu7u789NNPAHTu3BkvLy+OHz/O1q1bVSvNJyUlsXDhQsLCwrC3twdy5nBycXFh7ty5KBQKBg8ezMcff8yGDRsYOnQojo6O/P777ygUCn777TfMci+K+/fvn7NIyY4dxMfHY2ZmxqZNm7h69SqzZs2iW+78TP3792fw4MH8+uuvDB48mLZt2zJjxgycnZ1V71Nx7d+/n+TkZObOnasK3HXu3BlfX1+uXLmCh4cHoaGhzJs3j5EjR/LRR/+s8tylSxd69+7NwoUL+fzzz9HV1WX69OkMGjSImTNnMnToUJYsWUKXLl3Ufv8Ax44dIz4+HsgJAs+cOZNq1apRFGtra2bNmoVCkfMU+a+//uKPP/5gypQp+Pr6qv3ORowYwfHjx3F2dubRo0fMmTOHVq1asWjRItXNTfXq1fnyyy85duwYNWvWLFb/ROlTKBQlviFNzZ3SYH9gEJqamnQe0BsNDQVHdx1gzZylDP3wXWrVdy5Q7/SBoyg0NGjapuD8ZnmZmg8i7tPNry9ZmZmcO3qaoN8DSEtJ5bVu7Z+jd0K8GIVCgaaiZJmQ1c3N0dfR5vSdO/Rwd1P9TU3PzORCWE72WHpWJlnKbAB0CnnQpJP7nUzPzMSwkEVOUjMymH/gIADd3d1L1D4hXpbnOX88ac/Ro2hoaNCxtfrDq+TcBwC6hUyZk3ddm5aeXmDf+GnTSE1NRUNDgw+GDME0NwAqRFlQKBQoNEt2DslMzflc39t3HoWmBo5dm4JCQdiRS/y9ej8uw9pjnpvFmScjOU21wrmGjiaO3ZqqDUnPL+LUNdBQYNOs7nP0SAhRXsjwc/HcMjMzVTcoT7KysiIoKIiAgADVEO9x48bh7++vCmjmycvIBNDU1GTIkCGkpqZy/PhxABYtWoS/v7/qwg0gLi4OIyMjknOH2+SXl+2Xp6T189uzZw+1a9emcuXKxMbGqv61bdsWgAMHDjy1fknkHRPA2NgYCwsL7O3tVQFNQLVo04MHD9Tqjhw5Uu13MWzYMJRKpap9kydPJjg4WBXQhJzh1Lq5N4h578PBgwexsLCga75hTwqFgpkzZ7JmzZoif9/FZWWVM1fN1KlTuXTpEgDm5ubs3r0bv9wVQPfu3Ut2djY+Pj5q77mlpSV169bl4MGDquM1atQIPz8/tm7dypgxY7CwsCiQPfv777/z3nvvYW5uzueff45SqeSTTz4hNTWV+/fvs27dOiIjI9XqeHh4qPXVzc2NM2fO0Lt3b9W2rKwssrNzbsSTcodYHj9+nLS0NAYNGqR2c9O9e3cCAgJo0qRJifonyr/MjEwAUpNTePvzsTRq2QT35p4MnzAafQN99vnvKFAnIz2DP0/8QR13F8wtC2bluni607ZPF4Z98j6uTRri3tyTYZ+8j10tBw5u20PS48RX3i8hXgYtTU26NHDlzoMY5gQfIOThQ+7GxPDz3n2k5WZvampoqKZzKek5Ji0jk1m793DvYSzd3d2oZ2P90vsgRGlIz8jgyJkzNHZ1pXKlSoWWedr348l9WVlZDO/bl7HDhuFSuza/rFjBjpd4zSpEacjOzLnOzkxNx+2dzlRtVIuqDR1xe7sTWvq63N1TyKJ1Cqjj603tvq0wqGLGxWV7iLl0t0CxrIxMos/folJdW/TMix6eLoQo/yRTUzy3+Pj4IofJTp48mXHjxjFx4kS++uor3N3dadeuHX369ME435NiMzMzLC3V59CqUaMGAOG5cwBpamoSGhrK7NmzuXnzJiEhIWrzJT6p0hMXgyWtn19ISAipqal4FTFk58lg2It48n3Q0tIqtC+AKpiWx9FRfSW/J99DhUJBXFwcixYt4tq1a4SEhBAREaG6kcw7Xnh4OHZ2dgUujp+W1VgSHTt2ZO/evQQFBREUFETlypXx9vamV69eqmB0XvZv/ozI/J5c3Gf8+PHs3r2bsLAwfvrpJ0zzDdkKDQ1l+vTp1KlTh1WrVmFgYEBoaCirVq1i2rRp1KlTh6lTpzJv3jysrf+5GS7sc62lpcW6des4ffo09+7dU302ANX7mPd+573/eXR1dalfv/5z9U+Ub9q5D0vqNXZTrV4OoG+gTx13F84fP0N6aho6ev9kmN2+eoOMtHRcPN0LPWaDpo0KbFMoFDRu7UXIzTuE3rpb5LB2Icqb3o0akZSWzq5Llzhx8xYAjWrY0c3NjXWnz2Ckq0tm7hzQ6ZmZBeqn5+7Tz/dgEiApLY2Zu3ZzPeo+r9WpTX9Pz1fcEyFenUvXr5OWloZXw4Lz+unlfvbTC5nGIT03Q1NfT09tu6ampmplda+GDZn088+s37EDHy+vAmWFKK80tXPueyzr11BblVxLXweLOtWJPn+LrPQMNHX+uXbW1telcgOHnHouNTg3ezO3dpzG0sVe7diPbkeRnZ5ZYLsQouKRoKZ4LomJiYSGhvLaa68Vut/Ly4sDBw6o/h07dowZM2awYsUKAgICVEGjwgI4eQG2vADe0qVLmTlzJg4ODnh4eNC+fXvc3NxYtWoV27ZtK1D/yeE/Ja2fX1ZWFo0bN+aDDz4odH+VKlWeWr8kChu2VNyslSffxyffw6CgID7++GOqVKlCs2bNaN26NS4uLhw9epRFixap6mVlZb1wNuaz2vnLL79w7do19u7dy+HDhwkICGDTpk189NFHjBw5UtX2BQsWoFeMC+979+7x8OFDICezNv/Q88OHD5ORkcGIESMwyJ1r6tNPP+XChQts3LgRMzMzjI2NadGihdoxn/xdxMbG0rdvX6Kjo2nRogU+Pj7UqVOHatWq0bdvX1W5vLY/7T0saf9E+WaSu0K6oXHBp/yGJkagVJKWph7UvH7hbzS1tKjdoGTDnQxNcl4jPa3gMEMhyiuFQsGQ5l70cHcj8lEClYwMqWxszPrTZ9BQKLA0MiIjN3AZX8joibjkZAx0ddDLd55LSElhetBO7sU8pE3dOgxv1fKVnruEeNXOX76MlpYWDevVK7DPQF8fA3194vItjpknb5t5IXPN5lEoFDRzd+f67dtE3L+P4xMPXoUor3RMckb3aRsWvF7WMdIHJWSlqQc189PU1sKiji0Rx6+QkZSqdpzYa2EotDSwcJa5mIWo6CSoKZ7Lrl27UCqVqpWw80tPT+fKlStYWVnRpUsXunTpQnZ2NsuXL2fmzJns2LFDNdQ4JiZGbY5NgLt37wI52W5paWnMmTOHpk2bsmzZMrWFXfIvEFSUF61frVo1kpKSaN5cfQXjR48eceLEiQIZeWUlNDSUWrVqqX7O/x4C/PDDD9SoUQN/f39VcA8oENS1sbHh2rVrBY5/6NAhgoKC+OSTT16onREREURERODh4YGzszMffPABUVFRDB06lKVLlzJy5EhVVqi1tTV166oHfQ4dOoSR0T/Bo8zMTD7//HPMzMzo2bMnixcvpkuXLrRr106tXv5VSHV0dPj555/p1asX8fHxDB8+HH19/ae2+/fffycsLIwVK1aoZe2eO3dOrVxetmdISAgODg6q7enp6XzyySd069atRP0T5V/VatZoammp5sHMLy4mFi1t7QIBz5Cbd6hmb4teIZ+7rMxMFk77iWr2dvR8s7/avpjInAzzwoasC1FeHb95CzMDferZ2GCa7/xzJTISh8qW6GhpoaOlRWVjY9Uq5/ndjYmhZuXKqp9T0tNVAc1Ori4MaS6Ln4iK7/qdO9S0s8OgiOsRB1tb7oSGFth+NyyMqpUrY2RgQFJyMhNnzaKZuzsDu3dXK5eSO7JE54mMZyHKM0MrMxRaGiRHxxfYlxqXiIa2JtqGeiQ/iOfSir1Ub+WKTTP1tQ6y0jJAAQot9YSFhJBojKtZoqUn3wkhKjqZU1OUWHR0NL/88gtVq1ZVLSaTX1xcHP3791fLANTQ0MDV1VX1/zxKpZI1a9aofs7MzGTlypUYGxvj5eVFamoqKSkp2NvbqwUkr1y5wunTp1V1ilKS+oUN7fbx8eHq1ascOnRI7bgLFixg7Nix3Lhxo8jXLk2rVq1S+3n58uVoaWnh4+MD5EwVYGNjoxbQjIyMZM+ePUBOhiZA69atiYmJYe/evWrHW7lyJQcPHsTc3LzIIfDFsXDhQt5880214f9WVlZUqVJF9bl4/fXXgZy5UPOGdUPO7+y9995j5cqVqm1Lly7l8uXLTJw4kbFjx+Lo6MiUKVNUiwJ5enqioaHB+vXr1dobExNDWloaADt37lRlehYl73j5A8dKpZLVq1cD/3yGmjdvjra2Nhs2bFBr+65du9i1a1eJ+yfKPx09Xeo0dOH6hctEh/8zHUXcg4dcPX+JOg1d1P7mZWVm8iAiCusahWcGaGppoaOjw4VTZ4l/GKfanpKcwom9h7GoYkn1muXjYYoQxbHjwgWWHz1OVr6/wefuhXAt6j7t6/+TldbEwZ5L4eGEx8Wrtl0MCyMy/hHN802xsuzoMe7FPKSjBDTFv0RmZiZhkZE4VC86Y6ypmxsR9+9z4epV1bbw+/e5dP06LRrlTFliaGCAtpYWh06dIjFf1nNScjIHTpygcqVKVM+d21yIikBTR5tKde2IvRpG0v1/rolSYx/z8EoIFnVtUWhooGdhQmZqOpGnr5Gde08DOYHPmEt3MXWwQkv3n2zO7Kwsku/HY2gjD4mF+DeQTE3xVPv27cPc3BzIyXq8ffs2mzdvJi0tjcWLFxc6fDYv2Pn777+TkpJCw4YNiY+PZ/Xq1VhaWtKpUye18vPnzyc8PBwnJyd27tzJ+fPn+eabb9DX10dfXx83NzcCAgIwMjLCwcGBGzdusHHjRlWgICkpSW0exfxMTU2LXT+vn1u3bkWpVNKrVy/eeecd9uzZw6hRo/D19cXJyYmzZ8+yZcsWWrduTesnVqgsK4GBgSQmJtKoUSOOHDnCgQMHGDVqlCorsHXr1gQFBTFp0iRcXV0JCwtjw4YNpOSu3Jy30I2vry/+/v6MHz+eQYMG4eDwf/buO76m+3/g+Ct7D1kIQgQxEoQQUqQi9ioqVozaparaaq22vxbfqD1rU6TUSlCEEqOo3dYqsYUkQvYeN8nvj8it6waJJJK07+fj8X18e8/5vM/nc07Oce9938+w59ixY5w6dYr//e9/aGlpYW5ujqamJkFBQdja2tKuXbuXXv8XDRgwgN27dzNgwAD69OmDmZkZZ86c4dy5c3z88ccA1KpVi4EDB7Jp0yZiY2Px8vJS3j9GRkaMHz8egDt37rB06VJatGhB586dAfjmm28YNGgQM2fOZM6cOdSqVYsBAwawadMmRowYQZs2bbh79y7btm3DxsYGb29v5s2bh4+PDz/++ONL292qVSs2bdrEqFGjeP/998nIyCAwMJCrV6+iqampvH6WlpaMHTuWhQsXMnToULy8vHj8+DF+fn64ubnh6emJpqZmvs5PlE7RTyIJuX0Puxr2WNjkzIPbvnc37t+4zbrZy2jethWaWtqcPnwcHV0d2vbsrBIfGxVDpiITM4tyL62jY78erPFdxGrfRTRrk/NvzIXjv5MYn8Dgz0bLMFtRakXEx3PzcQS1KpSnvKkpkLMi+cJDh5l94CBNqlUjMjGB/ZevUr9KZVo890NRt4YNOHHrFjP37aNzfWfSFZnsvXwZe2srWtTMKfcoJoaTt25jqKdLNUtLTtxU/2GxZa2aatuEKA0iIiMJvnsXx+rVKf/cPOqRMTEoMjOxKvfy9wXP5s058NtvLFi3jq5t2qCnq8svQUGUMzOj07MfSwGG9e7N9KVL+XrBAtq4u6PIzOTwqVPExscz6cMP5f1DlGop0QnEP3iCaVUbDCxy1mCw7+BK3L3HXFl7EFv3OmhqahF6+m80dbSo1q4xAJpamjh0acbN7Se4vCoQGxcHFMlphJ25AZoaOaumPyctNonszCz0zWR0lBD/BpLUFK/k6+ur/G8dHR3Kly+Pp6cnI0aMUBle+6Lp06dTpUoV9u3bx759+zAwMKB58+ZMmDBBbRGWtWvX8n//938EBARQo0YNli5dqjJ8eNGiRfj6+rJz507S09OpVKkSI0eOxMHBgXHjxnHmzBnat2//0rbkN97BwYGBAwfi7+/PlStXcHNzw87Ojq1bt7J48WIOHDjA1q1bsbW1ZcyYMYwcOVKlB1ZJWrp0KcuWLePXX3+lSpUqTJ8+HW9vb+X+//u//8PQ0JAjR46we/duKlSowHvvvUfbtm3p168fZ86coW7duujr67Np0yYWLlzIvn37SEhIwMHBgYULFyqT0QYGBkyYMIG1a9cyY8YM7OzscHNze1nTVDg6OrJ+/XqWLVvGunXrSExMpFq1anz11VcMGDBAWW7q1KlUr16dn3/+me+//x4TExNcXV2VvTGzsrKYOnUqGhoaKqudu7m50b17d3bv3k3nzp159913mTJlCra2tmzdupX//e9/WFpa0qdPHz766CPMzMwwMzNjz549mJmZEZnH0EfISWrOmDGDdevWMWvWLMzMzKhXrx5bt27lq6++4uzZs8qyH374IdbW1mzcuJFZs2ZhbW2Nt7c348aNU94vrzs/UXrdv3mXgHWb6TG0vzKpWc7KgpFTP+HXHb9w8sBRsrOzqVqrOu17d1OWyZWSlNN7Rt/g5fOpVra344PPxxK0K5Cjuw+ABtg5VOP9ET5UcahWbOcmRGHdCH/MimPHGf2uhzKp6VbdnnFtPNnz119sOn0GMwMDujSoT/eGDVXeQ00NDPimW1c2/n6a7RcuoqetjWvVqgxo5obOsxEC158tzpecls6KY8fVG4AkNUXpdf3OHZb7+fGhj49KUjPx2Q+jLxt6Djmfwb8aN45NAQHsOXwYTU1N6tasyaAePTB5bgqnujVrMmXMGLbv38+WX35BU1OTOg4OfDJkiMylKUq9+PsR3Nxxklrvt1AmNfXLGdNgdGfuH7jAoxNXIRvMqpXHvoOrsgxAeRcHNLU1eXj8Cnf3nUdLVxtzh4pUbdsIQ2vVzheK5JzRWlr6sjinEP8GGtnPj38U4i2aNGkSAQEBec7hKPJnyZIlLF26lKCgICq/YtiSeLXs7Ox/Re+FwyF/vL6QEP9RjXefKOkmCFGqaXm0fn0hIf6jRkYdKOkmCFGq/dz6i5JuQpEozd+nvOwalXQTSqXS0c1MCCFK0L8hoSmEEEIIIYQQQvyXyPBzIQopOjpaudDOq+jr62NiYvLacmVNbGwsGRkZry2no6ODubl58TdICCGEEEIIIYQQ/3qS1BSikN5//31CQ0NfW65Hjx7MmjXrLbTo7Ro3bpxyJflXadq0qdoq7UIIIYQQQgghhBBvQubUFKKQLl68SFpa2mvL2djYUOO5lV7/La5evUp8fPxry5mamuLk5PQWWvTfVZrngBGipMmcmkK8msypKcTLyZyaQryazKlZ/GROzbxJT00hCqlx48Yl3YQSJYlKIYQQQgghhBBCvG2yUJAQQgghhBBCCCGEEKJMkaSmEEIIIYQQQgghhBCiTJGkphBCCCGEEEIIIYQQokyRpKYQQgghhBBCCCGEEKJMkaSmEEIIIYQQQgghhBCiTJGkphBCCCGEEEIIIYQQokyRpKYQQgghhBBCCCGEEKJMkaSmEEIIIYQQQgghhBCiTJGkphBCCCGEEEIIIYQQokyRpKYQQgghhBBCCCGEEKJMkaSmEEIIIYQQQgghhBCiTNEu6QYIIYQoGk1j5Z90IV7mXPeWJd0EIUq1NXcOlHQThCi1ll/VK+kmCFG6tS7pBhSNUv19yq6kG1A6SU9NIYQQQgghhBBCCCFEmSJJTSGEEEIIIYQQQgghRJkiSU0hhBBCCCGEEEIIIUSZIklNIYQQQgghhBBCCCFEmSJJTSGEEEIIIYQQQgghRJkiSU0hhBBCCCGEEEIIIUSZIklNIYQQQgghhBBCCCFEmSJJTSGEEEIIIYQQQgghRJkiSU0hhBBCCCGEEEIIIUSZIklNIYQQQgghhBBCCCFEmSJJTSGEEEIIIYQQQgghRJkiSU0hhBBCCCGEEEIIIUSZol3SDRCFM2nSJAICAggKCqJy5cqFOtbAgQMJDQ3lyJEjRdK2wh5v//79bNmyhRs3bpCWlkaFChVo1aoVI0eOxMbGRqVsVlYWYWFhBb4G/v7+TJ48mY0bN+Lm5vbScmfPnmXQoEH4+vrSs2dPtdePHj2iTZs2fPTRR4wbN04Z9/DhQ6pUqVKwE8+n3L/983R0dLC0tKRp06aMHDmSmjVrquzP62/y448/smbNGuLj4xk0aBAjRoxg0qRJnD59Gh0dHTZs2EDdunWL5RyEKG2eREWxMSCAv2/dAqBRvXoM7NEDMxOTIo97EBrKlDlzeK9dO3p36lTockIUt5inUQRu3c294NsAONavS8c+3TEyffXzkd+4u9dvERSwn/CHoegb6OPUpCFePTqjq6+Xc5zIaOZ/8d0r6xr6xVjsa9d8ZRkhikNqdAJ3A88Td/cxABa1K2PfsQm6xgZFEhd9M5SHxy6RGBoFGhqYVrGmattGmNpZq5RLT0zh/q9/EH3jIVkZCoxtLanW3lWtnBClwZP4BPzOnOHvsDAAXOzsGNi8GaYGr35uXhf3NCGBjzf//MpjfNW1M3VtbYvgLIQQJUmSmqJUWrBgAStWrODdd99l7Nix6Ovrc+vWLXbs2MG+ffvYunUrdnZ2ACQmJjJkyBA8PDxUEopFycHBgdmzZ9OoUaM891tYWDB79mwcHR2V23744QcCAgI4dOhQsbQp1+TJkylXrhwAKSkphISEsHPnTg4ePMjq1atVkrWjR48mJSVF+To4OBhfX18aNmzI+PHjqV27NitWrODIkSMMGTKE6tWrU61atWJtvxClRUJSEt8uXkxmZibdvLzIysril6AgQsLC+N/nn6Otnfdb5pvEZWZm8oOfH4rMzFe2Kb/lhChuyYlJrJu9jMxMBS07eJKdncXJA0eJeBTG6K8+Reslz0d+4+5ev8X6uT9QqWoV2r/flbiYWE4f+o3Qew8ZPvljNDQ0MDI2otfwAWp1ZGRksO8nf4xMjalQpVKxXgch8pKRnMbltQfIzsyicisnsrOzeXTiKkmPY2g4pguaWlqFiou995hrGw5haGNOtXaNyM7MJuzsdS6vDqTByI6YVMlJWCrSMri8+gDpCclUeqcu2vp6hJ25zpW1B2j4YReMKpR7a9dEiNdJSE1l+t69ZGZl0bVBA7Kys9l7+TIPo6OZ0eM9tF/y3OQnzkRfnzGt31WLTc9UsOHUaUwM9LGztCzeExRCvBWS1BSlTnh4OKtXr2bgwIFMmzZNZV+XLl0YMGAA8+fPZ+HChQDExsZy5coVPDw8iq1NVlZWdO/e/aX7DQ0N1fafPn2azLeQiPDy8lLroTpw4EB69erFJ598wuHDhzEyMgLgnXfeUSl38+ZNAEaNGoWnpyeQk1A2Nzdn8uTJxd52IUqTfUeOEB0by5zJk6lcoQIANapWZeayZRw7exavF56fwsQF/Porj8LDX9um/JYTorid+vUYcTGxfPTdF9jY5tznleyrsmHecv44dY4mHu6FijuwbTfmFuUYNmkcOro6AJhZlGOv3w5uXb1BLec66Orr0dC9iVod+7f4k5mZSe+RAzEwMiyO0xfilUJPXiMtLpnGH3fH0MYcAJPK1lxd9ysRf9ymYhPHQsXd3XcOPTMjGn7YBS3dnK9vNo0cuLgggPuH/sB5aHsAHh2/QkpkHM7DO2Bun/O8Wdevxvm5O3l04gqOvVsV41UQomD2X75CdGIS3/fuReVnHTRq2Fjzv32BHL95kzZ16rxxnL6ODi1rqffa3/D7aRRZmXzk2RpjPb3iOzkhxFsjc2qKUufSpUtkZmaqJeAAXFxcqF+/Pn/99dfbb1gZUrFiRb788kuio6PZuXPnS8tlZGQAKJOeuduefy3Ef8WpP/6gbs2aysQkQP3ataloY8Pvf/xRZHEPQkMJOHiQnh06vLI9+S0nxNtw5ewf2DvWUCYmAWrUc8Sygg1Xzv5ZqLiM9AyMTIxx9WimTGgC2Ds6APA4JPSlx3/8MIzTh0/QqEVTqtVyeOPzE6Iwnl6+i7l9BWViEqBcDVsMrE15evleoeIyUtJICo/GyrmaMqEJoGtsgJl9BeJDngCQnZ1NxJ+3sXCsrExoAuiaGGLfsQmm1coX0dkKUTR+v3OHurYVlYlJAOfKlalobsbpO3eLPC4kKoqDV6/i4ViLOhUrFs1JCCFKnCQ1/yMCAwPx8fGhcePGODk54enpyezZs0lPT1cre+TIETp37oyzszNdu3Zlz549amVu377N2LFjcXV1pUGDBvTt25cTJ04USVtzE2oBAQF5tm/jxo0cO3YMyJnrsk2bNgAsXboUR0dHHj16BMCDBw/48ssvadWqFU5OTjRt2pTRo0dz69mcd8978uQJY8eOpWHDhri7uzN9+nQSExOV+8+ePYujoyP+/v55tvnRo0c4OjqyZMkSADw9PTl37hyhoaHK7Z9++ilOTk7Ex8erxCYkJODs7Mz3339fwCv1ah06dEBXV1fl7zJw4EBlj8yBAwcqe2MOGjQIR0dHHB0dVdo9adIkZay/vz/vvfcezs7ONGvWjEmTJvHkyRO1a/Djjz/Sr18/nJycGDJkSIHjd+3axYIFC2jVqhXOzs707t2bM2fOqJ3f7t276dWrFw0bNqRVq1Z8/fXXREdHq5R5XZ0FERYWxrhx42jRogXOzs506tSJ1atXk5WVpVLuzz//5IMPPsDFxQUXFxeGDh3K5cuXlft/++03HB0dGT9+vErcV199haOjI7/99tsbtU8UTmJyMk8iI6mexxy49lWqcO/hwyKJy8zMZMXmzdSvXZtWTdR7nBW0nBBvQ0pSMjFPo7Ctpj5vta1dZcJDHhUqTkdXh8GfjsajSzuVMuHPkpnmVhYvbdth/33o6OrQpofMNytKRkZKGqnRiRhXUh/KalzRksSwqELFaevp4DqhJ5Xeqad+jORUNDRzvs6lxSSSHpeMeY2cOQKzs7PJTM/58dq2We2X9hYVoiQkpqXxJD4Be2srtX3VrKy4FxlZpHEAW89fQFdbG29X1zdvuBCi1JHh5/8B27dvZ9q0aXh6evL555+TkZHBoUOHWLt2LQBffPGFsuzTp0/5+OOP8fb2pm/fvuzevZuJEyeiUCjo2bMnkDMPY//+/bGysmLUqFHo6Oiwd+9eRo4cybx58+hUyIUs3NzcqFy5MgcPHuTixYu0a9eOd955hyZNmmBmZoaurq6yrIODA5MnT8bX15e2bdvStm1bLCwsiIyMxNvbG2NjY3x8fChXrhzXr19n27ZtXLt2jSNHjqCj809vkK+//po6derw2WefcfPmTX766Sdu3brFhg0b0NDQKPA5TJkyhXnz5hETE8PkyZNxdHQkLCyMffv2cfjwYeW1BPj1119JT0+na9euhbpuL9LT08POzo4bN27kuX/06NHY29uzdetWRo8eTbVq1dDU1GTFihXKdufOW7p06VKWLFlC+/bt8fb2JiIiAj8/P86dO8eOHTuwsPjnC+eiRYvw9PSka9eu6D0b1lHQeAMDA4YOHUpGRgbr1q1j1KhRHDt2TDl36OrVq5k7dy6NGzfm008/JSoqig0bNnD9+nW2bNmCtrZ2gep8nYyMDIYPH05qaipDhgzB1NSU48ePM3fuXDIzMxk9ejQAp06dYtSoUdSuXZvx48eTnp6Ov78/AwYMYP369bi6utKqVSt69OhBQEAAJ06coGXLlpw8eZJt27bRt29fWrWSoWElITo2FgALMzO1feVMTUlOSSEpORkjQ8NCxe0+fJjwJ0/4fPhwtYT48/JbToi3IT4mDgDTcuZq+0zMTUlNTiElOQUDQ4MiiYuJjObejdsc2LoLm0oVqePinGe7Hj8MI/jSNd5p3xpTc/VnUIi3IT0uGQBdU/WpD3RNDchMyUCRko62ge4bxxlYmaqVSXocTfyDJ5SrmTOPbEpUzo/mOkb63A08z+PzN8lMzUDf0oTqnZpiWad4Fq4U4k3EJCUBYGGoPjqsnKEhyWnpJKWlYfTCEPE3jQuJiuKPByF0ru9MORmRJsS/iiQ1/wPWrVuHi4sLP/zwgzJB179/f9q0acOJEydUkprp6el8/fXXDBiQMxF/nz596N69O/PmzaNbt25oa2szY8YMLCwsCAgIwPDZF3UfHx8GDx7MzJkz8fLyUkk8FpSuri5r1qzh008/5e+//2bz5s1s3rwZLS0tXF1dGTlyJC1atABy5rr08vLC19cXR0dH5byWfn5+xMXFsXnzZhwc/hmOZmRkxKpVq7h58yb16v3zi7ejoyMbN25ULuhRvnx5lixZwtGjR5U9GwvCy8uLDRs2kJaWpmyTg4MD5ubmBAYGqiQ19+/fT/Xq1YtlhXFTU1NCQkLy3PfOO+8QERHB1q1bcXd3Vy4otGPHDpV2P3z4kGXLljFy5Eg+++wzZXznzp3p2bMnK1asYMqUKcrtFStWZO7cucp7raDx2dnZ7NixQ3lvVapUiQkTJnDo0CG8vb2Ji4tjyZIltGzZkpUrV6L1bBLxypUrM23aNE6dOkX16tULVOfrXL9+nTt37rBo0SI6PBsK3Lt3b4YPH869eznDw7Kysvjmm29wdnbGz89P2S4fHx/ee+89ZsyYwa5du4CcxZ1OnjzJ9OnT2bp1K1999RVVq1blyy+/zHebRNFKTUsDyPPfLt1nP4CkZWTw4sfggsQ9DA9nZ2AgH/TujWW5cjyNyrv3Tn7LCfG2pKWmAqgMDc+l/WxbRnq6WnLyTeKSE5OUK5zr6OrSZUDPPOMBzh09iYamJm5tWhb0lIQoMrm9IbV01L9WaT77XJmZoVBLar5pXG5s8PackTiVPXKS/orUnNFNDw7/iYaWJg5d3EBDg0cnrvK3XxBOH7SjXA1Z6VmUDinPpsDSzWOROd1nn6HTFQq15OSbxh36+zqaGhq0d1Lv8SyEKNtk+Pl/wJ49e1i1apVKj8OoqChMTU1JTk5WKWtqakqfPn2Ur3V1denTpw+RkZFcvXqVmJgYzp07h4eHB6mpqURHRxMdHU18fDxt27YlMjKSK1euFLrN9vb2+Pv7s3HjRgYNGoSDgwOZmZmcPXuWYcOGsWrVqlfGjxw5klOnTqkkNFNTU9F8NkTnxfMeMmSIygrFAwcOBFAOcy8KOjo6tG/fntOnTxMXl9N7JTo6mjNnztC5c+ciq+d5CoXijXqaPu/QoUNkZWXh6emp/HtHR0djZWVFnTp11K6Rq6urSp0Fjffw8FAmNAFq164N5PQiBvj9999JS0tjwIABysQhQLdu3fD396dp06YFrvN1bGxs0NDQYOXKlZw4cYL09HQ0NDRYu3atctqAv//+m4cPH+Ll5UVcXJyyztTUVFq3bs3169eJiIgAwMzMjP/7v//jwYMH9O7dm4iICGbNmqVy3uLtys7OBijw85LfuKysLJb7+eHo4PDSBYcKUk6It+nZbf4Gz0fB4zQ0NPAePZhewwdgY1uB9XOXc+3CJbVyGekZ/HX6ArUbOlHuFcPThSh2yhv97cRlpiu4timIpPAYKns4K+fPzFLk9OpXpKbTYFQnyjeqQXkXBxqM6Ii2gR73f71YwAYKUXyK+3PX89IVCk7cukXjalWxNjEpUH1CiNJPemr+B+jo6HD+/Hn27t3L3bt3CQkJIepZz59KlSqplK1SpYpKci93G0BoaKgyKbhp0yY2bdqUZ33hRbRSr4aGBm5ubsoehGFhYezcuZOVK1eyaNEiunfvTvnyL5/0PCMjgwULFnDt2jVCQkJ49OiRcjXyF4dzVq9eXeW1mZkZZmZmhIa+fHGCN9GtWze2bt3K4cOH6dWrFwcOHEChUBT50PNcsbGxBRpmnZfcnp59+/bNc//zw/gBtfoKG5/bAy73b5b7N6latapKOT09PWXv24LW+ToVKlRg4sSJzJ8/n+HDh2NoaEjz5s3p1KkTHTt2REtLS1nn7NmzmT17dp7HCQsLU96zXl5etGvXjl9//ZV+/frRqFGjArVJFC39Z7/o5zWPb/qzXgGG+vpvHLcnKIgHoaF8N2EC8c/m601MSQEgLT2d+MRETIyM8l2usD9WCFEQevo593lGHve54llvM/08no83iTMwMsS5qQsA9VwbsuSrWez/OYB6rg1Uyt29cYuMtHScmjQs4NkIUbS09HI+U2RlZKrty1IoANDWV//c8SZxipR0rm08TPyDJ5R3rUm1tv98dtDSyfmh16peVXQM/umlpm2gi0Xtyjz58w6Z6RlovaTnsxBvk8Gzz+Lpz+7156U/+75mkMcomDeJuxYWRlqGgmYvfN8TQvw7SFLzP2D69On4+flRt25dGjZsSPfu3XFxcWH69OlqCci8vijn/iKmqampTAoOGDAALy+vPOurUaNGodq7adMm0tLSGD58uMp2W1tbxo0bh56eHvPmzeOvv/6iffv2eR7jwoULDBs2DENDQ9zd3enVqxd169YlJCSE7777Tq38y877+Z6ARaFx48bY2toSGBhIr169CAwMxMnJSS1BVxQSExN5+PAh7777bqGOk5tMXL58eZ5fWl/04jUraHxu4vx17XlVUqegdebHsGHD6NKlC4cOHeL48eOcOnWKoKAgdu3axZo1a5R1jh8/noYNG+Z5jOeT58nJyfz9998AnDx5kuTkZOmpWYKsns3XGvvCQl4AMfHxGBoYKBOYbxL3199/o8jMZMrcuWrlfgkK4pegIJb+3//lu5y1pfrCEkIUFzPLnPs8IS5BbV9CbDz6hgbo6qs/H28al0tHVwfHBvU4c/g3khISMTIxVu67eflvtLS1qVW/ToHPR4iipGeWc1+mJ6So7UuPT0HLQCfPRGJB49ITU7j64yGSwqKp0LQWNbo3V/kspGuaM0GKjpH65x5dYwPIhsw0SWqK0sHSOOf+j31h9BxATHIyhnq66OfRCeFN4v4KeYiOlhYN7WReWSH+jSSp+S8XGhqKn58f3bt3V+s9FpnH6nDh4eFkZ2erfEi6f/8+AHZ2dlhbWwM5iSt3d3eV2Nu3b/Po0SMMDFTn1Cqow4cPc/nyZfr3759nkqdWrVpA3r1Cci1evBh9fX327dun0vNvxYoVeZYPDQ2lZs2ayte5Q+pzF8opKhoaGnTq1IkNGzYQFhbGxYsXVeY0LUoHDhwgOztbuTr8m8rtzVuxYkXq1FH98nj8+HGMjY3zCiuy+BdVrFgRyOmNaW9vr9yenp7OxIkT6dq1a5HXGRsby40bN2jUqBE+Pj74+PiQnJzMpEmTOHjwIMHBwco6cxPpz7t8+TJxcXEq9+z8+fMJDQ3liy++YM6cOcyfP59p06YVqF2i6BgZGmJtacm9R+qrON97+BCHl/xbkN+4gT16kPTCB/C4hASWbtxIyyZNaNW0KWampvkuJ8TbZGBogLmVBeEP1O/zsJBHVKqW9xfF/MY9DY9g4/yVtOjoiZtnC5VyaampoKGB9gvzDobcvkelalXQL+RnDiEKS9tAFz0L4zxXOU8Mj8KkkvoqzQWNU6RlKBOatu/UxaFzU7UYowrmaGhrkvwkVm1fakwimjpaeSY8hSgJRnp6WJuY5Lla+f3ISKo/+85ZFHHBERHYW1thWIg1H4QQpZfMqfkvlzt344u9J48fP879+/dRvNB1PyoqiqCgIOXr5ORktmzZQqVKlahTpw42NjY4OTkREBCgnB8QcoZ6T5kyhY8//ljtmAXVtWtXkpOTmTVrltow8aysLLZv346pqSlNmjQB/ukZ+HzZ3GHXzyc0ExISCAgIAFD2OM21fft2lde5K8MXJiGoqamZ56rFXbt2JSMjgzlz5pCdnU3Hjh3fuI6XefLkCYsXL6Z8+fKFHtreunVrAFauXKnstQs5i+d8+OGHbNiwoVjjX+Tu7o6Ojg7btm1TOd6BAwc4cOBAsdR56tQpBg8ezJEjR5TbDA0NlQl2LS0tnJycsLa2ZtOmTSQ9W5kRcnrMfvLJJ0yePFl5r168eJGffvoJb29vhg0bRq9evfjpp5+4cOFCgdolipZbgwZcCQ4m9Ll/2y7fuEH4kye4N25cqDgHOzvq166t8r/az3rulreyon7t2ujq6OS7nBBvW73GDbjzdzBPw/+5z29fCybq8ROc3V4+fUZ+4ixsrEhNSeH8sd/JfO4zRExkNNcuXKKaowN6z/0olKlQ8DTsMRWrVi7KUxTijVnVq0rsnTCSn8Yqt8XcDiPlaTzW9e0LHXdnz+mchKZ7nTwTmgBaujpY1rEj+sYjkiJilNtToxOIuh6CRZ0qaLxmNIwQb1NT+2pcDQ0lNCZWue3Ko0eEx8bh/ty6CIWJU2RmEhoTg72VjHAR4t9Kemr+SyxYsAAjoxfX5YW2bdtia2vLihUrSEtLo0KFCly+fJmAgAD09PRUki+QM5fkF198weDBgzE3N2fnzp2Eh4ezbNky5bDgadOmMXjwYHr16kW/fv0wNzdn3759XLp0ic8++4xyz4ZjvqmePXty4sQJtm7dyp9//kmHDh2oUKECUVFRBAYGEhwczLx585S9OM3NzdHU1CQoKAhbW1vatWtHq1atWL16NePHj6dFixY8ffqUHTt2KHunvnjeFy5cYMyYMXh4ePDHH3+wa9cuOnbsSPPmzd/4PCwsLDh//jzr1q2jcePGNGiQMx9Y7dq1qVmzJvv378fNze2V84Lmx+HDh5XXPC0tjbt377Jr1y7S0tJYvXp1oYdf16pVi4EDB7Jp0yZiY2Px8vIiNjYWPz8/jIyMGD9+fLHGv8jS0pKxY8eycOFChg4dipeXF48fP8bPzw83Nzc8PT3R1NQs0jpbt26Nvb09U6dO5dq1a9jZ2XH37l1++uknmjdvrvzRYNq0aUyYMIGePXvy/vvvo6enx/bt2wkLC2Pu3Lloa2uTlpbG1KlTsbCw4PPPPwfg888/5/Dhw0ydOpU9e/agl8cwZ1H8unl58du5c0xfsoQunp6kZ2TwS1AQ1e3saOnqCkBEZCTBd+/iWL065a2s8h0nRFnXsqMnf/1+nvVzlvFO+9YoMjI4eeAottWq0KBZTvI++kkkIbfvYVfDHgsbq3zHaWlp0bl/T3au+Yk1s5bQsLkryUnJnA06gaamJl3691JpS2xUDJmKTMwsCvd5Q4iiUrmlE0/+vMOVtQep1MKJLIWCRyeuYlzJEpuGOUmWlOgE4h88wbSqDQYWJvmOS34Sy5M/76JloIOxrSURf95Rq7+8S05Z+w6uxN17zJW1B7F1r4Omphahp/9GU0eLau1e/uOcECWhW8MGnLh1i5n79tG5vjPpikz2Xr6MvbUVLWrmfLaOiI/n5uMIalUoT/lnI1XyE5crMjERRWaWcti6EOLfR5Ka/xJ79+7Nc3v16tVZtWoVs2bNYuPGjWRnZ2NnZ8eUKVNQKBTMnDmTq1ev4uTkBICDgwM+Pj4sWrSI8PBwatWqxcqVK2nZsqXymC4uLmzZsoUlS5awfv16FAoF9vb2zJo1ix49ehT6XDQ1NVm4cCG7d+9m9+7d+Pn5kZCQgJmZGY0bN+bbb7+lfv36yvIGBgZMmDCBtWvXMmPGDOzs7Bg3bhyZmZns37+fo0ePYmNjg7u7O0OHDqVz586cOXOGtm3bKo+xYMEC1q5dy8yZMzE3N+fDDz9k7NixhTqP4cOHExwczPz58+nZs6cyqQk5vTXnz59Ply5dClUHgK+vr/K/dXR0KF++PJ6enowYMUJleHZhTJ06lerVq/Pzzz/z/fffY2JigqurK+PHj1dZYb644l/04YcfYm1tzcaNG5k1axbW1tZ4e3szbtw4ZfK9KOs0NDRk3bp1LF68mF9++YXIyEisra3p378/H330kbJchw4dMDMzY/ny5fzwww9oampSs2ZNli9fruw9umTJEu7du8ecOXMwffbhrFy5ckycOJGpU6eycOFCvvzyywJfE1F4ZiYmfPvJJ2zw92fb/v3o6ejQpH59BnTvrlxc6vqdOyz38+NDHx9lUjM/cUKUdUamJgyf/DH7twQQtCsQXV1d6rg40753V7Sf3ef3b94lYN1megztr0xq5icOoKF7E7R1tPltfxCBW3eho6eHQ52aePXsjFUFG5W2pCTlTNGgbyBDaUXpoGtsQP0RHbm77xwPDv+Jlq42lnXssO/giqZ2ziiN+PsR3Nxxklrvt1AmNfMTF3fvMQCZKRnc3HEyz/pzk5r65YxpMLoz9w9c4NGJq5ANZtXKY9/BVVmnEKWFqYEB33TrysbfT7P9wkX0tLVxrVqVAc3c0Hk2uulG+GNWHDvO6Hc9lEnN/MTlSkxLA8BAR4aeC/FvpZH9/NhMIcRbsWrVKpYsWcLJkycxMzMr6eaIf4n4y5dLuglClFrnzAs3NYoQ/3Zr7hwu6SYIUWotvyqjaIR4lXLjCjYSrrQqzd+nTJ/r2CX+IROrCPGWpaen4+/vj5eXlyQ0hRBCCCGEEEIIId6ADD8XxS4zM5Po6Oh8lTUxMSn0HJClVUREBL6+vty+fZsHDx4wZ84clf2pqakkJCTk61gWFhbKRWfEm0lKSiL5hVWmX8b6JSswCiGEEEIIIYQQomRIUlMUu/Dw8HyvIu7r60vPnj2LuUUlw8zMjAsXLqBQKPjmm29wdnZW2b9//34mT56cr2MFBQVRubKs+loY69atY+nSpfkqGxwcXMytEUIIIYQQQgghREFIUlMUO2tra9avX5+vsrmrSP8b6evrc/Jk3hO8A7Ro0SLf10l6Dhbee++9R+PGshKoEEIIIYQQQghRFklSUxQ7PT093N3dS7oZpZ6NjQ02NjavLyiKRJUqVahSpUpJN0MIIYQQQgghhBBvQBYKEkIIIYQQQgghhBBClCmS1BRCCCGEEEIIIYQQQpQpktQUQgghhBBCCCGEEEKUKZLUFEIIIYQQQgghhBBClCmS1BRCCCGEEEIIIYQQQpQpktQUQgghhBBCCCGEEEKUKZLUFEIIIYQQQgghhBBClCmS1BRCCCGEEEIIIYQQQpQpktQUQgghhBBCCCGEEEKUKZLUFEIIIYQQQgghhBBClCnaJd0AIYQQRWNk1IGSboIQpVdUSTdACCFEWXWxe8uSboIQpZpXSTdA/GdJT00hhBBCCCGEEEIIIUSZIklNIYQQQgghhBBCCCFEmSJJTSGEEEIIIYQQQgghRJkiSU0hhBBCCCGEEEIIIUSZIklNIYQQQgghhBBCCCFEmSJJTSGEEEIIIYQQQgghRJkiSU0hhBBCCCGEEEIIIUSZIklNIYQQQgghhBBCCCFEmSJJTSGEEEIIIYQQQgghRJkiSU0hhBBCCCGEEEIIIUSZIklNIYQQQgghhBBCCCFEmSJJTSGEEEIIIYQQQgghRJkiSU0hhBBCCCGEEEIIIUSZol3SDRCvN2nSJAICAggKCqJy5cqFOtbAgQMJDQ3lyJEjRdK2wh5v//79bNmyhRs3bpCWlkaFChVo1aoVI0eOxMbGRqVsVlYWYWFhBb4G/v7+TJ48mY0bN+Lm5vbScmfPnmXQoEH4+vrSs2dPtdePHj2iTZs2fPTRR4wbN04Z9/DhQ6pUqVKwE8+n3L/983R0dLC0tKRp06aMHDmSmjVrquzP62/y448/smbNGuLj4xk0aBAjRoxg0qRJnD59Gh0dHTZs2EDdunWL5RyEKEtSoxO4G3ieuLuPAbCoXRn7jk3QNTYokrj8lvvzh19IfBSlVo+lU1Xq9m/9xucnRFFIT0zh3oELxNwMJStDgVn1ilTv3BQDC5Mii81vucSwKO4duEBCaCQamppYOFbGvoPra59ZIYpLaXo+UqLiuRd4gdh74WQrsjCpYk21do0xtbMu0nMWIj9inkYRuHU394JvA+BYvy4d+3THyPTVz0Z+425duc6xvYcIu/8QDU0NqlSvhlfPTlRxqKZSbsV38wm9H6JWT93G9ek3dmghzlAIURIkqSlKzIIFC1ixYgXvvvsuY8eORV9fn1u3brFjxw727dvH1q1bsbOzAyAxMZEhQ4bg4eGhklAsSg4ODsyePZtGjRrlud/CwoLZs2fj6Oio3PbDDz8QEBDAoUOHiqVNuSZPnky5cuUASElJISQkhJ07d3Lw4EFWr16tkqwdPXo0KSkpytfBwcH4+vrSsGFDxo8fT+3atVmxYgVHjhxhyJAhVK9enWrVqhVr+4UoCzKS07i89gDZmVlUbuVEdnY2j05cJelxDA3HdEFTS6tQcfktl52dTfKTOCzr2mFZr6pKXfrmRsV7EYR4jSxFJtc2HCYlMo5KLeqhpadL6MmrXF4dSKNx3dEx1Ct0bH7LJT+J5dKq/eiaGlLV04XMtHQenbpGfMgTGn3UDS1dnbdyTYTIVZqej4ykVC6vDkSRmkGlFvXQMdAl9PR1rqw9QMMPO2NUweKtXBMhAJITk1g3exmZmQpadvAkOzuLkweOEvEojNFffYqWdt5pifzG3Qu+zcaFq7CxrUDbXp3JzMzi3JGTrP1+CcMnfUzl6jmfp7Kzs3kS/pjaLs7Ua1xfpS5zK3kmhCiLJKkpSkR4eDirV69m4MCBTJs2TWVfly5dGDBgAPPnz2fhwoUAxMbGcuXKFTw8PIqtTVZWVnTv3v2l+w0NDdX2nz59mszMzGJrUy4vLy+1HqoDBw6kV69efPLJJxw+fBgjo5xkxzvvvKNS7ubNmwCMGjUKT09PICehbG5uzuTJk4u97UKUFaEnr5EWl0zjj7tjaGMOgElla66u+5WIP25TsYljoeLyWy4tJpGsdAWWde0o7+JQrOcsREFF/HmbxNAonIa2o1wNWwAsHCvxx+LdhJ68RrV2ef8wWJDY/Ja7f/hPNDQ1aTCiI7omhgAYV7Li2obDRPxxB9tmtYvtOgiRl9L0fDy+cJP0+BTqDGiN1bMfyCzrVeXiggBCjlyijvT6F2/RqV+PERcTy0fffYGNbQUAKtlXZcO85fxx6hxNPNwLFbd/SwBm5cwZNW0Cunq6ALi4N2HRNF8O++9jyOdjAIiNjCYjLZ06Ls40dG9S3KcthHgLZE5NUSIuXbpEZmamWgIOwMXFhfr16/PXX3+9/YaVIRUrVuTLL78kOjqanTt3vrRcRkYGgDLpmbvt+ddCCHh6+S7m9hWUCUeAcjVsMbA25enle4WOy2+5pCexABhYmRX6nIQoak8v30Pf0kSZTAEwtDbH3KEiTy/fLZLY/JbT1NTEpqGDMqEJYGZfHoCkiJg3P0kh3lBpej5SYxIBKFfzn3L65sYY2pjL8yHeuitn/8DesYYyMQlQo54jlhVsuHL2z0LFpSQl8/hhGE5NGioTmgDGZiZUq+VAyO37ym1PwnKm/7GuqDrNmRCi7JKk5r9IYGAgPj4+NG7cGCcnJzw9PZk9ezbp6elqZY8cOULnzp1xdnama9eu7NmzR63M7du3GTt2LK6urjRo0IC+ffty4sSJImlrbkItICAgz/Zt3LiRY8eOATlzXbZp0waApUuX4ujoyKNHjwB48OABX375Ja1atcLJyYmmTZsyevRobt26pXbMJ0+eMHbsWBo2bIi7uzvTp08nMTFRuf/s2bM4Ojri7++fZ5sfPXqEo6MjS5YsAcDT05Nz584RGhqq3P7pp5/i5OREfHy8SmxCQgLOzs58//33BbxSr9ahQwd0dXVV/i4DBw5U9sgcOHCgsjfmoEGDcHR0xNHRUaXdkyZNUsb6+/vz3nvv4ezsTLNmzZg0aRJPnjxRuwY//vgj/fr1w8nJiSFDhhQ4fteuXSxYsIBWrVrh7OxM7969OXPmjNr57d69m169etGwYUNatWrF119/TXR0tEqZ19VZEI6OjixcuJDRo0fj5ORE586dUSgUZGRksHLlSrp160aDBg2oX78+3bp1Y8eOHWrHOH78OD4+Pri4uPDOO+8wYcIE5f2a6+jRo/Tt25cGDRrQpEkTxo0bx717L0+aieKXkZJGanQixpUs1fYZV7QkMUx9fsuCxBXk+MnPvmwa2uQkNTPTMwp+QkIUk8SwKIxt1e9jI1tLUqMTyUhJK3RsfsvV7utBjW7NVMokhee8R+ibyQ934u0rTc+HgaUpAClP//lMmpWZSVpcksoPAUIUt5SkZGKeRmFbTX1dBFu7yoSHPMojKv9xegb6jP/fFNzbv6tWLjkxCU2tf1IeEY/CAbC2zfkBLD315c+kEKJskOHn/xLbt29n2rRpeHp68vnnn5ORkcGhQ4dYu3YtAF988YWy7NOnT/n444/x9vamb9++7N69m4kTJ6JQKOjZsyeQMw9j//79sbKyYtSoUejo6LB3715GjhzJvHnz6NSpU6Ha6+bmRuXKlTl48CAXL16kXbt2vPPOOzRp0gQzMzN0df/5lc3BwYHJkyfj6+tL27Ztadu2LRYWFkRGRuLt7Y2xsTE+Pj6UK1eO69evs23bNq5du8aRI0fQ0flnPq2vv/6aOnXq8Nlnn3Hz5k1++uknbt26xYYNG9DQ0CjwOUyZMoV58+YRExPD5MmTcXR0JCwsjH379nH48GHltQT49ddfSU9Pp2vXroW6bi/S09PDzs6OGzdu5Ll/9OjR2Nvbs3XrVkaPHk21atXQ1NRkxYoVynbnzlu6dOlSlixZQvv27fH29iYiIgI/Pz/OnTvHjh07sLD4Z56ZRYsW4enpSdeuXdHT03ujeAMDA4YOHUpGRgbr1q1j1KhRHDt2TDl36OrVq5k7dy6NGzfm008/JSoqig0bNnD9+nW2bNmCtrZ2gerMrw0bNtCoUSOmTZtGamoq2trafP755wQGBtKvXz8GDhxITEwM27ZtY+rUqVhbWyunRdi3bx+fffYZNWvWZNy4ccpzu3LlCv7+/piamuLv78+UKVNo3rw5EydOJC4uji1btuDt7c22bduwt7cvcJtF4aXHJQOga6r+RU/X1IDMlAwUKeloG+i+UVxBjp/8JBYtPW3u7j/P08v3yEpXoG9hTNW2jbBpUL3Q5yrEm8pMzyAzJSPv+/jZwjxpsUnoGKjPG5jfWE0tzTeqIy0+mYSQJ9wNPI+uqQHlXWuqxQtRnErb81HBtRZP/rrDzYBT1OjWHG0DXR4eu0RGUiqVWzoV6lyFKIj4mDgATMuZq+0zMTclNTmFlOQUDAwN3jjOqrz64lePH4YRcvseNZ3+mYrkSdhjdPX1CPx5F1fO/UlGWjrlrC3x6tmZ+m4vnx5CCFF6SVLzX2LdunW4uLjwww8/KBN0/fv3p02bNpw4cUIlqZmens7XX3/NgAEDAOjTpw/du3dn3rx5dOvWDW1tbWbMmIGFhQUBAQEYGuZ8cPLx8WHw4MHMnDkTLy8vlcRjQenq6rJmzRo+/fRT/v77bzZv3szmzZvR0tLC1dWVkSNH0qJFCyBnrksvLy98fX1xdHRUzmvp5+dHXFwcmzdvxsHhn3nnjIyMWLVqFTdv3qRevXrK7Y6OjmzcuBHtZxNKly9fniVLlnD06FFlz8aC8PLyYsOGDaSlpSnb5ODggLm5OYGBgSpJzf3791O9evViWWHc1NSUkBD1FfwgZ37NiIgItm7diru7u3JBoR07dqi0++HDhyxbtoyRI0fy2WefKeM7d+5Mz549WbFiBVOmTFFur1ixInPnzlXeawWNz87OZseOHcp7q1KlSkyYMIFDhw7h7e1NXFwcS5YsoWXLlqxcuRKtZwuoVK5cmWnTpnHq1CmqV69eoDrzS1tbm2XLlqGvrw/k/Aiwd+9eRowYoVKPl5cXHTt25MSJE3h4eJCVlYWvry+1atVi27ZtynhnZ2c++OADfvnlF7p3787MmTPp1KkT8+fPVx7L29ubzp07M3fuXJYtW1bgNovCy+0NqaWj/rao+ezfjMwMhVpSM79xBTl+UkQsmWkKFKnpOPZuiSI1nbDf/yZ4629kZ2XLPJuixChSX34f527LeknP4vzGvmkdFxf4k5mmAE0NHHu3lNXPxVtX2p4PbQNdqnq5cGPrb1xasU9ZzqGrGxaO6j3fhCguaampAOjksXib9rNtGenpaknNN42DnB6YO9f4AdCyUxvl9ojQcNJT00hNTuH94T6kpqRw+tBxtq/cSFZmpsyzKUQZJMPP/yX27NnDqlWrVHocRkVFYWpqSnJyskpZU1NT+vTpo3ytq6tLnz59iIyM5OrVq8TExHDu3Dk8PDxITU0lOjqa6Oho4uPjadu2LZGRkVy5cqXQbba3t8ff35+NGzcyaNAgHBwcyMzM5OzZswwbNoxVq1a9Mn7kyJGcOnVKJaGZmpqKpmbObf3ieQ8ZMkSZ0IScodmAcph7UdDR0aF9+/acPn2auLicXxejo6M5c+YMnTt3LrJ6nqdQKN6op+nzDh06RFZWFp6ensq/d3R0NFZWVtSpU0ftGrm6uqrUWdB4Dw8PZUIToHbtnF9Qnz59CsDvv/9OWloaAwYMUCY0Abp164a/vz9NmzYtcJ35Vb9+fWVCEsDa2pqLFy8yZswY5bbs7GwUCgUASUlJAFy9epWnT5/i7e2tEu/u7s727dvp3r07p06dIjExES8vL5U2a2lp0axZM06ePKk8rnjLsrNz/r+gj1J+4wpw/IpNauHQzY26/XMWd6jQuCYNRndG38KYe4Hnyc7KKmAjhShir7qPX/d+lN/YAtSRlZmFQ7fm1O7rgblDRYK3/kboqWuvbocQxaWUPB+PL9zk701H0Lcwodb7Lajd1wOL2pW5s/csYWfyHuEjRHFQfgQq4PeVN41LT0vHb/EaHj8Mo1WnNtg71lDua+LhTpcBveg3dih1G9enUQs3Rk6dQDlrSw5s20OWfMYSosyRnpr/Ejo6Opw/f569e/dy9+5dQkJCiIrKmaOtUqVKKmWrVKmiktzL3QYQGhqqTApu2rSJTZs25VlfeHh4kbRbQ0MDNzc3ZQ/CsLAwdu7cycqVK1m0aBHdu3enfPnyL43PyMhgwYIFXLt2jZCQEB49eqRcjfzFN6Xq1VWHbZqZmWFmZkZoaGiRnEuubt26sXXrVg4fPkyvXr04cOAACoWiyIee54qNjX2jYdbPy+3p2bdv3zz3Pz+MH1Crr7Dxub1+c/9muX+TqlWrqpTT09NT9r4taJ35lde11NXVZc+ePZw8eZL79+/z4MEDZTIz+9knrpe1GXISpc+3ecKECS+tPzo6Ghsbmbz8bdPSy7lfsjIy1fZlPUs0a+ur31P5jVMU4PgV3dRXbNbS0cbGxYGQoEskP4nFqELhnnkhXiczQ0Fmquqc11q6z3qCKdTv48yMnPs495l4UX5j36QOTS1NZQ9mK+dqXF4VyP1Df1LetRbaL2mPEIVRFp6P+4f+RNfMkIajO6H1rFebdX17rm44xL3A81g5VZUezeKt0NPPmXIhI491FBTPehY/3yGgMHEpySn4LVxFyO17NGrphldP1U4lTVurL1Kro6tDw+auHN1zkCehj6lQxVatjBCi9JKk5r/E9OnT8fPzo27dujRs2JDu3bvj4uLC9OnT1RKQef3alZuY0dTUVCYFBwwYgJeXV5711ahRI8/t+bVp0ybS0tIYPny4ynZbW1vGjRuHnp4e8+bN46+//qJ9+/Z5HuPChQsMGzYMQ0ND3N3d6dWrF3Xr1iUkJITvvvtOrfzLzvv5noBFoXHjxtja2hIYGEivXr0IDAzEyckpz2RXYSUmJvLw4UPefffdQh0nN5m4fPnyPD9UvOjFa1bQ+NzE+eva86pfZgtaZ369eG5paWn079+f69ev4+bmRvPmzRkyZAhNmzZVue4FafP06dOpXDnvoV9mZrLidUnQMzMGID0hRW1fenwKWgY6yi+FbxL3psd/no5RzpfPzHTpzSuKX+SV+9zccVJlm12bBmgZ6JAen6xWPvfezmuuPwBtfd18xea33MtoaGhg5VSV+AdPSHkah0llq5eWFeJNlfbnIz0xhYyEFGzd66i9t5RvVIOY4FASHj7Fso5dPs5WiMIxs8yZLz8hLkFtX0JsPPqGBujqq881W9C4pPgEfpy/gschobh6uNNtUO989/I0MjUBID1NFg4SoqyRpOa/QGhoKH5+fnTv3p3Zs2er7IuMjFQrHx4eTnZ2tso/8vfv3wfAzs4Oa+uciZa1tLRwd3dXib19+zaPHj3CwKBwv+wePnyYy5cv079/f5VhyLlq1aoF5P2rXa7Fixejr6/Pvn37VHrXrVixIs/yoaGh1Kz5z8IBuUPqcxfKKSoaGhp06tSJDRs2EBYWxsWLF1XmNC1KBw4cIDs7W7k6/JvK7c1bsWJF6tSpo7Lv+PHjGBsbF2v8iypWrAjk9Gx8fuGc9PR0Jk6cSNeuXYu8zpcJDAzk6tWrzJw5k/fff1+5PSIi4qVtftHkyZNp1KiRss0WFhZqz9bZs2fJysoq1Fy14s1pG+iiZ2Gc5yrnieFRmFTKOzGS37j8lkuLS+LK+l+xqW+PnWdDlXIpkTlTWuiXK5p7W4hXMa9hi9PQdirb9C1MiLsfQWJYtFr5pPAo9C1N8lwEJZexrWW+YvNTTpGSzp8//IKVUzXs2zdWKZeZltODR1OnaH+0FCJXWXg+ALIz1YfSZmdlq/y/EMXNwNAAcysLwh+or3IeFvKIStWqFDouLTVVmdBs3taDTv16qMXEx8Ty49zlOLs1onU31U4zkY+fAFDO2rJA5yaEKHkyp+a/QO7cjS/2njx+/Dj3799Xm6MvKiqKoKAg5evk5GS2bNlCpUqVqFOnDjY2Njg5OREQEKCSuMnIyGDKlCl8/PHHhZ73r2vXriQnJzNr1iy1YeJZWVls374dU1NTmjTJmaw5t/fc82Vzh10/n9BMSEggICAAQNnjNNf27dtVXueuDF+YhKCmpmaec6907dqVjIwM5syZQ3Z2Nh07dnzjOl7myZMnLF68mPLlyxd6aHvr1q0BWLlypbLXLsD169f58MMP2bBhQ7HGv8jd3R0dHR22bdumcrwDBw5w4MCBYqnzZWJjYwH152vjxo0AymfByckJCwsL/P39SX9umMzFixfx9/cnOTkZd3d39PT0WLNmDRkZ/ywWEBERwZgxY1QWXxJvn1W9qsTeCSP5aaxyW8ztMFKexmNd/+Wr0uc3Lj/l9MyMyExNJ/z8TRTPDW1MjU0k4uItzBwqoGvy8l5qQhQVPVNDytWwVfmfgYUJVvWqkvI0jpjbYcqyyU9jib0T/srnBMh3bH7KaRvooqmtRcQft8lI+adnjSIlnccXbqFnYYyhjXlhL4MQeSoLz4dJFSsirz0gIylVWS47O5vHF26ioaWJaVWZ6ka8PfUaN+DO38E8Df/nu+Xta8FEPX6C8ytWHc9v3C+bdjxLaLbKM6EJOauop6akcOG306Sm/DNyJjYqhj9OnsW+dk1MzEwLc5pCiBIgPTXLkAULFmBkZKS2vW3bttja2rJixQrS0tKoUKECly9fJiAgAD09PeXcf7nMzMz44osvGDx4MObm5uzcuZPw8HCWLVumHBY8bdo0Bg8eTK9evejXrx/m5ubs27ePS5cu8dlnn1GuXLlCnUvPnj05ceIEW7du5c8//6RDhw5UqFCBqKgoAgMDCQ4OZt68ecpenObm5mhqahIUFIStrS3t2rWjVatWrF69mvHjx9OiRQuePn3Kjh07lL1TXzzvCxcuMGbMGDw8PPjjjz/YtWsXHTt2pHnz5m98HhYWFpw/f55169bRuHFjGjRoAOQsfFOzZk3279+Pm5vbK+cFzY/Dhw8rr3laWhp3795l165dpKWlsXr16kIPv65VqxYDBw5k06ZNxMbG4uXlRWxsLH5+fhgZGTF+/PhijX+RpaUlY8eOZeHChQwdOhQvLy8eP36Mn58fbm5ueHp6oqmpWaR1voy7uzva2tp88cUXDBgwAG1tbY4ePcrJkyfR0dFR3me6urpMmjSJL7/8kn79+tGtWzeSkpLYuHEjDg4O9O7dG0NDQz799FN8fX3p06cP3bp1Q6FQsHnzZtLS0vjyyy+LpM3izVRu6cSTP+9wZe1BKrVwIkuh4NGJqxhXssSmYc58fSnRCcQ/eIJpVRsMLEzyHVeQcg7dmnHd7yiXVu6ngmstMtMzCDt9HQ1NTWp0bfZ2L4oQL6jgWouw0ze4vuUolVs6oaWjzaMTV9E1NaTSO/WU5dITU4i5FYZxxXLKOWDzG5vfcg7dmnFl7UEurdxPxSa1yMrM4vG5YNITUqg3xEt+JBJvXWl6Pqp3duPK2gP8+cMvVGzqiKaONpFX7hP/4AnV2jWS+TTFW9Wyoyd//X6e9XOW8U771igyMjh54Ci21arQoFlOb/voJ5GE3L6HXQ17LGys8h33JOwxl05fQN/QgApVKvPX7+fV6s9d1byLT2+2LF3LqpmLcPVoTnpqGmeCTqCppUUXn15v6WoIIYqSJDXLkL179+a5vXr16qxatYpZs2axceNGsrOzsbOzY8qUKSgUCmbOnMnVq1dxcnICwMHBAR8fHxYtWkR4eDi1atVi5cqVtGzZUnlMFxcXtmzZwpIlS1i/fj0KhQJ7e3tmzZpFjx55//pVEJqamixcuJDdu3eze/du/Pz8SEhIwMzMjMaNG/Ptt98qF1cBMDAwYMKECaxdu5YZM2ZgZ2fHuHHjyMzMZP/+/Rw9ehQbGxvc3d0ZOnQonTt35syZM7Rt21Z5jAULFrB27VpmzpyJubk5H374IWPHji3UeQwfPpzg4GDmz59Pz549lUlNyOmtOX/+fLp06VKoOgB8fX2V/62jo0P58uXx9PRkxIgRKsOzC2Pq1KlUr16dn3/+me+//x4TExNcXV0ZP368ygrzxRX/og8//BBra2s2btzIrFmzsLa2xtvbm3HjximT70VdZ15q1arF4sWLWbp0KfPnz8fIyIiaNWuyfv16Nm/ezLlz58jIyEBHR4fu3btjYmLCihUrmDdvHqamprRu3ZrPPvtMmaAfMmQI5cuXZ/369SxYsAB9fX3q1avHnDlzaNy48WtaI4qTrrEB9Ud05O6+czw4/CdautpY1rHDvoMrmto5vcXj70dwc8dJar3fQpnUzE9cQcpZ1a1K3YGehBy7zL2DF9DU0cLcviLV2jfC0Nr8rV4TIV6kqa2F87D23Nt/nke/XUVDQwOz6hWo3rEJOob/DK1NfhLLze0nsGvTQJm0yW9sfsuZ21fA6YO2hAT9xf1f/wANDcyqlad233dlLk1RIkrT82FqZ02DUZ24f+gPHh67TFZmFoY25jh6t1T5IU2It8HI1IThkz9m/5YAgnYFoqurSx0XZ9r37or2s8U979+8S8C6zfQY2l+Z1MxXXPAdAFKTUwhYtznP+nOTmnUbOdN/3DCO7z3Er9t/QUdXh2qONWj3fhesKxauE4oQomRoZD8/blMIUWRWrVrFkiVLOHnypCz+It6Kvkdnv76QEEIIIYQokOEOeS+eKoTI4WX38mkEypL4y5dLugkvZfpcpy/xD5lTU4hikJ6ejr+/P15eXpLQFEIIIYQQQgghhChiMvxcFInMzEyio9VXYsyLiYlJoeeALK0iIiLw9fXl9u3bPHjwgDlz5qjsT01NJSEhIV/HsrCwUC6QJN5MUlISycnJ+SprbW1dzK0RQgghhBBCCCFEUZGkpigS4eHh+V5F3NfXl549exZzi0qGmZkZFy5cQKFQ8M033+Ds7Kyyf//+/UyePDlfxwoKCqJy5crF0cz/jHXr1rF06dJ8lQ0ODi7m1gghhBBCCCGEEKKoSFJTFAlra2vWr1+fr7I1atQo5taUHH19fU6ePPnS/S1atMj3dZKeg4X33nvvyeI7QgghhBBCCCHEv5AkNUWR0NPTw93dvaSbUerZ2NhgY2NT0s34z6hSpQpVqlQp6WYIIYQQQgghhBCiiMlCQUIIIYQQQgghhBBCiDJFkppCCCGEEEIIIYQQQogyRZKaQgghhBBCCCGEEEKIMkWSmkIIIYQQQgghhBBCiDJFkppCCCGEEEIIIYQQQogyRZKaQgghhBBCCCGEEEKIMkWSmkIIIYQQQgghhBBCiDJFkppCCCGEEEIIIYQQQogyRZKaQgghhBBCCCGEEEKIMkWSmkIIIYQQQgghhBBCiDJFu6QbIIQQomgMd/Aq6SYIIYQoo9bcOVzSTRCi1GoaK1+bhXglu5JugPivkp6aQgghhBBCCCGEEEKIMkWSmkIIIYQQQgghhBBCiDJFkppCCCGEEEIIIYQQQogyRZKaQgghhBBCCCGEEEKIMkWSmkIIIYQQQgghhBBCiDJFkppCCCGEEEIIIYQQQogyRZKaQgghhBBCCCGEEEKIMkWSmkIIIYQQQgghhBBCiDJFkppCCCGEEEIIIYQQQogyRZKaQgghhBBCCCGEEEKIMkWSmkIIIYQQQgghhBBCiDJFkppCCCGEEEIIIYQQQogyRZKaQgghhBBCCCGEEEKIMkW7pBtQGkyaNImAgACCgoKoXLlyoY41cOBAQkNDOXLkSJG0rbDH279/P1u2bOHGjRukpaVRoUIFWrVqxciRI7GxsVEpm5WVRVhYWIGvgb+/P5MnT2bjxo24ubm9tNzZs2cZNGgQvr6+9OzZU+31o0ePaNOmDR999BHjxo1Txj18+JAqVaoU7MTzKfdv/zwdHR0sLS1p2rQpI0eOpGbNmir78/qb/Pjjj6xZs4b4+HgGDRrEiBEjmDRpEqdPn0ZHR4cNGzZQt27dYjkH8XoXLlxgzpw53Lx5k0qVKjF+/Hjatm1b0s0SpVDM0ygCt+7mXvBtABzr16Vjn+4YmZoUedyuH7cSFfGEYV+OU9t368p1ju09RNj9h2hoalClejW8enaiikO1Nz85IQqptDwfd6/fIihgP+EPQ9E30MepSUO8enRGV1+vEGcnROGkRidwN/A8cXcfA2BRuzL2HZuga2xQJHH5LffnD7+Q+ChKrR5Lp6rU7d/6jc9PiMJ6EhXFxoAA/r51C4BG9eoxsEcPzExe/R6S37irN2+ydd8+HoSGYqivTzMXF/p26YK+Xs57w9OoKD76v/97ZV1ff/wx9V747ieEKN0kqfkvtmDBAlasWMG7777L2LFj0dfX59atW+zYsYN9+/axdetW7OzsAEhMTGTIkCF4eHioJBSLkoODA7Nnz6ZRo0Z57rewsGD27Nk4Ojoqt/3www8EBARw6NChYmlTrsmTJ1OuXDkAUlJSCAkJYefOnRw8eJDVq1erJGtHjx5NSkqK8nVwcDC+vr40bNiQ8ePHU7t2bVasWMGRI0cYMmQI1atXp1q1asXafvFyd+7cYejQoTg7O/PFF1+wb98+Pv74Y7Zu3Ur9+vVLunmiFElOTGLd7GVkZipo2cGT7OwsTh44SsSjMEZ/9Sla2nm/Zb5J3MUTZ7j422mqOTqo7bsXfJuNC1dhY1uBtr06k5mZxbkjJ1n7/RKGT/qYytWrFvm5C/E6peX5uHv9Fuvn/kClqlVo/35X4mJiOX3oN0LvPWT45I/R0NAo8nMX4nUyktO4vPYA2ZlZVG7lRHZ2No9OXCXpcQwNx3RBU0urUHH5LZednU3ykzgs69phWU/1vULf3Kh4L4IQr5CQlMS3ixeTmZlJNy8vsrKy+CUoiJCwMP73+edov+Q9JL9xV2/eZMbSpVSvUoUB3boRFRvL/mPHuBMSwneffIKGhgYmxsaMHThQrY70jAzW79iBmbExVStVKtbrIIQoepLU/JcKDw9n9erVDBw4kGnTpqns69KlCwMGDGD+/PksXLgQgNjYWK5cuYKHh0extcnKyoru3bu/dL+hoaHa/tOnT5OZmVlsbcrl5eWl1kN14MCB9OrVi08++YTDhw9jZJTzYfCdd95RKXfz5k0ARo0ahaenJ5CTUDY3N2fy5MnF3nbxanv27CEtLY0lS5ZgYWFB27ZteeeddwgMDJSkplBx6tdjxMXE8tF3X2BjWwGASvZV2TBvOX+cOkcTD/dCx2VlZXF87yGO7D7w0nbs3xKAWTlzRk2bgK6eLgAu7k1YNM2Xw/77GPL5mKI6ZSHyrbQ8Hwe27cbcohzDJo1DR1cHADOLcuz128Gtqzeo5VynqE5ZiHwLPXmNtLhkGn/cHUMbcwBMKltzdd2vRPxxm4pNHAsVl99yaTGJZKUrsKxrR3kX9R8FhCgp+44cITo2ljmTJ1O5Qs57QY2qVZm5bBnHzp7F64XvVwWN89u1C8ty5fi/Tz5BVyfnvcGqXDnWbtvGX9ev41K3Lvp6erRq2lStjh937iQzM5NxgwdjbGhYHKcvhChGMqfmv9SlS5fIzMxUS8ABuLi4UL9+ff7666+337AypGLFinz55ZdER0ezc+fOl5bLyMgAUCY9c7c9/1qUnNxetaGhoQCkpqYCoKurW2JtEqXTlbN/YO9YQ5l4AahRzxHLCjZcOftnoeMy0jP44f/mcmRXIA2bu2JSzkztWClJyTx+GIZTk4bKhCaAsZkJ1Wo5EHL7fiHPUog3Uxqej4z0DIxMjHH1aKZMaALYP+vR+TgktFDnKMSbenr5Lub2FZQJR4ByNWwxsDbl6eV7hY7Lb7mkJ7EAGFipPz9ClKRTf/xB3Zo1lYlJgPq1a1PRxobf//ijUHHpGRmYGhvTxt1dmdAEqFOjBgAPQl/+3vAgNJQDx4/zrpubsrwQomyRpGYBBAYG4uPjQ+PGjXFycsLT05PZs2eTnp6uVvbIkSN07twZZ2dnunbtyp49e9TK3L59m7Fjx+Lq6kqDBg3o27cvJ06cKJK25ibUAgIC8mzfxo0bOXbsGJAz12WbNm0AWLp0KY6Ojjx69AiABw8e8OWXX9KqVSucnJxo2rQpo0eP5tazOU2e9+TJE8aOHUvDhg1xd3dn+vTpJCYmKvefPXsWR0dH/P3982zzo0ePcHR0ZMmSJQB4enpy7tw5QkNDlds//fRTnJyciI+PV4lNSEjA2dmZ77//voBX6tU6dOiArq6uyt9l4MCByh6ZAwcOVPbGHDRoEI6Ojjg6Oqq0e9KkScpYf39/3nvvPZydnWnWrBmTJk3iyZMnatfgxx9/pF+/fjg5OTFkyJACx+/atYsFCxbQqlUrnJ2d6d27N2fOnFE7v927d9OrVy8aNmxIq1at+Prrr4mOjlYp87o6CyIsLIxx48bRokULnJ2d6dSpE6tXryYrK0ul3J9//skHH3yAi4sLLi4uDB06lMuXLyv3//bbbzg6OjJ+/HiVuK+++gpHR0d+++035baOHTsq9z18+JDPP/8cPT09evToodY+T09Ppk2bxpQpU6hfvz6tWrUiOjqa7OxstmzZwvvvv4+LiwvOzs506NCBVatWkZ2drXKMS5cuMWLECFxdXXFzc2PkyJEEBwcX6PzE25eSlEzM0yhsq6nPKWxrV5nwkEeFjlMoFKSlpNLnw8H0Gj4ALU314Yh6BvqM/98U3Nu/q7YvOTEJTS152xZvX2l5PnR0dRj86Wg8urRT2R7+LJlpbmVRoPMSoihkpKSRGp2IcSVLtX3GFS1JDFOf37IgcQU5fnJEDACGNjlJzcz0jIKfkBBFLDE5mSeRkVTPY40E+ypVuPfwYaHidHV0mDJmDD3bt1cpc//Z91lri5e/N2zduxddXV28u3TJ9/kIIUoXGX6eT9u3b2fatGl4enry+eefk5GRwaFDh1i7di0AX3zxhbLs06dP+fjjj/H29qZv377s3r2biRMnolAo6NmzJ5AzD2P//v2xsrJi1KhR6OjosHfvXkaOHMm8efPo1KlTodrr5uZG5cqVOXjwIBcvXqRdu3a88847NGnSBDMzM5Veag4ODkyePBlfX1/atm1L27ZtsbCwIDIyEm9vb4yNjfHx8aFcuXJcv36dbdu2ce3aNY4cOYLOc7+Gff3119SpU4fPPvuMmzdv8tNPP3Hr1i02bNjwRnNcTZkyhXnz5hETE8PkyZNxdHQkLCyMffv2cfjwYeW1BPj1119JT0+na9euhbpuL9LT08POzo4bN27kuX/06NHY29uzdetWRo8eTbVq1dDU1GTFihXKdufOW7p06VKWLFlC+/bt8fb2JiIiAj8/P86dO8eOHTuweO4Nd9GiRXh6etK1a1f0nk1uXdB4AwMDhg4dSkZGBuvWrWPUqFEcO3ZMOXfo6tWrmTt3Lo0bN+bTTz8lKiqKDRs2cP36dbZs2YK2tnaB6nydjIwMhg8fTmpqKkOGDMHU1JTjx48zd+5cMjMzGT16NACnTp1i1KhR1K5dm/Hjx5Oeno6/vz8DBgxg/fr1uLq60qpVK3r06EFAQAAnTpygZcuWnDx5km3bttG3b19atWqlrNfFxQUfHx/8/Pxo164dZmZmLF++/KXznO7bt4/q1aszZcoUIiMjsbCwUM5P26NHD7y9vUlKSmLXrl3MmzcPIyMjBgwYAOQsSDRkyBBsbGwYPnw4+vr6bNy4kUGDBrFz504qV66cr/MTb198TBwApuXM1faZmJuSmpxCSnIKBoYGbxynb6DPJ7OmovWSudUANDU1sSpvrbb98cMwQm7fo6ZT7QKclRBFo7Q8Hy+KiYzm3o3bHNi6C5tKFanj4pz/kxKiiKTHJQOga6o+bFXX1IDMlAwUKeloG+i+UVxBjp/8JBYtPW3u7j/P08v3yEpXoG9hTNW2jbBpUL3Q5yrEm4iOjQXAwky9B3E5U1OSU1JISk7G6IWh328a9zQqimu3b7MpIIAqFSvS5CXTTT0IDeXi1at08fTMsw4hRNkgSc18WrduHS4uLvzwww/KBF3//v1p06YNJ06cUElqpqen8/XXXysTHX369KF79+7MmzePbt26oa2tzYwZM7CwsCAgIADDZ/8Q+/j4MHjwYGbOnImXl1ehhsfq6uqyZs0aPv30U/7++282b97M5s2b0dLSwtXVlZEjR9KiRQsgZ65LLy8vfH19cXR0VM5r6efnR1xcHJs3b8bB4Z95eYyMjFi1ahU3b96kXr16yu2Ojo5s3LhROWFz+fLlWbJkCUePHlX2bCwILy8vNmzYQFpamrJNDg4OmJubExgYqJLU3L9/P9WrVy+WFcZNTU0JCQnJc98777xDREQEW7duxd3dXbmg0I4dO1Ta/fDhQ5YtW8bIkSP57LPPlPGdO3emZ8+erFixgilTpii3V6xYkblz5yrvtYLGZ2dns2PHDuW9ValSJSZMmMChQ4fw9vYmLi6OJUuW0LJlS1auXKn8Elm5cmWmTZvGqVOnqF69eoHqfJ3r169z584dFi1aRIcOHQDo3bs3w4cP5969nKFTWVlZfPPNNzg7O+Pn56dsl4+PD++99x4zZsxg165dQM7iTidPnmT69Ols3bqVr776iqpVq/Lll1+q1Hv79m2uX7+uPP6YMWPynJYhV2pqKj/88APly5cHcpKxfn5+dO7cmVmzZinL9e7dm+bNm3PixAnls/79999jbm7Ozp07lcljDw8POnXqxObNm/n888/zfX7i7Up7Ni3B80Nac2k/25aRnq6WtClInIaGRoESNrnSU9PYucYPgJad2hQ4XojCKo3PR3JiEvO/+O7Z8XXpMqBnnvUIUdxye0Nq6ah/rdJ89pk4M0OhltTMb1xBjp8UEUtmmgJFajqOvVuiSE0n7Pe/Cd76G9lZ2TLPpigRqWlpQN5TP+UOF0/LyODFibveJC4hKUm5wrmuri4f9O6tMiT9eb+ePImmpiYdnusMIYQoe2QcWz7t2bOHVatWqfQ4jIqKwtTUlOTkZJWypqam9OnTR/laV1eXPn36EBkZydWrV4mJieHcuXN4eHiQmppKdHQ00dHRxMfH07ZtWyIjI7ly5Uqh22xvb4+/v7+yp5iDgwOZmZmcPXuWYcOGsWrVqlfGjxw5klOnTqkkNFNTU9HUzLltXjzvIUOGqKxcN/DZ6nK5w9yLgo6ODu3bt+f06dPExeX0AImOjubMmTN07ty5yOp5nkKhKPRqqocOHSIrKwtPT0/l3zs6OhorKyvq1Kmjdo1cXV1V6ixovIeHhzKhCVC7dk7vrqdPnwLw+++/k5aWxoABA1S+RHbr1g1/f3+aNm1a4Dpfx8bGBg0NDVauXMmJEydIT09HQ0ODtWvXKqcN+Pvvv3n48CFeXl7ExcUp60xNTaV169Zcv36diIgIAMzMzPi///s/Hjx4QO/evYmIiGDWrFkq533p0iX69OnDgwcP+N///oeJiQkLFizgzp07AGzatIm///5bpZ12dnbKhCbk3HO///473333nUq5mJgYjI2Nlc9BVFQUly9fpmvXrsqEJuQ8hzt37mTEiBEFOj/xduXOIlDQZ/1N4/IrPS0dv8VrePwwjFad2mDvKPM9ibevND4fGhoaeI/OGapuY1uB9XOXc+3CpSKvR4jXUt7oxRRXgONXbFILh25u1O3fGqt6VanQuCYNRndG38KYe4HnyX5huh8h3obcqZoK/h5S8DgNDQ3Gf/ABYwcOpEqFCsxYupSzeawjkZ6RwYnz52ns7Iy1pfrUDkKIskN6auaTjo4O58+fZ+/evdy9e5eQkBCionLmsKlUqZJK2SpVqqgk93K3Qc5iJblJwU2bNrFp06Y86wsPDy+SdmtoaODm5qbsQRgWFsbOnTtZuXIlixYtonv37ioJnBdlZGSwYMECrl27RkhICI8ePVKuRv7iPIjVq6sOazEzM8PMzEy5QEtR6datG1u3buXw4cP06tWLAwcOoFAoinzoea7Y2NgCDbPOS25Pz759++a5X+eFXxBfrK+w8bm/cOb+zXL/JlWrVlUpp6enp+x9W9A6X6dChQpMnDiR+fPnM3z4cAwNDWnevDmdOnWiY8eOaGlpKeucPXs2s2fPzvM4YWFhynvWy8uLdu3a8euvv9KvXz8aNWqkLJeZmcmkSZPIzs5m48aNODg4YGpqykcffcQnn3zCzJkzmTFjBoMHD1bp4WuZxwcbHR0djh07RlBQEPfu3ePBgwfKpHruB66XXVNAefzTp08X6PzE26OnnzPNQ0YecxArnvWS0dfXL7K4/EhJTsFv4SpCbt+jUUs3vHoWzw83QrxOaXw+DIwMcW7qAkA914Ys+WoW+38OoJ5rgzc6nhBvSksv5/NQVkam2r4shQIAbX31z0z5jVMU4PgV3dSnKNHS0cbGxYGQoEskP4nFqILMPSveLv1nU2nltc5D+rMFVw3zeC94kzhjQ0Pcn30faObiwmf/+x8bdu7ErWFDlXJXb94kLS2N5i4uBTwbIURpI0nNfJo+fTp+fn7UrVuXhg0b0r17d1xcXJg+fbpaAjKvX5NyEx+amprKpOCAAQPw8vLKs74ahVx9bdOmTaSlpTF8+HCV7ba2towbNw49PT3mzZvHX3/9RfsXJlXOdeHCBYYNG4ahoSHu7u706tWLunXrEhISotZrDV5+3m8y3PJVGjdujK2tLYGBgfTq1YvAwECcnJzyTCYVVmJiIg8fPuTdd98t1HFyk4nLly/P1xe4F69ZQeNzE+eva8+rfvksaJ35MWzYMLp06cKhQ4c4fvw4p06dIigoiF27drFmzRplnePHj6fhCx8+cj2fPE9OTlb2tDx58iTJycnKnpr37t3j7t279OnTR9nbuG3btgwZMoQff/yRESNGAKjd/y9e++zsbMaMGcPRo0dp3LgxLi4u9OnThyZNmjB48GBluYJc0/yen3h7zCxzetcmxCWo7UuIjUff0ADdZwmaooh7naT4BH6cv4LHIaG4erjTbVDvYusNKsTrlLbn40U6ujo4NqjHmcO/kZSQiJGJcaGPKUR+6Znl3G/pCSlq+9LjU9Ay0EErj6kR8hv3psd/no5RztQQmemK15yNEEXP6tkIptgXFnoFiImPx9DAQJnALIq4XLo6OjSqV48Dx48Tn5iIqfE/7w1/XruGtrY2LsUwdZkQ4u2SpGY+hIaG4ufnR/fu3dV6V0VGRqqVDw8PJzs7W+UL6P3794Gcoa3W1jmLQGhpaeHu7q4Se/v2bR49eoSBgeq8VAV1+PBhLl++TP/+/VWG4+aqVasW8OoeEosXL0ZfX599+/ap9PxbsWJFnuVDQ0OpWbOm8nXukPrchXKKioaGBp06dWLDhg2EhYVx8eJFlTlNi9KBAwfIzs5Wrg7/pnJ781asWJE6deqo7Dt+/DjGxq/+AlbY+BdVrFgRyOmNaW9vr9yenp7OxIkT6dq1a5HXGRsby40bN2jUqBE+Pj74+PiQnJzMpEmTOHjwIMHBwco6cxPpz7t8+TJxcXEq9+z8+fMJDQ3liy++YM6cOcyfP59p06YBqj8kPO/zzz/nr7/+4q+//sLJyYnGjRu/st0XLlzg6NGjjBkzRmW1dYVCQWxsrLIX9vPX9EVz5szBzMyMJk2aFOj8xNtjYGiAuZUF4Q/UV3EOC3lEpWrqK28WJu5V0lJTlQnN5m096NSvR4GPIURRKi3Px9PwCDbOX0mLjp64ebZQ2ZeWmgoaGmjnMe+gEMVJ20AXPQvjPFc5TwyPwqSSVaHi8lsuLS6JK+t/xaa+PXaeDVXKpUTmjC7RLycJf/H2GRkaYm1pyb1H6u8F9x4+xOEl3xXzGxcaEcH/fviB7l5etGvZUqVcaloaGhoa6LwwivLmvXtUt7PDsJDfuYUQJU/m1MyH3GGmL/aePH78OPfv30ehUP3VMyoqiqCgIOXr5ORktmzZQqVKlahTpw42NjY4OTkREBCgMn9eRkYGU6ZM4eOPP1Y7ZkF17dqV5ORkZs2apTZMPCsri+3bt2NqaqpMsuT2Tnu+bO6w6+cTmgkJCQQEBAAoe5zm2r59u8rr3JXhC5MQ1NTUVGs/5JxfRkYGc+bMITs7m44dO75xHS/z5MkTFi9eTPny5Qs9tL1169YArFy5Uplsg5zFcz788EM2bNhQrPEvcnd3R0dHh23btqkc78CBAxw4cKBY6jx16hSDBw/myJEjym2GhobKBLuWlhZOTk5YW1uzadMmkpKSlOUSExP55JNPmDx5svJevXjxIj/99BPe3t4MGzaMXr168dNPP3HhwgUgZy5LGxsbAgMDiX22eiLk3MOJiYkABAcHK8u/TG7si8//tm3bSElJUT6r5cuXp3bt2uzbt095fMhZ5Gnjxo1ERkYW6PzE21evcQPu/B3M0/B//l2+fS2YqMdPcHZrVORxL/PLph3PEpqtJKEpSo3S8HxY2FiRmpLC+WO/k/nc56SYyGiuXbhENUcH9OSHIVECrOpVJfZOGMlPY5XbYm6HkfI0Huv69oWOy085PTMjMlPTCT9/E0XqP8N1U2MTibh4CzOHCuiaqHd0EOJtcGvQgCvBwYQ+99338o0bhD95gvsrOhjkJ66ClRXJKSkcOnlS5Tv006gozvz1F3Vq1MDgufcGhULBo/Bw7CtXLspTFEKUEPk5+zkLFizAyOjFdddyhqza2tqyYsUK0tLSqFChApcvXyYgIAA9PT2V5ATkzCX5xRdfMHjwYOVKyOHh4SxbtkzZa2zatGkMHjyYXr160a9fP8zNzdm3bx+XLl3is88+U1lo5E307NmTEydOsHXrVv788086dOhAhQoViIqKIjAwkODgYObNm6fsxWlubo6mpiZBQUHY2trSrl07WrVqxerVqxk/fjwtWrTg6dOn7NixQ9k79cXzvnDhAmPGjMHDw4M//viDXbt20bFjR5o3b/7G52FhYcH58+dZt24djRs3pkGDnLmyateuTc2aNdm/fz9ubm6FnoPw8OHDymuelpbG3bt32bVrF2lpaaxevbrQvedq1arFwIED2bRpE7GxsXh5eREbG4ufnx9GRkYqPQCLI/5FlpaWjB07loULFzJ06FC8vLx4/Pgxfn5+uLm54enpiaamZpHW2bp1a+zt7Zk6dSrXrl3Dzs6Ou3fv8tNPP9G8eXNl0nDatGlMmDCBnj178v7776Onp8f27dsJCwtj7ty5aGtrk5aWxtSpU7GwsODzzz8HcnpgHj58mKlTp7Jnzx709PSYNm0a48ePp1+/fvTp04ekpCS2bNlCQkICU6dOZfHixYwcOZLly5cr5519kYuLC8bGxvj6+hIaGoqZmRlnz55l//79as//5MmTGT58OL169aJ3795oamri5+eHqakpI0aMQEdHJ1/nJ0pGy46e/PX7edbPWcY77VujyMjg5IGj2FarQoNmOR+co59EEnL7HnY17LGwscp3XH49CXvMpdMX0Dc0oEKVyvz1+3m1Mg3dmxT+ZIUooNLwfGhpadG5f092rvmJNbOW0LC5K8lJyZwNOoGmpiZd+vcq8vMWIj8qt3TiyZ93uLL2IJVaOJGlUPDoxFWMK1li0zBnCpyU6ATiHzzBtKoNBhYm+Y4rSDmHbs247neUSyv3U8G1FpnpGYSdvo6GpiY1ujZ7uxdFiOd08/Lit3PnmL5kCV08PUnPyOCXoCCq29nR0tUVgIjISILv3sWxenXKW1nlO05LS4sP3n+fZZs28c2iRbRq0oSEpCQO/vYbmhoafPD++yptiYyJQZGZqRzeLoQo2+Tb83P27t2b5/bq1auzatUqZs2axcaNG8nOzsbOzo4pU6agUCiYOXMmV69excnJCQAHBwd8fHxYtGgR4eHh1KpVi5UrV9Lyue7wLi4ubNmyhSVLlrB+/XoUCgX29vbMmjWLHj0K3zNHU1OThQsXsnv3bnbv3o2fnx8JCQmYmZnRuHFjvv32W+rXr68sb2BgwIQJE1i7di0zZszAzs6OcePGkZmZyf79+zl69Cg2Nja4u7szdOhQOnfuzJkzZ2jbtq3yGAsWLGDt2rXMnDkTc3NzPvzwQ8aOHVuo8xg+fDjBwcHMnz+fnj17KpOakNNbc/78+XTp0qVQdQD4+voq/1tHR4fy5cvj6enJiBEjVIZnF8bUqVOpXr06P//8M99//z0mJia4uroyfvx4lRXmiyv+RR9++CHW1tZs3LiRWbNmYW1tjbe3N+PGjVMm34uyTkNDQ9atW8fixYv55ZdfiIyMxNramv79+/PRRx8py3Xo0AEzMzOWL1/ODz/8gKamJjVr1mT58uXK3qNLlizh3r17zJkzB1NTUwDKlSvHxIkTmTp1KgsXLuTLL7+kffv2LF++nOXLlzN//nz09fVp1qyZsv3169dn6tSpVKhQ4aXttrKyYtWqVcydO5fly5ejq6uLvb098+fP5/Lly8pemFZWVjRr1owNGzawePFili1bhp6eHk2aNGHixInKaSfyc36iZBiZmjB88sfs3xJA0K5AdHV1qePiTPveXdF+tjDW/Zt3CVi3mR5D+yuTNvmJy6/7wXcASE1OIWDd5jzLSFJTlITS8HxAzv2vraPNb/uDCNy6Cx09PRzq1MSrZ2esKtgU6TkLkV+6xgbUH9GRu/vO8eDwn2jpamNZxw77Dq5oaueMwIi/H8HNHSep9X4LZVIzP3EFKWdVtyp1B3oScuwy9w5eQFNHC3P7ilRr3whDa/O3ek2EeJ6ZiQnffvIJG/z92bZ/P3o6OjSpX58B3bsrFx+9fucOy/38+NDHR5nUzE8cQKumTdHR1mb34cNs9PdHT08Pp1q16NulC7YvdH5JfNYhQYaeC/HvoJH9/LhSIcqQVatWsWTJEk6ePImZmVlJN0eUUS/Of1uWHQ75o6SbIIQQooxac+dwSTdBiFJrlWWHkm6CEKWa6XMdpsqy+MuXS7oJL/VvucZFTebUFGVSeno6/v7+eHl5SUJTFMq/JaEphBBCCCGEEEL8l8jw8zIiMzOT6OjofJU1MTH5166gHBERga+vL7dv3+bBgwfMmTNHZX9qaioJCQn5OpaFhYUsylJISUlJJCcn56ts7vBrIYQQQgghhBBCiMKSpGYZER4enu9VxH19fenZs2cxt6hkmJmZceHCBRQKBd988w3Ozs4q+/fv38/kyZPzdaygoCAqy6p3hbJu3TqWLl2ar7LBwcHF3BohhBBCCCGEEEL8V0hSs4ywtrZm/fr1+Sqbu4r0v5G+vj4nT5586f4WLVrk+zpJz8HCe++992jcuGCr1wohhBBCCCGEEEIUliQ1ywg9PT3c3d1Luhmlno2NDTY2svrp21KlShWqVKlS0s0QQgghhBBCCCHEf4wsFCSEEEIIIYQQQgghhChTJKkphBBCCCGEEEIIIYQoUySpKYQQQgghhBBCCCGEKFMkqSmEEEIIIYQQQgghhChTJKkphBBCCCGEEEIIIYQoUySpKYQQQgghhBBCCCGEKFMkqSmEEEIIIYQQQgghhChTJKkphBBCCCGEEEIIIYQoUySpKYQQQgghhBBCCCGEKFO0S7oBQgghhBBCCCGEEEKIvLVp0+aV+4OCgt5SS0oXSWoKIcS/xJo7h0u6CUIIIYQQ/zojow6UdBOEKNV+pn5JN0H8R0lSUwghhBBCCCGEEEKIUuq/2hPzdWROTSGEEEIIIYQQQgghRJkiSU0hhBBCCCGEEEIIIUSZIklNIYQQQgghhBBCCCFEmSJJTSGEEEIIIYQQQgghRJkiSU0hhBBCCCGEEEIIIUSZIklNIYQQQgghhBBCCCFEmSJJTSGEEEIIIYQQQgghRJkiSU0hhBBCCCGEEEIIIUSZIklNIYQQQgghhBBCCCFEmSJJTSGEEEIIIYQQQgghRJkiSU0hhBBCCCGEEEIIIUSZIklNIYQQQgghhBBCCCFEmaJd0g0oKWfOnGHw4MGYm5tz4sQJdHV1VfZ7enpSqVIlNm3aVGxtiIqKwsDAAENDwyI53qRJkwgICCA4OLhIjve8s2fPMmjQID766CPGjRuXZxlPT08Ajhw5UuT1F4WsrCzCwsKoXLlygeJyz93X15eePXsWuN6HDx9SpUqVAsflx8CBAzl37pzKNj09PaytrWnRogWjR4+mYsWKKvtfvLezs7OZO3cuO3bsIC0tjYkTJ/Luu+8yadIkLl26hIGBAYGBgVhYWBTLOQhR2qQnpnDvwAViboaSlaHArHpFqnduioGFSZHF5rdc0uMY7h24QNz9CLR0tTGvYUu1to3QL2dcpOcsREG8jWfkeSHHLvH4/E2aTuyd5/6szEz+WLIHa+dqVG3j8sbnJURRKE3vISlR8dwLvEDsvXCyFVmYVLGmWrvGmNpZF+k5C1EQ8h4ihChK/9memr/88guGhobExsaWSBLu+PHjdOjQgejo6CI7Zp8+fZg9e3aRHe/fJDExEW9vbwICAgoc6+DgwOzZs2nSpEmBY7/++mumTJlS4LiCmj17tvJ/kydPxsPDg127dtG9e3fu3LmjUnbKlCmMHj1a+frYsWOsWbOGhg0bMnXqVJo3b87333/PhQsXGDVqFJ999pkkNMV/RpYik2sbDhN17QEV3Ryxa+NCYmgkl1cHkpGcViSx+S2X/DSWS6v2E3c/gkrudanc0omEh0/5a8U+UqMTiu0aCPEqb+MZeV70zVBCgi699JjZ2dncCvidlCdxhTovIYpCaXoPyUhK5fLqQGJuh2HbvC7V2jUiNTaRK2sPkPS46L5/CFEQ8h4ihChq/8memunp6fz66690796dvXv3EhAQQIcOHd5qGy5fvkx8fHyRHtPFxQUXF/l1KS+xsbFcuXIFDw+PAsdaWVnRvXv3N6r35MmTVKpU6Y1iCyKv9vXu3Zu+ffsyfvx49uzZg6Zmzm8YXl5eKuVye/Z++umnODo6KrfVqVOHsWPHFnPLhShdIv68TWJoFE5D21Guhi0AFo6V+GPxbkJPXqNau0aFjs1vuXuBF8hMy6DByI6YVi0PgI2LAxcX7uLugQvU7d+62K6DEC/zNp6RXOHngrnzy1myM7PyPJ4iJZ2bO08S9XdIEZ2dEIVTmt5DHl+4SXp8CnUGtMaqXlUALOtV5eKCAEKOXKKOvIeIEiDvIUKIovaf7Kl5/Phx4uPjcXNzo0WLFpw8eZKnT5+WdLOEKFJ16tRh1KhR3Lp1i6NHj760XEZGBgBGRkYq255/LcR/xdPL99C3NFF+WAYwtDbH3KEiTy/fLZLY/JTLyswk5lYY5jVslQlNAF1jA8o3ciDq7xAUKemFPl8hCuptPCMAV9Yd5Pau05g7VMDIVn20QGJ4NBcW+BMd/IhKLesV8qyEKBql5T0EIDUmEYByNf8pp29ujKGNOUkRMW9+kkIUgryHCCGK2n8yqfnLL7+goaFBkyZNaNu2LQqFgt27d7827s8//+SDDz5Q9ogcOnQoly9fVimTnZ3Nli1beP/993FxccHZ2ZkOHTqwatUqsrOzgZy5L5cuXQpAmzZtGDhwoDI+ODiYMWPG4OrqSv369fH29ubw4cMqdQwcOJBhw4axYMECXFxcaN68OcHBwUyaNEnZ0y5XREQEU6ZMoUWLFri4uNCrVy+14xWXJUuW4OzszP379xk1ahQuLi40adKEL7/8kpgY1Q9TiYmJ/O9//+Pdd9+lQYMGdO3ale3bt6uUiYuLY/r06bRs2RInJyc6duzIhg0blNf1+ToPHTrEO++8g4uLC9u3b6dNmzYALF26FEdHRx49egTAgwcP+PLLL2nVqhVOTk40bdqU0aNHc+vWLeUxz549i6OjI/7+/iqvT506xbfffkvz5s1p0KABgwcP5saNG8o4R0dHQkNDOXfunDK+T58+tGjRgqws1V8M79y5g6OjIz/99FMRXPl/dO3aFYATJ04ot3l6eirvOU9PT5V70dPTU63dS5YsAXLmJF23bh0dOnTAycmJli1bMmPGDBITE9WuVUBAAF27dsXZ2ZnJkycXOP511xZynrWNGzfSpUsX6tevj6enJ3PnziUlJUVZJj91FkRwcDDDhg2jWbNm1K9fnx49erBjxw61ckePHqVv3740aNCAJk2aMG7cOO7du6fcv2XLFhwdHdWmixg2bBhOTk5q5yrensSwKIxtLdW2G9lakhqdSEbKy4dG5Tc2P+UyElPJzszCqEI5tXL6FqaQlS3DB0WJeBvPCEBqbCIO3ZpRb3BbtPV01GJSYxIwsDKl4YedsW1W5w3PRoiiVVreQwAMLE0BSHn6z8iwrMxM0uKS0DUpmvn8hSgoeQ8RQhS1/9zw88TERI4dO0bDhg2xsrLCw8MDXV1ddu3axfDhw18ad+rUKUaNGkXt2rUZP3486enp+Pv7M2DAANavX4+rqysACxcuZMWKFfTo0QNvb2+SkpLYtWsX8+bNw8jIiAEDBtCnTx8SExM5dOgQkydPpmbNmkDOkPRBgwZhbGzMBx98gJGREbt372bs2LF8/fXXDBgwQNmeP/74g4cPHzJx4kQePXpEjRo11NocGxuLt7c3sbGxDBgwgCpVqrB3714++ugjli5dqjYMuThkZWUxaNAgXF1d+fLLL7ly5Qo7duwgNTWVRYsWATnTAQwYMIBbt27h7e1N7dq1OX78ONOmTSMlJYVBgwaRnJyMj48P4eHh9O/fnwoVKnDmzBn+97//cf/+fb755htlnQqFgq+//poPPviA9PR0atWqxeTJk/H19aVt27a0bdsWCwsLIiMj8fb2xtjYGB8fH8qVK8f169fZtm0b165d48iRI+joqL8J5po2bRo2NjaMGTOGuLg41qxZw4gRIzh69Cja2trMnj0bX19fypUrx+jRo2nUqBFJSUnMmDGD8+fP4+bmpjzWvn370NbWpmPHjkV6/atUqYKBgcFLk2RTpkxh165dynvRxsaGjIwMlXbnJsqnTp3K7t27ee+99xgyZAh37txhy5Yt/PHHH2zZsgU9PT3lcb/77jt69uxJ7969sbW1LXD8664twLfffsuWLVto3bo1/fr14969e6xbt4779+8rE7UFqfN1oqOjGTZsGOXKlePDDz9ET0+Pffv2MXXqVPT09JQJZH9/f6ZMmULz5s2ZOHEicXFxbNmyBW9vb7Zt24a9vT19+/YlMDCQDRs28N5771GrVi22bdvGyZMn+eyzz6hdu3YB/sqiqGSmZ5CZkoGuqfqXPV1jAwDSYpPQMVC/b/Ibq6mlma9y+uY5CwFlpmWolVM8+9Cenpiitk+I4vQ2npHc2Mbj30NTS+ulbbFwrIxV3Zwhtbk90oQoSaXpPUTHQI8KrrV48tcdbgacoka35mgb6PLw2CUyklKp3NKpUOcqxJuQ9xAhRHH4zyU1Dx48SFpaGu3atQPA2NgYd3d3jh07xuXLl6lfv75aTFZWFt988w3Ozs74+fmh9ewfSB8fH9577z1mzJjBrl27yMjIwM/Pj86dOzNr1ixlfO/evWnevDknTpxgwIABuLi44OjoyKFDh/Dy8lKuxj1jxgw0NDTYsWMHFSpUAKBfv37069eP2bNn07FjR+WCLcnJycyZM4cGDRq89FxXr17N48eP2bx5M40bNwagZ8+edOnShRUrVryVpKZCoaBTp05MmjQJgL59+xIREcHhw4dJSUnBwMCAHTt2cOPGDebOnatMDPXp0wcfHx9WrVqFj48Pa9eu5d69e+zcuVOZZOvfvz/z589n5cqV9OnTR5kIysrK4oMPPmDkyJHKdlhaWuLr64ujo6Ny/kk/Pz/i4uLYvHkzDg4OyrJGRkasWrWKmzdvUq/ey4cjWFpasnnzZuX9oKury7x58zh79izvvPMO3bt3Z9GiRSpzcnbq1AlfX18CAwNVkpr79++nefPmxbIgj6mpKbGxsXnu8/Ly4vr162r34ovtPnv2LP7+/nz77bf07dtXGe/h4cGwYcP4+eefGTx4sHJ748aN+eqrr5SvCxr/umt7+/Ztfv75Z7y9vZk+fboyzsjIiBUrVnD79m2ioqIKVOfrnDlzhqdPn7J8+XKcnZ2BnOepb9++3Lx5E8j50WTmzJl06tSJ+fPnK2O9vb3p3Lkzc+fOZdmyZWhoaDBz5ky6du3Kt99+y7x58/j+++9p1KjRK39cEcVLkZqTQNTSUX9rzN2Wla6eZCxIbH7LaRvoYmBtSnTwIzLTFWjp/lM+6nrO3E9ZirzniBKiuLyNZyTXq76M5me/EG9baXoPAdA20KWqlws3tv7GpRX7lOUcurph4Vg5fyclRBGS9xAhRHH4zw0/37t3LwBt27ZVbsv979zhxS/6+++/efjwIV5eXsTFxREdHU10dDSpqam0bt2a69evExERgY6ODr///jvfffedSnxMTAzGxsYkJye/tF2RkZFcunSJ7t27KxOaAHp6egwbNozU1FR+//135XZ9fX1lYuVljh07Rr169ZQJzdzjrVq1isWLF78ytii92PuwTp06KBQKZaLt2LFjWFhY0KVLF2UZDQ0NZs+ezU8//YSGhga//vortWrVwtraWnn9o6OjlYnZF+eMzM9K5SNHjuTUqVMqCc3U1FTlgjqv+nsBtGvXTpl0yz0v4JXzs1paWtK8eXMOHTpEZmYmkHN/3bt3T+X8i5JCoUBDQ6NQx/j111/R0NDAw8ND5frXrVsXa2trjh07plL+xetf0PjXXdtjx46RnZ2tMnUD5Azf3rNnD3Z2dgWu83Vyn8t58+Zx4cIFMjMz0dXVxd/fn9hRobkAALEmSURBVM8++wzI6dGdmJiIl5eXSp1aWlo0a9aMkydPolAogJxetBMmTODChQv4+PiQlZXF999/r7z/RAl61ePyumcpv7H5KFfFoz7pccn87RdEwqNIkp/EctP/FKlROSufa2gW7rkW4o29jWdEiLKqlLyHPL5wk783HUHfwoRa77egdl8PLGpX5s7es4SdkWluRAmS9xAhRBH6T/XUfPLkCWfOnKFatWpoaGgo51WsXbs2Ghoa7N+/nylTpqCrq6sSFxKS0ytm9uzZanPg5QoLC6N8+fLo6Ohw7NgxgoKCuHfvHg8ePCAuLg5AZe7HF4WGhgJgb2+vti836RYWFqbcZm5u/trkR2hoKJ6enmrb86rjdXKH6eYmZPKiUCjyXFzmxd6Hudc3N6kXGhqKnZ2dWuLt+VXDQ0JCSE1NpXnz5nnWHR4ervLa0lJ9vpW8ZGRksGDBAq5du0ZISAiPHj1StuvFeS9f9LLzel1c165dOXnyJOfPn6dZs2bs27cPPT29Yuk5m5mZSXx8/Bv9zZ8XEhJCdnY27777bp77X/y7v3htChv/4rXNfV6qVaumUs7U1BRTU9M3qvN1GjVqxKBBg9i0aROnT5/G3NycFi1a0LVrV2Uduf9WTJgw4aXHiY6OxsbGBsiZH3fPnj1cvXqVzz//HDs7uwK1Sby5zAwFmamqC+3k9obMUmTmWR5AK495mQoSW5A6yjeqQXpCMg+C/uKvH3J+kDOtaoN9B1duBfyOdh7Ds4QoKiX1jAhRFpSF95D7h/5E18yQhqM7oaWbs826vj1XNxziXuB5rJyqKoftClHU5D1ECPG2/KeSmvv37ycrK4v79+8rF455XlxcHIcPH6ZTp04q23MTKePHj6dhw4Z5Hrt69epkZ2czZswYjh49SuPGjXFxcaFPnz40adLktcNcX5XwzK3/+fkdtfLRZT4zM7PQPfRy5SaKkpKSXlomISGBihUrqm1/XRvy087MzEwaN27MRx99lOf+3CRRrvz0drtw4QLDhg3D0NAQd3d3evXqRd26dQkJCVHrbZuXN+1R17ZtW7755hsCAwNp1qwZgYGBvPvuuxgbG7/R8V7l9u3bZGRkFHqOxqysLIyMjJRzVb7oxbkpX7w/Cxr/umubm3h+lYLWmR9Tp05l4MCBHDx4kN9++42DBw+yd+9e+vTpw3fffad8VqdPn64cyv8iMzMz5X8/ffqUBw8eABAUFMSwYcOkp+ZbEnnlPjd3nFTZZtemAVoGOqTHq/fSTk/Imb8yr7mcALT1dfMVm99yuap41Kdi09okRcSgY6SPobUZ4eeDATCwMMnPqQrxRkrqGRGiLCjt7yHpiSlkJKRg615HmdDMVb5RDWKCQ0l4+BTLOvJjqige8h4ihHhb/lNJzdxVz2fNmqWWQLpx4wZLliwhICBALamZ22MwN/n1vMuXLxMXF4e+vj4XLlzg6NGjjBkzhvHjxyvL5A61rlKlykvbllvH3bt31fblrpr8/LD0/LC1tVX2HHteQEAAFy9e5Ouvv1brlfoylStXRl9fn9u3b+e5/+HDhyQnJysXPSpoO4ODg9W2Hz9+nP379zNx4kQqVapEUlKS2vWPi4vj9OnTVK1atcD1Ll68GH19ffbt26fSM3DFihUFPlZBGBkZ0bp1a44ePUq/fv0IDQ1VrhBe1A4cOACQZxK/ICpVqsTJkydxcnJSJrifr+N1PQwLG/+i3MWHHj58qDJ9QEREBL6+vvj4+BR5nZGRkdy6dYvmzZszYsQIRowYQUxMDGPHjmXbtm3K+xRyepq+eK+ePXuWrKwslWfu//7v/8jIyGDChAksWLCADRs28MEHHxSoXeLNmNewxWloO5Vt+hYmxN2PIDFMfVXxpPAo9C1N8py8PpexrWW+YvNbLurGQwAsa1fBrFp5Zbn4+xHoGOujbylJTVF8SvIZEaK0K+3vIYqUnB5y2Znqo4eys7JV/l+I4iDvIUKIt+U/0yXo3r17XL16laZNm/Lee+/h5eWl8r9Ro0ZhbW3NqVOniIiIUIl1cnLC2tqaTZs2qfRUTExM5JNPPmHy5MloaWkp54h8cSXybdu2kZKSojJ0O7c3Vm4PTWtra5ycnNizZw+PHz9WlktPT2f9+vXo6uryzjvvFOicW7VqxZUrV7h69apyW0ZGBmvXruXq1av5TmhCzvDfli1bcvbsWf766y+1/Rs2bABU5yotSDsjIyM5dOiQ2jGPHTtGuXLl8PT05MaNGxw/flylzPLlyxk/fjy3bt16ZR25PQefHxoeGxuLhYWFSkIzISGBgIAAIH+9AV9HU1Mzz+HoXbt2JSIigpUrV2JiYoKHh0eh63rR7du3+fHHH6lXr95Lh+3nV+40BsuXL1fZfuTIEcaPH88vv/xSrPEvyr1eW7ZsUdnu7+9PYGAgxsbGRV6nv78/Q4YM4cqVK8pt5cqVo2rVqmhoaKCpqYm7uzt6enqsWbOGjIx/JiuPiIhgzJgxzJ07V9kree/evRw5coSxY8cyevRomjdvzsKFC5U9N0Xx0jM1pFwNW5X/GViYYFWvKilP44i5/c90H8lPY4m9E451/VdP45Df2PyWe/LnHW7uPIniuRXQE0OjeHrlPrbNahdZT3wh8lKSz4gQpV1pfw/RNtDFpIoVkdcekJGUqiyXnZ3N4ws30dDSxLSq6ignIYqSvIcIId6W/0xPzdwFgt5///089+vo6NCrVy9WrFjB7t271fZNmzaNCRMm0LNnT95//3309PTYvn07YWFhzJ07F21tbVxcXDA2NsbX15fQ0FDMzMw4e/Ys+/fv5//Zu+/4nO7+j+Ov7CkiC4mkYiUqRsxGzQg1qlJq1a4qNW53e98d1F2/tlqt6rBqh6Jixt4VUaMoqkbtFYKIkZA9f39ErooECQnSvp+PRx4POefz/Z7vOa6T61yf6zssLCyyJUSzEmkzZsygUaNGNGvWjBEjRtCrVy9ee+01unbtio2NDStXruTIkSOMGDEiR2+zhxkwYAAbNmygV69edO/eHRcXF9asWcPp06cJCgrKV10A77//PgcOHKBPnz506NABLy8vEhIS+OWXX9i2bRvt27d/pORcly5dWLp0Ke+88w7dunXD09OTsLAwduzYwRdffIGJiQn9+/dn48aNDBo0iC5dulCxYkX27dvHihUraNSoEY0aNXrgMbLmIN28eTOurq60aNGCRo0aMX36dIYOHUqDBg2IiopiyZIlXLt2DXjwUPu8cnBw4NixY8yfP5+6desaEt4NGzbE3t6etWvX0r59+3wlmHNz92s2Pj6e48ePs2LFCqysrPj6668fO/nRuHFjmjVrRlBQEBEREfj5+REREcFPP/2Eq6srffv2LdTy96pcuTIdO3Zk7ty5XL16FT8/P8OK6IGBgXh7e+Pl5VWgxwwMDGTWrFkMGDCArl27UrJkSQ4fPszy5ct59dVXsbGxwcbGhnfffZfRo0fTuXNnXnnlFVJTU5k/fz5JSUl88MEHQOa8mqNGjaJixYqGnpkjR46kbdu2fPTRR8ydO1cJq6ekVO1KXPr1GEeDt1CmoQ8mZqZc3HYYcztr3F6sYohLjk3g5slL2JYugU0ph3yVzWuc24tVuP7neQ4FbaCkbwVSE5KI2H4Eaxd7XO+KE3mSnsQ9IlJUPUvvIeXa1OPQzPX8/sMqStf1wtjMlGuHznHr/FXKtqip+TTlqdB7iIgUtH9UUrNYsWK0aNHivjGdOnVi2rRphp56d2vZsiXFixdn8uTJ/PDDDxgbG1OxYkUmT55M06ZNAXBycmLatGmMHTuWyZMnY25ujqenJ99++y0HDx5kzpw5XLt2DScnJ9q0acPGjRsJCQlhz549NGvWDF9fX4KDgxk/fjxBQUGkp6fj7e3NpEmTHmkRGUdHRxYuXMg333zDggULSE5Oxtvbm6CgoEfquefh4cHSpUuZPn06v/zyC4sXL8bS0hJPT09Gjx7Nq6++mu86IXMl97lz5/L999+zZs0abt++Tfny5fn+++8NK6fb29uzcOFCxo8fz/r161m4cCGurq4MHDiQt95666HzEFpZWfHOO+8wc+ZMRo0ahYeHB0OGDCEtLY21a9eyZcsWXFxcqF+/Pm+88QZt2rRh165dj9Tz9G5Dhgxh5MiRfPHFFwwaNMiQ1DQ3N+ell15i4cKFBbLq+fvvv2/4t4WFBaVLl6ZDhw7069ePkiVLPqBk3hgZGTFu3DhmzJjB8uXLCQ0NxcHBgRYtWjB06FCcnJwKtXxuPv30U8qWLcvixYsJDQ3F1dWVQYMG8eabbxbKMV1cXJgzZw7jx49nwYIFREdH4+bmxuDBg+nXr58hrnfv3pQsWZJZs2bx3XffYWlpSZUqVfj666+pVasWkDnnZnR0NBMnTjTMlevp6Um/fv344YcfmD9/Pt26dcv3NZHHZ2xqQtW+L3F27W9c/OUwRkZGFC9XinKt6mBm/dewpvir0ZxYvA2PZtUND9t5LZvXODsPZ6r0as75Tfs5u34vplbmONcox3PNfDHVZPjylDyJe0SkqHrW3kOq92/NuU37uRB2kPS0dKxd7PHq1BCXGn9N3SPyJOk9REQKmlHGg1aoEZFCM3LkSDZv3szWrVvztPCTyMN02TLmaTdBRERERET+YRY0ff/hQUXArYMHn3YT7suuWrWn3YRn0j9mTk2RZ0l0dDTr168nMDBQCU0RERERERERkXz6xww/l5yioqLyFGdtbY2NjU0ht+af4ciRI8yYMYODBw+SlJSUY4hxXFwc8fHxearL2dm5MJr4j3L79m0SExMfGmdiYpJtQSkRERERERERebqU1PwHa9CgQZ7iBg8ezJAhQwq5Nf8MxYoV49dff8XCwoKxY8dSunTpbPuDgoKYOHFinuo6fvx4YTTxH+Xzzz/PdQ7de7m5uREaGvoEWiQiIiIiIiIieaGk5j/YrFmz8hTn7u5eyC355/Dw8GDXrl333R8YGGhYTEYK35tvvskrr7zy0DgLC00+LiIiIiIiIvIsUVLzH6x+/fpPuwlyD3d3dyWRn6AKFSoYVqQXERERERERkaJDCwWJiIiIiIiIiIhIkaKkpoiIiIiIiIiIiBQpSmqKiIiIiIiIiIhIkaKkpoiIiIiIiIiIiBQpSmqKiIiIiIiIiIhIkaKkpoiIiIiIiIiIiBQpSmqKiIiIiIiIiIhIkaKkpoiIiIiIiIiIiBQpSmqKiIiIiIiIiIhIkaKkpoiIiIiIiIiIiBQpSmqKiIiIiIiIiIhIkaKkpoiIiIiIiIiIiBQpSmqKiIiIiIiIiIhIkaKkpoiIiIiIiIiIiBQpSmqKiIiIiIiIiIhIkaKkpoiIiIiIiIiIiBQpSmqKiIiIiIiIiIhIkaKkpoiIiIiIiIiIiBQpSmqKiIiIiIiIiIhIkaKkpoiIiIiIiIiIiBQpSmqKiIiIiIiIiIhIkaKkpoiIiIiIiIiIiBQpSmqKiIiIiIiIiIhIkaKkpoiIiIiIiIiIiBQppk+7AYVp165d9OrVC3t7e7Zt24a5uXm2/f7+/ri5uTF37txCa8P169exsrLC2tq6QOr78MMPWbZsGcePHy+Q+u62e/duevbsyeDBgxkyZEiuMf7+/gCEhoYW+PELQnp6OpcuXaJMmTL5Kpd17qNHj6Z9+/b5Pu6FCxdwd3fPd7m86NGjB3v27Mm2zcLCAmdnZxo0aMCAAQMoXbp0tv33vrYzMjIYO3YsS5YsISkpiffee48mTZrw4Ycf8scff2BlZcW6detwcHAolHMQKSoSb9zmzLrfiDlzBQAH7zJ4tqqDua1VgZc7uWwnCddiqNavVa77UxKS2PfdMjxb1qZkzQqPeEYiBS85NoGz6/dy80QE6SmpFC9XmnJt6mLlUKzAyuY1Lu7KTc6u30vMuUhMzE2xr+BK2eY1sSxhW6DnLPIwhf3+kde4mHORnNu4n9iIa5hameNY2YPnAnwxs7EsqFMVeSS6R0SkMPytk5qrVq3C2tqa6OhoQkNDadmy5RM9/tatW/nvf//LsmXLCiyp2blzZ/z8/Aqkrr+b2NhYevfuTePGje+blL2f8uXLM2bMGGrWrJnv43788cecPXu2UJPjAGPGjDH8Oz4+npMnT7J06VLWrVtHcHAw5cuXN+wfPnw4VlZ/vYGHhYUxY8YMmjRpQkBAALVq1eKrr75i7969DB48GGdnZyU05R8vJT6JgzPXk5GWTplGPmRkZHBx22HirtykxsCXMTYxKbByV/ae4MpvJyjuWTLXOtPT0jgWHEZKbGKBnqPI40pPTePIjz+TcC0GtwZVMLEwJ2L7YQ5OX0fNIe0ws7Z47LJ5jYuPiuaPaWvJSM/Arf7zmFqZc3nPcQ5MWUON/q2xzEOSVaQgFPb7R17jos9c5vCsTZhamePepBpGRkZE7PyT6DNXqD6gNWZW978/RQqT7hERKSx/26RmcnIyGzdupF27dqxevZply5Y98aTmwYMHuXXrVoHW6evri6+vb4HW+XcRHR3NoUOHaNy4cb7LOjk50a5du0c67vbt23Fzc3uksvmRW/s6duxIly5dGDp0KCtXrsTYOHNGiYCAgGxxWT173333Xby8vAzbKleuzKBBgwq55SJFQ8T2IyTFxFPrX+2wdrEHoFgZZw4HbSRy/ylK1/F67HIZ6elcCDvI+c0H7tuOpJg4ji3Yyq3zVwvq1EQKTOTvp4iNuI7PGy0oUcEVAAcvN/aPX0HE9iOUbXH/LwfzWjavcWfX7SUtKYXqb7XC7rnMLwhcfMuz7/vlnFm/l+dfb1po10HkboX9/pHXuNOrdmNkbET1/q2xcrQDwLGKB/vHr+RC2EHKtapTeBdB5AF0j4hIYfnbzqm5detWbt26Rb169WjQoAHbt28nKirqaTdLpEBVrlyZ/v37c/LkSbZs2XLfuJSUFABsbGyybbv7d5F/uqiDZ7D3LGV4GAYoUcEVK2c7og6efexyaSmp7J+4ivM/H8ClRnnMi+fswX/zZAR7v1tG7OUbuNavXCDnJVKQog6exdKxmCHZCGDtbI99+dJEHTxTIGXzEpeelsbNk5ewr+BqSGgCmNtaUbJmea7/GU5qQvJjn69IXhT2+0de4hJvxhIfGY2Lb3lDsgYy7x2Hyu5E7j/1+Ccq8oh0j4hIYfnbJjVXrVqFkZERderUoXnz5qSmprJixYqHlvv999/p06ePoUfkG2+8wcGDB7PFZGRkEBwczGuvvYavry9Vq1alZcuWTJs2jYyMDCBz7suJEycC0KxZM3r06GEof/z4cQYOHEjt2rWpVq0anTp14ueff852jB49etC3b1++++47fH198fPz4/jx43z44YeGnnZZIiMjGT58OA0aNMDX15cOHTrkqK+wTJgwgapVq3Lu3Dn69++Pr68vderU4YMPPuDmzZvZYmNjY/niiy9o0qQJ1atXp23btixevDhbTExMDJ999hkNGzbEx8eHVq1a8eOPPxqu693H3LRpEy+++CK+vr4sXryYZs2aATBx4kS8vLy4ePEiAOfPn+eDDz6gUaNG+Pj4ULduXQYMGMDJkycNde7evRsvLy9CQkKy/b5jxw4++eQT/Pz8qF69Or169eLYsWOGcl5eXkRERLBnzx5D+c6dO9OgQQPS09Ozndvp06fx8vLip59+KoAr/5e2bdsCsG3bNsM2f39/w2vO398/22vR398/R7snTJgAZM5JGhQURMuWLfHx8aFhw4aMGjWK2NjYHNdq2bJltG3blqpVqzJs2LB8l3/YtYXMe23OnDm8/PLLVKtWDX9/f8aOHUtCQoIhJi/HzKuLFy/i5eXF7Nmz6dq1Kz4+PvTu3RvIfP1+8803tGzZkqpVq+Lr60unTp3YvHlzjnpWrFhBhw4dqFGjBo0aNeLjjz/mxo0b2WJCQkIIDAykatWqvPDCC3z44YdcvaqeeU9LSkISiTdisXVzzLHPtrQjsZeuP3a5jNR00pKS8e7aGK+ODTEyNspRJv5qDPblS1FzyCs4Pu/xGGckUjhiL13H1jXn693G1ZHEG7GkJCQ9dtm8xKXEJpKRlo5NqRI54iwd7CA9g7grN3LsEylohf3+kde45FtxANiUzHlPWDkUIzUuiaSYuLyfmEgB0T0iIoXpbzn8PDY2lrCwMGrUqIGTkxONGzfG3Nyc5cuX8+abb9633I4dO+jfvz/e3t4MHTqU5ORkQkJC6NatG7NmzaJ27doAfP/990yZMoVXX32VTp06ERcXx/Lly/nmm2+wsbGhW7dudO7cmdjYWDZt2sSwYcOoWLEikDkkvWfPntja2tKnTx9sbGxYsWIFgwYN4uOPP6Zbt26G9uzfv58LFy7w3nvvcfHiRSpUyLlQRHR0NJ06dSI6Oppu3brh7u7O6tWrGTx4MBMnTswxDLkwpKen07NnT2rXrs0HH3zAoUOHWLJkCYmJiYwbNw7InA6gW7dunDx5kk6dOuHt7c3WrVsZMWIECQkJ9OzZk/j4eLp3787ly5d5/fXXKVWqFLt27eKLL77g3LlzjBw50nDM1NRUPv74Y/r06UNycjKVKlVi2LBhjB49mubNm9O8eXMcHBy4du0anTp1wtbWlu7du1OiRAmOHj3KokWLOHLkCKGhoZiZmd333EaMGIGLiwsDBw4kJiaGGTNm0K9fP7Zs2YKpqSljxoxh9OjRlChRggEDBlCzZk3i4uIYNWoUv/32G/Xq1TPUtWbNGkxNTWnVKvdFQR6Vu7s7VlZWORKCWYYPH87y5csNr0UXFxdSUlKytTsrUf7RRx+xYsUKAgMD6d27N6dPnyY4OJj9+/cTHByMhcVf88x8+umntG/fno4dO+Lq6prv8g+7tgCffPIJwcHBNG3alK5du3L27FmCgoI4d+6cIVGbn2Pm1bhx4/D396dt27ZYWFiQkZFB//79+fPPP+nevTseHh5cuXKFBQsWMHjwYJYvX264htOnT2fs2LHUqlWLd999l+vXr/Pjjz9y9OhRgoODMTU1ZeLEiUyYMIGXXnqJTp06ERkZybx589izZw9LlizR/KZPQXJMPADmdjl7T5rbWZGWkEJqQjKmVuaPXM7E0oza73bA2OT+3yeWfsELtxefB9CDtTxz0pJTSEtIyf31fmchhqTouFznJMtrWWMT4zzFWdpnLgSUlpSSIy71TnI0OTYhxz6RglbY7x95jTM2y3x2yu2eSIm/c0/cTsCiuEbpyJOle0RECtPfMqm5YcMGkpKSaNGiBQC2trbUr1+fsLAwDh48SLVq1XKUSU9PZ+TIkVStWpV58+Zhcmcy4e7duxMYGMioUaNYvnw5KSkpzJs3jzZt2vDll18aynfs2BE/Pz+2bdtGt27d8PX1xcvLi02bNhEQEGBYjXvUqFEYGRmxZMkSSpUqBUDXrl3p2rUrY8aMoVWrVoaERnx8PF9//TXVq1e/77lOnz6dK1euMH/+fGrVqgVA+/btefnll5kyZcoTSWqmpqbSunVrPvzwQwC6dOlCZGQkP//8MwkJCVhZWbFkyRKOHTvG2LFjDT0LO3fuTPfu3Zk2bRrdu3dn5syZnD17lqVLlxoSRK+//jrffvstU6dOpXPnznh7ewOZ/199+vThrbfeMrTD0dGR0aNH4+XlZZh/ct68ecTExDB//vxsC+nY2Ngwbdo0Tpw4QZUqVe57bo6OjsyfP9/wejA3N+ebb75h9+7dvPjii7Rr145x48Zlm5OzdevWjB49mnXr1mVLaq5duxY/P79CSVjZ2dkRHR2d676AgACOHj2a47V4b7t3795NSEgIn3zyCV26dDGUb9y4MX379mXBggX06tXLsL1WrVr873//M/ye3/IPu7anTp1iwYIFdOrUic8++8xQzsbGhilTpnDq1CmuX7+er2PmVenSpRk7dixGRpk96f744w/27t2b4zg1atTgzTffZOfOnXh5eRETE8OECRNo2LAhU6dONZxbmTJlGDFiBDt27KBcuXJMmjSJt956i//85z+Gutq0aUP79u2ZMmUKw4cPz3eb5fGkJWc+4JqY5XxbNL6TZE9LSc3xwJ2fckZGRhiZ5Oydma3MfSbKF3kWpCbe//WetS09OeeHxfyUzWucqZU5Vs523Dh+kbTkVEzM/4q/fjQ8My41PUcdIgWtsN8/8hpnXdIeE0szrh05T5nGVQ3PMGkpqdw8GQFAekpq/k9Q5DHpHhGRwvS3HH6+evVqAJo3b27YlvXvrOHF9/rzzz+5cOECAQEBxMTEcOPGDW7cuEFiYiJNmzbl6NGjREZGYmZmxs6dO/n000+zlb958ya2trbEx8fft13Xrl3jjz/+oF27doaEJoCFhQV9+/YlMTGRnTt3GrZbWlpStWrVB55rWFgYVapUMSQ0s+qbNm0a48ePf2DZgnRv78PKlSuTmppqSLSFhYXh4ODAyy+/bIgxMjJizJgx/PTTTxgZGbFx40YqVaqEs7Oz4frfuHHDkJi9d87IOnUePpHzW2+9xY4dO7IlNBMTEw0L6jzo/wugRYsWhsRU1nkBD5yf1dHRET8/PzZt2kRaWhqQ+fo6e/ZstvMvSKmpqYY35ke1ceNGjIyMaNy4cbbr//zzz+Ps7ExYWFi2+Huvf37LP+zahoWFkZGRkW3qBoC+ffuycuVKPDw88n3MvKpdu3a261m9enV+++032rdvb9iWlpZmmGIgLi6zR93OnTtJSkqiW7du2c7tlVdeISQkhLp167Jp0ybS09Px9/fP1mYnJycqV678yG2Wx5Q1xUV+b6NHLSdSlD3o9f6w96K8ls1DnHvjaiTHxPPnvM3cvniN+KvRnAjZQeL125lhuUzxIFLgCvv9I49xxiYmuL1YhdiI6xxf+AtxV24Qe+k6x4LDSE/OTNQYPWCkgEih0T0iIoXob9dT8+rVq+zatYuyZctiZGRkmFfR29sbIyMj1q5dy/DhwzE3z/5NUHh45rf6Y8aMYcyYMbnWfenSJUqWLImZmRlhYWFs3ryZs2fPcv78eWJiYgCyzf14r4iIzG+APD09c+zLSrpdunTJsM3e3t6QfHtQnf7+/jm253aMh8kappuaev9vqFJTU3NdXObe3odZ1zcrqRcREYGHh0eOxNvdq4aHh4eTmJiIn59frse+fPlytt8dHXPOm5KblJQUvvvuO44cOUJ4eDgXL140tOveeS/vdb/zeli5tm3bsn37dn777TdeeOEF1qxZg4WFRaH0nE1LS+PWrVuP9H9+t/DwcDIyMmjSpEmu++/9f7/32jxu+Xuvbdb9UrZs2WxxdnZ22NnZPdIx8yq33rSmpqYsWLCAPXv2cP78ecPrFf6677Pa/Nxzz2Ura2FhYegRnPW35u4en3d70HQIUnhMLDKve3pKWo596Xf+Jppa5vy/edRyIs+6tJRU0hKzL7ST1RsyPTXn6z3tTu+WrHviXnktm59jlKxZgeTb8ZzffIADP2R+oW33nAueLWtzctlOTHMZBi9S0Ar7/SM1H/V7+FcnNTGZSzv/NCyO4lC5DGUa+XBuw37dE/JU6B6RoiRt6/0X333qchlxLH/DpObatWtJT0/n3LlzhoVj7hYTE8PPP/9M69ats23PSqQMHTqUGjVq5Fp3uXLlyMjIYODAgWzZsoVatWrh6+tL586dqVOnzkOHuT4o4Zl1/LsTGiZ5GIaYlpb22D30smQlirJ6neXm9u3blC5dOsf2h7UhL+1MS0ujVq1aDB48ONf9Li4u2X5/WMIXYO/evfTt2xdra2vq169Phw4deP755wkPD8/R2zY3eTlGbpo3b87IkSNZt24dL7zwAuvWraNJkybY2to+Un0PcurUKVJSUgxD8x9Veno6NjY2hrkq73Xv3JT3vj7zW/5h1zYr8fwg+T1mXt17bjdu3KBjx45cvXqVF198EX9/f7y9vXFzc6Njx47Z2gMPvh+yYiZPnoylpeUjtU8KnkXxzHsz+XbOOfiSbyVgYmWGiXnOB+5HLSfyrLt26BwnlmzPts2jWXVMrMxIvpVzlEPWPZDbnGYAppbmeSqb17gs7o2rUbquN3GRNzGzscTauTiXfzsOZC78IFLYCvv9Iz/1GxkZUb5NXdwbVyXh2i0sittgWcKWcxv3g7ERFvaaK1CePN0jIlKY/nZJzaxVz7/88sscCaRjx44xYcIEli1bliOpmdVjMCv5dbeDBw8SExODpaUle/fuZcuWLQwcOJChQ4caYrKGWru7u9+3bVnHOHPmTI59Z89mflN097D0vHB1dTX0/LrbsmXL2LdvHx9//HGOXqn3U6ZMGSwtLTl16lSu+y9cuEB8fLxh0aP8tvP48eM5tm/dupW1a9fy3nvv4ebmRlxcXI7rHxMTw6+//pqj91tejB8/HktLS9asWZOt992UKVPyXVd+2NjY0LRpU7Zs2ULXrl2JiIgwrBBe0NavXw+QaxI/P9zc3Ni+fTs+Pj6GBPfdx/DwePBKzI9b/l5Ziw9duHAh2/QBkZGRjB49mu7duxf4Me9n/vz5XLx4kdmzZ2frSbx///5scVkJ//Dw8Gw9Z5OTk3nvvfdo27at4e9A6dKlDUPus2zdurVQEt/ycKZW5lg42Oa6Amfs5esUc3Mq0HIizzr7Cq74vNEi2zZLh2LEnIsk9lLOVcXjLl/H0rFYrosEZbF1dcxT2bzGXT92AQBHb3eKly1piLt1LhIzW0ssHZXUlMJX2O8f+an/6h9nMC9mhX250oaFtQBizl3B1s0x1zkHRQqb7hERKUx/q0kjzp49y+HDh6lbty6BgYEEBARk++nfvz/Ozs7s2LGDyMjIbGV9fHxwdnZm7ty52XoqxsbG8u9//5thw4ZhYmJimCPy3pXIFy1aREJCQrah21k90bJ6aDo7O+Pj48PKlSu5cuWKIS45OZlZs2Zhbm7Oiy++mK9zbtSoEYcOHeLw4cOGbSkpKcycOZPDhw/nOaEJmcN/GzZsyO7duzlw4ECO/T/++COQfa7S/LTz2rVrbNq0KUedYWFhlChRAn9/f44dO8bWrVuzxUyePJmhQ4dy8uTJBx4jq3fd3UPDo6OjcXBwyJbQvH37NsuWLQPy1hvwYYyNjXMdjt62bVsiIyOZOnUqxYoVo3Hjxo99rHudOnWK2bNnU6VKlfsO28+rrGkMJk+enG17aGgoQ4cOZdWqVYVa/l5Z1ys4ODjb9pCQENatW4etrW2BH/N+crvvMzIymDdvHvDXlA3169fHzMyMRYsWZeuZvX79ekPyuWnTpgBMnTo1W8zRo0d5++23DfeZPHlOVZ4j+vQl4qOiDdtunrpEQtQtnKvdf3qHRy0n8iyzsLOmRAXXbD9WDsVwqvIcCVEx3Dz113Q58VHRRJ++/NDXe17L5jXu6u+nObF0O6l3rWQbG3GdqEPncH3Bu8BGsog8TGG/f+Q1LmLHEU6v2k162l/PpdePXeDWuau41nu8ET0ij0P3iIgUlr/VVxFZCwS99tprue43MzOjQ4cOTJkyhRUrVuTYN2LECN555x3at2/Pa6+9hoWFBYsXL+bSpUuMHTsWU1NTfH19sbW1ZfTo0URERFC8eHF2797N2rVrsbCwyJYQzUqkzZgxg0aNGtGsWTNGjBhBr169eO211+jatSs2NjasXLmSI0eOMGLEiBy9zR5mwIABbNiwgV69etG9e3dcXFxYs2YNp0+fJigoKF91Abz//vscOHCAPn360KFDB7y8vEhISOCXX35h27ZttG/f/pGSc126dGHp0qW88847dOvWDU9PT8LCwtixYwdffPEFJiYm9O/fn40bNzJo0CC6dOlCxYoV2bdvHytWrKBRo0Y0atTogcfImoN08+bNuLq60qJFCxo1asT06dMZOnQoDRo0ICoqiiVLlnDt2jXgwUPt88rBwYFjx44xf/586tata0h8NWzYEHt7e9auXUv79u3zlWDOzd2v2fj4eI4fP86KFSuwsrLi66+/fuwPb40bN6ZZs2YEBQURERGBn58fERER/PTTT7i6utK3b99CLX+vypUr07FjR+bOncvVq1fx8/MzrIgeGBiIt7c3Xl5eBXrM+2nUqBFz586lf//+vPbaa6SkpLBu3ToOHz6MsbGx4XXk6OjIoEGD+P7773njjTcICAjgypUrzJs3j3r16uHv74+xsTE9evRg7ty5REdHExAQQHR0NPPmzcPGxiZbD3B5sso09OHq76c5NHMDbg18SE9N5eK2w9i6OeJSI7O3cMKN29w6fxW751wMQ1vzUk7k76JU7Upc+vUYR4O3UKahDyZmplzcdhhzO2vcXqxiiEuOTeDmyUvYli6BTSmHfJXNa5zbi1W4/ud5DgVtoKRvBVITkojYfgRrF3tc74oTKWyF/f6R1zj3RlU5Oj+MP+f+jOPzz5EYHUvE9iOUqOSKS41yT/aiiNxF94iIFJa/XVKzWLFitGjR4r4xnTp1Ytq0aYaeendr2bIlxYsXZ/Lkyfzwww8YGxtTsWJFJk+ebOhd5eTkxLRp0xg7diyTJ0/G3NwcT09Pvv32Ww4ePMicOXO4du0aTk5OtGnTho0bNxISEsKePXto1qwZvr6+BAcHM378eIKCgkhPT8fb25tJkyY90iIyjo6OLFy4kG+++YYFCxaQnJyMt7c3QUFBj9Rzz8PDg6VLlzJ9+nR++eUXFi9ejKWlJZ6enowePZpXX30133VC5kruc+fO5fvvv2fNmjXcvn2b8uXL8/333xtWTre3t2fhwoWMHz+e9evXs3DhQlxdXRk4cCBvvfXWQ+dgtLKy4p133mHmzJmMGjUKDw8PhgwZQlpaGmvXrmXLli24uLhQv3593njjDdq0acOuXbseqefp3YYMGcLIkSP54osvGDRokCGpaW5uzksvvcTChQsLZNXz999/3/BvCwsLSpcuTYcOHejXrx8lS5Z8QMm8MTIyYty4ccyYMYPly5cTGhqKg4MDLVq0YOjQoTg5PXgY7eOWz82nn35K2bJlWbx4MaGhobi6ujJo0CDefPPNQjtmbho1asSoUaMICgriyy+/pHjx4lSpUoWFCxfyv//9j927dxti3377bZydnZkzZw5ffvklzs7OdOrUiSFDhhhewx999BHlypVjwYIFfPXVVxQrVozatWszdOjQbEPt5ckyt7WiWr9WnFmzh/M//46JuSmOlT3wbFkbY9PMnuC3zkVyYsl2Kr3WwPDAnZdyIn8XxqYmVO37EmfX/sbFXw5jZGRE8XKlKNeqDmbWfw09j78azYnF2/BoVt2Q1Mxr2bzG2Xk4U6VXc85v2s/Z9XsxtTLHuUY5nmvmi+l9FiwSKQyF/f6R1zgnn7J4dW7ExV8OcWbtHsxsrSjT0Af3xtUwesR54kUKgu4RESksRhkPWr1GRB7LyJEj2bx5M1u3bs3Twk8ij6PLljFPuwkiIiIiIvIPs6Dp+w8PKgJuThj3tJtwXyWGaERfbvR1hEghiY6OZv369QQGBiqhKSIiIiIiIiJSgP5Ww88lp6ioqDzFWVtbY2NjU8it+Wc4cuQIM2bM4ODBgyQlJdGtW7ds++Pi4oiPj89TXc7OzoXRxH+U27dvk5iY+NA4ExOTbAtKiYiIiIiIiMizS0nNv7kGDRrkKW7w4MEMGTKkkFvzz1CsWDF+/fVXLCwsGDt2LKVLl862PygoiIkTJ+apruPHjxdGE/9RPv/881zn0L2Xm5sboaGhT6BFIiIiIiIiIvK4lNT8m5s1a1ae4tzd3Qu5Jf8cHh4e7Nq16777AwMDqVWr1hNs0T/bm2++ySuvvPLQOAsLi4fGiIiIiIiIiMizQUnNv7n69es/7SbIPdzd3ZVEfoIqVKhgWJFeRERERERERP4etFCQiIiIiIiIiIiIFClKaoqIiIiIiIiIiEiRoqSmiIiIiIiIiIiIFClKaoqIiIiIiIiIiEiRoqSmiIiIiIiIiIiIFClKaoqIiIiIiIiIiEiRoqSmiIiIiIiIiIiIFClKaoqIiIiIiIiIiEiRoqSmiIiIiIiIiIiIFClKaoqIiIiIiIiIiEiRYvq0GyAiIiJS2N4sH/C0myDyTJtx+uen3QQRERGRfFFPTRERERERERERESlSlNQUERERERERERGRIkVJTRERERERERERESlSlNQUERERERERERGRIkVJTRERERERERERESlSlNQUERERERERERGRIkVJTRERERERERERESlSlNQUERERERERERGRIkVJTRERERERERERESlSlNQUERERERERERGRIkVJTRERERERERERESlSlNQUERERERERERGRIkVJTRERERERERERESlSTB+n8K5du+jVqxf29vZs27YNc3PzbPv9/f1xc3Nj7ty5j9XIB7l+/TpWVlZYW1sXSH0ffvghy5Yt4/jx4wVS3912795Nz549GTx4MEOGDMk1xt/fH4DQ0NACP35BSE9P59KlS5QpUyZf5bLOffTo0bRv3z7fx71w4QLu7u75LpcXPXr0YM+ePdm2WVhY4OzsTIMGDRgwYAClS5fOtv/e13ZGRgZjx45lyZIlJCUl8d5779GkSRM+/PBD/vjjD6ysrFi3bh0ODg6Fcg7ycD///DPjx4/nwoULlCtXjmHDhlG7du2n3Sx5xiTeuM2Zdb8Rc+YKAA7eZfBsVQdzW6sCKZfXuOjTlzn/8+/EXr6BqaUZTj5lKduiJibmZgV1qiKPLO7WbTYsXsWJg3+SkpJCOe+KtOoSiIOLU6GU3bp6I3u37uI/X3+cY9+CybM58tuBHNtdy7rz9sf/ydd5iTyOZ+X9424nl+0k4VoM1fq1epxTEykQukdEpDA8VlJz1apVWFtbEx0dTWhoKC1btiyoduXJ1q1b+e9//8uyZcsKLKnZuXNn/Pz8CqSuv5vY2Fh69+5N48aN75uUvZ/y5cszZswYatasme/jfvzxx5w9e7ZQk+MAY8aMMfw7Pj6ekydPsnTpUtatW0dwcDDly5c37B8+fDhWVn+9QYaFhTFjxgyaNGlCQEAAtWrV4quvvmLv3r0MHjwYZ2dnJTSfol27djF48GD8/f3p2rUr8+fPp1+/fqxevRo3N7en3Tx5RqTEJ3Fw5noy0tIp08iHjIwMLm47TNyVm9QY+DLGJiaPVS6vcdGnL3MoaAO2bo54tqxFUkw8l3b+SWzEdaq91QojI6Mndk1E7pWaksKc76dx7cpVXmzRBAsrS3Zs2MLMMRMZ9H/vYW1rU6BlTx46ypaVGyhWvHiudV69eBmPCp7UaVI/23brYraPd6Ii+fCsvH/c7creE1z57QTFPUsW6rmL5IXuEREpLI+c1ExOTmbjxo20a9eO1atXs2zZsiee1Dx48CC3bt0q0Dp9fX3x9fUt0Dr/LqKjozl06BCNGzfOd1knJyfatWv3SMfdvn37E0k85da+jh070qVLF4YOHcrKlSsxNs6csSEgICBbXFbP3nfffRcvLy/DtsqVKzNo0KBCbrk8zOLFi7GxsWH8+PGYmpry/PPP06lTJ8LCwujWrdvTbp48IyK2HyEpJp5a/2qHtYs9AMXKOHM4aCOR+09Ruo7XY5XLa9yZdb9hYW9DtX6tMDHLfJu2KG7D6ZW7uHkyAodK+espL1KQft/5G5fOXaDXf96mQpXM12ylas8z8eOv2LExjObt2xRY2d/CdrJm/lLSUtNyrS8tNZUbUddoVCeAGvXrFNAZiuTfs/L+AZCRns6FsIOc33ygsE5XJN90j4hIYXnkOTW3bt3KrVu3qFevHg0aNGD79u1ERUUVZNtEnrrKlSvTv39/Tp48yZYtW+4bl5KSAoCNjU22bXf/Lk9PYmIiiYmJ3Lx50/A7gJmZhvLKX6IOnsHes5ThYRigRAVXrJztiDp49rHL5SUuLSUVc1tLStWpZEhoAoZeBHGXbzzmWYo8nkO7f8fBxcmQlARwLl2ScpUrcWj3/gIrO3vsD6ycswhP74qUfi73RP61K1Gkpabh7FrqMc5I5PE9C+8fkPkesn/iKs7/fACXGuUxL14wI9lEHpfuEREpLI+c1Fy1ahVGRkbUqVOH5s2bk5qayooVKx5a7vfff6dPnz6GHpFvvPEGBw8ezBaTkZFBcHAwr732Gr6+vlStWpWWLVsybdo0MjIygMy5LydOnAhAs2bN6NGjh6H88ePHGThwILVr16ZatWp06tSJn3/+OdsxevToQd++ffnuu+/w9fXFz8+P48eP8+GHHxp62mWJjIxk+PDhNGjQAF9fXzp06JCjvsIyYcIEqlatyrlz5+jfvz++vr7UqVOHDz74wJCgyRIbG8sXX3xBkyZNqF69Om3btmXx4sXZYmJiYvjss89o2LAhPj4+tGrVih9//NFwXe8+5qZNm3jxxRfx9fVl8eLFNGvWDICJEyfi5eXFxYsXATh//jwffPABjRo1wsfHh7p16zJgwABOnjxpqHP37t14eXkREhKS7fcdO3bwySef4OfnR/Xq1enVqxfHjh0zlPPy8iIiIoI9e/YYynfu3JkGDRqQnp6e7dxOnz6Nl5cXP/30UwFc+b+0bdsWgG3bthm2+fv7G15z/v7+2V6L/v7+Odo9YcIEIHNO0qCgIFq2bImPjw8NGzZk1KhRxMbG5rhWy5Yto23btlStWpVhw4blu/zDri1k3mtz5szh5Zdfplq1avj7+zN27FgSEhIMMXk5Zn4cP36cvn378sILL1CtWjVeffVVlixZkiNuy5YtdOnSherVq1OnTh2GDBnC2bN/PZQEBwfj5eWVbdoAgL59++Lj45PtXFu1akVqairDhw/n9OnTjBw5EgcHB1566aUcx/Xy8uL7779nwIAB+Pj40KZNG1JTU0lJSWHq1Km88sorVK9enWrVqvHKK6/k2vatW7fSvXt3fH19efHFF3nnnXcM90tez0+erJSEJBJvxGLr5phjn21pR2IvXX+scnmNMzEzxad3CzyaVM8Wk5XMtLDXkFp5ui6HX8w1yej6XBluRl0nIS6+QMpGX7/Jy91fo+c7/bGwtMi1vquXMudNcy6dmfRPTkzK17mIFIRn5f0DICM1nbSkZLy7NsarY0OMjDVdiTx9ukdEpDA90vDz2NhYwsLCqFGjBk5OTjRu3Bhzc3OWL1/Om2++ed9yO3bsoH///nh7ezN06FCSk5MJCQmhW7duzJo1y7Box/fff8+UKVN49dVX6dSpE3FxcSxfvpxvvvkGGxsbunXrRufOnYmNjWXTpk0MGzaMihUrAplD0nv27ImtrS19+vTBxsaGFStWMGjQID7++ONsQ03379/PhQsXeO+997h48SIVKlTI0ebo6Gg6depEdHQ03bp1w93dndWrVzN48GAmTpyYYxhyYUhPT6dnz57Url2bDz74gEOHDrFkyRISExMZN24ckDkdQLdu3Th58iSdOnXC29ubrVu3MmLECBISEujZsyfx8fF0796dy5cv8/rrr1OqVCl27drFF198wblz5xg5cqThmKmpqXz88cf06dOH5ORkKlWqxLBhwxg9ejTNmzenefPmODg4cO3aNTp16oStrS3du3enRIkSHD16lEWLFnHkyBFCQ0Mf2BtuxIgRuLi4MHDgQGJiYpgxYwb9+vVjy5YtmJqaMmbMGEaPHk2JEiUYMGAANWvWJC4ujlGjRvHbb79Rr149Q11r1qzB1NSUVq0KdqJnd3d3rKysciQEswwfPpzly5cbXosuLi6kpKRka3dWovyjjz5ixYoVBAYG0rt3b06fPk1wcDD79+8nODgYC4u/Prh9+umntG/fno4dO+Lq6prv8g+7tgCffPIJwcHBNG3alK5du3L27FmCgoI4d+6cIVGbn2M+zI0bN+jbty8lSpTg7bffxsLCgjVr1vDRRx9hYWFhSCCHhIQwfPhw/Pz8eO+994iJiSE4OJhOnTqxaNEiPD096dKlC+vWrePHH38kMDCQSpUqsWjRIrZv385//vMfvL29Dcdt06YNq1evZsuWLWzfvp3SpUszc+ZMit9njrYff/yRmjVrMmLECBITEzE1NeW///0v69ato2vXrvTo0YObN2+yaNEiPvroI5ydnQ3TMqxZs4b//Oc/VKxYkSFDhpCSkkJQUBCHDh0iJCQEOzu7PJ2fPFnJMZnJFHO7nN/Ym9tZkZaQQmpCMqZW5o9U7lHrT7wZS8zZK5xZ+xvWJe1xfN7j0U5QpAAkJyaRGJ+AnX3Ov522xe2AzGSklU3O13l+yw757ANMTB/8mBp58TIAv23dyaHd+0mIi8e2uB2N2gTgF9Aofycn8oiepfcPE0szar/bAWOTR+63IlLgdI+ISGF6pKTmhg0bSEpKokWLFgDY2tpSv359wsLCOHjwINWqVctRJj09nZEjR1K1alXmzZuHyZ3Jert3705gYCCjRo1i+fLlpKSkMG/ePNq0acOXX35pKN+xY0f8/PzYtm0b3bp1w9fXFy8vLzZt2kRAQIBhNe5Ro0ZhZGTEkiVLKFUqczhS165d6dq1K2PGjKFVq1aGBVvi4+P5+uuvqV69Ovczffp0rly5wvz586lVqxYA7du35+WXX2bKlClPJKmZmppK69at+fDDDwHo0qULkZGR/PzzzyQkJGBlZcWSJUs4duwYY8eONSSGOnfuTPfu3Zk2bRrdu3dn5syZnD17lqVLlxqSbK+//jrffvstU6dOpXPnzoZEUHp6On369OGtt94ytMPR0ZHRo0fj5eVlmH9y3rx5xMTEMH/+/GwL6djY2DBt2jROnDhBlSpV7ntujo6OzJ8/3/B6MDc355tvvmH37t28+OKLtGvXjnHjxmWbk7N169aMHj2adevWZUtqrl27Fj8/v0JZkMfOzo7o6Ohc9wUEBHD06NEcr8V72717925CQkL45JNP6NKli6F848aN6du3LwsWLKBXr16G7bVq1eJ///uf4ff8ln/YtT116hQLFiygU6dOfPbZZ4ZyNjY2TJkyhVOnTnH9+vV8HfNhdu3aRVRUFJMnT6Zq1apA5v3UpUsXTpw4AWR+afL555/TunVrvv32W0PZTp060aZNG8aOHcukSZMwMjLi888/p23btnzyySd88803fPXVV9SsWTPHlyu///47ERERQOZr+6OPPuL555+/bztNTU2ZNGkSlpaWAERFRbF69Wr69evHf/7z12q6AQEBtGrVim3bttG4cWPS09MZPXq0IcGaVb5q1ar06dOHVatW0a5duzydnzxZacmZU0jcPeQ7i/GdxEpaSmqOB+68lnuU+lPik/jt68yewMbmJpRvWy/X8iJPimHqDgvzHPvMzDO/wExOSi6Qsg9LaMJfPTWjLkXStkdH0lJT2b99D2vnh5CUkEiTti0eWofI43qW3j+MjIwwMlHPM3m26B4RkcL0SF9RrF69GoDmzZsbtmX9O2t48b3+/PNPLly4QEBAADExMdy4cYMbN26QmJhI06ZNOXr0KJGRkZiZmbFz504+/fTTbOVv3ryJra0t8fH3H9Z07do1/vjjD9q1a2dIaAJYWFjQt29fEhMT2blzp2G7paWlIbFyP2FhYVSpUsWQ0Myqb9q0aYwfP/6BZQvSvb0PK1euTGpqqiHRFhYWhoODAy+//LIhxsjIiDFjxvDTTz9hZGTExo0bqVSpEs7Ozobrf+PGDUNi9t45I+vUefik+2+99RY7duzIltBMTEw0LKjzoP8vgBYtWhiSblnnBTxwflZHR0f8/PzYtGkTaWmZiwf8+eefnD17Ntv5F6TU1NTHXnF448aNGBkZ0bhx42zX//nnn8fZ2ZmwsLBs8fde//yWf9i1DQsLIyMjI9vUDZA5fHvlypV4eHjk+5gPk3VffvPNN+zdu5e0tDTMzc0JCQkxJAt37NhBbGwsAQEB2Y5pYmLCCy+8wPbt20lNTQUye9G+88477N27l+7du5Oens5XX31leP0BbN68mZ49e5KUlMSoUaMwMzNj5MiRXL9+nYSEBObMmZNj2He1atUMCUkAZ2dn9u3bx8CBAw3bMjIyDO2Ii4sD4PDhw0RFRdGpU6ds5evXr8/ixYtp165dvs5PnqCsKTjye5vntdyj1G8E3l0aU6ljQ6xd7DkUtJFrh8/ls4EiBc/oAS/kh71VPk7Ze/nUqUFAhzb0eW8gVev6UqN+Hfq8NxCPCp6ErdpI3O1HmyZFJF+exfcPkWeJ7hERKUT57vJx9epVdu3aRdmyZTEyMjLME+ft7Y2RkRFr165l+PDhmJtn/6YlPDwcgDFjxuSYAy/LpUuXKFmyJGZmZoSFhbF582bOnj3L+fPniYmJAcg29+O9snpi5TZ0MyvpdunSJcM2e3v7bMmP+9Xp7++fY/ujDA/NGqb7oIRFampqrovL3Nv7MOv6ZiX1IiIi8PDwyJF4u3vV8PDwcBITE/Hz88v12JcvX872u6NjznlJcpOSksJ3333HkSNHCA8P5+LFi4Z23Tvv5b3ud14PK9e2bVu2b9/Ob7/9xgsvvMCaNWuwsLAolJ6zaWlp3Lp167GHBIeHh5ORkUGTJk1y3X/v//u91+Zxy997bbPul7Jly2aLs7Ozw87O7pGO+TA1a9akZ8+ezJ07l19//RV7e3saNGhA27ZtDcfI+lvxzjvv3LeeGzdu4OLiAmTOj7ty5UoOHz7Mf//7Xzw8/hqeGxsby/Dhww29Vp2cnIiLi2P06NG8//77vP7663z++ecMHz482/9vbr19zc3NWblyJdu3b+fcuXOcP3/ekMzM+ruUdU2fe+65HOWzerDn9/zkyTCxyOwplp6Sc5Xl9Dt/s00tc06lkddyqY9Qv5mVBc7VMl+XTj7PsX/cck6v2YOTT9k8nZPI40hJTiHxrvmVAczv9LJMvbM43r3xAJZWljn2PW7Z+6lWr2aObUZGRtRq5Ef4qbNcOH0O7xo++apTJL+exfcPkWeJ7hERKUz5TmquXbuW9PR0zp07Z1g45m4xMTH8/PPPtG7dOtv2rETK0KFDqVGjRq51lytXjoyMDAYOHMiWLVuoVasWvr6+dO7cmTp16jx0mOuDEp5Zx797fse7e7HdT1pa2mP30MuSlSjKSoTk5vbt25QuXTrH9oe1IS/tTEtLo1atWgwePDjX/fcmUR6W8AXYu3cvffv2xdramvr169OhQweef/55wsPDc/S2zU1ejpGb5s2bM3LkSNatW8cLL7zAunXraNKkCba2Bb+IxqlTp0hJSck2R+OjSE9Px8bGxjBX5b3unZvy3tdnfss/7NpmJZ4fJL/HzIuPPvqIHj16sGHDBn755Rc2bNjA6tWr6dy5M59++qnhXv3ss88MQ/nvdfdcmFFRUZw/fx7I7JXZt29fw7nv27eP6Oho3n33XZycnADo3bs3e/fuZdOmTRw+fBgTE5Nsvc4h57VPSkri9ddf5+jRo9SrVw8/Pz969+5N3bp1syV8s9r+oHsxv+cnT4ZF8cy/Hcm3E3LsS76VgImVGSbmOR+I81ruUevPYmJmioO3O5d2HiUlLhEzm/wlf0Ty69Ce31kWND/btqavvISltRW3o2NyxGdtK5bLnJkAllZWj1w2v2zs7txv9xkKL1KQnvX3D5GnTfeIiBSmfCc1s1Y9//LLL3MkkI4dO8aECRNYtmxZjqRmVo/BrOTX3Q4ePEhMTAyWlpbs3buXLVu2MHDgQIYOHWqIyRpq7e7uft+2ZR3jzJkzOfZlDS+9e1h6Xri6uhp6Vt1t2bJl7Nu3j48//jhHr9T7KVOmDJaWlpw6dSrX/RcuXCA+Pt6w6FF+23n8+PEc27du3cratWt57733cHNzIy4uLsf1j4mJ4ddff821d9nDjB8/HktLS9asWZOtd9uUKVPyXVd+2NjY0LRpU7Zs2ULXrl2JiIgwrBBe0NavXw+QaxI/P9zc3Ni+fTs+Pj6GBPfdx7i7h2FhlL9X1uJDFy5cyDZ9QGRkJKNHj6Z79+4Ffsxr165x8uRJ/Pz86NevH/369ePmzZsMGjSIRYsWGV6nkNlb8t7X6u7du0lPT892z/3f//0fKSkpvPPOO3z33Xf8+OOP9OnTB/jri457E7yjR4/m2LFjXLhwgZYtWxquxf2sW7eOw4cP8/nnn/Paa69lu1Z3y/pCIre/GcOGDaNmzZr5Pj95MkytzLFwsM11Bc7Yy9cp5ub0WOXyGhcfFc3h2Zso07Aqri9k/yIlLSkFjMDI9OFfyIk8rgo+XvT6z9vZtjk4O3LuxBkuhV/MEX85PAIHF6dcFwnKUtqjzCOXvVdaaipTRn2HW1kPAnt3zrbv2uXMv80lnAp+jm2Rez0r7x8izyrdIyJSmPLVTe7s2bMcPnyYunXrEhgYSEBAQLaf/v374+zszI4dO3J82Pfx8cHZ2Zm5c+dm66kYGxvLv//9b4YNG4aJiYlhjsh7VyJftGgRCQkJ2YZuZyUqshIXzs7O+Pj4sHLlSq5cuWKIS05OZtasWZibm/Piiy/m55Rp1KgRhw4d4vDhw4ZtKSkpzJw5k8OHD+cr+WBubk7Dhg3ZvXs3Bw4cyLH/xx9/BMjRayyv7bx27RqbNm3KUWdYWBglSpTA39+fY8eOsXXr1mwxkydPZujQoZw8efKBx8jqvXb30PDo6GgcHByyJTRv377NsmXLgLz1BnwYY2PjXIejt23blsjISKZOnUqxYsUMq08XpFOnTjF79myqVKly32H7eZU1jcHkyZOzbQ8NDWXo0KGsWrWqUMvfK+t6BQcHZ9seEhLCunXrsLW1LfBjhoSE0Lt3bw4dOmTYVqJECZ577jmMjIwwNjamfv36WFhYMGPGDFLuGqYYGRnJwIEDGTt2rKEn5OrVqwkNDWXQoEEMGDAAPz8/vv/+e0PPzWrVqmFlZUVISAjJyX/12ImOjjYsWrFz585cvwi52/3+Ls2ZMwf4a0oJHx8fHBwcchxv3759hISEEB8fn6/zkyfLqcpzRJ++RHxUtGHbzVOXSIi6ZRgG/jjl8hJn6WBHamIyl/ccJ/2uv5+JN2O5dvgcxT1LYWqh3gZS+Ozsi1Ohile2HwcXJ6rUqsa1y1c5deSvL1KjLkdy5ugJqtbNORz8bo9T9l4mpqaYm5tzcPc+oq/fNGxPiE/g102/4ODiRJly+f+yVuRRPAvvHyLPMt0jIlJY8tVTM2uBoLt7Kt3NzMyMDh06MGXKFFasWJFj34gRI3jnnXdo3749r732GhYWFixevJhLly4xduxYTE1N8fX1xdbWltGjRxMREUHx4sXZvXs3a9euxcLCIltCNCuRNmPGDBo1akSzZs0YMWIEvXr14rXXXqNr167Y2NiwcuVKjhw5wogRI3L0NnuYAQMGsGHDBnr16kX37t1xcXFhzZo1nD59mqCgoHzVBfD+++9z4MAB+vTpQ4cOHfDy8iIhIYFffvmFbdu20b59+0dKznXp0oWlS5fyzjvv0K1bNzw9PQkLC2PHjh188cUXmJiY0L9/fzZu3MigQYPo0qULFStWZN++faxYsYJGjRrRqFGjBx4jaw7SzZs34+rqSosWLWjUqBHTp09n6NChNGjQgKioKJYsWcK1a9eABw+1zysHBweOHTvG/PnzqVu3riGx1LBhQ+zt7Vm7di3t27d/7N5td79m4+PjOX78OCtWrMDKyoqvv/76sRNNjRs3plmzZgQFBREREYGfnx8RERH89NNPuLq60rdv30Itf6/KlSvTsWNH5s6dy9WrV/Hz8zOsiB4YGIi3tzdeXl4FeszAwEBmzZrFgAED6Nq1KyVLluTw4cMsX76cV199FRsbG2xsbHj33XcZPXo0nTt35pVXXiE1NZX58+eTlJTEBx98AGTOOzlq1CgqVqxo6Jk5cuRI2rZty0cffcTcuXNxcHDg3//+t6Hn6SuvvMLVq1cJDg7G2NiY4cOH8/XXX9OzZ0+CgoKoVKlSru2uX78+pqamvP/++3Tr1g1TU1O2bNnC9u3bMTMzM7zOzc3N+fDDD/nggw/o2rUrr7zyCnFxccyZM4fy5cvTsWNHrK2t83R+8uSVaejD1d9Pc2jmBtwa+JCemsrFbYexdXPEpUZmb+aEG7e5df4qds+5YOVQLM/l8hpnbGJM+Zdf4MTibRyctg4X3/KkxidxadcxMDai/Mv1nvyFEblLrUYvsCt0Gwsnz6ZBy6aYmZuzfX0odvb21G/x1/NLbMxtTh05Ril3N0q5u+arbF616voqM0aPY/rocbzQLPMZZu/WncTeuk2v/wzQF0TyxDwL7x8izzLdIyJSWPKd1CxWrBgtWrS4b0ynTp2YNm2aoafe3Vq2bEnx4sWZPHkyP/zwA8bGxlSsWJHJkyfTtGlTAJycnJg2bRpjx45l8uTJmJub4+npybfffsvBgweZM2cO165dw8nJiTZt2rBx40ZCQkLYs2cPzZo1w9fXl+DgYMaPH09QUBDp6el4e3szadKkR1pExtHRkYULF/LNN9+wYMECkpOT8fb2Jigo6JF67nl4eLB06VKmT5/OL7/8wuLFi7G0tMTT05PRo0fz6quv5rtOyFzJfe7cuXz//fesWbOG27dvU758eb7//nvDyun29vYsXLiQ8ePHs379ehYuXIirqysDBw7krbfeeugcjFZWVrzzzjvMnDmTUaNG4eHhwZAhQ0hLS2Pt2rVs2bIFFxcX6tevzxtvvEGbNm3YtWvXI/U8vduQIUMYOXIkX3zxBYMGDTIkNc3NzXnppZdYuHBhgax6/v777xv+bWFhQenSpenQoQP9+vWjZMmSj12/kZER48aNY8aMGSxfvpzQ0FAcHBxo0aIFQ4cONcz5WFjlc/Ppp59StmxZFi9eTGhoKK6urgwaNIg333yzUI7p4uLCnDlzGD9+PAsWLCA6Oho3NzcGDx5Mv379DHG9e/emZMmSzJo1i++++w5LS0uqVKnC119/Ta1atYDMOSmjo6OZOHGiYa5cT09P+vXrxw8//MD8+fPp1q0bvXv3xs7OjtmzZ/PVV19RrFgxAgICGDp0KKVKlaJMmTJMmDDhgedSqVIlxo8fz8SJE/n222+xsbGhYsWKzJo1i/nz57Nnzx5SUlIwMzOjXbt2FCtWjClTpvDNN99gZ2dH06ZN+c9//oO1tXWez0+ePHNbK6r1a8WZNXs4//PvmJib4ljZA8+WtTG+M+T71rlITizZTqXXGhgeuPNSLj9xJX3LY2xqzIWthziz5jdMzE2xL1+a55rXxNpZ863K02VqZkaf9waxfsEKtq0LxcjYGE+vCrTq3A5r278Wj4u6fIWlM36i6SsvGZKaeS2bV2U8Pejz30FsXr6OLSvWgxF4lC/La/26416+bEGdsshDPSvvHyLPKt0jIlJYjDIetLqOyDNu5MiRbN68ma1bt+Zp4SeR3GRkZPwtevR02TLmaTdB5Jn1Zvn8f7Ep8k8y4/TPT7sJIiJSRC1o+v7Dg4qAmxPGPe0m3FeJIUMfHvQP9GhLT4s8A6Kjo1m/fj2BgYFKaMpj+TskNEVERERERET+SfK9+rlkFxUVlac4a2trbGzyP7RKcjpy5AgzZszg4MGDJCUl0a1bt2z74+LiiI+Pz1Ndzs7OhdHEf5Tbt28bFt15EBMTk2wLSomIiIiIiIiIPColNR9TgwYN8hQ3ePBghgwZUsit+WcoVqwYv/76KxYWFowdO5bSpUtn2x8UFMTEiRPzVNfx48cfHiQP9Pnnn+c6h+693NzcCA0NfQItEhEREREREZG/OyU1H9OsWbPyFOfu7l7ILfnn8PDwYNeuXffdHxgYqMVWnqA333yTV1555aFxFhYWT6A1IiIiIiIiIvJPoKTmY6pfv/7TboLcw93dXUnkJ6hChQqGFelFRERERERERJ4ELRQkIiIiIiIiIiIiRYqSmiIiIiIiIiIiIlKkKKkpIiIiIiIiIiIiRYqSmiIiIiIiIiIiIlKkKKkpIiIiIiIiIiIiRYqSmiIiIiIiIiIiIlKkKKkpIiIiIiIiIiIiRYqSmiIiIiIiIiIiIlKkKKkpIiIiIiIiIiIiRYqSmiIiIiIiIiIiIlKkmD7tBoiISMGY5tjyaTdB5Jn11un1T7sJIs+0yYctnnYTRJ5Z+9o1fNpNEBGRXKinpoiIiIiIiIiIiBQpSmqKiIiIiIiIiIhIkaKkpoiIiIiIiIiIiBQpSmqKiIiIiIiIiIhIkaKkpoiIiIiIiIiIiBQpSmqKiIiIiIiIiIhIkaKkpoiIiIiIiIiIiBQpSmqKiIiIiIiIiIhIkaKkpoiIiIiIiIiIiBQpSmqKiIiIiIiIiIhIkaKkpoiIiIiIiIiIiBQpSmqKiIiIiIiIiIhIkaKkpoiIiIiIiIiIiBQppk+7ASJScJKTk5k9ezarV68mPDwcY2NjypYtS8uWLenVqxcWFhaG2NjYWJKTk3FwcHhgnR9++CHLli3j+PHj+WrL7t276dmzZ47txsbG2NnZ4eXlRb9+/WjYsGG+6s2SnJzMzZs3KVmyJAAhISEMGzaMOXPmUK9evUeqU/7Zrl6/zpxly/jz5EkAalapQo9XX6V4sWIPLHfs9GmCV63idHg4ttbW1K5WjU6tW2Nna3vfMucjIhj+9dcEtmhBx9atAYi6fp3B//d/DzzWx//6F1UqVszfiYkUkMQbtzmz7jdizlwBwMG7DJ6t6mBua/XAcjHnIjm3cT+xEdcwtTLHsbIHzwX4YmZjWahxIk/L9F+2cTk6mo9fafvQ2Ku3bjNv1y7+vHQJAF8PD3r4vYCdVeZ9FXX7Nv+av+CBdfyvbRued3UFYNymn9l15myOGE9nJ75o/2p+T0WkwNyMus66hSs4e/wUAF7VnqdV53bY2D34Oev8iTNsCllNxNkLWNlYUdm3Kv6BrbAplv05K+LcBTYtWUX4qXMYGRtR1qs8rToH4lTK5ZHiRKRoUFJT5G8iNTWVvn37cuDAAQIDA+ncuTNpaWns3buXb7/9ltDQUObMmYO5uTmHDx/m7bffZuzYsYWeAGzevDnNmzc3/J6WlsaZM2eYP38+/fv3Z+7cudSqVStfdUZERPDGG2/Qv39/2rdvD0CdOnUYM2YM5cuXL9D2yz/D7bg4Phk/nrS0NF4JCCA9PZ1VmzcTfukSX/z3v5ia5v52eeTkSb6YNAlrKytebdECY2Nj1m7ZwpETJ/js3XextbbOUSYtLY0f5s0jNS0t2/ZitrYM6tEjR3xySgqzliyhuK0tz7m5FcwJi+RTSnwSB2euJyMtnTKNfMjIyODitsPEXblJjYEvY2xikmu56DOXOTxrE6ZW5rg3qYaRkRERO/8k+swVqg9ojZmVRaHEiTwtW44dJ/ToMSqXLvXQ2NuJiXy2ejVp6em0rV6d9IwMVh88yIUbNxj1aiCmJiYUs7RkYNMmOcomp6Xy445fKWZliYejo2H7hZs3qVSqJAGVK2eLL2appL88PfGxcQSNmURaWioNW/qTkZHO9vVbiLx4iQH/exeT+zxnnT12kh+/nYKllRWNX26OkbERv27cypljJ3lr+L+xssl8zrp25Sozv5qAubk5Tdq2AGDnxjCmfzGOQZ++j5198XzFiUjRoaSmyN/EunXr2LNnDxMmTKBFixaG7T179mTGjBl8/fXXLFmyhNdff50TJ05w9erVJ9IuLy8v2rVrl2N78+bN6dy5M1OmTGH69On5qvPixYucO3cu2zZ3d3fc3d0fp6nyD7YmNJQb0dF8PWwYZUplfhCt8NxzfD5pEmG7dxPw4ou5lpu1eDFGxsZ89u67lHJ2BqBu9eq8P3o0yzZsoMerOXvFLNu4kYuXL+fYbmlhQaO6dXNsn710KWlpaQzp1SvXJKnIkxCx/QhJMfHU+lc7rF3sAShWxpnDQRuJ3H+K0nW8ci13etVujIyNqN6/NVaOdgA4VvFg//iVXAg7SLlWdQolTuRJS09PZ9nvB1i6b1+ey6w9eIgbsXF81bEDZUqUAKCCizNfrFnH1hMnaFa5MpZmZjSslLOH/o87fyU1PY3B/k2xvTMSJzUtjchbt2hXo0auZUSelh0bw4i5Gc3gT9/HxTXzOcvN8zl+/GYy+3fsoU7j+rmWW/1TCEZGxvQbPhTHkpnPWc/XrMakkWPYunoTLTtnfsbYuTGMlKRk+g37F6U9ygBQ7vlKTP3sW3ZuCMt3nIgUHZpTU+Rv4vfffwfgxVySL6+//jpmZmYcOHDgCbfq/qpXr46npyd//PHH026KCDv27+f5ihUNCU2Aat7elHZxYef+/bmWibp+nQuXL9O4bl1DQhPArWRJalatytY9e3KUOR8RwbING2jfsmWe2nU+IoL1W7fSpF49KleokM+zEik4UQfPYO9ZypDQBChRwRUrZzuiDuYc6gqQeDOW+MhoXHzLGxKQANbO9jhUdidy/6lCiRN50pJTUxkWsowle/fRoGJFHGzy9gXUztOned61tCGhCVC1TBlK2xfn19Nn7lsu/Pp1Nhw+TGOvSlQuXdqw/XJMDKlp6biVsH/kcxEpDId278fTq4IhoQlQoYoXjqVcOLT791zL3Lx2g6sRl6lRv44hoQngXLokXtWr8PuOv56zbkRdx9rWxpCoBCjj6YGVjTWREZfzHSciRYeSmiJ/EzY2NgAsXLgwxz5ra2v279/PmDFjmDBhAsOGDQMye3H6+/sb4g4fPswbb7yBr68vDRs2ZOrUqWRkZBRam62srHLU/+uvv/Lmm29Sr149qlSpQsOGDfn444+5desWkDl3ZtZcncOGDcPLy8uw3cvLi927dxvqSkhI4JtvvsHf3x8fHx/8/f0ZO3YsCQkJj9TePXv20K1bN2rXro2vry9dunQhNDQ0R1xISAiBgYFUrVqVF154gQ8//DBbz9ixY8fi5eXFTz/9ZNiWnJxM27ZtqVevHpGRkY/UPnk0sfHxXL12jXK59PT1dHfn7IULuZa7ERMDgPtdHyizlHJy4nZsLNdv3jRsS0tLY8r8+VTz9qZRnbz1Jlu4ejXm5uZ0evnlPMWLFIaUhCQSb8Ri6+aYY59taUdiL13PtVzyrTgAbEqWyLHPyqEYqXFJJMXEFXicyJOWkpZGfHIyQwOaMbBpE4yNH/4RKzYpiau3buPp7JRjX1knJ85eu3bfsgt/24u5qSmdatfOtv3infccN3t7ABJTUvJ+EiKFJCEunptR13EtWybHPlePMlwOv5hruVs3M5+zSpbJOZWDg4sT8bFxxNzIfM07lnQmPi6euFu3DTHxsXEkJiRSrPhfX4LlNU5Eig4NPxf5m3jllVeYNWsWX331FSEhIQQEBODn54evry/m5uaYm5sDmcO+o6KiWLhwIQMGDKBq1aoAnDx5kh49emBnZ8fAgQNJSUkhKCiI5OTkQmlvZGQkJ06coGbNmoZt27dvp1+/ftSsWZN//etfGBkZsWPHDhYuXEhMTAzjxo2jTp06DBgwgClTptC5c+f7zseZnJxMnz59OHDgAO3bt8fHx4eDBw8yffp09u3bx5w5czAzM8tze8+cOUP//v2pXLky77zzDgCLFi1i4MCBzJs3j9p3PlhMnDiRCRMm8NJLL9GpUyciIyOZN28ee/bsYcmSJTg4ODBkyBB+/vlnvv/+e1566SWcnJyYNGkSJ06c4LvvvjMsfiRPxo3oaAAciuecR6mEnR3xCQnExcdjc8/Q76x7KiEpKUe527GxAETfuoXjnR44K37+mctXr/LfN98kPT39oe06HxHBvsOHednfP9e2iTwpyTHxAJjb5ex9Zm5nRVpCCqkJyZhamWfbZ2yW+ZiZlpQzsZISn3nfJN9OKPA4i+I2eTsxkQJibW7O9106Y5KHZGaWm3GZCXgH65yv1xLW1sQnJROXlISNRfZ5YsOvX2f/+XDaVKtKCZvsZS/cSfBsPnqMnadPE5uYhL21Fe1q1KBlVZ/8npZIgchKTtrl0oO4mL0difEJJMQnYGWdfdE5c4vM5/SkxJzPWfGxmffP7ZjbFHcoQcNWzTh+4AiLps6lVZdAANYvWoGJiQl+zRsZyuU1TkSKDiU1Rf4mKlasyMSJExk+fDgnT57k5MmTTJ48GWtra/z9/Rk8eDCenp54e3tTo0YNFi5cSP369Q0LBU2YMAGABQsWUPpOz7OXXnqJwMDAx2pXQkICN27cMPyekpLC6dOnGTt2LOnp6QwePNiwb/bs2ZQuXZpZs2YZEkavv/46nTt3Ztu2bUDm3Jn169dnypQp1KhRI9f5OgGWLl3K77//zrBhw+jdu7ehrgoVKvD111+zaNEiunXrlufz2Lx5M/Hx8UycONGwYnzr1q3p0qULR48epXbt2ly4cIFJkybx1ltv8Z///MdQtk2bNrRv354pU6YwfPhwLCws+OKLL+jWrRtjxoyhV69ezJgxgzZt2tD6zkrY8uQk3klKZr3m7mZ+J/GdlJLCvR873UuVwsrSkj1//EFg8+YYGRkBmQv7HDx2zPBvgAuXL7N03Tr6dOyIY4kSRF3PvWfb3TZu346xsTEtG+khW56utOTM17GJWc7HRuM7izukpaTmSGpal7THxNKMa0fOU6ZxVcM9kpaSys2TEQCkp6RSzMO5QONEnjQjIyNM7rwe8yrhzvuDeS4LpJjfWXgrOTU1R1Jz059HMTYy4iWfKjnKZfXUjIiO5o0GL5Kals7WEyf4ceevxKck0/6uL5JFnpSkxEQAzMxzdiYwvbMtJTk5R1LTxbUUFlaW/LnvII1aBxj+5qckp3DqyHEAUu/cR/aOJWj8cnNW/7SESSPHAGBkbEyXgX2yDTXPa5yIFB0afi7yN9KkSRO2bNnCd999R7t27XB2diY+Pp7Vq1fTrl079uQyxx9kTm6/bds2GjdubEhoApQvX54GDRo8VptmzpyJn5+f4adRo0b06dPHsK/uXQujTJ06laVLl2ZLLt28eRNbW1vi4+PzddzQ0FBsbW1zJC579uyJra1trsPGH6TUnbkWP/vsMw4fPgxAiRIl2LBhAz3urFi9adMm0tPT8ff358aNG4YfJycnKleuTFhYmKG+mjVr0qNHD1auXMm//vUvHBwcGDlyZL7aJAUjawoEo3x+IDU1NeVlf3/OhIcz/scfOR8RwdmLF/lu5kwS7/RwNjExIT09ncnz5uFVvvx9Fxy6V3JKCtt++41aVavi7JhzyK/IE5U1TUj+bhGMTUxwe7EKsRHXOb7wF+Ku3CD20nWOBYeRnpyZfDQyMS7wOJGi4FHee5JTU9l28iS1yj6Hc7FiOfa/UK4cnevW4aM2rfErX56GlSryUZvWVCpVkuX7D3ArIbHA2i+SV4a3kHw+Z5mYmlK/RRMunbvA4qlzuXLhEpfDL7Jg8iySkzKfs7Kmevg5ZC0r5yzCo4Inr73Vgw5vdqOMpweLpszm2IHDhjrzGiciRYd6aor8zVhYWNC6dWtDj78jR44QFBTE6tWrGTlyJOvWrctRJjo6mvj4eDw8PHLsK1euXL4TgHdr164dgYGBZGRkcO7cOaZNm4alpSVffPEF3t7e2WJNTEy4cOEC48aN49SpU4SHhz/y/JIXL17E3d09xxBzc3Nz3N3diYiIyFd9LVu2ZNOmTaxdu5a1a9fi7OxM48aNefXVVw1Dz8PDwwHo0qVLrnXc25Z33nmHDRs2cPHiRb777juKa4jxU2F5pxdMblMtZPW0tLa0zLVsh5YtiUtIYF1YGDvvrHhby8eHVwICCF65Eltra1Zu3sz5iAg+fecdbt0Zlh57Z17XpORkbsXGUszGJtvD/uETJ0hKSsLP17fgTlTkEZncGQKYnpKWY196amYy0dQy9+k8PPyrk5qYzKWdfxoWFHKoXIYyjXw4t2E/plYWhRIn8qyzuvNMkJyas3dxclrmvWZ1zwiCI5cukZSSygvlyuVaZ/0K5XNsMzIywt/bmylXtnLyaiS1nnvucZsuki8Wlpl/l1Nyec5KvTMSwPI+z1lNX3mJxPgEfv35Fw7tyVy40at6FRq29GfT0tVY29qQEJ/A9vWhuJX1oM97gwyJzqp1fZny2bcsn72Q/37tRUpKap7iTPMxPZWIPH1Kaor8DcTHxzN16lSqVKlCixYtsu2rUqUK33zzDbdu3eKXX37h5l0Ll9wrMTHnN/h5mfvvQbKGi0PmyuyNGzemQ4cO9OrVi4ULF1K2bFlD7MyZMxkzZgyenp7Url2bFi1aUL16debOncuqVavyddwHLXCUnp6er/k0ITMhOX78eI4fP86mTZv45ZdfCAkJYcmSJfznP//hrbfeMlyryZMn3/fh7G7nz5/n+p1hyBs3btTQ86fE6c6cl9F3FqO6281bt7C2sjIkPu9lZGREr/btaRcQwJWoKBzt7XF2dGTBqlUYGxvj5ODAgT//JDUtjeFjx+Yov2rzZlZt3szE//u/bD0yfz9yBFNTU3yff76AzlLk0VkUtwUy56u8V/KtBEyszDDJZVghZN4j5dvUxb1xVRKu3cKiuA2WJWw5t3E/GBthYW9TKHEizzpH28z7KjqXkSg34+OxtjDH8p5nlQPhFzAzMaGGR86F7R7EzirzmSRJ0zPIU1DcMfM563bM7Rz7bkffwtLaCnPL+z9nte76Ko1aB3A9Mgo7B3tKODmwKWQNRsbGFHcoQWTEZdJSU6lazzfbIl0mpqZUe6E2GxevJOryVdLS0vIUV9rDrYCvgIgUJiU1Rf4GLCwsmDlzJr6+vjmSmlkqVKjAtm3bck22lShRAltbW86fP59j38WLua9I+KjKlCnD559/zqBBg3j33XdZtGgRpqamJCUlMWHCBOrVq0dQUBCmd80xNW7cuHwfx83NjQMHDpCSkpItgZmcnMzFixcNvSvz6tKlS1y6dInatWvj5eXF4MGDuXLlCr169WLmzJm89dZbuLllPgSVLl2aypUrZyu/detWbO98gAFITU1l+PDh2NvbExgYyPTp02nTpg3NmzfP97nK47GxtsbZ0ZGzubzWz164QPlcejBn2bFvH/Z2dlSpWBF7u79Wzfzz1CnKubtjbmZGj1dfJe6eD60xt28zcc4cGtapQ6O6dSlul33FzRNnz1LOwwNrq+zzS4k8DaZW5lg42Oa6ynns5esUc8u5enOWq3+cwbyYFfblSmNu+9frOebcFWzdHA3zdBZ0nMizzsbCAudixXJd5fzctWuUc3bOsf14ZCSezk5Y5zIHdGpaGiOWr6C8szP9GjXMtu/SnQXxnIvZ5ignUtisrK2wd3Lg8vmcz1mXwi/iVvb+SfqDu/dTrHgxPL0rYlv8rykXzh0/jetzZTAzNzN8ZkhPz9mhIcPQOSMjz3EiUrRo4iGRvwETExNat27Nnj17WLFiRY790dHRbNiwgfr162NlZWX4djKrZ6GRkRHNmzdn27ZtnDx50lDu4sWL2eaBLCgBAQG8/PLLhqHxkNlLNCEhgbJly2ZLaB49etQwF2jqnSFaJncm0H9QL1J/f39iY2P56aefsm2fP38+cXFxNGnSJF9tnjJlCr179842HL5UqVK4uLgYrmfTpk2BzLlB7+4pevToUd5++21+/PFHw7aZM2dy5MgRhg0bxtChQylfvjyffPIJ0Xc+eMiTVa96dQ4dP07EXf+/B48d4/LVq9SvVeu+5daEhhK0eDFpaX8Ny913+DDHz5yhRcPMD5XlPTyo5u2d7cf7ztDBkk5OVPP2NixIBJmv84uXL+NZRhPWy7PDqcpzRJ++RHxUtGHbzVOXSIi6hXM1z/uWi9hxhNOrdpOe9tff6+vHLnDr3FVc63kXWpxIUVDXsyyHIyKIuBlt2Hbo4kUuR8dQv3z2oeSpaWlE3LyJp1Pu8yybmphgYWrKjlOnuHY71rA9LimJdYcOU7K4HRVcXArlPEQepkqt6pz+8zhRl/96zjp15DjXr1ylar37L2C1c0MYq+YtzfacdfyPI4SfPEM9/8x5/13cSlHM3o7ft+8m5c5wdshcUOjAzt+wtrXBxbVUnuNEpGjR19kifxMffvghBw8e5P3332flypU0bNgQW1tbwsPDCQkJISUlhY8//hjAsHp3cHAw165do23btgwdOpSwsDC6d+9O7969MTExYe7cudjY2OQ61+DjGjZsGNu2bWPSpEm0bNkSDw8PqlevTkhICLa2tnh6enLy5EkWL15sSBrGxcVRvHhxStwZLrxy5UoyMjJ49dVXc9TfsWNHli1bxpdffsmJEyfw8fHh8OHDhISEUKNGDTp27Jiv9nbr1o0VK1bQrVs3OnfuTPHixdm1axd79uzhX//6FwCVKlWiR48ezJ07l+joaAICAoiOjmbevHnY2NgwdOhQAE6fPs3EiRNp0KABbdq0AWDkyJH07NmTzz//nK+//vqRr6s8mlcCAvhlzx4+mzCBl/39SU5JYdXmzZTz8KDhnV69kdeucfzMGbzKlaOkU2bPtHbNm/PtzJl8NXUqdatXJ+rGDVaHhlK9cmUa1qnzSG25dvMmqWlphmHxIs+CMg19uPr7aQ7N3IBbAx/SU1O5uO0wtm6OuNTITL4k3LjNrfNXsXvOBSuHzB417o2qcnR+GH/O/RnH558jMTqWiO1HKFHJFZcaf80LWNBxIs+ayFu3OHElkkqlSlLyTu/8V2pUZ9vJk3y+Zg1tqlUlOTWN1QcP4unsRIOKFbKVvxYbS2paumHYem56+vnxfytXMnLlSlreWR1989Fj3EpI5MPWrfK9UItIQWnYyp8DO39j1teTePGlpqSmpLB9/RZcy7pT/YXML49vXL1G+KmzeFTwxMEl8zmrYetmLPhhFvPGTef5mtWIvn6DHRvCqODjTXW/zOczY2NjXu72GsE/zGLqqO+o2bAeGenp7Nu2m6grV3ntzW6Y3Okwkdc4ESk6jDIeNPGciBQp8fHxzJ49m82bNxMeHk5CQgIuLi40adKEAQMG4HLnG/qUlBTee+89tmzZgoWFBdu2bcPCwoKzZ88yZswY9uzZg7m5uSHxN3XqVI4fP56vtuzevZuePXsyePBghgwZkmvM4sWLGTFiBH5+fsyePZvLly8zevRodu/eTXJyMm5ubrRp04by5cszZMgQxo8fz0svvQTAqFGjCAkJISMjgxUrVrB3716GDRvGnDlzqFevHgCxsbFMmjSJdevWce3aNUqVKkWbNm14++238zTn5b3279/PpEmT+PPPP4mNjaVs2bJ07tyZbt26GT4oZGRkEBwczIIFCzh79izFihWjZs2aDB06lIoVK5Kens7rr7/On3/+yerVq7MtzvT++++zYsUKpk6dmu+epAC3Dh7Mdxn5y6XISH4MCeHo6dNYmJnhW6UK3dq1o/idFWbDdu9m8rx5vN29O03uvMYgcwj6ik2buBwVRfFixWhYuzaBLVpgkcvwwCxR168z+P/+j9dataLjPXOpnjp3jo+++YZ+XbrkebV0ebi3rq9/2k0o8uKjYjizZg8x5yIxMTelRCU3PFvWNgwDj9x/ihNLtlPptQaUrPlXQubqH2e4+MshEq7fwszWCpfq5XBvXA0T8+wfHgs6TvJn8mEtslRQhswPxtnWlo9faWvYtvX4CaaEbWVAk8Y09qpk2H4pOpo5O3/l2JUrWJiaUsPdnW4v1MPunulHTl29yv+WraBvwwYEPJ99ipu7Hbt8hSX79nEy8ipGRlCxZEk61a5FxZIlC/5E/0H2tWv48CB5oGtXrrI2eBnnTpzG3NycStWe56WObbGxy3zO2r99D8uC5vPqG69Ts0FdQ7mDu/ezbe3PXI+8ho2dLdVfqE2jNgGYW2R/zjpz9CRbVq4n4uwFAEo/V4bGLzenUtXKjxQn+RPgcf8et0XJzQn5n/bsSSkxZOjTbsIzSUlNEZG/CSU1Re5PSU2RB1NSU+T+lNQUeTAlNQufkpq505yaIiIiIiIiIiIiUqRonI6I5FlUVFSe4qytrbGxsSnk1jy+6OhoUlJSHhpnZmaGvb194TdIRERERERERPJESU0RybMGDRrkKe5B82g+S4YMGWJYWf1B6taty9y5c59Ai0REREREREQkL5TUFJE8mzVrVp7i3N3dC7klBeODDz7g1q1bD42zu7NKqYiIiIiIiIg8G5TUFJE8q1+//tNuQoHy8fF52k0QERERERERkUeghYJERERERERERESkSFFSU0RERERERERERIoUJTVFRERERERERESkSFFSU0RERERERERERIoUJTVFRERERERERESkSFFSU0RERERERERERIoUJTVFRERERERERESkSFFSU0RERERERERERIoUJTVFRERERERERESkSFFSU0RERERERERERIoU06fdABERKRhvXV//tJsgIiJFlEnjpk+7CSLPsNSn3QAREcmFemqKiIiIiIiIiIhIkaKkpoiIiIiIiIiIiBQpSmqKiIiIiIiIiIhIkaKkpoiIiIiIiIiIiBQpSmqKiIiIiIiIiIhIkaKkpoiIiIiIiIiIiBQpSmqKiIiIiIiIiIhIkaKkpoiIiIiIiIiIiBQpSmqKiIiIiIiIiIhIkaKkpoiIiIiIiIiIiBQpSmqKiIiIiIiIiIhIkaKkpoiIiIiIiIiIiBQpSmqKiIiIiIiIiIhIkWL6tBsgIvmTnJzM7NmzWb16NeHh4RgbG1O2bFlatmxJr169sLCwMMTGxsaSnJyMg4PDA+v88MMPWbZsGcePH89XW3bv3k3Pnj1zbDc2NsbOzg4vLy/69etHw4YN81VvluTkZG7evEnJkiUBCAkJYdiwYcyZM4d69eo9Up0iD5J44zZn1v1GzJkrADh4l8GzVR3Mba0eWC7mXCTnNu4nNuIaplbmOFb24LkAX8xsLB8p7nbENc5t2Met8KsYGRlR3LMUnq3qYO1cvGBPWCQfnpX7425xV27w+6TVuDepynPNfB//JEUKybTgYC5dvcr/DR360Nir168zZ9ky/jx5EoCaVarQ49VXKV6sWLa4A0ePErJ+PWcuXMDY2JiKZcvS5eWXqVi2bGGcgkihWj57Idcjr9L3gyEPjb0ZdZ11C1dw9vgpALyqPU+rzu2wsSt23zL5qV9Eig4lNUWKkNTUVPr27cuBAwcIDAykc+fOpKWlsXfvXr799ltCQ0OZM2cO5ubmHD58mLfffpuxY8cWegKwefPmNG/e3PB7WloaZ86cYf78+fTv35+5c+dSq1atfNUZERHBG2+8Qf/+/Wnfvj0AderUYcyYMZQvX75A2y8CkBKfxMGZ68lIS6dMIx8yMjK4uO0wcVduUmPgyxibmORaLvrMZQ7P2oSplTnuTaphZGRExM4/iT5zheoDWmNmZZGvuPioGA5OX4+JuSkeTasDELHjT/6YtpaaQ9phYWf9ZC6IyF2elfvjbulp6Rxfsp2MtPRCPXeRxxX6669s3rmTyhUqPDT2dlwcn4wfT1paGq8EBJCens6qzZsJv3SJL/77X0xNMz++/XnyJF9OnkyZUqXo2rYtaWlpbNi2jf/7/ns++fe/qaDEphQh+7btYt8vv1LW6+HP+PGxcQSNmURaWioNW/qTkZHO9vVbiLx4iQH/excT05wpjvzULyJFi5KaIkXIunXr2LNnDxMmTKBFixaG7T179mTGjBl8/fXXLFmyhNdff50TJ05w9erVJ9IuLy8v2rVrl2N78+bN6dy5M1OmTGH69On5qvPixYucO3cu2zZ3d3fc3d0fp6ki9xWx/QhJMfHU+lc7rF3sAShWxpnDQRuJ3H+K0nW8ci13etVujIyNqN6/NVaOdgA4VvFg//iVXAg7SLlWdfIVF7HzT9KTU6n+VitsXR0BsC/vyoEfVhOx44ghTuRJelbuj7td3HqQ+Mjogj9ZkQKSnp5OyIYNLFm3Ls9l1oSGciM6mq+HDaNMqVIAVHjuOT6fNImw3bsJePFFAH4MCcHR3p7P//tfLMzNAWhUty7vfv45C1avZsTgwQV/QiIFLD09na2rNxG6Yn2ey+zYGEbMzWgGf/o+Lq6Z94ib53P8+M1k9u/YQ53G9R+rfhEpWjSnpkgR8vvvvwPw4p0H2ru9/vrrmJmZceDAgSfcqvurXr06np6e/PHHH0+7KSIPFXXwDPaepQwJG4ASFVyxcrYj6uDZXMsk3owlPjIaF9/yhkQMgLWzPQ6V3YncfypfcZA5xNfUxsKQ0AQoVsYJU2sL4iNvFtTpiuTLs3J/ZIm7coPwLQfx8K9eQGcoUrCSU1L44KuvWLx2LQ3r1MHB3j5P5Xbs38/zFSsaEpoA1by9Ke3iws79+wGIjY/nfEQEL/j6GhKaAPZ2dlSuUIHjZ3O/J0WeJSnJKfzwf2MJXb6OGn61KVYib1PsHNq9H0+vCoaEJkCFKl44lnLh0O7fH7t+ESlalNQUKUJsbGwAWLhwYY591tbW7N+/nzFjxjBhwgSGDRsGZPbi9Pf3N8QdPnyYN954A19fXxo2bMjUqVPJyMgotDZbWVnlqP/XX3/lzTffpF69elSpUoWGDRvy8ccfc+vWLSBz7sysuTqHDRuGl5eXYbuXlxe7d+821JWQkMA333yDv78/Pj4++Pv7M3bsWBISEvLd1t27d+Pl5cWyZcto27YtVatWNVzHqKgoPvnkE5o1a4aPjw+1atWiZ8+e7Nu3L1sdGRkZzJkzh5dffplq1arl2p709HSCgoJo2bIlPj4+NGzYkFGjRhEbG5vvNkvBSElIIvFGLLZujjn22ZZ2JPbS9VzLJd+KA8CmZIkc+6wcipEal0RSTFye4wCsHO1IjU8iOfav10xKfBKpicmYPWTuQpHC8CzdH5A57PzE0h2UqOiKSw0NJZRnU0pKCvGJify7Tx8G9eiBsfHDP3bFxsdz9do1yuUyKsXT3Z2zFy4AYG1pyXcjRtDmrue7LLdjYzHJw7FEnrbU1FSSEhLp/HYvOrzZDRPj3KcxuVtCXDw3o67jWrZMjn2uHmW4HH7xseoXkaJHw89FipBXXnmFWbNm8dVXXxESEkJAQAB+fn74+vpibm6O+Z1v65s3b05UVBQLFy5kwIABVK1aFYCTJ0/So0cP7OzsGDhwICkpKQQFBZGcnFwo7Y2MjOTEiRPUrFnTsG379u3069ePmjVr8q9//QsjIyN27NjBwoULiYmJYdy4cdSpU4cBAwYwZcoUOnfufN/5OJOTk+nTpw8HDhygffv2+Pj4cPDgQaZPn86+ffuYM2cOZmZm+W73p59+Svv27enYsSOurq4kJibSrVs3bt++Tbdu3ShZsiTnzp0jODiYN998k59//hlHx8wP+5988gnBwcE0bdqUrl27cvbsWYKCgjh37hwTJ04E4KOPPmLFihUEBgbSu3dvTp8+TXBwMPv37yc4ODjbYk/yZCTHxANgnst8leZ2VqQlpJCakIyplXm2fcZmmW+jaUkpOcqlxCdl1n07Ic9xFsVtKNPIhxvHLnB84S+Ua5M55PbMur0YmxjjVv/5Rz1FkUf2LN0fABe3HSLh+i2e7+5PRnrhfSkn8jisrawY//HHmNxnvtnc3IiOBsCheM4eZSXs7IhPSCAuPh4ba2tKu7jkiDkfEcGJs2epXrnyI7db5EmxtLLk319+lK975NbNGADsStjn2FfM3o7E+AQS4hOwsrZ6pPpFpOhRUlOkCKlYsSITJ05k+PDhnDx5kpMnTzJ58mSsra3x9/dn8ODBeHp64u3tTY0aNVi4cCH169c3LBQ0YcIEABYsWEDp0qUBeOmllwgMDHysdiUkJHDjxg3D7ykpKZw+fZqxY8eSnp7O4LvmdZo9ezalS5dm1qxZhiTs66+/TufOndm2bRuQOXdm/fr1mTJlCjVq1Mh1vk6ApUuX8vvvvzNs2DB69+5tqKtChQp8/fXXLFq0iG7duuX7fGrVqsX//vc/w+9r167l/PnzzJgxI9tK7u7u7owcOZJ9+/bRokULTp06xYIFC+jUqROfffaZIc7GxoYpU6Zw6tQprl+/TkhICJ988gldunQxxDRu3Ji+ffuyYMECevXqle82y+NJS85MppiY5XxbNL4z4XxaSmqOpI11SXtMLM24duQ8ZRpXxcjIyBB782QEAOkpqRTzcM5THIClvS3uTapxetUu9o9feacRRlR+vUm2IekiT8qzdH/ERd4kfPMflH+lHhbFbUi8qR7u8mwyMjLKdzIlMSkziW9ubp5jn/mdL2mTUlKwuU/ZSXPnAtAuICB/jRV5Ch7lHklKTATAzDxnpwXTO9tSkpOxsrZ6pPpFpOjR2ASRIqZJkyZs2bKF7777jnbt2uHs7Ex8fDyrV6+mXbt27NmzJ9dy6enpbNu2jcaNGxsSmgDly5enQYMGj9WmmTNn4ufnZ/hp1KgRffr0MeyrW7euIXbq1KksXbo02wP7zZs3sbW1JT4+Pl/HDQ0NxdbWNkfismfPntja2hIaGvpI51OnTvYFKVq3bs2vv/6a7Trd3bs1q91hYWFkZGTQo0ePbOX79u3LypUr8fDwYOPGjRgZGdG4cWNu3Lhh+Hn++edxdnYmLCzskdosjylrigSj/BUzNjHB7cUqxEZc5/jCX4i7coPYS9c5FhxGenJmEsbIxDjPcQDnNu3n1PJfsfNwwatzIyp1bEixMk4cC97K9aMXCuyURfLsGbk/MtLTObF0O3ZlXe67MJFIUZY1XU9WYj+vkpKTGTNtGucjImjXvDnPV6xYGM0TeeoMb0f5vEdE5O9LPTVFiiALCwtat25N69atAThy5AhBQUGsXr2akSNHsi6XVTajo6OJj4/Hw8Mjx75y5co9cgIQoF27dgQGBpKRkcG5c+eYNm0alpaWfPHFF3h7e2eLNTEx4cKFC4wbN45Tp04RHh5OZGTkIx334sWLuLu75xhibm5ujru7OxEREY9Ur4ODQ45tRkZGTJs2jd9//53w8HDCw8NJScnsvZSeng5gOF7ZsmWzlbWzs8POLnPxi/DwcDIyMmjSpEmux86aN1WeLBOLzNdQekpajn3pqZlJFVPL3Kcy8PCvTmpiMpd2/mlYMMWhchnKNPLh3Ib9mFpZ5DkuNSGZi9sOY1vGkap9X8LozrxoztXKcuCH1ZxctoMSFTtibKqeB/LkPCv3x8Vth4m7fJPq/VuTEpfZWyc1IbNnW1pyKilxiZhaW+jDrhRZlnemn8ltWqDkO88c1paW2bbHxcfz5dSpnDhzhqYvvECXl18u/IaKPCUWlpn3SEou90jqnVEFlvfcIyLy96akpkgRER8fz9SpU6lSpQotWrTItq9KlSp888033Lp1i19++YWbN++/QnLinWEbd8tKyj2qrOHikLkye+PGjenQoQO9evVi4cKF2ZJ8M2fOZMyYMXh6elK7dm1atGhB9erVmTt3LqtWrcrXcR+0wFF6evojzacJ5BiqcubMGbp27UpKSgoNGjSgdevWVK5cmYyMDAYNGmSIS0vL+YE/t3bZ2NgY5te8l+bTfDositsCmfP23Sv5VgImVmaY5DLUCTIT3uXb1MW9cVUSrt3CorgNliVsObdxPxgbYWFvk+e4+MhoMlLTca5WzpDQhMweby7Vy3N2/V7io2KwLZ0z8S5SWJ6V++PmiQgy0tI58MPqHMeJ2HaEiG1HqPPea1iWsC3Asxd5cpxKZC6WFX1n4cS73bx1C2srK0PiEyDm9m2++OEHzl28SMCLL/Jm585K6svfWnHHzHvkdsztHPtuR9/C0toKc0s9S4v8kyipKVJEWFhYMHPmTHx9fXMkNbNUqFCBbdu25foNZYkSJbC1teX8+fM59l28eDHHtsdRpkwZPv/8cwYNGsS7777LokWLMDU1JSkpiQkTJlCvXj2CgoIwNf3rT9C4cePyfRw3NzcOHDhASkpKtgRmcnIyFy9epHbt2gVyPtOnT+fWrVusW7cuW4L23iSsq6srABcuXKB8+b9W5I2MjGT06NF0794dNzc3tm/fjo+Pj6H3Zpb169fn2pNWCp+plTkWDra5ruIce/k6xdyc7lv26h9nMC9mhX250pjftTp5zLkr2Lo5GuYhzEucsemdRGYui59kZKRn/eNRTlHkkT0r94dn6zqkJmTvnZMSm8DxRdtw8S2Hi28FzGzVQ0eKLhtra5wdHTmby3PZ2QsXKH/XM0JCYqIhodm6aVN6tW//JJsq8lRYWVth7+TA5fM575FL4RdxK+v+FFolIk+T5tQUKSJMTExo3bo1e/bsYcWKFTn2R0dHs2HDBurXr4+VlRXGd3p5ZfXCNDIyonnz5mzbto2TJ08ayl28eLFQ5nEMCAjg5ZdfNgyNh8xeogkJCZQtWzZbQvPo0aOGuUBT7wxlzOot+aBepP7+/sTGxvLTTz9l2z5//nzi4uLuO8Q7v6Kjo7GysjIkLSEzcbpgwQLgrx6ajRs3BiA4ODhb+ZCQENatW4etrS3+/v4ATJ48OVtMaGgoQ4cOzXdvVSk4TlWeI/r0JeKjog3bbp66RELULZyred63XMSOI5xetZv0tL9eq9ePXeDWuau41vPOV5y1iz3mdlZc2X+StDsLo0DmgimRv5/G1MYC65L2BXC2IvnzLNwfxdycKFHBNduP3XMlAbB0KEaJCq65LmYkUpTUq16dQ8ePE3HX1DwHjx3j8tWr1K9Vy7Bt5qJFnLt4kVZNmiihKf8oVWpV5/Sfx4m6/Nc9curIca5fuUrVejWfYstE5GnQk59IEfLhhx9y8OBB3n//fVauXEnDhg2xtbUlPDyckJAQUlJS+Pjjj4G/5oUMDg7m2rVrtG3blqFDhxIWFkb37t3p3bs3JiYmzJ07Fxsbm1znb3pcw4YNY9u2bUyaNImWLVvi4eFB9erVCQkJwdbWFk9PT06ePMnixYsNSdi4uDiKFy9OiTtDsFauXElGRgavvvpqjvo7duzIsmXL+PLLLzlx4gQ+Pj4cPnyYkJAQatSoQceOHQvkPBo1akRoaCj9+/enZcuW3L59m+XLlxMeHm5oM0DlypXp2LEjc+fO5erVq/j5+RlWRA8MDMTb2xsvLy+aNWtGUFAQERER+Pn5ERERwU8//YSrqyt9+/YtkDZL/pVp6MPV309zaOYG3Br4kJ6amjm/pZsjLjUye94m3LjNrfNXsXvOBSuHYgC4N6rK0flh/Dn3Zxyff47E6Fgith+hRCVXXGqUM9SflzgjY2PKt32Bo/O3cGDyGkrVqkhGRgaR+06SEBWDV8eGGGslT3kKnoX7Q+TvJvLaNY6fOYNXuXKUdMrs8fxKQAC/7NnDZxMm8LK/P8kpKazavJlyHh40vDMC5eKVK2z77TesrawoW6YMv+SySGSjuxZpFCmqbly9Rvips3hU8MTBJfMeadjKnwM7f2PW15N48aWmpKaksH39FlzLulP9hVoPqVFE/m6U1BQpQhwcHAgJCWH27Nls3ryZSZMmkZCQgIuLCy1atGDAgAG4uLgA4OfnR6tWrdiyZQu7du2iRYsWlC5dmuDgYMaMGcOMGTMwNzc3JP6mTp1a4O11cnLivffeY8SIEXz88cfMnj2bcePGMXr0aJYuXUpycjJubm689dZblC9fniFDhrBr1y5eeuklypcvT48ePQgJCeHQoUPUq1cvR/3m5ubMnj2bSZMmsW7dOlauXEmpUqXo378/b7/99iPPqXmvLl26cOvWLRYvXsyoUaNwcnKiRo0aTJw4kS5durBr1y569+4NwKeffkrZsmVZvHgxoaGhuLq6MmjQIN58800gs8fsuHHjmDFjBsuXLyc0NBQHBwdatGjB0KFDcXK6/zBOKVzmtlZU69eKM2v2cP7n3zExN8WxsgeeLWsbFua5dS6SE0u2U+m1BoakjZNPWbw6N+LiL4c4s3YPZrZWlGnog3vjatnmxcxzXJXnqPrGS4SHHuDcpn0A2Lo6UqVXAA6VyjzBKyLyl2fl/hD5Ozl6+jST583j7e7dDUnN4sWK8cm//82PISEsWrsWCzMz6lSrRrd27QzPNUdPnQIgPiGByfPm5Vq3kpryd3DuxBmWBc3n1TdeNyQ1beyK8eawf7E2eBmbl6/D3Nycyr5VealjW0wL6NlfRIoOo4wHrbQhIiJFRpctY552E0REpIia5tjyaTdB5Jm1xz714UEi/2ABHn+Pof83J+R/nYcnpcSQoU+7Cc8kffUtIiIiIiIiIiIiRYqGn4tINlFRUXmKs7a2xsbGppBb8/iio6NJSUl5aJyZmRn29vaF3yAREREREREReWxKaopINg0aNMhT3ODBgxkyZEght+bxDRkyxLCy+oPUrVuXuXPnPoEWiYiIiIiIiMjjUlJTRLKZNWtWnuLc3d0LuSUF44MPPuDWrVsPjbOzs3sCrRERERERERGRgqCkpohkU79+/afdhALl4+PztJsgIiIiIiIiIgVMCwWJiIiIiIiIiIhIkaKkpoiIiIiIiIiIiBQpSmqKiIiIiIiIiIhIkaKkpoiIiIiIiIiIiBQpSmqKiIiIiIiIiIhIkaKkpoiIiIiIiIiIiBQpSmqKiIiIiIiIiIhIkaKkpoiIiIiIiIiIiBQpSmqKiIiIiIiIiIhIkaKkpoiIiIiIiIiIiBQppk+7ASIiIiKF7c3yAU+7CSLPtuin3QCRZ9eM0z8/7SaIPNMCPGo+7SbIP5R6aoqIiIiIiIiIiEiRoqSmiIiIiIiIiIiIFClKaoqIiIiIiIiIiEiRoqSmiIiIiIiIiIiIFClKaoqIiIiIiIiIiEiRoqSmiIiIiIiIiIiIFClKaoqIiIiIiIiIiEiRoqSmiIiIiIiIiIiIFClKaoqIiIiIiIiIiEiRoqSmiIiIiIiIiIiIFClKaoqIiIiIiIiIiEiRoqSmiIiIiIiIiIiIFClKaoqIiIiIiIiIiEiRYvq0GyDyrElOTmb27NmsXr2a8PBwjI2NKVu2LC1btqRXr15YWFgYYmNjY0lOTsbBweGBdX744YcsW7aM48eP56stu3fvpmfPnjm2GxsbY2dnh5eXF/369aNhw4b5qjdLcnIyN2/epGTJkgCEhIQwbNgw5syZQ7169R6pzmfVwoULCQoK4urVq/j4+PC///2PSpUqPe1myTMm8cZtzqz7jZgzVwBw8C6DZ6s6mNtaPbBczLlIzm3cT2zENUytzHGs7MFzAb6Y2Vhmi7sdcY1zG/ZxK/wqRkZGFPcshWerOlg7F88WlxybwLmN+7lx7ALpKanYujpS9qXa2Hk4F+wJi+TDzajrrFu4grPHTwHgVe15WnVuh41dsQeWO3/iDJtCVhNx9gJWNlZU9q2Kf2ArbIrZZouLOHeBTUtWEX7qHEbGRpT1Kk+rzoE4lXLJFnfm6Ek2L1vL5QsRWFpZ4lOnBgGvtsHc0gKRZ8G04GAuXb3K/w0d+tDYq9evM2fZMv48eRKAmlWq0OPVVyleLPt9NfzrrzkdHp6jfN0aNfhP376G3w8cPUrI+vWcuXABY2NjKpYtS5eXX6Zi2bKPd1IiBejksp0kXIuhWr9WD419lGezB9V/40QEF8L+IDbiOhgZYefuzHPNa+oZS6SIUlJT5C6pqan07duXAwcOEBgYSOfOnUlLS2Pv3r18++23hIaGMmfOHMzNzTl8+DBvv/02Y8eOLfQEYPPmzWnevLnh97S0NM6cOcP8+fP5//buPS7n+3/8+KPD1VlHEhUlXKjkEJnzkjMz2xymsTHmMIexzT58N36bnT4OM2KYs2yEZczkzMe5WGjOUVFJJJW6OlzV9fvjqkutsmIie95vt2639T683q/Xe9dbr+v5fr2er9GjRxMYGEjLli0rVGZ8fDwjRoxg9OjRvPbaawC0atWK2bNn4+bm9o/W/1kLDg5mxowZvP766zRp0oQVK1bw7rvvEhISgoWFxd8XIP4V1KpsIlbuQpOXj1NHDzQaDXFHzpNx+z7NxvVB38Cg1PNSohI4v3ovhqZGOHduip6eHvHHL5ISdRuvMb1QmGoDLaq7qUQs34WBkSF1XvYCIP7YRc79uJMWE/phbGkGQG62mojlu8h5oMKxXRMMTYy5dfISf67cRbOxfTB3sKmcGyJEEar0DFbNXkxeXi4devii0eRzdNdBEuNuMeazKRgYlt6ljL4cydrvlmJiakqnPl3R09fjxJ7/EXU5kvemf4CpufZzn3T7Div/G4CRkRGd+3YD4PieQyz/egHvfzEVS2tt4D/qUiSr5/6AY11nur/Rl9T7KZzYe5j46FhGTpuInp5e5dwQIcpw4MQJ9h8/TuP69f/22AcZGXy+cCF5eXm84udHfn4+v+3fz81bt/j6o48wLHiuNBoNcYmJeDdtio+XV7EyahR5sX4xMpJvlyzBycGBN/v2JS8vj91HjvD/vv+ezz/4gPoS2BTPgdunr3L71FWsXGv+7bGP0zd7VPkp0be5sHYvZvbWuHRrgSZPw63QS0QsD8HrvZ5Uc5bAphBVjQQ1hSgiJCSEsLAwAgIC6Natm277sGHDWLFiBXPmzGHLli0MGTKEq1evcufOnUqpl1KppF+/fiW2d+3alUGDBrF06VKWL19eoTLj4uKIiYkpts3Z2RlnZ+cnqepzadOmTdSvX5+vv/4aAFtbWyZPnszp06fp3Lnzs62ceG7EH71AdqqKlhP7YWZvDUA1pxqcX7WHxPBr1GqlLPW867+Foqevh9foXpjaWQJg516H8IXbiT0UQb2erbTlH79Ifk4uXu/1xKK2HQDWbrU5+8MO4o9d0B0X978/yUxKxXNkD6xdHQCo0dSFU3N/Ie7InygHdHyat0GIUh3bc4jU+ymM/2Iq9rW1n0tH17qsnbeE8GNhtOrUttTzdvwUjJ6ePqOmT8KupvbLYpMWTVk8czb/27GXHoO0f9uO7zmEOjuHUdMmUquOEwD1mjRk2azvOL77kO64XZu2YW1rw7v/mYDCSAGAla0NO9ZvIfL8ZRp6Nn6q90GIsuTn5xO8ezdbQkLKfc7vBw6QnJLCnGnTcHLQPlf169blq8WLORQail+7dgDcTU4mOzubVk2b0rF16zLLWxscjJ21NV999BHGRkYAdGzdmilffcXGHTv4dPz4J2ihEE9Gk59P7KEIbuw/W+5zKtI3K0/5Ub+HYWxlTrOxfTAw0oZC7Fu48cf8rcTsDcdzRPfHaZoQ4hmSnJpCFHHmzBkA2hV0IosaMmQICoWCs2fPVnKtyubl5YWrqyvnzp171lV5rmVlZZGcnExmZqbudwCFQvEsqyWeM3cjorB2ddB1mgFs6tfGtIYldyOiSz0n6346qsQU7Ju76QKaAGY1rLFt7Exi+LWHxyY/wNDcWBfQBKjmVB1DM2NUifcB7WicxDPXsFU66QKaAEbVzHDt2QpLl78f1SDE0/BnaDiuyvq6gCZAfXcldg72/Bl6ptRz7iclcyc+gWZtW+kCmgA1atVE6eXOmWNhum3Jd+9hZmGuC2gCOLnWwdTcjMT4BADUOWrMq1ng3amNLqAJ4KrUzi64fTP+n2msEBWUo1bzyX//y+adO+nQqhW21tblOu9YeDhNGjTQBTQBmjZqRC17e46Hh+u2xSZonwHHmmX/DUhXqbgRH0+b5s11AU0Aa0tLGtevz5Xo0v+OCVEZ8tS5hC/6jRv7zmLfzA0jK7NynVfevll5yldnZpORkEx1TxddQBPAyMIUK1cH0m5WzmAVIcQ/S4KaQhRhbm4OaPMv/pWZmRnh4eHMnj2bgIAApk2bBmhHcfr6+uqOO3/+PCNGjKB58+Z06NCBZcuWodFonlqdTU1NS5R/4sQJRo4ciY+PD+7u7nTo0IEZM2aQlpYGaKdjF+bqnDZtGkqlUrddqVQSGhqqKyszM5N58+bh6+uLh4cHvr6+zJ07VxcgrKiwsDD8/f3x9vamefPmDB48mAMHDpQ4Ljg4mFdffRVPT0/atGnDf/7zn2IjY+fOnYtSqeSnn37SbcvJyaFv3774+PiQmJio296zZ0+Sk5P55ptviIiIYN68edSrV69E2oC4uDiUSiVr1qzhzTffxMPDg3feeQfQ5k+dN28ePXr0wNPTk+bNmzNw4ED2799fou7btm3j9ddfp1mzZnTs2JEZM2aQnJxcofaJyqXOzCYrOR0LR7sS+yxq2ZF+616p5+WkZQBgXrPklHBT22rkZmSTnao9xtTOklxVNjnpD58dtSqb3KwcFAV5obLvp5OTqsK6fm1AG+TMy1EDULtNozJHiwrxNGVmqLh/9x61XZxK7Ktdx4mEm3Glnpd2PxWAmk4OJfbZ2ldHlZ5BarI2oG9XswaqDBUZaQ90x6jSM8jKzKKalfaFgcJIwdtTxtCpT7diZSUUBDOtqz86v7UQT4tarUaVlcUHw4fz/tCh6Ov//VesdJWKO0lJ1CtlhoyrszPRsbG63/8a1MzKzi5xjpmJCfM//ZTeRfqkhR6kp2NQjjoJ8bRocvPJy86h0ZudUA7ogJ7+36cKqUjfrDzlGxor8J78Go7t3EteS5WFnjwjQlRJMv1ciCJeeeUVVq9ezX//+1+Cg4Px8/PjpZdeonnz5hgZGWFU8Oa7a9eu3L17l6CgIMaMGYOnpycAkZGRDB06FEtLS8aNG4darWbVqlXk5OQ8lfomJiZy9epVWrRoodt29OhRRo0aRYsWLZg4UZtf7NixYwQFBZGamsqCBQto1aoVY8aMYenSpQwaNKjMfJw5OTkMHz6cs2fP8tprr+Hh4UFERATLly/njz/+YN26dRUa7RgVFcXo0aNp3LgxkydPBrRTw8eNG8f69evx9vYGYNGiRQQEBNC9e3cGDhxIYmIi69evJywsjC1btmBra8uECRPYt28f33//Pd27d6d69eosXryYq1evMn/+fN3iRwDDhw9n9+7dBAUFsXnzZho0aMCSJUt0uar+asGCBfj6+tK3b1+MjY3RaDSMHj2aixcv8tZbb1GnTh1u377Nxo0bGT9+PL/++qsuMLx8+XLmzp1Ly5YtmTJlCvfu3WPt2rVcunSJDRs2YGhoWK72icqVk6oCwMiy5Jt9I0tT8jLV5GbmYGhqVGyfvkL7GcrLVpc4T63SfunMeZCJsZU5Th09SL4cy5Wgw9TrrZ1qHhVyGn0DfRzbNgEg8572xYPC3ISokFPcPnWVvCw1JnbVqNerNXaNX7z0EOL5VxictLSxLrGvmrUlWapMMlWZmJoVX7TByFj79yE7q2QARpWuDfY/SH2Ala0NHXp24crZC2xaFkjPwa8C2qnmBgYGvNS19JQL95OSib58jV1Bv2LvWIvGzT0ft4lCPBEzU1MWzpiBQRm5l0uTnJICgK2VVYl9NpaWqDIzyVCpMDczIy4hARMTE9YFB3P8zBmys7Oxr16dwX360K6gD6evr08te/sSZd2Ij+dqdDRejSU1g3h2DEwUeE95HX2D8gcOK9I3K0/5evr6mFa3LLE943YyaTfuYNPAsdx1E0I8PySoKUQRDRo0YNGiRUyfPp3IyEgiIyNZsmQJZmZm+Pr6Mn78eFxdXWnUqBHNmjUjKCiItm3b6kb8BQQEALBx40Zq1aoFQPfu3Xn11VefqF6ZmZnFRvqp1WquX7/O3Llzyc/PZ3yRHElr1qyhVq1arF69WheEHTJkCIMGDeLIkSOANndm27ZtWbp0Kc2aNSs1XyfAL7/8wpkzZ5g2bZpuxOKQIUOoX78+c+bMYdOmTfj7+5e7Hfv370elUrFo0SJd4K5Xr14MHjyYS5cu4e3tTWxsLIsXL+a9997jww8/1J3bu3dvXnvtNZYuXcr06dMxNjbm66+/xt/fn9mzZ/P222+zYsUKevfuTa9evYpd99ixY6QUfHnQaDTMnj0bR8eyOy61atVi7ty5ugUnzp07x+nTp/n8888ZPHiw7rhmzZoxcuRIjh8/jlKpJDU1lYCAAN0I3cIvN05OTnz66accO3aMevXqlat9onIVjoY0UJT8s6hfEPzOU+eWCGqa1bTGwERB0oUbOHXy1H1m8tS53I/Ujh7LV+cCYGJtgXPnplz/7SThC7cXFK5H4yGddVPSc7O0L0Bu7DuDnoE+bn18QE+PuCPnubh+Px7Du2FTMIpTiMqSXZiyw6jkSyzDgm3qnJwSQU372g4Ym5pw8Y8IOvby0z0f6hw11y5cASBXrX32rO1s6NSnKzt+2sLimbMB7RfQweOGF5uSXkiVnsF3U78oqJcRffxfK7V+QlQGPT29CgU04eFoSyMjoxL7jApeGGer1ZijHamZlZVFRlYW44cOJSMzk5BDh1i4Zg15eXll5tnMys5mcWAgAP38/CpUPyH+SXp6eugZVGwht4r0zR6n/MJrXNms/X7k1ElejAlRFckYayH+onPnzhw8eJD58+fTr18/atSogUqlYseOHfTr14+wsLBSz8vPz+fIkSN06tRJF9AEcHNzo3379k9Up5UrV/LSSy/pfjp27Mjw4cN1+1oX6cwuW7aMX375pVgn+f79+1hYWKBSqSp03QMHDmBhYVEicDls2DAsLCxKnTb+KA4FOaNmzZrF+fPnAbCxsWH37t0MHToUgL1795Kfn4+vry/Jycm6n+rVq9O4cWMOHTqkK69FixYMHTqU7du3M3HiRGxtbZk5c2axa/7888+MHTsWGxsbpk+fjkaj4eOPPyYrK4vExEQ2btxIQsG0rkLe3t7FVtD18vLi1KlTulXiQbsCfX5+PgAZGdoRR8ePHyc7Oxt/f/9iX25eeeUVgoODad26dYXaJypRYQqHCvaH9Q0McGznTnr8Pa4EHSbjdjLpt+5xecMh8nO0wUy9glEDMXvDufbrCSzr2KMc1JGGAzpQzak6lzf8j3uXtNMM83O1n6ncrBy8RveiZov61GzuhteonhiaGhOz549/pr1CVIDu8ajgyuIGhoa07daZWzGxbF4WyO3YWyTcjGPjktXkZGsD+IXTdPcF72T7uk3Uqe/KG+8N5fWR/ji51mHT0jVcPnu+RNl6enoMHPM2r4/0x762A6vnLuHCackvLaqOwtRB5Xmu/Nq1Y8SAAXz47ru09vLi5TZt+PLDD7GvXp31v/6q648UlZ2Tw+wff+RGfDz9unalSYMG/3gbhHiqHrNvVl55OblcCNxPRsJ9nDp5FstlLoSoOmSkphClMDY2plevXroRfxcuXGDVqlXs2LGDmTNnElLKypYpKSmoVCrq1KlTYl+9evUqHAAsql+/frz66qtoNBpiYmL48ccfMTEx4euvv6ZRo0bFjjUwMCA2NpYFCxZw7do1bt68WSy/ZEXExcXh7OxcYoq5kZERzs7OxMdXbFGGHj16sHfvXnbu3MnOnTupUaMGnTp1on///rqp5zdv3gQoNiKyqL/WZfLkyezevZu4uDjmz5+PVZFpXLGxsbp7FBgYiJmZGbGxsQQGBvLll1/SqFEjZs2axeLFi4sFokub/m1oaMjGjRsJCwvjxo0b3Lx5U7fgUOEXk8L7Ubdu3WLnGhsb4+7u/ljtE5XDoGCabL46r8S+/FxtcNLQpPT/N3V8vcjNyuHW8Yu6pPW2jZ1w6uhBzO5wDE2Nyc3MIe7IeSyc7PB8t7sub1ONpi6c/WEHkVuPYdNgAAYKbTC8untdFKbGumsYmhph28iJO2euk5ejxkBGpIlKZGyi/SyqS0mlklswksbExKTUc19+pTtZqkxO7DvMn2HahU+UXu506OHL3l92YGZhTqYqk6O7DuDoUofhH7+vC3R6tm7O0lnf8euaID6ao8SwyL+PpuZmeLZuDoC7dzMCPvuWnRu34u7t9c81XIinyMRY+1yVlqIop2AEs1nBc9W1lJfjRgoFHVu1YktICLEJCdQtMgMlQ6Xi22XLuBoVxctt2jC4T5+n0QQhnqon6Zv9ndzMHC6s20fajTvU9G6AS9cWf3+SEOK5JEFNIQqoVCqWLVuGu7s73boVX4TA3d2defPmkZaWxuHDh7l//36Z5RQGuooq7Q16RRROFwftyuydOnXi9ddf5+233yYoKAgXFxfdsStXrmT27Nm4urri7e1Nt27d8PLyIjAwkN9++61C133UAkf5+fkVDsApFAoWLlzIlStX2Lt3L4cPHyY4OJgtW7bw4Ycf8t577+nu1ZIlS8r8klzUjRs3uHdPmyh8z549xaaeHz58GLVazciRIzEz0+bjmTp1KhEREWzevBlra2uqVatWYrX7v04hS05OZsCAAdy5c4d27drh6+tLo0aNcHR0ZMCAAcXuCTx61EVF2ycqh7GVBaDNf/lXOWmZGJgqygwk6unp4da7Nc6dPMlMSsPYyhwTGwti9oSDvh7G1uaoElPQ5OZTo2m9Yono9Q0MsPdyI3rXaVR3UzGy1C5WpjAv+dkwsjAFjTZ/pwQ1RWWystMuhPUg9UGJfQ9S0jAxM8XIxLjEPtA+H73e7E/HXn7cS7yLpa01NtVt2Rv8O3r6+ljZ2pAYn0Bebi6ePs2LLbBiYGhI0zbe7Nm8nbsJd6hVp/S0IQojBUovd07uO0zGg3TMq1n8A60W4umqbqN9rlIKFnEs6n5aGmamprrAZ1msqlUDtKMyC6U+eMDXP/xATFwcfu3aMXLQoAqPshbiefAkfbNHyUnP5PyavWTcSsahdUPq93tJnhEhqjCZfi5EAWNjY1auXElgQe6h0tSvXx89Pb1Sg1E2NjZYWFhw48aNEvvi4kpfGfZxOTk58dVXX5GSksKUKVPILXhbmZ2dTUBAAD4+PuzYsYMvv/ySYcOG4eXlVWL17fJwdHQkNjYWtbr4Iig5OTnExcUVG91YHrdu3eL06dMolUrGjx/Ppk2bOHjwIC4uLqxcuVJ3TdDmtWzbtm2xH7VajXGRDn5ubi7Tp0/H2tqaUaNGERISwt69e0tct+iXZCMjI77//nusra1JSUlh4MCBmJqaljinqJ9//pm4uDh+/PFHli5dyuTJk+nZs6fuvhcqvB+FozEL5eTkMGnSJPbt21eh9onKY2hqhLGtRamrnKcn3KOaY/Uyz71zLoqUqASMLEyxcqmJiY22E54acxsLRzsMFIboGxZ8BvNLvijQaPIL/wNzB2v0DPVR3UkpcVzW/XT0FQalBjyFeJpMzUyxrm5Lwo2Sf8tu3YzD0aXsBawiQsOJvhyJhVU16jash03BCuUxV65Tu64TCiOFbtG2/NKeD91LQQ13ExKZ9/EXhB44WuK47Kws0NPDsJTca0I8j8zNzKhhZ0d0KX3E6NhY3Apm/iSnpDDlq6/YUsosofiCmTg17LR5mTOzsnQBzV4vv8yowYMlWCOqrCfpm5UlN1utC2jWbteEBq+2lWdEiCpOgppCFDAwMKBXr16EhYWxbdu2EvtTUlLYvXs3bdu2xdTUVBcoKzo6r2vXrhw5coTIyEjdeXFxcU8lT6Kfnx99+vTRTY0H7SjRzMxMXFxciq3sfenSJV0u0MJAXOFoxEeNIvX19SU9PZ2ffvqp2Paff/6ZjIwMOnfuXKE6L126lHfeeafYdHgHBwfs7e119/Pll18GtLlBi44UvXTpEmPHjmXt2rW6bStXruTChQtMmzaNSZMm4ebmxueff65bFKhVq1bo6+sTFBRUrJ1JSUlkFyToDwkJ0Y30LEthefXr19dt02g0rF+/Hnh4T9u2bYtCoWDTpk3F6r5r1y527dpV4faJylXdvS4p12+hupui23b/2i0y76ZRo6lrmefFH7vA9d9Cyc97+Bm7dzmWtJg71PbRpocws7fGyNKU2+GR5KkfBsPz1LkknrmOobmxdtEhIwV2jeuQfDmOjMSHI8Kzkh9w79JNbBs7FxvpKURlcW/pxfWLV7ib8PDf72sXrnDv9h08fcqetnd89yF+W/8LeXkPpw9eOXeBm5FR+Phqp9TaOzpQzdqSM0dDUec8fImmzlFz9vgpzCzMsa/tgK19dbIyMzl16Dh5RV4q3U9K5sLpc7go3TCWEfCiCvHx8uLPK1d0wUmAiMuXSbhzh7YFq5rbWlujyszkwPHjqDIfjlhLSk7mUGgo7g0bYmOpXdF55aZNxMTF0bNzZ94ukgdciKrqcftmZbm+/YQ2oNm2MW69S19gSwhRtcjrbCGK+M9//kNERARTp05l+/btdOjQAQsLC27evElwcDBqtZoZM2YAD/MubtiwgaSkJPr27cukSZM4dOgQb731Fu+88w4GBgYEBgZibm5eas6kJzVt2jSOHDnC4sWL6dGjB3Xq1MHLy4vg4GAsLCxwdXUlMjKSzZs364KGGRkZWFlZYVMw7Wn79u1oNBr69+9fovwBAwawdetWvv32W65evYqHhwfnz58nODiYZs2aFZt6XR7+/v5s27YNf39/Bg0ahJWVFSdPniQsLIyJEycC0LBhQ4YOHUpgYCApKSn4+fmRkpLC+vXrMTc3Z9KkSQBcv36dRYsW0b59e3r37g3AzJkzGTZsGF999RVz5syhYcOG+Pv7ExgYyKhRo+jSpQtRUVFs2rQJe3t7Bg4cyLx583jrrbdYs2ZNmfXu2LEjgYGBjB49mjfeeAO1Wk1ISAjnz59HX19ft1CQnZ0d77//Pt9//z0jRozAz8+P27dvs379enx8fPD19UVfX79c7ROVz6mDB3fOXOfPlbtxbO9Bfm6uNg+mox32zdwAyEx+QNqNO1jWtcfUVjvtz7mjJ5d+PsTFwH3YNalLVko68UcvYNOwNvbN6gHaVZzd+rbh0s8HObvkdxxaNkCj0ZD4RySZd1NRDuiAfsGLBtce3qRG3+bPlbup3bYx+voGxJ+4iL7CAJduLZ/NzRH/eh16+nL2+ClWz1lMu+4vk6tWc3TXQWq7OOPVRvu5TL6TxM1r0dSp74qtvXYETYdeXdj4w2rWL1hOkxZNSbmXzLHdh6jv0Qivl7S5lPX19enj/wYbfljNsi/n06KDD5r8fP44Esrd23d4Y6Q/BgUv6noPeY1fVvzEim8DaPaSN6oMFaH7j2jLGPL6s7k5QpRDYlISV6KiUNarR83q2ufjFT8/DoeFMSsggD6+vuSo1fy2fz/16tShQ0GucYB3Bw5k7vLlfDZ/Pl3atiUzK4vdhw9joK/PiIK+WNzt2xw5dQozU1NcnJw4XMrClmWtki7E86C0PlZ5+mblpbqTwp0zURiYKrCobUfimesljqnZvGJlCiGePT3No5LmCfEvpFKpWLNmDfv37+fmzZtkZmZib29P586dGTNmDPb29gCo1Wo+/vhjDh48iLGxMUeOHMHY2Jjo6Ghmz55NWFgYRkZGusDfsmXLuHLlSoXqEhoayrBhwxg/fjwTJkwo9ZjNmzfz6aef8tJLL7FmzRoSEhL45ptvCA0NJScnB0dHR3r37o2bmxsTJkxg4cKFdO/eHYAvv/yS4OBgNBoN27Zt4/Tp00ybNo1169bh4+MDQHp6OosXLyYkJISkpCQcHBzo3bs3Y8eOfayckOHh4SxevJiLFy+Snp6Oi4sLgwYNwt/fXzf9Q6PRsGHDBjZu3Eh0dDTVqlWjRYsWTJo0iQYNGpCfn8+QIUO4ePEiO3bsKLY409SpU9m2bRvLli2jc+fO5Ofns2bNGoKCgoiPj8fOzo5u3boxfvx4rKysCAoKYvv27axcuZKkpCS6dOlS6v3evHkzq1atIj4+HisrK9zd3ZkwYQKfffYZarW6WL7SLVu2sG7dOqKjo6lRowZdu3ZlwoQJWFhYlKt9j2vwwdmPfa7QUt1NJer3MFJjEjEwMsSmoSOuPby1+SyBxPBrXN1ylIZvtKdmi4cjd++ciyLu8J9k3ktDYWGKvVc9nDs1xcCo+LvDlOsJ3DxwlgfxSQBY1LbDuXNTbBs6FTsuM/kBMbtOc//6LdCAlUtNXHt4Y2Zv/XRvwAtspJvfs65ClZd0+w47N2wl5up1jIyMaNi0Cd0H9MXcUvvlM/xoGFtX/Uz/EUNo0f5h8CQiNJwjO/dxLzEJc0sLvNp407G3H0bGRsXKj7oUycHtu4iPjgWgVl0nOvXpSkPPxsWOO3/qDId37udOfAIKY2PcGjfA77XeVHewf8p34MXWOkXGOvxT3p85kxq2tvy/Ii8qD4WGsmT9esa+9RadC/pYALcSE1kbHMyl69cxViho7u6Of79+unyZhU5HRLB1zx5i4uMxUiho0qABQ155BceaNQHYe/QoK4KCHlmvoICAf7CV/y7v3dv1rKvwQgmbsxkTawuajuqp21ZWH+vv+mblLT8h9DLXtp18ZL06fP3O4zfqX27jy1OfdRX+EfcDFjzrKpTJZoIMfimNBDWFEP96Go3mhcinI0FNIcomQU0hHk2CmkKUTYKaQjyaBDWfPglqlk4Scwkh/vVehICmEEIIIYQQQgjxbyKvZIWoZHfv3i3XcWZmZpibmz/l2jy5lJSUEqujl0ahUGBtbf30KySEEEIIIYQQQogXngQ1hahk7du3L9dxj8qj+TyZMGGCbmX1R2ndujWBgYGVUCMhhBBCCCGEEEK86CSoKUQlW716dbmOc3Z2fso1+Wd88sknpKWl/e1xlpaWlVAbIYQQQgghhBBC/BtIUFOISta2bdtnXYV/lIeHx7OughBCCCGEEEIIIf5lZKEgIYQQQgghhBBCCCFElSJBTSGEEEIIIYQQQgghRJUiQU0hhBBCCCGEEEIIIUSVIkFNIYQQQgghhBBCCCFeMB988AFKpZL79++X2PfJJ5+gVCoZO3ZsiX0ZGRk0adKEKVOmVEY1AYiNja3wORLUFEIIIYQQQgghhBDiBdOqVSsAIiIiSuwLDQ1FoVBw6tQp8vLyiu2LiIggLy8PHx+fSqnnDz/8wIgRIyp8ngQ1hRBCCCGEEEIIIYR4wZQV1IyJiSEhIYE+ffrw4MEDLly4UGx/eHg4AK1bt66Uep44caJEYLU8JKgphBBCCCGEEEIIIcQLpkGDBlhbW3Pu3Lli20+ePIm+vj5jxoxBT0+PEydOFNt/5swZ7O3tcXV1rczqVpgENYUQQgghhBBCCCGEeMHo6enh7e3Nn3/+WWz7yZMnadSoES4uLiiVSk6ePKnbp9FoiIiI0I3SzMvLY8WKFXTv3h0PDw/at2/PzJkzSU5O1p0TGhqKUqlk69at9O3bF09PT6ZNmwZAWFgY/v7+eHt707x5cwYPHsyBAwd05/r6+hIWFkZ8fDxKpZKAgIByt0+CmkIIIYQQQgghhBBCvIBatWpFSkoKMTExgDZoGRYWpsuX2aZNG8LDw8nJyQHg+vXrpKam0qZNGwAmT57MnDlzaNiwIdOmTaNHjx5s2bKFN998k7S0tGLX+uKLL2jdujUff/wxXbp0ISoqitGjR6PRaJg8eTIfffQRmZmZjBs3jtOnTwMwffp06tWrh42NDbNnz6Zr167lbpvhk94cIYQQQgghhBBCCCHE09GlS5dH7t+/f3+Z+wpHXJ47dw4XFxeuXr3KvXv3dEFLHx8f1qxZQ3h4OG3atOHMmTO68w4fPszu3bsZNmwY//d//6crs2XLlnzwwQcsXbqUqVOnFtv+2Wef6X5fvnw5KpWKRYsWYWtrC0CvXr0YPHgwly5dwtvbGz8/P9auXUt2djb9+vWr0H2RoKYQQrwgNr489e8PEkIIIUpT51lXQIjn10aaPusqCCEqgc2ESc+6CmX7dftjn9qoUSOqVatGREQE/fr14+TJkxgYGODt7Q1oR3IaGBgQFhamG7Xp4OBA3bp1Wb16NQCjR48uVmbPnj1ZsGAB+/fvLxbULFyYqJCDgwMAs2bN4t1338XDwwMbGxt279792O0pSoKaQgghhBBCCCGEEEI8px41EvPv6Ovr07JlS91iQSdPnsTDwwMLCwsAqlWrRuPGjfnjjz8AOHv2rG5qelxcHJaWllSvXr1EuW5ubhw+fLjYtsLRmIV69OjB3r172blzJzt37qRGjRp06tSJ/v3764KqT0JyagohhBBCCCGEEEII8YLy9vbm8uXLZGdnc/r0ad3U80I+Pj5ERESQnJxMdHS0bsq6RqMps8z8/HwUCkWxbQYGBsV+VygULFy4kO3btzNhwgRq165NcHAw/v7+/Pjjj0/cLglqCiGEEEIIIYQQQgjxgmrdujVqtZqQkBDS0tJ0IzELtWnTBpVKxe+//45Go9Htd3R0JC0tjaSkpBJlRkdHU6tWrUde99atW5w+fRqlUsn48ePZtGkTBw8exMXFhZUrVz5xuySoKYQQQgghhBBCCCHEC8rd3R0zMzM2btyIQqGgZcuWxfa3bNkSQ0NDtm7diqOjI87OzgD4+voCsGzZsmLH79u3j+joaDp37vzI6y5dupR33nmHxMRE3TYHBwfs7e3R138YktTX1yc/P7/C7ZKcmkIIIYQQQgghhBBCvKAMDQ1p3rw5x44dw9vbGxMTk2L7zc3N8fT05MyZM/Tv31+3vVOnTnTp0oV169aRmJiIj48PMTExbNiwAWdn5xILCP2Vv78/27Ztw9/fn0GDBmFlZcXJkycJCwtj4sSJuuNsbW05deoUq1atomXLlnh5eZWrXTJSUwghhBBCCCGEEEKIF1jhyuR/zadZqHDKeWE+TQA9PT0WLFjApEmTuHz5Mt988w179uxh0KBBbNmyBUtLy0deU6lUsnr1aurWrcuqVauYNWsWkZGRfPbZZ4wbN0533MiRI3FxceG7777jl19+KXeb9DSPyvophBBCCCGEEEIIIYQQzxkZqSmEEEIIIYQQQgghhKhSJKgphBBCCCGEEEIIIYSoUiSoKYQQQgghhBBCCCGEqFIkqCmEEEIIIYQQQgghhKhSJKgphBBCCCGEEEIIIYSoUiSoKYQQQgghhBBCCCGEqFIkqCmEEEIIIYQQQgghhKhSJKgphBBCCCGEEEIIIYSoUiSoKYQQQgghhBBCCCGEqFIkqCmEEEIIIYQQQgghhKhSJKgphBBCCCGEEEIIIYSoUiSoKYQQQgghhBBCCCGEqFIkqCmEEEIIIYQQQgghhKhS/j+BlHgDWKzYZAAAAABJRU5ErkJggg==" }, "metadata": {}, "output_type": "display_data" @@ -794,20 +806,20 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-01-29T12:34:44.203818Z", - "start_time": "2024-01-29T12:34:43.731223Z" + "end_time": "2024-09-02T20:20:35.846379Z", + "start_time": "2024-09-02T20:20:35.460091Z" } }, "id": "ec2f9dad494526f0" }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 49, "id": "9e73354b", "metadata": { "ExecuteTime": { - "end_time": "2024-01-29T12:31:57.698598Z", - "start_time": "2024-01-29T12:31:57.640511Z" + "end_time": "2024-09-02T20:20:35.904700Z", + "start_time": "2024-09-02T20:20:35.825217Z" } }, "outputs": [], @@ -817,12 +829,12 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 49, "id": "a94b000c", "metadata": { "ExecuteTime": { - "end_time": "2024-01-29T12:31:57.698800Z", - "start_time": "2024-01-29T12:31:57.694656Z" + "end_time": "2024-09-02T20:20:35.909715Z", + "start_time": "2024-09-02T20:20:35.905071Z" } }, "outputs": [], diff --git a/docs/examples/Multiple_Models_Interface_With_Error_Analysis.ipynb b/docs/examples/Multiple_Models_Interface_With_Error_Analysis.ipynb index e987615d..739f0c00 100644 --- a/docs/examples/Multiple_Models_Interface_With_Error_Analysis.ipynb +++ b/docs/examples/Multiple_Models_Interface_With_Error_Analysis.ipynb @@ -2,15 +2,32 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": 22, "id": "248cbed8", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:32:40.514680Z", - "start_time": "2024-06-01T21:32:40.211761Z" + "end_time": "2024-09-02T20:21:37.404009Z", + "start_time": "2024-09-02T20:21:36.947492Z" } }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-09-02 23:21:37 law_school_gpa_dataset.py WARNING : No module named 'tempeh': LawSchoolGPADataset will be unavailable. To install, run:\n", + "pip install 'aif360[LawSchoolGPA]'\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The autoreload extension is already loaded. To reload it, use:\n", + " %reload_ext autoreload\n" + ] + } + ], "source": [ "%matplotlib inline\n", "%load_ext autoreload\n", @@ -19,12 +36,12 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 23, "id": "7ec6cd08", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:32:40.525555Z", - "start_time": "2024-06-01T21:32:40.515836Z" + "end_time": "2024-09-02T20:21:37.456950Z", + "start_time": "2024-09-02T20:21:37.404263Z" } }, "outputs": [], @@ -37,12 +54,12 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 24, "id": "b8cb69f2", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:32:40.538209Z", - "start_time": "2024-06-01T21:32:40.526255Z" + "end_time": "2024-09-02T20:21:37.460665Z", + "start_time": "2024-09-02T20:21:37.425880Z" } }, "outputs": [ @@ -98,24 +115,15 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 25, "id": "7a9241de", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:32:42.636150Z", - "start_time": "2024-06-01T21:32:40.536406Z" + "end_time": "2024-09-02T20:21:37.468018Z", + "start_time": "2024-09-02T20:21:37.447425Z" } }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "WARNING:root:No module named 'tempeh': LawSchoolGPADataset will be unavailable. To install, run:\n", - "pip install 'aif360[LawSchoolGPA]'\n" - ] - } - ], + "outputs": [], "source": [ "import os\n", "from datetime import datetime, timezone\n", @@ -161,7 +169,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 26, "outputs": [], "source": [ "DATASET_SPLIT_SEED = 42\n", @@ -171,8 +179,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-06-01T21:32:42.662239Z", - "start_time": "2024-06-01T21:32:42.639658Z" + "end_time": "2024-09-02T20:21:37.500199Z", + "start_time": "2024-09-02T20:21:37.468959Z" } }, "id": "76d98eaabfcfc9c0" @@ -213,7 +221,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 27, "outputs": [], "source": [ "ROOT_DIR = os.path.join('docs', 'examples')\n", @@ -233,15 +241,15 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-06-01T21:32:42.688222Z", - "start_time": "2024-06-01T21:32:42.663180Z" + "end_time": "2024-09-02T20:21:37.509770Z", + "start_time": "2024-09-02T20:21:37.488781Z" } }, "id": "efc95fa248b9f135" }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 28, "outputs": [], "source": [ "config = create_config_obj(config_yaml_path=config_yaml_path)\n", @@ -250,8 +258,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-06-01T21:32:42.710745Z", - "start_time": "2024-06-01T21:32:42.686442Z" + "end_time": "2024-09-02T20:21:37.532794Z", + "start_time": "2024-09-02T20:21:37.510305Z" } }, "id": "f3a59ca9319a774d" @@ -280,12 +288,12 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 29, "id": "6c55c6a0", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:32:42.747758Z", - "start_time": "2024-06-01T21:32:42.711432Z" + "end_time": "2024-09-02T20:21:37.568004Z", + "start_time": "2024-09-02T20:21:37.533228Z" } }, "outputs": [ @@ -294,7 +302,7 @@ "text/plain": " juv_fel_count juv_misd_count juv_other_count priors_count \\\n0 0.0 -2.340451 1.0 -15.010999 \n1 0.0 0.000000 0.0 0.000000 \n2 0.0 0.000000 0.0 0.000000 \n3 0.0 0.000000 0.0 6.000000 \n4 0.0 0.000000 0.0 7.513697 \n\n age_cat_25 - 45 \n0 1 \n1 1 \n2 0 \n3 1 \n4 1 ", "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
juv_fel_countjuv_misd_countjuv_other_countpriors_countage_cat_25 - 45
00.0-2.3404511.0-15.0109991
10.00.0000000.00.0000001
20.00.0000000.00.0000000
30.00.0000000.06.0000001
40.00.0000000.07.5136971
\n
" }, - "execution_count": 8, + "execution_count": 29, "metadata": {}, "output_type": "execute_result" } @@ -306,7 +314,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 30, "outputs": [], "source": [ "column_transformer = ColumnTransformer(transformers=[\n", @@ -317,15 +325,15 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-06-01T21:32:42.785294Z", - "start_time": "2024-06-01T21:32:42.746359Z" + "end_time": "2024-09-02T20:21:37.591262Z", + "start_time": "2024-09-02T20:21:37.567811Z" } }, "id": "8ee9e8a8c10245bf" }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 31, "outputs": [], "source": [ "base_flow_dataset = preprocess_dataset(data_loader=data_loader,\n", @@ -337,8 +345,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-06-01T21:32:42.808641Z", - "start_time": "2024-06-01T21:32:42.770185Z" + "end_time": "2024-09-02T20:21:37.636670Z", + "start_time": "2024-09-02T20:21:37.590328Z" } }, "id": "6dba3327ebe01279" @@ -365,7 +373,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 32, "outputs": [], "source": [ "models_config = {\n", @@ -389,8 +397,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-06-01T21:32:42.825775Z", - "start_time": "2024-06-01T21:32:42.802098Z" + "end_time": "2024-09-02T20:21:37.649421Z", + "start_time": "2024-09-02T20:21:37.622321Z" } }, "id": "8c6061673bb72efa" @@ -413,12 +421,12 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 33, "id": "197eadaa", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:33:09.582891Z", - "start_time": "2024-06-01T21:32:42.826018Z" + "end_time": "2024-09-02T20:22:45.595849Z", + "start_time": "2024-09-02T20:21:37.645149Z" } }, "outputs": [ @@ -428,7 +436,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "b161be95803d4bcd8fbc48b11fb75d75" + "model_id": "2e7b73903ec4405f88615cf68bc833eb" } }, "metadata": {}, @@ -440,7 +448,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "f663bc0b121d49b0a050b22a944e3265" + "model_id": "0e205db38f1e4525adbbddd2cad4edbd" } }, "metadata": {}, @@ -452,7 +460,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "2873756e9fc243b19ecea6500256c527" + "model_id": "6cfb3d4929a04a2b94a463c47050f54b" } }, "metadata": {}, @@ -464,7 +472,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "50cfec2b48504570a33c6a54903839ef" + "model_id": "0b3c40ea8f6f47c5bfab08b312099edd" } }, "metadata": {}, @@ -476,7 +484,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "60fda77987fc4b669c37b633f26852ca" + "model_id": "0281cd9235bb41e88cb8c58f45624142" } }, "metadata": {}, @@ -497,21 +505,21 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 34, "id": "bea94683", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:33:09.610270Z", - "start_time": "2024-06-01T21:33:09.583455Z" + "end_time": "2024-09-02T20:22:45.625717Z", + "start_time": "2024-09-02T20:22:45.592522Z" } }, "outputs": [ { "data": { - "text/plain": " Metric overall sex_priv sex_priv_correct \\\n0 Statistical_Bias 0.416691 0.413261 0.324033 \n1 Overall_Uncertainty 0.887649 0.898580 0.880975 \n2 Aleatoric_Uncertainty 0.859615 0.866990 0.852746 \n3 IQR 0.087474 0.088773 0.081936 \n4 Std 0.073404 0.076654 0.071201 \n5 Mean_Prediction 0.519733 0.575657 0.597694 \n6 Epistemic_Uncertainty 0.028034 0.031589 0.028229 \n7 Jitter 0.108416 0.130465 0.102774 \n8 Label_Stability 0.862917 0.827488 0.866939 \n9 TPR 0.656051 0.493333 1.000000 \n10 TNR 0.733333 0.808824 1.000000 \n11 PPV 0.664516 0.587302 1.000000 \n12 FNR 0.343949 0.506667 0.000000 \n13 FPR 0.266667 0.191176 0.000000 \n14 Accuracy 0.698864 0.696682 1.000000 \n15 F1 0.660256 0.536232 1.000000 \n16 Selection-Rate 0.440341 0.298578 0.251701 \n17 Sample_Size 1056.000000 211.000000 147.000000 \n\n sex_priv_incorrect \n0 0.618208 \n1 0.939015 \n2 0.899708 \n3 0.104479 \n4 0.089178 \n5 0.525040 \n6 0.039308 \n7 0.194069 \n8 0.736875 \n9 0.000000 \n10 0.000000 \n11 0.000000 \n12 1.000000 \n13 1.000000 \n14 0.000000 \n15 0.000000 \n16 0.406250 \n17 64.000000 ", - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Metricoverallsex_privsex_priv_correctsex_priv_incorrect
0Statistical_Bias0.4166910.4132610.3240330.618208
1Overall_Uncertainty0.8876490.8985800.8809750.939015
2Aleatoric_Uncertainty0.8596150.8669900.8527460.899708
3IQR0.0874740.0887730.0819360.104479
4Std0.0734040.0766540.0712010.089178
5Mean_Prediction0.5197330.5756570.5976940.525040
6Epistemic_Uncertainty0.0280340.0315890.0282290.039308
7Jitter0.1084160.1304650.1027740.194069
8Label_Stability0.8629170.8274880.8669390.736875
9TPR0.6560510.4933331.0000000.000000
10TNR0.7333330.8088241.0000000.000000
11PPV0.6645160.5873021.0000000.000000
12FNR0.3439490.5066670.0000001.000000
13FPR0.2666670.1911760.0000001.000000
14Accuracy0.6988640.6966821.0000000.000000
15F10.6602560.5362321.0000000.000000
16Selection-Rate0.4403410.2985780.2517010.406250
17Sample_Size1056.000000211.000000147.00000064.000000
\n
" + "text/plain": " Metric overall sex_priv sex_priv_correct \\\n0 Aleatoric_Uncertainty 0.859615 0.866990 0.852746 \n1 Mean_Prediction 0.519733 0.575657 0.597694 \n2 IQR 0.087474 0.088773 0.081936 \n3 Std 0.073404 0.076654 0.071201 \n4 Statistical_Bias 0.416691 0.413261 0.324033 \n5 Overall_Uncertainty 0.887649 0.898580 0.880975 \n6 Epistemic_Uncertainty 0.028034 0.031589 0.028229 \n7 Jitter 0.108416 0.130465 0.102774 \n8 Label_Stability 0.862917 0.827488 0.866939 \n9 TPR 0.656051 0.493333 1.000000 \n10 TNR 0.733333 0.808824 1.000000 \n11 PPV 0.664516 0.587302 1.000000 \n12 FNR 0.343949 0.506667 0.000000 \n13 FPR 0.266667 0.191176 0.000000 \n14 Accuracy 0.698864 0.696682 1.000000 \n15 F1 0.660256 0.536232 1.000000 \n16 Selection-Rate 0.440341 0.298578 0.251701 \n17 Sample_Size 1056.000000 211.000000 147.000000 \n\n sex_priv_incorrect \n0 0.899708 \n1 0.525040 \n2 0.104479 \n3 0.089178 \n4 0.618208 \n5 0.939015 \n6 0.039308 \n7 0.194069 \n8 0.736875 \n9 0.000000 \n10 0.000000 \n11 0.000000 \n12 1.000000 \n13 1.000000 \n14 0.000000 \n15 0.000000 \n16 0.406250 \n17 64.000000 ", + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Metricoverallsex_privsex_priv_correctsex_priv_incorrect
0Aleatoric_Uncertainty0.8596150.8669900.8527460.899708
1Mean_Prediction0.5197330.5756570.5976940.525040
2IQR0.0874740.0887730.0819360.104479
3Std0.0734040.0766540.0712010.089178
4Statistical_Bias0.4166910.4132610.3240330.618208
5Overall_Uncertainty0.8876490.8985800.8809750.939015
6Epistemic_Uncertainty0.0280340.0315890.0282290.039308
7Jitter0.1084160.1304650.1027740.194069
8Label_Stability0.8629170.8274880.8669390.736875
9TPR0.6560510.4933331.0000000.000000
10TNR0.7333330.8088241.0000000.000000
11PPV0.6645160.5873021.0000000.000000
12FNR0.3439490.5066670.0000001.000000
13FPR0.2666670.1911760.0000001.000000
14Accuracy0.6988640.6966821.0000000.000000
15F10.6602560.5362321.0000000.000000
16Selection-Rate0.4403410.2985780.2517010.406250
17Sample_Size1056.000000211.000000147.00000064.000000
\n
" }, - "execution_count": 13, + "execution_count": 34, "metadata": {}, "output_type": "execute_result" } @@ -539,12 +547,12 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 35, "id": "f94a20dc", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:33:09.656225Z", - "start_time": "2024-06-01T21:33:09.612140Z" + "end_time": "2024-09-02T20:22:45.656350Z", + "start_time": "2024-09-02T20:22:45.621124Z" } }, "outputs": [], @@ -554,12 +562,12 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 36, "id": "b04d06cf", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:33:09.687694Z", - "start_time": "2024-06-01T21:33:09.640611Z" + "end_time": "2024-09-02T20:22:45.694895Z", + "start_time": "2024-09-02T20:22:45.647015Z" } }, "outputs": [], @@ -577,12 +585,12 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 37, "id": "be6ace22", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:33:09.735472Z", - "start_time": "2024-06-01T21:33:09.663580Z" + "end_time": "2024-09-02T20:22:45.752691Z", + "start_time": "2024-09-02T20:22:45.668521Z" } }, "outputs": [], @@ -608,12 +616,12 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 38, "id": "435b9d98", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:33:09.735943Z", - "start_time": "2024-06-01T21:33:09.698636Z" + "end_time": "2024-09-02T20:22:45.753429Z", + "start_time": "2024-09-02T20:22:45.701571Z" } }, "outputs": [], @@ -625,21 +633,21 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 39, "id": "5efb1bf2", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:33:09.785875Z", - "start_time": "2024-06-01T21:33:09.732766Z" + "end_time": "2024-09-02T20:22:45.788238Z", + "start_time": "2024-09-02T20:22:45.733667Z" } }, "outputs": [ { "data": { - "text/html": "\n
\n", + "text/html": "\n
\n", "text/plain": "alt.Chart(...)" }, - "execution_count": 18, + "execution_count": 39, "metadata": {}, "output_type": "execute_result" } @@ -653,21 +661,21 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 40, "id": "0eb8528e", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:33:09.841654Z", - "start_time": "2024-06-01T21:33:09.786357Z" + "end_time": "2024-09-02T20:22:45.840329Z", + "start_time": "2024-09-02T20:22:45.781828Z" } }, "outputs": [ { "data": { - "text/html": "\n
\n", + "text/html": "\n
\n", "text/plain": "alt.Chart(...)" }, - "execution_count": 19, + "execution_count": 40, "metadata": {}, "output_type": "execute_result" } @@ -681,19 +689,19 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 41, "id": "df024aed", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:33:10.083977Z", - "start_time": "2024-06-01T21:33:09.842542Z" + "end_time": "2024-09-02T20:22:47.683454Z", + "start_time": "2024-09-02T20:22:45.838187Z" } }, "outputs": [ { "data": { "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAABQQAAAJKCAYAAAB6a0gJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gU1dfA8W/apm3KpvceEkinJITeO9KlSVEUUBBRFMUCCNIFRUSKNOmgBARCR1roLYQWSAKppEJ6YZPNvn/EHRMICL6Wn3I/z8MDbJmd3WT2zpx77jlaarVajSAIgiAIgiAIgiAIgiAILwTtf3oHBEEQBEEQBEEQBEEQBEH4+4iAoCAIgiAIgiAIgiAIgiC8QERAUBAEQRAEQRAEQRAEQRBeICIgKAiCIAiCIAiCIAiCIAgvEBEQFARBEARBEARBEARBEIQXiAgICoIgCIIgCIIgCIIgCMILRAQEBUEQBEEQBEEQBEEQBOEFIgKCgiAIgiAIgiAIgiAIgvACEQFBQRAEQRAEQRAEQRAEQXiBiICgIAiCIAiCIAiCIAiCILxAREBQEARBEARBEARBEARBEF4gIiAoCIIgCIIgCMILS61WP/dzKisrAVCpVH/o+YIgCILwT9NSixFMEARBEARBEIT/uMrKSmJjY7l48SJaWlro6+szb948Nm/ejIeHxxOfo6WlhZaW1lO3rVQqkclkf8VuC4IgCMJfQmQICoIg/MNUKhUVFRX/9G4IgiAIwn9GZmYmu3fvRqlUSrcdOHCAQYMGsXLlSu7evUudOnV45513sLCwqPHc6vkS2trajwUDHz58yIEDB0hISGDhwoU0bNiQDz74gKysrL/2TQmCIAjCn0hkCAqCIPwBmZmZFBcXExsby7Zt21i5cuU/vUuCIAiCIPxq2bJlrFq1ip9++glnZ2cAOnbsSHFxMV999RXe3t7I5XK0tLTQ0dGRnldZWYm2dlXORFZWFgkJCQA0atQIXV1dAG7fvs2gQYMwNjbG29sbFxcXGjZsSIsWLZDL5X/zOxUEQRCEP0b3n94BQRCE/2XFxcUYGxtL/z99+jQzZswgPj6eV199FXNzc3R0dMjLy8Pc3Fx6nFqtlpYZaS4sHlVaWkpZWRk3btxg8+bN+Pn5MXjwYExMTP7qtyUIgiAI/2l9+vShVatW2NjYoFKp0NHRwcDAAEdHRxo1alTjsZrlvmq1Gm1tbe7evcvs2bM5deoUenp6GBoa4uvry+jRo2nUqBEmJiY0b96cvXv3MnjwYEaOHIlarf7dZcWCIAiC8L9EBAQFQRCe4PPPPyciIoKdO3fi6uqKWq1m+fLlZGdnM3nyZFq1aoVcLqdfv36YmprWeO6jGQcFBQU1HnPhwgUmTZqEra0tRkZGJCcn4+HhIYKBgiAIgvCc1Gq1FMzTsLKywsrKqsbj3NzcuHr1Kl999RWenp40aNCAmTNnkpeXx7Jly5DL5WRmZvLhhx+Sk5PDlClTcHJy4urVq2zdupXp06ezbNkyLC0tUSgUGBoaEhISAiCCgYIgCMK/jggICoIgPEKzXKhHjx40adJEyvzLzs7m/v37BAcH079//xoBv0fl5+ezatUq9u7dS25uLt7e3nTp0oUuXbpgYWGBhYUF1tbWXLp0ib59+/LFF19IS5EEQRAEQXh2tTX9UKlUREdHk5ubS3BwMF988QX79+9HT0+PZcuW8fLLL9OgQQOMjY2JjY2luLgYuVzOyZMnuXXrFmvWrJGCfY0bN6Z58+b07NmTbdu2MXbsWJydnVEqlSIQKAiCIPxriatPQRCER2gyDIKCgmqc6NvY2ODm5kZGRgbp6emoVCocHR1ZsGABRUVFTJs2DZVKhVKp5Msvv+TgwYN07doVW1tbzp49y4wZM4iOjubLL7/ExsYGU1NTZDIZr7/+OjY2Nv/U2xUE4RGabKNn6SwqCMJfQ1N6Q61Wo6OjU+NYrL48t7i4mLi4OLKysnB3d8fb2xuAvLw85syZQ3JyMgcPHqRTp05YWVmxfv163nnnHYYOHYqenh5eXl7s27ePvLw8rKysOH/+PKampoSEhJCSksKtW7e4evUqcXFxAERFRTF69GhcXFyorKwUjUQEQRCEfy0REBQE4YWmUqkAamT7PRoIyM7ORqFQ8NVXX3HhwgUKCgpo164ddevWZfv27URFRZGSksK0adPQ0dHh/Pnz/Pjjj8yYMYP27dtjamrKyJEjWb16NXPmzKFHjx40b94cR0dHysrKpMxAUX9IEP5/ioqKyM7Oxt3dvUZjgN+jUqlq1PsUgUBB+P87duwYGzduZPjw4YSHhz/xmHzS2Pdo6Y1HH69UKpk7dy6RkZGUlJRgYmKCgYEB/fr1Y9SoUZiYmBASEkJCQgLl5eV07NgRX19f1q9fDyDVB3ZyckKpVJKSkoKPjw85OTlkZ2cTEhJCaWkpRkZG2Nvb4+LiwsSJE6lTpw66urrY2Nggl8u5c+fOc33fCIIgCML/ChEQFAThP02T6QPUerJe/WIjPz8fHR0dqUNgUVERAwcORKlUsn//frKzs3FycuLatWu88847NG3aFICQkBBu375NWVkZBgYGbN26FU9PT/r06QNUZS+kpKRIr/Pzzz/TtGlT3N3dAUhLS8PBwUEEBAXh/+H+/fsMGjQIa2tr1q9f/9jxrsk2Ah4LMjz6/4SEBO7evYuxsTHh4eF/7Y4Lwr9I9XEqKyuL69evk5iYiEKhoFmzZlhZWUmPycnJ4dixYzRu3LjGcaQ5FrW1tWsE3x8dA+Pi4jh27BgXLlxApVIRFhbGyy+/jKmpKWq1mo0bN7Jt2zZGjhxJ/fr1KSoqYunSpaxbt46XX34ZhUKBvb09xcXFpKamYmFhga2tLebm5ty9e5fCwkJMTEywsbHB0NCQhIQE2rVrh6WlJTKZjGHDhtG+fXuMjIwwMzPDwsKClJQUsrOzUalUWFpaYmNjQ3x8PBUVFchksr/3hyEIgiAI/08iICgIwv+se/fucebMGRo2bIiLi8sfCpj9XqbP1q1b+fnnn7l16xYmJibUr1+f1157DT8/P+RyOfb29ty4cYPi4mKmT5/OkSNHmDBhAvb29gQGBgLg4OAAwK1btwgKCiIrK4vs7GyGDRtGSkoKWVlZ0sVDeHg4YWFhaGtrY29vD8D169dp1KiRFLgUBOH5WVpaMmPGDAwNDWu9/0nZRgAnTpzg1KlTdOrUiU2bNrFnzx5UKhVyuZzhw4czePDgxxoHCcKLSEtLi8LCQr755hv27t1LeXk5hoaGlJSUYGZmxrBhw3jllVcA8PPzw9DQsMaEmGYbmmOxqKiIzMxMDA0NpbEUqibKPvroI0pKSnB1daWyspIFCxZw6tQpFi1ahLGxMREREYSFhTF8+HDpuG/QoAFpaWlS9p+joyPa2trExcURGBiIoaEhrq6uJCcnU1BQgImJCQqFAhsbG2lJcGBgIDt27MDKygo/P78a+/7DDz9w9uxZFi1ahLW1Ne7u7iQnJ1NSUiICgoIgCMK/jggICoLwj6qsrCQlJQW1Wo2bmxvwW5ZAVFQUkydPZs6cObi4uNR4nkqlkh73tOYed+/eJSYmhoKCAvz8/Khfv7503549e/jmm28ICQlh3LhxpKens27dOtLS0li4cCG2trY4Oztz5swZ7ty5Q0BAAC4uLpiampKQkIBSqUQmk+Hk5ATAjRs3CAoKwtnZmZiYGPT09Hj55ZdxdXXF2dkZKysrtLS0ePjwIQD29vYoFApiYmKk9y0Iwh/XsGHDWm+vqKjg1q1bnD9/nqysLIKDg2natKkUNLhy5QoRERH8/PPPeHl5sWjRIrS0tFi5ciWLFy/GxcWFrl27imWBwgtFpVI9Nr5mZWUxduxY7t69y6uvvkrjxo0xMjIiJSWFZcuWMW/ePMrKynj99ddxdnbG2NiY5ORk4Lcs/aSkJNauXcvhw4fJzs5GT0+PevXqMWbMGMLCwtDV1WXOnDnk5uYyY8YMfH19MTIyYsWKFVy+fJmcnByMjY2xtbUlKiqKBQsW0Lx5c9RqtTSxp2FtbY1CoeDmzZvSbd7e3pw4cYIHDx7g6OiIqakpTk5O3L17F5VKRePGjalbty4bNmwgICCAunXrUlpayqFDh1i/fj2tW7fGzc2NkpISrK2tOXToEPfv35cakAmCIAjCv4UICAqC8LdTqVRERETw448/Ehsbi56eHhYWFoSHhzN06FC8vLwACAgIQFtbm9zcXIAamX6PXqQ8euFSVFTElClTOHHiBDKZDLVajUqlYvTo0fTr1w9jY2NWr16Nj48Pn376KVZWVujo6BAaGsrdu3el19LUIouPjycgIEDKGoyPj6e8vByZTIa9vT1yuZyrV68ycOBA6tSpw549e+jVqxddu3aloqJCqhO4YsUKYmJiWLBgAVZWVtjb20tZCWK5sCA8naYEwNOCcnfu3MHIyAg7OztpaeLSpUtZu3YtcrkcLS0t1q5dS6NGjRg/fjxBQUEEBAQAVVmGM2fOlIL8FhYWDBo0iJMnT9K1a9e/5T0Kwv+CM2fOsHbtWr777rsagfDvvvuO69evs379eqkDL4Cvry8NGjSge/fu7Ny5k0GDBklBu4yMDHJzc1EoFOTn5zN37lwSExPp0aMH7u7u3L59m/Xr1zNv3jy++uor3N3dSU9Px8bGBltbWxQKBQBjxoypsY/vvfcec+fOZd26daxbtw6oqgtoZWVF7969GTVqFJaWltja2nL79m3peXXr1mXHjh1kZ2cDYGRkhJubG/v27SMrKwsPDw/ef/993nrrLYYPH07z5s2prKzk+vXrhIWF8dlnn0nP69SpE25ubtja2v51PwxBEARB+IuIgKAgCH+roqIivv32W7Zv306zZs3o06cPenp6XLp0ia1bt3L27Fm+++47PD09sbe3R19fn6SkJCkbT7ONqKgofvnlF+kkv02bNvTr109ahrtw4UKOHj3K+PHjady4MaWlpcydO5eff/6Z5s2b4+npiYGBAUlJSVy7do1mzZqhVCpp1KgRrVu3lvbX3d0dmUzGrVu3AJDL5bi6uhIbG0tJSYl0waNZWgzQrFkzvvnmG3bt2kXXrl2lYOCNGzdYvHgx7u7u6OrqYm5ujqOjIwcPHgQeD3IKwoumep0/TX2x6qqXAMjMzKSoqAgnJyf09fUBOHToEGPHjmX48OF89NFHaGlpsXnzZr799lsGDBjAwIEDMTAw4OTJk0ybNo2SkhK2bNmCh4cHOjo66OnpSQ0GZDIZdnZ2ODs7Ex8fL72+IPzXqdVqTp48yS+//EJxcbGUSZuZmcmuXbt46aWX8Pf3lx6rpaVFRUUFFhYWbNiwQcr2B/Dw8CAqKorU1FQUCgUbNmzg8OHDTJ06lQEDBkiTeUZGRixZsoS4uDjc3d1p3749CxYsYOjQofj6+qKjo4OHhwcNGjQgICAAW1tb6taty7fffsuDBw+4evUqqamp5ObmcuLECVatWkVQUBD169fHycmJ6Oho6biuU6cOFRUVZGZmAmBoaIi7uzv379/n3r172Nvb07RpUyIiIvjpp5+4fPkyBgYGDBw4kA4dOtRY2hwWFkZYWNjf98MRBEEQhD+RCAgKgvC32rZtG2vWrGHixIn07dtXqsvVu3dvmjRpwnvvvcfkyZNZuHChlEGXnJxMUVERFhYWVFZWsmLFCvbs2YODgwP16tXjzp07fPfdd6SkpDBlyhRkMhlXr16ladOmDBkyRHrtVatWkZeXh42NDQCvvPIKH3/8MWPGjMHU1BRdXV3c3d3x9/enRYsWNG3aFHt7e8zMzEhISAB+yyQ4duwYBQUFWFtbY2lpiZOTE2fPngXAx8eHN998k2+//ZZBgwbRoUMHtLW12b59O1ZWVnz88ccAyGQyfHx8SEtLIz8/HzMzs7/zRyEI/3N+rwRASkoKX3/9NSdPnpSW67Vo0YIhQ4bg4eGBk5OTlJEEVcsb165dS7169Zg6daq0HVdXV4qKili4cCEHDhygdevWODg4kJ+fDyBNPlhZWWFnZ8ft27d5+PChFHgUhP+C2hrtaLIBraysAMjNzZUCglFRURQXF9OqVSv09PRqZA5qJr40wcDy8nL09PTw9vZm//79JCYmEhAQgJ2dHaNGjaJXr14AUn2/2NhYtLW1uXPnDgADBgxAoVCwf/9+cnNzycjI4NixY6xevZrg4GBWrVqFgYEBpaWlmJmZ0aVLF+l9tWjRgldffZWsrCxkMhnu7u4cPXqU+/fvS92CAW7fvi1l8Nva2mJmZkZZWZn02Xh6ejJx4kQxESAIj1CpVJSWlkpN+J7nedra2r+b6S8Iwt9HBAQFQfjb5OXlsWzZMlq0aMFrr70m3a65KOnSpYuUlaO5GPHy8uLWrVtkZ2djYWFBREQES5cu5dVXX2X48OEYGxtTXl7O119/zYEDB4iLiyMkJIR69eqxceNG3nnnHZo0aYJarcbW1pagoCDpddu1a4etrS3Xr1/nzp07JCYmkpaWxvr16zl8+DDbtm3D0dERKysrqSi6gYEBrq6ulJSUkJmZKWUaurm5ceTIER48eICFhQVjx47F1NSUXbt28d1331FeXk5gYCDvvPNOjTpnY8eOZezYsX/TT0AQ/hlP6/BbXUpKChcvXuTWrVuYmprSunVrfH19garM4Hnz5hETE8OoUaOwtrbm/PnzbNq0CR0dHT799FMcHBxQKBRSUEFHR4ekpCSGDRsm7QdUBR7btWvHokWLiI6OpkOHDjg5OZGcnExOTg5WVlZS5pKjoyMXL14kOTkZb2/vv/JjEoS/VW0BeG1tbTIyMrh48SIA3bt3x8bGhhUrVlBSUgJUXdT/Hs3Fvo+Pj1QrGKom/6CqmVZERAQXLlwgNTUVa2trtLW1SUpKAsDExIR+/frRr18/0tLSUKlUyGQyVq9ezdq1a4mKiqJBgwa8/PLLtG/fnrfffpvKykqys7PZvn07gJTFaGVlhVKp5Pbt29jb22NhYUHTpk1xc3OTvpfatGkjTeppPpvqfwvCiywmJoYjR46QmJjI0KFDGTJkCBMnTmTIkCGPHSOa0h7AY0E/zfeN5jn379/HwMBAmnQQBOHvJwKCgiD8aaov9atOs6To4MGDPHjwgM6dOwNIM/PVL0ratWtX47m+vr5S8W+o6jwcHBzMO++8g4GBgfQ4CwsLSkpKSE5OJiQkhBEjRnDv3j2OHTvGkSNHUCqVANja2tKtWzc++OADdHR0CAwMJDg4uEb2z/Lly1mwYAE3btwgPDwcR0dHTp8+TXZ2NtbW1tja2mJgYEBCQgJhYWHo6OhImY63bt0iPDycyspKhg4dSpcuXVCpVKK+kPBCeFLg79HAg2bpXvXO4ZomQmq1GlNTU7Kysti4cSOff/45bdq0ITMzk4MHDzJz5kx69uyJlpYW3bp1IzQ0FGtrawBMTU2xs7PjypUrFBYWoqWlhaGhIdra2jXKDkBVkMDKykpaNuju7s6hQ4e4e/dujYCgu7s7FRUVxMfH4+3t/Ye6nQvC36myslL6PX1SFo5KpZIa7SQlJeHi4kKbNm1wcXHh2rVr3L17F11dXZydnZk4cSL29vbSmFtcXPy7+6A53j08PJDJZFJjEYBdu3axaNEijIyMaNy4Ma1atSI8PJwmTZpw7949AMrKytizZw9169alXr160nMbNWrEDz/8gEwmw9LSEn9/f3744QdiYmJwcHAgLS2N1NRUpkyZImUCahqHeXh4AKCnp8fKlStr3V9BeJHl5uaybds26tevLzXnuX37NhMmTODhw4cEBQVhbm7O119/jZeXV61jYfXSHtWp1WoOHTpEcXExKpWKGTNmYG5uzpQpU2jZsqUYWwXhHyICgoLwglKpVMTGxuLq6vrMKf+/V9Bfc3tlZSXp6emYmppiYmJCRUUFenp60kWEoaFhjcc/ja+vL6WlpdJF+9tvv824cePIzMxk7969nDp1iqioKPLy8tDW1iY9PR0AR0dHFi9eTFFREdeuXSMzMxOlUslPP/3EypUr6dOnD3K5nLlz5/LSSy/RokULoCpQUVxcjLa2Nnp6egA4OTmRn59PbGws1tbWmJqaYmBgwL1796SgQa9evWjbtq3UEEXz3jSZjoLwX1NbB9InLflNTU1l06ZNHD9+nJKSEoKCgujXrx/h4eEAFBYW8uGHH1KvXj3Gjh2LhYUFubm5jB8/nnPnztGyZUspgLh3715sbW2pU6cOhYWFtGrVqkZ2gYuLC1FRUSQlJVGnTh1sbGxISkqSyg5oJiLKysqkDGMAZ2dnoOrip1GjRtL2PDw8MDAw4NatW3Tu3FlctAj/MzTNsrS1tWuMp9X/rVarpTG4+u/uhg0bWLJkCWZmZhgYGPDzzz+zY8cOZsyYQbt27bC2tuajjz5CV1eXZs2aAUjNdjRBuycdByqVipycHBQKBc7OzigUClJTU1GpVFRWVrJo0SLkcjnz5s3D09NTep5MJiM1NZWcnBx0dXWZPXs2VlZWjBo1Cjc3N+7du8e3336Lm5ubNNbOnj2bdu3aceDAATIzM6lTpw6jR4+mSZMm0jJmf39/KVtQEIQnS0lJ4eeff8bKyorAwEB0dXX58ccfSUlJYfr06XTt2hU9PT3c3d1rPK/6d0tCQgJXr16lpKSEsLAw6RgvLy/n4MGD7Ny5k4CAAPr3709AQIAUqBfjqiD8M0RAUBBeAKmpqSQkJHD9+nXOnz/P7du3yc/Pp6KigiVLltC6desag/mTLnirz/rV9phDhw6xdOlSbt26hbGxMXXr1uXll1+ucRGtq6srnaQ/KSBYvS6R5qQjLS1N2oe7d+/y5ZdfkpycjL29Pa+99hqdOnWib9++pKSkUFZWhoGBAbGxsbi4uNC0aVNp2wYGBnz00UekpaURHBxMdHQ0Bw8e5OWXX6ZOnTrcvn2bvXv30rdvX3x8fICqZcv16tWT3q+3tzeHDx+uEYSws7PDzs7uOX8ygvDvUFv276OBvzt37iCXy9m7dy979+7Fzs6Or7/+mtzcXGbOnMnt27cJCwvD1NSUgwcPsmfPHubPn0+XLl1ITEwkLy+PXr16Scv6nZ2d2bVrl3ScOTs788Ybb/D9999z/PhxAMzMzHB2diYoKIj+/ftTp04dXFxcUKvV3L59G39/fwICAjhx4oSUvav5/klNTSU+Pp7GjRsDVYFEU1NTqeu3hp2dHaWlpVy/fv0v+GSFF01aWhrXr18nOjqamzdvcvnyZRYvXkzTpk1rjH3PQjOmPiomJoZ169Zx8eJFdHV1adKkCX369JG6aV+5coVZs2YxePBgBg4ciKGhITdu3GD69OlER0fj5+dHvXr1cHNz49y5c9J269atC0BsbKz0+rXR1PmdO3cuPj4+ODg4kJ6eTk5ODhUVFTx48ICuXbtKgYKKigpWrVpFdnY2JiYm3Llzh9DQUD799FNWrFjBl19+SUVFBSUlJQQEBPDxxx/j5OSESqXCyMiIl156iZdeeumZPzdBEGrn6+vLsmXLMDExkW4zNzdHV1eXwMBAjIyMpNtzcnIwNjbG0NAQLS0tiouLmT17Nnv27EEmk6Grq8vChQt5+eWXmTBhAjo6OjRq1IidO3dibW3Nhx9++E+8RUEQHiECgoLwH1RWVsayZcvYunUrRUVFPHz4ULrPz8+PIUOGYG9vj7W1tVSfq7Ky8rHaHtUvToqLi7l58yZpaWm4uroSHBxc4zVPnDjB1KlT8fHx4dNPP6WwsJDIyEjee+89tLW16dixI3K5HJVKRWFh4VP3v/oFkZ2dHebm5lJjEblczoQJE8jIyJA6CNvZ2VFUVISpqSmpqamUlJSQmJjI6NGjadeuHa+//jp6enrk5OSwbds2rKyspOzFr7/+mg0bNvDLL78QERGBmZkZPXv2ZPjw4dIJUc+ePenZs6e0TzKZrMbSQ0H4X5OamsqNGze4c+cOFRUVNGrU6KmdMDXZv7Ut9Xk0KzgvLw9zc3OWL1+OnZ0d3bt3Jy8vjy5dutC6dWtSU1Nxd3enTp06VFZWsm7dOk6fPs20adNo06YNMpmMDz/8kNdff5358+fj6+uLm5sbHh4eTJo0iUOHDuHi4oKOjg5+fn4EBQWhUCjQ1tbmzTffpEOHDiQmJhIbG0tKSgqpqals2LCBgoICKeNIX1+fGzdu0Lt3b7p160ZkZCRff/01ZmZmmJqakpKSwty5c7GwsJACCQ4ODjx8+JArV64AvzVJ8PT0ZNu2bVJ2lCiELjyP69evs2XLFs6dO0daWhrl5eUYGxvj4OCAh4cHAwcOlCaTqmfZV/8/1JyEKy8vJyEhAWNjYzZu3EhUVBTNmzdn4sSJXL9+nSlTplBZWUnHjh0pKytj79697Nq1i+XLl9OgQQMSEhLQ1tamb9++UlDOwcGBpk2bShn8enp6ODo6UlxcLNXGNTc3Jzg4mKioKNLS0nB0dKyxX5pl+devX+fWrVvSqgB3d3du3LhBeno6/v7+eHh4sGHDBvT09PDy8uLs2bMcO3aMkJAQLl68yNatWwkNDaVHjx40btyYS5cuoa+vj7e3t5TJq1arxTJfQfh/0JQW0NbWlo5hmUxWo4s2VE2WVVRU8PXXX+Po6EiPHj24evUq06ZNY/Xq1YSHh1NeXs7s2bPZuXMn48ePJzQ0lIKCAvbv38/333+Ps7MzL7/8srTtOnXq/O3vVxCE2omAoCD8B2lpaWFmZkbr1q2pV68e/v7+nDx5koULF9KhQwdGjRr12HK/6h0G4+PjKSkpkYJ+27dvZ9GiRdy/fx+5XE55eTktWrRg5syZyGQylEolixcvxsnJiZkzZ0r18l5//XX69OnD4sWLadGiBR4eHujp6REfH//Ujp2bN2/mwoULjBs3DhcXFxwdHUlKSkKpVBITE8Pdu3d58803efnll6XnXLp0iXv37mFiYkJWVha+vr5069aN1atXc/bsWezt7UlMTERXV5ePP/6YoKAgVCoV/v7+fP755+Tk5GBtbS0tExaEf4vS0lIiIiKIjo7m8uXLZGRkUFFRgVwux8zMjOzsbDZs2MCAAQN45513at3G07J/tbS0iImJYenSpZw9exZTU1NGjhzJggULaNu2LS1atEChUODn58eRI0f44IMPGDRoEFAV0Ni/fz+dOnWie/fuQFXQIC8vDwcHB6Kiovjll1944403+OCDD1i5ciUXLlzg+PHjFBUVAVWBijFjxtCnTx90dXXx9vYmICBA2p5arWbkyJGcP38etVqNk5MTCoVCak7QpEkT5syZw+TJk3nllVdwcXEhKysLc3NzZs+eTWBgoPQ6K1eulC5YqndP1UycCMKz0kyoJSYmsnXrVlxdXZkzZw7GxsbY2tqiUCgwNjZGX1//sXFH87unUqlITU1FW1tbCoQBXLx4keHDh9OxY0fu3LlDUFAQ7u7uqNVqFi9eTH5+Pl9//TXe3t4YGBjwwQcf0LNnT7788kvWrFlDvXr1MDQ05LXXXqNVq1aYm5tjbGxMSEgIAQEBGBsb13jN27dvS5m0/fr149q1a6xbt46xY8fWKDkik8m4du0aZ86coV27dlKw0c/Pj59//plbt24RHBzM2LFjWbZsGcuWLQOqJv6GDBlCly5diI+Px97eXtqmra2tVHe4OrG8UBD+f540uXXjxg0OHjxI7969OXToEHPmzEFHR4czZ87QuHFj9PT0sLe3R0dHh9zcXAAyMjLYvXs3EyZMYOjQodK2wsPDpeZfXbp0wdnZGUNDQ1Qq1WN1fQVB+GeIgKAg/Afp6+szaNAg1Go1urq66OjoYGxszMKFC6Uae9VPBLKysvjiiy/o3r07y5Yt4+bNmzRv3pylS5dy6NAhpkyZQvv27enTpw86OjpcuHCBRYsWYWxszKRJk8jPzyc6OpoFCxZga2tLaWkpcXFxpKamUlZWRkJCArGxsQQEBODk5MSZM2fo37+/tLSvetaDnp4e169fZ9++ffTp0wcXFxfq1KlDVFQUBQUFGBsbY2Zmxi+//ELjxo0xNDTk7NmzrFmzBiMjI27fvs3u3bvx9fVl7NixNG/enMjISCoqKmjSpAlNmzaVOoVqgqC1zYgKwr9FRUUF06dPB+DVV1/F1dUVJycnqWvngwcP+Oyzz1iyZAmdOnWSlsJrAhaaSYDbt2+jr69Pq1atagQoUlJSmDFjBjk5OYwaNYrS0lI2btwIwMOHD8nPz8fc3BxnZ2euX79OSEiIlGV0584d1Go1sbGxTJgwQcoSKisrw9LSkuDgYKnOZosWLWjRogV5eXncunWLyspKMjIymD17Nt9//z19+vRh//79/Pjjj0yfPh1XV1cePnxIfHw8GRkZKBQKtLS0sLW1RS6XExMTA1Qd3y+99BL169cnMjKSBw8e4OPjQ2hoqJT1p/Fo5rMg/FGacc3X1xdzc3MUCgVdunR5pudevnyZb7/9lnPnzqGnp4e1tTUdOnRgzJgxGBgY4O7ujpGREfv372fZsmWEhoaip6dHbm4uR48e5fPPP5cC3UVFRTx48ABbW1vOnz/P9evXqV+/Ph999BFbt27l1KlT5OfnU1paClRl7nz88cc0btxYGhevXr0qBQS7devG1atXWbNmDVpaWrz22mtS056YmBgWLlyISqWiR48emJmZAVUZRg8fPpRKf7Ro0QJ/f38yMzOxt7fH3Nxceu+aBkGCIDy/JzX2elRWVhZXr14lOTkZa2trOnXqJGXFnzt3jiVLlhAaGkrz5s1xdXVl3LhxNGrUiM8//xwbGxugarJMM/F27do1SktL8fHxISEhgYsXLxITE0NKSgoJCQno6emRmpqKq6srtra2UnkfERAUhH+eCAgKwr+cSqWSUv6rB/keHWQ1F753794Fas6ua2trc+DAAc6ePUujRo146623sLCwAGDlypUEBwczY8YMqcNgWFgYOTk57Nixg4EDB0pLeb/55hu+/PJLsrKyqKysxNTUFH9/fxo3boyRkRG6urp07NiRJUuWEBUVxaBBg2osVdbT0yMjI4NDhw7h5+dHSEgIUFUQfO/evaSmptKsWTNeffVVvv76a1577TVMTExQKpW0a9eOV199lRUrVkgFio2NjWnSpAlNmjT5Kz56QfhLpKSkUFlZiaur6zM93sTEhMDAQJKSkhg+fHitHa3Hjh3LJ598wp49e3B3d0cmk6Gtrc2NGzeYPXs20dHRGBsbo1KpcHJy4qOPPiI0NBSAHTt2cP36debMmUPXrl2BqqDARx99xJ07d3jw4AGurq54eHigr68vZfZB1QWJmZkZV65cwcHBgZYtW+Lr64uLiwvW1tZUVlZKNYlycnK4du0arVq1qrG8+dixY5w+fRq1Wo2trS3nzp1j+PDhdO3aFW1tbS5evEhpaakUFJXJZDRv3pzCwkJKS0ul4KSTkxOjRo36Az8RQfh9muV3UPV7rxljbW1tsba25s6dO8Bvy/M1j320E3BsbCxTp06ltLSUCRMmYG5uzuHDh/n+++/Jycnho48+krapadCj+R2/ceMGRkZG7Nu3jwMHDhAXF0d2djaVlZW4uLjQuHFjabzt27cvffv2JTMzk7t376Knp8fly5f58ssv2bp1K40bN8be3h4rKyupfqamPu8777yDvr4+q1evZvv27fj7+1NUVER8fDwODg58+eWXtG7dWmrg07BhQ44dO1bju8nCwkI6zxCEF51mcjwpKYlJkybh4+PDlClTpGPoUZWVlbWW+Hi0sZdmor261atXs3btWoqLizE3N+fBgwesXbuWZcuWoVAo8PLywsDAgPT0dBo2bIiXlxeurq7cv39f2heFQoGVlZX0vZaXl4e+vj7Dhg1DR0dHmiR0d3dn6tSpODo64ujoiI6ODm5ublIZIFNTU9GoSxD+YSIgKAj/kIcPH7Jp0yYuXrzIokWL/vB2qg/8TxpU1Wo1+vr62NrakpaWxv3797G0tJQer1AoCAgI4OrVq7z55pv4+fkBkJ2dTVJSEi+//DJlZWVcvnyZq1evcvfuXU6cOEFpaSk3btygXr16GBsbU1FRwdChQ7Gzs8PZ2RkrKytkMhkPHjyQlhV169aN06dPM2/ePOzs7GjTpg1qtRqlUkl6ejpfffUVubm5fPDBB1IA0s3NjbKyMuLi4mjWrBlDhw6lTp06xMTEYGlpSVBQEJ6enmhra/PFF1/84c9SEP4J1Wt1PnjwgC5dujB06FDefffdxy4ENEEHTRBBs/Tf2dmZmJgYMjMzsbW1lTqPagLuvr6+2NrakpqaKmUPJCcn8/HHH1NWVsbs2bNxcnIiNjaWdevW8fnnn0v1/a5fv46Hh4cUDISqunqDBw9m0qRJZGdnA+Dj48PDhw/Jy8uTHmdpaYlCocDExITZs2dLyyM131OzZ89GJpPx3nvvsXv3bmbPns2UKVNo1KgRWlpaXLx4kSNHjtC1a1fKy8sJDQ1l9erVbNmyhYMHD6JUKgkICGDkyJFSx2KA999/v9bPunr2RPW6SYLwPDQTcdUDf09afieXy3FyciIuLk6qxfe037sffviBhIQEVqxYIWXl9ezZk8mTJ7N161Zat25Nhw4dcHJyksbz6hl25ubmxMTE0LZtW4KCgvDx8cHR0RFzc3PKy8ulxyYkJJCVlUV4eLgUqPP29ubnn38mMzMTABsbGzw8PDh58iRLly7F3d2djh07olAopGXIBw4cIDExEWdnZ/r3709oaKhUW1Dz/aWnp1frRIUgvAiqn5snJSVx+fJlrl+/jp6eHk2bNqVJkybS/QYGBqSkpNSYXNBso3o9X83fj573JyUlERkZyfHjx8nPz8fb25vBgwfTsGFDdHR0OHfuHIsXL6ZLly707dsXAwMD9u3bx4YNGzh16hRdu3bFysoKuVxOXFycNF7WqVOHM2fOkJqaioWFBcbGxri6upKYmEhZWRm2trZoa2vToUMHPv74Y+m7xsTEhNzcXC5evEh+fj5OTk54eHhw5coVqXSIGIcF4Z8lAoKC8Cd71pkuzcW6QqF4rI6G5qL/acG+zMxMbGxsOHPmDOvWrSMhIQEnJydef/11GjVqVCOQoFKp0NXVlQb0tLS0GgFBHR0dHB0dSUxMRKVSSc+7d+8eCoWCpUuX8v3336Ojo4ONjQ0uLi706dMHV1dXwsPDqaysxNzcHENDQ4YPH15jX+/du8ekSZNo2bIlY8aMwdPTk+nTp/P+++/z1ltvERoaSmhoKGVlZZw9e5a7d+/ywQcfSPXBoCpD8LPPPqNVq1ZA1QxoeHh4jQCAIPwbZWZmcvr0aamOl0KhYPXq1dja2ta63OdJQQcfHx8iIyOJjY2Vlgo++j304MEDACnQfuLECVJTU1m1apX0nMDAQOrVq8eAAQOIjIzE29ub7OxsaVvVa482atQItVotlSHQ1Au7d++e9JpyuZwWLVrwyy+/sGPHDoYMGSLdd+HCBdasWcPgwYOprKzk5Zdf5tixY8ycORM3NzcpuNi6dWvef/99ZDIZlZWVhIeHExQUhL6+/lOXRFVUVNQI2Gg+E9GI4MVVXFzM999/j4+PD507d36uzJTqj63td+j27dvs37+flJQUgoODeemll6SJMDc3NwDi4uLw8/Pj/Pnz3Lhxg9jYWKKiopg5cyadO3cmPz+fmzdvEhoaSv369YHfMnxeeukl9u3bx5EjR+jQoQN16tTh2rVrNQLwDg4OGBgYYGNjw+zZs1Eqlejq6qKtrU1OTg4LFiygfv36DBo0iO+//55du3bx1Vdf4eXlJTUfSUhI4IMPPgCqlu+++eabfPLJJyxbtoxOnTrRsWNHoGq5YN26daXOw48SF/nCi6i27xTN/5cvX86PP/6IUqlEoVBQVFTEDz/8QGhoKPPnz8fCwgJbW1s8PT1JSkqSxttHG36lp6eTmJiItra2lE2vmVhfsGABN27cICQkBIVCwcGDBxkxYgRLliyhefPmnDx5ErlcTu/evaVxv06dOvTv3x9LS0ugalLBwcGBuLg4lEol+vr6BAYGsnfvXjIyMggMDEQmk+Hp6cnevXvJzs7G29sbCwsLsrKypCZJGufPn+fdd99l6tSp9OvXjzp16lBSUiJNJgqC8M8SAUFB+JPExMQQHx9P7969n+nxenp6DBgwAJVKVSMY+GhHz6KiIkpLS2vU1Tly5Ahvvvkmw4YNIy0tjYcPH1K/fn1OnDjBmDFjmD9/Pq1bt66ReQRVgbUTJ06QkpJCYGCgNAMJ4OXlxbFjx6SugABmZmbo6+tjb2/PV199hZGRkTQzqK2tzdWrVykoKMDHx4f27dvz7bffsmXLFvr3749KpSI/P581a9YQExPD+PHjpe16e3uzePFiIiMjiYqKYufOnVRUVODr68trr71G27ZtayxxMDMzY/Dgwc/2gxCEf9DTmuVUpzk2ly1bxuHDh/Hw8JAydxo2bFjrc4qLi7l8+TIXL16krKyMFi1aSMt6NcG427dvA78FDnV0dCguLuann36ipKREyjgqKyvjxo0bGBgY4Ofnx5UrV4iNjeX69evcvHmTiooKTp8+zYQJE5DL5SQnJ0vbg6rvKTs7OymbQalU4uDggImJCcnJyTWW6vbq1YvIyEhmzpzJzZs3CQ8Pp7CwUFreP3ToULS1tTEyMuK7777j6NGj3LhxA4VCQXBwMPXq1cPAwKDGd6NmmfHT6iXVtsxKeLHp6emxdOlSOnXqROfOnWtcuFdWVkrH5aOBd80FuVKpRKlUcvz4cQ4fPoxSqWTQoEE4OjqyaNEi6Xd/586dpKWl8eabb0oZgrq6uowYMQKVSoWBgQG2trZ4e3vTr18/qTzA/fv3KSsrw8jISAqAa36PHRwccHd3l45xHx8f8vPzycrKkvbT3t6eZs2asXbtWo4cOULr1q2BqkD+3r172b17N82aNQOqygjExMTw4Ycf4urqSk5ODmq1mtdee41XX30V+G3yLSIiokYWoiAIVfLy8qSa2ba2tk8sUTNhwgT27NnD4MGD6dKlCzY2NqhUKnbv3s2SJUsYOXIkixcvxtbWFnt7e65cuUJKSgpubm5oaWlRUFDADz/8wLZt28jKykJLS0sK7A0dOhR7e3u2bdvGqVOnmDhxIj169EAmk9G1a1e2bNlCeXk5UNXxOy8vj6lTp9KlSxfkcjmGhoYEBgZKWbxGRka4uLgQExNDSUkJJiYmBAQEAEh1QHV0dPDy8iIvL4+0tDTCwsLo06cP33zzDV999ZV0zh4bG8vs2bNRKBTSKgN7e3sePnzInTt3aNGihZg8EIR/mDhbFoQ/yXfffUdOTg7dunV7LMD3pCVqmova6rS0tEhMTOT777/nyJEjPHz4EHd3dzp37kz37t2xsbHBxMQEPz8/fvjhBwYMGMBbb72FjY0NJ06cYOzYsezevZvWrVs/tpTJ398f+K2OYHU+Pj6UlpbWuLiwsbHB3d2d1NRU7Ozsasz6FRYWMn78eMLCwpg/fz6vvPIKR44cYcqUKZw4cQJ/f3/u3LnDwYMHefXVV2nUqFGN19PU8xo4cCDGxsYia0f4Vzt79iyjR49m/PjxDBs2rNbHVK/5ownG29jYkJ2dLX1nqNVqysvLuXHjBvb29tIJemFhIfPmzWPPnj1SB85NmzbRtWtXZsyYgaenJzo6OiQmJgJVHf/u3LlDQkICFy5c4Pz587zxxhv069cPqGo8lJ+fT05ODkFBQVK2sqaJz4ABA3B0dATAw8ODc+fOkZSUJAUutLS0SE5OluoMFRYWYmlpiYuLC2lpaRQWFmJoaEhFRQX6+vpMnjyZjRs3EhUVxe7du9HR0aFBgwa88847NWolGhoa0rlz52fuKioy/oRnpZl8c3BwIDc3l/z8fMzMzGoswdeMlZrgoK6urnT/u+++S3p6OqGhoZw6dQpDQ0Pi4+OJjo5GrVbTsGFDFi5ciI6ODvPnz2f79u00a9aM8PBwXFxc0NPTw8vLi9mzZwNVy+k1tXU1v9tyuRwTExOpLlf1rCAzMzMMDAyk+7y8vICaGbmGhoYMHTqU/fv3M2HCBPr374+fnx937txhzZo1tG3bVsrwc3JyYvPmzezfv5/09HQcHBwICQmRavBWJ4KBwovq0Yy/S5cusW/fPi5cuEBiYiIlJSUYGBigUCgoKyujYcOGzJo1q0b37Z9++onIyEgmT57MoEGDamx/zJgx3L9/n4MHD5KRkYGtrS1ubm6Ul5eTkJAg/XvFihX89NNP9OzZk9DQUAoLC9m+fTurV6/GxcWFgQMHUlJSQlFRUY2JhICAACkTEKBjx44UFhayaNEili5dSklJCVB1TlC3bl0WL16MQqHAzc2Nw4cPk5+fL01eAKSmpgJVAUFXV1fUajX37t1DS0uLESNGEB0dzffff8/hw4cxNzfn3r17GBsbs2DBAumax8fHh4ULF9KgQQMRDBSE/wEiICgIf5JPP/20RoMMjaddsGZmZvLll1/i6enJ6NGjgaqlAFOnTiU+Pp6+fftibm7OkSNHmDdvHnFxccyaNQsnJyeMjIywsbFh2LBhUsevevXq0bBhQ27cuFHjJEbzt6a7qCZoUD0LQnMRoFn+B1UBy759+xIZGckXX3zBZ599hoGBAffv32fp0qXk5OTQt29foOqCYcGCBURERHDs2DHOnj2Lk5MTb775JoMGDXqsqLGGqanps3/IgvA/RnOcubm58fnnnz+2fK76cVjbcl8DAwMqKyv5+OOPcXJyYvLkyVy4cIHx48czffp0+vXrh1Kp5Pvvv2fr1q2MGzeOLl26oFKp2LhxIxs3bqRXr16EhIRgbW3NuXPnaNSoEYWFhchkMpRKJQDDhw/n7bffBn7LTjQzM0NXV5dJkyZJHbtNTEwwMTHh9u3b3L9/H4AOHTpIFx6TJk1CX1+fiooKNm/eTF5eHgUFBVJdUkdHR6KioqSSBprlTt7e3kyePJmEhAS0tLRwdXV9agafpnTBow0XBOF5aX7fNeOwu7s7d+/eJScnBzMzM+n4vHDhAhs3buTy5cvIZDJatWpFjx49qFevHlA1fmqWx40cOZKuXbty9uxZpk2bBsCoUaOkpcG9e/dm3759JCQkEB4ejpubG8bGxpSUlEjZvLVRKBR4e3sTGRlJenq6FPyHqiZZ9+7dw9bWFqVSiYuLC8bGxqSnp0tlR9RqNQ4ODsybN4+NGzeyZ88e1q1bh1wup1OnTrzzzjtS5i5Ujb+aSQJBEKpkZGRQUFCAi4uLVGJDM5bv3r2bjRs30rhxY8aNG4eTkxMKhQJdXV0OHDjAmjVrWLVqFaNGjZJWC0RGRuLu7k6LFi2A30pvaBqGvPPOO0yePFl6fXd3d3R0dIiNjaVt27ZER0ezfPlyunfvzsSJE6XHBQYG0r17d6Kjoxk4cCDNmjUjIiKCKVOmSF3AnZ2dpWuDpk2bYmhoyJAhQxg0aBA3b94kJSWF4uJibt++zdq1a1m6dCmffPIJrq6ulJaWkp6ejre3N2ZmZpiZmZGWlkZJSYl0DaKtrc3NmzelhkPffvstR48e5ciRIyiVSjp27EiTJk1qfO+Zm5tLExOCIPzzREBQEP6A2mr8abr4VqdWq7lz5w5RUVFcvXoVPT09aXCUyWQUFRVx+fJl7t27JwUEd+3axZkzZ5g9ezbdu3dHR0eH4cOHM2fOHH744QeaNm1K165dsbGxIT4+HktLS+mCx8TEBHd3dy5cuEBubq7UwU9zwaNZtpSSkvJY5zFbW1tMTU1JTk6WBna1Wk14eDivv/46P/zwA9euXcPHx4fc3FySkpL44IMPpMw/TVfUcePGMWLECBHoE14ImosEW1tbunfv/sTaQWlpady9excDAwOpuPeFCxeYPXs2Ojo6ZGVlERwcjJaWFt7e3ujo6NSoDbZ582batm3LW2+9Jd32/vvv06NHD+rUqYOOjg5OTk5kZmby1ltv0ahRI8zMzEhMTOSHH35g37596OjoMGLECOl7wc/Pj23btkm1gKpbvXo1Fy9eZPHixYSHhzN06FCWL1/OrVu3aNu2LQkJCdy6dYt69epx9+5dCgoKAGjdujXm5uZYWVnVeP+af2uymjSf3aMlEjRE1p/wrDTj8ZOaxFRv2GNhYUFQUBBnz54lIyND+r2/cOGC1NGzS5cuZGdns3HjRnbv3s0XX3xB69atCQ4OBqBu3br0798fQKpnefHiRezs7KQLfM3EgCabxtbWFgcHB27cuPHU96I5R4iIiGD+/PnMmjULPT09CgsL+fnnn0lJSWHEiBHIZDJkMhmmpqZER0eTl5eHjY0NWlpaVFZW0rBhQ/z8/EhNTUUul9cILAqCUFNpaSm7d+9mz549XLlyBajKyHV3d6dHjx506tRJCu75+fmho6NDixYtGD58eI3tBAYGEhcXx6FDh+jWrRseHh7ExsYSHx9PaGgoTk5ONRIHNJNiZmZmANL3h4uLC3K5XCoPYGdnx/vvv0+HDh2AqvIhsbGxREREUFlZKa368fHxYdGiRWzfvp309HRSUlKIiYnh9OnTLFmyhBUrVtC0aVOysrIoLCzE399fWjkEsGfPHh48eEBFRQUODg4YGxuTlJRERUUFenp62NjYcOXKFbKysnBzc8PMzIzQ0FCsra2l71mZTEaHDh2kfRUE4X+fCAgKL4zqy/X+v2q7gC0pKeHIkSMYGxtLzS+uXLnCJ598Qnl5OXZ2duTn57Nz504GDBjAZ599hoWFBf7+/sTExKBWqyksLOSXX37Bw8ODnj171ni9MWPGsGHDBg4ePEj37t1xdXUlMjKSvLw8Kfgmk8lwdnbm4cOHUiew6u9fW1sbV1dX0tLSyMrKkjoBamqRuLm5kZqaSn5+vpS5pKOjw7vvvkuLFi2IjIwkOTkZf39/xowZQ1hYmHRCU71mmQgGCv9FT+osWr3gd2FhoVRjE+DQoUN888033LlzR1oa37BhQ+bNm0dAQABbtmzhlVdewd/fn3feeUeq22lkZERiYiIPHz4kMzMTpVJJaGio9D2mVquluj8aHh4eXLhwAX9/fxo0aIBKpcLLy4v69evz8ccfs3LlSoqLixk3bhwWFhaEhYURHBzMkiVLsLa2JjQ0lOLiYvbu3cv27dvp2bOntExo5MiR2NjYsG3bNhYvXoy1tTVvvfUWRkZGvPfee1ImYq9evejVq9dTP8fqn5dYLvRiqqio4P79+1IQ63lUL8FR/e/aqNVqNm3axMqVK8nMzKR9+/ZSo43ExESaNm0qNdvIzc1l1apVuLq6YmhoyBtvvMHAgQOZM2cOrVu3loLZmqWAarUaAwMDPDw8OHjwICUlJSgUCqCqGYehoSEpKSnSBJumE3haWpq0HL82LVu2pH///mzZsoX4+HiaNm1Kfn4+Bw8epGvXrjUya3r16iV9X2hovpMMDQ2l41cQBEhOTmbFihWEhobSrVs3AAoKCli0aBH79u0jMDCQ9957DwsLCxITE4mMjOTjjz8mNzdXCv7Z29sjk8mkpftQdW6gyWb39PQkPj5eCiCWl5eTm5srlQmpXrv7UZrvMgcHBywsLEhJSQHA2dmZ119/nczMTObMmcO5c+fIyMjAyckJR0dH0tPTpe8ZT09P3n//fYqKilAqlVhYWHDhwgXGjBnDjh07aNasGVOmTOH27dvMnj0bLy8v8vPz2bNnDzk5OYSGhqKrq4tcLqeiooLLly/Tt29f9PT06N27Nw8ePJDO8S0tLVm5cuWf+0MSBOFvJwKCwn9Samoq165d48qVK9y4cYOsrCzMzMxo1qwZnTp1qpGloqGpGfR7Nanu379PdHQ0iYmJuLi40LJlS2QyGWlpaUycOJHAwEBatWrFgwcPmD9/Ptra2ixcuBBLS0uKiopYvny5VJTX1NQUR0dHDh48SFZWFra2tmRmZj42m69WqzE1NcXJyUm6wNAsTbp79y4uLi7SRba9vT3a2trEx8fXCBZoAoL16tVj79690kVJ9dlKS0tLLl68SG5urtTlVBMA0XQDFoR/i+odcZ/V07qOPrqt/Px8jh8/LnXEXrlyJfPmzWPXrl14e3uTnJzMjBkz8PLy4u2338bExIQDBw6wceNG2rZtS5cuXQgKCsLd3Z2srCyp6LemCUFSUhJlZWWUlJQgk8koLCyULhg0QUFNENLExERa2hgXF0ezZs2keoQWFhZMmzaNuXPnsnnzZlQqFdOnT8fT05Nx48YxceJExo8fT1BQEAAJCQm0bt26xtIkuVzOK6+8QteuXTE1NZU+ix07dlBRUVFj8qG27r7ViSDgi6X6eHzt2jXu3r2LUqnEzMyMtm3bMnDgQFxdXWs0wdIE32sbjx9tunX27Flu3ryJqakpbdq0wcnJSXrunj17mD9/Pg0aNGDMmDHcvn2bbdu2UVFRIdXey8/P59KlS4wePRpfX19p297e3gwfPpxvv/2W6OhogoODMTQ0JC8vT2oepKWlJU2sJSYm4ujoKH3vuLq6kpqaSk5ODk5OTlKtzFu3bklj75Oal0yYMIHg4GB2797Nzz//jEKhYPDgwQwcOFAKOgKMGzeu1s9cHGPCiyo1NRVzc3Pkcrl0PGmOtZ9++omtW7dKjXWgatzevHkzb731FgMGDKgxvg0dOpT33nuPOXPm4OHhQYsWLbC1tcXGxoZbt25J29A8Pjk5mdOnT+Pu7i4F/W1sbKioqKC0tLTGY2uj+T4wNTXFwcGBa9euUVRUhFwu5/Lly0ydOpWCggLatGlD48aNad++PZMnTyYiIoKUlBS8vb3ZsWMHhYWFvPLKK9Lkha2tLXp6etLEwUsvvcSCBQsYN24cXl5eFBcXc+/ePV577TXpfMbBwYH58+fj6uoqPU/TbEgQhP8WERAU/lMSExN54403SElJwczMTGqKUadOHVJSUvj222/ZvHkzU6dOpV27djVOyGvrLPioU6dOMW3aNHJzc1EoFGRlZREUFMSiRYtwdnbG39+foqIioGoJwJUrV+jduzceHh7o6+tjY2MjFRSHqhMDZ2dnVCoVd+7cwdbWFgMDA0pLS8nMzJQaCqhUKnR1dXFwcCA5OZnCwkIcHR3R19fn1q1btGzZssbSRQsLixonK9W5u7tTUVHBrVu3Hgvwffrpp+jq6kqvC+LCQvj3KS8v56233iIpKYm9e/f+blCw+veA5ve9tsDgoUOH2LZtGykpKTRv3hyoWlrr7++Pu7u7VHg/KSkJb29vjh8/TnFxMW+//bYUnG/cuDE9evTAyclJ2n6dOnWIiori3r170lJbb29vzp8/T25uLmZmZjWOabVaLX0nnD9/npUrVzJlyhQpmKFZZqSlpSVl8NrY2PDee+9x7949fvzxR8rKypg1axZNmjThxx9/JCIigujoaExMTOjWrRstWrSoEeSLiYlh/fr1vP322ygUCpRKJdnZ2WzevBk7O7saXdBFd18Bah+PPTw8aNSoEdra2pw/f541a9aQlpb2WBH+px2zKSkpjBs3juHDh3P58mV++eUXdHV1SU9PZ8uWLaxcuRI7OzvKyspYunQpTk5OLFiwQNp+ixYtGDFiBGlpaahUKlJTU9HW1sbf31867jV/+/v7I5PJuH79OsHBwbi7u5OWlsaDBw+kiTs7OztpLG7atKk0yVa3bl1++eUXsrKycHJykur0Xr16lTZt2tQaENS8tqmpKb169aJjx461Nh8TBOFxX331FcuWLaNTp05MnjwZCwsLKUCfkpLCnj17aNWqlbSc9caNG6xdu5aWLVvy5ptv1tiWSqVCLpczdepUjh8/TuPGjYHflv/HxsZSVlZGaWkpd+7cISYmhmPHjpGSksIXX3whbcfW1hYTE5MatT5rU15eTkpKCnp6ejg7O+Pi4sLp06e5c+cOgYGBbN68mdTUVJYsWVLj3L28vJyKigri4uLw9vbmxIkTREZGcvPmTdq1a8fDhw/ZunUrFRUVtG/fHoAuXbpQr149du3aRVJSEo6OjoSGhhISEiJ935iYmNCuXbs/74cjCML/LHHWLvynaDoG1q1bly+//BK5XI6RkREymQx9fX2uXbvG6NGjmT59Om5ublKmoEql4syZMxw8eFDKuOvXrx8BAQHSRXtCQgJjx47Fzc2NSZMm4eTkRHR0NJ988glz585l2rRp2NnZcfr0abKzs6UleJs3byY2NhZnZ2dpeZGm66CRkZE0c3fr1i3Cw8Px9/fn4MGDpKSkYGtrK134A1JWhbGxMebm5tja2koX/xoWFhaYmppy7ty5GrdrLjy6d++OnZ0dLVu2BGpeeD1tGZMg/Fvo6uqira1NZmYmeXl5WFpaPvXxmmMjLy+PjIwMLC0tawS4AA4ePMjUqVNxcHCgSZMmREVFSZm+ycnJuLu7Y2dnh5GRETdu3KBdu3bIZDLKy8v55ptv6NevHwqFgsrKSurWrYuZmZm09DEwMJDdu3eTnp4uBQ7r1q3L3r17SU9Pp2HDhoSEhHDixAlu3bqFj4+P9J0QHR3NuXPn0NbWxsnJCRMTE5KSkmq8Lw0HBwe++eYbRo0aRUFBAXl5eVhZWWFvb8+YMWOe+hkZGRmxc+dOoqKiePnllzEyMpLqsH3wwQe/+xkLL57axmNjY2Op/l1ZWRnTpk1j9+7dHDlyRMpMyc/P59y5c5w4cYKEhASMjY3p1KkT3bp1QyaTYW1tzc2bN1m8eDF6enpMnz4dV1dXTp48yfTp01m5ciUffPABJSUl3L17l9GjR0vBwPLycpo0aULdunVJS0ujqKgImUwmfV88OglgamqKTCYjKysLqKrRdejQoRqZ/NbW1lhZWUkBe802goKC2L59O8nJydSvX1+aaLt06RLw5KXO1fdBBAMF4dkNGzaMiooKVq5ciYGBAdOmTZMCcFFRUaSmpvLJJ59Ij79x4walpaVSiZ7qQXrNChl7e3v69Okj1dzWZPCfOXOGli1bUlBQgI6ODpaWltja2qKrq8uIESN4//336d69OwYGBtStW5fo6GhSUlLw9PSsdcLx3LlzTJs2jb59+/LGG2/g4uIiJQsEBgby4MED7OzscHFxAarKFB09epTjx48DVZN2Xbp0Yfz48SgUCo4cOcLBgwcpLS3Fy8uLadOmSROZAG5ublKjMUEQXmwiICj8p5iYmGBtbU16ejru7u6PnXD7+/szb948Xn31VdauXSt1B9y9ezdff/01CoUCBwcHTp48yY8//sjHH3/MoEGD0NXVZcuWLSiVShYuXIizszMAnp6e2NjYSAO0k5MTJSUlJCYmYm1tzbRp0/j++++5cuUKFy9eJCcnR6q19cYbbzBhwgTs7e1RKBTcvHkTqCrKv2/fPrZt2yY1HwD4+eefuXTpknQxLpfLsba25uLFi8BvFxEKhYLWrVtTUVHxWAYkVNUi0ey/IPwXaTJ7jh07Rmpq6u8Gq3bs2MHy5ctJTEzEwMCAOnXq0K9fPzp37oyRkREPHjzg66+/xtbWlvnz52NnZwfA119/zapVq7hy5QotW7bE0tKyxlKijh07kpaWxrJly4iKigKq6nxq6ve999572NraSkt9NfWCoCrwUF5eTmpqKuHh4QwcOJDt27czZ84c3nvvPeRyOTExMXz//fc0bty4Rlbv5cuXpXpCj7KysmLbtm21fg7VyyZUb9BQWVmJl5cXP/zwA9u2bSMyMpLS0lK8vb2ZOHEinTp1etYfjfAC+b3xWF9fnwEDBhAREcGNGzfo3r07SqWS+fPnc+bMGSwsLLCwsODatWscP36cwsJCBg4ciIGBgZQtv2fPHinzzs3Njc2bN3Px4kWKiorIyspCJpNhYmIivabmdzowMJDjx4+Tk5ODvb09lpaWXLt2TVoKrJmIKy8vl2pxQVVDAU3Bfk2TEQsLCxwdHbl69WqN1/Dx8QF+65gdEBDA9u3bpfFXdM8WhD+XhYUFo0ePJisrix07diCTyZg2bZpUricwMJDWrVtLj4+JiUFXV1dqjldbxi5UNftRKpVoaWmhp6cnleZp06YN3bp1w8bGRlpqnJ+fz2effSbVCW/bti1t2rTh3LlzHD9+HE9PzxrLmDVZg/fu3SMpKYmHDx8C4OLigkwmkyb9GzduzLx58/j0009p06YNSUlJnDx5El9fX0pLS9m2bRsjR47E2dmZTz/9lF69eknN/kRdb0EQnkYEBIX/FF1dXZydnYmOjiYtLe2xwJema26dOnU4cOAA77zzDoWFhUyePJl27drx1ltvoVAoMDY25tNPP2Xu3Ll4enrStGlTYmNj8fDwkDJzNMsQmjdvLp3wa+r6xcXF0ahRI2xtbaXOhQkJCajVaoqLi1m8eDHbt2+nffv2uLq64uDgQEJCAgDNmjXjlVdeYfXq1SQlJdGhQwdycnLYs2cPDRo0kGp4mJub07BhQ1JTU2ssQ5DL5XzwwQd/x8ctCP+zNF0+4+Pjpdp4tdm1axdTpkyhfv36jBkzhry8PLZt28Ynn3zC/fv3GTlyJBcuXCAhIYEpU6bUqNfZo0cPIiMjuXz5MlAVjHdycuLu3buo1WrMzMx4++23GThwIHFxccTFxXH//n2SkpL4+eefMTEx4dNPP5UCB5osJABXV1dpGWRlZSWBgYF88sknLF26lFGjRmFsbExxcTH169evsTzpyy+/xNzcXCpoXhvNkuNH6/w9qWyC5rawsDCCgoJQqVQYGxs/y49BeIHVNh5Xz4zR0tLC1NQUAwMDaQxdvHgxW7du5cMPP6RDhw4YGhpSXl7Oa6+9xs6dO2nTpg3Ozs64u7uTm5srBeo0AfC6dety9OhR7t+/j7GxMSYmJjWy6DUF/T08PNiyZQupqam0bNmSxo0bs2/fPjp16kTLli2lcf7kyZMAUs2x6nU2NUxMTHB2diY/P79GID4kJITY2FjpcZr9EwThr2NiYsKsWbMoLCxk69atWFtb4+rqSlZWFhMmTAB+KwmSkZGBlpYWJSUlUqdfqPo+iY6O5uLFi8TGxpKUlMS9e/eYP38+LVu2xMnJCZVKhaOjI02bNq3x+lZWVrz++uuMHTuWo0eP0rZtW1q1asXBgwfZuHEjAQEBNGzYsEZX3qKiInbs2IGdnZ3UNMjd3R2FQiF1Ju/du7fUbfzy5cvY2NjQoUMHBg4cKDUS0pT5UKvV+Pn5/eWftSAI/w0iICj859SrV4+dO3eSkpLyWEBQU9unadOmrF69mszMTPbv34+xsTFTpkypMYvWuXNn9uzZw969e2natCkKhYK8vDzpwqX6UlvNvz09PTEwMJAuQO7fv8/ly5fx9/eXLvqhqobRxYsXMTY2Rl9fHw8PD44ePUpxcTGmpqaMHz8eW1tbdu3aJS2LatmyJcOHD5cKk+vr6/Puu+/+NR+iIPzLubm5oaenV+OC/FE5OTmsWLECFxcXFi9ejKGhIVpaWnTs2JGxY8eyYcMGunfvLgXbNcuINd8jjo6O1K9fX1qeb2ZmhqurKxcuXCAvL0+qtaerq0vz5s1rLNdp3rw5CQkJPHz4EBMTExQKBcePHyc0NBRfX18sLS2RyWRcuXKFoqIiTE1NGTJkCOHh4Rw9epSysjICAgIICQmRvrfUarVUCuBpqtcWfF61ZR0KwpNoxuPk5GQpIKihpaUl/S5rAmVnz56lffv2jxWvd3Z25vr166Snp+Ps7EydOnU4d+4cDx48AH4LWgcGBrJz504ps9bLy4tr165JNXk1y/7UajVqtZo7d+7QsmVLhg4dytGjR3n//fcZNmwYXl5enD9/ni1bttC/f3+pZpeXlxempqY1lvIaGhryxRdfiHq7gvA/QldXl9mzZzN27FhWrlyJrq4uPj4+NGnSBKhqfKWnp4dcLqeyspK0tDTs7e2pqKhAV1eXixcvMmfOHAoLCwkODsbe3p7bt28THx9Py5YtcXBwwNzcXDrX13yfqFQq9PT0cHV1lToVQ9X5yNixYxk1ahSTJ0/mww8/xMnJCR0dHRITE/nhhx+4fPkyb775ptQZXFN7UNOMRKFQMH78eAYOHIiVldVT66yK7yJBEJ6HCAgK/zmawNvt27elwf9RmgH35MmTUnbd5s2bSUlJ4fr166SlpVFcXIyuri5yuZzCwkLc3NykCxDN7KCOjg65ubksX76cunXr0qpVK8zMzKTsgbS0NN555x3atGnDG2+8gYGBATdu3OD777+nXr16eHh4oKWlhbm5OQ8ePCA7O1sKEg4fPpzu3bujr69fo9i6IAi/z8rKCktLy8dqbELN7IBbt24xatQojIyMpOWyFhYWvPrqq7zzzjucOnUKBwcHoCprAH6bAJDL5Tg6OnL//n2USiUGBgY4OTlRVlZGamoqCoWC6dOnS/XOrK2tyc3N5fLly2RnZ/PKK69IgYzBgwezZs0axo4dy4ABA/jggw/o379/jSAGVAUkauuSDtRY4iuWIwr/CzTjcWJiIk2bNpV+L4uKijh9+jSbNm2iYcOGUgbeDz/8gL6+PmlpaZw/f55Tp05x6tQpcnJysLCwkOp2BgQEUF5eLv1f87uvyYpJTEykdevW9OjRg4kTJ7Ju3Tref/99KioqiI+PZ9OmTcjlcun5fn5+LFq0iDVr1rBhwwYKCwsxMzNj+PDhjB07VjoGDQ0NH6vPW/31BUH456lUKszNzZk3bx6ff/45R48epVmzZjUmzwB8fX3Zs2cPcXFxNGzYULq9fv36LF++HD09PSwtLbl8+TJXrlyRzidsbW2xtbUlISGhRra95vtNLpeTk5NDWFiYtE/h4eGsWLGCjz76iDFjxuDm5oaWlpZ0rjBp0iSGDBkiPV5fX58tW7Y8NglXvTyIIAjCn0EEBIX/HCcnJ4yMjGrtsqs5adc0z7h+/Tp+fn5kZGSwbt06nJ2dCQgIoE+fPnh4eGBhYYGJiQlyuZyGDRuybNkyLl26RGBgYI3ZuY0bNzJy5EhMTU1xdHQkMzMTtVpNSEgIo0ePZuvWrUyYMAGlUklJSQkNGjSokVEwfPhwhg0b9thALwr1C8IfI5fLsbOzIzExUaoLpqE57qp34AVq1NusU6eOtGQ3ICAAmUxGQkKCNIGguQgoKCgA4M6dO/j6+mJra4uOjg5xcXEEBARQv359Dhw4QP/+/WncuDFKpZKLFy/SoUMHevbsKQUahg8fLnUx9PPzw9DQkA8//LDW96ZWq2vU+nuUCAYK/ys0jW4OHTpESUkJ0dHRJCQkkJOTQ1FREaGhocycORNra2sqKyvR19fn+vXrLFq0iHv37mFtbc3bb7+Nk5MTI0aMIDMzE0Cqu5mamgr8dixrJvuSk5MB6NatG8eOHWPFihVcu3aNwMBALl++jKenJ6mpqdy+fZuSkhKMjIwIDQ2lXr16pKamYm5uLtUKFQTh30Vzfm5paYm5uTkAERERmJiY8MYbb0jnAA0aNEBLS4uTJ08ycOBA6XZDQ0MMDQ2l7Xl7e2Ntbc3du3el7To6OnL69Glp8kBzfn/37l0WL14MwMsvv1xjv0JDQ4mMjOTUqVPExMRgaGhInTp1CAwMxMrK6rH3ITLyBUH4O4iAoPCfY2FhgY2NTa2ZQZrBXnOir6Ojg7GxMVpaWkyZMoXw8HD09PTQ09OTljMdOHCAN998kyZNmuDq6sr3339PSEgIdnZ2FBUV8d133/Hw4UOpsL6JiQnnzp0jOTkZV1dXxo8fT+vWrbl27RpyuZy6devi7e1dI6NAE5AQBOHPoauri4uLC1euXCE7OxsnJ6daH2NoaEh2drYU6NNkDxoYGGBmZkZhYSF16tShbt267Ny5k969e+Ps7IyOjg5FRUXS90xsbCy+vr7Y2NhgaGhIdHQ0vXv3pl+/fnh6erJjxw5u3ryJQqFgxIgRdOrUqcYEgGbS4VGaJUzVaWlpPXW5kCD8r1AoFLi6unL69GkyMjJwd3enWbNm3Lx5kxs3buDn5ydl5Whra5OTk8OIESMwMTFhzJgxBAYG4uLiQnp6OvBbANDNzQ0dHR1SU1Ol4LxarUYul0tL9YqKipDL5VKN0J07dxIREUHdunWZOnUqKSkp2NjY1Fj+K5fL8fX1/fs/KEEQ/jSacTw2NpZDhw4RHh5Ofn4+X331Febm5vTr1w+oymBu27YtR48e5cKFCzRs2FD6PqkuIyOD3NxcCgoKUCqVGBkZ4eLiwpEjR9i5cycymYz4+Hju3LlDcnIyKpWK6dOnS6UGqjM0NKRt27a0bdv2b/ksBEEQfo8ICAr/OYaGhjg4OHD9+nXpgkBDE4SrqKgAqpbf1atXD21tbU6fPk27du1qbGvmzJnk5+dLNTvmzJnDxIkTeeWVV/Dx8UGpVJKbm8u8efNwd3cHoG/fvrRo0UIq7gtVhcif1thAEIQ/X/X6ZbUFBO3s7LCzsyM6OpoHDx7UyAhKSkri/v37UqHxYcOG8fnnn/Pmm28yaNAgbGxs2LRpE6mpqejo6HD58mV69uyJQqHA39+/RtON+vXrU79+/d/dX01gpPpkwR+t9ScI/wuMjIwwMzNDLpezfPlybGxs0NXVpaysjB07djB9+nT279/PwoULCQgI4NKlS+Tl5TFv3rwaNTePHDmCtra2dGGuUChwdnYmOTmZ3NxcrKysKC8vRyaTYWNjw/3796Xx39TUlMGDB9OvXz+pHij8VhNUEIT/Fs0Y+tNPP1FUVMTkyZOprKxk2LBhTJs2DXNzc9q3b49cLmf06NFcvHiRjz/+mJkzZ0oTcxUVFeTn53P27FmWLVtGTk4OkyZNkl7DxMQEtVrNzJkz0dPTw8HBAR8fH4YNG0ZYWBheXl6ilIAgCP8K4kpD+M/R1tbG3d2dU6dOkZ6ejre3d43OhgC//PILUHWhHhwcTPPmzdmwYQN6enq0aNECmUzGhg0bSE5OZtasWVhZWaFWqwkODmbDhg0cOHCAK1eu4OTkRNOmTQkKCpKW6bVu3fofed+CINT0aD1RlUr1WJ2fNm3asHLlSg4ePMiQIUNQKpUUFRWxbt06DAwMpEBely5d0NPTY8mSJcyaNYvy8nKaNGnCp59+yqpVq6Qliq6urqxZs6bW/dEUHdfsw6MXC+LiQfiv0dbWxs3NjZMnT1JeXi4t3Tc2Nmbw4MGUl5czb9483n77bdavX4+enh66urqcPXsWe3t7KVN/+fLl6OjoEB0dzeXLl2nTpg02NjYkJCSQn5+PlZWVFDxfv359rXV3qwcDBUH4b0tPTycyMpL27dvj4OCAvr4+c+bM4aOPPmLixIksXbqURo0a4e/vz2effcbXX3/N6NGjqVu3LiEhIejr63Pr1i0uXbqEvb09y5Yto2XLllRWVgJVjQdDQ0NxcnLC3t7+H363giAIf5wICAr/Sf7+/kBVlk/15bmVlZVkZGSwadMmAgMDpeL8U6dO5bvvvmPHjh1ERERQUVGBoaEhEydOpFu3bsBvF+vW1tYMHjyYwYMH/wPvTBCEZ6WpJxoXFwfU7AxeVlaGlpYWPXr0ID4+nhkzZnD48GGCg4O5fPkyt2/f5t1336Vx48bShEL79u1p0aIFV69exdHREXt7eyorK/nqq6+kZYeaoERty47+P919BeHfSjMex8XF4eHhAfyWDTt8+HBKS0tZuHAh77//Ph9//DE9evRgxYoV7NmzB319fQoKChgxYgTu7u789NNP0li8cOFCzMzMatT+BEQTLkF4gWnG6/Xr11NcXEzfvn3R19envLycpk2bMmnSJKZMmcK4ceP45ptvCAsLo0uXLvj4+HD48GGuXLnCL7/8QlFREQ4ODgwbNozWrVtL1wua7xkPDw/p+0wQBOHfTFyZCP9Jnp6eaGtrc/XqVcLCwsjKyiIrK4vY2Fi2bduGSqXi3XffxdLSErVajZ2dHZ9//jl9+/YlOTkZe3t7fH19ayz7EwTh30VTT/TmzZskJCSQkZHBvXv3uHfvHnfu3KGoqIjhw4czd+5ctm3bRmRkJBEREXh4ePDhhx/SuXNn4LfJgJ07d2JsbCzV/lGr1dy8eZOkpKTHioeLGn+CUEUzHsfHx9OxY0eg6pjSBAVHjBiBUqlkyZIlzJs3jw8++ICmTZty8eJFXF1dqV+/Pj4+Pujp6dG+fXug6thTKBT/2HsSBOF/k5aWFtnZ2ezfv5/AwEAaNGgAIDXw6tKlCxUVFUycOJH33nuPL7/8kvDwcDw9PfH09KSoqAhdXV3R0EMQhBeGllpzRiYI/yFZWVn07t2bsrIyvLy8SEpKIi8vT+okOGLEiFoL+AuC8N9RWVnJyJEjiYqKwsHBgZycHJRKJQD6+vq4ubnx4Ycf0qRJEwCpscijNBkHAwcO5PLly7zxxhsEBweTlZXFmjVrkMlkfPfddzg7O/+t708Q/g2ysrLo0qULQUFBrFy5ssZ9mmOrqKiIGzdu4O7uLmr7CYLw/7J69WrmzJnDp59+yiuvvEJlZaWU2QdVY31iYiJmZmY1mnsJgiC8iESGoPCfZGpqir+/P/n5+dSpU4e+ffsSEBCAt7d3jZMCQRD+u7S1tXFxccHNzQ03Nzd69+5NQEAAdevWrbWzt6bLsKZG0KNZftOnT2f16tXs37+f9evXA9CoUSPee+89EQwUhCcwMzPDz88Pa2vrx+r5av4tl8tr7cgpCILwPJRKJSdPnqR9+/a0adMG4LHzfplMRp06df6J3RMEQfifIzIEBUEQhBfSo01GnkYTyFAqlSQkJEgZhmKCQRAEQRAEQRCEfyMREBQEQRD+0yorK6WsP21tbRHEEwRBEARBEAThhScCgoIgCIIgCIIgCIIgCILwAhFpEoIgCIIgCIIgCIIgCILwAhEBQUEQBEEQBEEQBEEQBEF4gYiAoCAIgiAIgiAIgiAIgiC8QERAUBAEQRAEQRAEQRAEQRBeICIgKAiCIAiCIAiCIAiCIAgvEBEQFARBEARBEARBEARBEIQXiAgICoLwzNq2bUvbtm3/6d0QBOFPJI5rQfhvEce0IPz3iONaEIS/gggICoIgCIIgCIIgCIIgCMILRPef3gFBEARBEARBEARBEARB+F/z0UcfsX379hq36enpYWNjQ+vWrRk3bhxmZmZ/yWsrlUpyc3OxtbX9S7YvAoKCIAiCIAiCIAiCIAiC8ASTJk1CoVAA8PDhQ+Lj49myZQtXr15l06ZN6Ojo/Kmvl5aWxmuvvcaoUaPo3bv3n7ptDREQFARBEARBEARBEARBEIQnaNeuHU5OTjVuc3Nz4/PPP+f48eO0bt36T3291NRUEhMT/9RtPkrUEBQEQRAEQRAEQRAEQRCE5xAWFgZAXFzcP7wnf4wICAqCIAiCIAiCIAiCIAjCc8jIyADAxcVFui0+Pp4xY8bQsGFDgoKCGDBgACdOnKjxPKVSyYwZM2jbti3+/v60bNmSzz//nPz8fAAiIiIYOnQoULVU2cfH5y/Zf7FkWBAEQRAEQRAEQRAEQfhPatu27VPvP3z48O9uo6CggAcPHgBQXl5OQkICX3zxBX5+frRp0waAW7duMWjQIKysrBg1ahR6enrs3r2bkSNHMn/+fLp06QLAtGnT2L17N0OHDsXZ2Zm4uDg2bNhAUlISq1atolGjRowePZqlS5fSv39/GjRo8P/8BGqnpVar1X/JloUXzqHkS//0LgiC8Cdq8POJ33+QIAj/Kjot/9z6NoIg/LNG3t/3T++CIAh/ss2tJ/7Tu/C3G3Bk7l+6/ewv9j/1/qcFBGvrMqxhYGDA2rVrCQoKAmDIkCFkZGTw888/Y2RkBEBFRQXDhg0jMTGRI0eOIJPJCAoKok+fPkyePFna1tdff82JEydYu3YtxsbGnD17lqFDhzJr1izRVEQQBEEQBEEQBEEQBEEQnsezZAD+nnnz5mFlZQVUZQimpaWxYcMGBg8ezPLly6lbty7nzp1jyJAhlJWVUVZWJj23ffv2zJo1i6tXr9KgQQPs7OzYs2cP/v7+tGvXDlNTU8aPH8/48eP/3/v5PERAUBAEQRAEQRAEQRAEQRCeoH79+o91Ge7cuTMdOnRg+vTpzJkzB4B169axbt26WreRnp4OwNSpUxk/fjyTJk3is88+Izg4mPbt29OnTx9MTEz+2jdSjQgICoIgCIIgCIIgCIIgCMJzUCgUhIWFcfDgQVQqFQCDBw+mXbt2tT7ey8sLgPDwcI4cOSL9OXnyJLNmzWLNmjVERERgYWHxt+y/CAgKgiAIgiAIgiAIgiAIwnOqrKwEwMbGBgAdHR2aNGlS4zHx8fGkpqZiaGiIUqnk5s2b2NnZ0bVrV7p27UplZSWrV69m7ty5REZGMmTIkL9l37X/llcRBEEQBEEQBEEQBEEQhP+InJwczpw5Q926dXF0dMTf35/t27eTmZkpPaa8vJyPP/6YcePGUVFRQW5uLv3792fZsmXSY7S1tQkICJD+DVWBRfgt4PhXEBmCgiAIgiAIgiAIgiAIgvAEhw4dQqFQAKBWq8nIyGDr1q2Ulpby7rvvAvDpp58ybNgw+vTpw8CBAzE3NycyMpIrV64wYcIE6fndu3dn48aNlJaWEhISQl5eHuvXr8fKyorOnTsDSI/duXMnarWaXr16oav754bwREBQEARBEARBEARBEARBEJ5g1qxZ0r91dHQwMzMjICCAGTNmEB4eDkBISAibNm1i0aJFrF69moqKCtzd3Zk9eza9evWSnj99+nScnZ2JjIwkMjISQ0NDwsPDeffdd6X6gZ6engwZMoSIiAiuXr1KWFgYLi4uf+p70lKr1eo/dYvCC+tQ8qV/ehcEQfgTNfj5xD+9C4Ig/Ml0Wrb+p3dBEIQ/0cj7+/7pXRAE4U+2ufXEf3oX/nYDjsz9S7f/In6mz0LUEBQEQRAEQRAEQRAEQRCEF4gICAqCIAiCIAiCIAiCIAjCC0QEBAVBEARBEARBEARBEAThBfKHmooolUrWrFnD7t27SU5ORltbGzc3Nzp16sSwYcPQ19eXHltUVIRSqZQKIz7v6+Tm5mJrawtAREQEkyZNYu3atYSFhT3XtlJSUnB2dpb+7+PjQ69evZg9e/Zz79fv+aPb/uijj9i+fXuN2/T09LCxsaF169aMGzcOMzOzxx5/69atP2W/hf+u3Oz77N3yM3dvxQPgE1iPzv17YGxq8szbyEi5x9Lp82nRpR1tenZ+4uN2rNnC/cwsRnz49m+vn/OABROnPXX7r00cg7uv9zPvjyC8yLIKCll/5gw37t0DIMTFhSHhjTE1NHzmbSTfv88n23fQIziYvg0b1Ljveto9tl64QNL9+xjJZIR5eNC/UUMM9PRqPK6gtJTN585zMSkJZYUKdytLBoaF4v3ruC0IwrPJun+ftdu3cyMuDoD6fn4M6dULM5NnH6eT0tL4eN48enboQL8uXWrcF33zJhH79nEnJQVtbW283dwY0K0b3m5uAGTfv8/YqVOfuv3J48bh5y3GaUF4VmUPCrmz9zz5dzIAsPB1wr1zI2TyZx+rizMecHnxbpxbBeDaNuQPbb8wLYfE/RcpSM5CS0sLM3c73Ds3wsjaDEEQXmzPHRCsqKhgxIgRREdH07NnT/r3749KpeLChQssWLCAX375hbVr1yKTybh27RpvvvkmX3755XMH8NLS0njttdcYNWoUvXv3BqBRo0bMnTsXT0/P59rW5MmTuXv3LuvWrZNumzt37p/eoeXPMmnSJKnF9MOHD4mPj2fLli1cvXqVTZs2oaOjA0D//v2lbjaC8CQlRcWsmrsYlaqC5p3aoFZXErXvCJmp9xj92XvoPEPrcpVKxbaVG1BVqJ76uIsnznDx+GncfGoeo8ZyY/q8Pvixx5eXlxO5IQJjUzl2zo7P98YE4QVVWFbG9N27UVVW0j0oiEq1mt0xMaQ8eMAXvXqi++sY8TSqykq+O3qMClXlY/ddT7vHjMhI3K2sGBQWyv2iYvZeu8ad7GymvtQdLS0tAEqVSj7fuYvckhK6BARgrK/P/uvXmb47khm9euL8ByYCBeFFVFhczOfffINKpeKldu2orKxk1+HDJN+7x8z330f3Gcfp79avp0L1+Dh9Iy6O2UuW4GRnx8Du3VGpVOw/cYKpX3/N5+PH4+XmholczpghQx57rrK8nNU//YSZXI6roxinBeFZlZc8JGblPtSqSpxa+KNWq0k9cY3ijFyC3+qG9jOM1ZWqSm79FIW6lrH6Wbdfkp1PzPf70JHp4tI6CIC0kze4snwP9d/ugb6p0Z/7xgVB+Fd57oDg3r17OXfuHIsWLaJDhw7S7UOHDmXFihXMmzePn376iUGDBnH79m2ysrL+0I6lpqaSmJhY4zZnZ+caWX7PKioqCsdHTmJ69Ojxh/br79CuXTucnJxq3Obm5sbnn3/O8ePHad26qkNgSEgIISEhtW1CECQnDxwlPzePsdMmYuNgB4Cjuys/zF/CpZPnaNSyye9u43jkIbLvZTzx/srKSo7tPsgvP9fe6U5moE9wk0aP3b5nUwQqlYp+I4dgaCxOSAThWeyJucqDomLm9OuD06+TR1421syM3Mux27dpW7fu725jx+Vo0nJza71v/ZkzWMrlTHmpO7JfAxFWcjmrok5yJSWVYJeqcXhn9BXS8/P5tFs36jnYAxDu6cG4TZvZGX2FMW1EN1tBeBaRv/zCg7w85k2ahJNd1Tjt5erKjMWLOXr2LO2aNv3dbWw/cIDU9PRa7/shIgJLc3NmvP8++jIZAC1CQ3lvxgw2797Np2PHYqCvT4vQ0Meeu2bbNlQqFW8PG4bcSIzTgvCs0qKu8zC/hAbjemBkYw6AiZM111YdIPNSPPaNfH53G6nHYijJzPt/bT/t1A0qlRUEjeyM3MESAHNPB6K/203ayet4dH78/FwQhBfHc9cQvHz5MgBNazk5GTRoEHp6ekRHR/+/d0yoSZNhGffrUhJBeFZXz17C3cdLCgYCePn5YGlnw9Wzl3/3+Rkp9zi2+wCtunes9f5yZTnfTf2SX3bsJTi8ISaKZ1t+kJFyj9OHTlC/WShudZ4v61cQXmSnEhKo52AvBQMBApycsDc343TCnd99fvL9++y4fJle9R+fUFJWVGBqaEgbX18pGAhQ174q4Jd0/z4AarWa47dvE+zsLAUDAcyNjBjSuDG+9nYIgvBsTl66RD1vbykYCBDo64u9jQ2nLl363ecnpaWxff9+enfq9Nh9RSUlJKWl0TgkRAoGApibmlLXy4tbd+8+dbv7jh2jVVgYdb28nvNdCcKLLTvmDubudlKwDkDh5YChtSnZMU8+7jSKMx6QfCQGlzZB/6/tlz0oRNdYXwoGApg4WaFrpE9JZu0Tg4IgvDieOyBobGwMwJYtWx67z8jIiEuXLjF37lwWLVrEpEmTgKrswTZt2kiPO336NK+//jphYWH4+fnRvHlzJk+eTEFBAVBVK3Do0KFA1fJZHx8f6XYfHx/Onj0rbWv//v306dOHkJAQGjRowKuvvsrFixel+318fEhLS+PcuXP4+PgQEREh3f7RRx/V2P9jx47xyiuvEBISQtOmTXn33XdJTU2V7i8vL2fZsmW89NJLBAUFERgYyEsvvcRPP/30vB/jc8vIqMrOqr7M+aOPPpI+G43f+2yh6kLu22+/pWPHjgQEBNCkSRM++OAD0p8wsyz8e5UWl5CbfR8HN6fH7nNwcSI9ObWWZ/1GpVKxffUmPP18CApvWOtjKioqeFhaRv83h9Hn9cHoaP/+EgiAQxGR6Mn0aNury+8/WBAEAIoePiSroBB3a6vH7nOzsuJuTs5Tn6+qrGTpseMEODrSvJZaYDJdXSZ16fxYsDDxftV2rX+tZ5ZdWMSD4hICf81mV6vVlJWXA9Der94zZSkKglAVsMvKycGjlhUw7s7O3E1JeerzVSoVSzduJNDXlxaNHs/0MTIw4KtPP6VrtfNwjcKiInS0n3wpsGX3bmQyGS936/YM70QQBI3y0oeUPShC7mj52H1ye0uK7t1/6vMrVZXc3nYShbcDNsGPT5o/z/YNLU2pKHmIsqj0t+eXPKSiTInec9QyFAThv+m5lwy/9NJLrF69mjlz5hAREUG7du0IDw8nJCQEmUyG7NfZx/bt25Odnc2WLVsYPXo0AQEBQNXy3TfeeIP69eszbtw4tLS0OHnyJFu2bCE/P5+FCxfSqFEjRo8ezdKlS+nfvz8NGjSodV/OnTvHu+++S4sWLejXrx+lpaWsX7+eV199lcjISJydnZk7dy6zZs1CoVAwevRo6tevX+u2IiMjmTBhAt7e3rz99tuUl5ezatUqrl69SkREBKampkyaNIm9e/cycOBAhgwZQm5uLlu3buWTTz7B2tqali1bPu/HWauCggIePHgAVAUhExIS+OKLL/Dz86sRWH3Us3y2AEuXLmXx4sUMHjwYHx8fUlNTWbt2LdeuXWP37t1SjULh368gNx8AU4X5Y/eZmJtSVlJKaUkphka1nxBE7T3M/cxsBo19jcpKda2PMTA0YPzsT57r9yYj5R63rlynacfWmJqLgsaC8Kxyi4sBsDAyfuw+hZERJQ+VFD98iHG15l7V7Yy+QkZ+PhM6tKdSXfsxXV12YSE37qWz/swZnC0UNHRzBSAj/9fvFkND1p8+wy+xsZQqy7E1M2VIeGMauLr+0bcoCC+UB3l5AFiYPT4WKkxNKSktpbikBOMnLNf9+dAh0rOyeP/116msfLzOmLa2NvY2No/dnpSWxu27dwl6QvA+KS2Ni9eu0a1Nm1r3TRCEJ1PmlwAgq6U+n8zUEFVpORWlSnQNZY/dD5B64iql9wuo90ob1LWcfz/P9p1a+PMgNoVbW47j0bVq0uDO3gto62jj2KTeH36PgiD8Nzx3QNDb25tvv/2Wjz/+mLi4OOLi4liyZAlGRka0adOGsWPH4u7ujq+vL8HBwWzZsoUmTZpIS17XrFmDvb09q1evloKHgwYNon///pw4cQKoqhXYpEkTli5dSnBw8BPr/e3ZswcDAwOWLFkiFTlv0qQJ48aN4/r16zg7O9OjRw8WLlyIlZXVE7dTWVnJrFmzqFOnDlu3bsXAwACAgIAAXn31VXbt2kWHDh3YvXs3b7zxBhMmTJCe265dOzp37syJEyf+tIBgr169HrvNwMBAatbyJM/y2QLs2rWLFi1a8Omnn0q32dvbs2nTJtLS0v5nm60Iz+9hWRkAejK9x+7T/fW2cqWy1oBgVlo6R3bup+vgPphZKMjNeVDra2hpaT13EPnckSi0tLUJa9v8uZ4nCC+60l+z8GS1NBmQ/XocKisqag0Ipj7IJeLSJYY3bYKlXE52YeFTX6uwrIxxGzdLrze8aRPpdUuUSgC2XriArrY2w5o0QVtLi90xMczff4BJXToT4PR4ZrIgCDWVPXwIUOv5nezXrt4Py8t5fAoAUtLT2bZ3L6/264elQkH2/adnHVV/zcW/Ntrr0a5drY85EBWFtrY2nVq0eKZtCoLwG5WyaqzW0Xt8rNb+dRxVlVfUGhAszswl+fAVPF8KQ9/MmLLcov/X9g3M5Ti3CiRh1xkufbPz1wdpUXdQqxrLiAVBeDE9d0AQoFWrVhw5coTDhw9z9OhRTp06RXZ2Nrt37+bgwYOsWLGC0FoKEwMsW7aMgoKCGic+ubm5yOVySkpKnms/7OzsKC4u5osvvmDQoEF4enri4+PD/v37n2s7165dIzs7m9GjR0vBQKgKLv744494eHggl8u5ePEi2tWWVqjVaioqKgAo/jVr488wb948rKyqloOVl5eTlpbGhg0bGDx4MMuXL6dJk9qbQDzrZ2tnZ8fZs2f54Ycf6Nq1K1ZWVgwYMIABAwb8ae9B+N+gSQDSBMyfVWVlJRErN+Hi5fFMTUeeR7mynOjTF/AN9kdhJbqQCsLzUP96UP+RY3rJ0aP42Nk983JeLS0txrVrQ4Wqkn3XrjFj9x7GtWtLmIc75b92Mi15qGTBgJeR/xqArO/qwvjNW9h87rwICArCM/h/HdPr1+Pj6flMTUc0HiqVzF2+nKS0NHp26EC9WkoHKMvLOXH+PA0CArC2FAEDQXhu0gn4cz6tspLb26IwdbN5etOR59h+4sFLpByJwczdFrtQH9SVatLPxhK76Rh1B7XGsu7zN+wUBOG/4w8FBAH09fXp0qULXbpU1f+6fv06q1atYvfu3UyZMoW9e/fW+jwdHR1SUlJYuHAh8fHxJCcnk5mZ+Yf24ZVXXiEqKor169ezfv16nJycaN26NX379sXX1/eZt5OWlgaAay1LnAIDA6V/y2Qydu7cSVRUFImJiSQlJUmBQPUzLL16VvXr13+sy3Dnzp3p0KED06dP/39/thMnTuTNN99k5syZzJo1S1qK/PLLL2Ntbf2nvQ/hn6dvUHWRXv5rNk91Fb/OLlYPgmtE7f2FjNQ0Xp/0DsWFVTOTZb8GlZXKcooLizCSGz/3BQzAndg4yh8q8W8U/NzPFYQXneGvGUPKXyejqlP+GqQzrCXTaNeVGJIfPGDqSy9RUFqVOVz8a2bSw4oKCkrLMDHQr3FMy/X1Cfesql0U5uHOBz/+xNrTpwnzcJcyBUPd3aRgIICxvj71XVw4ERdHWXk5BnqPZycLgvAbg1+PH2Ut47Ty14xgo1rG6Z2HD5OUlsa0d9+loKhqnC4qraoR9lCppKCoCBPjmuN0cUkJs5ct4/adO7Ru3JgBT6gNeO32bR4+fEh4yOONhwRB+H06+lVjX2W56rH7Kn8dv3UNHh8fU09cozg9l6BRXSgvrhqrK0qrxmqVsoLy4jJ0jfSfefsVpUpST1xD7mRJwIiOaP2a2GId6Eb0d7uJ234ShXc/tHVFuShBeFE9V0CwpKSEZcuW4efnR4cOHWrc5+fnx/z58ykoKOD48ePk5tbetWjlypXMnTsXd3d3GjZsSIcOHQgKCmLdunXs2rXruXZeLpezfv16oqOjOXToEMePH2fdunVs2LCBuXPn0r1792fajqbmytOCGw8fPmTQoEHcvHmTsLAwwsPDGT58OKGhobRq1eq59vuPUCgUhIWFcfDgQfLz8zGrpZ7Ls362vr6+7N+/nxMnTnDkyBFOnDjBN998w+rVq9myZQuenqLj63+FmWVVF9LC/MeXBhbmFWBgZIjM4PGlhXHXbqKqULFs+oLH7ju57xdO7vuF9+ZO/kMZfrdjbqCjq0udQNF0QBCel6VcDkBeLRn1uSUlGOnLag3CXUlJoUJVyafbdzx23+4rMey+EsM3gwZITUMeJdPVJcTFhf3XrlNQWoaFcVXdIlPDx8sNmBkZolYjAoKC8Aysfu0Wnlet+ZtGbkEBRoaGUtCwuugbN6hQqfj4yy8fu2/X4cPsOnyYb6dOlTL88gsLmfnddySmptKuaVNe79//iee9l69fR1dXl5B6or6YIPwR+mZVY7WysPSx+5QFpegY6qFTSzmf3NtpqFWVRH+3+7H70k5cJ+3EdRp90PeZt1+YmoO6ohLrQA8pGAigraODTZAnd/ddoCQ7H7m9WLEjCC+q5woI6uvrs3LlSkJCQh4LCGp4eXlx4sSJWrOOHj58yKJFiwgLC2PVqlXoVquBpGl48Tzu3r1LYWEhwcHBBAcH8/777xMfH8/gwYNZvXr1MwcE7e3tAUhOTn7svkmTJlG/fn309PS4du0aM2bMoG/fvtL9fzS78Y/QBC61a+kI96yfrUqlIjY2FrlcTtu2bWnbti1QVY/x3Xff5ccff3ys+7Lw72VoZIi5lQXpSY93E76XnIqjW+3LBDr170lpcc2AQ3FBIT99v56g8IYEN2mE3LT2wMHvSY6/i6ObMwa1BBIEQXg6Y319rE1Mau0mnJiTg8cTsrxfCW8sZQRq5JeWsviXozTz9qJFHW/MDA1Jy81j9t69vBQURHu/msGAsvJytLRAT0cbZwsL9HR0SK1l8i+7oBA9XR1MazkPEAShJmMjI6wtLbmb+vg4fTclBc8n1HUe0qsXxY9MDOQXFvLt2rU0b9SIFqGhmJmaAlBaViYFA7u0bs2w3r2fuk+3797Fw8UFIzFOC8IfomsoQ99CXms34aL0+5g4WtX6PPcujagorZktXF5Uyq2tJ7AJ8cAmxAs9uQE6errPtH1t3V+vGWtpTKJWV2r+8TxvTRCE/5jHI0tPoaOjQ5cuXTh37hw///zzY/fn5eWxf/9+mjRpgqGhoRS40gSyysrKKC0txc3NrUbA6ubNm5w7dw5AqsmnaVJQW8c0jS+++IK33nqrRv0+Dw8PTE1NawTNtLW1n7odf39/LCwsiIiIqLFk4+LFi0RERFBSUkLer13gvLy8ajx37dq1Nfb7r5KTk8OZM2eoW7cuJrVkcDzrZ6tSqRg6dCgzZ86s8fygoCCg9mCj8O/m1yCIhBu3yE7/LXgdf/0W9zOyCAirveu2o5szXn4+Nf64eHsAYGFtiZefT62NSn6PqqKC7HsZ2LuK2mKC8EeFurtxLS2NtNw86barqamk5+XT5AkZ3h7W1gQ4OdX442NnB4CtqSkBTk7IdHWxMzOlRKnk0M2bVKh+W4qUXVjI2Tt3qWtvj6GsKguxgasLl5OTSX3wW1Awq6CQi0nJNHR1FeOJIDyjsKAgrt66RVq1SeaY2FjSs7Jo0qBBrc/xdHEh0Ne3xh9fj6px2tbKikBfX6kpycqtW0lMTaVzq1a/GwysqKggNT0dd1EDVBD+X6z8XMlLuEdJdp50W278PUqzC7AOdK/1OSaOVii8HGr8MXW1BcDAwgSFl4PUSORZtm9kY47M1JCMS3Goyn+7VlWVV5B5OQFdY32MbM3/3DcuCMK/ynPXEPzoo4+IiYlh4sSJ7Ny5k+bNmyOXy0lOTiYiIoLy8nImT54MgIVFVfrxpk2byMnJoXv37gQFBREREYFcLsfd3Z24uDh+/PFH6cKhuLgYMzMzFL8uodi5cydqtbrWzruvvvoqb7zxBoMHD6Znz57o6+tz6NAhkpOTmTNnjvQ4CwsLYmNj2bhxI6GhoY8F9WQyGR999BEffvghAwcO5KWXXqK4uJi1a9fi6elJv379SE1NRVdXl4kTJzJ48GB0dXU5cuQIUVFR6Onp/alNRQ4dOiS9f7VaTUZGBlu3bqW0tJR333231ueYmZk982c7ZMgQlixZwpgxY2jevDllZWVs2bIFQ0ND+vTp86e9D+F/Q/PObYg+dZ7V8xbTtGNrKsrLidp3BAc3Z4IaV11oPMjKITn+Li5e7ljY1D5r+WfIu5+LqkKFmYXiL3sNQfiveyk4iBNxccyIjKRrYADKChW7Y2Jwt7aimXfV+JZZUMDtjEzq2Nli+2uW0LPQ0dZmeJMmfHfkKJ/v2k1zby8Kyx5y4Pp1tLW1GN70tyZDgxqHcSM9nem7d9PJ3x9dHW32Xb2Gnq4O/UMb/envWxD+q15q147j584xfdEiurVpg7K8nF2HD+Ph4kLzhg0ByMzJ4dadO/h4eGBr9ezjdGpGBifOn8fI0BA3JyeO/zpJXF2Lao0Ac3JzqVCppKXMgiD8MU7N/cm6nMDVlftxbOZPZUVFVT0/R0tsgqsm70ofFFKQlIWpqw2GFs+38uZZtq+lrY1n98bc3HiE6CWR2DXwRq1Wk3kxjtLsfHz6NUdbR9QPFIQX2XMHBDWZdGvWrOHw4cMsXryY0tJSbGxs6NChA6NHj8bGxgaA8PBwOnfuzJEjRzhz5gwdOnRg4cKFzJo1i23btqFUKnF0dGTkyJF4enry9ttvc+bMGTp27IinpydDhgwhIiKCq1evEhYW9ti+NGvW7P/Yu/PwKKv7///PzJZ9X4AQCCEsYUkgEHYRWRRQBLFQrYBWa/u1bh9/SK222lLq0mq1LqDVitatrgiKLCIRIQgSFBCQfSdkJfsySSaT+f0xYTCdIYTNBOb1uC6vwn2fc+acKWfu+37fZ+Gll17i5Zdf5sUXX6SmpoauXbvyzDPPcM0117jS3XPPPfz5z3/m8ccf56677nILCAJMmjSJ4OBg/vWvf/H0008TEhLCyJEjuf/++wkICKBbt248//zzzJ07l2eeeYbAwEC6du3K66+/zn//+18yMzOx2WyYz8N6SU888YTrz0ajkdDQUJKTk3nssccYMmTIKfM197u99957CQsLY8GCBfz973/HaDTSr18/nnrqKa0feAkKDAnm9ofuZem7C0lftAyLxUKP1GTGTr0WU8O/10N7DrDwtf8y+babLmhA8MQ0ZD9/TSUUOVsh/v78eeK1vLluPR9++x2+JhNp8fFMGzwIc8ON/a6cXP711WruuGLEGQUEAYZ364rZaOSTLVt4a/03+JpM9G7fnp8PSCM2LMyVLjo4mDnXTeLdDZl8tnUrDoeDpLZtuWnwoDP+TBFvFhoczF/uu483Pv6YD5YuxddsZkBKCtMmTXLdV+7cv5+X3n6b306ffkYBwZ379gFQZbXy0ttve0zz44BgRcMLbk0XFjk3liB/Un49ngNLMjm8cjNGi4nIHh1JGJfm2sSj7FAeez5aS7cpl51xQLA55YNzJGHybWM58uUWDn3xHQBBsZH0umUMEd00EljE2/k4zuf2uOLVVh7Z1NJVEJHzqP8nGS1dBRE5z4wjRrZ0FUTkPPpN4fKWroKInGfvjXygpavwk7tx1ZMXtHxv/E6bQwv8iIiIiIiIiIiIeJEznjIszVddXU15eXmz0kZERLg2UhEREREREREREblQFBC8gJYuXcpDDz3UrLTp6enEaUc3ERERERERERG5wBQQvIAuu+wyXn/99WaljY6OvsC1ERERERERERERUUDwgoqJiXHtuCwiIiIiIiIiItIaaFMRERERERERERERL6KAoIiIiIiIiIiIiBdRQFBERERERERERMSLKCAoIiIiIiIiIiLiRRQQFBERERERERER8SIKCIqIiIiIiIiIiHgRBQRFRERERERERES8iAKCIiIiIiIiIiIiXkQBQRERERERERERES9iaukKyKXj1f0rW7oKInIeDRwxrqWrICLnWWZYXUtXQUTOp8KWroCIiFysNEJQRERERERERETEiyggKCIiIiIiIiIi4kUUEBQREREREREREfEiCgiKiIiIiIiIiIh4EQUERUREREREREREvIgCgiIiIiIiIiIiIl5EAUEREREREREREREvooCgiIiIiIiIiIiIF1FAUERERERERERExIsoICgiIiIiIiIiIuJFFBAUERERERERERHxIqaWroA4PfjggyxcuPC06SZPngzgltZgMODv709iYiI33XSTK11TZVssFqKiohgyZAgzZ84kKirqHFshrVV1UTkHlm2k9EAuABFJcSSMH4AlyL/JfLUVVg6t2ETRrqPU2+oIio2k09g0QjpGN0q3+cXFVGQVuuWP7B1Pz5tGnnF5ItK0/MJC3ly4kB179wLQr1cvZkyeTGhwcJP5SsvLeW/xYr7dto3aujoS4uKYNmkSXTt1apRuy86dfLx8OQeOHsVgMNC1UydunDDBLV1zyxORs1NcUMiy9z/h4O59AHRP6cn4GyYRGNJ0X68sK+eLBUvYtWU7NpuN2Pg4rppyLR0SOzVK9685z3Ds0BG3/D37p/CLu247b+0Q8Uat5f77xypzi9g87zM6XJFM/OjUs2yZiFwqFBBsJW644QaGDBni+vt3333H+++/zw033ED//v1dxzt27Mj7778PwEMPPUR4eDgADoeDiooKPv30Ux588EGKi4u57bbGN3I/Tg9QUVHB+vXrWbBgAdu3b+ejjz7CYrFcyGZKC7BV1bB1/nIc9nriLu+Nw+EgK2M7lbnF9L1zAgaj0WO+uhobW/+9nNryKtoP64nJz5fsb3aybf5y+v52AoFtT/7bq8ovJbJnRyJ7xTcqwy8s8IzLE5GmlVdW8pfnn8dutzNxzBjq6+tZnJ7OkexsHp81C5PJ86XdWl3N7Oeeo7i0lGtGjiQwIIDla9bwl+ef5/FZs+gYGwvAjr17+dtLLxHXti2/uPZa7HY7n2dkMPvZZ/nLfffRpSHY19zyROTsVFVU8tqT87Db6xg+bhQORz1rl68iLyubOx6ZifEUfb2muppX//4C5SVlDL1yBH6BAWxIz+C1J+dxxyMzaRPXDnBev/NzcklKTaZX/5RGZYRFRVzw9olcylrL/feP1dvr2f3RWhz2+vPbWBG5aCkg2EqkpqaSmnryLY3dbuf999+nb9++TJo0qVHaEwHBMWPGEBcX1+jclClTuPrqq5k3bx7Tp09vFODzlH7atGnMnj2bd999l5UrV3L11Vef76ZJCzu29gdqSqvof+8kAmLCAAiOi2b7ayvI27SPdgO6e8yXtXob1uOlJN8+jrCEtgBEp3Ri4z8WkJWxje5TLwegpriC+to6Int2pE1q4inr0dzyRKRpS778kqKSEp566CHi2jr7Upf4eB6bN4+vNmxgzLBhHvN98sUX5OTn86d77qFn164ADOnXj3tmz+bTlSu5++abAXjj44+JDAvjsVmz8G24hlw+cCAzH3uM9z77jIfvvvuMyhORs/P1iq8oLS7h7jkPEBPr7OvtE+J54+mX2PR1JgNGDPWYb83SdI7nFnDbA3eR0L0LAMkDU3nmgb+SsSydKb+eDkDJ8SJsNbX0SE2m79ABP02jRLxEa7n/blz2VqrySs65bSJy6dAagpcYPz8/Ro0aRUVFBXsbppKdzonpxd9///2FrJq0kIKtBwhLaOu6GQEI7xKLf3QIBVsPeszjcDjI27yPiO5xrpsRAEtwAAnjBxDSqY3rWGV+CQD+UaGnrMOZlCciTft60yZ6du3qCgYCpCQl0S4mhnWbNnnM43A4WJ2ZSWrPnq7gHUB4SAg3T55MUqLzYaKiqorDx44xODXVFQwECAsJoUeXLuw+ePCMyhORs7dtwyYSundxBQMBuvTqTmTbGLZt2Owxj8PhYPPXmXRL6eEKBgIEh4Yw7oZJxHfr7DqWn+2cxhjdLuYCtUDEe7WG++8fq8wt4siqrXQc1efMGyMilyyNELwE+fj4AM5Rhs3h7+9cx8LhcFywOknLsFlrqC6qIKp3J7dzQe0iKdqb5TFfTXEFtaVVhA3vDTj/bdTb6jBazMQOTmqUtiqvGICAGOcNib3WhtFiPuvyROTUKqqqyD9+nMF9+7qdS+jQgS07dnjMV1BURFFJCRNHjwacfbCmthY/X1+uGj7clS7Az49/Pvwwvr6+bmWUV1RgNBjOqDwROTvWyiqKCwrpleb+8B7bMY6923d6zFdyvIjy4lKGjz/ZN201tVj8fBk06rJGafOycgCIjnUGGWqra7D4ufd9ETkzreX++4R6ez17FnxNeNdYYvomcvgLzy8URMT7KCB4iamvryczMxOLxUJiM0doZGRkANCzZ88LWTVpAbWlVQBYQgLczllC/LFbbdRZazH5N1470lpYBoA50I8DyzaSu3EP9mobfpHBdL56IJE9OrjSVuWXYPQ1cWDpRgq2HqS+tg6/iCDir+xHTJ/OZ1yeiJxaUUkJABGh7iMCwkNCqLJaqayqIjCgcZ/Pyc8HICQ4mLcWLiR93Tqs1dW0iY7mlsmT6Z+cDDg3qGoX4z5a6PCxY+w5eJA+PXqcUXkicnbKiksBCAkPczsXHBZCdZUVa5UV/4DGmxMU5hUAEBgcxPL3P+HbNeupsVYTERPF+BuvI6lvb1fa/OxcLH6+LHtvEdsyN2OrqSU8OpIx119DyqB+F65xIpe41nL/fUJWxjashWX0nD4KR70GgIjISZoyfBErKyujqKiIoqIiCgoK2LJlCzNnzmTXrl3cdNNNBAYGnjJ9UVERR44c4Z133mHu3LkkJiZyzTXXtFBL5EKx19oAMJrdY/+GhsXI7bY6t3N11bUAHF65maLdWSROGES3qcMxmE3seDud4n3ZrrSVeSXYa+qoq66l+9ThdP3ZMIy+Zna/v4a8zfvPuDwRObXqmhoAjxtAWczOkQE1NpvbuSqrFYD3lyxh844d/HLKFO6aMQNfs5mn/v1vtu7a1eRnznvrLQAmjRlzzuWJyOnVVFcDYPYw4sfUcMxWW+t2rrqhb6YvXMqerTu4+hfX87Pbp2G2WHjnhfns+2G3K23esRxqq2uorrIy5fbpTL7tF/j6+fLhy2+yZd3GC9EsEa/QWu6/nemKOZL+PQnj0/AN9bzZiIh4L40QvIidWPvvxywWCzNmzOD+++9vVnp/f39Gjx7Nww8/jNnseZi5XMROTAP3ObNs9XXO3cfqqmtJm3k9Zn/nFKLIpA5sfHoBh1Z8R3gX5w6i7QZ0w+FwEDu4hyt/dEoCm55bxMFlG4npk3BG5YnIqZ1Y2uHE0hDNZatzPnhUWa08+8gjBDWMIOzfuzf3zpnDe4sXk5LkPn2/praWJ195hcPHjnHdVVe51gs82/JEpHlcl+8z7Ot1DUGG6ior9z3xR/wDnX2ze9/e/PP3f2XlgiV06eXczGDAiKE46usZNPrkNP/kgf144ZG/sfyDT0kZ3B+DQWMHRM5YK7n/BtizYC0hnWJOuYmJiHg3BQQvYk899RRRUVGAc5pXSEgIiYmJHtd++nF6m81GRkYG77zzDuPHj2f27NmnzCMXN6OvM8hbb3NfT7K+4YHe5OceCDaajQBE9Yp33YwAmPwtRCTFkb95v2utknaD3B/6jWYTMamJHEn/3jml4QzKE5FT82v4ra71MDKotmFkYICfn9u5ExuEDOrTxxW8AwgMCKB/796sycykuqbGVT5AZVUVf3v5ZfYcOMDIwYO5ccKEcypPRJrPt2EtP0+jAOsaRh/5eejr5oa+2bN/H1cwEMA/wJ+kvr3ZvG6ja63AgSPddyQ3W8z0HZLGqk8/J/9YLm076GWdyJlqLfffRbuzqMwpps//uxpbpXPUcZ3VOdPAXluHrbIaU4DvGb94EJFLhwKCF7F+/foRFxd3VulHjBhBfHw8jz76KCUlJbz44ou6GFyCfEODAKgtt7qdqy2zYvQ3ewzCWUKcUwrMge4PG5Ygf3CAvabpAJ450Lmukb227ryUJyIQFR4OQElZmdu54rIyAvz9PQbhIsLCAAgJCnI7FxocjMPhwPqjAF5peTmPv/gih7KyGDNsGLffcEOja8SZliciZyY00tnXy0vL3c6Vl5ThF+DvcQOQkHDn+qKBwe59MzAkCBwOamqa3jwkMCQYgNqGJQpE5My0lvvv4j3HcNjr2fLiZ27pjmX8wLGMHxjwuyn4hbv/XoiId1BA0IvNmDGD9evXk56ezhtvvMEvf/nLlq6SnGcmfwu+EUFUZBe6navIKSS4fZTHfIFtw/AxGajKL3E7V11cgcFsxBzoR01pJdteX0FMSgIdR/VtlM563Lkgul94EEZfc7PKE5GmBQYEEB0ZycEs9x0KDx49SmLHjh7zdWjXDpPJxNHcXLdz+YWFmM1mQhuCe9bqalcw8OqRI7nl+uvPqTwROXP+Af6ERUWQc9i9r2cfyaJ9J8+bcbVp3w6jyUR+tnvfLD5ehMlsJjA4iLLiEv7zj5dIHtSPkRPHNkp3PNe5aVB4dOR5aImI92kt998JVw+gztp4lLGtwsruDzKISe1MTGoXzEG6/xbxZloYxMvNmTOH0NBQnn32WY4ePdrS1ZELIKpXPCX7s6kqKHEdK96XjbWgjOiUBI95jBYzkT06UrQri8q8Ytfx6qJyCnceIaJHB3wMBnxDA7FX15KzcY9rIWSA6pIK8r7bS2hiWyzBAc0uT0ROb1CfPmzbvZtjeXmuY1t37SInP5+h/ft7zOPn60tacjKbt2/naE6O63h+YSHfbttGWnKya62w+R98wKGsLMZfcYXHYOCZliciZ6dX/z7s37GbgpyTfX3fD7spzM0n+RS7AFv8fElK7c2erT+Qf+xk3ywuKGTX5u0kpfZ2LjMTHka11cq3a9a7NiIBKCksZtPaDSQkdSU4NOTCNU7kEtca7r+D20cR3iW20X8h8W0A8IsIJrxLrMeNT0TEe+gXwMtFRUUxa9YsHnnkEWbPns38+fNbukpynsUN703+5v1sm/857S/rTX1dHVkZ2wlqH0lM30QArEXllB3OJyQ+Bv8I51ShhHFplB7MZdv8z4kd2gODwcix9TswmI10uupk0CFx4mB2vr2K719eStu0bthrbWSv34mPwUCXawe70jW3PBFp2sQxY1iTmclfX3iBCaNGUWuzsTg9nc4dOzI8LQ2AvOPH2X3gAN07d6ZNw1qz0ydNYsfevcx5/nnGX3EFJqORZatXYzGb+cW11wKQlZtLxsaNBPj70ykujjWZmW6ff/nAgc0uT0TO3vDxo9iybiOvPzWPYWNHUmezsXb5KmI7daDPYOd1syj/OEf2HaRjlwQiYpx9fezUiRzatY/XnpzHkCsvx2A0sX7laswWM1def42r/AnTp/Lu3Pm88thzpI0YQm11Dd+kZ2AwGpkw/Wct0maRS0Vruf8WEWmKAoLC1KlTWbRoEWvXrmXRokVcd911LV0lOY8sQf6k/Ho8B5ZkcnjlZowWE5E9OpIwLg2Dybl4cdmhPPZ8tJZuUy5z3ZD4hQfR545rOLT8W7IytoMDQju1IWFcmisNQFTPeHrOGMWRr7Zy8PNvMZiNhCW0o9PYfgREh7nSNbc8EWlaaHAwf7nvPt74+GM+WLoUX7OZASkpTJs0ybVb/M79+3np7bf57fTproBgdGQkj95/P+988gmL09NxOBz0SExk2nXXudLs3LcPcO4e/NLbb3v8/BMBweaUJyJnLzAkmNsfupel7y4kfdEyLBYLPVKTGTv1WkwNff3QngMsfO2/TL7tJldAMDwqgt/88T5WfLSYtctX4XA4iO/WmbFTJ7rSAPTsl8xN9/yK1Z99wYoPF2O2mOnUvQtXTZlAdLs2LdJmkUtFa7n/FhFpio/DcWJfdJFzc+OqJ1u6CiJyHr0SOa6lqyAi51lmWF1LV0FEzqNX969s6SqIyHn23sgHWroKP7kLHUvwxu+0ObTAj4iIiIiIiIiIiBdRQFBERERERERERMSLKCAoIiIiIiIiIiLiRRQQFBERERERERER8SIKCIqIiIiIiIiIiHgRBQRFRERERERERES8iAKCIiIiIiIiIiIiXkQBQRERERERERERES+igKCIiIiIiIiIiIgXUUBQRERERERERETEiyggKCIiIiIiIiIi4kUUEBQREREREREREfEiCgiKiIiIiIiIiIh4EQUERUREREREREREvIippSsgl47bE8e0dBVE5HwqaekKiIiIiIiIyIWgEYIiIiIiIiIiIiJeRAFBERERERERERERL6KAoIiIiIiIiIiIiBdRQFBERERERERERMSLKCAoIiIiIiIiIiLiRRQQFBERERERERER8SIKCIqIiIiIiIiIiHgRBQRFRERERERERES8iAKCIiIiIiIiIiIiXkQBQRERERERERERES+igKCIiIiIiIiIiIgXMbV0BQQefPBBFi5ceNp0kydPBmDhwoX86U9/Ytq0aW5psrKyGD16NHfffTf33HNPk+VbLBaioqIYMmQIM2fOJCoq6hxbIq1VcUEhy97/hIO79wHQPaUn42+YRGBIsOf0x4t45oE5TZZ52wN3kZDUFYCcI1l8/sGnHDt0FIPBQPc+vbhqyrUEhTYuv7npRKRp+YWFvLlwITv27gWgX69ezJg8mdBgz32poLCQu2fPbrLMP917L726Ovv0waws3lm0iP1HjmA0GunXqxc3TZxIWEhIozz7Dh3ig6VL2X3wIHa7nfj27fnZuHH069Xr3Bsp4kVay3W6MK+A5R98yqHd+6iz1RGXGM9VP5tAh8RO595IES9TXVTOgWUbKT2QC0BEUhwJ4wdgCfL3nL64go1PfdRkmcm3jyWsczu34zVlVWx6bhERPTrQfcrwRucqc4s5uPxbSg/lYbSYCOsSS6cr++EXHnSWLRORS4UCgq3ADTfcwJAhQ1x//+6773j//fe54YYb6N+/v+t4x44def/99wF49tlnGTt27BkF8R566CHCw8Ndf6+oqGD9+vUsWLCA7du389FHH2GxWM5Di6Q1qaqo5LUn52G31zF83CgcjnrWLl9FXlY2dzwyE6PJ/WcgMCiQn93uHnC22WwseedjAkOCaNuhPQD52bn8+/HnCQkPZeSkcdRYq1m34iuO7DvInX+ehcXP94zSiUjTyisr+cvzz2O325k4Zgz19fUsTk/nSHY2j8+ahclDnw4OCuKuGTPcjtfabLz+0UeEBgUR397Zp7Nyc/nTP/9JRGgoU6++miqrlSWrVrH7wAH+/vvf4+fr7KvZeXnMfv55QoOCmHzVVVjMZr765huefPllZv7qVwzs0+fCfhEil4jWcp2uLK9g/t9foNpazbCrrsA/MID1K9fw2pPz+H8P/3+07RB7Yb8IkUuIraqGrfOX47DXE3d5bxwOB1kZ26nMLabvnRMwGI1uecyBvnSbOtzteH1dHfsXb8Ac6EdguwiPn7fvk3XUWWvdjlcVlPD9K0tx1DtoP7QnJn8LOZm72fKvJfT9f1fjF6GX8iLeTAHBViA1NZXU1FTX3+12O++//z59+/Zl0qRJjdKeCAiWlZXxxBNP8PTTTzf7c8aMGUNcXFyjY9OmTWP27Nm8++67rFy5kquvvvocWiKt0dcrvqK0uIS75zxATGxbANonxPPG0y+x6etMBowY6pbH4udL36ED3I4vffdj7HY7U38zA//AAADSFy7FYDTwqwfvITjUOXootlMH3n72FTav28igUZedUToRadqSL7+kqKSEpx56iLi2zj7dJT6ex+bN46sNGxgzbJhbHj9fXy4fONDt+H8WLMBut3PPLbcQFODs0+8vWYLRYGD2ffcR3jAisHPHjvz9X/9iTWYmVw13Pqy88+mnGI1GHp01y5VuzLBhzHriCd7+5BMFBEWaqbVcp79b8w3lJWX84q7b6Nk/BYCe/fvw3B8e56vFn3PjnbdekPaLXIqOrf2BmtIq+t87iYCYMACC46LZ/toK8jbto92A7m55jBYzbVIT3Y7v/2wDDns9ST+/HLO/+wv0vM37Kd6T7bEeB5d9i73GRp/fjCckvg0AMamJfPfsIg4s/5aeN408h1aKyMVOawhepEaNGsVnn33G+vXrz7msE1ORv//++3MuS1qfbRs2kdC9i+shA6BLr+5Eto1h24bNzS4n92g261dm0O+ygXTqdvJmxWg00WdImushAyCh4XxeVvYZpxORpn29aRM9u3Z1BQMBUpKSaBcTw7pNm5pdzuFjx1i+ejVXDBpEjy5dXMdNRiPDBwxwBfkAejacP5zt7KsOh4Od+/bRJympUTqL2Uz/3r3JKyigtLz8rNso4k1ay3W6+HiR67NPCIsMJ6Z9W3Kzcs68YSJerGDrAcIS2rqCgQDhXWLxjw6hYOvBZpdTmVtE9vqdtOnfldCEtm7na8urOPDZBjqOcn8JV2+3U7w3m7Ausa5gIIAlyJ82/RIp3HHE46hCEfEeGiF4kXr44YdZv349s2fPZvHixec01dff37mOhcPhOF/Vk1bCWllFcUEhvdLcbxJiO8axd/vOZpe18uMlmC1mRk9uPIr053fc7JY256jzASM0MvyM04nIqVVUVZF//DiD+/Z1O5fQoQNbduxodlnvf/YZFouFn0+Y0Oj4//3yl25pDx87BkBUw7ITPj4+/O2BB/DxUG55RQUARg/ToUSksdZ0nY5s41yG5nhePrHxHQCw19VRWlRCdGwbtzJExDObtYbqogqiendyOxfULpKivVnNLuvQF5swmE3Ej0n1eH7vovX4hgUSd3lvDn/R+AWCraIah72ewLbu99l+ESFQ76Ayt8hjoFFEvINGCF6k2rdvz5133smhQ4d45ZVXzqmsjIwMAHr27Hk+qiatSFlxKQAh4WFu54LDQqiusmKtsp62nNyj2ez+/gcGXjGMkLDQU39eSSk/fPs9H73yFsFhIaQNH3xO6USksaKSEgAiQt37YXhICFVWK5VVVact5/CxY3y3fTtXDhvmsSzX55WWsmHLFp5/4w3CQ0MZ9aP1bmMiI4mOjGyUvqSsjMytW4lt08Y1BVlETq01Xaf7Xz6Eth1iWfj6exzdf4jjufksfP09KssruGzcqDNvnIiXqi11XoctIe7XQUuIP3arrVkj8ypziyjamUW7Qd3x9VBW/pb9FO/JotvPLvO4JqHRYgbAXmNzO1dnrXHWteL0vy8icunSCMGL2K233sqnn37KK6+8wrXXXkt8fHyT6cvKyigqKnL9vaKigoyMDObOnUtiYiLXXHPNha6y/MRqqqsBMDfcEPyYqeGYrbYW/wDPu52dkLlqLT4GA4NGuy90/GPP/eFxaqtr8DEYmPLr6afcHbG56USkseoa5w28p1HhFrOzT9fYbASeppwVa9diMBgYd/nlTab7/x59lOrqagwGA3fffPMpdzEG5/q38956i5qaGq678srT1EBEoHVdp/0D/Bl13Xg+fOUtXnnsWdfxa6ZdT/cUvTQWaS57rTMAZzS7P2obGjYJstvqMPk3PcMre8NuMPgQO7iH27naCiv7P8skbngyQbGRHnKDyd+Cf3QIRbuzsNfWYbScrE/hziMA1NfVN69RInJJUkDwImY2m5k9ezbTp09nzpw5zJ8/v8n0J9YK/DF/f39Gjx7Nww8/jNnsfjMqF7cTs8B9fDxN7GseW62NLeu/Jalvb8KjPO9sBs5gwLXTp2A0mfgu4xs+fPlNKkrLGHrVFWeVTkTcnVja4Vz6dK3NRsbGjfRPTnYb4fdjdrudX02dislkYtX69Tz/n/9QUlbGNSPdFyCvr69n7ltvsXXXLob278+IQYPOun4i3qQ1Xae/y/iGRa+/R5u4WIZedQVmi5kt6zey5L8L8fExaPMvkeZydeyzL8JuqyN/834ie3TALzzI7fy+T9ZjDvLzuHbgj3UYkcKej9ay4+10Ol3VH6PFRNbaH6gudK7z62M4h0qKyEVPAcGLXFpaGpMnT+bjjz9myZIl9GliV8ennnqKqKgobDYbGRkZvPPOO4wfP57Zs2fj6+u+Y5Vc/Hz9nP+/2mrdpyXUNby99PPza7KMA7v2YquppfeAvk2mMxqNrh0Pew/oy6tPPM/KhUvpf/lgfH/0Gc1NJyLu/Bp+q2s99Olam7NPB5ymH23fs4eamhqGpHpej+gEo9Ho2pl4SGoqf3r2Wd5fsoRRQ4bg/6PPsNlsPP/mm2Ru2ULfnj25a/r0M2qTiDdrTdfplR8vJSQijN/84f+wNNQreWAqbz37Csvf/4Re/fsQFKoR/SKnY/R1DrKot9ndztXX1QFg8mt6IEbpgVzqa+s8rkOY//0BCn84Qs8Zo7HX2BpNCXbU1WOrrMboZ8ZgNNKmXxdqy6s4nL6FLS9+BkBIfAwJ49LYu3AdJg+7FouI91BA8BLwu9/9ji+//JInnniCV1999ZTp+vXrR1xcHAAjRowgPj6eRx99lJKSEl588cVzejstrdOJxcLLS913+ywvKcMvwN91038qe7buwGgy0S3FfbrCqfj4+NArrQ9H9h2kICefuISO55RORJxObOpRUlbmdq64rIwAf39X0PBUNv/wAyaTidQzWDfWx8eHwX37sufAAbLz8khsWKKiuqaGf/z732zbvZt+vXox81e/wmTSrYVIc7WW63R4ZDgVpWUMHnO52+elDhvAnq07OHrgED1Sk5v9GSLeyjfUOaKvttx9fb7aMitGf7Nrfb9TKdqdhY/JQET3OLdzxXudG33teCvd7VzB1oMUbD1I8u1jCevcDnCOEmw3MInKvGLMgX4ERIeSs3E3AP4RCvKLeDNtKnIJiIiIYNasWRQUFPDss882O9+MGTMYPXo0X375JW+88caFq6C0GP8Af8KiIsg57L6bWfaRLNp36nDaMo7sO0j7Th3w83dfv8haZeWfDz7Kio8Wu52rqT6x1pm52elEpGmBAQFER0ZyMMu9Tx88epTEjqcPqu85eJDOHTsS4KFPV1ZVce+cOfz300/dzlkb1jo7sX6h3W7nmfnz2bZ7N4NTU7n/9tu19ITIGWot1+kT65rV2z2MaKp3Tn90NPyviDTN5G/BNyKIiuxCt3MVOYUEt486bRllR/IJbh+Fyc99ncEOlyfT+7ar3P4DCOsaS+/briKwnXP5gMJdRyncdRSTv4XQTm0IiHZuOlR2KA9zkB9+kQoIingzBQQvEVOmTKFfv36sWrXqjPLNmTOH0NBQnn32WY4ePXqBaictqVf/PuzfsZuCnDzXsX0/7KYwN5/kQf2azGuvq6MgO5d28e5vJ8H5IGM0mdj89UaslSd3NrVWWfluzTeERUUQHdu22elE5PQG9enDtt27OZZ3sk9v3bWLnPx8hvbv32Teuro6snJySIjz3KcDAwIwm0ys3rCBih/tVlxZVcWq9euJjowkrq2zry5Yvpzvd+5kYN++/N8vf6mRgSJnqbVcp+M6x/PDt99TWV7hSudwOPh29XqMJiMduyScY0tFvEdUr3hK9mdTVVDiOla8LxtrQRnRKU33pXq7naq8EgJjPa8JGhATRniXWLf/ACzB/oR3icXcMBU4f/N+9ixYS92PphVXHCukYNshYgcnaYaYiJfT3fslwsfHh9mzZ3P99ddT17A2RXNERUUxa9YsHnnkEWbPnn3ajUnk4jN8/Ci2rNvI60/NY9jYkdTZbKxdvorYTh3oM9gZPCjKP86RfQfp2CWBiJiTby1LCoux19kJjQg/ZfnXzpjC60+9yL8ff460EUOw19nZuHodFWVlzLjv/7luNJqbTkSaNnHMGNZkZvLXF15gwqhR1NpsLE5Pp3PHjgxPSwMg7/hxdh84QPfOnWkTdbJPHy8ups5ud0099uRXU6fy17lz+dM//8nooUOps9tZ+fXXlJSV8eBvf4uPjw/llZV8mp6OyWgkuVs31n77rVs5A/v0Oe30ZRFpPdfpq38xmdeenMe/5jzDgCuGYva1sD1zM0f2HWTMz67R+oEiZyBueG/yN+9n2/zPaX9Zb+rr6sjK2E5Q+0hi+iYCYC0qp+xwPiHxMY2m7taUVOKw1+MX6r6ZyJlqP6wXhTsOs+21z2mT2oU6aw3H1v5AQEwYscN6nXP5InJxU0DwEtK9e3duvvlmXnvttTPKN3XqVBYtWsTatWtZtGgR11133YWpoLSIwJBgbn/oXpa+u5D0RcuwWCz0SE1m7NRrMTVM7zu05wALX/svk2+7qdGDxonRBH7+p17QPKF7F26ZeQdffrKcLxYswcfgQ6duifz8jlsarQnY3HQi0rTQ4GD+ct99vPHxx3ywdCm+ZjMDUlKYNmmSa8ruzv37eentt/nt9OmNAoIVlZUAHqcLn9Cza1f+cOedfLh0Ke8uXozBYKBHYiL3/fKXrrUD9x0+jK1hE5P5H3zgsZweiYkKCIo0Q2u5TndI7MRv/vh/rPx4KauXfIG9zk5M+7ZM+fV0+gxJu0CtF7k0WYL8Sfn1eA4syeTwys0YLSYie3QkYVwaBpMRcE7b3fPRWrpNuaxRQLCuyjmd33iajUeaI6RjNL1uuZLDX2zi4PJvMflbiO7bmfjRqZh8tcyHiLfzcTgcWhBEzouVRza1dBVE5DwaWKJ3RiKXmsyw5s8iEJHW79X9K1u6CiJynr038oGWrsJP7sZVT17Q8r3xO20OrSEoIiIiIiIiIiLiRRQQFBERERERERER8SIKCIqIiIiIiIiIiHgRBQRFRERERERERES8iAKCIiIiIiIiIiIiXkQBQRERERERERERES+igKCIiIiIiIiIiIgXUUBQRERERERERETEiyggKCIiIiIiIiIi4kUUEBQREREREREREfEiCgiKiIiIiIiIiIh4EQUERUREREREREREvIgCgiIiIiIiIiIiIl5EAUEREREREREREREvYmrpCoiIiIiIiIiIiHe6PXFMS1fBK2mEoIiIiIiIiIiIiBdRQFBERERERERERMSLKCAoIiIiIiIiIiLiRRQQFBERERERERER8SIKCIqIiIiIiIiIiHgRBQRFRERERERERES8iAKCIiIiIiIiIiIiXkQBQRERERERERERES+igKCIiIiIiIiIiIgXUUBQRERERERERETEiyggKCIiIiIiIiIi4kVMLV0BOenBBx9k4cKFjY4ZDAb8/f1JTEzkpptuYvLkyWec9uabb2bjxo2sWbOG6Ohoj59dWlrKsGHDuOKKK5g7d+4FaJ20pOKCQpa9/wkHd+8DoHtKT8bfMInAkOAm81WWlfPFgiXs2rIdm81GbHwcV025lg6Jnc4q3b/mPMOxQ0fcPqdn/xR+cddt59RGEW+SX1jImwsXsmPvXgD69erFjMmTCQ1uuk+Xlpfz3uLFfLttG7V1dSTExTFt0iS6durUKN0fnnqK/Ufc++rAvn25/1e/cv19+549vL9kCYePHSPAz4/BqancOGECfr6+595IES/S0tfp4uNFPPPAnCY/67YH7iIhqetZt1HE21QXlXNg2UZKD+QCEJEUR8L4AViC/JvMV1th5dCKTRTtOkq9rY6g2Eg6jU0jpKPzOa66uIKNT33UZBnJt48lrHM7Mv7wnybTdZtyGW36dWl+o0TkkqKAYCv00EMPER4eDoDD4aCiooJPP/2UBx98kOLiYm677bYzSnvttdeyYcMGVqxYwbRp0zx+5ooVK7DZbEycOPHCN1B+UlUVlbz25Dzs9jqGjxuFw1HP2uWryMvK5o5HZmI0ef4ZqKmu5tW/v0B5SRlDrxyBX2AAG9IzeO3JedzxyEzaxLU7o3QOh4P8nFySUpPp1T+l0WeFRUVc2C9B5BJSXlnJX55/HrvdzsQxY6ivr2dxejpHsrN5fNYsTKfo09bqamY/9xzFpaVcM3IkgQEBLF+zhr88/zyPz5pFx9hYwNlXs/LySEtJYVCfPo3KiI442Ve379nDo3Pn0rlDB6ZNnEhhSQlLv/qK/UeOMOe++/Dx8blwX4LIJaQ1XKcDgwL52e3u94g2m40l73xMYEgQbTu0v6Dfg8ilxFZVw9b5y3HY64m7vLfz2pqxncrcYvreOQGD0egxX12Nja3/Xk5teRXth/XE5OdL9jc72TZ/OX1/O4HAtuGYA33pNnW4W976ujr2L96AOdCPwHbO67WndAAHlmbisNcT2qnN+Wu0iFx0FBBshcaMGUNcXFyjY1OmTOHqq69m3rx5TJ8+/YzSjhs3jjlz5vD555+fMiC4dOlSQkJCuOKKK857e6Rlfb3iK0qLS7h7zgPExLYFoH1CPG88/RKbvs5kwIihHvOtWZrO8dwC54iA7s43h8kDU3nmgb+SsSydKb+efkbpSo4XYauppUdqMn2HDrjQzRa5ZC358kuKSkp46qGHiGvr7NNd4uN5bN48vtqwgTHDhnnM98kXX5CTn8+f7rmHnl2do3yG9OvHPbNn8+nKldx9880AFBQVUVNTw4CUFC4fOPCU9Xh70SIiw8OZfd99WMxmAKLCw5n/wQds2bmT1J49z2ezRS5ZreE6bfHz9XhtXvrux9jtdqb+Zgb+gQEXovkil6Rja3+gprSK/vdOIiAmDIDguGi2v7aCvE37aDegu8d8Wau3YT1eSvLt4whLcP4eRKd0YuM/FpCVsY3uUy/HaDHTJjXRLe/+zzbgsNeT9PPLMfs7R+p7Snfs6x+oq6yh+w2X4xfR9ChkEbm0aQ3Bi4Sfnx+jRo2ioqKCvQ1TxJqbNjg4mJEjR/Ltt99SWFjolr6wsJANGzYwbtw4LBbLhWqCtJBtGzaR0L2L6yEDoEuv7kS2jWHbhs0e8zgcDjZ/nUm3lB6uhweA4NAQxt0wifhunc8oHUB+tnO6RHS7mPPaPhFv8/WmTfTs2tUVDARISUqiXUwM6zZt8pjH4XCwOjOT1J49XcFAgPCQEG6ePJmkxJMPDEdzcgBo3+bUowZqbTZCgoIYPXSoKxgI0KOL83fg8LFjZ9c4ES/UWq7T/yv3aDbrV2bQ77KBdOrmHlQQkVMr2HqAsIS2rmAgQHiXWPyjQyjYetBjHofDQd7mfUR0j3MFAwEswQEkjB9ASBOj+Spzi8hev5M2/bsS+qO8/6u2wsqhLzYTltiOmD6n7v8i4h0UELyInJh+Zbfbzzjttddei91u54svvnBLu3z5cufUM00XvuRYK6soLigktlOc27nYjnHkHMnymK/keBHlxaV06ZUEOG9QaqtrABg06jLXaIXmpgPIy3IGGaJjnTczJ9KJSPNVVFWRf/w4nTt0cDuX0KEDB48e9ZivoKiIopISUpJO9tXqGmcfvGr48EajCv83IHgi3Y9ZzGb+cOedXD92bKPjh7Kcvyk/nlosIqfWmq7T/2vlx0swW8yMnnz12TdQxAvZrDVUF1UQ1D7S7VxQu0gqst0HaADUFFdQW1pFWJeTS3jYa20AxA5OOuWoQoBDX2zCYDYRPya1ybod/Wor9bY6Eq7WbB0R0ZThi0Z9fT2ZmZlYLBYSE5t+S+sp7YgRIwgNDWX58uXceOONjdIvXbqU9u3bk5aWdsHqLy2jrLgUgJDwMLdzwWEhVFdZsVZZ8Q9ovLhxYV4BAIHBQSx//xO+XbOeGms1ETFRjL/xOpL69j6jdOAcIWjx82XZe4vYlrkZW00t4dGRjLn+GlIG9bsQzRe55BSVlAAQERrqdi48JIQqq5XKqioCAxpP7cvJzwcgJDiYtxYuJH3dOqzV1bSJjuaWyZPpn5zsSpuVk4Ofnx9vfvwx6zZvpqamhpioKG6cMIFh/ft7rFdBYSE/7NvHWwsX0qFdOwakpHhMJyKNtabr9I/lHs1m9/c/MGzsSELC3H9vROTUakurALCEuE+zt4T4Y7faqLPWYvJvPDPLWlgGgDnQjwPLNpK7cQ/2aht+kcF0vnogkT3cXwaCc3Rg0c4s2g/vha+Hz3TVq8JKTuZuInvFE9ROL+5ERCMEW6WysjKKioooKiqioKCALVu2MHPmTHbt2sVNN91EYGDgGae1WCyMHTuWjRs3Ulxc7Mqfl5fHd999x4QJE7QA/CWoproaALPF7HbO1HDMVlvrdq7aagUgfeFS9mzdwdW/uJ6f3T4Ns8XCOy/MZ98Pu88oHUDesRxqq2uorrIy5fbpTL7tF/j6+fLhy2+yZd3G89twkUvUidF6npZ3ODF1t8ZmcztX1dBX31+yhM07dvDLKVO4a8YMfM1mnvr3v9m6a5cr7dGcHKqrq6msrubuGTO4Y9o0/H19ef4//2FNZqZb2eWVldw9ezYvvf02tTYbt06d2mgasYicWmu6Tv9Y5qq1+BgMDBrteUMCETm1E6P6jGb3sTeGhk2C7LY6t3N11c6+fnjlZop2Z5E4YRDdpg7HYDax4+10ivdle/y87A27weBD7OAeTdYr77u9OOrqiRumNX5FxEkjBFuhyZMnux2zWCzMmDGD+++//6zTTpw4kQ8++ICVK1cydepUAJYtW4bD4dB04UuUw+H83zMN9tY13KRUV1m574k/uhYS7963N//8/V9ZuWAJXXp1b3Y6gAEjhuKor2/0cJE8sB8vPPI3ln/wKSmD+2Mw6B2FSFMcDZ36TPu0rc7ZV6usVp595BGCGkYQ9u/dm3vnzOG9xYtd04nHDBtGfX09Yy+/3JV/WP/+3P/447y9aBGXpaU16qs+Pj783623UldXx/LVq3l07lzuu/VWBvXtey5NFfEKrek6fYKt1saW9d+S1Lc34VEaRSRyxlwd+8yy1dfVA87AYNrM610bg0QmdWDj0ws4tOI7whumE59gt9WRv3k/kT064Bce1GT5ud/uJTA2gpB47SwsIk4KCLZCTz31FFFRUQAYDAZCQkJITEzE19f3nNKmpaURGxvL8uXLXQHBJUuW0LNnT7p06eKWXi5+vn7OfweeRhfUNby99PPzcztnbhh91LN/n0a7CvoH+JPUtzeb122ktrqm2eksfr4MHOm+86nZYqbvkDRWffo5+cdyadsh1i2NiJzk1/DbXuuhT9c2jAwM8NCnfRv66qA+fVzBQIDAgAD69+7NmsxMqmtq8PP15crLLnPLbzGbuXzAAD5atoyjOTnEt2/vOhcUEMDQfs5p/4NTU7n/8cd5Y8ECBQRFmqE1XadPOLBrL7aaWnoP6HvuDRTxQkZf5+jeepv7uu/1DS/oTH7uo4KNZiMAUb3iXcFAAJO/hYikOPI378dea8P4oxHFpQdyqa+tI6p3pybrVJVfQnVhOZ2u0jI9InKSAoKtUL9+/YiLc19c+lzT+vj4cM011/D6669TUlJCeXk5W7du5cEHHzyX6korFhoZDkB5abnbufKSMvwC/Bs9BJwQEu5cLygw2P1NY2BIEDgc1NTUNDudp884mS4YgFoPGxeISGNR4c4+XVJW5nauuKyMAH9/V9DwxyLCwgAICXLvq6HBwTgcDqwNAcFTCQ129tUaD4GLEyxmM/169WL56tWUVVR4/DwROak1Xqf3bN2B0WSiW0rT0w9FxDPfUGd/qy23up2rLbNi9Dc3CuqdYAlxLvVkDnR/CWAJ8gcH2GsaBwSLdmfhYzIQ0b3p58Gi3c4NiiJ7xTe/ISJyydP8PC8zceJE6urqWLVqFStWrMBoNHLNNde0dLXkAvEP8CcsKoKcw+67FGYfyaJ9J8+LE7dp3w6jyUR+dq7bueLjRZjMZgKDg5qdrqy4hOf/+ASrPv3cLd3xXOdmB+HR7juxiUhjgQEBREdGcjDLvU8fPHqUxI4dPebr0K4dJpOJo7nufTW/sBCz2UxoUBBFJSXMfOwxPlq2zC3dsbw8AKIjIzmWl8ddf/4zKzIy3NJV19Tg4+OD2aR3jiKn01qu0z92ZN9B2nfqgJ+/v1seETk9k78F34ggj7sJV+QUEtw+ymO+wLZh+JgMVOWXuJ2rLq7AYDa6BQvLjuQT3D4Kk5/72sKN0h3OxxIaQEC0NgkSkZMUEPQy3bp1o3v37nz11VesWrWKwYMHExMT09LVkguoV/8+7N+xm4KcPNexfT/spjA3n+RT7O5r8fMlKbU3e7b+QP6xHNfx4oJCdm3eTlJqbwwGQ7PThYSHUW218u2a9a4FzgFKCovZtHYDCUldCQ4NuQCtF7n0DOrTh227d7sCdABbd+0iJz+foafYBdjP15e05GQ2b9/O0ZyTfTW/sJBvt20jLTkZg8FARFgYVVYrX65b59qIBOB4URFfbdhAr27dCA8JoW1UFFVWK1+sXUtd3cmF0QsKC/lmyxZ6dOmCv4dpjiLirjVcp0+w19VRkJ1Lu/jmzT4REc+iesVTsj+bqoIS17HifdlYC8qITknwmMdoMRPZoyNFu7KozDu5CWR1UTmFO48Q0aMDPj/qr/V2O1V5JQTGnn6tz4qcQu0sLCJu9PreC02cOJEXX3yR6upqHn/88Zaujlxgw8ePYsu6jbz+1DyGjR1Jnc3G2uWriO3UgT6DncGDovzjHNl3kI5dEoiIcb61HDt1Iod27eO1J+cx5MrLMRhNrF+5GrPFzJXXnxxV2tx0E6ZP5d2583nlsedIGzGE2uoavknPwGA0MmH6z37aL0XkIjZxzBjWZGby1xdeYMKoUdTabCxOT6dzx44MT0sDIO/4cXYfOED3zp1p07DO7PRJk9ixdy9znn+e8VdcgcloZNnq1VjMZn5x7bWu8n/185/zj3//m0f++U9GDx2Ktbqaz9eswWgwcFvD+rNGo5Fbp0xh3ltv8efnnuPyAQMor6zk8zVrMPj4cOuUKT/9FyNykWot12lwvqiz19kJjQj/6b4AkUtQ3PDe5G/ez7b5n9P+st7U19WRlbGdoPaRxPRNBMBaVE7Z4XxC4mPwj3Auy5EwLo3Sg7lsm/85sUN7YDAYObZ+BwazkU5XNX7pV1NSicNej19o08tz1NvrqSmpJKKbAv0i0pgCgl5owoQJPP300/j6+nLllVe2dHXkAgsMCeb2h+5l6bsLSV+0DIvFQo/UZMZOvRaT2bkGyaE9B1j42n+ZfNtNrgeN8KgIfvPH+1jx0WLWLl+Fw+Egvltnxk6d6EpzJul69kvmpnt+xerPvmDFh4sxW8x06t6Fq6ZMILqddjsTaa7Q4GD+ct99vPHxx3ywdCm+ZjMDUlKYNmkS5oY+vXP/fl56+21+O326KyAYHRnJo/ffzzuffMLi9HQcDgc9EhOZdt11rjQAA1JS+N2vf83CFSt455NPsJjN9OzalZsmTqR9m5N99fKBAzGbTHyyciVvfvwxvr6+9O7WjRsnTCC2jfq0SHO1lus0gLWyCgA/f43wFTkXliB/Un49ngNLMjm8cjNGi4nIHh1JGJeGweTcPKTsUB57PlpLtymXuQKCfuFB9LnjGg4t/5asjO3ggNBObUgYl+ZKc0JdlXP9baOHDUoapbPWgAOMp5lWLCLex8fhOLEvusi5WXlkU0tXQUTOo4ElemckcqnJDKs7fSIRuWi8un9lS1dBRM6z90Y+0NJV+Mld6FjCmI7aYdsTrSEoIiIiIiIiIiLiRRQQFBERERERERER8SIKCIqIiIiIiIiIiHgRBQRFRERERERERES8iAKCIiIiIiIiIiIiXkQBQRERERERERERES+igKCIiIiIiIiIiIgXUUBQRERERERERETEiyggKCIiIiIiIiIi4kUUEBQREREREREREfEiCgiKiIiIiIiIiIh4EQUERUREREREREREvIgCgiIiIiIiIiIiIl7E1NIVEBERERERERERuRBGjx7d5Pn09PSfqCatiwKCct68un9lS1dBRM6jgZHjWroKIiIiIiIicgEoICgiIiIiIiIiIpckbx0BeDpaQ1BERERERERERMSLKCAoIiIiIiIiIiLiRRQQFBERERERERER8SIKCIqIiIiIiIiIiHgRBQRFRERERERERES8iAKCIiIiIiIiIiIiXkQBQRERERERERERES+igKCIiIiIiIiIiIgXUUBQRERERERERETEiyggKCIiIiIiIiIi4kVMLV0BcXrhhReYO3duk2kWLVrEG2+8wcKFC/nTn/7EtGnT3NJkZWUxevRo7r77bu655x4AHnzwQRYuXOiW1mKxEBUVxZAhQ5g5cyZRUVHnpzHS6lQXlXNg2UZKD+QCEJEUR8L4AViC/JvMV7I/h8MrN1ORU4TJz0xU7050uqofRov5lHkqc4vYPO8zOlyRTPzo1HNOJyLu8gsLeXPhQnbs3QtAv169mDF5MqHBwU3m275nD+8vWcLhY8cI8PNjcGoqN06YgJ+vLwAFhYXcPXt2k2X86d576dW1q9vxotJSZj3+OGnJydw5ffrZNUxEGikuKGTZ+59wcPc+ALqn9GT8DZMIDGm6rx/YuZf0hUvJOXoMP38/eg/oy5jJ12Dx822U7l9znuHYoSNu+Xv2T+EXd912/hoi4oVay/13bYWVQys2UbTrKPW2OoJiI+k0No2QjtHn3kgRuagpINjK3HHHHXTu3NnjudjYWNefn332WcaOHXtGQbyHHnqI8PBw198rKipYv349CxYsYPv27Xz00UdYLJazr7y0SraqGrbOX47DXk/c5b1xOBxkZWynMreYvndOwGA0esxXsj+Hba99TlD7SBLG9aemtIrsdTuoOFZIym/G4+Pj45an3l7P7o/W4rDXN1mn5qYTEXfllZX85fnnsdvtTBwzhvr6ehanp3MkO5vHZ83CZPJ8ad++Zw+Pzp1L5w4dmDZxIoUlJSz96iv2HznCnPvuw8fHh+CgIO6aMcMtb63NxusffURoUBDx7dt7LP/V996jsqrqvLZVxJtVVVTy2pPzsNvrGD5uFA5HPWuXryIvK5s7HpmJ8RR9/cDOvbz+jxdpH9+BsVOupbS4hPVfrOHYwaPc/tC9ruu3w+EgPyeXpNRkevVPaVRGWFTEBW+fyKWstdx/19XY2Prv5dSWV9F+WE9Mfr5kf7OTbfOX0/e3EwhsG+6WR0S8hwKCrczQoUMZNGjQadOVlZXxxBNP8PTTTze77DFjxhAXF9fo2LRp05g9ezbvvvsuK1eu5Oqrrz7jOkvrdmztD9SUVtH/3kkExIQBEBwXzfbXVpC3aR/tBnT3mO/Aso34hgWS8uvxGM3Onwrf0ED2f/oNxXuPEdEtzi1P1uqtVOWVnLZOzU0nIu6WfPklRSUlPPXQQ8S1bQtAl/h4Hps3j682bGDMsGEe8729aBGR4eHMvu8+LGbnKIOo8HDmf/ABW3buJLVnT/x8fbl84EC3vP9ZsAC73c49t9xCUECA2/k1mZl8v3PneWyliHy94itKi0u4e84DxMQ6+3r7hHjeePolNn2dyYARQz3mW/7BJ4RFhPOrB+/B3DCiKDQinM/e/oi923fRLbkHACXHi7DV1NIjNZm+Qwf8NI0S8RKt5f47a/U2rMdLSb59HGEJzt+R6JRObPzHArIyttF96uXn3lgRuWhpDcGL1KhRo/jss89Yv379OZc1efJkAL7//vtzLktan4KtBwhLaOu6GQEI7xKLf3QIBVsPesxjt9VhCfKj7YBurpsRgNCENgBU5hS55anMLeLIqq10HNWnyfo0N52IePb1pk307NrVFQwESElKol1MDOs2bfKYp9ZmIyQoiNFDh7qCgQA9unQB4PCxY6f8vMPHjrF89WquGDTIlf7HisvK+M+CBVw/btzZNklEPNi2YRMJ3bu4goEAXXp1J7JtDNs2bPaYx1ZrIzA4iLQRg13BQICE7okA5B452dfzs53TGKPbxVyI6ot4tdZw/+1wOMjbvI+I7nGuYCCAJTiAhPEDCOnU5mybJyKXCAUEL1IPP/ww/v7+zJ49m9ra2nMqy9/fuY6Fw+E4H1WTVsRmraG6qIKg9pFu54LaRVKRXegxn9Fsovcvr6LjFY1vLk7ciPiGBTU6Xm+vZ8+CrwnvGktM38RT1qe56UTEs4qqKvKPH6dzhw5u5xI6dODg0aMe81nMZv5w551cP3Zso+OHsrIAiI449fTA9z/7DIvFws8nTPB4/tX33iMqPJxJY8Y0txkichrWyiqKCwqJ7eQ+Gii2Yxw5R7I85jNbzNwy8w5GTLiq0fGchkDgj6cC52XlABAd6wwK1FbXnJe6i3i71nL/XVNcQW1pFWFdnMtOORwO7LU2AGIHJ51ylKKIeA9NGW5lysvLKSpyf/sTHByM+UejOtq3b8+dd97J008/zSuvvMLdd9991p+ZkZEBQM+ePc+6DGmdakud63lZQtyn+FlC/LFbbdRZazH5N712ZHVxBaUHczmwdCMBbcKI7Nmx0fmsjG1YC8voOX0UjvpTB5abm05EPCsqKQEgIjTU7Vx4SAhVViuVVVUEepjW+2MFhYX8sG8fby1cSId27RiQkuIx3eFjx/hu+3YmjBrl8TMzNm5k844dPNbE2oUicubKiksBCAkPczsXHBZCdZUVa5UV/4CmNycoPl7EwV37WP7+ImLat6NHarLrXH52LhY/X5a9t4htmZux1dQSHh3JmOuvIWVQv/PaHhFv0lruv62FZQCYA/04sGwjuRv3YK+24RcZTOerBxLZw/3looh4F929tzJ33XWXx+Nvvvmm29qCt956K59++imvvPIK1157LfHx8U2WXVZW1ijYWFFRQUZGBnPnziUxMZFrrrnm3BsgrcqJt4A/nnZwgqHh4d1uq2vyhsRWVcPGpz5y5rEYSbx2UKPyKvOKOZL+PYkTB+EbGkh1cYXHcpqbTkROrbrGOYLH0wZQJ6YC19hsBDZRRnllpWsnYYvFwq1TpzaaRvxjK9auxWAwMO5y9zWGShqmCk8cPZqEOPdRTCJy9mqqqwEaTfs9wdRwzFZb22RAsKqikmcemNNQjoUJ065vVF7esRxqq2uorrIy5fbpVFutrP9iNR++/Cb1drvWFRQ5S63l/ruu2jmL7PDKzfgYDSROGAQ+PmRlbGfH2+n0vvUqwrvEuuUTEe+hgGAr8/vf/56kpCS3456Omc1mZs+ezfTp05kzZw7z589vsuwTawX+mL+/P6NHj+bhhx9uNAJRLhEnpoG7b0jWfD6QdOMI6u31ZK/fwbbXVtDjxhFE9e6Eo76ePQvWEtIppslpB81NJyJNO7G0g6ddBpvLx8eH/7v1Vurq6li+ejWPzp3LfbfeyqC+fRulq7XZyNi4kf7JyURHuk97evWDDwgNDuZnWjtQ5LxzXb7Psa///I5bsNfV8c3KDF7/x0vccMct9EpzTkccMGIojvp6Bo0e7sqTPLAfLzzyN5Z/8Ckpg/tjMGh1IZEz1kruv+vrnLsO11XXkjbzesz+vgBEJnVg49MLOLTiOwUERbycAoKtTK9evZq1y/AJaWlpTJ48mY8//pglS5bQp8+pN2p46qmniIqKwmazkZGRwTvvvMP48eOZPXs2vr6+56P60soYfZ1B3nqb3e1cfV0dACa/pgPBZn9folMSAIjqHc+m5xaxf0kmUb07kZWxncqcYvr8v6uxVTpHM9RZnSOY7LV12CqrMQX4NjvduTz4iHgDv4bfak9rx9banCMSAvz8miwjKCCAof2c0wEHp6Zy/+OP88aCBW4Bwe179lBTU8OQ1FS3Mr7+7js2fv89D/zmN1hrarDWnFx7zFZXR1lFBQF+fppGLHKWfP2cfd3moa/XNYw+8jtNX/cPDCB5oLP/9krrywuP/I2l7y10BQQHjnTfkdxsMdN3SBqrPv2c/GO5tO2gYIHImWot999Gs9GZv1e8KxgIYPK3EJEUR/7m/dhrbRg9jEQWEe+gO/VLwO9+9zu+/PJLnnjiCV599dVTpuvXrx9xDdO6RowYQXx8PI8++iglJSW8+OKLCsZcgnxDnYsP15Zb3c7Vllkx+pvP6CbAaDYRkdSB7HU7sVVWU7znGA57PVte/Mwt7bGMHziW8QMDfjel2en8woPczovISVHh4YBzuu7/Ki4rI8Df3xU0bA6L2Uy/Xr1Yvno1ZRUVhASd7IObf/gBk8lEqof1Zb/fuROAJ195xe3cuu++Y9133/Gne++lV9euza6LiJwUGuns6+Wl5W7nykvK8Avwx+LX/L5utpjp3qcX36xcQ2V5BYHBp77eBoYEA1Bbo01GRM5Ga7n/toQ4FxAxB7q/PLAE+YMD7DUKCIp4MwUELwERERHMmjWLhx9+mGeffbbZ+WbMmMH69etJT0/njTfe4Je//OUFq6O0DJO/Bd+III+7mVXkFBLcPspjvqqCErb/5wvihicTO7jxdHV7jQ18wMdkJOHqAdRZG49esFVY2f1BBjGpnYlJ7YI5yK/Z6USkaYEBAURHRnIwy32H0YNHj5LYsaOHXHAsL4/HX3yRSWPGcNXw4Y3OVdfU4OPjg/l/RvPtOXiQzh07EuDvvkbZxDFjuCwtze34Y/PmkZKUxLWjRxPfvv2ZNE1EfsQ/wJ+wqAhyDrv39ewjWbTv5HkzgIKcPN585mUuGz+KQaMua3SuproafHwwmU2UFZfwn3+8RPKgfoyc2Hj38eO5+QCER7svFSAip9da7r/Ngb74mAxU5Ze4fVZ1cQUGs9FjsFBEvIcWBrlETJkyhX79+rFq1aozyjdnzhxCQ0N59tlnOXr06AWqnbSkqF7xlOzPpqqgxHWseF821oIy11SE/+UXEUJddS05mbupt5+c7lBdXMHx7YcITWiLyddMcPsowrvENvovJL5NQxnBhHeJxWg2NTudiJzeoD592LZ7N8fy8lzHtu7aRU5+PkP79/eYp21UFFVWK1+sXUtdw3QlcO42/M2WLfTo0gX/H00/rKurIysn55SbhcS1bUtKUpLbfwDhoaGkJCURdJqdjkWkab3692H/jt0U5Jzs6/t+2E1hbj7Jp9gFOCImimqrlY1frcP+o75efLyIH779nk7dE/H18yMkPIxqq5Vv16yn2npyFFNJYTGb1m4gIakrwaEhF65xIpe41nD/bbSYiezRkaJdWVTmFZ8sr6icwp1HiOjRAR+tEyri1fQEfonw8fFh9uzZXH/99Y0e9k4nKiqKWbNm8cgjjzB79uzTbkwiF5+44b3J37yfbfM/p/1lvamvqyMrYztB7SOJ6ZsIgLWonLLD+YTEx+AfEYzBaCBxwmD2fJjB1leWEZOaSF1VDdnf7AKDj3OXMhFpERPHjGFNZiZ/feEFJowaRa3NxuL0dDp37MjwhlF7ecePs/vAAbp37kybqCiMRiO3TpnCvLfe4s/PPcflAwZQXlnJ52vWYPDx4dYpUxp9xvHiYursdtcUZRH56Q0fP4ot6zby+lPzGDZ2JHU2G2uXryK2Uwf6DHYG/4vyj3Nk30E6dkkgIsbZ16+56XoWvPoOr/7tBfoOSaOqsooN6RkYDAYm3PQzV/kTpk/l3bnzeeWx50gbMYTa6hq+Sc/AYDQyYfrPTlUtEWmG1nL/nTAujdKDuWyb/zmxQ3tgMBg5tn4HBrORTld5fokoIt5DAcFLSPfu3bn55pt57bXXzijf1KlTWbRoEWvXrmXRokVcd911F6aC0iIsQf6k/Ho8B5ZkcnjlZowWE5E9OpIwLg2DybnYcNmhPPZ8tJZuUy7DP8K5dlCb1EQMJgNHV2/jwJKNGC0mwhLbEX9lPwKiQ1uySSJeLTQ4mL/cdx9vfPwxHyxdiq/ZzICUFKZNmuTaLX7n/v289Pbb/Hb6dNpEOacmXT5wIGaTiU9WruTNjz/G19eX3t26ceOECcS2adPoMyoqKwE8ThcWkZ9GYEgwtz90L0vfXUj6omVYLBZ6pCYzduq1mBr6+qE9B1j42n+ZfNtNRMQ4+3rfoQMwmU2sWZrOsvcXYfb1JbFHV8Zcfw1RbWNc5ffsl8xN9/yK1Z99wYoPF2O2mOnUvQtXTZlAdLs2HuskIs3TWu6//cKD6HPHNRxa/i1ZGdvBAaGd2pAwLs31mSLivXwcjhP7ooucmxtXPdnSVRCR8+iVyHEtXQUROc8yw5o/i0BEWr9X969s6SqIyHn23sgHWroKP7mVRzZd0PLHdPS81Ia306IBIiIiIiIiIiIiXkQBQRERERERERERES+igKCIiIiIiIiIiIgXUUBQRERERERERETEiyggKCIiIiIiIiIi4kUUEBQREREREREREfEiCgiKiIiIiIiIiIh4EQUERUREREREREREvIgCgiIiIiIiIiIiIl5EAUEREREREREREREvooCgiIiIiIiIiIiIF1FAUERERERERERExIsoICgiIiIiIiIiIuJFFBAUERERERERERHxIqaWroBcOm5PHNPSVRCR86mkpSsgIiIiIiIiF4JGCIqIiIiIiIiIiHgRBQRFRERERERERES8iAKCIiIiIiIiIiIiXkQBQRERERERERERES+igKCIiIiIiIiIiIgXUUBQRERERERERETEiyggKCIiIiIiIiIi4kUUEBQREREREREREfEiCgiKiIiIiIiIiIh4EQUERUREREREREREvIgCgiIiIiIiIiIiIl7E1NIVkJNeeOEF5s6d22SaRYsW8cYbb7Bw4cJGxw0GA/7+/iQmJnLTTTcxefJk17kHH3zQLT2AxWIhKiqKIUOGMHPmTKKios5PQ6TVKS4oZNn7n3Bw9z4Auqf0ZPwNkwgMCW4y395tO/nqsy/IPnQUH4MPHTp3Ysz1V9MhsVOjdJVl5XyxYAm7tmzHZrMRGx/HVVOudaUrPl7EMw/MafKzbnvgLhKSup51G0W8SX5hIW8uXMiOvXsB6NerFzMmTyY0uOk+vWXnTj5evpwDR49iMBjo2qkTN06YQNdOnRqlKy0v573Fi/l22zZq6+pIiItj2qRJbun2HznCu59+yu6DBzEYDPRMTGTG5MnEtmlzPpsr4hVa+lp9puWJSNOqi8o5sGwjpQdyAYhIiiNh/AAsQf5N5ivac4yjX31PxbFC8PEhpEM08Vf2I6RjdKN0m19cTEVWoVv+yN7x9LxppMey9y5ch/V4KSm/Hn+WrRKRS4kCgq3QHXfcQefOnT2ei42Ndf35oYceIjw8HACHw0FFRQWffvopDz74IMXFxdx2222N8v44PUBFRQXr169nwYIFbN++nY8++giLxXIBWiQtqaqikteenIfdXsfwcaNwOOpZu3wVeVnZ3PHITIwmzz8DB3fv481nXyEmti1X/uwa7PZ6Mr9cy/y/v8DtD95LXOd4AGqqq3n17y9QXlLG0CtH4BcYwIb0DF57ch53PDKTNnHtCAwK5Ge3T3P7DJvNxpJ3PiYwJIi2Hdpf0O9B5FJRXlnJX55/HrvdzsQxY6ivr2dxejpHsrN5fNYsTKfo0zv27uVvL71EXNu2/OLaa7Hb7XyekcHsZ5/lL/fdR5eGYJ+1uprZzz1HcWkp14wcSWBAAMvXrOEvzz/P47Nm0bHhOpSdl8dfnn8eX7OZn40bB8CSL7/kT88+y5MPPkhEaOhP8n2IXApaw7X6TMoTkabZqmrYOn85Dns9cZf3xuFwkJWxncrcYvreOQGD0egxX8nBXH544wsCYsLodFU/HHYH2Rt2svXfy+jzm/EEd3AGBR0OB1X5pUT27Ehkr8b90i8s0GPZud/uIXfjHkIT9NJORJwUEGyFhg4dyqBBg06bbsyYMcTFxTU6NmXKFK6++mrmzZvH9OnTGwX4PKWfNm0as2fP5t1332XlypVcffXV56cR0mp8veIrSotLuHvOA8TEtgWgfUI8bzz9Epu+zmTAiKEe8y19dyGh4WH8v4f/Pyy+zn9HqUMH8NzDT7Dy4yX8ctadAKxZms7x3ALnCL/uXQBIHpjKMw/8lYxl6Uz59XQsfr70HTrAw2d8jN1uZ+pvZuAfGHAhmi9yyVny5ZcUlZTw1EMPEdfW2ae7xMfz2Lx5fLVhA2OGDfOY742PPyYyLIzHZs3Ct+HacPnAgcx87DHe++wzHr77bgA++eILcvLz+dM999Czq3PU7pB+/bhn9mw+XbmSu2++2VmPr76ipqaGv9x3HwkN15bkbt34wz/+wZIvv2TGj0aqi0jTWsO1+kzKE5GmHVv7AzWlVfS/dxIBMWEABMdFs/21FeRt2ke7Ad095juwJBPf0ED6/nYCRovzUT2mXyLf/XMhh77YRPJtYwGoKa6gvraOyJ4daZOa2GRdHPX1HP1qK4fTt5y39onIpUFrCF5i/Pz8GDVqFBUVFextmEp2OiemF3///fcXsmrSQrZt2ERC9y6uBwyALr26E9k2hm0bNnvMY62sIvdoNr0H9HU9EAAEhQbTqVsiR/YdApxvJzd/nUm3lB6uBwyA4NAQxt0wifhunke6AuQezWb9ygz6XTaQTt2avpERkZO+3rSJnl27uoKBAClJSbSLiWHdpk0e81RUVXH42DEGp6a6goEAYSEh9OjShd0HDwLOPr06M5PUnj1dwUCA8JAQbp48maTEk301//hxgoOCXMFAgMT4eIICAzmak3Pe2iviDVrDtbq55YnI6RVsPUBYQltXMBAgvEss/tEhFGw96DGPzVpDZU4RUcmdXMFAAEuQP6EJbSk7ku86VplfAoB/VNOj8e22OjbNXczhlVuI6ZuIJVQv4EXkJI0QvAT5+PgAYLfbm5Xe39+5joXD4bhgdZKWYa2sorigkF5pfdzOxXaMY+/2nR7z+fr78X+P/6HRA8EJVRWVGIzOdwklx4soLy5l+PjRgPPfkK2mFoufL4NGXdZk3VZ+vASzxczoyRqVKtJcFVVV5B8/zuC+fd3OJXTowJYdOzzmC/Dz458PP4yvr6/bufKKCowGZ58uKCqiqKSEiaNP9uma2lr8fH25avjwRvnaRkezbfduSsvLXWsXlldWUmW1EhYSci7NFPEqreVa3dzyRKRpNmsN1UUVRPXu5HYuqF0kRXuzPOYz+ZpJ+/+ux2Bxf0S3VVXjYzjZB6vyigEIiHEGBO21NowWs1s+R1099ppakn4xgujkBDKf+vBsmiQilygFBFuh8vJyioqK3I4HBwdjNrv/0P9YfX09mZmZWCwWEhObN+oqIyMDgJ49e555ZaVVKysuBSAkPMztXHBYCNVVVqxVVvwDGi9ubDAYiGoT7ZYn92g2R/YdpGvvJAAK8woACAwOYvn7n/DtmvXUWKuJiIli/I3XkdS3t8d65R7NZvf3PzBs7EhCwrTOmEhzFZWUAHhcny88JIQqq5XKqioCAxqPADAYDLSLiXHLc/jYMfYcPEifHj0AyMl3jj4ICQ7mrYULSV+3Dmt1NW2io7ll8mT6Jye78k4aM4ZN27fz/BtvcHPDSPO3Fy3CaDQy/oorzkdzRbxCa7lWN7c8EWlabWkVAJYQ99F4lhB/7FYbddZaTP6Ng+8+BgP+Ue4v1Cpziyg7nE9415PrbVfll2D0NXFg6UYKth6kvrYOv4gg4q/sR0yfkzN0jH5m0mb+TAF9EfFIAcFW6K677vJ4/M0332y0tmBZWZkrcGi32zl27Bj/+c9/2LVrF7/85S8JDGy8oOyP04NzU5GMjAzmzp1LYmIi11xzzQVojbSkmupqAMwe3hiaGo7ZamvdHjI8qa2uYcGrbwMw/GrnKINqqxWA9IVLMRqNXP2L6zEYfFi7fBXvvDCfW2beQZde7mukZK5ai4/BwKDRw93OicipVdfUAHjcAMrS8MKoxmbD83Li7mXNe+stwBncA6hq6NPvL1mCyWjkl1OmYPDxYXF6Ok/9+9/84c47SUlyBgWiIiKYPHYsr334IQ/87W+AM6Aw81e/ajSNWESa1lqv1acqT0SaZq+1AWA0uz9qGxo2CLLb6twCgqcqa/eHzsEbcSNOvpSrzCvBXlNHXXUt3acOp666lux1O9j9/hoc9Q7XuoI+Pj74GH3OuU0icmlSQLAV+v3vf09Skvtb2P89NtnDgu0Wi4UZM2Zw//33u53zlN7f35/Ro0fz8MMPn3b0oVx8TswCPzGN/GzV1tTy9vOvkns0m8uvGeNag6jOVgdAdZWV+574o2tjkO59e/PP3/+VlQuWuD1k2GptbFn/LUl9exMeFXFO9RLxNieWdjjXPl1TW8uTr7zC4WPHuO6qq1zrBdrqnH26ymrl2UceIahhpGH/3r25d84c3lu82BUQfP+zz/j488/p0aULY4YNo76+nhVr1/Lsa68x81e/ajSaUEROrTVeq5sqT0ROw9Wpz60Ye20dP7yVTmVOMXFXJBOWcHKN0XYDuuFwOIgd3MN1LDolgU3PLeLgso3E9EloNMVYRMQTBQRboV69ejVrl+GnnnqKqKgowDkqIyQkhMTERI9rRP04vc1mIyMjg3feeYfx48cze/bsU+aRi5uvn/P/V1ttrdu5uoa3l35+fk2WYa2y8vazr3Bk30H6DR/EmOtPjiQ1N4xS6tm/T6Ndgv0D/Enq25vN6zZSW12Dxe/kv68Du/Ziq6ml94C+Z90uEW/l1/BbXeuhT9fanH064DR9urKqir+9/DJ7Dhxg5ODB3DhhguvciQ1HBvXp4woGAgQGBNC/d2/WZGZSXVOD3W7n0/R0Ejt25E/33IOh4aFjaL9+/OEf/+Dld99lXlKSXjSJNENrvFY3VZ6INM3o67z21dvc13Ovb3jxZvJr+vpYZ63lhzdXUnY4nzZpXel0Zb9G59sNch88YjSbiElN5Ej691TllxDYVi/eRaRpCghexPr160fcGUzL+nH6ESNGEB8fz6OPPkpJSQkvvvjiOb+ZltYnNDIcgPLScrdz5SVl+AX4N3oA+F+VZeX855l/kXvkGGkjhjLx5qmN/p2EhDvXMQsMDnLLGxgSBA4HNTWNHzL2bN2B0WSiW0oPtzwi0rSocGefLikrcztXXFZGgL+/K2joSWl5OY+/+CKHsrIYM2wYt99wQ6M+HREWBkBIkHufDg0OxuFwYK2poai4mLq6Oob27+8KBgKYTCYuS0vjnU8+4VheHp00dVjktFrbtfp05YlI03xDnX2tttzqdq62zIrR3+xxAxBXmgor2//zBZXZRbQd2I0uk4Y0uw+aA51LC9hr686i5iLibTSO2IvNmDGD0aNH8+WXX/LGG2+0dHXkAvAP8CcsKoKcw+67mWUfyaJ9pw6nzFtTXe16IBhy5Qgm3fJzt5uRNu3bYTSZyM/OdctffLwIk9ns9gByZN9B2nfqgJ//6ddCEpHGAgMCiI6M5GCWe58+ePQoiR07njKvtbraFQy8euRIfn3jjW59ukO7dphMJo7muvfp/MJCzGYzoUFBmBrWQKqvr3dLV98wVUr71os0T2u6VjenPBFpmsnfgm9EEBXZhW7nKnIKCW4fdcq8dTU2VzAwdlhPul431K0P1pRW8u2zCzny5Ra3/Nbjzk2K/MLdXwCIiPwvBQS93Jw5cwgNDeXZZ5/l6NGjLV0duQB69e/D/h27KcjJcx3b98NuCnPzSR7U75T5Fr/1UcMDweVc/Qv39ScBLH6+JKX2Zs/WH8g/luM6XlxQyK7N20lK7d1o9JC9ro6C7FzaxWvUkMjZGtSnD9t27+ZY3sk+vXXXLnLy8xnav/8p883/4AMOZWUx/ooruOX66z2m8fP1JS05mc3bt3M052Sfzi8s5Ntt20hLTsZgMNChXTvCQ0P5asMG11RlcE5bXpOZSXBQEB3atvX0ESLiQWu5VjenPBE5vahe8ZTsz6aqoMR1rHhfNtaCMqJTEk6Zb/+n653BwKE9SLxmoMc0vqGB2Ktrydm4h7rqk0sNVJdUkPfdXkIT22IJdt/hWETkf2nKsJeLiopi1qxZPPLII8yePZv58+e3dJXkPBs+fhRb1m3k9afmMWzsSOpsNtYuX0Vspw70GewMHhTlH+fIvoN07JJAREwU+dm5fL/+W/wC/GnbIY4t6za6ldt36AAAxk6dyKFd+3jtyXkMufJyDEYT61euxmwxc+X/rDlUUliMvc5OaET4hW+4yCVq4pgxrMnM5K8vvMCEUaOotdlYnJ5O544dGZ6WBkDe8ePsPnCA7p070yYqiqzcXDI2biTA359OcXGsycx0K/fygc4Hj+mTJrFj717mPP8846+4ApPRyLLVq7GYzfzi2msB57q1t02dyjPz5/PHf/yDkUOGUF9fz6pvviE7L4+7ZsxwjSIUkdNrDdfqMylPRJoWN7w3+Zv3s23+57S/rDf1dXVkZWwnqH0kMX2dOwBbi8opO5xPSHwM/hHBVOWXkL/5AEZ/M0GxkeRt3u9W7ondgxMnDmbn26v4/uWltE3rhr3WRvb6nfgYDHS5dvBP2lYRuXjpbl2YOnUqixYtYu3atSxatIjrrruupask51FgSDC3P3QvS99dSPqiZVgsFnqkJjN26rWYGhb8P7TnAAtf+y+Tb7uJiJgoDu123oBUV1lZ+Np/PZZ74qEgPCqC3/zxPlZ8tJi1y1fhcDiI79aZsVMnEhHTeEqEtbIKAD//phdHF5FTCw0O5i/33ccbH3/MB0uX4ms2MyAlhWmTJrk28di5fz8vvf02v50+nTZRUezctw9w7h780ttveyz3REAwOjKSR++/n3c++YTF6ek4HA56JCYy7brraBN1sk8P7NOHh+++m4+WLePdxYsBSIiL4/d33EFqz54X8isQueS0hmv1mZQnIk2zBPmT8uvxHFiSyeGVmzFaTET26EjCuDQMJiMAZYfy2PPRWrpNuQz/iGBKDzqn9dutNvZ8tNZjuScCglE94+k5YxRHvtrKwc+/xWA2EpbQjk5j+xEQHfaTtFFELn4+DodDy/zIebHyyKaWroKInEcDS/TOSORSkxmmheZFLiWv7l/Z0lUQkfPsvZEPtHQVfnIXOpYwpuOpl9/wZlpDUERERERERERExIsoICgiIiIiIiIiIuJFFBAUERERERERERHxIgoIioiIiIiIiIiIeBEFBEVERERERERERLyIAoIiIiIiIiIiIiJeRAFBERERERERERERL6KAoIiIiIiIiIiIiBdRQFBERERERERERMSLKCAoIiIiIiIiIiLiRRQQFBERERERERER8SIKCIqIiIiIiIiIiHgRBQRFRERERERERES8iAKCIiIiIiIiIiIiXsTU0hWQS8er+1e2dBVE5DwaGDmupasgIiIiIiKXuIElFzg01fHCFn+x0ghBERERERERERERL6KAoIiIiIiIiIiIiBdRQFBERERERERERMSLKCAoIiIiIiIiIiLiRRQQFBERERERERER8SIKCIqIiIiIiIiIiHgRBQRFRERERERERES8iAKCIiIiIiIiIiIiXkQBQRERERERERERES+igKCIiIiIiIiIiIgXMbV0BeT8eOGFF5g7d26TaRYtWkSPHj0aHXvkkUc4dOgQb7311oWsnrRC1UXlHFi2kdIDuQBEJMWRMH4AliD/JvPVVlg5tGITRbuOUm+rIyg2kk5j0wjpGH1W6UTkzOUXFvLmwoXs2LsXgH69ejFj8mRCg4ObzFdaXs57ixfz7bZt1NbVkRAXx7RJk+jaqVOjdNv37OH9JUs4fOwYAX5+DE5N5cYJE/Dz9W2Ubtf+/by7eDH7jxwhKCCAtJQUfn711YQEBZ3X9op4g+KCQpa9/wkHd+8DoHtKT8bfMInAkKb7dWVZOV8sWMKuLdux2WzExsdx1ZRr6ZDYqVG6f815hmOHjrjl79k/hV/cdZvr78cOHeWLjxZzZN8hfAw+dOqeyPgbriOqbcy5N1LEi7SWe+3NLy6mIqvQ7XMie8fT86aR59hKEbmYKSB4ibnjjjvo3Lmzx3OxsbGN/v7hhx/ywQcfMHDgwJ+iatKK2Kpq2Dp/OQ57PXGX98bhcJCVsZ3K3GL63jkBg9HoMV9djY2t/15ObXkV7Yf1xOTnS/Y3O9k2fzl9fzuBwLbhZ5RORM5ceWUlf3n+eex2OxPHjKG+vp7F6ekcyc7m8VmzMJk8X9qt1dXMfu45iktLuWbkSAIDAli+Zg1/ef55Hp81i44N14jte/bw6Ny5dO7QgWkTJ1JYUsLSr75i/5EjzLnvPnx8fAD4Ye9eHp83jwB/fyZfdRUGg4Glq1bxw549/HXmTIICAn6y70TkYldVUclrT87Dbq9j+LhROBz1rF2+irysbO54ZCbGU/TrmupqXv37C5SXlDH0yhH4BQawIT2D156cxx2PzKRNXDsAHA4H+Tm5JKUm06t/SqMywqIiXH8+npvP/L+/gMVi4YprrwJg3Yqv+Pfjz3HXnAcICQu9QN+AyKWltdxrOxwOqvJLiezZkche8Y0+yy8s8MJ+CSLS6ikgeIkZOnQogwYNajKN3W7npZdeOu2IQrl0HVv7AzWlVfS/dxIBMWEABMdFs/21FeRt2ke7Ad095stavQ3r8VKSbx9HWEJbAKJTOrHxHwvIythG96mXn1E6ETlzS778kqKSEp566CHi2jr7V5f4eB6bN4+vNmxgzLBhHvN98sUX5OTn86d77qFn164ADOnXj3tmz+bTlSu5++abAXh70SIiw8OZfd99WMxmAKLCw5n/wQds2bmT1J49AXj9ww/xMRj468yZtI12jkYY2KcPDzzxBAs//5wZkydf0O9B5FLy9YqvKC0u4e45DxAT6+zX7RPieePpl9j0dSYDRgz1mG/N0nSO5xZw2wN3kdC9CwDJA1N55oG/krEsnSm/ng5AyfEibDW19EhNpu/QAaesx7oVX2GrqeXXD91Lu45xAHTu2Y2X//oM6z7/inE3TDqfzRa5ZLWWe+2a4grqa+uI7NmRNqmJF7jVInKx0RqCXqampobJkyfzwgsvMGnSJNq0adPSVZIWULD1AGEJbV03KADhXWLxjw6hYOtBj3kcDgd5m/cR0T3OdeMBYAkOIGH8AEI6tTmjdCJydr7etImeXbu6goEAKUlJtIuJYd2mTR7zOBwOVmdmktqzpysYCBAeEsLNkyeTlOh8SKi12QgJCmL00KGuYCBAjy7OQMPhY8cAKCgs5GhODiMGDnQFAwHat2lDv+RkVmdmnr8Gi3iBbRs2kdC9iysYCNClV3ci28awbcNmj3kcDgebv86kW0oPVzAQIDg0hHE3TCK+28kZI/nZzimL0e2anvZbVFBIQFCgKxgIEJfQEf/AAPKO5ZxV20S8UWu5167MLwHAP0qje0XEnQKCXqampoaKigr++c9/8ve///2UU8vk0mWz1lBdVEFQ+0i3c0HtIqnIdl9jBJxvGGtLqwjr4pxW6HA4sNfaAIgdnOR609ncdCJy5iqqqsg/fpzOHTq4nUvo0IGDR496zFdQVERRSQkpSUmAs19W19QAcNXw4a5RhRazmT/ceSfXjx3bKP+hrCwAoiOcUwuLSksB6NCundtntY2KoryigsLi4rNpoojXsVZWUVxQSGynOLdzsR3jyDmS5TFfyfEiyotL6dLrZL+urXb260GjLms0qjAvyxnMi451BgpOpPtfkW2iqaqsorKs3HWsqqKSams1waEhZ9E6Ee/Tmu61q/Kc1+KAGGdA8EQ6ERHQlOFLTnl5OUVFRW7Hg4ODMZvNBAUFsWLFCgUCvVhtaRUAlhD39b0sIf7YrTbqrLWY/C2NzlkLywAwB/pxYNlGcjfuwV5twy8ymM5XDySyR4czSiciZ66opASAiFD3N/3hISFUWa1UVlUR+D/r9+Xk5wMQEhzMWwsXkr5uHdbqatpER3PL5Mn0T072+HkFhYX8sG8fby1cSId27RiQ4lx7zGJx/j5Ya9yDCuUVFQCUlJURGa71QkVOp6zYGWAPCQ9zOxccFkJ1lRVrlRX/gMYbERTmFQAQGBzE8vc/4ds166mxVhMRE8X4G68jqW9vV9r87Fwsfr4se28R2zI3Y6upJTw6kjHXX0PKoH6udMPHj2b3lh/44OW3GH/jdQAs/+ATjEYjQ67Uch8izdGa7rWr8ksw+po4sHQjBVsPUl9bh19EEPFX9iOmj+d150XEeygqdIm56667PB5/8803GTRoEAaDAYNBA0O92Yk3g0aze/c3NASK7bY6t5uUuupaAA6v3IyP0UDihEHg40NWxnZ2vJ1O71uvIrxLbLPTiciZOzGq70RA7sdOTPGtsdn432XCq6xWAN5fsgST0cgvp0zB4OPD4vR0nvr3v/nDnXe6Rg+eUF5Zyd2zZ7s+79apU12f0aFtW/z9/Mj8/nuuu/JK10YjtTYbW3ftcv1ZRE6vproaALPF7HbO1HDMVlvrFhCsbujX6QuXYjQaufoX12Mw+LB2+SreeWE+t8y8gy69nCOF8o7lUFtdQ3WVlSm3T6faamX9F6v58OU3qbfbXesKhkWGM2LClXz2zkfM+/OTAPgYDNx4562NphGLyKm1pnvtyrwS7DV11FXX0n3qcOqqa8let4Pd76/BUe/QuoIiXk4BwUvM73//e5L+56EO8HhMvJTD4fxfnzPLVl9XDzhvVtJmXo/Z3xeAyKQObHx6AYdWfEd4l9hmpxORM+do6L8nAnDNZaurA5yBwWcfecS1A3D/3r25d84c3lu82C0g6OPjw//deit1dXUsX72aR+fO5b5bb2VQ376YTCYmjBrFh0uX8vwbb3DdlVdS73DwwWefUV3rfFAxnmIHRRFpzHVZPsN+XWdz9uvqKiv3PfFH/AOd/bp739788/d/ZeWCJa6A4IARQ3HU1zNo9HBX/uSB/Xjhkb+x/INPSRncH4PBwMqPl7L6sxV06p5IWkOezFVf88G//sONd97aaNShiJxCK7rXbjegGw6Hg9jBPVyfE52SwKbnFnFw2UZi+iTgo8EiIl5LAcFLTK9evU67y7B4N6Ovc7RBvc3udq6+IWhg8nMfpWA0Ox/uo3rFu248AEz+FiKS4sjfvB97ra356TyMhBCRpvn5OvtUbUPQ7cdOjMgL8PNzO+fbMKJwUJ8+rmAgQGBAAP1792ZNZibVNTWu8gGCAgIY2s85lXBwair3P/44byxYwKC+fQH42bhxVFqtLPvqK9Z99x3gDDBOHDOGdz/9tNHniMip+fo5+53NQ7+uaxhp5OehX5sb+nXP/n1cwUAA/wB/kvr2ZvO6jdRW12Dx82XgSPfdx80WM32HpLHq08/JP5ZLaGQ4a5d/SftOHbn1d3e5ZpQkD0zlX399hkX/eZ9ZT3XHZNb1W6Qpreleu90g90EhRrOJmNREjqR/T1V+CYFtI86htSJyMVNAUMTL+IYGAVBbbnU7V1tmxehv9hiss4Q4JyGaA90fSixB/uAAe42t2ekUEBQ5c1ENa/KVlJW5nSsuKyPA379RUO+EiLAwAEKCgtzOhQYH43A4sP5PQPDHLGYz/Xr1Yvnq1ZRVVBASFISPjw+3XH89k8aMIbeggMiwMKIjI3lv8WIMBgNREXrAEGmO0Ehnvy4vLXc7V15Shl+APxY/974ZEu5cSzQw2L1fB4YEgcNBTU2Nx7wn0wUDUFtTQ2FeAfa6OpIHpTZaXsZoMpEyOI0VH35KQU4+7Tq2P7MGiniZi+Fe2xzoXILAXlvXjBaJyKVK44NFvIzJ34JvRJDHHc4qcgoJbh/lMV9g2zB8TAaq8kvczlUXV2AwGzEH+jU7nYicucCAAKIjIzmY5b7r6MGjR0ns2NFjvg7t2mEymTiam+t2Lr+wELPZTGhQEMfy8rjrz39mRUaGW7rqmhp8fHwwN6x/9PV33/HD3r2EhYSQlJhIdKRzN8Ud+/bRuUMH13qDItI0/wB/wqIiyDns3q+zj2TRvpPnzbjatG+H0WQiP9u9XxcfL8JkNhMYHERZcQnP//EJVn36uVu647nODYfCoyNdG87V1zvc0jnq60/8qbnNEvFareVeu6a0km+fXciRL7e4pbMed25m5Bfu/kJBRLyHAoIiXiiqVzwl+7OpKihxHSvel421oIzolASPeYwWM5E9OlK0K4vKvGLX8eqicgp3HiGiRwd8DIZmpxORszOoTx+27d7Nsbw817Gtu3aRk5/P0P79Pebx8/UlLTmZzdu3czQnx3U8v7CQb7dtIy05GYPBQNuoKKqsVr5Yu5a6upOjBgoKC/lmyxZ6dOmCf8PUxSVffslrH36I3X5yStR327ez+8ABrhp+cp0yETm9Xv37sH/HbgpyTvbrfT/spjA3n+Qf7QL8YxY/X5JSe7Nn6w/kHzvZr4sLCtm1eTtJqb0xGAyEhIdRbbXy7Zr1ro1IAEoKi9m0dgMJSV0JDg0hpn1bgsNC2Lx2A7bak5sC2WptbFm3kYCgQGJi216A1otcelrDvbZvaCD26lpyNu5xbUQCUF1SQd53ewlNbIslWMt7iHgzTRkW8UJxw3uTv3k/2+Z/TvvLelNfV0dWxnaC2kcS09e525i1qJyyw/mExMfgH+GcUpQwLo3Sg7lsm/85sUN7YDAYObZ+BwazkU5XnQxENDediJy5iWPGsCYzk7++8AITRo2i1mZjcXo6nTt2ZHhaGgB5x4+z+8ABunfuTJso50iE6ZMmsWPvXuY8/zzjr7gCk9HIstWrsZjN/OLaawHnRiC3TpnCvLfe4s/PPcflAwZQXlnJ52vWYPDx4dYpU1z1mHTllTwzfz5/f/llBvbpQ0FREZ99+SV9evRg+IABP/0XI3IRGz5+FFvWbeT1p+YxbOxI6mw21i5fRWynDvQZ7LxuFuUf58i+g3TskkBEjLNfj506kUO79vHak/MYcuXlGIwm1q9cjdli5srrr3GVP2H6VN6dO59XHnuOtBFDqK2u4Zv0DAxGIxOm/wwAg8HAhGlTePfF13n50X/Sb/ggHPX1fJexgYLcfKbcPg2jSY8OIs3RWu61EycOZufbq/j+5aW0TeuGvdZG9vqd+BgMdLl28E/7pYhIq+PjOLFloVzUXnjhBebOncubb755RpuKjBo1ivbt2/PWW2+dcx1uXPXkOZchP52qglIOLMmk9FAeRouJ8G7tSRiX5lx7BMjbtI89H62l25TLaNOviyuftaicQ8u/pXh/NjggtFMbEsalERAT1qj85qaT1uuVyHEtXQU5hey8PN74+GN27t+Pr9lMaq9eTJs0idBg5wPFVxs28NLbb/Pb6dO54kfXhLzjx3nnk0/Ytns3DoeDHomJTLvuOuLaNh71s37TJj5ZuZKj2dn4+vrSu1s3bpwwgdg2bRql+/q77/jkiy/IKSggNDiY4WlpXHfVVa5NTKT1yQzTelGt1fHcfJa+u5BDe/ZjsVjoltKTsVOvda3zt2ltJgtf+y+Tb7uJfpcNdOUryj/Oio8Ws3/HHhwOB/HdOjN26kS30Xw7N29j9WdfkHs0G7PFTKfuXbhqygSi2zXu1wd27mXVp8s5dvAoAO3i4xgx4Uq6JfdAWp9X969s6SrIKbSWe+3CnUc48tVWKnOKMJiNhCW0o9PYfgREN04nrcd7Ix9o6Sr85Mq2br2g5YekpFzQ8i9WCgjKeaOAoMilRQFBkUuPAoIilxYFBEUuPQoInn8KCHqmhbxERERERERERES8iAKCIiIiIiIiIiIiXkQBQRERERERERERES+igKCIiIiIiIiIiIgXUUBQRERERERERETEiyggKCIiIiIiIiIi4kUUEBQREREREREREfEiCgiKiIiIiIiIiIh4EQUERUREREREREREvIgCgiIiIiIiIiIiIl5EAUEREREREREREREvooCgiIiIiIiIiIiIF1FAUERERERERERExIsoICgiIiIiIiIiIuJFTC1dAbl03J44pqWrICLnU0lLV0BEREREREQuBI0QFBERERERERER8SIKCIqIiIiIiIiIiHgRBQRFRERERERERES8iAKCIiIiIiIiIiIiXkQBQRERERERERERES+igKCIiIiIiIiIiIgXUUBQRERERERERETEiyggKCIiIiIiIiIi4kUUEBQREREREREREfEiCgiKiIiIiIiIiIh4EQUERUREREREREREvIippSvQ0r755htuueUWwsLCyMjIwGKxtHSVRM674oJClr3/CQd37wOge0pPxt8wicCQ4CbzVZaV88WCJezash2bzUZsfBxXTbmWDomdGqU7vOcAX3z8GccOHsU/0J8eqcmMum48gcFBZ5VORJqWX1jImwsXsmPvXgD69erFjMmTCQ1uuk+Xlpfz3uLFfLttG7V1dSTExTFt0iS6durUKN3+I0d499NP2X3wIAaDgZ6JicyYPJnYNm0apfvDU0+x/8gRt88Z2Lcv9//qV+fWSBEvo2u1yKWluqicA8s2UnogF4CIpDgSxg/AEuTvOX1xBRuf+qjJMpNvH0tY53YA1FZYObj8W4r3HKPeVkdo53Z0vmYg/hGNfzPstTYOp2+hYOtB6qw1BMSEET86lYjuceehlSJyMfNxOByOlq5ES/rjH//I0qVLqaqq4rnnnmPcuHEtXaWL1sojm1q6CuJBVUUlL/3laez2OgaPvhyHo561y1cRFhnOHY/MxGjy/F6gprqaf/31GcpLyhh65Qj8AgPYkJ5BWXEpdzwykzZxzpuRg7v28sYz/8LP35/BYy7Hx+DD+hWr8Q8K4Dd/uA//wIAzSietx8ASr39n1CqVV1by4JNPYrfbGTdiBPX19SxOTyc6IoLHZ83CdIo+ba2u5g//+AfFpaVcM3IkgQEBLF+zhqKSEh6fNYuOsbEAZOfl8eBTT+FrNnPNqFEALPnySxzAkw8+SERoKAAOh4Nbfvc7krt3Z1CfPo0+Kzoigh5duly4L0HOWmZYXUtXQTzQtVrO1qv7V7Z0FcQDW1UNm+d9isNeT+yQHjgcDrIytuMXFkTfOydgMBrd8thrbRz/wf0lW31dHfsXb8Ac6Ee/eydh9velvs7O9y8vxXq8lPaX9cLoa+HY2u3g40O/eyZhDvAFwFFfz7b5n1N2pIDYoT3wCwsib9M+KrIL6X3rVYR3ib3g34WcufdGPtDSVfjJlW3dekHLD0lJuaDlX6y8+mmvtraWFStWMGnSJD777DMWLlyogKBccr5e8RWlxSXcPecBYmLbAtA+IZ43nn6JTV9nMmDEUI/51ixN53huAbc9cBcJ3Z0P9skDU3nmgb+SsSydKb+eDsBn73yMj4+BX//h/4hsEw1Az34pzPvzk6z+7AvG3TDpjNKJSNOWfPklRSUlPPXQQ8S1dfbpLvHxPDZvHl9t2MCYYcM85vvkiy/Iyc/nT/fcQ8+uXQEY0q8f98yezacrV3L3zTc7y//qK2pqavjLffeREOccPZDcrRt/+Mc/WPLll8yYPBmAgqIiampqGJCSwuUDB17oZotc0nStFrm0HFv7AzWlVfS/dxIBMWEABMdFs/21FeRt2ke7Ad3d8hgtZtqkJrod3//ZBhz2epJ+fjlmf2egL2/zPiqOFdL7tpNBvYju7dn0/CccW/sDna7q50z33T5KD+bRbepwV9lt0rry7dMLOPLl9woIing5r15DcPXq1ZSVlTFo0CAuu+wy1q5dS0FBQUtXS+S82rZhEwndu7geMAC69OpOZNsYtm3Y7DGPw+Fg89eZdEvp4XrAAAgODWHcDZOI79YZgOLjReQfy6Hv0AGuBweA6HZt6N6nF5u/zjyjdCJyel9v2kTPrl1dwUCAlKQk2sXEsG6T55HaDoeD1ZmZpPbs6QoGAoSHhHDz5MkkJZ58AMk/fpzgoCBXMBAgMT6eoMBAjubkuI6d+HP7/5lGLCJnTtdqkUtLwdYDhCW0dQUDAcK7xOIfHULB1oPNLqcyt4js9Ttp078roQknfx8Kth7ELzK4UUAvIDqMsMR2FGw94DqWt2kfAW3DGwUajWYTCeMHEJnU4SxbJyKXCq8OCC5evBgfHx8GDBjAlVdeSV1dHZ988olbuu+//55f//rXpKWlMWjQIH7zm9+we/fuM0ozatQoZsyY4Vb2/x4fNWoUDz/8MH/4wx9ISUnh8ssvp6ioCIfDwbvvvsuUKVNITU0lOTmZcePG8corr/C/s76bqsvTTz9N9+7d2bdvX6M89fX1DB8+nHvvvffMv0hptayVVRQXFBLbyX2NkNiOceQcyfKY7/9v776jq6rSPo5/03svBFIgBAgthBCKdIQgohSx4Yioo76KvcyMI446Ko4FO4gd7CJK7yi9CEQECaD0ElJI7/WWvH8kXIk3YEKClPv7rJW1zNn72XfvKyfn3Ofus3d+di5FeQW06dQeqP7QUVleAUCvwf0sMxUK8woAaBYWYtWGf3AgpcUlFOTm1bueiJxZcWkpmdnZtA63vomPDA/nyPHjdcZl5eaSm59Pl/a/n9PlFdXn9BX9+9eaVRgSFERxSQkFRUWWY0UlJZSWleHr7W059seE4Mn2RKRhdK0WubQYyioozy3GMzTAqsyzeQDFaTn1buvoD9uxd3KkZUJcrePFaTl4trBu36NFAOW5xRjKKjCbTBSlZOEb1dxSbqo0ABAc25qwAZ3r3Q8RuTTZ7CPDxcXFrF27lq5duxIYGMjAgQNxdnZm/vz53HXXXZZ627Zt4/bbbyc4OJi77roLV1dXPv/8c2699VbmzJlDWFhYveo0xJIlS2jdujVPPvkk2dnZ+Pv78+abb/L+++8zZswYbrzxRkpKSpg/fz6vv/46Hh4ejBs3rl79HTFiBB9++CHLli3jwQcftLxmYmIimZmZjBw5smneYLkgnLy59/bztSrz8vWmvLSMstIy3NxrL26ck1E9U9bDy5Plsxawbf1mKsrK8Q8OZPhN19C+a/UNhLOLEwAV5daJgNLiEgCKCorqXc/H3+9shiliM3Lz8wEs6/idys/bm9KyMkpKS/Fwr73OV3pmJgDeXl58MW8eq378kbLycpoFBXHbmDHEx8RY6o5OSGD77t1M+ewzbq15PPjL+fNxcHBg+KBBlnop6enV15i5c/lxxw4qKioIDgzkphEj6Bsf38QjF7l06VotcmmpLCgFwNnbes1NZ283TGUGjGWVOLqdeTPLkhO55P6WQmj/Tric0pap0oCpzFB3+zUbllTkl2Dv6ECVqQoXHw+Or00i9cdfMRSX4+ztRsuEOEK6t2vMMEXkEmCzMwRXrFhBRUUFV1xxBQCenp706dOHAwcOkHTKgpavvPIKvr6+zJkzhwkTJnD77bczffp0CgsL+frrr+tdpyHKy8t59913uemmm3jggQcwGAx8+eWXXH311bz88svceOON/P3vwyOuFwAAZYFJREFUf+err77C2dmZDRs21Lu/0dHRtGvXjuXLl9d6zaVLl+Ll5cXAgQPP5u2UC1RFeTkATs5OVmWONccMlZVWZeVlZQCsmreU/Um/ctXfruW6u8bh5OzMV1Onc3BP9YzT4BYhuLi58uvPSbVmqhoqDZY6RoOh3vVE5MxOzsJzdrb+EOHsVPNhvo5zqbTmnJ61ZAk7fv2V26+/nvvHj8fFyYlXP/qIpL17LXUD/f0ZM2wYvx08yOMvv8zjL7/M7v37efj222s9Rnw8PZ3y8nJKyst5YPx4Jowbh5uLC1M+/ZT1iXq0UKS+dK0WubScnIXn4GQ998a+ZoMgk+HPN3hK27oP7O1ocVmHWseN5adv/+Qxc6UBU3n13430rXtJ27qXiMFdiR47ALcAbw7M/ZET2/Y3YFQicimy2RmCixcvBmDo0KGWY0OHDmXt2rXMnTuXLl26kJOTQ1JSEnfccQd+fr9/GxoZGcmcOXNo3rx5veo0VEREBM1OWZPJycmJH3/8EcMfbsLy8vLw9PSktLT6W6j69mXkyJG8/vrr7N+/n3bt2mE0GlmxYgVDhw6t80OmXLxO3s/b2dk1KM5Yc5NSXlrGIy/9x7KrYHTXzrz570msnLOENp2icXB0pM8Vg1izYDnfffAFA65OoKrKzMp5S6msqL4Jsbe3r3c9ETmzkx/SG3pOG4zV53RpWRlvPf00njUzCOM7d+ah55/nm0WLLI8Tz1q8mLkrVtChTRsS+vbFbDbz/caNvDVjBo/deadlNuHJsmEDBlhep298PP948UW+nD+fft2767wWqQddq0UuMZaT+uybMBmMZO44RECHcFz9POuudKb27ewwG01A9WzB+EeuwS2getmPwM6t2D5lPke/306z+LYN/tsjIpcOm0wIZmZmsmXLFlq1aoWdnR0pKdVrs7Rv3x47OzuWLl3Kk08+SWpqKgAtW7a0aqNjx44AltmEZ6rTUAEB1utBODk5sXbtWlatWsWRI0c4duwYBQXVj5ic/IBYn/4CjBgxgjfeeIPly5fTrl07Nm3aRH5+vh4XvgS5uFbvRFbXzAJjzbeXrq6uVmVONYnhjvGxlg8YAG7ubrTv2pkdP/5EZXkFzq4uXD5qGOWlZWxeuZ5didUbGkTHdqL/lYP5Yc5i3D09AOpdT0ROz9Wl+pyurOOcrqz50si9jnPapeac7hUba0kGAni4uxPfuTPrExMpr6jAZDKxcNUqoiIieObBBy0f/vt068aTr73GBzNnMq19e5ycnBjar5/V6zg7OTGgRw9mL1vG8fR0WoaGNn7QIpc4XatFLi0ONY/fmw0mqzJzzRd0jq7WM4JPVXD4BOZKI4GdW1m371wzC9Bo3f7JmYcOLk5UGc0A+LQOsSQDAewd7Anq0prkVb9QmpmPRzMtAyBiq2wyIbh06VLMZjNHjx5lyJAhVuUFBQWsXLmSFi2qd20607cmZrP5T+uciclk/YfcwcGh1u9VVVXcd999rFmzhvj4eOLi4hg7diw9evTgtttua3BfWrRoQbdu3Vi2bBkPPfQQy5YtIygoiF69ep3VGOTC5RNQfYEvKiiyKivKL8TV3Q3nmg8ip/L2q16fzMPL+htJD29PqKqioqL6Q4adnR1X/W0MA65KICcjC29/X/wC/flh7hLs7O0taw3Vt56InF5gzezv/MJCq7K8wkLc3dwsScNT+fv6AuDtaX1O+3h5UVVVRVlFBbl5eRiNRvrEx9eaCeTo6Ei/7t35asECUjMyaHWGtXF9vLwAqKgjuSEi1nStFrm0uPhUn5OVRWVWZZWFZTi4OeFQxxIBp8rdl4Kdoz3+0dbXW0dXZxzcnKgsLLVuv+Y1nb3dqTJVfzZ09qzjCwWP6mOmij9/dFlELl02mRA8ubvwyy+/jOcfPhzt3buXqVOnMm/ePF544QUAkpOTrdp49dVX8fHxYfTo0X9a5+6778be3t5qRofRaCQvL4+IiIgz9nfbtm2sWbOG++67j4cffrhWfH5+PuE1u02efCT4z/oC1bMEn3vuOQ4fPsyaNWsYOXKkVSJSLn5u7m74BvqTfsx6h8K05BRCW1nvVArQLLQ5Do6OZKadsCrLy87F0cnJ8gEkaet2vHy8iGzfFk8fL0u9o/sO0aJlmGVNpPrWE5HT83B3JygggCMp1uf0kePHiTrN9SS8eXMcHR05fsL6nM7MycHJyQkfT08Ka3YWPvkF06nMNbPRq6je3OSFadPo060b1w8fXqteakYGAEF1zHYXEWu6VotcWhzdnHHx96xzN+Hi9By8QgP/tI3C5Ey8QgNxdK17OSfPFgEUp+VaHS9Jz8E1wAsnt+ovEZx93CnJyLeqV55Xfb138dWsXxFbZnMLgRw5coTdu3fTs2dPrrnmGhISEmr93HPPPQQFBbFp0yag+jHiJUuWUFxcbGnj+PHjfP7552RnZ9OsWbM/rQMQGBjIkSNHKK9ZOBpg9erVVFRY7+T2R/k1u0q2adOm1vFvv/2WsrIyjDVTz+vbF4Dhw4fj5OTE1KlTyc/PZ8SIEfV9C+Ui0yk+lkO/7iMrPcNy7OCefeScyCSmV7c6Y5xdXWgf15n9SXvITE23HM/LymHvjt20j+tsmT3044q1LPpyTq3Zrvt27iH5wGF6Df79kcL61hORM+sVG8uuffssiTeApL17Sc/MpM9pdvd1dXGhe0wMO3bv5nj67+d0Zk4O23btontMDPb29oQ3b46fjw9rt261PIIM1Y8jr09MxMvTk/CQEPx9fSktK2P1jz9aNiwByM7NZe3WrXRq1w4/b29EpH50rRa5tAR2akn+oTRKs/Itx/IOplGWVUhQl8gzxppNJkoz8vFo4X/G9suyCsg7mGY5VpqVT/6h9FrtB3WJpCQtl7wDqZZjxrJKMnccwis8sNbuxSJie2xuhuDJzUSuv/76OsudnJy47rrreP/991mwYAETJ07krrvu4rrrruOGG27A3t6eL7/8Em9vb/7v//4PoF51RowYwaRJk7jrrrsYNWoUx44d49tvvyW0HusrxcXF4enpyUsvvURqaio+Pj5s3bqVpUuX4uLiQklJiaVuffoC4OfnR9++fVm6dCnh4eF07dr1bN9SucD1Hz6YX378iU9enUbfYZdjNBjYuHwNLVqFE3tZdfIgNzOb5INHiGgTiX9w9beWw24YxdG9B5kxeRq9hw7A3sGRzSvX4eTsxNBrr/69/auG8M27n/Dl2x/RsVsX8nNy2bRiLW06tye2d/cG1xORMxuVkMD6xEQmTZ3KiMGDqTQYWLRqFa0jIujfvfpcysjOZt/hw0S3bk2zwOpz+pbRo/n1wAGenzKF4YMG4ejgwLJ163B2cuJvNWvI2tvbc8cNN/DG9On857XXuLx3b8xmM2u2bCEtI4P7x4/HsWaHxDtvvJHXPvqIp998kyF9+lBWXs6K9etxqGlDROpP12qRS0tY/85k7jjErukrCO3XGbPRSMqG3XiGBhDcNQqAstwiCo9l4t0yGDf/32fkVuSXUGUy4+pzms1EgJDu7UjbvJffZq4hrH9nHJwcSdmwG2dvd0L7drLUixgUS85vyfz61RpC+3TEycOV9J/2YSyvpPXVPc/dGyAiFwW7qpM7UtiIYcOGkZOTw8aNG+tcoBmqN+dISEigVatWLFu2jJ9//pkpU6aQlJSEi4sLPXr04F//+letR33/rI7ZbObdd99l9uzZ5OTk0L59e/75z38yY8YMSktL+eKLLwAYPHgwoaGhlt9Pbf+1115j7969ODs7ExkZya233kpSUhKff/4569evJ7DmQ199+gvVydF//OMfTJgwgUcffbTR7+3K5O2NbkPOjewTmSydOY+j+w/h7OxMuy4dGXbDSDy8q28+tm9MZN6Mrxlzx8106/f7zUFuZjbfz17EoV/3U1VVRct2rRl2wyiCW4TUaj9p63Y2LF1JTkY2Ht6exF7WnQFXJ+Ds4nxW9eTC0DPf5r4zumikZWTw2dy5/HboEC5OTsR16sS40aMt6/et3bqV9778kntvuYVBp6wPm5GdzVcLFrBr3z6qqqroEBXFuGuuISyk9jm9e/9+Zi9bxqGaJSgiw8IYM2wYcX/YLGtbUhLzvv+eo6mpODs50bFtW24eNYrQZs3O8TsgZyvRV+tFXah0rZaz8fGhlee7C3IapVkFHF6SSMHRDBycHfFrF0rkld1x9nQDIGP7QfbP3ki76/vRrNvvT4IVHc/il/eW0Oaa3jTvGX3a9isKSzmy9Cdy96dgZ2eHT+sQWg/vgespyUWAyuIyjn6/nZzfkjEbTHiFBtDqim54t9S1+kL1zeWPn+8u/OUKazZrPVe8u3Q5p+1frGwuISi/W7p0KY8++ihLly4lKiqq0e0pIShyaVFCUOTSo4SgyKVFCUGRS48Sgk1PCcG62dwaglKtqqqKb775htjY2CZJBoqIiIiIiIiIyMVB0z9sjNFo5LHHHiM9PZ2kpCSmTp16vrskIiIiIiIiIiJ/ISUEbYyjoyPHjh0jJSWFBx54gCuuuOJ8d0lERERERERERP5CSgjaoAULFpzvLoiIiIiIiIiIyHmiNQRFRERERERERERsiBKCIiIiIiIiIiIiNkQJQRERERERERERERuihKCIiIiIiIiIiIgNUUJQRERERERERETEhighKCIiIiIiIiIiYkOUEBQREREREREREbEhSgiKiIiIiIiIiIjYECUERUREREREREREbIjj+e6AiIiIiIiIiIjIuTBkyJAzlq9ateov6smFRQlBaTI98/XPSeRScnfO8vPdBRFpYnf5JpzvLohIE/ow4Mrz3QUREblIKYMjIiIiIiIiIiKXJFudAfhntIagiIiIiIiIiIiIDVFCUERERERERERExIYoISgiIiIiIiIiImJDlBAUERERERERERGxIUoIioiIiIiIiIiI2BAlBEVERERERERERGyIEoIiIiIiIiIiIiI2RAlBERERERERERERG6KEoIiIiIiIiIiIiA1RQlBERERERERERMSGOJ7vDkjDVVZW8umnn7J48WKSk5Oxt7enVatWXHnlldx22224uLhY6hYXF1NZWYm/v/8Z23ziiSeYN28e+/btO9fdl/MgMyeHz+fN49cDBwDo1qkT48eMwcfLq1FxWTk5PPDss2ds45mHHqJT27YAHElJ4av58zmUnIyDgwPdOnXi5lGj8PX2buQIRWxLeW4Rh5f9RMHhEwD4tw8jcngPnD3dmiQud38qx9fupDg1B+zs8A4PouXQbnhHBJ1VPRE5O3lZOSybtYAj+w4CEN2lI8PHjsbD+8zX77OJO3E8jfcnvc6AqxIYfM3wphuEiI26UO6/TzV3xQpW/fgj05577ixGJCKXGiUELzJGo5E777yTX375hWuuuYaxY8diMpnYtm0bb7zxBqtXr+bzzz/H2dmZ3bt3c++99/Laa6/Rq1ev8911OU+KSkp4bsoUTCYToxISMJvNLFq1iuS0NF785z9xdKz7z0B94rw8Pbl//Hir2EqDgU9mz8bH05OWoaEApJw4wTNvvom/jw83XHUVpWVlLFmzhn2HD/PKv/+N6ymJbBE5PUNpBUnTl1NlMhM2oDNVVVWkbNhNyYk8ut43AnsHh0bF5R85wZ7PfsA92JdWV3SjylRF2tbfSPpoGbF3D8crPKhB9UTk7JQWlzBj8jRMJiP9rxxMVZWZjcvXkJGSxoSnH8PhNNfvs4kzmUzMmf4VJqPpXA9LxCZcKPffp/rlt9+Ys2wZvj4+TT5eEbk4KSF4kVm2bBmJiYlMnTqVK664wnL81ltv5eOPP+bVV19l9uzZ3Hzzzezfv5/MzMzz2Fu5ECxZvZrc/HxenTiRsJAQANq0bMn/pk1j7datJPTte9Zxri4uDOjZ0yr20zlzMJlMPHjbbXi6uwMwa8kSHOztefaRR/CrmRHYOiKCV95/n/WJiVzRv/+5GL7IJSd14x4qCkqJf2g07sG+AHiFBbF7xvdkbD9I8x7RjYo7vCQRFx8Put47Agfn6tuE4G5R/PzmPI7+sJ2YO4Y1qJ6InJ1N36+lIC+fB55/nOAW1dfh0MiWfPb6e2zflEiPgX2aLG79kpVkpZ04d4MRsTEXyv33SSs3beKT777DaFLSX0R+pzUELzI7duwAoG8dF5Gbb74ZJycnfvnll7+4V3Ih27R9Ox3btrXcVAB0ad+e5sHB/Lh9e5PHHUtNZfm6dQzq1YsObdpYjjs6ONC/Rw9LMhCgY035sbS0sxqbiC3KSjqMb2SIJakH4NemBW5B3mQlHWlUnKGsgpL0XAJjWlmSfADOnm74RIZQmJzZoHoicvZ2bd1OZHQbS1IPoE2naAJCgtm1dUeTxZ04nsa6xd8zaKSS+CJN5UK5/wZ44Z13+Oibb+jUrh2R4eGNGJWIXGqUELzIeHh4ADBr1iyrMnd3d7Zv387kyZOZOnUqEydOBKpnDw4ePNhSb/fu3dxxxx3ExcXRv39/PvjgA6qqqv6aAchfqri0lMzsbFrXcfGPDA/nyPHjTRoHMGvxYpydnblxxIhaxx++/XbuvPHGWseOpaYCEOjn96djEZHqRFx5bjGeoQFWZZ7NAyhOy2lUnKOLE90fvZbQvp2s2ygtx87evkH1ROTslJWUkpeVQ4tWYVZlLSLCSE9OaZI4k8nEvE9mEtUpmtje3Zum8yI27kK6/wbIys3lzhtvZOK992qJHhGpRY8MX2RGjRrFJ598wiuvvMLcuXNJSEigd+/exMXF4ezsjLOzMwBDhw4lKyuLWbNmMWHCBGJiYgA4cOAA48ePx9vbm/vuuw+DwcCMGTOorKw8n8OScyQ3Px8A/zrWCvHz9qa0rIyS0lI8/vBYwdnGHUtN5efduxkxeHCdsZb2Cwo4cOQIn8+bh5+PD4N7927gyERsU2VBKQDO3u5WZc7ebpjKDBjLKnF0cz7rOLdA601+Sk7kUngsE7+21WsS2dnb16ueiJydwrwCALz9fK3KvHy9KS8to6y0DDd3t0bFbVy2ipyMLG5+4A7MZn05LNIULrT779effPK0axaKiG3TX4aLTNu2bXnnnXd48sknOXDgAAcOHOC9997D3d2dwYMH88ADDxAZGUn79u3p2rUrs2bNok+fPpZNRaZOnQrAN998Q/PmzQEYNmwY11xzzfkakpxD5RUVAJZE8amcnZwAqDAY8GiiuO83bsTe3p4rBww4Y78efeEFysvLsbe354Fbb/3T3dZEpJqp0gCAg5P15du+5mbfZDBaJQTPNu5k7L7vNgAQNjDmjH2rTz0R+XMV5eUAODk7WZU51hwzVFZaJQQbEpeZms6ahSu4etx1+Pj7kZed26RjELFVF9r9t5KBInI6eqbnIjRo0CDWrFnDm2++yejRowkKCqK0tJTFixczevRoEhMT64wzm81s2LCBgQMHWpKBAFFRUfTr1++v6r78hU4+Cm5nZ3fO4yoNBjb89BPxMTEEBVg/lniSyWTizhtu4OG//53O7dox5dNPWbJmTYP6J2KzTi7v0LBT+qzjTJVG9nyxipL0PMIGxuAbGdKoeiJSP5ZTtsHX7/rFmc1m5k6fSUSb1qfdnEREzs6FeP8tIlIXJQQvUi4uLlx11VVMnjyZjRs3MnfuXEaMGEFFRQX//e9/64zJz8+ntLSUiIgIq7LWrVuf6y7LeXBynZC6HgmvNFTPGHJ3dW2SuN3791NRUUHvuLgz9snBwYEBPXvSp1s3nrzvPtq1bs2sJUsoq5nVICKn5+BSPUPAbLDeJdBsNALg6Go9M+hs4oxllez+5HsKDp2gWfe2tBrarc4+1beeiNSfi2v1ddhQx3XYWDPj17WO63d94zYuW82JlFSuuGEkJUXFlBQVU15avbRAZaWBkqJirS8tcpYuxPtvEZG6aP7wRaS0tJQPPviATp06ccUVV9Qq69SpE6+//jqFhYWsX7+evLy807ZTXkfixWw2N3l/5fw7uVlHfmGhVVleYSHubm51Li58NnE79uzB0dGRuI4d690/Ozs7Luvalf2HD5OWkUFUy5b1jhWxRS4+ngBUFpVZlVUWluHg5oRDHY8KNjSusriM3Z/+QElaLiE929FmdO86ZyzUt56INIxPQPV1uKigyKqsKL8QV3c3nF2tr9/1jTuw+zdMRhMfTHrDqt6m5avZtHw1j01+Br9A/8YORcTmXOj33yIiJykheBFxcXFh+vTpxMXFWSUET2rTpg0bNmyo81tjPz8/PD09OXbsmFVZSkrdu9XJxc3D3Z2ggACO1PH/98jx40TVMVv0bOP2HzlC64gI3N3crMpKSkuZ+NprXNa1KzePGlWr7OTMwLrWSxGR2hzdnHHx96xzN+Hi9By8QgMbHWesMFiSfC36diTq6p51tlnfeiLScG7ubvgG+pN+zPo6nJacQmgr611IGxJ35dhrKCsprVVeUljE7I++JLZ3d7r26YGnt9b3FTkbF8r9t4jIn9EjwxcRBwcHrrrqKhITE1mwYIFVeX5+PitWrKBPnz64ublhb1/9v/fk7D87OzuGDh3Khg0bOHDggCUuJSWFtWvX/iVjkL9er9hYdu3bR2pGhuVY0t69pGdm0ic+vknijEYjKenpRIaF1dmWh7s7To6OrNu6leLS3z+AlJSWsmbzZoICAggL0ZpjIvUR2Kkl+YfSKM3KtxzLO5hGWVYhQV0iGx13aOHm6iRfnw5nTPLVt56InJ1O8bEc+nUfWem/X4cP7tlHzolMYnqd/tH8+sSFtgqnTafoWj8RbauXj/EPCqBNp+g6NyYRkfq5EO6/RUT+jGYIXmSeeOIJkpKSePzxx1m4cCH9+/fH09OT5ORk5s6di8Fg4JlnngHA37/6MY+ZM2eSnZ3NyJEjefjhh1m7di233HILt99+Ow4ODnzxxRd4eHjUuV6FXPxGJSSwPjGRSVOnMmLwYCoNBhatWkXriAj6d+8OQEZ2NvsOHya6dWuaBQbWO+6k7Lw8jCaT5VGHutx5ww1MeucdnnnzTYb06YPRZGLlpk3kFxbyxL336jFDkXoK69+ZzB2H2DV9BaH9OmM2GknZsBvP0ACCu0YBUJZbROGxTLxbBuPm71XvuNLMfDJ3HMbBzQnPFgFk7Dhk9frN4qLqXU9Ezl7/4YP55cef+OTVafQddjlGg4GNy9fQolU4sZdVJwZyM7NJPniEiDaR+AcH1jtORM6tC+X+W0TkTJQQvMj4+/szd+5cPv30U1atWsW0adMoKysjODiYK664ggkTJhAcHAxA7969GT58OGvWrGHLli1cccUVNG/enJkzZzJ58mQ+/vhjnJ2dueGGGwD44IMPzufQ5Bzx8fLiuUce4bO5c/l26VJcnJzo0aUL40aPxsmp+tv/3w4d4r0vv+TeW26x3JDUJ+6k4pISgDM+rtCxbVuevO8+vlu6lJmLFmFvb0+HqCgeuf12rR0o0gDOnm50+b/hHF6SyLGVO3BwdiSgQwSRV3bH3tEBgMKjGeyfvZF21/ezJATrE1dw5AQApjID+2dvrPP1m8VF1bueiJw9D28v7pr4EEtnzmPV/GU4OzvTIS6GYTeMxLHmOnx0/2HmzfiaMXfcbEkI1idORM6tC+X+W0TkTOyqtIWYNJHCpKTz3QURaUJ35yw/310QkSZ2V1TC+e6CiDShnvma3yFyqfHu0uV8d+Evd65zCbb4ntaH1hAUERERERERERGxIUoIioiIiIiIiIiI2BAlBEVERERERERERGyIEoIiIiIiIiIiIiI2RAlBERERERERERERG6KEoIiIiIiIiIiIiA1RQlBERERERERERMSGKCEoIiIiIiIiIiJiQ5QQFBERERERERERsSFKCIqIiIiIiIiIiNgQJQRFRERERERERERsiBKCIiIiIiIiIiIiNkQJQRERERERERERERuihKCIiIiIiIiIiIgNcTzfHRAREREREZGGM61bc767ICJNrUuX892Dv9w5/1tmg+9pfWiGoIiIiIiIiIiIiA1RQlBERERERERERMSGKCEoIiIiIiIiIiJiQ5QQFBERERERERERsSFKCIqIiIiIiIiIiNgQJQRFRERERERERERsiBKCIiIiIiIiIiIiNkQJQRERERERERERERuihKCIiIiIiIiIiIgNUUJQRERERERERETEhighKCIiIiIiIiIiYkMcz3cHROTcy8zJ4fN58/j1wAEAunXqxPgxY/Dx8mqSuEPJycxcuJB9R45gb29Px6goxo8ZQ4tmzQDIysnhgWefPeNrPfPQQ3Rq2/YsRyhiW8pzizi87CcKDp8AwL99GJHDe+Ds6dYkcbn7Uzm+difFqTlgZ4d3eBAth3bDOyKoup28Yn56dfYZXyvmrmH4tm5+tkMUsTl5WTksm7WAI/sOAhDdpSPDx47Gw/vM1+r6xr3//BukHk22iu8Y34W/3X9HnW2fOJ7G+5NeZ8BVCQy+ZvjZDEvEZmUWFvHlli38mpYGQFxEBON7X4a325mv1fWN25t+glk//cShrCw8XVzo3rIl13fvjreb62nbTs7J4T/z5jO6a1eu7x7fyBGKyMVOCcEL2Ny5c5k4cSIvvfQS1157reV4YWEhs2bNYunSpSQnJ+Po6EhkZCTXXXcdo0ePxtnZuVY7TzzxBPPmzbNq39nZmcDAQHr37s1jjz1GYGDgOR+T/PWKSkp4bsoUTCYToxISMJvNLFq1iuS0NF785z9xdKz7z0B949IyMnhuyhRcnJy47sorAViyejXPvPUWk594An8fH7w8Pbl//Hir16g0GPhk9mx8PD1pGRp67t4EkUuIobSCpOnLqTKZCRvQmaqqKlI27KbkRB5d7xuBvYNDo+Lyj5xgz2c/4B7sS6srulFlqiJt628kfbSM2LuH4xUehJOHC+1u6G/1GmajkUOLtuLk4YpHc/9z+j6IXEpKi0uYMXkaJpOR/lcOpqrKzMbla8hISWPC04/hcJprdX3jqqqqyEw/Qfu4GDrFd6nVhm9g3eeqyWRizvSvMBlNTTtYERtQVF7OpMWLMZnNjIyNxVxVxeKkJI7n5vLCmGtwPM21ur5xv6al8dLSZbg7O3NNXFfs7exZtmsXe9LSeO6a0Xi6uFi1bTKbeXftOowm8zkdu4hcPJQQvMgcOHCACRMmkJGRwciRIxk7dizl5eVs2bKFp59+mu+++45p06YRFBRkFTtx4kT8/PwsvxcXF7N582bmzJnD7t27mT17tlUyUS5+S1avJjc/n1cnTiQsJASANi1b8r9p01i7dSsJffs2Km7J2rVUVFTw3COPEBkWBkBMu3Y8+dprLFm9mvFjxuDq4sKAnj2tXuPTOXMwmUw8eNtteLq7n4vhi1xyUjfuoaKglPiHRuMe7AuAV1gQu2d8T8b2gzTvEd2ouMNLEnHx8aDrvSNwcK6+TQjuFsXPb87j6A/bibljGA7OTjSLi7J6jUOLt1JlMtP+xgE4uVl/GBGRum36fi0Fefk88PzjBLeovuaGRrbks9ffY/umRHoM7NOouPzsXAwVlXSIi6Frnx716tP6JSvJSjvRBKMTsT1Lk3aRW1zCKzdcR1jN5682wUG8uGQZ6/bvZ0iHDo2K+3TTj9jZ2fHc6FGE+PgA0KNVK56YM4f523dwS+/LrNqev+MXUvPyzsVwReQipTUELyIlJSXcc889lJeXM3v2bF566SVuuukmbr/9dt5//33ee+899u3bx4MPPojZbP3NT0JCAqNHj7b8jBs3jnfeeYe//e1v7Nu3j5UrV56HUcm5tmn7djq2bWtJ6gF0ad+e5sHB/Lh9e6PjMrOz8fL0tCQDAaJatsTTw4Pj6emnbf9YairL161jUK9edGjT5myHJ2JzspIO4xsZYknqAfi1aYFbkDdZSUcaFWcoq6AkPZfAmFaWZCCAs6cbPpEhFCZnnrb9khO5pG3+jWbxbfGJDDltPRGxtmvrdiKj21iSegBtOkUTEBLMrq07Gh2XWZPYC2oeXK/+nDiexrrF3zNo5LCGDkVEgB8PHaJji+aWpB5ATFgYzX192HzocKPisoqKOJ6bx4C2bS3JQIBQP1+6RUSwfv8Bq3aTc3KYv2MHY7rFNcXwROQSoYTgReTjjz8mNTWVF198kfbt21uVX3755dx///3s2LGjzkeET2fMmDEA7Ny5s8n6KheG4tJSMrOzaR0eblUWGR7OkePHGx0XEhREcUkJBUVFlmNFJSWUlpXh6+192r7NWrwYZ2dnbhwxoiFDErFphrIKynOL8QwNsCrzbB5AcVpOo+IcXZzo/ui1hPbtZN1GaTl29qe/bTj6w3bsnRxpmaAPGyINUVZSSl5WDi1ahVmVtYgIIz05pdFxGSnVX9AFtahe27eyvOK0/TGZTMz7ZCZRnaKJ7d29QWMRESiuqCCzsIjIIOvlmFoFBnIkO7tRcbklJQCE+1s/7t/Mx5ui8nJyiostx0xmM++vW09MaCj9tV63iJxCCcGLyKJFi2jVqhUDBw48bZ1x48bh5OTEokWL6t2uW80CtVVVVY3uo1xYcvPzAfA/5dvDk/y8vSktK6OktLRRcaMTEgjw9WXKZ59xLDWVY6mpTPn0UxwcHBg+aFCd/TqWmsrPu3cztG/fOl9DROpWWVB93jl7Wz9i7+zthqnMgLGs8qzj7OztcQv0xuUP9UpO5FJ4LBPviLpnF5WcyCX3txSa94q2ihWRMyvMKwDA28/XqszL15vy0jLKSssaFZeZdgJnVxeWfTOf5+99nEn3/Zs3/j2JpK3WTwpsXLaKnIwsRo2/oRGjErFdeTUJO393D6syP3d3SisqKamwTsrXN86lZm3QMoPBql5ReTkA+af8zVj4y05OFBRwZ/9+ZzEaEbmUKSF4kcjMzOT48eN069btjPU8PDyIiYnh559/rnfbGzZsAKBjx46N6qNceMprbjbqWhvS2ckJgIo6biYaEhfo78+YYcP47eBBHn/5ZR5/+WV279/Pw7ffXusx4lN9v3Ej9vb2XDlgwFmMSsR2mSqrzzsHJ+slgO1rPiCYDMYmizsZu++76utE2MCYOuukbd0H9na0uKzuNZFE5PQqaj7AOzk7WZU51hwzVFon+hsSl5GaTmV5BeWlZVx/1y2MueNvuLi68N0Hn/PLjz9Z4jJT01mzcAXDbhyFj7+fVbsi8udOJuqc69gMyLlmU5BKo/U1t75xYX5+uDk7kXjkSK0JHZVGI0kpqdX/bapuPyU3j7nbtzPusl4EeHo2ZlgicgnSpiIXiczM6nWb6rMTcFBQEJWVleTn5+Pr62s5XlhYSG5uruX34uJiNmzYwDvvvENUVBRXX311k/dbzq+TNwl2dnbnLG7W4sXMXbGCDm3akNC3L2azme83buStGTN47M47iY+pnUCoNBjY8NNPxMfEEBRg/fiiiJzByRv/hp3SZx1nqjSy54tVlKTnETYoBt861gY0GYxk7jhEQIdwXP30YUOkoSynZ4Ov1fWP6zGwD1VmM72G/L47eEzPbkx9+mWWf7uQLpfFAzB3+kwi2rQ+7SYmIvLnzvX9t6ODA1d3iWH2tu1MXb2Ga7pW70b87U/bLF/YO9jbYzabeW/tWqJDQk67iYmI2DYlBC9B9jVrPJlMplrHT64VeCo3NzeGDBnCU089hZOT9TfMcnFzdane5bOyjpkFlTU3DO6urmcdV1JaysJVq4iKiOCZBx+0/Nvr060bT772Gh/MnMm09u1r/dvavX8/FRUV9I7TOmMiDeXgUn0umQ0mqzJzzWwDR1frv+VnE2csq2TP5yspPJZJs+5taTW07hnqBYdPYK40Eti5Vf0HIiIWLq7V19y6ZgEaa2b3utZxrW5IXM/L+1rVcXJ2omvv7qxZuILM1BPsT/qVEymp3DXxYUqKqtcfK69ZHqSy0kBJUTHunh4NTnKI2Bq3mvveumYBVtZ8PnOr4ymchsRd260bJRWVLN+9m80HDwHQrWUEI2Nj+SbxJzxdXFi0M4nk3FyeHTWKwrLqGcUnH1WuMBopLCvHy9VF57SIDVNC8CIRHFy9blNWVtaf1s3KysLR0bHW7ECAV199lcDAQAwGAxs2bOCrr75i+PDhPPvss7jUJIDk0hJYs0NZfmGhVVleYSHubm6W5N/ZxB06dgyj0Uif+HhLMhDA0dGRft2789WCBaRmZNDqlEeHd+zZg6OjI3F6RF2kwVx8qmfgVRZZrydWWViGg5sTDnU8PtjQuMriMnZ/+gMlabmE9GxHm9G9T/uBIXdfCnaO9vhH171EgIicmU9A9TW3qKDIqqwovxBXdzecXa2v1WcbdyoPby8AKisqOLD7N0xGEx9MesOq3qblq9m0fDWPTX4Gv0DrjQxE5HcnH83Nr2Od7rzSUtxdnHGtYyJGQ+Ls7Oy4tU9vRneNJb2gkABPD4K8vJiV+BP2dnYEenqy8/hxjCYzT82bb9Xe4p1JLN6ZxJSbbyLIy6sxwxWRi5gSgheJ4OBgIiIi/nRtwLKyMnbv3k1MTAwONWtNnNStWzfCahIzAwcOpGXLlrzwwgvk5+fz7rvv6tuhS5CHuztBAQEcSbHeofDI8eNERUQ0Ks6xZo0Ts9lsVc9c89jDH7eq2X/kCK0jInCv2cxGROrP0c0ZF3/POncTLk7PwSu07mUlGhJnrDBYkoEt+nYk6uqeZ+xTYXImXqGBOLpaz3YQkT/n5u6Gb6A/6cesr7lpySmEtgpvVFxhXj6fvvYeMb26cfmoYbXqZZ+oXpLGLyiAK8deQ1lJ7URESWERsz/6ktje3enapwee3kociPwZDxcXgry86txN+Gh2Nq2Dghod9+PBQ/i6u9GxRQt83H/fzOu39HQigwJxdnTklt6XWW1eUlBWxrTVa+nXtg0D2rXFR/fjIjZNm4pcREaOHElycjKrV6+udfyVV17h22+/xWQy8c0331BeXs6oUaP+tL3x48czZMgQVq9ezWeffXauui3nWa/YWHbt20dqRoblWNLevaRnZtInPr5RceHNm+Pn48ParVstjxJD9WPF6xMT8fL0JDzk9zXHjEYjKenpp91sRET+XGCnluQfSqM0K99yLO9gGmVZhQR1iWx03KGFm6uTgX06/Gky0GwyUZqRj0cLzRgSaYxO8bEc+nUfWem/X3MP7tlHzolMYnqdfkO5+sR5+/lSXlbGtvWbKS/7fZZwfk4e2zduJbJ9W7x8vAltFU6bTtG1fiLatgbAPyiANp2i69zARESs9Yxsxe7UVFLz8i3HdqWkkJ5fQJ+oqEbHLUlK4pONP2I65Uv57ceS2Xcigys6VT+F0zooiJiwsFo/0TX35c28vYkJC6tzAxMRsR36C3ARueuuu1i4cCFPPfUUM2bMoH379gDk5uby2Wef8c0333DgwAHatWvH9ddfX682n3/+ebZt28Zbb73FkCFDCA+v+1touXiNSkhgfWIik6ZOZcTgwVQaDCxatYrWERH0794dgIzsbPYdPkx069Y0q9m4pj5x9vb23HHDDbwxfTr/ee01Lu/dG7PZzJotW0jLyOD+8eMtswgBsvPyMJpMlkeSRaThwvp3JnPHIXZNX0Fov86YjUZSNuzGMzSA4K7VHxbKcosoPJaJd8tg3Py96h1XmplP5o7DOLg54dkigIwdh6xev1nc7x9IKvJLqDKZcfXRZiIijdF/+GB++fEnPnl1Gn2HXY7RYGDj8jW0aBVObM2GH7mZ2SQfPEJEm0j8gwPrHQcw4pYbmPnOdD7839t0H9ibyvIKtqzagL2DAyNuue68jFnkUjaqaywbDhzgf0uWcHWXGCqNJhYnJREZFEi/tm0AyCgsZP+JDNqFNKOZt3e946rrdeWtH1YyefkKerRqRXZxEUuTdtMlPIx+bdrU2ScRkT9SQvAi4u7uzgcffMCECRO4/vrrGTlyJLGxsXTp0oUDBw6wZ88eAPr3718rCXMmgYGB/POf/+Tpp5/m2WefZfr06edyCHIe+Hh58dwjj/DZ3Ll8u3QpLk5O9OjShXGjR1s2+/jt0CHe+/JL7r3lFktCsD5xAD1jY3nqgQeYvWwZMxctAiAyLIx/T5hgtU5gcUkJgB4XFmkEZ083uvzfcA4vSeTYyh04ODsS0CGCyCu7Y+9YvVRE4dEM9s/eSLvr+1kSgvWJKzhyAgBTmYH9szfW+fqnJgSNpdWPIjnUsZGJiNSfh7cXd018iKUz57Fq/jKcnZ3pEBfDsBtG4lhzzT26/zDzZnzNmDtutiQE6xMH0LFbDDc/eCfrFv/A998twsnZiVbRbbji+hEENW92XsYscinzdnPjv6NG8vmPm/lu28+4ODrSvWVLxl3WC6eaZZ32pp/g/bXrmDBooCUhWJ84gF6tI3lwyGAW/vILX2zego+bGyNiuzC6a9da63qLiJyJXdXJ/c3lgjN37lwmTpzISy+9xLXXXms5XlRUxMyZM1m2bBnHjh3DwcGB8PBwhg0bRnFxMdOnTyc6Opo333yTVq1a8cQTTzBv3jxWrVplWUPwVFVVVYwbN46ff/6ZV155hWuuueas+luYlHS2QxWRC9DdOcvPdxdEpIndFZVwvrsgIk0ofsGG890FEWlifg8+fL678JfLm/r2OW3fFt/T+lBC8BK0b98+Pv30U/7zn//g6fnXPcalhKDIpUUJQZFLjxKCIpcWJQRFLj22mLxSQvD80CPDl6Do6Gheeuml890NERERERERERG5AGmBARERERERERERERuihKCIiIiIiIiIiIgNUUJQRERERERERETEhighKCIiIiIiIiIiYkOUEBQREREREREREbEhSgiKiIiIiIiIiIjYECUERUREREREREREbIgSgiIiIiIiIiIiIjZECUEREREREREREREbooSgiIiIiIiIiIiIDVFCUERERERERERExIYoISgiIiIiIiIiImJDHM93B0RERERERKThHAZefr67ICIiFynNEBQREREREREREbEhSgiKiIiIiIiIiIjYECUERUREREREREREbIgSgiIiIiIiIiIiIjZECUEREREREREREREbooSgiIiIiIiIiIiIDVFCUERERERERERExIYoISgiIiIiIiIiImJDlBAUERERERERERGxIUoIioiIiIiIiIiI2BAlBEVERERERERERGyI4/nugPwuJSWFIUOGMGbMGF5++WXGjx9Pamoqq1evttQpLi6msrISf39/y7HKykry8vJo1qzZ+ei2XAQyc3L4fN48fj1wAIBunToxfswYfLy86t3GhzNnkpaZybMPP3zW7R9KTmbmwoXsO3IEe3t7OkZFMX7MGFro365Io5XnFnF42U8UHD4BgH/7MCKH98DZ063J40pO5LJj2mLCB8XQckhc0w1CxEblZeWwbNYCjuw7CEB0l44MHzsaD+8zX6f/LC4vO5c3Hn/+jG3c8fj9RLZvC0BORhbLv13I0X0HMRqMhEW15IrrRhAe1aqRIxSxTef6HhyguLSURydNYtw11zCoV68662zcto2pn33GrKlTGz4IEblkKSF4AZswYQJlZWWW33fv3s29997La6+9Rq+aP/apqanccccd3HPPPVx77bXnq6tyASsqKeG5KVMwmUyMSkjAbDazaNUqktPSePGf/8TR8c//DKzevJlVP/5IhzZtzrr9tIwMnpsyBRcnJ6678koAlqxezTNvvcXkJ57A38enaQcuYkMMpRUkTV9OlclM2IDOVFVVkbJhNyUn8uh63wjsHRyaLM5sMrNv9kaqTOZzPSwRm1BaXMKMydMwmYz0v3IwVVVmNi5fQ0ZKGhOefgyH01yn6xPn4enBdXeNs4o1GAws+WouHt6ehISHAlBSVMz0V6ZSXlZO3ysG4ebhzuaV65kxeRr3PPUoIeEtzun7IHKpOdf34ABGo5G3ZsygsLj4tG0cSUnh41mzznocInLpUkLwAta3b99av+/fv5/MzMxax1JSUjh69Ohf2Cu52CxZvZrc/HxenTiRsJAQANq0bMn/pk1j7datJPzh39mpzGYzc1esYPayZY1uf8natVRUVPDcI48QGRYGQEy7djz52mssWb2a8WPGNNWQRWxO6sY9VBSUEv/QaNyDfQHwCgti94zvydh+kOY9opssLmVdEqUZ+edoJCK2Z9P3aynIy+eB5x8nuEX1dTQ0siWfvf4e2zcl0mNgn7OOc3Z1oWufHlaxS2fOxWQyccPd43HzcAfg5/VbKMov5G/330HH+C4AdIyP5e0nX2TtohXcdN/fz8XwRS5Z5/oePDc/nzc/+YT9hw+fts62pCTe+eILysrLz34gInLJ0hqCIpe4Tdu307FtW8uNCECX9u1pHhzMj9u3nzau0mDg36+8wndLl9K/Rw/8fX0b1X5mdjZenp6WZCBAVMuWeHp4cDw9vREjFJGspMP4RoZYknoAfm1a4BbkTVbSkSaLKzmRS/KaJCIGxzZl90Vs2q6t24mMbmNJ6gG06RRNQEgwu7buaPK4E8fT2LxyA9369aRVuyjL8bzsXEsbJ/kG+BEcGsKJFF2nRRrqXN6D7/ztNx554QWOpaZy5cCBdbbz0Tff8OpHH9E8OJgu7ds3ejwiculRQvACNn78eAYPHgzA1KlTmThxIgC33norgwcPZu7cudx6660ATJw4kejo32/gCgoKmDRpEv3796dz584MHz6czz77jKqqKkudqVOnEhMTww8//EDfvn2Ji4vju++++wtHKOdacWkpmdnZtA4PtyqLDA/nyPHjp401GAyUlpfzyN//zv3jx2Nvb/3noiHthwQFUVxSQkFRkeVYUUkJpWVl+Hp7N3RoIlLDUFZBeW4xnqEBVmWezQMoTstpkjizycz+OZvwa9uC4K5RVjEi0nBlJaXkZeXQolWYVVmLiDDSk1OaNA5g5dwlODk7MWTMVbWOBzQLBCA74/enUUxGIwW5+Xj56jot0hDn+h48NSODzm3bMvnf/6ZnbN1f0qWcOMENV13FpEcfxU9L84hIHfTI8EVi6NChZGVlMWvWLCZMmEBMTAzR0dFMmDCB999/n7FjxxIfHw9AaWkpt9xyC+np6dx8882EhISwZcsWXnzxRY4ePcp///tfS7tGo5FnnnmGv//971RWVlrakEtDbn4+QJ3r8/l5e1NaVkZJaSke7u5W5e5ubkx55hkcTrP2WEPbH52QwPbdu5ny2WfcWvN48Jfz5+Pg4MDwQYMaPjgRAaCyoBQAZ2/r89jZ2w1TmQFjWSWObs6NikvZsIuynEI63jKYKnOVVYyINFxhXgEA3n6+VmVevt6Ul5ZRVlqGm7tbk8SdOJ7Gvp176Dvscrx9a1+74wf0Zufmbcz75BtGjb8BNw931i76npKiYsZc+bdGjFLE9pzre/Ar+vXjqpr755ya1/qjpx94oF7rFIqI7dJfiItE+/bt6dq1K7NmzaJPnz6WTUX69OnD+++/T9euXRk9ejQA06dP58iRI8yZM8cya/Dmm2/mjTfe4IMPPmDs2LG0r5k2bjab+fvf/87dd999fgYm51R5RQUAzs7OVmXOTk4AVBgMeNQRa2dnd8YbkYa2H+jvz5hhw5jx3Xc8/vLLANjb2/PYnXfWeoxYRBrGVGkAwMHJ+pJuX/NBwGQwWiUEGxJXkpFH8qqdRI3qhYuPB+V5p1+8XETqr6JmXS8nZyerMseaY4bKSqvE3tnGJa7ZiJ29Pb2G9LeKc3N3Y/A1w/nuwy/48H9vWY5fPe5aort0bMCoRORc34PXJ9GnZKCI/Bn9lbgEff/997Rr146goCByc3MtxxMSEvjggw9Ys2aNJSEI0KOH9WLTcmk4+Yi4nZ3deW9/1uLFzF2xgg5t2pDQty9ms5nvN27krRkzeOzOO4mPiTknfRS55J1cCqKhp3k946rMZvbP2Yh3q+DTbk4iImfHcho28Dp9NnGGSgO/bN5G+66d8Qv0tyr/ecMW5n/yDc3CWtDnikE4OTvxy+afWPL1POzs7Ok1uF+D+ihiy871PbiISFNQQvASlJycTHl5Ob17966zPP0PGzgEBFivHyWXBlcXFwAqKyutyioN1bOD3F1dz3n7JaWlLFy1iqiICJ558EHLWih9unXjydde44OZM5nWvj1OTtYzHUTkzBxcqs8bs8FkVWY2GgFwdLU+t+obl7JhNyXpecTecxWGkupZScay6pkPpkojhpJyHN1d9KFH5Cy4uFZfRw11XEeNNbN4Xeu4Tp9N3OG9BzBUVNK5R9c6+7Jy7lK8/X25+8mHca5pP6ZnHF+89SHLZy2gU3wsnj5e9RyZiG071/fgIiJNQQnB8yg/Px9PT0+r6dx/NkX8z5hMJuLj43nggQfqLA8ODq71e10L1cqlIdDPD4D8wkKrsrzCQtzd3Cw3LOey/UPHjmE0GukTH1/r35ujoyP9unfnqwULSM3IoJUeHRZpMBcfTwAqi8qsyioLy3Bwc8KhjscK6xuXtz+VKpOZX95dbFUvdcMeUjfsoce/rsfVz7OxQxGxOT4B1dfRooIiq7Ki/EJc3d0sybnGxu1P+hUHR0fadelgFVNSWERxQSGXJQywiovr24P9Sb9y/PBROsRpNr9IfZzre3ARkaaghOB58sUXX/DCCy+wdOlSoqKqd2ssr1kPxruRO66GhoZSUlJCnz59ah0vKChg8+bNtGzZslHty8XDw92doIAAjqRY7zZ45PhxoiIi/pL2Tya9zWazVT1zzSMV2qJA5Ow4ujnj4u9Z527Cxek5eIUGNiou8qoeGMtqz3AwFJex79sNBMe1JjiuDU6emuUgcjbc3N3wDfQn/Zj1dTQtOYXQVtY7lJ5tXPLBI4S2CsfVzc2q7OS6oWZTHTOGazYR0mZCIvV3ru/BRUSagqaGnSehoaEA/Prrr5ZjJ/+7Xbt2dcacnFl1alLl5GzCU48NHjyYvXv3sm7dulrx7733Hg8//DAHDhxoghHIxaJXbCy79u0jNSPDcixp717SMzPp0wS7Sten/fDmzfHz8WHt1q2WxySg+pGJ9YmJeHl6Eh4S0ui+iNiqwE4tyT+URmlWvuVY3sE0yrIKCeoS2ag4r9BA/Nq0qPXj3bIZAK7+Xvi1aVHnxiQiUj+d4mM59Os+stJ/v44e3LOPnBOZxPTq1iRxJqORrLQTNG9Z90x8N3c3wlq3ZM+2nZQU/b5pUFVVFdvWbcbB0YGINqf/WyIi1s71PbiISGPpDv486devH2FhYbzwwgtkZGRgNpuZPn06QUFBDB06tM4Yf//qBaBnzpxJdnY2I0eOxK9mOvrChQupqqpizJgx3HPPPXz//ffcf//93HTTTbRt25aff/6ZBQsWMGDAAAYMGPCXjVPOv1EJCaxPTGTS1KmMGDyYSoOBRatW0Toigv7duwOQkZ3NvsOHiW7dmmaBdc8makz79vb23HHDDbwxfTr/ee01Lu/dG7PZzJotW0jLyOD+8eO1E5pII4T170zmjkPsmr6C0H6dMRuNpGzYjWdoAMFdq2ehl+UWUXgsE++Wwbj5e9U7TkTOrf7DB/PLjz/xyavT6DvscowGAxuXr6FFq3BiL6tOGuRmZpN88AgRbSLxDw6sd9xJ+Tl5mIwmfPz9TtuPq/42hhmTp/H+82/QY1AfnFyc2Z24g+SDR0i47mqtHyjSQOf6HlxEpLE0Q/A8cXZ25tNPP6Vbt258/PHHfPDBB8TFxfHVV1/h6Vn3Oky9e/dm+PDhrFu3jkmTJlFRUUFUVBTjx49n9+7dvPjii6SlpeHr68usWbO49tprWb58OS+88AI7d+7kvvvuY8qUKVoz0Mb4eHnx3COP0DI0lG+XLmXZ2rX06NKFJyZMsGzi8duhQ0z74gt+O3TonLQP0DM2lqceeAAPd3dmLlrErCVL8HBz498TJtBfO12LNIqzpxtd/m84HiH+HFu5g7QffyOgQwSdbkvA3rF6Jnnh0Qz2f7eBwqMZDYoTkXPLw9uLuyY+REh4KKvmL2PzD+vpEBfDrY/cjWPNdfTo/sPM+fgrju4/3KC4k8pKSgFwdTv94/3hUa24+z8PExwawrolP7Di24UYDAau/79bGHh13V9Wi8jpnet7cBGRxrKrOrknukgjFSYlne8uiEgTujtn+fnugog0sbuiEs53F0SkCfXM1xMWIpca7y5dzncX/nJ5U98+p+37PfjwOW3/YqWpYiIiIiIiIiIiIjZECUEREREREREREREbooSgiIiIiIiIiIiIDVFCUERERERERERExIYoISgiIiIiIiIiImJDlBAUERERERERERGxIUoIioiIiIiIiIiI2BAlBEVERERERERERGyIEoIiIiIiIiIiIiI2RAlBERERERERERERG6KEoIiIiIiIiIiIiA1RQlBERERERERERMSGKCEoIiIiIiIiIiJiQ5QQFBERERERERERsSGO57sDIiIiIiIi0nCmdWvOdxdEpKl16XK+eyA2QjMERUREREREREREbIgSgiIiIiIiIiIiIjZECUEREREREREREREbooSgiIiIiIiIiIiIDVFCUERERERERERExIYoISgiIiIiIiIiImJDlBAUERERERERERGxIUoIioiIiIiIiIiI2BAlBEVERERERERERGyIEoIiIiIiIiIiIiI2RAlBERERERERERERG+LYFI088cQTzJs3j1WrVhEWFtaotsaPH09qaiqrV69uiq41ur2lS5cyc+ZM9u7dS0VFBSEhIQwYMIC7776b4ODgWnXNZjNpaWkNfg/mzp3LxIkT+fzzz+nVq9dp623dupVbb72Vl156iWuvvdbq95SUFIYMGcIDDzzAgw8+aIk7fvw44eHhDRu4XFIyc3L4fN48fj1wAIBunToxfswYfLy8zhh3KDmZmQsXsu/IEezt7ekYFcX4MWNo0axZrXoFRUV8s2gR23btotJoJDIsjHGjR9O2Vata9Xbv38+sJUs4lpqKu6srl8XFcdOIEbi6uDTpeEUudeW5RRxe9hMFh08A4N8+jMjhPXD2dDtjXMHRDI5+v53i1Gwc3ZwJ6BBBy4Q4nDxcTxtTciKXHdMWEz4ohpZD4mqVFaVmc3TFzxQmZ2JnZ4dPZAiRw3vgHuTT+EGKSJ3ysnJYNmsBR/YdBCC6S0eGjx2Nh/eZr+nH9h/mh7mLST1yHDcPNzrExTD4muF4eHn+Fd0WsTmZhUV8uWULv6alARAXEcH43pfh7Xbma/XhrCxmJv7E/hMZ2NvZ0aF5CLf0vowWvr6njUnOyeE/8+YzumtXru8e3+j2RMQ2aIbgGbz55ps8+uijuLu7c//99/Pkk0/Sv39/Zs+ezejRo0lOTrbULS4u5sYbb2TevHnnrD9RUVFMnjyZHj161Fnu7+/P5MmTGTp0qOXYu+++yx133HHO+iQXvqKSEp6bMoWDR48yKiGBEYMH8/Pu3fxv2jSMRuNp49IyMnhuyhSOpaZy3ZVXMuaKKzh47BjPvPUWuQUFlnpl5eU8+/bbbN6xgyv692fs1VeTW1DAc1OmkFxzAwTVycAX3nkHk9HIuFGjGNCzJys3beJ/775LVVXVOX0PRC4lhtIKkqYvp+h4FmEDOhPavxM5e4+z+5PvMZtMp43LP5zOrukrKMsuIHxQF1pc1oHsPcfY+eEyDGUVdcaYTWb2zd5IlclsVVaaVUDSR8spOZFHxOWxhA/qQlFKNjs/XEpFYWmTjVdEfldaXMKMydNIOXyU/lcOpt+wQezbuYdPX38P0xmu6Uf2HuCT16aRnZ7JwBFD6TWkP3u27eTjl6dQVqLzVaSpFZWXM2nxYg5mZjIyNparu3Rhe3IyLy5ZivEM1+q0/HyeX7SY5Jwcru0WxzVxXTmUlcWzCxaRV1JSZ4zJbObdtesw1nGtPpv2RMR2NMkMwUtReno6H330EePHj+epp56qVTZixAjGjRvHG2+8wVtvvQVAfn4+u3btYuDAgeesT4GBgYwePfq05e7u7lblmzdvxnSGi45c+pasXk1ufj6vTpxIWEgIAG1atuR/06axdutWEvr2rTtu7VoqKip47pFHiKyZ9RrTrh1PvvYaS1avZvyYMQAs+OEH0jMzeebBB+nYti0Avbt148Fnn2XhypU8cOutAHw5fz4Bfn48+8gjODs5ARDo58f0b7/ll99+I65jx3P6PohcKlI37qGioJT4h0bjHuwLgFdYELtnfE/G9oM07xFdZ9yhRVuxs7cj9p6rcAvwBiCgUwTbpyzk+NokWg+3/rIpZV0SpRn5dffjx18xVxqJvXs4ni0CAPCNasEv7y4mddOeOtsTkcbZ9P1aCvLyeeD5xwluUX1ND41syWevv8f2TYn0GNinzrjFX83Fzs6e/3vyYQKaBQHQsVsXpv13MusW/8CVY09/fykiDbc0aRe5xSW8csN1hPn5AdAmOIgXlyxj3f79DOnQoc64Zbt2U2Ew8uyokbQKDASgc2goT82bz5KkXdzS+zKrmPk7fiE1L6/J2hMR26EZgqexc+dOTCYTfetIlsTFxdGlSxd++eWXv75jIg20aft2OrZta0kGAnRp357mwcH8uH37aeMys7Px8vS0JAMBolq2xNPDg+Pp6QBUVVWxLjGRuI4dLclAAD9vb24dM4b2UVEAVBoMeHt6MqRPH0syEKBDmzYAHEtNbZrBitiArKTD+EaGWJKBAH5tWuAW5E1W0pE6Y8rziinNyCc4LsqSDARwD/LFv0M4GdsPWsWUnMgleU0SEYNj624ztwhHDxdLMhDAKywQR3cXSjPq/mAiIo2za+t2IqPbWJKBAG06RRMQEsyurTvqjMnLziUzNZ2ufXpYkoEAQc2bER3biR2bEs95v0VszY+HDtGxRXNLMhAgJiyM5r4+bD50+LRxGYWFeLm6WpJ3AFHBQXi6unC8jqRfck4O83fsYEy3OKuys2lPRGzLX5oQXLZsGbfccgvx8fF07tyZwYMHM3nyZCorK63qrl69mquvvpqYmBhGjhzJwoULreocPHiQ+++/n+7duxMbG8tNN93Ehg0bmqSvHh4eAMybN6/O/n3++eesXbsWqF7bb8iQIQC88847REdHk5KSAsCxY8f497//zYABA+jcuTM9e/ZkwoQJHKhZy+1UmZmZ3H///XTt2pU+ffowadIkiouLLeVbt24lOjqauXPn1tnnlJQUoqOjmTp1KgCDBw8mMTGR1NRUy/HHHnuMzp07U1hYWCu2qKiImJgYXnnllQa+U3IhKy4tJTM7m9Z1rCEZGR7OkePHTxsbEhREcUkJBUVFlmNFJSWUlpXh612dUMjKzSU3P58u7dsD1QnC8orqRw+v6N/fMvvQ2cmJJ++7j2uHDav1GkdrzpMgf/9GjFLEdhjKKijPLcYzNMCqzLN5AMVpOXXGVRZWPxbk0czPqszN3wtjSQUVBb8/OmQ2mdk/ZxN+bVsQ3DWqzjbdArwxllZQWVz2e/9KKzCWV+L0J2sZikjDlZWUkpeVQ4tW1mtVt4gIIz05pc64wrzqZT6ahYVYlfkHB1JaXEJBrhIDIk2luKKCzMIiIoMCrcpaBQZyJDv7tLHNfXworiinsOz3a2tReTmlFZX4/mHtQZPZzPvr1hMTGkr/U76YP9v2RMT2/GUJwe+++45HHnkELy8v/vnPf/L4448TGhrK9OnTLY/dnpSVlcVDDz1Er169ePzxx3FxceFf//pXrUTYvn37GDt2LAcPHuSee+7h0UcfxWg0cvfdd7N06dJG97dXr16EhYWxYsUKLr/8cp577jlWrlxJQc3aac7Ozpa6UVFRTJw4EYChQ4cyefJk/P39yc7O5sYbb2Tbtm3ccsst/Pe//2XEiBFs3LiRO+64A4PBUOs1n3nmGfLy8vjHP/7BkCFD+Oqrr7jvvvvOen21J598ktatW+Pn52dZW3DEiBEYDAZWrlxZq+73339PZWUlI0eOPKvXkgtTbn4+AP4+1gv8+3l7U1pWRklp3WsHjU5IIMDXlymffcax1FSOpaYy5dNPcXBwYPigQQCkZ2YC4O3lxRfz5vH3xx/ntn/+k4eef56fd+06bb+ycnJYu3Urn86ZQ3jz5vTo0qVxAxWxEZUF1eers7e7VZmztxumMgPGMusvseydqlcIMVUYrMoMpdVJ/Mqi3z8spGzYRVlOIW1G9z5tX8IGdMbFx4N9s9ZTciKXkhO57J21DnsHe0L7aAkAkaZ2MrHn7edrVebl6015aRllpWVWZc4u1TPzK8qt1wotLa7+IqCooMiqTETOzsm1+fzdPazK/NzdKa2opKSi7rV7R8bG4u/hwdRVq0nOySE5J4epq1bj4GDP8JjOteou/GUnJwoKuLN/v9P2pSHtiYjt+cvWEJwxYwZxcXG8++672NnZAXDzzTczZMgQNmzYwOOPP26pW1lZyTPPPMO4ceMAGDt2LKNHj+b1119n1KhRODo68sILL+Dv78+8efNwd6/+YHTLLbdw22238b///Y+EhIRaSbuGcnZ25uOPP+axxx7j119/5euvv+brr7/GwcGB7t27c/fdd9OvX/Uf38DAQBISEnjppZeIjo62rOP35ZdfUlBQwNdff01U1O8zLDw8PPjwww/Zv38/nTp1shyPjo7m888/x9Gx+n9Ls2bNmDp1KmvWrGHw4MENHkNCQgKfffYZFRUVlj5FRUXh6+vLsmXLuPbaay11ly5dSuvWremoddwuKSdn69V1Lpx8dLfCYMD6dgUC/f0ZM2wYM777jsdffhkAe3t7HrvzTstjxKU13zbOWrIERwcHbr/+euzt7Fi0ahWvfvQRT953n2X24ElFJSU88Oyzln79/YYbaj1GLCKnZ6qsTug5OFlfvu1rrh0mgxFHt9rnvHszXxxcncjec4ywgTGW67DJYCTvQPUj+2ZD9YYEJRl5JK/aSdSoXrj4eFCeV0xdXH09CR/UhUOLtrB9Ss0sfns7Otw8qNZjxCLSNCrKywFwcra+ZjrWHDNUVuLmXnvWT3CLEFzcXPn15yQGXJVgOf8NlQYO7tkHgNFg/WWBiJydsprzydnR+lrt7OAAQKXRiIeLi1V5oJcn18TF8emmTfx7dvVkGHs7Ox4ZmlDrsd+U3Dzmbt/O7X37EODpSVZR3Un9+rYnIrbpL5shuHDhQj788EPLTQhATk4O3t7elP5hhpK3tzdjx461/O7s7MzYsWPJzs5m9+7d5OXlkZiYyMCBAykvLyc3N5fc3FwKCwsZOnQo2dnZ7DrD7KT6ioyMZO7cuXz++efceuutREVFYTKZ2Lp1K3feeScffvjhGePvvvtuNm3aVCsZWF5ejr199dv+x3HffvvtlmQgwPjx4wEsjyY3BScnJ4YNG8bmzZstsx1zc3PZsmULV199dZO9jlwYTs4uPfW8q69Zixfz0Tff0C4ykgdvu437x48nqmVL3poxwzL7z1Czo2FpWRnPP/oog3r1YkDPnjz78MN4uLvzzaJFVu3a2dnx8N//zv3jxxMeEsIL77zDVq3HKVI/J2eMN/CUtndwILRvJ4pTcywz+orTctg7cy3myurz2M7Bniqzmf1zNuLdKvi0m5OcdPSH7RycvxnviGCixw6g3Q398QoLZO/MdeT8dvrlCETk7FhO/wZe0x0cHelzxSDSjh7nuw++4MTxNNKTU/jmvU+orKieUXzy3lREGq8x99/f/rSN6Rs20q5ZMx4YfDn3XT6IqOAgpqxaxc/HjgFgNpt5b+1aokNCTrs5SUPaExHb9ZfNEHRycuKnn35i8eLFHD58mOTkZHJyqtc6Cg0NrVU3PDy8VmLs5DGA1NRUy03LF198wRdffFHn66XXbHrQWHZ2dvTq1YtevXoBkJaWxpw5c/jggw94++23GT16NM2aNTttvMFg4M0332TPnj0kJyeTkpJi2fXXbK69NXzr1q1r/e7j44OPjw+pTbzhwqhRo5g1axYrV67kuuuuY/ny5RiNRj0ufAlyrfnmsa51MCtrvr10d3W1KispLWXhqlVERUTwzIMPWs65Pt268eRrr/HBzJlMa98el5qZh71iY/F0//0RRg93d+I7d2Z9YiLlFRWWfgB4urvTp1s3AC6Li+MfL77IZ3Pm0Ktr16YZtMglzKHm0T+zwXr3eHNNgt7Rte4ZtxGDYzGWV5L246+WzUf8O4QRNqAzR1dsx9HNhZQNuylJzyP2nqswlFTPRjKWVc80NlUaMZSU4+jugqncQMqG3XiGBRBz5zDsav5GBHVpxS/vLubAvE34tb0Be0eHpn0DRGyYi2v1tdRQxzXdWDN72LWOazrA5aOGUV5axuaV69mVWL2hWHRsJ/pfOZgf5izG3bOuZwVE5Gy41Tz5UllzXT5VZc3nQLc6nt4pqahg8c4kWgcF8tSIqy33372jWvPUvPl8tG4DXcaFsTRpF8m5uTw7ahSFZeWWWIAKo5HCsnK8XF0oraysV3tODrpWi9iqvywhOGnSJL788ks6duxI165dGT16NHFxcUyaNMkqeVfXtyknv2mxt7e3JNTGjRtHQkJCna/Xpmb30rP1xRdfUFFRwV133VXreIsWLXjwwQdxcXHh9ddf55dffmHYHzZKOGnbtm3ceeeduLu706dPH6677jo6duxIcnIyzz//vFX9043boYn/SMfHx9OiRQuWLVvGddddx7Jly+jcuTMtW7Zs0teR8y+wZmez/D9sIgOQV1iIu5tbrWTdSSeysjAajfSJj681a8DR0ZF+3bvz1YIFpGZk4O/rC4C3p6dVGz5eXlRVVVH2h4TgqZydnOjWqRPL162jsLi4znZE5HcuPtXnyKnr/Z1UWViGg5sTDnU8TgjV15ioq3sSPjCGsuxCXHw8cPXz5Oj328HeDhdfD/L2p1JlMvPLu4ut4lM37CF1wx56/Ot6DCXlVBnNBHVpbUkGQvVMxODYKI4s30ZpVgGezbVhkEhT8QmovqbXtd5fUX4hru5uOLvWfb21s7Pjqr+NYcBVCeRkZOHt74tfoD8/zF2Cnb09Pv7WGw6JyNkJqLmfza9jne680lLcXZxxrWO5nBMFhRhMJvq0iap9/+3gQN+2bfh6SyJp+fnsPH4co8nMU/PmW7WxeGcSi3cmMeXmmygsK69Xey0DtMyHiK36SxKCqampfPnll4wePZrJkyfXKsuuY5el9PR0qqqqaiXIjh49CkBERARBQUEAODg40KdPn1qxBw8eJCUlBbdG7pq0cuVKkpKSuPnmmy1rFJ6qXbt2wOm/iQWYMmUKrq6uLFmyBP9TdlF9//3366yfmppK21N2iDr5GHRERMTZDqNOdnZ2XHXVVXz22WekpaXx888/11rDUS4dHu7uBAUEcCTFeufBI8ePE3Waf1snZ+j+cRYrgLkmOV8FhDdvjqOjI8dPnLCql5mTg5OTEz6enqRmZPDiu+8yOiGBK/r3r1WvvKICOzs7nOpYZ0VEanN0c8bF37PO3YSL03PwCj39ekCZOw/j7OWGb+vmOJ+yC3DB0RN4hgbg4ORI5FU9rDYlMRSXse/bDQTHtSY4rg1Onq6Yah4zxGy96VVVlfnkf5zFCEXkdNzc3fAN9Cf9mPU1PS05hdBW4aeNTdq6HS8fLyLbt8XTx8ty/Oi+Q7RoGVbnuoQicnY8XFwI8vKqczfho9nZtK75LPtHTg7VSTtzHddPc831tqqqilt6X2a1KUlBWRnTVq+lX9s2DGjXFh83N8pqZhP/WXsiYrv+kgVDTq5V98dZe+vWrePo0aMY/zCdOicnh1WrVll+Ly0tZebMmYSGhtKhQweCg4Pp3Lkz8+bNIyMjw1LPYDDw5JNP8tBDD1m12VAjR46ktLSUl19+2SopYjab+e677/D29qZHjx4Alll8p9bNz8/H39+/VjKwqKiIefPmAVhmOp703Xff1fp9+vTpAAwZMuSsx2Fvb19nUmfkyJEYDAZeffVVqqqqGD58+Fm/hlzYesXGsmvfPlJPOVeS9u4lPTOTPvHxdcaEN2+On48Pa7dutTxaDNWPGa9PTMTL05PwkBBcXVzoHhPDjt27OX7KTN/MnBy27dpF95gY7O3tCQkMpLSsjB82bqx1bmbl5LDll1/o0KYNbmdIrovI7wI7tST/UBqlWfmWY3kH0yjLKiSoS+Rp41I37eHQoq2YTb9fE3L2HqfwaCYtelVv/uMVGohfmxa1frxbVi+L4ervhV+bFjg4OeIe7Iuztxsnth/AZPj9nDYZjGTsOISjhwvuzXybduAiQqf4WA79uo+s9N+v6Qf37CPnRCYxvbqdNu7HFWtZ9OWcWvee+3buIfnAYXoNPv0OpSJydnpGtmJ3aiqpefmWY7tSUkjPL6DPKevLnyrMzw8/D3fW7dtf63HjSqORDQcO4OXqSpifH62DgogJC6v1Ex0SAkAzb29iwsJwdnSsd3siYruadErOm2++iYeH9RokQ4cOpUWLFrz//vtUVFQQEhJCUlIS8+bNw8XFhZKardlP8vHx4fHHH+e2227D19eXOXPmkJ6ezrRp0yzTnZ966iluu+02rrvuOv72t7/h6+vLkiVL2LlzJ//4xz/wa+Qft2uvvZYNGzYwa9YsduzYwZVXXklISAg5OTksW7aMffv28frrr1tmD/r6+mJvb8+qVato0aIFV1xxBQMGDOCjjz7i4Ycfpl+/fmRlZTF79mzLrMg/jnvbtm3cd999DBw4kO3btzN//nyGDx9O7969z3oc/v7+/PTTT8yYMYP4+HhiY2MBaN++PW3btmXp0qX06tXrjOsgysVtVEIC6xMTmTR1KiMGD6bSYGDRqlW0joigf/fuAGRkZ7Pv8GGiW7emWWAg9vb23HHDDbwxfTr/ee01Lu/dG7PZzJotW0jLyOD+8eMtswhvGT2aXw8c4PkpUxg+aBCODg4sW7cOZycn/lazLqWDgwN/v/56pn3xBf99+20G9OhBUUkJK9avx97Ojr9ff/15e39ELjZh/TuTueMQu6avILRfZ8xGY/V6fqEBBHet/pBRlltE4bFMvFsG4+ZfPRsofEAMv329ll+/WElAx5aU5xeTunEPfu1aENy19Zle0oqdvT1RIy/jt6/X8Mt7SwiJb0tVVRUZPx+gLKuA6Bv6Y681iUSaXP/hg/nlx5/45NVp9B12OUaDgY3L19CiVTixl1V/yZebmU3ywSNEtInEP7h61nD/q4bwzbuf8OXbH9GxWxfyc3LZtGItbTq3J7Z39/M5JJFL0qiusWw4cID/LVnC1V1iqDSaWJyURGRQIP3aVk+SySgsZP+JDNqFNKOZtzf29vbc3rcPb/2wkqfnL2BQdDTmKjNr9+4nLT+f+y6vvs+ur6ZuT0QuPU2aEFy82HrNIajeLOPDDz/k5Zdf5vPPP6eqqoqIiAiefPJJjEYj//vf/9i9ezedO3cGICoqiltuuYW3336b9PR02rVrxwcffED/Ux41jIuLY+bMmUydOpVPPvkEo9FIZGQkL7/8MmPGjGn0WOzt7XnrrbdYsGABCxYs4Msvv6SoqAgfHx/i4+N57rnn6NKli6W+m5sbjz76KNOnT+eFF14gIiKCBx98EJPJxNKlS1mzZg3BwcH06dOHO+64g6uvvpotW7YwdOhQSxtvvvkm06dP53//+x++vr7ce++93H///Y0ax1133cW+fft44403uPbaay0JQaieJfjGG28wYsSIRr2GXNh8vLx47pFH+GzuXL5duhQXJyd6dOnCuNGjcapZv+S3Q4d478svufeWW2gWWP3hoWdsLE898ACzly1jZs1uwZFhYfx7wgTiOna0tB8UEMAL//gHXy1YwKJVq6iqqqJDVBTjrrnG0hbAgJ49cXJ0ZMHKlXw+dy4uLi50bteOm0aMoIUS0iL15uzpRpf/G87hJYkcW7kDB2dHAjpEEHlld8smHoVHM9g/eyPtru9nSQgGdm5F9NgBpKzfxeGliTh5uhHWvzPhA7vUWgewvgI7tSTmjmEkr/6Foz/8DIBniwA63ZaAf7uwphuwiFh4eHtx18SHWDpzHqvmL8PZ2ZkOcTEMu2EkjjXX9KP7DzNvxteMueNmS0KwU/dYbrjnVjYsXcmyb+bj4e1JvysHM+DqBO0wLHIOeLu58d9RI/n8x818t+1nXBwd6d6yJeMu62XZxGNv+gneX7uOCYMG0szbG4CekZH85+qrmfPzz3yT+BMAkYEBPH7llXSNOP2yAKfT1O2JyKXFrkoLB9isDz/8kKlTp7Jx40Z8fHwa3V5hUlIT9EpELhR35yw/310QkSZ2V1Tdm7GJyMUpfsGG890FEWlifg8+fL678JfLm/r2OW3fFt/T+tBXgjaqsrKSuXPnkpCQ0CTJQBERERERERERuTjYzLaeJpOJ3NzcetX18vI64+7BF7OMjAxeeuklDh48yLFjx3j11VfPd5dEREREREREROQvZDMJwfT09Hrv1vvSSy9x7bXXnuMenR8+Pj5s27YNo9HIf//7X2JiYs53l0RERERERERE5C9kMwnBoKAgPvnkk3rVbdOmzTnuzfnj6urKxo0bz3c3RERERERERETkPLGZhKCLiwt9+vQ5390QERERERERERE5r7SpiIiIiIiIiIiIiA1RQlBERERERERERMSGKCEoIiIiIiIiIiJyikceeYTo6Gjy8vKsyv79738THR3Nvffea1VWUlJCx44deeyxx/6KbgJw/PjxBscoISgiIiIiIiIiInKKHj16AJCUlGRVtnXrVpycnPjpp58wmUy1ypKSkjCZTPTq1esv6ee7777LHXfc0eA4JQRFREREREREREROcbqE4NGjR0lPT2fEiBEUFRWxZ8+eWuXbt28HoGfPnn9JPzdv3myVlKwPJQRFRERERERERERO0bZtW3x9fdm5c2et41u2bMHe3p4JEyZgZ2fH5s2ba5Xv2LGD4OBgIiMj/8ruNpgSgiIiIiIiIiIiIqews7Oje/fu7Nq1q9bxLVu20L59e1q1akV0dDRbtmyxlFVVVZGUlGSZHWgymfj4448ZNmwYnTt3pl+/fvz3v/8lNzfXErN161aio6OZN28eI0eOJCYmhokTJwKQmJjIuHHj6N69O3Fxcdx0002sXr3aEjt48GASExNJTU0lOjqaqVOn1nt8SgiKiIiIiIiIiIj8QY8ePcjPz+fo0aNAdcIvMTHRsj7gZZddxvbt26msrATg0KFDFBQUcNlllwHw6KOP8uqrr9KuXTsmTpzIlVdeyezZs/nb3/5GYWFhrdd6/vnn6dmzJ//6178YMmQIhw8f5p577qGqqopHH32Uf/7zn5SVlXHfffexbds2AJ588klat26Nn58fkydPZujQofUem2Nj3xwREREREREREZEL0ZAhQ85YvmrVqtOWnZzpt3PnTlq1asX+/fvJycmxJPx69erFp59+yvbt27nsssvYsWOHJW79+vWsWLGCW2+9lf/85z+WNuPj43nkkUd4//33efzxx2sdf/rppy2/f/TRR5SWlvLOO+/g7+8PwFVXXcVNN93Eb7/9Rvfu3UlISOCzzz6joqKC0aNHN+h9UUJQmox3ly7nuwsi0oS+Qee0iIjIBe3Bbue7ByIijeb34MPn9gXmLzzr0Pbt2+Pl5UVSUhKjR49my5YtODg40L17d6B6BqGDgwOJiYmW2YIhISG0bNmSTz75BIB77rmnVpvDhw/n7bffZtWqVbUSgic3MTkpJCQEgEmTJnHnnXfSuXNn/Pz8WLFixVmP51RKCIqIiIiIiIiIyCXpTDMA/4y9vT3x8fGWjUW2bNlC586d8fT0BMDLy4sOHTrw888/A/DLL79YHidOSUnB29ubwMBAq3ajoqJYv359rWMnZwGedOWVV/LDDz+wdOlSli5dSlBQEAMHDmTMmDGWhGRjaA1BERERERERERGROnTv3p29e/dSUVHBtm3bLI8Ln9SrVy+SkpLIzc3lyJEjlseMq6qqTtum2WzGycmp1jEHB4davzs5OTFlyhQWLlzIgw8+SIsWLZg7dy7jxo3jww8/bPS4lBAUERERERERERGpQ8+ePTEYDCxbtozCwkLLDMCTLrvsMkpLS1myZAlVVVWW8tDQUAoLC8nOzrZq88iRIzRv3vyMr5uWlsa2bduIjo7mgQce4Ntvv2XNmjW0atWK6dOnN3pcSgiKiIiIiIiIiIjUoVOnTri7u/PNN9/g5OREfHx8rfL4+HgcHR2ZN28eoaGhhIeHAzB48GAAPvjgg1r1V65cyZEjRxg0aNAZX/f999/n9ttvJyMjw3IsJCSE4OBg7O1/T+fZ29tjNpsbPC6tISgiIiIiIiIiIlIHR0dH4uLi2LRpE927d8fV1bVWuYeHBzExMezYsYMxY8ZYjg8cOJAhQ4bw+eefk5GRQa9evTh69CgzZ84kPDzcarORPxo3bhwLFixg3LhxjB07Fh8fH7Zs2UJiYiIPPfSQpZ6/vz8//fQTM2bMID4+ntjY2HqNSzMERURERERERERETuPkDsB/XD/wpJOPCZ9cPxDAzs6Ot99+m4cffpi9e/fy0ksv8f333zN27Fhmz56Nt7f3GV8zOjqaTz75hJYtWzJjxgwmTZrEgQMHePrpp7nvvvss9e666y5atWrFG2+8wZw5c+o9JruqM61yKCIiIiIiIiIiIpcUzRAUERERERERERGxIUoIioiIiIiIiIiI2BAlBEVERERERERERGyIEoIiIiIiIiIiIiI2RAlBERERERERERERG6KEoIiIiIiIiIiIiA1RQlBERERERERERMSGKCEoIiIiIiIiIiJiQ5QQFBERERERERERsSFKCIqIiIiIiIiIiNgQJQRFRERERERERERsiBKCIiIiIiIiIiIiNkQJQRERERERERERERvy/3RgauB3sX0WAAAAAElFTkSuQmCC" + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQQAAAJKCAYAAAB6a0gJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gU1dfA8W/apm3KpvceEkinJITeO9KlSVEUUBBRFMUCCNIFRUSKNOmgBARCR1roLYQWSAKppEJ6YZPNvn/EHRMICL6Wn3I/z8MDbJmd3WT2zpx77jlaarVajSAIgiAIgiAIgiAIgiAILwTtf3oHBEEQBEEQBEEQBEEQBEH4+4iAoCAIgiAIgiAIgiAIgiC8QERAUBAEQRAEQRAEQRAEQRBeICIgKAiCIAiCIAiCIAiCIAgvEBEQFARBEARBEARBEARBEIQXiAgICoIgCIIgCIIgCIIgCMILRAQEBUEQBEEQBEEQBEEQBOEFIgKCgiAIgiAIgiAIgiAIgvACEQFBQRAEQRAEQRAEQRAEQXiBiICgIAiCIAiCIAiCIAiCILxAREBQEARBEARBEARBEARBEF4gIiAoCIIgCIIgCMILS61WP/dzKisrAVCpVH/o+YIgCILwT9NSixFMEARBEARBEIT/uMrKSmJjY7l48SJaWlro6+szb948Nm/ejIeHxxOfo6WlhZaW1lO3rVQqkclkf8VuC4IgCMJfQmQICoIg/MNUKhUVFRX/9G4IgiAIwn9GZmYmu3fvRqlUSrcdOHCAQYMGsXLlSu7evUudOnV45513sLCwqPHc6vkS2trajwUDHz58yIEDB0hISGDhwoU0bNiQDz74gKysrL/2TQmCIAjCn0hkCAqCIPwBmZmZFBcXExsby7Zt21i5cuU/vUuCIAiCIPxq2bJlrFq1ip9++glnZ2cAOnbsSHFxMV999RXe3t7I5XK0tLTQ0dGRnldZWYm2dlXORFZWFgkJCQA0atQIXV1dAG7fvs2gQYMwNjbG29sbFxcXGjZsSIsWLZDL5X/zOxUEQRCEP0b3n94BQRCE/2XFxcUYGxtL/z99+jQzZswgPj6eV199FXNzc3R0dMjLy8Pc3Fx6nFqtlpYZaS4sHlVaWkpZWRk3btxg8+bN+Pn5MXjwYExMTP7qtyUIgiAI/2l9+vShVatW2NjYoFKp0NHRwcDAAEdHRxo1alTjsZrlvmq1Gm1tbe7evcvs2bM5deoUenp6GBoa4uvry+jRo2nUqBEmJiY0b96cvXv3MnjwYEaOHIlarf7dZcWCIAiC8L9EBAQFQRCe4PPPPyciIoKdO3fi6uqKWq1m+fLlZGdnM3nyZFq1aoVcLqdfv36YmprWeO6jGQcFBQU1HnPhwgUmTZqEra0tRkZGJCcn4+HhIYKBgiAIgvCc1Gq1FMzTsLKywsrKqsbj3NzcuHr1Kl999RWenp40aNCAmTNnkpeXx7Jly5DL5WRmZvLhhx+Sk5PDlClTcHJy4urVq2zdupXp06ezbNkyLC0tUSgUGBoaEhISAiCCgYIgCMK/jggICoIgPEKzXKhHjx40adJEyvzLzs7m/v37BAcH079//xoBv0fl5+ezatUq9u7dS25uLt7e3nTp0oUuXbpgYWGBhYUF1tbWXLp0ib59+/LFF19IS5EEQRAEQXh2tTX9UKlUREdHk5ubS3BwMF988QX79+9HT0+PZcuW8fLLL9OgQQOMjY2JjY2luLgYuVzOyZMnuXXrFmvWrJGCfY0bN6Z58+b07NmTbdu2MXbsWJydnVEqlSIQKAiCIPxriatPQRCER2gyDIKCgmqc6NvY2ODm5kZGRgbp6emoVCocHR1ZsGABRUVFTJs2DZVKhVKp5Msvv+TgwYN07doVW1tbzp49y4wZM4iOjubLL7/ExsYGU1NTZDIZr7/+OjY2Nv/U2xUE4RGabKNn6SwqCMJfQ1N6Q61Wo6OjU+NYrL48t7i4mLi4OLKysnB3d8fb2xuAvLw85syZQ3JyMgcPHqRTp05YWVmxfv163nnnHYYOHYqenh5eXl7s27ePvLw8rKysOH/+PKampoSEhJCSksKtW7e4evUqcXFxAERFRTF69GhcXFyorKwUjUQEQRCEfy0REBQE4YWmUqkAamT7PRoIyM7ORqFQ8NVXX3HhwgUKCgpo164ddevWZfv27URFRZGSksK0adPQ0dHh/Pnz/Pjjj8yYMYP27dtjamrKyJEjWb16NXPmzKFHjx40b94cR0dHysrKpMxAUX9IEP5/ioqKyM7Oxt3dvUZjgN+jUqlq1PsUgUBB+P87duwYGzduZPjw4YSHhz/xmHzS2Pdo6Y1HH69UKpk7dy6RkZGUlJRgYmKCgYEB/fr1Y9SoUZiYmBASEkJCQgLl5eV07NgRX19f1q9fDyDVB3ZyckKpVJKSkoKPjw85OTlkZ2cTEhJCaWkpRkZG2Nvb4+LiwsSJE6lTpw66urrY2Nggl8u5c+fOc33fCIIgCML/ChEQFAThP02T6QPUerJe/WIjPz8fHR0dqUNgUVERAwcORKlUsn//frKzs3FycuLatWu88847NG3aFICQkBBu375NWVkZBgYGbN26FU9PT/r06QNUZS+kpKRIr/Pzzz/TtGlT3N3dAUhLS8PBwUEEBAXh/+H+/fsMGjQIa2tr1q9f/9jxrsk2Ah4LMjz6/4SEBO7evYuxsTHh4eF/7Y4Lwr9I9XEqKyuL69evk5iYiEKhoFmzZlhZWUmPycnJ4dixYzRu3LjGcaQ5FrW1tWsE3x8dA+Pi4jh27BgXLlxApVIRFhbGyy+/jKmpKWq1mo0bN7Jt2zZGjhxJ/fr1KSoqYunSpaxbt46XX34ZhUKBvb09xcXFpKamYmFhga2tLebm5ty9e5fCwkJMTEywsbHB0NCQhIQE2rVrh6WlJTKZjGHDhtG+fXuMjIwwMzPDwsKClJQUsrOzUalUWFpaYmNjQ3x8PBUVFchksr/3hyEIgiAI/08iICgIwv+se/fucebMGRo2bIiLi8sfCpj9XqbP1q1b+fnnn7l16xYmJibUr1+f1157DT8/P+RyOfb29ty4cYPi4mKmT5/OkSNHmDBhAvb29gQGBgLg4OAAwK1btwgKCiIrK4vs7GyGDRtGSkoKWVlZ0sVDeHg4YWFhaGtrY29vD8D169dp1KiRFLgUBOH5WVpaMmPGDAwNDWu9/0nZRgAnTpzg1KlTdOrUiU2bNrFnzx5UKhVyuZzhw4czePDgxxoHCcKLSEtLi8LCQr755hv27t1LeXk5hoaGlJSUYGZmxrBhw3jllVcA8PPzw9DQsMaEmGYbmmOxqKiIzMxMDA0NpbEUqibKPvroI0pKSnB1daWyspIFCxZw6tQpFi1ahLGxMREREYSFhTF8+HDpuG/QoAFpaWlS9p+joyPa2trExcURGBiIoaEhrq6uJCcnU1BQgImJCQqFAhsbG2lJcGBgIDt27MDKygo/P78a+/7DDz9w9uxZFi1ahLW1Ne7u7iQnJ1NSUiICgoIgCMK/jggICoLwj6qsrCQlJQW1Wo2bmxvwW5ZAVFQUkydPZs6cObi4uNR4nkqlkh73tOYed+/eJSYmhoKCAvz8/Khfv7503549e/jmm28ICQlh3LhxpKens27dOtLS0li4cCG2trY4Oztz5swZ7ty5Q0BAAC4uLpiampKQkIBSqUQmk+Hk5ATAjRs3CAoKwtnZmZiYGPT09Hj55ZdxdXXF2dkZKysrtLS0ePjwIQD29vYoFApiYmKk9y0Iwh/XsGHDWm+vqKjg1q1bnD9/nqysLIKDg2natKkUNLhy5QoRERH8/PPPeHl5sWjRIrS0tFi5ciWLFy/GxcWFrl27imWBwgtFpVI9Nr5mZWUxduxY7t69y6uvvkrjxo0xMjIiJSWFZcuWMW/ePMrKynj99ddxdnbG2NiY5ORk4Lcs/aSkJNauXcvhw4fJzs5GT0+PevXqMWbMGMLCwtDV1WXOnDnk5uYyY8YMfH19MTIyYsWKFVy+fJmcnByMjY2xtbUlKiqKBQsW0Lx5c9RqtTSxp2FtbY1CoeDmzZvSbd7e3pw4cYIHDx7g6OiIqakpTk5O3L17F5VKRePGjalbty4bNmwgICCAunXrUlpayqFDh1i/fj2tW7fGzc2NkpISrK2tOXToEPfv35cakAmCIAjCv4UICAqC8LdTqVRERETw448/Ehsbi56eHhYWFoSHhzN06FC8vLwACAgIQFtbm9zcXIAamX6PXqQ8euFSVFTElClTOHHiBDKZDLVajUqlYvTo0fTr1w9jY2NWr16Nj48Pn376KVZWVujo6BAaGsrdu3el19LUIouPjycgIEDKGoyPj6e8vByZTIa9vT1yuZyrV68ycOBA6tSpw549e+jVqxddu3aloqJCqhO4YsUKYmJiWLBgAVZWVtjb20tZCWK5sCA8naYEwNOCcnfu3MHIyAg7OztpaeLSpUtZu3YtcrkcLS0t1q5dS6NGjRg/fjxBQUEEBAQAVVmGM2fOlIL8FhYWDBo0iJMnT9K1a9e/5T0Kwv+CM2fOsHbtWr777rsagfDvvvuO69evs379eqkDL4Cvry8NGjSge/fu7Ny5k0GDBklBu4yMDHJzc1EoFOTn5zN37lwSExPp0aMH7u7u3L59m/Xr1zNv3jy++uor3N3dSU9Px8bGBltbWxQKBQBjxoypsY/vvfcec+fOZd26daxbtw6oqgtoZWVF7969GTVqFJaWltja2nL79m3peXXr1mXHjh1kZ2cDYGRkhJubG/v27SMrKwsPDw/ef/993nrrLYYPH07z5s2prKzk+vXrhIWF8dlnn0nP69SpE25ubtja2v51PwxBEARB+IuIgKAgCH+roqIivv32W7Zv306zZs3o06cPenp6XLp0ia1bt3L27Fm+++47PD09sbe3R19fn6SkJCkbT7ONqKgofvnlF+kkv02bNvTr109ahrtw4UKOHj3K+PHjady4MaWlpcydO5eff/6Z5s2b4+npiYGBAUlJSVy7do1mzZqhVCpp1KgRrVu3lvbX3d0dmUzGrVu3AJDL5bi6uhIbG0tJSYl0waNZWgzQrFkzvvnmG3bt2kXXrl2lYOCNGzdYvHgx7u7u6OrqYm5ujqOjIwcPHgQeD3IKwoumep0/TX2x6qqXAMjMzKSoqAgnJyf09fUBOHToEGPHjmX48OF89NFHaGlpsXnzZr799lsGDBjAwIEDMTAw4OTJk0ybNo2SkhK2bNmCh4cHOjo66OnpSQ0GZDIZdnZ2ODs7Ex8fL72+IPzXqdVqTp48yS+//EJxcbGUSZuZmcmuXbt46aWX8Pf3lx6rpaVFRUUFFhYWbNiwQcr2B/Dw8CAqKorU1FQUCgUbNmzg8OHDTJ06lQEDBkiTeUZGRixZsoS4uDjc3d1p3749CxYsYOjQofj6+qKjo4OHhwcNGjQgICAAW1tb6taty7fffsuDBw+4evUqqamp5ObmcuLECVatWkVQUBD169fHycmJ6Oho6biuU6cOFRUVZGZmAmBoaIi7uzv379/n3r172Nvb07RpUyIiIvjpp5+4fPkyBgYGDBw4kA4dOtRY2hwWFkZYWNjf98MRBEEQhD+RCAgKgvC32rZtG2vWrGHixIn07dtXqsvVu3dvmjRpwnvvvcfkyZNZuHChlEGXnJxMUVERFhYWVFZWsmLFCvbs2YODgwP16tXjzp07fPfdd6SkpDBlyhRkMhlXr16ladOmDBkyRHrtVatWkZeXh42NDQCvvPIKH3/8MWPGjMHU1BRdXV3c3d3x9/enRYsWNG3aFHt7e8zMzEhISAB+yyQ4duwYBQUFWFtbY2lpiZOTE2fPngXAx8eHN998k2+//ZZBgwbRoUMHtLW12b59O1ZWVnz88ccAyGQyfHx8SEtLIz8/HzMzs7/zRyEI/3N+rwRASkoKX3/9NSdPnpSW67Vo0YIhQ4bg4eGBk5OTlJEEVcsb165dS7169Zg6daq0HVdXV4qKili4cCEHDhygdevWODg4kJ+fDyBNPlhZWWFnZ8ft27d5+PChFHgUhP+C2hrtaLIBraysAMjNzZUCglFRURQXF9OqVSv09PRqZA5qJr40wcDy8nL09PTw9vZm//79JCYmEhAQgJ2dHaNGjaJXr14AUn2/2NhYtLW1uXPnDgADBgxAoVCwf/9+cnNzycjI4NixY6xevZrg4GBWrVqFgYEBpaWlmJmZ0aVLF+l9tWjRgldffZWsrCxkMhnu7u4cPXqU+/fvS92CAW7fvi1l8Nva2mJmZkZZWZn02Xh6ejJx4kQxESAIj1CpVJSWlkpN+J7nedra2r+b6S8Iwt9HBAQFQfjb5OXlsWzZMlq0aMFrr70m3a65KOnSpYuUlaO5GPHy8uLWrVtkZ2djYWFBREQES5cu5dVXX2X48OEYGxtTXl7O119/zYEDB4iLiyMkJIR69eqxceNG3nnnHZo0aYJarcbW1pagoCDpddu1a4etrS3Xr1/nzp07JCYmkpaWxvr16zl8+DDbtm3D0dERKysrqSi6gYEBrq6ulJSUkJmZKWUaurm5ceTIER48eICFhQVjx47F1NSUXbt28d1331FeXk5gYCDvvPNOjTpnY8eOZezYsX/TT0AQ/hlP6/BbXUpKChcvXuTWrVuYmprSunVrfH19garM4Hnz5hETE8OoUaOwtrbm/PnzbNq0CR0dHT799FMcHBxQKBRSUEFHR4ekpCSGDRsm7QdUBR7btWvHokWLiI6OpkOHDjg5OZGcnExOTg5WVlZS5pKjoyMXL14kOTkZb2/vv/JjEoS/VW0BeG1tbTIyMrh48SIA3bt3x8bGhhUrVlBSUgJUXdT/Hs3Fvo+Pj1QrGKom/6CqmVZERAQXLlwgNTUVa2trtLW1SUpKAsDExIR+/frRr18/0tLSUKlUyGQyVq9ezdq1a4mKiqJBgwa8/PLLtG/fnrfffpvKykqys7PZvn07gJTFaGVlhVKp5Pbt29jb22NhYUHTpk1xc3OTvpfatGkjTeppPpvqfwvCiywmJoYjR46QmJjI0KFDGTJkCBMnTmTIkCGPHSOa0h7AY0E/zfeN5jn379/HwMBAmnQQBOHvJwKCgiD8aaov9atOs6To4MGDPHjwgM6dOwNIM/PVL0ratWtX47m+vr5S8W+o6jwcHBzMO++8g4GBgfQ4CwsLSkpKSE5OJiQkhBEjRnDv3j2OHTvGkSNHUCqVANja2tKtWzc++OADdHR0CAwMJDg4uEb2z/Lly1mwYAE3btwgPDwcR0dHTp8+TXZ2NtbW1tja2mJgYEBCQgJhYWHo6OhImY63bt0iPDycyspKhg4dSpcuXVCpVKK+kPBCeFLg79HAg2bpXvXO4ZomQmq1GlNTU7Kysti4cSOff/45bdq0ITMzk4MHDzJz5kx69uyJlpYW3bp1IzQ0FGtrawBMTU2xs7PjypUrFBYWoqWlhaGhIdra2jXKDkBVkMDKykpaNuju7s6hQ4e4e/dujYCgu7s7FRUVxMfH4+3t/Ye6nQvC36myslL6PX1SFo5KpZIa7SQlJeHi4kKbNm1wcXHh2rVr3L17F11dXZydnZk4cSL29vbSmFtcXPy7+6A53j08PJDJZFJjEYBdu3axaNEijIyMaNy4Ma1atSI8PJwmTZpw7949AMrKytizZw9169alXr160nMbNWrEDz/8gEwmw9LSEn9/f3744QdiYmJwcHAgLS2N1NRUpkyZImUCahqHeXh4AKCnp8fKlStr3V9BeJHl5uaybds26tevLzXnuX37NhMmTODhw4cEBQVhbm7O119/jZeXV61jYfXSHtWp1WoOHTpEcXExKpWKGTNmYG5uzpQpU2jZsqUYWwXhHyICgoLwglKpVMTGxuLq6vrMKf+/V9Bfc3tlZSXp6emYmppiYmJCRUUFenp60kWEoaFhjcc/ja+vL6WlpdJF+9tvv824cePIzMxk7969nDp1iqioKPLy8tDW1iY9PR0AR0dHFi9eTFFREdeuXSMzMxOlUslPP/3EypUr6dOnD3K5nLlz5/LSSy/RokULoCpQUVxcjLa2Nnp6egA4OTmRn59PbGws1tbWmJqaYmBgwL1796SgQa9evWjbtq3UEEXz3jSZjoLwX1NbB9InLflNTU1l06ZNHD9+nJKSEoKCgujXrx/h4eEAFBYW8uGHH1KvXj3Gjh2LhYUFubm5jB8/nnPnztGyZUspgLh3715sbW2pU6cOhYWFtGrVqkZ2gYuLC1FRUSQlJVGnTh1sbGxISkqSyg5oJiLKysqkDGMAZ2dnoOrip1GjRtL2PDw8MDAw4NatW3Tu3FlctAj/MzTNsrS1tWuMp9X/rVarpTG4+u/uhg0bWLJkCWZmZhgYGPDzzz+zY8cOZsyYQbt27bC2tuajjz5CV1eXZs2aAUjNdjRBuycdByqVipycHBQKBc7OzigUClJTU1GpVFRWVrJo0SLkcjnz5s3D09NTep5MJiM1NZWcnBx0dXWZPXs2VlZWjBo1Cjc3N+7du8e3336Lm5ubNNbOnj2bdu3aceDAATIzM6lTpw6jR4+mSZMm0jJmf39/KVtQEIQnS0lJ4eeff8bKyorAwEB0dXX58ccfSUlJYfr06XTt2hU9PT3c3d1rPK/6d0tCQgJXr16lpKSEsLAw6RgvLy/n4MGD7Ny5k4CAAPr3709AQIAUqBfjqiD8M0RAUBBeAKmpqSQkJHD9+nXOnz/P7du3yc/Pp6KigiVLltC6desag/mTLnirz/rV9phDhw6xdOlSbt26hbGxMXXr1uXll1+ucRGtq6srnaQ/KSBYvS6R5qQjLS1N2oe7d+/y5ZdfkpycjL29Pa+99hqdOnWib9++pKSkUFZWhoGBAbGxsbi4uNC0aVNp2wYGBnz00UekpaURHBxMdHQ0Bw8e5OWXX6ZOnTrcvn2bvXv30rdvX3x8fICqZcv16tWT3q+3tzeHDx+uEYSws7PDzs7uOX8ygvDvUFv276OBvzt37iCXy9m7dy979+7Fzs6Or7/+mtzcXGbOnMnt27cJCwvD1NSUgwcPsmfPHubPn0+XLl1ITEwkLy+PXr16Scv6nZ2d2bVrl3ScOTs788Ybb/D9999z/PhxAMzMzHB2diYoKIj+/ftTp04dXFxcUKvV3L59G39/fwICAjhx4oSUvav5/klNTSU+Pp7GjRsDVYFEU1NTqeu3hp2dHaWlpVy/fv0v+GSFF01aWhrXr18nOjqamzdvcvnyZRYvXkzTpk1rjH3PQjOmPiomJoZ169Zx8eJFdHV1adKkCX369JG6aV+5coVZs2YxePBgBg4ciKGhITdu3GD69OlER0fj5+dHvXr1cHNz49y5c9J269atC0BsbKz0+rXR1PmdO3cuPj4+ODg4kJ6eTk5ODhUVFTx48ICuXbtKgYKKigpWrVpFdnY2JiYm3Llzh9DQUD799FNWrFjBl19+SUVFBSUlJQQEBPDxxx/j5OSESqXCyMiIl156iZdeeumZPzdBEGrn6+vLsmXLMDExkW4zNzdHV1eXwMBAjIyMpNtzcnIwNjbG0NAQLS0tiouLmT17Nnv27EEmk6Grq8vChQt5+eWXmTBhAjo6OjRq1IidO3dibW3Nhx9++E+8RUEQHiECgoLwH1RWVsayZcvYunUrRUVFPHz4ULrPz8+PIUOGYG9vj7W1tVSfq7Ky8rHaHtUvToqLi7l58yZpaWm4uroSHBxc4zVPnDjB1KlT8fHx4dNPP6WwsJDIyEjee+89tLW16dixI3K5HJVKRWFh4VP3v/oFkZ2dHebm5lJjEblczoQJE8jIyJA6CNvZ2VFUVISpqSmpqamUlJSQmJjI6NGjadeuHa+//jp6enrk5OSwbds2rKyspOzFr7/+mg0bNvDLL78QERGBmZkZPXv2ZPjw4dIJUc+ePenZs6e0TzKZrMbSQ0H4X5OamsqNGze4c+cOFRUVNGrU6KmdMDXZv7Ut9Xk0KzgvLw9zc3OWL1+OnZ0d3bt3Jy8vjy5dutC6dWtSU1Nxd3enTp06VFZWsm7dOk6fPs20adNo06YNMpmMDz/8kNdff5358+fj6+uLm5sbHh4eTJo0iUOHDuHi4oKOjg5+fn4EBQWhUCjQ1tbmzTffpEOHDiQmJhIbG0tKSgqpqals2LCBgoICKeNIX1+fGzdu0Lt3b7p160ZkZCRff/01ZmZmmJqakpKSwty5c7GwsJACCQ4ODjx8+JArV64AvzVJ8PT0ZNu2bVJ2lCiELjyP69evs2XLFs6dO0daWhrl5eUYGxvj4OCAh4cHAwcOlCaTqmfZV/8/1JyEKy8vJyEhAWNjYzZu3EhUVBTNmzdn4sSJXL9+nSlTplBZWUnHjh0pKytj79697Nq1i+XLl9OgQQMSEhLQ1tamb9++UlDOwcGBpk2bShn8enp6ODo6UlxcLNXGNTc3Jzg4mKioKNLS0nB0dKyxX5pl+devX+fWrVvSqgB3d3du3LhBeno6/v7+eHh4sGHDBvT09PDy8uLs2bMcO3aMkJAQLl68yNatWwkNDaVHjx40btyYS5cuoa+vj7e3t5TJq1arxTJfQfh/0JQW0NbWlo5hmUxWo4s2VE2WVVRU8PXXX+Po6EiPHj24evUq06ZNY/Xq1YSHh1NeXs7s2bPZuXMn48ePJzQ0lIKCAvbv38/333+Ps7MzL7/8srTtOnXq/O3vVxCE2omAoCD8B2lpaWFmZkbr1q2pV68e/v7+nDx5koULF9KhQwdGjRr12HK/6h0G4+PjKSkpkYJ+27dvZ9GiRdy/fx+5XE55eTktWrRg5syZyGQylEolixcvxsnJiZkzZ0r18l5//XX69OnD4sWLadGiBR4eHujp6REfH//Ujp2bN2/mwoULjBs3DhcXFxwdHUlKSkKpVBITE8Pdu3d58803efnll6XnXLp0iXv37mFiYkJWVha+vr5069aN1atXc/bsWezt7UlMTERXV5ePP/6YoKAgVCoV/v7+fP755+Tk5GBtbS0tExaEf4vS0lIiIiKIjo7m8uXLZGRkUFFRgVwux8zMjOzsbDZs2MCAAQN45513at3G07J/tbS0iImJYenSpZw9exZTU1NGjhzJggULaNu2LS1atEChUODn58eRI0f44IMPGDRoEFAV0Ni/fz+dOnWie/fuQFXQIC8vDwcHB6Kiovjll1944403+OCDD1i5ciUXLlzg+PHjFBUVAVWBijFjxtCnTx90dXXx9vYmICBA2p5arWbkyJGcP38etVqNk5MTCoVCak7QpEkT5syZw+TJk3nllVdwcXEhKysLc3NzZs+eTWBgoPQ6K1eulC5YqndP1UycCMKz0kyoJSYmsnXrVlxdXZkzZw7GxsbY2tqiUCgwNjZGX1//sXFH87unUqlITU1FW1tbCoQBXLx4keHDh9OxY0fu3LlDUFAQ7u7uqNVqFi9eTH5+Pl9//TXe3t4YGBjwwQcf0LNnT7788kvWrFlDvXr1MDQ05LXXXqNVq1aYm5tjbGxMSEgIAQEBGBsb13jN27dvS5m0/fr149q1a6xbt46xY8fWKDkik8m4du0aZ86coV27dlKw0c/Pj59//plbt24RHBzM2LFjWbZsGcuWLQOqJv6GDBlCly5diI+Px97eXtqmra2tVHe4OrG8UBD+f540uXXjxg0OHjxI7969OXToEHPmzEFHR4czZ87QuHFj9PT0sLe3R0dHh9zcXAAyMjLYvXs3EyZMYOjQodK2wsPDpeZfXbp0wdnZGUNDQ1Qq1WN1fQVB+GeIgKAg/Afp6+szaNAg1Go1urq66OjoYGxszMKFC6Uae9VPBLKysvjiiy/o3r07y5Yt4+bNmzRv3pylS5dy6NAhpkyZQvv27enTpw86OjpcuHCBRYsWYWxszKRJk8jPzyc6OpoFCxZga2tLaWkpcXFxpKamUlZWRkJCArGxsQQEBODk5MSZM2fo37+/tLSvetaDnp4e169fZ9++ffTp0wcXFxfq1KlDVFQUBQUFGBsbY2Zmxi+//ELjxo0xNDTk7NmzrFmzBiMjI27fvs3u3bvx9fVl7NixNG/enMjISCoqKmjSpAlNmzaVOoVqgqC1zYgKwr9FRUUF06dPB+DVV1/F1dUVJycnqWvngwcP+Oyzz1iyZAmdOnWSlsJrAhaaSYDbt2+jr69Pq1atagQoUlJSmDFjBjk5OYwaNYrS0lI2btwIwMOHD8nPz8fc3BxnZ2euX79OSEiIlGV0584d1Go1sbGxTJgwQcoSKisrw9LSkuDgYKnOZosWLWjRogV5eXncunWLyspKMjIymD17Nt9//z19+vRh//79/Pjjj0yfPh1XV1cePnxIfHw8GRkZKBQKtLS0sLW1RS6XExMTA1Qd3y+99BL169cnMjKSBw8e4OPjQ2hoqJT1p/Fo5rMg/FGacc3X1xdzc3MUCgVdunR5pudevnyZb7/9lnPnzqGnp4e1tTUdOnRgzJgxGBgY4O7ujpGREfv372fZsmWEhoaip6dHbm4uR48e5fPPP5cC3UVFRTx48ABbW1vOnz/P9evXqV+/Ph999BFbt27l1KlT5OfnU1paClRl7nz88cc0btxYGhevXr0qBQS7devG1atXWbNmDVpaWrz22mtS056YmBgWLlyISqWiR48emJmZAVUZRg8fPpRKf7Ro0QJ/f38yMzOxt7fH3Nxceu+aBkGCIDy/JzX2elRWVhZXr14lOTkZa2trOnXqJGXFnzt3jiVLlhAaGkrz5s1xdXVl3LhxNGrUiM8//xwbGxugarJMM/F27do1SktL8fHxISEhgYsXLxITE0NKSgoJCQno6emRmpqKq6srtra2UnkfERAUhH+eCAgKwr+cSqWSUv6rB/keHWQ1F753794Fas6ua2trc+DAAc6ePUujRo146623sLCwAGDlypUEBwczY8YMqcNgWFgYOTk57Nixg4EDB0pLeb/55hu+/PJLsrKyqKysxNTUFH9/fxo3boyRkRG6urp07NiRJUuWEBUVxaBBg2osVdbT0yMjI4NDhw7h5+dHSEgIUFUQfO/evaSmptKsWTNeffVVvv76a1577TVMTExQKpW0a9eOV199lRUrVkgFio2NjWnSpAlNmjT5Kz56QfhLpKSkUFlZiaur6zM93sTEhMDAQJKSkhg+fHitHa3Hjh3LJ598wp49e3B3d0cmk6Gtrc2NGzeYPXs20dHRGBsbo1KpcHJy4qOPPiI0NBSAHTt2cP36debMmUPXrl2BqqDARx99xJ07d3jw4AGurq54eHigr68vZfZB1QWJmZkZV65cwcHBgZYtW+Lr64uLiwvW1tZUVlZKNYlycnK4du0arVq1qrG8+dixY5w+fRq1Wo2trS3nzp1j+PDhdO3aFW1tbS5evEhpaakUFJXJZDRv3pzCwkJKS0ul4KSTkxOjRo36Az8RQfh9muV3UPV7rxljbW1tsba25s6dO8Bvy/M1j320E3BsbCxTp06ltLSUCRMmYG5uzuHDh/n+++/Jycnho48+krapadCj+R2/ceMGRkZG7Nu3jwMHDhAXF0d2djaVlZW4uLjQuHFjabzt27cvffv2JTMzk7t376Knp8fly5f58ssv2bp1K40bN8be3h4rKyupfqamPu8777yDvr4+q1evZvv27fj7+1NUVER8fDwODg58+eWXtG7dWmrg07BhQ44dO1bju8nCwkI6zxCEF51mcjwpKYlJkybh4+PDlClTpGPoUZWVlbWW+Hi0sZdmor261atXs3btWoqLizE3N+fBgwesXbuWZcuWoVAo8PLywsDAgPT0dBo2bIiXlxeurq7cv39f2heFQoGVlZX0vZaXl4e+vj7Dhg1DR0dHmiR0d3dn6tSpODo64ujoiI6ODm5ublIZIFNTU9GoSxD+YSIgKAj/kIcPH7Jp0yYuXrzIokWL/vB2qg/8TxpU1Wo1+vr62NrakpaWxv3797G0tJQer1AoCAgI4OrVq7z55pv4+fkBkJ2dTVJSEi+//DJlZWVcvnyZq1evcvfuXU6cOEFpaSk3btygXr16GBsbU1FRwdChQ7Gzs8PZ2RkrKytkMhkPHjyQlhV169aN06dPM2/ePOzs7GjTpg1qtRqlUkl6ejpfffUVubm5fPDBB1IA0s3NjbKyMuLi4mjWrBlDhw6lTp06xMTEYGlpSVBQEJ6enmhra/PFF1/84c9SEP4J1Wt1PnjwgC5dujB06FDefffdxy4ENEEHTRBBs/Tf2dmZmJgYMjMzsbW1lTqPagLuvr6+2NrakpqaKmUPJCcn8/HHH1NWVsbs2bNxcnIiNjaWdevW8fnnn0v1/a5fv46Hh4cUDISqunqDBw9m0qRJZGdnA+Dj48PDhw/Jy8uTHmdpaYlCocDExITZs2dLyyM131OzZ89GJpPx3nvvsXv3bmbPns2UKVNo1KgRWlpaXLx4kSNHjtC1a1fKy8sJDQ1l9erVbNmyhYMHD6JUKgkICGDkyJFSx2KA999/v9bPunr2RPW6SYLwPDQTcdUDf09afieXy3FyciIuLk6qxfe037sffviBhIQEVqxYIWXl9ezZk8mTJ7N161Zat25Nhw4dcHJyksbz6hl25ubmxMTE0LZtW4KCgvDx8cHR0RFzc3PKy8ulxyYkJJCVlUV4eLgUqPP29ubnn38mMzMTABsbGzw8PDh58iRLly7F3d2djh07olAopGXIBw4cIDExEWdnZ/r3709oaKhUW1Dz/aWnp1frRIUgvAiqn5snJSVx+fJlrl+/jp6eHk2bNqVJkybS/QYGBqSkpNSYXNBso3o9X83fj573JyUlERkZyfHjx8nPz8fb25vBgwfTsGFDdHR0OHfuHIsXL6ZLly707dsXAwMD9u3bx4YNGzh16hRdu3bFysoKuVxOXFycNF7WqVOHM2fOkJqaioWFBcbGxri6upKYmEhZWRm2trZoa2vToUMHPv74Y+m7xsTEhNzcXC5evEh+fj5OTk54eHhw5coVqXSIGIcF4Z8lAoKC8Cd71pkuzcW6QqF4rI6G5qL/acG+zMxMbGxsOHPmDOvWrSMhIQEnJydef/11GjVqVCOQoFKp0NXVlQb0tLS0GgFBHR0dHB0dSUxMRKVSSc+7d+8eCoWCpUuX8v3336Ojo4ONjQ0uLi706dMHV1dXwsPDqaysxNzcHENDQ4YPH15jX+/du8ekSZNo2bIlY8aMwdPTk+nTp/P+++/z1ltvERoaSmhoKGVlZZw9e5a7d+/ywQcfSPXBoCpD8LPPPqNVq1ZA1QxoeHh4jQCAIPwbZWZmcvr0aamOl0KhYPXq1dja2ta63OdJQQcfHx8iIyOJjY2Vlgo++j304MEDACnQfuLECVJTU1m1apX0nMDAQOrVq8eAAQOIjIzE29ub7OxsaVvVa482atQItVotlSHQ1Au7d++e9JpyuZwWLVrwyy+/sGPHDoYMGSLdd+HCBdasWcPgwYOprKzk5Zdf5tixY8ycORM3NzcpuNi6dWvef/99ZDIZlZWVhIeHExQUhL6+/lOXRFVUVNQI2Gg+E9GI4MVVXFzM999/j4+PD507d36uzJTqj63td+j27dvs37+flJQUgoODeemll6SJMDc3NwDi4uLw8/Pj/Pnz3Lhxg9jYWKKiopg5cyadO3cmPz+fmzdvEhoaSv369YHfMnxeeukl9u3bx5EjR+jQoQN16tTh2rVrNQLwDg4OGBgYYGNjw+zZs1Eqlejq6qKtrU1OTg4LFiygfv36DBo0iO+//55du3bx1Vdf4eXlJTUfSUhI4IMPPgCqlu+++eabfPLJJyxbtoxOnTrRsWNHoGq5YN26daXOw48SF/nCi6i27xTN/5cvX86PP/6IUqlEoVBQVFTEDz/8QGhoKPPnz8fCwgJbW1s8PT1JSkqSxttHG36lp6eTmJiItra2lE2vmVhfsGABN27cICQkBIVCwcGDBxkxYgRLliyhefPmnDx5ErlcTu/evaVxv06dOvTv3x9LS0ugalLBwcGBuLg4lEol+vr6BAYGsnfvXjIyMggMDEQmk+Hp6cnevXvJzs7G29sbCwsLsrKypCZJGufPn+fdd99l6tSp9OvXjzp16lBSUiJNJgqC8M8SAUFB+JPExMQQHx9P7969n+nxenp6DBgwAJVKVSMY+GhHz6KiIkpLS2vU1Tly5Ahvvvkmw4YNIy0tjYcPH1K/fn1OnDjBmDFjmD9/Pq1bt66ReQRVgbUTJ06QkpJCYGCgNAMJ4OXlxbFjx6SugABmZmbo6+tjb2/PV199hZGRkTQzqK2tzdWrVykoKMDHx4f27dvz7bffsmXLFvr3749KpSI/P581a9YQExPD+PHjpe16e3uzePFiIiMjiYqKYufOnVRUVODr68trr71G27ZtayxxMDMzY/Dgwc/2gxCEf9DTmuVUpzk2ly1bxuHDh/Hw8JAydxo2bFjrc4qLi7l8+TIXL16krKyMFi1aSMt6NcG427dvA78FDnV0dCguLuann36ipKREyjgqKyvjxo0bGBgY4Ofnx5UrV4iNjeX69evcvHmTiooKTp8+zYQJE5DL5SQnJ0vbg6rvKTs7OymbQalU4uDggImJCcnJyTWW6vbq1YvIyEhmzpzJzZs3CQ8Pp7CwUFreP3ToULS1tTEyMuK7777j6NGj3LhxA4VCQXBwMPXq1cPAwKDGd6NmmfHT6iXVtsxKeLHp6emxdOlSOnXqROfOnWtcuFdWVkrH5aOBd80FuVKpRKlUcvz4cQ4fPoxSqWTQoEE4OjqyaNEi6Xd/586dpKWl8eabb0oZgrq6uowYMQKVSoWBgQG2trZ4e3vTr18/qTzA/fv3KSsrw8jISAqAa36PHRwccHd3l45xHx8f8vPzycrKkvbT3t6eZs2asXbtWo4cOULr1q2BqkD+3r172b17N82aNQOqygjExMTw4Ycf4urqSk5ODmq1mtdee41XX30V+G3yLSIiokYWoiAIVfLy8qSa2ba2tk8sUTNhwgT27NnD4MGD6dKlCzY2NqhUKnbv3s2SJUsYOXIkixcvxtbWFnt7e65cuUJKSgpubm5oaWlRUFDADz/8wLZt28jKykJLS0sK7A0dOhR7e3u2bdvGqVOnmDhxIj169EAmk9G1a1e2bNlCeXk5UNXxOy8vj6lTp9KlSxfkcjmGhoYEBgZKWbxGRka4uLgQExNDSUkJJiYmBAQEAEh1QHV0dPDy8iIvL4+0tDTCwsLo06cP33zzDV999ZV0zh4bG8vs2bNRKBTSKgN7e3sePnzInTt3aNGihZg8EIR/mDhbFoQ/yXfffUdOTg7dunV7LMD3pCVqmova6rS0tEhMTOT777/nyJEjPHz4EHd3dzp37kz37t2xsbHBxMQEPz8/fvjhBwYMGMBbb72FjY0NJ06cYOzYsezevZvWrVs/tpTJ398f+K2OYHU+Pj6UlpbWuLiwsbHB3d2d1NRU7Ozsasz6FRYWMn78eMLCwpg/fz6vvPIKR44cYcqUKZw4cQJ/f3/u3LnDwYMHefXVV2nUqFGN19PU8xo4cCDGxsYia0f4Vzt79iyjR49m/PjxDBs2rNbHVK/5ownG29jYkJ2dLX1nqNVqysvLuXHjBvb29tIJemFhIfPmzWPPnj1SB85NmzbRtWtXZsyYgaenJzo6OiQmJgJVHf/u3LlDQkICFy5c4Pz587zxxhv069cPqGo8lJ+fT05ODkFBQVK2sqaJz4ABA3B0dATAw8ODc+fOkZSUJAUutLS0SE5OluoMFRYWYmlpiYuLC2lpaRQWFmJoaEhFRQX6+vpMnjyZjRs3EhUVxe7du9HR0aFBgwa88847NWolGhoa0rlz52fuKioy/oRnpZl8c3BwIDc3l/z8fMzMzGoswdeMlZrgoK6urnT/u+++S3p6OqGhoZw6dQpDQ0Pi4+OJjo5GrVbTsGFDFi5ciI6ODvPnz2f79u00a9aM8PBwXFxc0NPTw8vLi9mzZwNVy+k1tXU1v9tyuRwTExOpLlf1rCAzMzMMDAyk+7y8vICaGbmGhoYMHTqU/fv3M2HCBPr374+fnx937txhzZo1tG3bVsrwc3JyYvPmzezfv5/09HQcHBwICQmRavBWJ4KBwovq0Yy/S5cusW/fPi5cuEBiYiIlJSUYGBigUCgoKyujYcOGzJo1q0b37Z9++onIyEgmT57MoEGDamx/zJgx3L9/n4MHD5KRkYGtrS1ubm6Ul5eTkJAg/XvFihX89NNP9OzZk9DQUAoLC9m+fTurV6/GxcWFgQMHUlJSQlFRUY2JhICAACkTEKBjx44UFhayaNEili5dSklJCVB1TlC3bl0WL16MQqHAzc2Nw4cPk5+fL01eAKSmpgJVAUFXV1fUajX37t1DS0uLESNGEB0dzffff8/hw4cxNzfn3r17GBsbs2DBAumax8fHh4ULF9KgQQMRDBSE/wEiICgIf5JPP/20RoMMjaddsGZmZvLll1/i6enJ6NGjgaqlAFOnTiU+Pp6+fftibm7OkSNHmDdvHnFxccyaNQsnJyeMjIywsbFh2LBhUsevevXq0bBhQ27cuFHjJEbzt6a7qCZoUD0LQnMRoFn+B1UBy759+xIZGckXX3zBZ599hoGBAffv32fp0qXk5OTQt29foOqCYcGCBURERHDs2DHOnj2Lk5MTb775JoMGDXqsqLGGqanps3/IgvA/RnOcubm58fnnnz+2fK76cVjbcl8DAwMqKyv5+OOPcXJyYvLkyVy4cIHx48czffp0+vXrh1Kp5Pvvv2fr1q2MGzeOLl26oFKp2LhxIxs3bqRXr16EhIRgbW3NuXPnaNSoEYWFhchkMpRKJQDDhw/n7bffBn7LTjQzM0NXV5dJkyZJHbtNTEwwMTHh9u3b3L9/H4AOHTpIFx6TJk1CX1+fiooKNm/eTF5eHgUFBVJdUkdHR6KioqSSBprlTt7e3kyePJmEhAS0tLRwdXV9agafpnTBow0XBOF5aX7fNeOwu7s7d+/eJScnBzMzM+n4vHDhAhs3buTy5cvIZDJatWpFjx49qFevHlA1fmqWx40cOZKuXbty9uxZpk2bBsCoUaOkpcG9e/dm3759JCQkEB4ejpubG8bGxpSUlEjZvLVRKBR4e3sTGRlJenq6FPyHqiZZ9+7dw9bWFqVSiYuLC8bGxqSnp0tlR9RqNQ4ODsybN4+NGzeyZ88e1q1bh1wup1OnTrzzzjtS5i5Ujb+aSQJBEKpkZGRQUFCAi4uLVGJDM5bv3r2bjRs30rhxY8aNG4eTkxMKhQJdXV0OHDjAmjVrWLVqFaNGjZJWC0RGRuLu7k6LFi2A30pvaBqGvPPOO0yePFl6fXd3d3R0dIiNjaVt27ZER0ezfPlyunfvzsSJE6XHBQYG0r17d6Kjoxk4cCDNmjUjIiKCKVOmSF3AnZ2dpWuDpk2bYmhoyJAhQxg0aBA3b94kJSWF4uJibt++zdq1a1m6dCmffPIJrq6ulJaWkp6ejre3N2ZmZpiZmZGWlkZJSYl0DaKtrc3NmzelhkPffvstR48e5ciRIyiVSjp27EiTJk1qfO+Zm5tLExOCIPzzREBQEP6A2mr8abr4VqdWq7lz5w5RUVFcvXoVPT09aXCUyWQUFRVx+fJl7t27JwUEd+3axZkzZ5g9ezbdu3dHR0eH4cOHM2fOHH744QeaNm1K165dsbGxIT4+HktLS+mCx8TEBHd3dy5cuEBubq7UwU9zwaNZtpSSkvJY5zFbW1tMTU1JTk6WBna1Wk14eDivv/46P/zwA9euXcPHx4fc3FySkpL44IMPpMw/TVfUcePGMWLECBHoE14ImosEW1tbunfv/sTaQWlpady9excDAwOpuPeFCxeYPXs2Ojo6ZGVlERwcjJaWFt7e3ujo6NSoDbZ582batm3LW2+9Jd32/vvv06NHD+rUqYOOjg5OTk5kZmby1ltv0ahRI8zMzEhMTOSHH35g37596OjoMGLECOl7wc/Pj23btkm1gKpbvXo1Fy9eZPHixYSHhzN06FCWL1/OrVu3aNu2LQkJCdy6dYt69epx9+5dCgoKAGjdujXm5uZYWVnVeP+af2uymjSf3aMlEjRE1p/wrDTj8ZOaxFRv2GNhYUFQUBBnz54lIyND+r2/cOGC1NGzS5cuZGdns3HjRnbv3s0XX3xB69atCQ4OBqBu3br0798fQKpnefHiRezs7KQLfM3EgCabxtbWFgcHB27cuPHU96I5R4iIiGD+/PnMmjULPT09CgsL+fnnn0lJSWHEiBHIZDJkMhmmpqZER0eTl5eHjY0NWlpaVFZW0rBhQ/z8/EhNTUUul9cILAqCUFNpaSm7d+9mz549XLlyBajKyHV3d6dHjx506tRJCu75+fmho6NDixYtGD58eI3tBAYGEhcXx6FDh+jWrRseHh7ExsYSHx9PaGgoTk5ONRIHNJNiZmZmANL3h4uLC3K5XCoPYGdnx/vvv0+HDh2AqvIhsbGxREREUFlZKa368fHxYdGiRWzfvp309HRSUlKIiYnh9OnTLFmyhBUrVtC0aVOysrIoLCzE399fWjkEsGfPHh48eEBFRQUODg4YGxuTlJRERUUFenp62NjYcOXKFbKysnBzc8PMzIzQ0FCsra2l71mZTEaHDh2kfRUE4X+fCAgKL4zqy/X+v2q7gC0pKeHIkSMYGxtLzS+uXLnCJ598Qnl5OXZ2duTn57Nz504GDBjAZ599hoWFBf7+/sTExKBWqyksLOSXX37Bw8ODnj171ni9MWPGsGHDBg4ePEj37t1xdXUlMjKSvLw8Kfgmk8lwdnbm4cOHUiew6u9fW1sbV1dX0tLSyMrKkjoBamqRuLm5kZqaSn5+vpS5pKOjw7vvvkuLFi2IjIwkOTkZf39/xowZQ1hYmHRCU71mmQgGCv9FT+osWr3gd2FhoVRjE+DQoUN888033LlzR1oa37BhQ+bNm0dAQABbtmzhlVdewd/fn3feeUeq22lkZERiYiIPHz4kMzMTpVJJaGio9D2mVquluj8aHh4eXLhwAX9/fxo0aIBKpcLLy4v69evz8ccfs3LlSoqLixk3bhwWFhaEhYURHBzMkiVLsLa2JjQ0lOLiYvbu3cv27dvp2bOntExo5MiR2NjYsG3bNhYvXoy1tTVvvfUWRkZGvPfee1ImYq9evejVq9dTP8fqn5dYLvRiqqio4P79+1IQ63lUL8FR/e/aqNVqNm3axMqVK8nMzKR9+/ZSo43ExESaNm0qNdvIzc1l1apVuLq6YmhoyBtvvMHAgQOZM2cOrVu3loLZmqWAarUaAwMDPDw8OHjwICUlJSgUCqCqGYehoSEpKSnSBJumE3haWpq0HL82LVu2pH///mzZsoX4+HiaNm1Kfn4+Bw8epGvXrjUya3r16iV9X2hovpMMDQ2l41cQBEhOTmbFihWEhobSrVs3AAoKCli0aBH79u0jMDCQ9957DwsLCxITE4mMjOTjjz8mNzdXCv7Z29sjk8mkpftQdW6gyWb39PQkPj5eCiCWl5eTm5srlQmpXrv7UZrvMgcHBywsLEhJSQHA2dmZ119/nczMTObMmcO5c+fIyMjAyckJR0dH0tPTpe8ZT09P3n//fYqKilAqlVhYWHDhwgXGjBnDjh07aNasGVOmTOH27dvMnj0bLy8v8vPz2bNnDzk5OYSGhqKrq4tcLqeiooLLly/Tt29f9PT06N27Nw8ePJDO8S0tLVm5cuWf+0MSBOFvJwKCwn9Samoq165d48qVK9y4cYOsrCzMzMxo1qwZnTp1qpGloqGpGfR7Nanu379PdHQ0iYmJuLi40LJlS2QyGWlpaUycOJHAwEBatWrFgwcPmD9/Ptra2ixcuBBLS0uKiopYvny5VJTX1NQUR0dHDh48SFZWFra2tmRmZj42m69WqzE1NcXJyUm6wNAsTbp79y4uLi7SRba9vT3a2trEx8fXCBZoAoL16tVj79690kVJ9dlKS0tLLl68SG5urtTlVBMA0XQDFoR/i+odcZ/V07qOPrqt/Px8jh8/LnXEXrlyJfPmzWPXrl14e3uTnJzMjBkz8PLy4u2338bExIQDBw6wceNG2rZtS5cuXQgKCsLd3Z2srCyp6LemCUFSUhJlZWWUlJQgk8koLCyULhg0QUFNENLExERa2hgXF0ezZs2keoQWFhZMmzaNuXPnsnnzZlQqFdOnT8fT05Nx48YxceJExo8fT1BQEAAJCQm0bt26xtIkuVzOK6+8QteuXTE1NZU+ix07dlBRUVFj8qG27r7ViSDgi6X6eHzt2jXu3r2LUqnEzMyMtm3bMnDgQFxdXWs0wdIE32sbjx9tunX27Flu3ryJqakpbdq0wcnJSXrunj17mD9/Pg0aNGDMmDHcvn2bbdu2UVFRIdXey8/P59KlS4wePRpfX19p297e3gwfPpxvv/2W6OhogoODMTQ0JC8vT2oepKWlJU2sJSYm4ujoKH3vuLq6kpqaSk5ODk5OTlKtzFu3bklj75Oal0yYMIHg4GB2797Nzz//jEKhYPDgwQwcOFAKOgKMGzeu1s9cHGPCiyo1NRVzc3Pkcrl0PGmOtZ9++omtW7dKjXWgatzevHkzb731FgMGDKgxvg0dOpT33nuPOXPm4OHhQYsWLbC1tcXGxoZbt25J29A8Pjk5mdOnT+Pu7i4F/W1sbKioqKC0tLTGY2uj+T4wNTXFwcGBa9euUVRUhFwu5/Lly0ydOpWCggLatGlD48aNad++PZMnTyYiIoKUlBS8vb3ZsWMHhYWFvPLKK9Lkha2tLXp6etLEwUsvvcSCBQsYN24cXl5eFBcXc+/ePV577TXpfMbBwYH58+fj6uoqPU/TbEgQhP8WERAU/lMSExN54403SElJwczMTGqKUadOHVJSUvj222/ZvHkzU6dOpV27djVOyGvrLPioU6dOMW3aNHJzc1EoFGRlZREUFMSiRYtwdnbG39+foqIioGoJwJUrV+jduzceHh7o6+tjY2MjFRSHqhMDZ2dnVCoVd+7cwdbWFgMDA0pLS8nMzJQaCqhUKnR1dXFwcCA5OZnCwkIcHR3R19fn1q1btGzZssbSRQsLixonK9W5u7tTUVHBrVu3Hgvwffrpp+jq6kqvC+LCQvj3KS8v56233iIpKYm9e/f+blCw+veA5ve9tsDgoUOH2LZtGykpKTRv3hyoWlrr7++Pu7u7VHg/KSkJb29vjh8/TnFxMW+//bYUnG/cuDE9evTAyclJ2n6dOnWIiori3r170lJbb29vzp8/T25uLmZmZjWOabVaLX0nnD9/npUrVzJlyhQpmKFZZqSlpSVl8NrY2PDee+9x7949fvzxR8rKypg1axZNmjThxx9/JCIigujoaExMTOjWrRstWrSoEeSLiYlh/fr1vP322ygUCpRKJdnZ2WzevBk7O7saXdBFd18Bah+PPTw8aNSoEdra2pw/f541a9aQlpb2WBH+px2zKSkpjBs3juHDh3P58mV++eUXdHV1SU9PZ8uWLaxcuRI7OzvKyspYunQpTk5OLFiwQNp+ixYtGDFiBGlpaahUKlJTU9HW1sbf31867jV/+/v7I5PJuH79OsHBwbi7u5OWlsaDBw+kiTs7OztpLG7atKk0yVa3bl1++eUXsrKycHJykur0Xr16lTZt2tQaENS8tqmpKb169aJjx461Nh8TBOFxX331FcuWLaNTp05MnjwZCwsLKUCfkpLCnj17aNWqlbSc9caNG6xdu5aWLVvy5ptv1tiWSqVCLpczdepUjh8/TuPGjYHflv/HxsZSVlZGaWkpd+7cISYmhmPHjpGSksIXX3whbcfW1hYTE5MatT5rU15eTkpKCnp6ejg7O+Pi4sLp06e5c+cOgYGBbN68mdTUVJYsWVLj3L28vJyKigri4uLw9vbmxIkTREZGcvPmTdq1a8fDhw/ZunUrFRUVtG/fHoAuXbpQr149du3aRVJSEo6OjoSGhhISEiJ935iYmNCuXbs/74cjCML/LHHWLvynaDoG1q1bly+//BK5XI6RkREymQx9fX2uXbvG6NGjmT59Om5ublKmoEql4syZMxw8eFDKuOvXrx8BAQHSRXtCQgJjx47Fzc2NSZMm4eTkRHR0NJ988glz585l2rRp2NnZcfr0abKzs6UleJs3byY2NhZnZ2dpeZGm66CRkZE0c3fr1i3Cw8Px9/fn4MGDpKSkYGtrK134A1JWhbGxMebm5tja2koX/xoWFhaYmppy7ty5GrdrLjy6d++OnZ0dLVu2BGpeeD1tGZMg/Fvo6uqira1NZmYmeXl5WFpaPvXxmmMjLy+PjIwMLC0tawS4AA4ePMjUqVNxcHCgSZMmREVFSZm+ycnJuLu7Y2dnh5GRETdu3KBdu3bIZDLKy8v55ptv6NevHwqFgsrKSurWrYuZmZm09DEwMJDdu3eTnp4uBQ7r1q3L3r17SU9Pp2HDhoSEhHDixAlu3bqFj4+P9J0QHR3NuXPn0NbWxsnJCRMTE5KSkmq8Lw0HBwe++eYbRo0aRUFBAXl5eVhZWWFvb8+YMWOe+hkZGRmxc+dOoqKiePnllzEyMpLqsH3wwQe/+xkLL57axmNjY2Op/l1ZWRnTpk1j9+7dHDlyRMpMyc/P59y5c5w4cYKEhASMjY3p1KkT3bp1QyaTYW1tzc2bN1m8eDF6enpMnz4dV1dXTp48yfTp01m5ciUffPABJSUl3L17l9GjR0vBwPLycpo0aULdunVJS0ujqKgImUwmfV88OglgamqKTCYjKysLqKrRdejQoRqZ/NbW1lhZWUkBe802goKC2L59O8nJydSvX1+aaLt06RLw5KXO1fdBBAMF4dkNGzaMiooKVq5ciYGBAdOmTZMCcFFRUaSmpvLJJ59Ij79x4walpaVSiZ7qQXrNChl7e3v69Okj1dzWZPCfOXOGli1bUlBQgI6ODpaWltja2qKrq8uIESN4//336d69OwYGBtStW5fo6GhSUlLw9PSsdcLx3LlzTJs2jb59+/LGG2/g4uIiJQsEBgby4MED7OzscHFxAarKFB09epTjx48DVZN2Xbp0Yfz48SgUCo4cOcLBgwcpLS3Fy8uLadOmSROZAG5ublKjMUEQXmwiICj8p5iYmGBtbU16ejru7u6PnXD7+/szb948Xn31VdauXSt1B9y9ezdff/01CoUCBwcHTp48yY8//sjHH3/MoEGD0NXVZcuWLSiVShYuXIizszMAnp6e2NjYSAO0k5MTJSUlJCYmYm1tzbRp0/j++++5cuUKFy9eJCcnR6q19cYbbzBhwgTs7e1RKBTcvHkTqCrKv2/fPrZt2yY1HwD4+eefuXTpknQxLpfLsba25uLFi8BvFxEKhYLWrVtTUVHxWAYkVNUi0ey/IPwXaTJ7jh07Rmpq6u8Gq3bs2MHy5ctJTEzEwMCAOnXq0K9fPzp37oyRkREPHjzg66+/xtbWlvnz52NnZwfA119/zapVq7hy5QotW7bE0tKyxlKijh07kpaWxrJly4iKigKq6nxq6ve999572NraSkt9NfWCoCrwUF5eTmpqKuHh4QwcOJDt27czZ84c3nvvPeRyOTExMXz//fc0bty4Rlbv5cuXpXpCj7KysmLbtm21fg7VyyZUb9BQWVmJl5cXP/zwA9u2bSMyMpLS0lK8vb2ZOHEinTp1etYfjfAC+b3xWF9fnwEDBhAREcGNGzfo3r07SqWS+fPnc+bMGSwsLLCwsODatWscP36cwsJCBg4ciIGBgZQtv2fPHinzzs3Njc2bN3Px4kWKiorIyspCJpNhYmIivabmdzowMJDjx4+Tk5ODvb09lpaWXLt2TVoKrJmIKy8vl2pxQVVDAU3Bfk2TEQsLCxwdHbl69WqN1/Dx8QF+65gdEBDA9u3bpfFXdM8WhD+XhYUFo0ePJisrix07diCTyZg2bZpUricwMJDWrVtLj4+JiUFXV1dqjldbxi5UNftRKpVoaWmhp6cnleZp06YN3bp1w8bGRlpqnJ+fz2effSbVCW/bti1t2rTh3LlzHD9+HE9PzxrLmDVZg/fu3SMpKYmHDx8C4OLigkwmkyb9GzduzLx58/j0009p06YNSUlJnDx5El9fX0pLS9m2bRsjR47E2dmZTz/9lF69eknN/kRdb0EQnkYEBIX/FF1dXZydnYmOjiYtLe2xwJema26dOnU4cOAA77zzDoWFhUyePJl27drx1ltvoVAoMDY25tNPP2Xu3Ll4enrStGlTYmNj8fDwkDJzNMsQmjdvLp3wa+r6xcXF0ahRI2xtbaXOhQkJCajVaoqLi1m8eDHbt2+nffv2uLq64uDgQEJCAgDNmjXjlVdeYfXq1SQlJdGhQwdycnLYs2cPDRo0kGp4mJub07BhQ1JTU2ssQ5DL5XzwwQd/x8ctCP+zNF0+4+Pjpdp4tdm1axdTpkyhfv36jBkzhry8PLZt28Ynn3zC/fv3GTlyJBcuXCAhIYEpU6bUqNfZo0cPIiMjuXz5MlAVjHdycuLu3buo1WrMzMx4++23GThwIHFxccTFxXH//n2SkpL4+eefMTEx4dNPP5UCB5osJABXV1dpGWRlZSWBgYF88sknLF26lFGjRmFsbExxcTH169evsTzpyy+/xNzcXCpoXhvNkuNH6/w9qWyC5rawsDCCgoJQqVQYGxs/y49BeIHVNh5Xz4zR0tLC1NQUAwMDaQxdvHgxW7du5cMPP6RDhw4YGhpSXl7Oa6+9xs6dO2nTpg3Ozs64u7uTm5srBeo0AfC6dety9OhR7t+/j7GxMSYmJjWy6DUF/T08PNiyZQupqam0bNmSxo0bs2/fPjp16kTLli2lcf7kyZMAUs2x6nU2NUxMTHB2diY/P79GID4kJITY2FjpcZr9EwThr2NiYsKsWbMoLCxk69atWFtb4+rqSlZWFhMmTAB+KwmSkZGBlpYWJSUlUqdfqPo+iY6O5uLFi8TGxpKUlMS9e/eYP38+LVu2xMnJCZVKhaOjI02bNq3x+lZWVrz++uuMHTuWo0eP0rZtW1q1asXBgwfZuHEjAQEBNGzYsEZX3qKiInbs2IGdnZ3UNMjd3R2FQiF1Ju/du7fUbfzy5cvY2NjQoUMHBg4cKDUS0pT5UKvV+Pn5/eWftSAI/w0iICj859SrV4+dO3eSkpLyWEBQU9unadOmrF69mszMTPbv34+xsTFTpkypMYvWuXNn9uzZw969e2natCkKhYK8vDzpwqX6UlvNvz09PTEwMJAuQO7fv8/ly5fx9/eXLvqhqobRxYsXMTY2Rl9fHw8PD44ePUpxcTGmpqaMHz8eW1tbdu3aJS2LatmyJcOHD5cKk+vr6/Puu+/+NR+iIPzLubm5oaenV+OC/FE5OTmsWLECFxcXFi9ejKGhIVpaWnTs2JGxY8eyYcMGunfvLgXbNcuINd8jjo6O1K9fX1qeb2ZmhqurKxcuXCAvL0+qtaerq0vz5s1rLNdp3rw5CQkJPHz4EBMTExQKBcePHyc0NBRfX18sLS2RyWRcuXKFoqIiTE1NGTJkCOHh4Rw9epSysjICAgIICQmRvrfUarVUCuBpqtcWfF61ZR0KwpNoxuPk5GQpIKihpaUl/S5rAmVnz56lffv2jxWvd3Z25vr166Snp+Ps7EydOnU4d+4cDx48AH4LWgcGBrJz504ps9bLy4tr165JNXk1y/7UajVqtZo7d+7QsmVLhg4dytGjR3n//fcZNmwYXl5enD9/ni1bttC/f3+pZpeXlxempqY1lvIaGhryxRdfiHq7gvA/QldXl9mzZzN27FhWrlyJrq4uPj4+NGnSBKhqfKWnp4dcLqeyspK0tDTs7e2pqKhAV1eXixcvMmfOHAoLCwkODsbe3p7bt28THx9Py5YtcXBwwNzcXDrX13yfqFQq9PT0cHV1lToVQ9X5yNixYxk1ahSTJ0/mww8/xMnJCR0dHRITE/nhhx+4fPkyb775ptQZXFN7UNOMRKFQMH78eAYOHIiVldVT66yK7yJBEJ6HCAgK/zmawNvt27elwf9RmgH35MmTUnbd5s2bSUlJ4fr166SlpVFcXIyuri5yuZzCwkLc3NykCxDN7KCOjg65ubksX76cunXr0qpVK8zMzKTsgbS0NN555x3atGnDG2+8gYGBATdu3OD777+nXr16eHh4oKWlhbm5OQ8ePCA7O1sKEg4fPpzu3bujr69fo9i6IAi/z8rKCktLy8dqbELN7IBbt24xatQojIyMpOWyFhYWvPrqq7zzzjucOnUKBwcHoCprAH6bAJDL5Tg6OnL//n2USiUGBgY4OTlRVlZGamoqCoWC6dOnS/XOrK2tyc3N5fLly2RnZ/PKK69IgYzBgwezZs0axo4dy4ABA/jggw/o379/jSAGVAUkauuSDtRY4iuWIwr/CzTjcWJiIk2bNpV+L4uKijh9+jSbNm2iYcOGUgbeDz/8gL6+PmlpaZw/f55Tp05x6tQpcnJysLCwkOp2BgQEUF5eLv1f87uvyYpJTEykdevW9OjRg4kTJ7Ju3Tref/99KioqiI+PZ9OmTcjlcun5fn5+LFq0iDVr1rBhwwYKCwsxMzNj+PDhjB07VjoGDQ0NH6vPW/31BUH456lUKszNzZk3bx6ff/45R48epVmzZjUmzwB8fX3Zs2cPcXFxNGzYULq9fv36LF++HD09PSwtLbl8+TJXrlyRzidsbW2xtbUlISGhRra95vtNLpeTk5NDWFiYtE/h4eGsWLGCjz76iDFjxuDm5oaWlpZ0rjBp0iSGDBkiPV5fX58tW7Y8NglXvTyIIAjCn0EEBIX/HCcnJ4yMjGrtsqs5adc0z7h+/Tp+fn5kZGSwbt06nJ2dCQgIoE+fPnh4eGBhYYGJiQlyuZyGDRuybNkyLl26RGBgYI3ZuY0bNzJy5EhMTU1xdHQkMzMTtVpNSEgIo0ePZuvWrUyYMAGlUklJSQkNGjSokVEwfPhwhg0b9thALwr1C8IfI5fLsbOzIzExUaoLpqE57qp34AVq1NusU6eOtGQ3ICAAmUxGQkKCNIGguQgoKCgA4M6dO/j6+mJra4uOjg5xcXEEBARQv359Dhw4QP/+/WncuDFKpZKLFy/SoUMHevbsKQUahg8fLnUx9PPzw9DQkA8//LDW96ZWq2vU+nuUCAYK/ys0jW4OHTpESUkJ0dHRJCQkkJOTQ1FREaGhocycORNra2sqKyvR19fn+vXrLFq0iHv37mFtbc3bb7+Nk5MTI0aMIDMzE0Cqu5mamgr8dixrJvuSk5MB6NatG8eOHWPFihVcu3aNwMBALl++jKenJ6mpqdy+fZuSkhKMjIwIDQ2lXr16pKamYm5uLtUKFQTh30Vzfm5paYm5uTkAERERmJiY8MYbb0jnAA0aNEBLS4uTJ08ycOBA6XZDQ0MMDQ2l7Xl7e2Ntbc3du3el7To6OnL69Glp8kBzfn/37l0WL14MwMsvv1xjv0JDQ4mMjOTUqVPExMRgaGhInTp1CAwMxMrK6rH3ITLyBUH4O4iAoPCfY2FhgY2NTa2ZQZrBXnOir6Ojg7GxMVpaWkyZMoXw8HD09PTQ09OTljMdOHCAN998kyZNmuDq6sr3339PSEgIdnZ2FBUV8d133/Hw4UOpsL6JiQnnzp0jOTkZV1dXxo8fT+vWrbl27RpyuZy6devi7e1dI6NAE5AQBOHPoauri4uLC1euXCE7OxsnJ6daH2NoaEh2drYU6NNkDxoYGGBmZkZhYSF16tShbt267Ny5k969e+Ps7IyOjg5FRUXS90xsbCy+vr7Y2NhgaGhIdHQ0vXv3pl+/fnh6erJjxw5u3ryJQqFgxIgRdOrUqcYEgGbS4VGaJUzVaWlpPXW5kCD8r1AoFLi6unL69GkyMjJwd3enWbNm3Lx5kxs3buDn5ydl5Whra5OTk8OIESMwMTFhzJgxBAYG4uLiQnp6OvBbANDNzQ0dHR1SU1Ol4LxarUYul0tL9YqKipDL5VKN0J07dxIREUHdunWZOnUqKSkp2NjY1Fj+K5fL8fX1/fs/KEEQ/jSacTw2NpZDhw4RHh5Ofn4+X331Febm5vTr1w+oymBu27YtR48e5cKFCzRs2FD6PqkuIyOD3NxcCgoKUCqVGBkZ4eLiwpEjR9i5cycymYz4+Hju3LlDcnIyKpWK6dOnS6UGqjM0NKRt27a0bdv2b/ksBEEQfo8ICAr/OYaGhjg4OHD9+nXpgkBDE4SrqKgAqpbf1atXD21tbU6fPk27du1qbGvmzJnk5+dLNTvmzJnDxIkTeeWVV/Dx8UGpVJKbm8u8efNwd3cHoG/fvrRo0UIq7gtVhcif1thAEIQ/X/X6ZbUFBO3s7LCzsyM6OpoHDx7UyAhKSkri/v37UqHxYcOG8fnnn/Pmm28yaNAgbGxs2LRpE6mpqejo6HD58mV69uyJQqHA39+/RtON+vXrU79+/d/dX01gpPpkwR+t9ScI/wuMjIwwMzNDLpezfPlybGxs0NXVpaysjB07djB9+nT279/PwoULCQgI4NKlS+Tl5TFv3rwaNTePHDmCtra2dGGuUChwdnYmOTmZ3NxcrKysKC8vRyaTYWNjw/3796Xx39TUlMGDB9OvXz+pHij8VhNUEIT/Fs0Y+tNPP1FUVMTkyZOprKxk2LBhTJs2DXNzc9q3b49cLmf06NFcvHiRjz/+mJkzZ0oTcxUVFeTn53P27FmWLVtGTk4OkyZNkl7DxMQEtVrNzJkz0dPTw8HBAR8fH4YNG0ZYWBheXl6ilIAgCP8K4kpD+M/R1tbG3d2dU6dOkZ6ejre3d43OhgC//PILUHWhHhwcTPPmzdmwYQN6enq0aNECmUzGhg0bSE5OZtasWVhZWaFWqwkODmbDhg0cOHCAK1eu4OTkRNOmTQkKCpKW6bVu3fofed+CINT0aD1RlUr1WJ2fNm3asHLlSg4ePMiQIUNQKpUUFRWxbt06DAwMpEBely5d0NPTY8mSJcyaNYvy8nKaNGnCp59+yqpVq6Qliq6urqxZs6bW/dEUHdfsw6MXC+LiQfiv0dbWxs3NjZMnT1JeXi4t3Tc2Nmbw4MGUl5czb9483n77bdavX4+enh66urqcPXsWe3t7KVN/+fLl6OjoEB0dzeXLl2nTpg02NjYkJCSQn5+PlZWVFDxfv359rXV3qwcDBUH4b0tPTycyMpL27dvj4OCAvr4+c+bM4aOPPmLixIksXbqURo0a4e/vz2effcbXX3/N6NGjqVu3LiEhIejr63Pr1i0uXbqEvb09y5Yto2XLllRWVgJVjQdDQ0NxcnLC3t7+H363giAIf5wICAr/Sf7+/kBVlk/15bmVlZVkZGSwadMmAgMDpeL8U6dO5bvvvmPHjh1ERERQUVGBoaEhEydOpFu3bsBvF+vW1tYMHjyYwYMH/wPvTBCEZ6WpJxoXFwfU7AxeVlaGlpYWPXr0ID4+nhkzZnD48GGCg4O5fPkyt2/f5t1336Vx48bShEL79u1p0aIFV69exdHREXt7eyorK/nqq6+kZYeaoERty47+P919BeHfSjMex8XF4eHhAfyWDTt8+HBKS0tZuHAh77//Ph9//DE9evRgxYoV7NmzB319fQoKChgxYgTu7u789NNP0li8cOFCzMzMatT+BEQTLkF4gWnG6/Xr11NcXEzfvn3R19envLycpk2bMmnSJKZMmcK4ceP45ptvCAsLo0uXLvj4+HD48GGuXLnCL7/8QlFREQ4ODgwbNozWrVtL1wua7xkPDw/p+0wQBOHfTFyZCP9Jnp6eaGtrc/XqVcLCwsjKyiIrK4vY2Fi2bduGSqXi3XffxdLSErVajZ2dHZ9//jl9+/YlOTkZe3t7fH19ayz7EwTh30VTT/TmzZskJCSQkZHBvXv3uHfvHnfu3KGoqIjhw4czd+5ctm3bRmRkJBEREXh4ePDhhx/SuXNn4LfJgJ07d2JsbCzV/lGr1dy8eZOkpKTHioeLGn+CUEUzHsfHx9OxY0eg6pjSBAVHjBiBUqlkyZIlzJs3jw8++ICmTZty8eJFXF1dqV+/Pj4+Pujp6dG+fXug6thTKBT/2HsSBOF/k5aWFtnZ2ezfv5/AwEAaNGgAIDXw6tKlCxUVFUycOJH33nuPL7/8kvDwcDw9PfH09KSoqAhdXV3R0EMQhBeGllpzRiYI/yFZWVn07t2bsrIyvLy8SEpKIi8vT+okOGLEiFoL+AuC8N9RWVnJyJEjiYqKwsHBgZycHJRKJQD6+vq4ubnx4Ycf0qRJEwCpscijNBkHAwcO5PLly7zxxhsEBweTlZXFmjVrkMlkfPfddzg7O/+t708Q/g2ysrLo0qULQUFBrFy5ssZ9mmOrqKiIGzdu4O7uLmr7CYLw/7J69WrmzJnDp59+yiuvvEJlZaWU2QdVY31iYiJmZmY1mnsJgiC8iESGoPCfZGpqir+/P/n5+dSpU4e+ffsSEBCAt7d3jZMCQRD+u7S1tXFxccHNzQ03Nzd69+5NQEAAdevWrbWzt6bLsKZG0KNZftOnT2f16tXs37+f9evXA9CoUSPee+89EQwUhCcwMzPDz88Pa2vrx+r5av4tl8tr7cgpCILwPJRKJSdPnqR9+/a0adMG4LHzfplMRp06df6J3RMEQfifIzIEBUEQhBfSo01GnkYTyFAqlSQkJEgZhmKCQRAEQRAEQRCEfyMREBQEQRD+0yorK6WsP21tbRHEEwRBEARBEAThhScCgoIgCIIgCIIgCIIgCILwAhFpEoIgCIIgCIIgCIIgCILwAhEBQUEQBEEQBEEQBEEQBEF4gYiAoCAIgiAIgiAIgiAIgiC8QERAUBAEQRAEQRAEQRAEQRBeICIgKAiCIAiCIAiCIAiCIAgvEBEQFARBEARBEARBEARBEIQXiAgICoLwzNq2bUvbtm3/6d0QBOFPJI5rQfhvEce0IPz3iONaEIS/gggICoIgCIIgCIIgCIIgCMILRPef3gFBEARBEARBEARBEARB+F/z0UcfsX379hq36enpYWNjQ+vWrRk3bhxmZmZ/yWsrlUpyc3OxtbX9S7YvAoKCIAiCIAiCIAiCIAiC8ASTJk1CoVAA8PDhQ+Lj49myZQtXr15l06ZN6Ojo/Kmvl5aWxmuvvcaoUaPo3bv3n7ptDREQFARBEARBEARBEARBEIQnaNeuHU5OTjVuc3Nz4/PPP+f48eO0bt36T3291NRUEhMT/9RtPkrUEBQEQRAEQRAEQRAEQRCE5xAWFgZAXFzcP7wnf4wICAqCIAiCIAiCIAiCIAjCc8jIyADAxcVFui0+Pp4xY8bQsGFDgoKCGDBgACdOnKjxPKVSyYwZM2jbti3+/v60bNmSzz//nPz8fAAiIiIYOnQoULVU2cfH5y/Zf7FkWBAEQRAEQRAEQRAEQfhPatu27VPvP3z48O9uo6CggAcPHgBQXl5OQkICX3zxBX5+frRp0waAW7duMWjQIKysrBg1ahR6enrs3r2bkSNHMn/+fLp06QLAtGnT2L17N0OHDsXZ2Zm4uDg2bNhAUlISq1atolGjRowePZqlS5fSv39/GjRo8P/8BGqnpVar1X/JloUXzqHkS//0LgiC8Cdq8POJ33+QIAj/Kjot/9z6NoIg/LNG3t/3T++CIAh/ss2tJ/7Tu/C3G3Bk7l+6/ewv9j/1/qcFBGvrMqxhYGDA2rVrCQoKAmDIkCFkZGTw888/Y2RkBEBFRQXDhg0jMTGRI0eOIJPJCAoKok+fPkyePFna1tdff82JEydYu3YtxsbGnD17lqFDhzJr1izRVEQQBEEQBEEQBEEQBEEQnsezZAD+nnnz5mFlZQVUZQimpaWxYcMGBg8ezPLly6lbty7nzp1jyJAhlJWVUVZWJj23ffv2zJo1i6tXr9KgQQPs7OzYs2cP/v7+tGvXDlNTU8aPH8/48eP/3/v5PERAUBAEQRAEQRAEQRAEQRCeoH79+o91Ge7cuTMdOnRg+vTpzJkzB4B169axbt26WreRnp4OwNSpUxk/fjyTJk3is88+Izg4mPbt29OnTx9MTEz+2jdSjQgICoIgCIIgCIIgCIIgCMJzUCgUhIWFcfDgQVQqFQCDBw+mXbt2tT7ey8sLgPDwcI4cOSL9OXnyJLNmzWLNmjVERERgYWHxt+y/CAgKgiAIgiAIgiAIgiAIwnOqrKwEwMbGBgAdHR2aNGlS4zHx8fGkpqZiaGiIUqnk5s2b2NnZ0bVrV7p27UplZSWrV69m7ty5REZGMmTIkL9l37X/llcRBEEQBEEQBEEQBEEQhP+InJwczpw5Q926dXF0dMTf35/t27eTmZkpPaa8vJyPP/6YcePGUVFRQW5uLv3792fZsmXSY7S1tQkICJD+DVWBRfgt4PhXEBmCgiAIgiAIgiAIgiAIgvAEhw4dQqFQAKBWq8nIyGDr1q2Ulpby7rvvAvDpp58ybNgw+vTpw8CBAzE3NycyMpIrV64wYcIE6fndu3dn48aNlJaWEhISQl5eHuvXr8fKyorOnTsDSI/duXMnarWaXr16oav754bwREBQEARBEARBEARBEARBEJ5g1qxZ0r91dHQwMzMjICCAGTNmEB4eDkBISAibNm1i0aJFrF69moqKCtzd3Zk9eza9evWSnj99+nScnZ2JjIwkMjISQ0NDwsPDeffdd6X6gZ6engwZMoSIiAiuXr1KWFgYLi4uf+p70lKr1eo/dYvCC+tQ8qV/ehcEQfgTNfj5xD+9C4Ig/Ml0Wrb+p3dBEIQ/0cj7+/7pXRAE4U+2ufXEf3oX/nYDjsz9S7f/In6mz0LUEBQEQRAEQRAEQRAEQRCEF4gICAqCIAiCIAiCIAiCIAjCC0QEBAVBEARBEARBEARBEAThBfKHmooolUrWrFnD7t27SU5ORltbGzc3Nzp16sSwYcPQ19eXHltUVIRSqZQKIz7v6+Tm5mJrawtAREQEkyZNYu3atYSFhT3XtlJSUnB2dpb+7+PjQ69evZg9e/Zz79fv+aPb/uijj9i+fXuN2/T09LCxsaF169aMGzcOMzOzxx5/69atP2W/hf+u3Oz77N3yM3dvxQPgE1iPzv17YGxq8szbyEi5x9Lp82nRpR1tenZ+4uN2rNnC/cwsRnz49m+vn/OABROnPXX7r00cg7uv9zPvjyC8yLIKCll/5gw37t0DIMTFhSHhjTE1NHzmbSTfv88n23fQIziYvg0b1Ljveto9tl64QNL9+xjJZIR5eNC/UUMM9PRqPK6gtJTN585zMSkJZYUKdytLBoaF4v3ruC0IwrPJun+ftdu3cyMuDoD6fn4M6dULM5NnH6eT0tL4eN48enboQL8uXWrcF33zJhH79nEnJQVtbW283dwY0K0b3m5uAGTfv8/YqVOfuv3J48bh5y3GaUF4VmUPCrmz9zz5dzIAsPB1wr1zI2TyZx+rizMecHnxbpxbBeDaNuQPbb8wLYfE/RcpSM5CS0sLM3c73Ds3wsjaDEEQXmzPHRCsqKhgxIgRREdH07NnT/r3749KpeLChQssWLCAX375hbVr1yKTybh27RpvvvkmX3755XMH8NLS0njttdcYNWoUvXv3BqBRo0bMnTsXT0/P59rW5MmTuXv3LuvWrZNumzt37p/eoeXPMmnSJKnF9MOHD4mPj2fLli1cvXqVTZs2oaOjA0D//v2lbjaC8CQlRcWsmrsYlaqC5p3aoFZXErXvCJmp9xj92XvoPEPrcpVKxbaVG1BVqJ76uIsnznDx+GncfGoeo8ZyY/q8Pvixx5eXlxO5IQJjUzl2zo7P98YE4QVVWFbG9N27UVVW0j0oiEq1mt0xMaQ8eMAXvXqi++sY8TSqykq+O3qMClXlY/ddT7vHjMhI3K2sGBQWyv2iYvZeu8ad7GymvtQdLS0tAEqVSj7fuYvckhK6BARgrK/P/uvXmb47khm9euL8ByYCBeFFVFhczOfffINKpeKldu2orKxk1+HDJN+7x8z330f3Gcfp79avp0L1+Dh9Iy6O2UuW4GRnx8Du3VGpVOw/cYKpX3/N5+PH4+XmholczpghQx57rrK8nNU//YSZXI6roxinBeFZlZc8JGblPtSqSpxa+KNWq0k9cY3ijFyC3+qG9jOM1ZWqSm79FIW6lrH6Wbdfkp1PzPf70JHp4tI6CIC0kze4snwP9d/ugb6p0Z/7xgVB+Fd57oDg3r17OXfuHIsWLaJDhw7S7UOHDmXFihXMmzePn376iUGDBnH79m2ysrL+0I6lpqaSmJhY4zZnZ+caWX7PKioqCsdHTmJ69Ojxh/br79CuXTucnJxq3Obm5sbnn3/O8ePHad26qkNgSEgIISEhtW1CECQnDxwlPzePsdMmYuNgB4Cjuys/zF/CpZPnaNSyye9u43jkIbLvZTzx/srKSo7tPsgvP9fe6U5moE9wk0aP3b5nUwQqlYp+I4dgaCxOSAThWeyJucqDomLm9OuD06+TR1421syM3Mux27dpW7fu725jx+Vo0nJza71v/ZkzWMrlTHmpO7JfAxFWcjmrok5yJSWVYJeqcXhn9BXS8/P5tFs36jnYAxDu6cG4TZvZGX2FMW1EN1tBeBaRv/zCg7w85k2ahJNd1Tjt5erKjMWLOXr2LO2aNv3dbWw/cIDU9PRa7/shIgJLc3NmvP8++jIZAC1CQ3lvxgw2797Np2PHYqCvT4vQ0Meeu2bbNlQqFW8PG4bcSIzTgvCs0qKu8zC/hAbjemBkYw6AiZM111YdIPNSPPaNfH53G6nHYijJzPt/bT/t1A0qlRUEjeyM3MESAHNPB6K/203ayet4dH78/FwQhBfHc9cQvHz5MgBNazk5GTRoEHp6ekRHR/+/d0yoSZNhGffrUhJBeFZXz17C3cdLCgYCePn5YGlnw9Wzl3/3+Rkp9zi2+wCtunes9f5yZTnfTf2SX3bsJTi8ISaKZ1t+kJFyj9OHTlC/WShudZ4v61cQXmSnEhKo52AvBQMBApycsDc343TCnd99fvL9++y4fJle9R+fUFJWVGBqaEgbX18pGAhQ174q4Jd0/z4AarWa47dvE+zsLAUDAcyNjBjSuDG+9nYIgvBsTl66RD1vbykYCBDo64u9jQ2nLl363ecnpaWxff9+enfq9Nh9RSUlJKWl0TgkRAoGApibmlLXy4tbd+8+dbv7jh2jVVgYdb28nvNdCcKLLTvmDubudlKwDkDh5YChtSnZMU8+7jSKMx6QfCQGlzZB/6/tlz0oRNdYXwoGApg4WaFrpE9JZu0Tg4IgvDieOyBobGwMwJYtWx67z8jIiEuXLjF37lwWLVrEpEmTgKrswTZt2kiPO336NK+//jphYWH4+fnRvHlzJk+eTEFBAVBVK3Do0KFA1fJZHx8f6XYfHx/Onj0rbWv//v306dOHkJAQGjRowKuvvsrFixel+318fEhLS+PcuXP4+PgQEREh3f7RRx/V2P9jx47xyiuvEBISQtOmTXn33XdJTU2V7i8vL2fZsmW89NJLBAUFERgYyEsvvcRPP/30vB/jc8vIqMrOqr7M+aOPPpI+G43f+2yh6kLu22+/pWPHjgQEBNCkSRM++OAD0p8wsyz8e5UWl5CbfR8HN6fH7nNwcSI9ObWWZ/1GpVKxffUmPP18CApvWOtjKioqeFhaRv83h9Hn9cHoaP/+EgiAQxGR6Mn0aNury+8/WBAEAIoePiSroBB3a6vH7nOzsuJuTs5Tn6+qrGTpseMEODrSvJZaYDJdXSZ16fxYsDDxftV2rX+tZ5ZdWMSD4hICf81mV6vVlJWXA9Der94zZSkKglAVsMvKycGjlhUw7s7O3E1JeerzVSoVSzduJNDXlxaNHs/0MTIw4KtPP6VrtfNwjcKiInS0n3wpsGX3bmQyGS936/YM70QQBI3y0oeUPShC7mj52H1ye0uK7t1/6vMrVZXc3nYShbcDNsGPT5o/z/YNLU2pKHmIsqj0t+eXPKSiTInec9QyFAThv+m5lwy/9NJLrF69mjlz5hAREUG7du0IDw8nJCQEmUyG7NfZx/bt25Odnc2WLVsYPXo0AQEBQNXy3TfeeIP69eszbtw4tLS0OHnyJFu2bCE/P5+FCxfSqFEjRo8ezdKlS+nfvz8NGjSodV/OnTvHu+++S4sWLejXrx+lpaWsX7+eV199lcjISJydnZk7dy6zZs1CoVAwevRo6tevX+u2IiMjmTBhAt7e3rz99tuUl5ezatUqrl69SkREBKampkyaNIm9e/cycOBAhgwZQm5uLlu3buWTTz7B2tqali1bPu/HWauCggIePHgAVAUhExIS+OKLL/Dz86sRWH3Us3y2AEuXLmXx4sUMHjwYHx8fUlNTWbt2LdeuXWP37t1SjULh368gNx8AU4X5Y/eZmJtSVlJKaUkphka1nxBE7T3M/cxsBo19jcpKda2PMTA0YPzsT57r9yYj5R63rlynacfWmJqLgsaC8Kxyi4sBsDAyfuw+hZERJQ+VFD98iHG15l7V7Yy+QkZ+PhM6tKdSXfsxXV12YSE37qWz/swZnC0UNHRzBSAj/9fvFkND1p8+wy+xsZQqy7E1M2VIeGMauLr+0bcoCC+UB3l5AFiYPT4WKkxNKSktpbikBOMnLNf9+dAh0rOyeP/116msfLzOmLa2NvY2No/dnpSWxu27dwl6QvA+KS2Ni9eu0a1Nm1r3TRCEJ1PmlwAgq6U+n8zUEFVpORWlSnQNZY/dD5B64iql9wuo90ob1LWcfz/P9p1a+PMgNoVbW47j0bVq0uDO3gto62jj2KTeH36PgiD8Nzx3QNDb25tvv/2Wjz/+mLi4OOLi4liyZAlGRka0adOGsWPH4u7ujq+vL8HBwWzZsoUmTZpIS17XrFmDvb09q1evloKHgwYNon///pw4cQKoqhXYpEkTli5dSnBw8BPr/e3ZswcDAwOWLFkiFTlv0qQJ48aN4/r16zg7O9OjRw8WLlyIlZXVE7dTWVnJrFmzqFOnDlu3bsXAwACAgIAAXn31VXbt2kWHDh3YvXs3b7zxBhMmTJCe265dOzp37syJEyf+tIBgr169HrvNwMBAatbyJM/y2QLs2rWLFi1a8Omnn0q32dvbs2nTJtLS0v5nm60Iz+9hWRkAejK9x+7T/fW2cqWy1oBgVlo6R3bup+vgPphZKMjNeVDra2hpaT13EPnckSi0tLUJa9v8uZ4nCC+60l+z8GS1NBmQ/XocKisqag0Ipj7IJeLSJYY3bYKlXE52YeFTX6uwrIxxGzdLrze8aRPpdUuUSgC2XriArrY2w5o0QVtLi90xMczff4BJXToT4PR4ZrIgCDWVPXwIUOv5nezXrt4Py8t5fAoAUtLT2bZ3L6/264elQkH2/adnHVV/zcW/Ntrr0a5drY85EBWFtrY2nVq0eKZtCoLwG5WyaqzW0Xt8rNb+dRxVlVfUGhAszswl+fAVPF8KQ9/MmLLcov/X9g3M5Ti3CiRh1xkufbPz1wdpUXdQqxrLiAVBeDE9d0AQoFWrVhw5coTDhw9z9OhRTp06RXZ2Nrt37+bgwYOsWLGC0FoKEwMsW7aMgoKCGic+ubm5yOVySkpKnms/7OzsKC4u5osvvmDQoEF4enri4+PD/v37n2s7165dIzs7m9GjR0vBQKgKLv744494eHggl8u5ePEi2tWWVqjVaioqKgAo/jVr488wb948rKyqloOVl5eTlpbGhg0bGDx4MMuXL6dJk9qbQDzrZ2tnZ8fZs2f54Ycf6Nq1K1ZWVgwYMIABAwb8ae9B+N+gSQDSBMyfVWVlJRErN+Hi5fFMTUeeR7mynOjTF/AN9kdhJbqQCsLzUP96UP+RY3rJ0aP42Nk983JeLS0txrVrQ4Wqkn3XrjFj9x7GtWtLmIc75b92Mi15qGTBgJeR/xqArO/qwvjNW9h87rwICArCM/h/HdPr1+Pj6flMTUc0HiqVzF2+nKS0NHp26EC9WkoHKMvLOXH+PA0CArC2FAEDQXhu0gn4cz6tspLb26IwdbN5etOR59h+4sFLpByJwczdFrtQH9SVatLPxhK76Rh1B7XGsu7zN+wUBOG/4w8FBAH09fXp0qULXbpU1f+6fv06q1atYvfu3UyZMoW9e/fW+jwdHR1SUlJYuHAh8fHxJCcnk5mZ+Yf24ZVXXiEqKor169ezfv16nJycaN26NX379sXX1/eZt5OWlgaAay1LnAIDA6V/y2Qydu7cSVRUFImJiSQlJUmBQPUzLL16VvXr13+sy3Dnzp3p0KED06dP/39/thMnTuTNN99k5syZzJo1S1qK/PLLL2Ntbf2nvQ/hn6dvUHWRXv5rNk91Fb/OLlYPgmtE7f2FjNQ0Xp/0DsWFVTOTZb8GlZXKcooLizCSGz/3BQzAndg4yh8q8W8U/NzPFYQXneGvGUPKXyejqlP+GqQzrCXTaNeVGJIfPGDqSy9RUFqVOVz8a2bSw4oKCkrLMDHQr3FMy/X1Cfesql0U5uHOBz/+xNrTpwnzcJcyBUPd3aRgIICxvj71XVw4ERdHWXk5BnqPZycLgvAbg1+PH2Ut47Ty14xgo1rG6Z2HD5OUlsa0d9+loKhqnC4qraoR9lCppKCoCBPjmuN0cUkJs5ct4/adO7Ru3JgBT6gNeO32bR4+fEh4yOONhwRB+H06+lVjX2W56rH7Kn8dv3UNHh8fU09cozg9l6BRXSgvrhqrK0qrxmqVsoLy4jJ0jfSfefsVpUpST1xD7mRJwIiOaP2a2GId6Eb0d7uJ234ShXc/tHVFuShBeFE9V0CwpKSEZcuW4efnR4cOHWrc5+fnx/z58ykoKOD48ePk5tbetWjlypXMnTsXd3d3GjZsSIcOHQgKCmLdunXs2rXruXZeLpezfv16oqOjOXToEMePH2fdunVs2LCBuXPn0r1792fajqbmytOCGw8fPmTQoEHcvHmTsLAwwsPDGT58OKGhobRq1eq59vuPUCgUhIWFcfDgQfLz8zGrpZ7Ls362vr6+7N+/nxMnTnDkyBFOnDjBN998w+rVq9myZQuenqLj63+FmWVVF9LC/MeXBhbmFWBgZIjM4PGlhXHXbqKqULFs+oLH7ju57xdO7vuF9+ZO/kMZfrdjbqCjq0udQNF0QBCel6VcDkBeLRn1uSUlGOnLag3CXUlJoUJVyafbdzx23+4rMey+EsM3gwZITUMeJdPVJcTFhf3XrlNQWoaFcVXdIlPDx8sNmBkZolYjAoKC8Aysfu0Wnlet+ZtGbkEBRoaGUtCwuugbN6hQqfj4yy8fu2/X4cPsOnyYb6dOlTL88gsLmfnddySmptKuaVNe79//iee9l69fR1dXl5B6or6YIPwR+mZVY7WysPSx+5QFpegY6qFTSzmf3NtpqFWVRH+3+7H70k5cJ+3EdRp90PeZt1+YmoO6ohLrQA8pGAigraODTZAnd/ddoCQ7H7m9WLEjCC+q5woI6uvrs3LlSkJCQh4LCGp4eXlx4sSJWrOOHj58yKJFiwgLC2PVqlXoVquBpGl48Tzu3r1LYWEhwcHBBAcH8/777xMfH8/gwYNZvXr1MwcE7e3tAUhOTn7svkmTJlG/fn309PS4du0aM2bMoG/fvtL9fzS78Y/QBC61a+kI96yfrUqlIjY2FrlcTtu2bWnbti1QVY/x3Xff5ccff3ys+7Lw72VoZIi5lQXpSY93E76XnIqjW+3LBDr170lpcc2AQ3FBIT99v56g8IYEN2mE3LT2wMHvSY6/i6ObMwa1BBIEQXg6Y319rE1Mau0mnJiTg8cTsrxfCW8sZQRq5JeWsviXozTz9qJFHW/MDA1Jy81j9t69vBQURHu/msGAsvJytLRAT0cbZwsL9HR0SK1l8i+7oBA9XR1MazkPEAShJmMjI6wtLbmb+vg4fTclBc8n1HUe0qsXxY9MDOQXFvLt2rU0b9SIFqGhmJmaAlBaViYFA7u0bs2w3r2fuk+3797Fw8UFIzFOC8IfomsoQ99CXms34aL0+5g4WtX6PPcujagorZktXF5Uyq2tJ7AJ8cAmxAs9uQE6errPtH1t3V+vGWtpTKJWV2r+8TxvTRCE/5jHI0tPoaOjQ5cuXTh37hw///zzY/fn5eWxf/9+mjRpgqGhoRS40gSyysrKKC0txc3NrUbA6ubNm5w7dw5AqsmnaVJQW8c0jS+++IK33nqrRv0+Dw8PTE1NawTNtLW1n7odf39/LCwsiIiIqLFk4+LFi0RERFBSUkLer13gvLy8ajx37dq1Nfb7r5KTk8OZM2eoW7cuJrVkcDzrZ6tSqRg6dCgzZ86s8fygoCCg9mCj8O/m1yCIhBu3yE7/LXgdf/0W9zOyCAirveu2o5szXn4+Nf64eHsAYGFtiZefT62NSn6PqqKC7HsZ2LuK2mKC8EeFurtxLS2NtNw86barqamk5+XT5AkZ3h7W1gQ4OdX442NnB4CtqSkBTk7IdHWxMzOlRKnk0M2bVKh+W4qUXVjI2Tt3qWtvj6GsKguxgasLl5OTSX3wW1Awq6CQi0nJNHR1FeOJIDyjsKAgrt66RVq1SeaY2FjSs7Jo0qBBrc/xdHEh0Ne3xh9fj6px2tbKikBfX6kpycqtW0lMTaVzq1a/GwysqKggNT0dd1EDVBD+X6z8XMlLuEdJdp50W278PUqzC7AOdK/1OSaOVii8HGr8MXW1BcDAwgSFl4PUSORZtm9kY47M1JCMS3Goyn+7VlWVV5B5OQFdY32MbM3/3DcuCMK/ynPXEPzoo4+IiYlh4sSJ7Ny5k+bNmyOXy0lOTiYiIoLy8nImT54MgIVFVfrxpk2byMnJoXv37gQFBREREYFcLsfd3Z24uDh+/PFH6cKhuLgYMzMzFL8uodi5cydqtbrWzruvvvoqb7zxBoMHD6Znz57o6+tz6NAhkpOTmTNnjvQ4CwsLYmNj2bhxI6GhoY8F9WQyGR999BEffvghAwcO5KWXXqK4uJi1a9fi6elJv379SE1NRVdXl4kTJzJ48GB0dXU5cuQIUVFR6Onp/alNRQ4dOiS9f7VaTUZGBlu3bqW0tJR333231ueYmZk982c7ZMgQlixZwpgxY2jevDllZWVs2bIFQ0ND+vTp86e9D+F/Q/PObYg+dZ7V8xbTtGNrKsrLidp3BAc3Z4IaV11oPMjKITn+Li5e7ljY1D5r+WfIu5+LqkKFmYXiL3sNQfiveyk4iBNxccyIjKRrYADKChW7Y2Jwt7aimXfV+JZZUMDtjEzq2Nli+2uW0LPQ0dZmeJMmfHfkKJ/v2k1zby8Kyx5y4Pp1tLW1GN70tyZDgxqHcSM9nem7d9PJ3x9dHW32Xb2Gnq4O/UMb/envWxD+q15q147j584xfdEiurVpg7K8nF2HD+Ph4kLzhg0ByMzJ4dadO/h4eGBr9ezjdGpGBifOn8fI0BA3JyeO/zpJXF2Lao0Ac3JzqVCppKXMgiD8MU7N/cm6nMDVlftxbOZPZUVFVT0/R0tsgqsm70ofFFKQlIWpqw2GFs+38uZZtq+lrY1n98bc3HiE6CWR2DXwRq1Wk3kxjtLsfHz6NUdbR9QPFIQX2XMHBDWZdGvWrOHw4cMsXryY0tJSbGxs6NChA6NHj8bGxgaA8PBwOnfuzJEjRzhz5gwdOnRg4cKFzJo1i23btqFUKnF0dGTkyJF4enry9ttvc+bMGTp27IinpydDhgwhIiKCq1evEhYW9ti+NGvW7P/Yu/P4KKu7//+vzGQmmew7kASSECCBkEAgLKKILAooi1ioVsCqtb293b7+rLfV3tpS2mqrt9YNrVa0blVUBEV2kCUIAgrKvoMQQhayLzPJZDK/PwYG4oSYAJGYeT8fDx+F6/qcM+eacua65jNn4eWXX+aVV17hpZdeoqamhu7du/PMM89w3XXXuePuvfde/vjHP/L4449z9913eyQEASZOnEhwcDD//Oc/efrppwkJCWH48OH89re/JSAggB49evD888/z4osv8swzzxAYGEj37t154403+M9//sOmTZuw2+2YLsJ6SU888YT7z0ajkdDQUNLT0/nrX//KZZddds5yzX1v77vvPsLCwpg7dy5///vfMRqN9OvXj6eeekrrB7ZDgSHB3PHIfSx6bx4r5y/GbDbTMzOd0VPG43vq3+uRfYeY9/p/mHT7za2aEDw9DdnfoqmEIucrxGLhjxPG89b6DXz41df4+fqSlZDA1MGDMJ16sN9zIo9/rl7DnVcNa1FCEGBoj+6YjEY++eYb3t7wJX6+vvSOi+PnA7KIDQtzx0UHBzPz+om8t3ETn23bhtPpJLVjR24ePKjFrynizUKDg/nT/ffz5scf88GiRfiZTAzIyGDqxInu58rdBw/y8jvv8N/TprUoIbj7wAEAqq1WXn7nnUZjzk4IVp76gVvThUUujDnIQsavx3Jo4Sa+W7EVo9mXyJ5dSBqT5d7Eo/xIPvs+WkePyVe0OCHYnPrBNZIw/fbRHP38G44s/xqAoNhI0n45iogeGgks4u18nBdze1zxaiuObrnUTRCRi6j/J9mXugkicpEZhw2/1E0QkYvoN0VLLnUTROQie3/4Q5e6CT+6m1Y92ar1e+N72hxa4EdERERERERERMSLtHjKsDSfzWajoqKiWbERERHujVRERERERERERERaixKCrWjRokU88sgjzYpduXIl8drRTUREREREREREWpkSgq3oiiuu4I033mhWbHR0dCu3RkRERERERERERAnBVhUTE+PecVlERERERERERKQt0KYiIiIiIiIiIiIiXkQJQRERERERERERES+ihKCIiIiIiIiIiIgXUUJQRERERERERETEiyghKCIiIiIiIiIi4kWUEBQREREREREREfEiSgiKiIiIiIiIiIh4ESUERUREREREREREvIgSgiIiIiIiIiIiIl7E91I3QNqP1w6uuNRNEJGLaOCwMZe6CSJykW0Kq7vUTRCRi6noUjdARER+qjRCUERERERERERExIsoISgiIiIiIiIiIuJFlBAUERERERERERHxIkoIioiIiIiIiIiIeBElBEVERERERERERLyIEoIiIiIiIiIiIiJeRAlBERERERERERERL6KEoIiIiIiIiIiIiBdRQlBERERERERERMSLKCEoIiIiIiIiIiLiRZQQFBERERERERER8SK+l7oB4vLwww8zb968H4ybNGkSgEeswWDAYrGQnJzMzTff7I5rqm6z2UxUVBSXXXYZDzzwAFFRURd4FdJW2YorOLR4M2WH8gCISI0naewAzEGWJsvVVlo5smwLxXuOUW+vIyg2ksTRWYR0iW4Qt/WlBVTmFHmUj+ydQK+bh7e4PhFpWkFREW/Nm8eu/fsB6JeWxvRJkwgNDm6yXFlFBe8vWMBX27dTW1dHUnw8UydOpHtiYoO4b3bv5uMlSzh07BgGg4HuiYncNG6cR1xz6xOR81NSWMTiOZ9weO8BAFIyejH2xokEhjTd16vKK1g+dyF7vtmB3W4nNiGeayaPp3NyYoO4f858huNHjnqU79U/g1/cfftFuw4RcWntZ3I9a4tISygh2EbceOONXHbZZe6/f/3118yZM4cbb7yR/v37u4936dKFOXPmAPDII48QHh4OgNPppLKykk8//ZSHH36YkpISbr+94YPc2fEAlZWVbNiwgblz57Jjxw4++ugjzGZza16mXAL26hq2zV6C01FP/JW9cTqd5GTvoCqvhL53jcNgNDZarq7GzrZ/LaG2opq4y3vh6+9H7pe72T57CX3/exyBHc/826suKCOyVxci0xIa1OEfFtji+kSkaRVVVfzp+edxOBxMGDWK+vp6FqxcydHcXB5/8EF8fRu/tVttNmY89xwlZWVcN3w4gQEBLFm7lj89/zyPP/ggXWJjAdi1fz9/e/ll4jt25Bfjx+NwOFianc2MZ5/lT/ffT7dTyb7m1ici56e6sorXn5yFw1HH0DEjcDrrWbdkFfk5udz52AMYz9HXa2w2Xvv7C1SUljPk6mH4BwawcWU2rz85izsfe4AO8Z0A1/274EQeqZnppPXPaFBHWFREq1+fiLdp7WdyPWuLSEspIdhGZGZmkpmZ6f67w+Fgzpw59O3bl4kTJzaIPZ0QHDVqFPHx8Q3OTZ48mWuvvZZZs2Yxbdq0Bgm+xuKnTp3KjBkzeO+991ixYgXXXnvtxb40ucSOr9tJTVk1/e+bSEBMGADB8dHseH0Z+VsO0GlASqPlctZsx3qyjPQ7xhCW1BGA6IxENv/fXHKyt5My5UoAakoqqa+tI7JXFzpkJp+zHc2tT0SatvDzzykuLeWpRx4hvqOrL3VLSOCvs2axeuNGRl1+eaPlPlm+nBMFBfzh3nvp1b07AJf168e9M2bw6YoV3HPLLQC8+fHHRIaF8dcHH8Tv1D3kyoEDeeCvf+X9zz7j0XvuaVF9InJ+vli2mrKSUu6Z+RAxsa6+HpeUwJtPv8yWLzYxYNiQRsutXbSSk3mF3P7Q3SSldAMgfWAmzzz0Z7IXr2Tyr6cBUHqyGHtNLT0z0+k7ZMCPc1EiXqy1n8n1rC0iLaU1BNsZf39/RowYQWVlJftPTSX7IaenF3/77bet2TS5RAq3HSIsqaP7wQMgvFsslugQCrcdbrSM0+kkf+sBIlLi3Q8UAObgAJLGDiAksYP7WFVBKQCWqNBztqEl9YlI077YsoVe3bu7k4EAGampdIqJYf2WLY2WcTqdrNm0icxevdzJO4DwkBBumTSJ1GRXMr+yuprvjh9ncGamOxkIEBYSQs9u3dh7+HCL6hOR87d94xaSUrq5k4EA3dJSiOwYw/aNWxst43Q62frFJnpk9HQnAwGCQ0MYc+NEEnp0dR8ryHVNWYzuFNNKVyAiZ2vNZ3I9a4vI+dAIwXbIx8cHcI0ybA6LxbVmhdPpbLU2yaVht9ZgK64kqneix7mgTpEU789ptFxNSSW1ZdWEDe0NuP5t1NvrMJpNxA5ObRBbnV8CQECMKyHoqLVjNJvOuz4RObfK6moKTp5kcN++HueSOnfmm127Gi1XWFxMcWkpE0aOBFx9sKa2Fn8/P64ZOtQdF+Dvzz8efRQ/Pz+POioqKzEaDC2qT0TOj7WqmpLCItKy+nici+0Sz/4duxstV3qymIqSMoaOPdM37TW1mP39GDTiigax+TknAIiOdSUKam01mP09+76IXLjWfibXs7aInA8lBNuZ+vp6Nm3ahNlsJrmZIzSys7MB6NWrV2s2TS6B2rJqAMwhAR7nzCEWHFY7ddZafC0N1460FpUDYAr059DizeRt3ofDZsc/Mpiu1w4ksmdnd2x1QSlGP18OLdpM4bbD1NfW4R8RRMLV/Yjp07XF9YnIuRWXlgIQEeo5Ijc8JIRqq5Wq6moCAxr2+RMFBQCEBAfz9rx5rFy/HqvNRofoaH45aRL909MB1wZVnWI8Rwt9d/w4+w4fpk/Pni2qT0TOT3lJGQAh4WEe54LDQrBVW7FWW7EENNyIoCi/EIDA4CCWzPmEr9ZuoMZqIyImirE3XU9q397u2ILcPMz+fix+fz7bN23FXlNLeHQko264joxB/Vrv4kS8UGs/k+tZW0TOh6YM/4SVl5dTXFxMcXExhYWFfPPNNzzwwAPs2bOHm2++mcDAwHPGFxcXc/ToUd59911efPFFkpOTue666y7RlUhrcdTaATCaPHP/hlOLkTvsdR7n6my1AHy3YivFe3NIHjeIHlOGYjD5suudlZQcyHXHVuWX4qipo85WS8qUoXT/2eUY/UzsnbOW/K0HW1yfiJybraYGoNENoMwm18jcGrvd41y11QrAnIUL2bprF7dOnszd06fjZzLx1L/+xbY9e5p8zVlvvw3AxFGjLrg+EflhNTYbAKbvjbgH8D11zF5b63HOdqpvrpy3iH3bdnHtL27gZ3dMxWQ28+4Lszmwc687Nv/4CWptNdiqrUy+YxqTbv8Ffv5+fPjKW3yzfnNrXJaI12rtZ3I9a4vI+dAIwZ+w02v/nc1sNjN9+nR++9vfNiveYrEwcuRIHn30UUwmz4dO+Yk7PQ3cp2XF6uvqAdfDRdYDN2CyuKYQRaZ2ZvPTczmy7GvCu7l2EO00oAdOp5PYwT3d5aMzktjy3HwOL95MTJ+kFtUnIud2emmH00tDNJe9zvUlo9pq5dnHHiPo1AjC/r17c9/Mmby/YAEZqZ5Timpqa3ny1Vf57vhxrr/mGvd6gedbn4g0j/v23cK+XncqoWCrtnL/E/+LJdDVN1P69uYfv/szK+YupFuaa+OCAcOG4KyvZ9DIM9P80wf244XH/saSDz4lY3B/DAaNHRC5KFr5mVzP2iJyPpQQ/Al76qmniIqKAlzTvEJCQkhOTm507aez4+12O9nZ2bz77ruMHTuWGTNmnLOM/LQZ/VxJ3nq753qS9ae+0Pv6eyaCjSYjAFFpCe4HCgBfi5mI1HgKth50rxXYaZDnl36jyZeYzGSOrvzWNaW4BfWJyLn5n/qsrm1kZFDtqZGBAf7+HudObxAyqE8fd/IOIDAggP69e7N20yZsNTXu+gGqqqv52yuvsO/QIYYPHsxN48ZdUH0i0nx+p9bya2wUYN2pkUb+jfR106m+2at/H3cyEMASYCG1b2+2rt/sXitw4HDPHclNZhN9L8ti1adLKTieR8fOSiCIXAyt/kyuZ20ROQ9KCP6E9evXj/j4+POKHzZsGAkJCfzlL3+htLSUl156qcW/Qkvb5xcaBEBthdXjXG25FaPF1OiDgTnENd3cFOj5ZcMcZAEnOGqafqgwBbrWNXLU1l2U+kQEosLDASgtL/c4V1JeToDF0mgSLiIsDICQoCCPc6HBwTidTqxnJfDKKip4/KWXOJKTw6jLL+eOG29scI9oaX0i0jKhka6+XlFW4XGuorQc/wBLoxuAhIS71hcNDPbsm4EhQeB0UlPT9OYhgSHBANSeWqJARC5caz+T61lbRM6H5gF4senTpzNy5Eg+//xz3nzzzUvdHGkFvhYzfhFBVOYWeZyrPFFEcFxUo+UCO4bh42uguqDU45ytpBKDyYgp0J+asiq+enYeRz//xiPOetK1ILp/eFCz6xORpgUGBBAdGcnhHM/dCA8fO0Zyly6NluvcqRO+vr4cy8vzOFdQVITJZCL0VHLParO5k4HXDh/Or2+6yeMHo5bUJyItZwmwEBYVwYnvPPt67tEc4hIb3yCgQ1wnjL6+FOR69s2Sk8X4mkwEBgdRXlLK8//7BKs+XeoRdzLPtWlQeHTkBV6FiJzW2s/ketYWkfOhhKCXmzlzJqGhoTz77LMcO3bsUjdHWkFUWgKlB3OpLix1Hys5kIu1sJzojKRGyxjNJiJ7dqF4Tw5V+SXu47biCop2HyWiZ2d8DAb8QgNx2Go5sXmfezFjAFtpJflf7yc0uSPm4IBm1yciP2xQnz5s37uX4/n57mPb9uzhREEBQ/r3b7SMv58fWenpbN2xg2MnTriPFxQV8dX27WSlp7vXCpv9wQccyclh7FVX8csbbrjg+kTk/KT178PBXXspPHGmrx/YuZeivALSz7ELsNnfj9TM3uzbtpOC42f6ZklhEXu27iA1s7drmZnwMGxWK1+t3eDeiASgtKiELes2kpTaneDQkNa7OBEv1JrP5HrWFpHzoSnDXi4qKooHH3yQxx57jBkzZjB79uxL3SS5yOKH9qZg60G2z15K3BW9qa+rIyd7B0FxkcT0TQbAWlxB+XcFhCTEYIlwTRVKGpNF2eE8ts9eSuyQnhgMRo5v2IXBZCTxmjNJh+QJg9n9ziq+fWURHbN64Ki1k7thNz4GA93GD3bHNbc+EWnahFGjWLtpE39+4QXGjRhBrd3OgpUr6dqlC0OzsgDIP3mSvYcOkdK1Kx1OrTU7beJEdu3fz8znn2fsVVfhazSyeM0azCYTvxg/HoCcvDyyN28mwGIhMT6etZs2ebz+lQMHNrs+ETl/Q8eO4Jv1m3njqVlcPno4dXY765asIjaxM30Gu+6bxQUnOXrgMF26JRER4+rro6dM4MieA7z+5Cwuu/pKDEZfNqxYg8ls4uobrnPXP27aFN57cTav/vU5soZdRq2thi9XZmMwGhk37WeX5JpF2rPWfibXs7aItJQSgsKUKVOYP38+69atY/78+Vx//fWXuklyEZmDLGT8eiyHFm7iuxVbMZp9iezZhaQxWRh8XQsQlx/JZ99H6+gx+Qr3w4d/eBB97ryOI0u+Iid7BzghNLEDSWOy3DEAUb0S6DV9BEdXb+Pw0q8wmIyEJXUicXQ/AqLD3HHNrU9EmhYaHMyf7r+fNz/+mA8WLcLPZGJARgZTJ0507xa/++BBXn7nHf572jR3QjA6MpK//Pa3vPvJJyxYuRKn00nP5GSmXn+9O2b3gQOAa/fgl995p9HXP50QbE59InL+AkOCueOR+1j03jxWzl+M2WymZ2Y6o6eMx/dUXz+y7xDzXv8Pk26/2Z0QDI+K4Df/ez/LPlrAuiWrcDqdJPToyugpE9wxAL36pXPzvb9izWfLWfbhAkxmE4kp3bhm8jiiO3W4JNcs0p619jO5nrVFpKV8nM7Te6CLXJibVj15qZsgIhfRq5FjLnUTROQi2xRWd6mbICIX0WsHV1zqJojIRfb+8IcudRN+dK2dS/DG97Q5tJCAiIiIiIiIiIiIF1FCUERERERERERExIsoISgiIiIiIiIiIuJFlBAUERERERERERHxIkoIioiIiIiIiIiIeBElBEVERERERERERLyIEoIiIiIiIiIiIiJeRAlBERERERERERERL6KEoIiIiIiIiIiIiBdRQlBERERERERERMSLKCEoIiIiIiIiIiLiRZQQFBERERERERER8SJKCIqIiIiIiIiIiHgRJQRFRERERERERES8iO+lboC0H3ckj7rUTRCRi2gTdZe6CSJykb12cMWlboKIiIiItAEaISgiIiIiIiIiIuJFlBAUERERERERERHxIkoIioiIiIiIiIiIeBElBEVERERERERERLyIEoIiIiIiIiIiIiJeRAlBERERERERERERL6KEoIiIiIiIiIiIiBdRQlBERERERERERMSLKCEoIiIiIiIiIiLiRZQQFBERERERERER8SJKCIqIiIiIiIiIiHgR30vdAIGHH36YefPm/WDcpEmTAJg3bx5/+MMfmDp1qkdMTk4OI0eO5J577uHee+9tsn6z2UxUVBSXXXYZDzzwAFFRURd4JdJWlRQWsXjOJxzeewCAlIxejL1xIoEhwY3HnyzmmYdmNlnn7Q/dTVJqdwBOHM1h6QefcvzIMQwGAyl90rhm8niCQhvW39w4EWlaW+nTOYe+Y+X8xRw9cJh6Rz0dO8dy1YTRpGT0ughXKeI9bMUVHFq8mbJDeQBEpMaTNHYA5iBL4/EllWx+6qMm60y/YzRhXTsBUJlbxOElX1Fx/CQ+BgMRKfEkjcnyqN9aVM7hxV9RevgEzrp6gjtHk3hNf0K6RF+EqxTxLq3dr89WU17NlufmE9GzMymThzY4V3GskO9WbqX8uwKc9U4CO4bTZURfIlLiz/PKRKS9UEKwDbjxxhu57LLL3H//+uuvmTNnDjfeeCP9+/d3H+/SpQtz5swB4Nlnn2X06NEtSuI98sgjhIeHu/9eWVnJhg0bmDt3Ljt27OCjjz7CbDZfhCuStqS6sorXn5yFw1HH0DEjcDrrWbdkFfk5udz52AMYfT0/BgKDAvnZHZ4JZ7vdzsJ3PyYwJIiOneMAKMjN41+PP09IeCjDJ46hxmpj/bLVHD1wmLv++CBmf78WxYlI09pKnz6ZV8Dsv79IYHAQw667Gl+zia3rNvLOc//iF3fdRq/+Ga37Roi0E/bqGrbNXoLTUU/8lb1xOp3kZO+gKq+EvneNw2A0epQxBfrRY8pQj+P1dXUcXLARU6A/gZ0iAKguKOXbVxdhDgkgYUQmjppacr7YSfnRAvrdMwGj2eRqR5WNbf9aTJ3NTtwVaZgsZo5v2M322Uvo+9/XEdgxonXfCJF2pLX79fcd+GQ9ddZaj+PVhWVse20JpkB/Ol+VgcHXl/wt+9n51gp63jycqLSEC79YEfnJUkKwDcjMzCQzM9P9d4fDwZw5c+jbty8TJ05sEHs6IVheXs4TTzzB008/3ezXGTVqFPHxDX8Jmjp1KjNmzOC9995jxYoVXHvttRdwJdIWfbFsNWUlpdwz8yFiYjsCEJeUwJtPv8yWLzYxYNgQjzJmfz/6DhngcXzRex/jcDiY8pvpWAIDAFg5bxEGo4FfPXwvwaEhAMQmduadZ19l6/rNDBpxRYviRKRpbaVPL/1wAQajgf967P9zxw0YNoQX//B3ln74qRKCIs10fN1Oasqq6X/fRAJiwgAIjo9mx+vLyN9ygE4DUjzKGM0mOmQmexw/+NlGnI56Un9+JSaLK3l/ZMVWfAwG+vx6LOZgVz8Pioti55sryN9ykNjBqQDkfbWP2nIrPaeeSRJEpiXw9T/mcfTzb+l58/DWuHyRdqm1+/XZ8rcepGRfbqPtOLL0a3wMPvT97+vc/b/jwB5sef4TDi/5SglBES+nNQR/okaMGMFnn33Ghg0bLriu01ORv/322wuuS9qe7Ru3kJTSzZ04AOiWlkJkxxi2b9za7HryjuWyYUU2/a4YSGKPMw8rRqMvfS7LcicEAJJOnc/PyW1xnIg0rS30aafTyZF9B+neO7VBnMlsIqVPGsUFJ6kqrzjvaxTxJoXbDhGW1NGdNAAI7xaLJTqEwm2Hm11PVV4xuRt206F/d0KTznw+GAwGYvomu5MBAKFJHVxl8kvcx2wlla7X7h7rPuYfFkRATFiDOBH5Ya3dr0+rrajm0Gcb6TKij8c5p9NJ2eE8wrvHNej/RpMvEamdsRVVUFtpbdmFiUi7ohGCP1GPPvooGzZsYMaMGSxYsOCCpvpaLK51LJxO58VqnrQR1qpqSgqLSMvyfEiI7RLP/h27m13Xio8XYjKbGDmp4SjSn995i0fsiWOupEFoZHiL40Tk3NpKn/bx8eGuP/wWfHw8YqsrqwAanQ4lIg3ZrTXYiiuJ6p3ocS6oUyTF+3OaXdeR5VswmHxJGJXZ4HjqTcM8YqtOFAPgHxroPmaJdCX3rYXlBMVFAlDvcFBTVtUgqSEiTfsx+vVp++dvwC8skPgre/Pd8oY/Cvr4+JB59/hG79V11TZXjFHjg0S8mT4BfqLi4uK46667OHLkCK+++uoF1ZWdnQ1Ar15aBL69KS8pAyAkPMzjXHBYCLZqK9bqH/5lMO9YLnu/3cnAqy4nJCz03K9XWsbOr77lo1ffJjgshKyhgy8oTkQaakt9Ojw6kvCohmsZVZZVsGvLNqI6xbinIIvIudWWVQNgDvHsL+YQCw6rvdF1wb6vKq+Y4t05dBqUgl8jdZ1WU17NyR1H2PPBWswhFjpkdXef65jVg8BO4eyb9wXlRwupLixj/8dfYK+yET+093lcnYh3+rH6dcE3BynZl0OPn11xzh/h/COC8Q8Pati+Sisndx7FEh3a6BRkEfEeGiH4E3bbbbfx6aef8uqrrzJ+/HgSEppeA6K8vJzi4mL33ysrK8nOzubFF18kOTmZ6667rrWbLD+yGpvr1z/TqQXDz+Z7ehHx2losAY3vdnbaplXr8DEYGDTSc6Hjsz33+8eptdXgYzAw+dfTzrnjaXPjRKShttqnwbX+7UevvYO9ppYrrx31Q5ciIoCj1g64pvB9n+HUBkEOex2+lqZnguRu3AsGH2IH92wy7ut/fIyjpg4MPqRMGdpgt1Nfi5mEUZnsmbOWb/+50H08efwg7UYq0gI/Rr+urbRy8LNNxA9NJyg2stltq3fUs/fDbOpr6+g8LL3Z5USkfVJC8CfMZDIxY8YMpk2bxsyZM5k9e3aT8afXCjybxWJh5MiRPProo5hMnl8w5aft9Cxwn0amCjSXvdbONxu+IrVvb4/RQGdzOByMnzYZo68vX2d/yYevvEVlWTlDrrnqvOJExFNb7NMA9fX1zP3XuxzcuZf0gf3IvHzgebdPxKu4O/X5V+Gw11Gw9SCRPTt7jAQ6W72jnuQJl2EwGsj7ej9756zFXmkl7vI0wLWpyP6P1xPQMZz4K9Iw+Bop+OYgBz/bCD4+7s1HROQH/Aj9+sAnGzAF+Te6duA5m1Vfz74Psyndn0t0RhId+nU7/waKSLugKcM/cVlZWUyaNIl169axcOHCJmOfeuop3njjDV599VWmT5+OwWBg7NixPP7444SHaw239sjP3zUNwF7rOS2h7tSvl/7+/k3WcWjPfuw1tfQe0LfJOKPRSN8hA0gfmMkvH7iTLt2SWDFvkXtEU0vjRMRTW+zTdXY7c17+N9s3baF7ek9+dsfNLbgiEe9m9HP9GFtvd3icq6+rA8DXv+kfbMsO5VFfW9foemVnMxgNdMhMJjojid63Xk1IQgxHlm+lrsb12XFk+VbMoQH0vfNaOvTrRnRGEmm3jCK8RxyHF2/W5gMizdTa/brg20MU7TxK0ugsHDV27FU27FWue7Ozrh57lY16R8PXrq9zsPv9NRRuO0x4jzh6TLnifC5NRNoZjRBsB/7nf/6Hzz//nCeeeILXXnvtnHH9+vUjPt415WPYsGEkJCTwl7/8hdLSUl566aULGnEibdPpDQAqyjx3+6woLcc/wILZv+m1Q/Zt24XR15ceGU1PQzqbj48PaVl9OHrgMIUnCohP6nJBcSLi0tb6dK2thv+8OJuDu/bRo08vfnHXbRh99Wgh0lx+oa6RP7UVnsm22nIrRosJYyNLBJyteG8OPr6GFk3r9fHxIap3AuXfFWAtLMMvLBB7hZXYIT09Xq9Dv26U7D1OxbFCInvqPi3yQ1q7X5fsPw7ArrdXepwr3HaYwm2HSb9jNGFdOwGuKcy73vmc0gMniEiNp+fNw7Xxl4gAGiHYLkRERPDggw9SWFjIs88+2+xy06dPZ+TIkXz++ee8+eabrddAuWQsARbCoiI48Z3nbma5R3OIS+z8g3UcPXCYuMTO+Fs81ySzVlv5x8N/YdlHCzzO1dhqADCbTc2OE5GmtZU+Da4pxe+99AYHd+0jbUBfbr77dny19IRIi/hazPhFBFGZW+RxrvJEEcFxUT9YR/nRAoLjovD191yPrM5ay+an53J46dce5xynRgYaTEZ3csDpqPeIc9Y7G/yviDSttft15yvT6X37NR7/AYR1j6X37dcQ2Mm1JEi9o57d/1lF6YETRKUn0nPqcAy+SgaKiIsSgu3E5MmT6devH6tWrWpRuZkzZxIaGsqzzz7LsWPHWql1ciml9e/DwV17KTyR7z52YOdeivIKSB/Ur8myjro6CnPz6JTQ+KgDS4AFo68vW7/YjLWq2n3cWm3l67VfEhYVQXRsx2bHicgPawt9GmD1p0s5sGMPvfpn8PP/ukUjA0XOU1RaAqUHc6kuLHUfKzmQi7WwnOiMpCbL1jscVOeXEhjb+HqgvhYzBl8j+VsOYLfWuI/XWWvJ+2o/fhFBBMSE4WsxE9w5ipM7v3NPPQRwOp3kfbUPH6OBkISYC7tQES/Smv06ICaM8G6xHv8BmIMthHeLde8efHTVt5TsyyWydwKpN16pkYEi0oCe3tsJHx8fZsyYwQ033EDdqbUpmiMqKooHH3yQxx57jBkzZvzgxiTy0zN07Ai+Wb+ZN56axeWjh1Nnt7NuySpiEzvTZ3B/AIoLTnL0wGG6dEsiIubMr5alRSU46hyERpx7jcnx0yfzxlMv8a/HnyNr2GU46hxsXrOeyvJypt//X+6p6M2NE5GmtYU+XV1ZxbolqzD6GunaswfbvvQcfdSrX8YPTl8WEYgf2puCrQfZPnspcVf0pr6ujpzsHQTFRRLTNxkAa3EF5d8VEJIQgyXizG7fNaVVOB31+IeeezOR5AmD2T57Kd++sohOA3pQ76gnb9NeaiuspN06yn3/7XrdILbPXsLWlxbQaWAKBpMvJ7cfofy7AhKv6ddgR2IRaVpr9+vmsFfXcDx7Bz5GA2FdO1Hw7WGPmKi0Lj84fVlE2i8lBNuRlJQUbrnlFl5//fUWlZsyZQrz589n3bp1zJ8/n+uvv751GiiXRGBIMHc8ch+L3pvHyvmLMZvN9MxMZ/SU8e7pfUf2HWLe6/9h0u03N0genB4h5G859yYFSSnd+OUDd/L5J0tYPnchPgYfEnsk8/M7f9lgTcDmxolI09pCn845fJQ6u2u64WfvfNRoPQlPJishKNIM5iALGb8ey6GFm/huxVaMZl8ie3YhaUyWe2pf+ZF89n20jh6Tr2iQOKirdo36MzaxQUFYUkd633Y1R1d+w5FlW8DHh9DEDqTedBXB8Wc+H0K6RNPnv67lyPItHFu9jXpHPQExYaT8fKg7gSEizdPa/bo5KnIK3RubHPz0y0ZjQhMnKyEo4sV8nE6nFgSRi2LF0S2XugkiIiLShNcOrrjUTRAREZEmvD/8oUvdhB/dTauebNX6vfE9bQ6tISgiIiIiIiIiIuJFlBAUERERERERERHxIkoIioiIiIiIiIiIeBElBEVERERERERERLyIEoIiIiIiIiIiIiJeRAlBERERERERERERL6KEoIiIiIiIiIiIiBdRQlBERERERERERMSLKCEoIiIiIiIiIiLiRZQQFBERERERERER8SJKCIqIiIiIiIiIiHgRJQRFRERERERERES8iBKCIiIiIiIiIiIiXkQJQRERERERERERES/ie6kbICIibdPAUt0iRNqd5FGXugUichG9dnDFpW6CiMgFu0PPJ5eERgiKiIiIiIiIiIh4ESUERUREREREREREvIgSgiIiIiIiIiIiIl5ECUEREREREREREREvooSgiIiIiIiIiIiIF1FCUERERERERERExIsoISgiIiIiIiIiIuJFlBAUERERERERERHxIkoIioiIiIiIiIiIeBElBEVERERERERERLyIEoIiIiIiIiIiIiJexPdSN0DOePjhh5k3b16DYwaDAYvFQnJyMjfffDOTJk1qcewtt9zC5s2bWbt2LdHR0Y2+dllZGZdffjlXXXUVL774YitcnVxKJYVFLJ7zCYf3HgAgJaMXY2+cSGBIcJPlqsorWD53IXu+2YHdbic2IZ5rJo+nc3LiecX9c+YzHD9y1ON1evXP4Bd3335B1yjiTQqKinhr3jx27d8PQL+0NKZPmkRocNN9uqyigvcXLOCr7duprasjKT6eqRMn0j0xsUHc7596ioNHPfvqwL59+e2vfuX++459+5izcCHfHT9OgL8/gzMzuWncOPz9/C78IkW8yKW+T5ecLOaZh2Y2+Vq3P3Q3Sandz/saRbyNrbiCQ4s3U3YoD4CI1HiSxg7AHGRpslxtpZUjy7ZQvOcY9fY6gmIjSRydRUgX1/c4W0klm5/6qMk60u8YTVjXTgBU5hZxeMlXVBw/iY/BQERKPEljsn6wHSLS/ikh2AY98sgjhIeHA+B0OqmsrOTTTz/l4YcfpqSkhNtvv71FsePHj2fjxo0sW7aMqVOnNvqay5Ytw263M2HChNa/QPlRVVdW8fqTs3A46hg6ZgROZz3rlqwiPyeXOx97AKNv4x8DNTYbr/39BSpKyxly9TD8AwPYuDKb15+cxZ2PPUCH+E4tinM6nRScyCM1M520/hkNXissKqJ13wSRdqSiqoo/Pf88DoeDCaNGUV9fz4KVKzmam8vjDz6I7zn6tNVmY8Zzz1FSVsZ1w4cTGBDAkrVr+dPzz/P4gw/SJTYWcPXVnPx8sjIyGNSnT4M6oiPO9NUd+/bxlxdfpGvnzkydMIGi0lIWrV7NwaNHmXn//fj4+LTemyDSjrSF+3RgUCA/u8PzGdFut7Pw3Y8JDAmiY+e4Vn0fRNoTe3UN22YvwemoJ/7K3q57a/YOqvJK6HvXOAxGY6Pl6mrsbPvXEmorqom7vBe+/n7kfrmb7bOX0Pe/xxHYMRxToB89pgz1KFtfV8fBBRsxBfoT2Ml1v64uKOXbVxdhDgkgYUQmjppacr7YSfnRAvrdMwGj2dSq74OItG1KCLZBo0aNIj4+vsGxyZMnc+211zJr1iymTZvWotgxY8Ywc+ZMli5des6E4KJFiwgJCeGqq6666Ncjl9YXy1ZTVlLKPTMfIia2IwBxSQm8+fTLbPliEwOGDWm03NpFKzmZV+gaEZDSDYD0gZk889CfyV68ksm/ntaiuNKTxdhraumZmU7fIQNa+7JF2q2Fn39OcWkpTz3yCPEdXX26W0ICf501i9UbNzLq8ssbLffJ8uWcKCjgD/feS6/urlE+l/Xrx70zZvDpihXcc8stABQWF1NTU8OAjAyuHDjwnO14Z/58IsPDmXH//ZhNri8UUeHhzP7gA77ZvZvMXr0u5mWLtFtt4T5t9vdr9N686L2PcTgcTPnNdCyBAa1x+SLt0vF1O6kpq6b/fRMJiAkDIDg+mh2vLyN/ywE6DUhptFzOmu1YT5aRfscYwpJcnwfRGYls/r+55GRvJ2XKlRjNJjpkJnuUPfjZRpyOelJ/fiUmi2uk/pEVW/ExGOjz67GYg119OCguip1vriB/y0FiB6e2wtWLyE+F1hD8ifD392fEiBFUVlay/9QUsebGBgcHM3z4cL766iuKioo84ouKiti4cSNjxozBbDa31iXIJbJ94xaSUrq5v2QAdEtLIbJjDNs3bm20jNPpZOsXm+iR0dP95QEgODSEMTdOJKFH1xbFARTkuqZLRHeKuajXJ+JtvtiyhV7du7uTgQAZqal0iolh/ZYtjZZxOp2s2bSJzF693MlAgPCQEG6ZNInU5DNfLI6dOAFAXIcO52xDrd1OSFAQI4cMcScDAXp2c30OfHf8+PldnIgXaiv36e/LO5bLhhXZ9LtiIIk9PJMPInJuhdsOEZbU0Z0MBAjvFoslOoTCbYcbLeN0OsnfeoCIlHh3MhDAHBxA0tgBhCSe+75clVdM7obddOjfndCzyhoMBmL6JruTgQChSa56qvJLzvfyRKSdUELwJ+T09CuHw9Hi2PHjx+NwOFi+fLlH7JIlS1xTzzRduN2xVlVTUlhEbGK8x7nYLvGcOJrTaLnSk8VUlJTRLc31q6HT6aTWVgPAoBFXuEcrNDcOID/HlWSIjnU9hJyOE5Hmq6yupuDkSbp27uxxLqlzZw4fO9ZoucLiYopLS8lIPdNXbTWuPnjN0KENRhV+PyF4Ou5sZpOJ3991FzeMHt3g+JEc12fK2VOLReTc2tJ9+vtWfLwQk9nEyEnXnv8Finghu7UGW3ElQXGRHueCOkVSmes5QAOgpqSS2rJqwrqdWcLDUWsHIHZw6jlHFQIcWb4Fg8mXhFGZDY6n3jSMbhMGNzhWdaIYAP/QwOZflIi0S5oy/BNRX1/Ppk2bMJvNJCc3/SttY7HDhg0jNDSUJUuWcNNNNzWIX7RoEXFxcWRlZbVa++XSKC8pAyAkPMzjXHBYCLZqK9ZqK5aAhosKF+UXAhAYHMSSOZ/w1doN1FhtRMREMfam60nt27tFceAaIWj292Px+/PZvmkr9ppawqMjGXXDdWQM6tcaly/S7hSXlgIQERrqcS48JIRqq5Wq6moCAxpO7TtRUABASHAwb8+bx8r167HabHSIjuaXkybRPz3dHZtz4gT+/v689fHHrN+6lZqaGmKiorhp3Dgu79+/0XYVFhWx88AB3p43j86dOjEgI6PROBFpqC3dp8+WdyyXvd/u5PLRwwkJ8/y8EZFzqy2rBsAc4jnN3hxiwWG1U2etxdfScGaWtagcAFOgP4cWbyZv8z4cNjv+kcF0vXYgkT09fwwE1+jA4t05xA1Nw6+R1zytpryaiqMFHFq8GXOIhQ5Z2iRIxNspIdgGlZeXU1zs+uXG4XBw/Phx/v3vf7Nnzx5uvfVWAgMDWxxrNpsZPXo0H3/8MSUlJe6NSPLz8/n666/5zW9+owXg26Eamw0AUyMLBvueOmavrfX4omGzWgFYOW8RRqORa39xAwaDD+uWrOLdF2bzywfupFtaSrPjAPKPn6DWVoOt2srkO6Zhs1rZsHwNH77yFvUOh9YVFGmG06P1Glve4fTU3Rq7ne//5l99qq/OWbgQX6ORWydPxuDjw4KVK3nqX//i93fd5R49eOzECWw2G1U2G/dMn06V1cri1at5/t//xuFweKwrWFFVxT0zZrjbdduUKQ2mEYvIubWl+/TZNq1ah4/BwKCRnhsXiEjTTo/qM5o8v2obTm0S5LDXeSQE62y1AHy3Yis+RgPJ4waBjw852TvY9c5Ket92DeGnRg+eLXfjXjD4EDu4Z5Pt+vofH+OoqQODDylThmqXYRFRQrAtmjRpkscxs9nM9OnT+e1vf3vesRMmTOCDDz5gxYoVTJkyBYDFixfjdDo1Xbidcjpd/9vSZG+dvQ4AW7WV+5/4X/dC4il9e/OP3/2ZFXMX0i0tpdlxAAOGDcFZX9/gy0X6wH688NjfWPLBp2QM7o/BoFUMRJriPNWpW9qn7XWuvlpttfLsY48RdGoEYf/evblv5kzeX7DAnRAcdfnl1NfXM/rKK93lL+/fn98+/jjvzJ/PFVlZDfqqj48P/++226irq2PJmjX85cUXuf+22xjUt++FXKqIV2hL9+nT7LV2vtnwFal9exMepen/Ii3m7tgtK1ZfVw+4EoNZD9zg3hgkMrUzm5+ey5FlX3skBB32Ogq2HiSyZ2f8w4POXbejnuQJl2EwGsj7ej9756zFXmkl7vK0ljVSRNoVJQTboKeeeoqoqCjAtRBsSEgIycnJ+Pn5XVBsVlYWsbGxLFmyxJ0QXLhwIb169aJbt24e8fLT5+fv+ndgr631OFd36tdLf39/j3OmU6OPevXv02BXQUuAhdS+vdm6fjO1tppmx5n9/Rg43HPnU5PZRN/Lslj16VIKjufRsbPnr54icob/qc/22kb6dK3d1acDGunTfqf66qA+fdzJQIDAgAD69+7N2k2bsNXU4O/nx9VXXOFR3mwyceWAAXy0eDHHTpwgIS7OfS4oIIAh/VzT/gdnZvLbxx/nzblzlRAUaYa2dJ8+7dCe/dhrauk9oO+FX6CIFzL6uUb31ts9132vP/UDna+/56hgo8kIQFRagjsZCOBrMRORGk/B1oM4au0YzxpRXHYoj/raOqJ6JzbZJoPR4N6ZOCo9kW2vLubI8q10yOqBr59G9Yt4KyUE26B+/foRH++5uPSFxvr4+HDdddfxxhtvUFpaSkVFBdu2bePhhx++kOZKGxYa6ZoaXlFW4XGuorQc/wBLgy8Bp4WEu9YLCgz2/KUxMCQInE5qamqaHdfYa5yJCwagtpGNC0SkoahTyz2Ulpd7nCspLyfAYnEnDc8WERYGQEiQZ18NDQ7G6XRiPZUQPJfQYFdfrWkkcXGa2WSiX1oaS9asobyystHXE5Ez2uJ9et+2XRh9femR0fT0QxFpnF+oq7/VVlg9ztWWWzFaTA2SeqeZQ1wLfpgCPX8EMAdZwAmOmoYJweK9Ofj4GohIad73QXB9J4zqnUD5dwVYC8sIjo9qdlkRaV80P8/LTJgwgbq6OlatWsWyZcswGo1cd911l7pZ0kosARbCoiI48Z3nLoW5R3OIS2x8ceIOcZ0w+vpSkJvnca7kZDG+JhOBwUHNjisvKeX5/32CVZ8u9Yg7mefa7CA82nMnNhFpKDAggOjISA7nePbpw8eOkdylS6PlOnfqhK+vL8fyPPtqQVERJpOJ0KAgiktLeeCvf+WjxYs94o7n5wMQHRnJ8fx87v7jH1mWne0RZ6upwcfHB5OvfnMU+SFt5T59tqMHDhOX2Bl/i9YXEzkfvhYzfhFBje4mXHmiiOC4xhNwgR3D8PE1UF1Q6nHOVlKJwWT0SBaWHy0gOC4KX3/PtYXrrLVsfnouh5d+7XHOUeMagWw4NSpRRLyTEoJepkePHqSkpLB69WpWrVrF4MGDiYmJudTNklaU1r8PB3ftpfBEvvvYgZ17KcorIP0cu/ua/f1IzezNvm07KTh+wn28pLCIPVt3kJrZG4PB0Oy4kPAwbFYrX63d4F7gHKC0qIQt6zaSlNqd4NCQVrh6kfZnUJ8+bN+7152gA9i2Zw8nCgoYco5dgP39/MhKT2frjh0cO3GmrxYUFfHV9u1kpadjMBiICAuj2mrl8/Xr3RuRAJwsLmb1xo2k9ehBeEgIHaOiqLZaWb5uHXWnpj+Ba7fhL7/5hp7dumFpZJqjiHhqC/fp0xx1dRTm5tEpofmjjUTEU1RaAqUHc6kuLHUfKzmQi7WwnOiMpEbLGM0mInt2oXhPDlX5Je7jtuIKinYfJaJnZ3zO6q/1DgfV+aUExja+1qevxYzB10j+lgPYrWdm4tRZa8n7aj9+EUEExIRd2IWKyE+afr73QhMmTOCll17CZrPx+OOPX+rmSCsbOnYE36zfzBtPzeLy0cOps9tZt2QVsYmd6TPYlTwoLjjJ0QOH6dItiYgY16+Wo6dM4MieA7z+5Cwuu/pKDEZfNqxYg8ls4uobzowqbW7cuGlTeO/F2bz61+fIGnYZtbYavlyZjcFoZNy0n/24b4rIT9iEUaNYu2kTf37hBcaNGEGt3c6ClSvp2qULQ7OyAMg/eZK9hw6R0rUrHU6tMztt4kR27d/PzOefZ+xVV+FrNLJ4zRrMJhO/GD/eXf+vfv5z/u9f/+Kxf/yDkUOGYLXZWLp2LUaDgdtPrT9rNBq5bfJkZr39Nn987jmuHDCAiqoqlq5di8HHh9smT/7x3xiRn6i2cp8G1w91jjoHoRHhP94bINIOxQ/tTcHWg2yfvZS4K3pTX1dHTvYOguIiienrWsvPWlxB+XcFhCTEYIlwLcuRNCaLssN5bJ+9lNghPTEYjBzfsAuDyUjiNQ1/9KsprcLpqMc/9NzLcyRPGMz22Uv59pVFdBrQg3pHPXmb9lJbYSXt1lEt3tBIRNoXH+fpLQvlknv44YeZN28eK1eu/MF1AVsS+315eXkMHz4cPz8/vvjiCwIDAy+k2W4rjm65KPXIxXcyr4BF783jyL6DmM1memT0YvSU8e71+7as28S81//DpNtvpt8VA93ligtOsuyjBRzctQ+n00lCj66MnjKBmNiODepvbtzurdtZ89ly8o7lYjKbSEzpxjWTxxHdqUPrvwnSYgNL9ZtRW5Wbn8+bH3/M7oMH8TOZyExLY+rEie51/lZv3MjL77zDf0+bxlWDBrnL5Z88ybuffML2vXtxOp30TE5m6vXXE9+xYV/9ats25i1bxpHjxzGbTPTq3p2bJ0wgrkPDvrphyxY+WbGCY7m5+Pn50btHD24aN47YDurTbdWmsLofDpIfXVu5T+cc+o5X/vIPJtzycwZcNaT1L1wu2GsHV1zqJsg5VBeWcWjhJsqO5GM0+xLeI46kMVmu9QCB/C0H2PfROnpMvoIO/c5s8GgtruDIkq8oOZgLTghN7EDSmCyP0XwVxwr55uWFdLv+MjoNbLhb+NlKDuZydOU3VB4vAh8fQhM7kDAqU2sHtmHvD3/oUjfhR9fauYRRXRofce/tlBCUi0YJQZH2RQlBkfZHCUGR9kUJQZH2RwnBi08JwcZpDUEREREREREREREvooSgiIiIiIiIiIiIF1FCUERERERERERExIsoISgiIiIiIiIiIuJFlBAUERERERERERHxIkoIioiIiIiIiIiIeBElBEVERERERERERLyIEoIiIiIiIiIiIiJeRAlBERERERERERERL6KEoIiIiIiIiIiIiBdRQlBERERERERERMSLKCEoIiIiIiIiIiLiRZQQFBERERERERER8SK+l7oBIiIiIiIiIiIirWHkyJFNnl+5cuWP1JK2RQlBuWheO7jiUjdBRC6igZFjLnUTREREREREpBUoISgiIiIiIiIiIu2St44A/CFaQ1BERERERERERMSLKCEoIiIiIiIiIiLiRZQQFBERERERERER8SJKCIqIiIiIiIiIiHgRJQRFRERERERERES8iBKCIiIiIiIiIiIiXkQJQRERERERERERES+ihKCIiIiIiIiIiIgXUUJQRERERERERETEiyghKCIiIiIiIiIi4kV8L3UDxOWFF17gxRdfbDJm/vz5vPnmm8ybN48//OEPTJ061SMmJyeHkSNHcs8993DvvfcC8PDDDzNv3jyPWLPZTFRUFJdddhkPPPAAUVFRF+dipM2xFVdwaPFmyg7lARCRGk/S2AGYgyxNlis9eILvVmyl8kQxvv4mononknhNP4xm0znLVOUVs3XWZ3S+Kp2EkZkXHCcingqKinhr3jx27d8PQL+0NKZPmkRocHCT5Xbs28echQv57vhxAvz9GZyZyU3jxuHv5wdAYVER98yY0WQdf7jvPtK6d/c4XlxWxoOPP05Wejp3TZt2fhcmIg2UFBaxeM4nHN57AICUjF6MvXEigSFN9/VDu/ezct4iThw7jr/Fn94D+jJq0nWY/f0axP1z5jMcP3LUo3yv/hn84u7bL96FiAjQNp/JRcR7KSHYxtx555107dq10XOxsbHuPz/77LOMHj26RUm8Rx55hPDwcPffKysr2bBhA3PnzmXHjh189NFHmM3m82+8tEn26hq2zV6C01FP/JW9cTqd5GTvoCqvhL53jcNgNDZarvTgCba/vpSguEiSxvSnpqya3PW7qDxeRMZvxuLj4+NRpt5Rz96P1uF01DfZpubGiYiniqoq/vT88zgcDiaMGkV9fT0LVq7kaG4ujz/4IL6+jd/ad+zbx19efJGunTszdcIEikpLWbR6NQePHmXm/ffj4+NDcFAQd0+f7lG21m7njY8+IjQoiIS4uEbrf+3996mqrr6o1yrizaorq3j9yVk4HHUMHTMCp7OedUtWkZ+Ty52PPYDxHH390O79vPF/LxGX0JnRk8dTVlLKhuVrOX74GHc8cp/7/u10Oik4kUdqZjpp/TMa1BEWFdHq1yfibdriM7mIeDclBNuYIUOGMGjQoB+MKy8v54knnuDpp59udt2jRo0iPj6+wbGpU6cyY8YM3nvvPVasWMG1117b4jZL23Z83U5qyqrpf99EAmLCAAiOj2bH68vI33KATgNSGi13aPFm/MICyfj1WIwm10eFX2ggBz/9kpL9x4noEe9RJmfNNqrzS3+wTc2NExFPCz//nOLSUp565BHiO3YEoFtCAn+dNYvVGzcy6vLLGy33zvz5RIaHM+P++zGbXCMKosLDmf3BB3yzezeZvXrh7+fHlQMHepT999y5OBwO7v3lLwkKCPA4v3bTJr7dvfsiXqWIfLFsNWUlpdwz8yFiYl19PS4pgTeffpktX2xiwLAhjZZb8sEnhEWE86uH78V0avRQaEQ4n73zEft37KFHek8ASk8WY6+ppWdmOn2HDPhxLkrEi7XFZ3IR8W5aQ/AnasSIEXz22Wds2LDhguuaNGkSAN9+++0F1yVtT+G2Q4QldXQ/eACEd4vFEh1C4bbDjZZx2OswB/nTcUAP94MHQGhSBwCqThR7lKnKK+boqm10GdGnyfY0N05EGvfFli306t7dnQwEyEhNpVNMDOu3bGm0TK3dTkhQECOHDHEnAwF6dusGwHfHj5/z9b47fpwla9Zw1aBB7vizlZSX8++5c7lhzJjzvSQRacT2jVtISunmTgYCdEtLIbJjDNs3bm20jL3WTmBwEFnDBruTgQBJKckA5B0909cLcl1TFqM7xbRG80Xke9raM7mIiBKCP1GPPvooFouFGTNmUFtbe0F1WSyuNSucTufFaJq0IXZrDbbiSoLiIj3OBXWKpDK3qNFyRpMvvW+9hi5XNXyQOP3Q4RcW1OB4vaOefXO/ILx7LDF9k8/ZnubGiUjjKqurKTh5kq6dO3ucS+rcmcPHjjVazmwy8fu77uKG0aMbHD+SkwNAdMS5pwfO+ewzzGYzPx83rtHzr73/PlHh4UwcNaq5lyEiP8BaVU1JYRGxiZ4jf2K7xHPiaE6j5UxmE7984E6GjbumwfETpxKBZ08Fzs85AUB0rCuxUGuruShtFxFPbe2ZXEQENGW4zamoqKC42POXnuDgYExnjeqIi4vjrrvu4umnn+bVV1/lnnvuOe/XzM7OBqBXr17nXYe0TbVlrvW8zCGeU/zMIRYcVjt11lp8LU2vHWkrqaTscB6HFm0moEMYkb26NDifk70da1E5vaaNwFl/7sRyc+NEpHHFpaUARISGepwLDwmh2mqlqrqawEam9Z6tsKiInQcO8Pa8eXTu1IkBGRmNxn13/Dhf79jBuBEjGn3N7M2b2bprF39tYu1CEWm58pIyAELCwzzOBYeFYKu2Yq22YgloeiOCkpPFHN5zgCVz5hMT14memenucwW5eZj9/Vj8/ny2b9qKvaaW8OhIRt1wHRmD+l3U6xHxdm3tmVxEBJQQbHPuvvvuRo+/9dZbHmsL3nbbbXz66ae8+uqrjB8/noSEhCbrLi8vb5BsrKysJDs7mxdffJHk5GSuu+66C78AaVMctXaABlMMTjOc+vLusNc1+fBhr65h81MfucqYjSSPH9Sgvqr8Eo6u/JbkCYPwCw3EVlLZaD3NjRORc7PVuEbwNLYB1OmpwDV2O4FN1FFRVeXeSdhsNnPblCkNphGfbdm6dRgMBsZceaXHudJTU4UnjBxJUrznKCYROX81NhtAg2m/p/meOmavrW0yIVhdWcUzD808VY+ZcVNvaFBf/vET1NpqsFVbmXzHNGxWKxuWr+HDV96i3uHQuoIiF1FbeiYXETlNCcE25ne/+x2pqakexxs7ZjKZmDFjBtOmTWPmzJnMnj27ybpPrxV4NovFwsiRI3n00UcbjECUduL0NHDPzceazwdSbxpGvaOe3A272P76MnreNIyo3ok46+vZN3cdIYkx51wIGWh2nIg07fTSDo3tKNhcPj4+/L/bbqOuro4la9bwlxdf5P7bbmNQ374N4mrtdrI3b6Z/ejrRkZ5TnF774ANCg4P5mdYOFLno3LfvC+zrP7/zlzjq6vhyRTZv/N/L3HjnL0nLck09HDBsCM76egaNHOoukz6wHy889jeWfPApGYP7YzBodSGRi6KNPJOLiJxNCcE2Ji0trVm7DJ+WlZXFpEmT+Pjjj1m4cCF9+px78dinnnqKqKgo7HY72dnZvPvuu4wdO5YZM2bg5+d3MZovbYzRz5Xkrbc7PM7V19UB4OvfdCLYZPEjOiMJgKjeCWx5bj4HF24iqnciOdk7qDpRQp//uhZ7lWs0Q53VNYLJUVuHvcqGb4Bfs+Mu5IuPiDfwP/VZ3djasbV21+iDAH//JusICghgSD/XdMDBmZn89vHHeXPuXI+E4I59+6ipqeGyzEyPOr74+ms2f/stD/3mN1hrarDWnFl7zF5XR3llJQH+/ppGLHKe/Pxdfd3eSF+vOzXSyP8H+rolMID0ga7+m5bVlxce+xuL3p/nTggOHO65I7nJbKLvZVms+nQpBcfz6Ng59oKuQ0Rc2sozuZ61ReRselJvB/7nf/6Hzz//nCeeeILXXnvtnHH9+vUj/tS0rmHDhpGQkMBf/vIXSktLeemll3SDaIf8Ql0LDddWWD3O1ZZbMVpMGBuZjnQuRpMvEamdyV2/G3uVjZJ9x3E66vnmpc88Yo9n7+R49k4G/M/kZsf5hwd5nBeRM6LCwwHXdN3vKykvJ8BicScNm8NsMtEvLY0la9ZQXllJSNCZPrh15058fX3JbGR92W937wbgyVdf9Ti3/uuvWf/11/zhvvtI69692W0RkTNCI119vaKswuNcRWk5/gEWzP7N7+sms4mUPml8uWItVRWVBAaf+34bGBIMQG2NNhkRuVjayjO5nrVF5GxKCLYDERERPPjggzz66KM8++yzzS43ffp0NmzYwMqVK3nzzTe59dZbW62Ncmn4Wsz4RQQ1unNZ5YkiguOiGi1XXVjKjn8vJ35oOrGDG05Xd9TYwQd8fI0kXTuAOmvD0Qv2Sit7P8gmJrMrMZndMAX5NztORJoWGBBAdGQkh3M8dxg9fOwYyV26NFIKjufn8/hLLzFx1CiuGTq0wTlbTQ0+Pj6Yvjeab9/hw3Tt0oUAi+caZRNGjeKKrCyP43+dNYuM1FTGjxxJQlxcSy5NRM5iCbAQFhXBie88+3ru0RziEj13GgcoPJHPW8+8whVjRzBoxBUNztXYbODjg6/Jl/KSUv79fy+TPqgfwyc03H38ZF4BAOHRnksFiMj5aSvP5CIiZ9PCIO3E5MmT6devH6tWrWpRuZkzZxIaGsqzzz7LsWPHWql1cilFpSVQejCX6sJS97GSA7lYC8vd0w6+zz8ihDpbLSc27aXecWZqg62kkpM7jhCa1BFfPxPBcVGEd4tt8F9IQodTdQQT3i0Wo8m32XEi8sMG9enD9r17OZ6f7z62bc8eThQUMKR//0bLdIyKotpqZfm6ddSdmpoErt2Gv/zmG3p264blrOmHdXV15Jw4cc7NQuI7diQjNdXjP4Dw0FAyUlMJ+oGdjkWkaWn9+3Bw114KT5zp6wd27qUor4D0c+wCHBEThc1qZfPq9TjO6uslJ4vZ+dW3JKYk4+fvT0h4GDarla/WbsBmPTNiqbSohC3rNpKU2p3g0JDWuzgRL9QWnslFRM6mT4V2wsfHhxkzZnDDDTc0+LL3Q6KionjwwQd57LHHmDFjxg9uTCI/PfFDe1Ow9SDbZy8l7ore1NfVkZO9g6C4SGL6JgNgLa6g/LsCQhJisEQEYzAaSB43mH0fZrPt1cXEZCZTV11D7pd7wOBD8rjmr3MpIhfXhFGjWLtpE39+4QXGjRhBrd3OgpUr6dqlC0NPjdrLP3mSvYcOkdK1Kx2iojAajdw2eTKz3n6bPz73HFcOGEBFVRVL167F4OPDbZMnN3iNkyUl1Dkc7inKIvLjGzp2BN+s38wbT83i8tHDqbPbWbdkFbGJnekz2JX8Ly44ydEDh+nSLYmIGFdfv+7mG5j72ru89rcX6HtZFtVV1WxcmY3BYGDczT9z1z9u2hTee3E2r/71ObKGXUatrYYvV2ZjMBoZN+1n52qWiJwnPZOLSFujhGA7kpKSwi233MLrr7/eonJTpkxh/vz5rFu3jvnz53P99de3TgPlkjAHWcj49VgOLdzEdyu2YjT7EtmzC0ljsjD4GgEoP5LPvo/W0WPyFVgiXGsHdchMxuBr4Nia7RxauBmj2Zew5E4kXN2PgOjQS3lJIl4tNDiYP91/P29+/DEfLFqEn8nEgIwMpk6c6N4tfvfBg7z8zjv897RpdIhyTUO6cuBATL6+fLJiBW99/DF+fn707tGDm8aNI7ZDhwavUVlVBdDodGER+XEEhgRzxyP3sei9eaycvxiz2UzPzHRGTxmP76m+fmTfIea9/h8m3X4zETGuvt53yAB8Tb6sXbSSxXPmY/LzI7lnd0bdcB1RHWPc9ffql87N9/6KNZ8tZ9mHCzCZTSSmdOOayeOI7tSh0TaJyPnTM7mItDU+TufpPdBFLsxNq5681E0QkYvo1cgxl7oJInKRbQpr/iwCEWn7Xju44lI3QUQusveHP3Spm/CjW3F0S6vWP6pL40tteDutISgiIiIiIiIiIuJFlBAUERERERERERHxIkoIioiIiIiIiIiIeBElBEVERERERERERLyIEoIiIiIiIiIiIiJeRAlBERERERERERERL6KEoIiIiIiIiIiIiBdRQlBERERERERERMSLKCEoIiIiIiIiIiLiRZQQFBERERERERER8SJKCIqIiIiIiIiIiHgRJQRFRERERERERES8iBKCIiIiIiIiIiIiXkQJQRERERERERERES/ie6kbIO3HHcmjLnUTROQi2kTdpW6CiFxkrx1ccambICIiIiJtgEYIioiIiIiIiIiIeBElBEVERERERERERLyIEoIiIiIiIiIiIiJeRAlBERERERERERERL6KEoIiIiIiIiIiIiBdRQlBERERERERERMSLKCEoIiIiIiIiIiLiRZQQFBERERERERER8SJKCIqIiIiIiIiIiHgRJQRFRERERERERES8iBKCIiIiIiIiIiIiXsT3UjdAznjhhRd48cUXm4yZP38+b775JvPmzWtw3GAwYLFYSE5O5uabb2bSpEnucw8//LBHPIDZbCYqKorLLruMBx54gKioqItzIdLmlBQWsXjOJxzeewCAlIxejL1xIoEhwU2W2799N6s/W07ukWP4GHzo3DWRUTdcS+fkxAZxVeUVLJ+7kD3f7MButxObEM81k8e740pOFvPMQzObfK3bH7qbpNTu532NIt7kUvfp044fOcbyjxZw9MARfAw+JKYkM/bG64nqGHMxL1fEK9iKKzi0eDNlh/IAiEiNJ2nsAMxBlibLFe87zrHV31J5vAh8fAjpHE3C1f0I6RLdIK620sqRZVso3nOMensdQbGRJI7O8ohrbn0i0rTW7tNbX1pAZU6RR/nI3gn0unm4++8Vx09yZOnXlB8twMfHh9CkjiSNHUBAdOhFuEoR+SlTQrANuvPOO+natWuj52JjY91/fuSRRwgPDwfA6XRSWVnJp59+ysMPP0xJSQm33357g7JnxwNUVlayYcMG5s6dy44dO/joo48wm82tcEVyKVVXVvH6k7NwOOoYOmYETmc965asIj8nlzsfewCjb+MfA4f3HuCtZ18lJrYjV//sOhyOejZ9vo7Zf3+BOx6+j/iuCQDU2Gy89vcXqCgtZ8jVw/APDGDjymxef3IWdz72AB3iOxEYFMjP7pjq8Rp2u52F735MYEgQHTvHter7INJetIU+DXAyr4DZf38Bs9nMVeOvAWD9stX86/HnuHvmQ4SE6YuGSHPZq2vYNnsJTkc98Vf2xul0kpO9g6q8EvreNQ6D0dhoudLDeex8czkBMWEkXtMPp8NJ7sbdbPvXYvr8ZizBnV0JhLoaO9v+tYTaimriLu+Fr78fuV/uZvvsJfT973EEdgxvUX0i0rTW7tNOp5PqgjIie3UhMi2hQR3+YYHuP1cXlrHtX0swmn3pMrwPAMe/2MW3ry6i370T8QsJaKV3QER+CpQQbIOGDBnCoEGDfjBu1KhRxMfHNzg2efJkrr32WmbNmsW0adMaJPgai586dSozZszgvffeY8WKFVx77bUX5yKkzfhi2WrKSkq5Z+ZDxMR2BCAuKYE3n36ZLV9sYsCwIY2WW/TePELDw/ivR/8/zH6uf0eZQwbw3KNPsOLjhdz64F0ArF20kpN5ha4RfindAEgfmMkzD/2Z7MUrmfzraZj9/eg7ZEAjr/ExDoeDKb+ZjiVQDyQizdEW+jS4kn/2mlp+/ch9dOriurd07dWDV/78DOuXrmbMjRNb9X0QaU+Or9tJTVk1/e+bSEBMGADB8dHseH0Z+VsO0GlASqPlDi3chF9oIH3/exxGs+uxPqZfMl//Yx5Hlm8h/fbRAOSs2Y71ZBnpd4whLMn1uRGdkcjm/5tLTvZ2UqZc2aL6RKRprd2na0oqqa+tI7JXFzpkJp+7Het3UV9bR5/fjCUoNhKAsORYvnnpM45/sZOuYz2fz0XEe2gNwXbG39+fESNGUFlZyf79+5tV5vT04m+//bY1myaXyPaNW0hK6eZOHAB0S0shsmMM2zdubbSMtaqavGO59B7Q1504AAgKDSaxRzJHDxwBXL9Obv1iEz0yeroTBwDBoSGMuXEiCT0aH+kKkHcslw0rsul3xUASe5z7QUZEGmorfbq4sIiAoEB3MhAgPqkLlsAA8o+fuFiXK+IVCrcdIiypoztxABDeLRZLdAiF2w43WsZuraHqRDFR6YnuxAGAOchCaFJHyo8WAK5+nb/1ABEp8e5kIIA5OICksQMISezQovpE5Ie1Zp8GqCooBcAS1fRofFtxBb6Bfu5kIEBwfBS+AX5U55ecx5WJSHuiEYLtkI+PDwAOh6NZ8RaLax0Lp9PZam2SS8NaVU1JYRFpWX08zsV2iWf/jt2NlvOz+PP/Hv99g8TBadWVVRiMrt8SSk8WU1FSxtCxIwHXvyF7TS1mfz8Gjbiiybat+HghJrOJkZM0KlWkudpSn47sEM3BXfuoKq9wr11YXVmFzWojODTkgq5TxJvYrTXYiiuJ6p3ocS6oUyTF+3MaLefrZyLr/7sBg9nzcd5ebcPH4OrXNSWV1JZVEza0N+Dq1/X2OoxmE7GDU1tcn4g0rbX7NOBO5gXEuBKCjlo7RrPJo5wlMoTSA7nUVlrdaxfaq2uos9Vi+oG1DEWk/VNCsA2qqKiguLjY43hwcDAmk+cH/dnq6+vZtGkTZrOZ5OTmjbrKzs4GoFevXi1vrLRp5SVlAISEh3mcCw4LwVZtxVptxRLQ8IHAYDAQ1cFznaC8Y7kcPXCY7r1dXyCK8gsBCAwOYsmcT/hq7QZqrDYiYqIYe9P1pPbt3Wi78o7lsvfbnVw+erjWGRNpgbbUp4eOHcneb3bywStvM/am6wFY8sEnGI1GLrv6yotxuSJeobasGgBzI2t5mUMsOKx26qy1+FoaJvR9DAYsUZ7J96q8Ysq/KyC8u2ttXmtROQCmQH8OLd5M3uZ9OGx2/COD6XrtQCJ7dm5RfSLStNbu0wDVBaUY/Xw5tGgzhdsOU19bh39EEAlX9yOmz5nR/PFX9qZ4zzH2zllL1+tc04MPLf4Kg9FA3BB99xPxdkoItkF33313o8ffeuutBmsLlpeXuxOHDoeD48eP8+9//5s9e/Zw6623EhgY2KD82fHg2lQkOzubF198keTkZK677rpWuBq5lGpsNgBMjfxi6HvqmL221iN50JhaWw1zX3sHgKHXukYP2axWAFbOW4TRaOTaX9yAweDDuiWrePeF2fzygTvplua5RsqmVevwMRgYNHLo+V2YiJdqS306LDKcYeOu5rN3P2LWH58EXF9mbrrrtgbTiEWkaY5aOwBGk+djueHUJkEOe51H8uBcde390PVDb/ywdADqbLUAfLdiKz5GA8njBoGPDznZO9j1zkp633YN4d1im12fiDSttfs0QFV+KY6aOupstaRMGUqdrZbc9bvYO2ctznqne11B/7AgOl+VwcEFX7Ll+U9PNcKHnjdf1WAasYh4JyUE26Df/e53pKamehz//rHTa/+dzWw2M336dH772996nGss3mKxMHLkSB599NEfHH0oPz2nZ4GfnkZ+vmprannn+dfIO5bLldeNcq8tVmevA8BWbeX+J/7XvTFISt/e/ON3f2bF3IUeCUF7rZ1vNnxFat/ehEdFXFC7RLxNW+rTKz5exJrPlpGYkkzWsCE46+vZtOoLPvjnv7nprtvOOUJYRL7H3bEvrBpHbR07315J1YkS4q9Kd68XWF9XD7gSg1kP3IDJ4gdAZGpnNj89lyPLvm40IXiu+kTkB7RynwboNKAHTqeT2ME93ceiM5LY8tx8Di/eTEyfJHwMBo4s38KxVdsITepAx4EpOOudnNi4hz3vraHnzcPdI4RFxDspIdgGpaWlNWuX4aeeeoqoqCjANR0sJCSE5ORk/Pz8moy32+1kZ2fz7rvvMnbsWGbMmHHOMvLT5ufv+v/VXlvrca7u1K+X/v7+TdZhrbbyzrOvcvTAYfoNHcSoG86MJDWd2sW6V/8+DXYJtgRYSO3bm63rN1Nrq8Hsf+bf16E9+7HX1NJ7QN/zvi4Rb9VW+rSjvp51Sz4nLrELt/3P3RhOrWuUPjCTf/75Geb/ew4PPpWCr35oEvlBRj9XP6m3e679XF/nStL7+jfdl+qstex8awXl3xXQIas7iVf3O1O/yQhAVFqCOxkI4GsxE5EaT8HWgx7rjzVVn4g0rbX7NECnQZ6DR4wmX2Iykzm68luqC0rxCw0iJ3sHQfGRpP9qtHsNwuiMRL556TP2z/uC8O5TMPgaz+s6ReSnTwnBn7B+/foRH9/8aVlnxw8bNoyEhAT+8pe/UFpayksvvXTBI06k7QmNDAegoqzC41xFaTn+AZYGybrvqyqv4N/P/JO8o8fJGjaECbdMafDvJCTctf5fYHCQR9nAkCBwOqmpaZgQ3LdtF0ZfX3pk9PQoIyJNayt9uqy4FEddHemDMt3JQACjry8Zg7NY9uGnFJ4ooFMXrTkm8kP8Ql39rbbC6nGuttyK0WJqdLMAd0yllR3/Xk5VbjEdB/ag28TLGvRrc4hrCRlToOePBeYgCzjBUXMmIfhD9YlI01q7TzfFFOhaMsRRW4e1qBxnXT3RGV0bbEhiMBqJ6ZPM4SVfUV1YRlAnzdgR8VbaLsyLTZ8+nZEjR/L555/z5ptvXurmSCuwBFgIi4rgxHeeu5nlHs0hLvHc0wRqbDZ34uCyq4cx8Zc/93gY6RDXCaOvLwW5eR7lS04W42syeSQWjh44TFxiZ/wt2tlMpKXaSp/2PbUGUn295+70zvr6039qwZWJeC9fixm/iCAqc4s8zlWeKCI4LuqcZetq7O7EQezlveh+/RCPfh3YMQwfXwPVBaUe5W0llRhMRneysDn1iUjTWrtP15RV8dWz8zj6+Tce5a0nXZuP+YcHYfA99VW/sXu1s/70H5p5VSLSHikh6OVmzpxJaGgozz77LMeOHbvUzZFWkNa/Dwd37aXwRL772IGdeynKKyB90LmnAC14+6NTiYMrufYXnutPApj9/UjN7M2+bTspOH7CfbyksIg9W3eQmtm7weghR10dhbl5dErQhgMi56st9OmYuI4Eh4Wwdd1G7KemKsOpNULXbyYgKJCYWK03JtJcUWkJlB7Mpbqw1H2s5EAu1sJyojOSzlnu4KcbXImDIT1Jvm5gozFGs4nInl0o3pNDVX6J+7ituIKi3UeJ6NnZPXqoOfWJyA9rzT7tFxqIw1bLic373JsGAdhKK8n/ej+hyR0xBwcQEBOGOcRC3pb9OE6tEQyuDU3ytx7EN9CPgA5hF3ytIvLTpSnDXi4qKooHH3yQxx57jBkzZjB79uxL3SS5yIaOHcE36zfzxlOzuHz0cOrsdtYtWUVsYmf6DO4PQHHBSY4eOEyXbklExERRkJvHtxu+wj/AQsfO8XyzfrNHvX2HDABg9JQJHNlzgNefnMVlV1+JwejLhhVrMJlNXH1Dw52rS4tKcNQ5CI0Ib/0LF2mn2kKfNhgMjJs6mfdeeoNX/vIP+g0dhLO+nq+zN1KYV8DkO6Zi9NUjhkhzxQ/tTcHWg2yfvZS4K3pTX1fnWvsrLpKYvq7dQq3FFZR/V0BIQgyWiGCqC0op2HoIo8VEUGwk+VsPetR7eqfRpDFZlB3OY/vspcQO6YnBYOT4hl0YTEYSr3F9brSkPhFpWmv36eQJg9n9ziq+fWURHbN64Ki1k7thNz4GA93GDwbAx2Agefxgdv9nFd+8vJCO/bvjdDrJ/3o/1sIyUqYMxWDU+oEi3kxP68KUKVOYP38+69atY/78+Vx//fWXuklyEQWGBHPHI/ex6L15rJy/GLPZTM/MdEZPGe9e8P/IvkPMe/0/TLr9ZiJiojiy1/UAYqu2Mu/1/zRa7+nkQXhUBL/53/tZ9tEC1i1ZhdPpJKFHV0ZPmUBETMMpEdaqagD8LU1veiAi59ZW+nSv/hnc9uBdrPp0CSvmLgSgU0I80+//DT3StUaoSEuYgyxk/HoshxZu4rsVWzGafYns2YWkMVnuBf/Lj+Sz76N19Jh8BZaIYMoOu6b2O6x29n20rtF6TycP/MOD6HPndRxZ8hU52TvACaGJHUgak4UlIhigRfWJSNNau09H9Uqg1/QRHF29jcNLv8JgMhKW1InE0f0IiA5zx0elJZB++2iOfv4NR5Z/DUBQbCRpvxxFRA/N2BHxdj5OpxYOkItjxdEtl7oJIiIi0oTXDq641E0QERGRJrw//KFL3YQfXWvnEkZ1OfeyOt5MawiKiIiIiIiIiIh4ESUERUREREREREREvIgSgiIiIiIiIiIiIl5ECUEREREREREREREvooSgiIiIiIiIiIiIF1FCUERERERERERExIsoISgiIiIiIiIiIuJFlBAUERERERERERHxIkoIioiIiIiIiIiIeBElBEVERERERERERLyIEoIiIiIiIiIiIiJeRAlBERERERERERERL6KEoIiIiIiIiIiIiBdRQlBERERERERERMSL+F7qBoiISNs0sFS3CJF2J3nUpW6BiFxErx1ccambICJywVr9e0eX1q3+p0ojBEVERERERERERLyIEoIiIiIiIiIiIiJeRAlBERERERERERERL6KEoIiIiIiIiIiIiBdRQlBERERERERERMSLKCEoIiIiIiIiIiLiRZQQFBERERERERER8SJKCIqIiIiIiIiIiHgRJQRFRERERERERES8iBKCIiIiIiIiIiIiXsT3UjdALo4XXniBF198scmY+fPn07NnzwbHHnvsMY4cOcLbb7/dms2TNqiksIjFcz7h8N4DAKRk9GLsjRMJDAluslxVeQXL5y5kzzc7sNvtxCbEc83k8XROTjyvOBFpuYKiIt6aN49d+/cD0C8tjemTJhEa3HT/Lauo4P0FC/hq+3Zq6+pIio9n6sSJdE9MbBC3Y98+5ixcyHfHjxPg78/gzExuGjcOfz+/BnF7Dh7kvQULOHj0KEEBAWRlZPDza68lJCjool6viDdo7fvyP2c+w/EjRz3K9+qfwS/uvt399+NHjrH8owUcPXAEH4MPiSnJjL3xeqI6xlz4RYp4EVtxBYcWb6bsUB4AEanxJI0dgDnI0mS52korR5ZtoXjPMertdQTFRpI4OouQLtEtirOVVLL5qY+afK30O0YT1rXTBVyliPyUKSHYztx555107dq10XOxsbEN/v7hhx/ywQcfMHDgwB+jadKGVFdW8fqTs3A46hg6ZgROZz3rlqwiPyeXOx97AKNv4x8NNTYbr/39BSpKyxly9TD8AwPYuDKb15+cxZ2PPUCH+E4tihORlquoquJPzz+Pw+FgwqhR1NfXs2DlSo7m5vL4gw/ie47+a7XZmPHcc5SUlXHd8OEEBgSwZO1a/vT88zz+4IN0OXWP2LFvH3958UW6du7M1AkTKCotZdHq1Rw8epSZ99+Pj48PADv37+fxWbMIsFiYdM01GAwGFq1axc59+/jzAw8QFBDwo70nIj91rX1fdjqdFJzIIzUznbT+GQ3qCIuKcP/5ZF4Bs//+AmazmavGXwPA+mWr+dfjz3H3zIcICQttpXdApH2xV9ewbfYSnI564q/sjdPpJCd7B1V5JfS9axwGo7HRcnU1drb9awm1FdXEXd4LX38/cr/czfbZS+j73+MI7Bje7DhToB89pgz1eI36ujoOLtiIKdCfwE4RHudFxHsoIdjODBkyhEGDBjUZ43A4ePnll39wRKG0X18sW01ZSSn3zHyImNiOAMQlJfDm0y+z5YtNDBg2pNFyaxet5GReIbc/dDdJKd0ASB+YyTMP/ZnsxSuZ/OtpLYoTkZZb+PnnFJeW8tQjjxDf0dV/uyUk8NdZs1i9cSOjLr+80XKfLF/OiYIC/nDvvfTq3h2Ay/r1494ZM/h0xQruueUWAN6ZP5/I8HBm3H8/ZpMJgKjwcGZ/8AHf7N5NZq9eALzx4Yf4GAz8+YEH6BjtGo0wsE8fHnriCeYtXcr0SZNa9X0QaU9a+75cerIYe00tPTPT6TtkwDnbsX7Zauw1tfz6kfvo1CUegK69evDKn59h/dLVjLlx4sW8bJF26/i6ndSUVdP/vokExIQBEBwfzY7Xl5G/5QCdBqQ0Wi5nzXasJ8tIv2MMYUmuz4LojEQ2/99ccrK3kzLlymbHGc0mOmQme7zGwc824nTUk/rzKzFZ/DzOi4j30BqCXqampoZJkybxwgsvMHHiRDp06HCpmySXwPaNW0hK6eb+0gHQLS2FyI4xbN+4tdEyTqeTrV9sokdGT/eXDoDg0BDG3DiRhB5dWxQnIufniy1b6NW9uzsZCJCRmkqnmBjWb9nSaBmn08maTZvI7NXLnQwECA8J4ZZJk0hNdn1hqLXbCQkKYuSQIe5kIEDPbq6+/N3x4wAUFhVx7MQJhg0c6E4GAsR16EC/9HTWbNp08S5YxAu05n0ZoCDXNWUxulPT036LC4sICAp0JwMB4pO6YAkMIP/4ifO6NhFvVLjtEGFJHd3JQIDwbrFYokMo3Ha40TJOp5P8rQeISIl3J/kAzMEBJI0dQEhihxbFNaYqr5jcDbvp0L87oWeVFRHvpISgl6mpqaGyspJ//OMf/P3vfz/n1DJpv6xV1ZQUFhGbGO9xLrZLPCeO5jRarvRkMRUlZXRLSwVcDyO1thoABo24wj16oblxItJyldXVFJw8SdfOnT3OJXXuzOFjxxotV1hcTHFpKRmpZ/qlrcbVL68ZOtQ9qtBsMvH7u+7ihtGjG5Q/kuP6XIiOcE0tKi4rA6BzJ8/p/x2joqiorKSopOR8LlHE67T2fRkgP8eVzIuOdSUKTsd9X2SHaKqrqqkqr3Afq66swma1ERwach5XJ+J97NYabMWVBMVFepwL6hRJZW5Ro+VqSiqpLasmrJtrCQ+n04mj1g5A7OBU96jC5sY15sjyLRhMviSMyjz/CxSRdkPZoHamoqKC4uJij+PBwcGYTCaCgoJYtmyZEoFerLzE9UU+JDzM41xwWAi2aivWaiuWgIYLHhflFwIQGBzEkjmf8NXaDdRYbUTERDH2putJ7du7RXEi0nLFpaUARIR6ruMVHhJCtdVKVXU1gd9bv+9EQQEAIcHBvD1vHivXr8dqs9EhOppfTppE//T0Rl+vsKiInQcO8Pa8eXTu1IkBGa61x8xmMwDWGs+kQkVlJQCl5eVEhoef34WKeJHWvi+Da4Sg2d+Pxe/PZ/umrdhragmPjmTUDdeRMaifO27o2JHs/WYnH7zyNmNvuh6AJR98gtFo5LKrr7zIVy7SPtWWVQNgDvFcS9ccYsFhtVNnrcXXYm5wzlpUDoAp0J9DizeTt3kfDpsd/8hgul47kMienVsU931VecUU784hbmgafo20TUS8j7JC7czdd9/d6PG33nqLQYMGYTAYMBg0MNSb1dhsAJjMJo9zvqeO2WtrPb542KxWAFbOW4TRaOTaX9yAweDDuiWrePeF2fzygTvplpbS7DgRabnTo/pOJ+TOdnqKb43dTuD3zlWf6pdzFi7E12jk1smTMfj4sGDlSp7617/4/V13uUcPnlZRVcU9M2a4X++2KVPcr9G5Y0cs/v5s+vZbrr/6avdGI7V2O9v27HH/WUR+WGvflwHyj5+g1laDrdrK5DumYbNa2bB8DR++8hb1Dod7XcGwyHCGjbuaz979iFl/fBIAH4OBm+66rcE0YhE5t9Oj9Ywmz6/ahlODMhz2Oo+EYJ2tFoDvVmzFx2ggedwg8PEhJ3sHu95ZSe/briG8W2yz474vd+NeMPgQO7jnRb1eEfnpUkKwnfnd735H6ve+1AGNHhPv5HS6/vf0F/jmqrPXAWCrtnL/E/+LJdD1y2JK397843d/ZsXchXRLS2l2nIi0nPNUB25p/7XXufpltdXKs4895t4BuH/v3tw3cybvL1jgkRD08fHh/912G3V1dSxZs4a/vPgi9992G4P69sXX15dxI0bw4aJFPP/mm1x/9dXUO5188Nln2GpdX1SM59hBUUQaau37MsCAYUNw1tczaOSZHUfTB/bjhcf+xpIPPiVjcH8MBgMrPl7Ems+WkZiSTNapMptWfcEH//w3N911m0b5izSHu1O3rFh9XT3gSgxmPXCDe8OPyNTObH56LkeWfU14t9hmx53NYa+jYOtBInt2xj886AIuTkTaEyUE25m0tLQf3GVYvJufv+uhwX7qS/vZ6k79ounv7+9xznRqRFKv/n3cXzoALAEWUvv2Zuv6zdTaapodZ/bXrmYiLeXv5+o3tY3039Mj8gIa6b9+p/rloD593MlAgMCAAPr37s3aTZuw1dS46wcICghgSD/XVMLBmZn89vHHeXPuXAb17QvAz8aMocpqZfHq1az/+mvAlWCcMGoU7336aYPXEZFza+37stnfj4HDPXcfN5lN9L0si1WfLqXgeB6hkeGsW/I5cYlduO1/7nbPKEkfmMk///wM8/89hwefSsHX5DmSUUTOMPq5+ki93eFxrv7UD3S+/p79yGhy/ZAWlZbQYPdfX4uZiNR4CrYexFFrb37cWaOOyw7lUV9bR1TvxAu/QBFpN5QQFPEyoZGuNb0qyio8zlWUluMfYGk0WRcS7lqzLDDY81fFwJAgcDqpqalpdpwSgiItF3VqTb7S8nKPcyXl5QRYLA2SeqdFhIUBEBLk2S9Dg4NxOp1Yv5cQPJvZZKJfWhpL1qyhvLKSkKAgfHx8+OUNNzBx1CjyCguJDAsjOjKS9xcswGAwEHVqAxIRaVpr35ebut8GhgQDUFtTQ1F+IY66OtIHZTZYXsbo60vG4CyWffgphScK6NQlrmUXKOJl/EJdfbK2wupxrrbcitFiapCsO80c4lrwwxTo+QOAOcgCTnDU2Jsdd/ZrFO/NwcfXQESKpv6LyBlaTE7Ey1gCLIRFRXDiO89dC3OP5hCX2PhCxB3iOmH09aUgN8/jXMnJYnxNJgKDg5odJyItFxgQQHRkJIdzPPvv4WPHSO7SpdFynTt1wtfXl2N5nv2yoKgIk8lEaFAQx/PzufuPf2RZdrZHnK2mBh8fH0yn1j/64uuv2bl/P2EhIaQmJxMd6dpNcdeBA3Tt3Nm93qCINK2178vlJaU8/79PsOrTpR5xJ/NcGw6FR0e6N5yrr3d6xDnr60//qbmXJeK1fC1m/CKCGt1NuPJEEcFxUY2WC+wYho+vgeqCUo9ztpJKDCYjpkD/ZsedrfxoAcFxUfj6e65BLCLeSwlBES+U1r8PB3ftpfBEvvvYgZ17KcorIP2s3QbPZvb3IzWzN/u27aTg+An38ZLCIvZs3UFqZm8MBkOz40Tk/Azq04fte/dyPP9M/922Zw8nCgoY0r9/o2X8/fzISk9n644dHDtxpl8WFBXx1fbtZKWnYzAY6BgVRbXVyvJ166g7Na0JXLsNf/nNN/Ts1g3LqamLCz//nNc//BCH48yUqK937GDvoUNcM/TMOmUi8sNa874cEh6GzWrlq7Ub3BuRAJQWlbBl3UaSUrsTHBpCTFxHgsNC2LpuI/baM5sC2WvtfLN+MwFBgcTEdmyFqxdpf6LSEig9mEt1Yan7WMmBXKyF5URnJDVaxmg2EdmzC8V7cqjKL3EftxVXULT7KBE9O+NjMDQ77rR6h4Pq/FICYzVyX0Qa0pRhES80dOwIvlm/mTeemsXlo4dTZ7ezbskqYhM702ewK6FQXHCSowcO06VbEhExrl8yR0+ZwJE9B3j9yVlcdvWVGIy+bFixBpPZxNU3XOeuv7lxItJyE0aNYu2mTfz5hRcYN2IEtXY7C1aupGuXLgzNygIg/+RJ9h46RErXrnSIcvXfaRMnsmv/fmY+/zxjr7oKX6ORxWvWYDaZ+MX48YBrI5DbJk9m1ttv88fnnuPKAQOoqKpi6dq1GHx8uG3yZHc7Jl59Nc/Mns3fX3mFgX36UFhczGeff06fnj0ZOmDAj//GiPyEtfZ9edy0Kbz34mxe/etzZA27jFpbDV+uzMZgNDJu2s8AMBgMjJs6mfdeeoNX/vIP+g0dhLO+nq+zN1KYV8DkO6Zi9NVXB5HmiB/am4KtB9k+eylxV/Smvq6OnOwdBMVFEtM3GQBrcQXl3xUQkhCDJcI1fT9pTBZlh/PYPnspsUN6YjAYOb5hFwaTkcRrzvzo19w4gJrSKpyOevxDNUNHRBrycZ7eslB+0l544QVefPFF3nrrrRZtKjJixAji4uJ4++23L7gNK45uueA65MdzMq+ARe/N48i+g5jNZnpk9GL0lPHu9YS2rNvEvNf/w6Tbb6bfFQPd5YoLTrLsowUc3LUPp9NJQo+ujJ4ywWPUQHPjpO0aWKovfm1Vbn4+b378MbsPHsTPZCIzLY2pEycSGuzqv6s3buTld97hv6dN46qz7gn5J0/y7iefsH3vXpxOJz2Tk5l6/fXEd2zYLzds2cInK1ZwLDcXPz8/evfowU3jxhHboUODuC++/ppPli/nRGEhocHBDM3K4vprrnFvYiJtz6awuh8Okkuite/Lu7duZ81ny8k7lovJbCIxpRvXTB5HdKeG/frQ7v2s+nQJxw8fA6BTQjzDxl1Nj/SerfwOyPl47eCKS90EOYfqwjIOLdxE2ZF8jGZfwnvEkTQmy7XOH5C/5QD7PlpHj8lX0KFfN3c5a3EFR5Z8RcnBXHBCaGIHksZkERAT1qD+5sZVHCvkm5cX0u36y+g0MKW1L1sugveHP3Spm/CjK9+2rVXrD8nIaNX6f6qUEJSLRglBkfZFCUGR9kcJQZH2RQlBkfZHCcGLTwnBxmkhLxERERERERERES+ihKCIiIiIiIiIiIgXUUJQRERERERERETEiyghKCIiIiIiIiIi4kWUEBQREREREREREfEiSgiKiIiIiIiIiIh4ESUERUREREREREREvIgSgiIiIiIiIiIiIl5ECUEREREREREREREvooSgiIiIiIiIiIiIF1FCUERERERERERExIsoISgiIiIiIiIiIuJFlBAUERERERERERHxIkoIioiIiIiIiIiIeBElBEVERERERERERLyIEoIiIiIiIiIiIiJeRAlBERERERERERERL6KEoIiIiIiIiIiIiBdRQlBERERERERERMSLKCEoIiIiIiIiIiLiRZQQFBERERERERER8SJKCIqIiIiIiIiIiHgRJQRFRERERERERES8iBKCIiIiIiIiIiIiXkQJQRERERERERERES+ihKCIiIiIiIiIiIgX8b3UDbjUvvzyS375y18SFhZGdnY2ZrP5UjdJ5KIrKSxi8ZxPOLz3AAApGb0Ye+NEAkOCmyxXVV7B8rkL2fPNDux2O7EJ8VwzeTydkxMbxH237xDLP/6M44ePYQm00DMznRHXjyUwOOi84kSkaQVFRbw1bx679u8HoF9aGtMnTSI0uOk+XVZRwfsLFvDV9u3U1tWRFB/P1IkT6Z6Y2CDu4NGjvPfpp+w9fBiDwUCv5GSmT5pEbIcODeJ+/9RTHDx61ON1Bvbty29/9asLu0gRL6N7tUj7Yiuu4NDizZQdygMgIjWepLEDMAdZGo8vqWTzUx81WWf6HaMJ69oJgNpKK4eXfEXJvuPU2+sI7dqJrtcNxBLR8DNj93urObn9iEddQXGRZN49/jyuTETaC69PCC5YsICAgABKS0v5/PPPGTNmzKVukshFVV1ZxetPzsLhqGPomBE4nfWsW7KK/Jxc7nzsAYy+jX8M1NhsvPb3F6goLWfI1cPwDwxg48psXn9yFnc+9gAd4l0PI4f37OfNZ/6Jv8XCsHFX42PwYcOyNRzas5/f/P5+LIEBLYoTkaZVVFXxp+efx+FwMGHUKOrr61mwciVHc3N5/MEH8T1Hn7babMx47jlKysq4bvhwAgMCWLJ2LX96/nkef/BBusTGApCbn8+fnn8eP5OJn526Jy78/HP+8OyzPPnww0SEhgLgdDrJyc8nKyODQX36NHit6IiIVnwHRNof3atF2hd7dQ3bZi/B6agn/srerntm9g6q8kroe9c4DEajRxlToB89pgz1OF5fV8fBBRsxBfoT2Cni1DEHO99cgfVkGXFXpGH0M3N83Q62/Wsx/e6diCnAz12+Kr+EkIQYOg5M8Xg9EfFuXp0QrK2tZdmyZUycOJHPPvuMefPmKSEo7c4Xy1ZTVlLKPTMfIia2IwBxSQm8+fTLbPliEwOGDWm03NpFKzmZV8jtD91NUko3ANIHZvLMQ38me/FKJv96GgCfvfsxPj4Gfv37/0dkh2gAevXLYNYfn2TNZ8sZc+PEFsWJSNMWfv45xaWlPPXII8R3dPXpbgkJ/HXWLFZv3Mioyy9vtNwny5dzoqCAP9x7L726dwfgsn79uHfGDD5dsYJ7brnFVf/q1dTU1PCn++8nKT4egPQePfj9//0fCz//nOmTJgFQWFxMTU0NAzIyuHLgwNa+bJF2Tfdqkfbl+Lqd1JRV0/++iQTEhAEQHB/NjteXkb/lAJ0GpHiUMZpNdMhM9jh+8LONOB31pP78SkwWVxIvf+sBKo8X0fv2awjv5vpBLyIlji3Pf8LxdTtJvKYfAPUOB7aiCqKvSmy0bhHxbl69huCaNWsoLy9n0KBBXHHFFaxbt47CwsJL3SyRi2r7xi0kpXRzf8EA6JaWQmTHGLZv3NpoGafTydYvNtEjo6f7CwZAcGgIY26cSEKPrgCUnCym4PgJ+g4Z4P7iABDdqQMpfdLY+sWmFsWJyA/7YssWenXv7k4GAmSkptIpJob1W7Y0WsbpdLJm0yYye/VyJwMBwkNCuGXSJFKTz3xJKDh5kuCgIHcyECA5IYGgwECOnTjhPnb6z3Hfm0YsIi2ne7VI+1K47RBhSR3dyUCA8G6xWKJDKNx2uNn1VOUVk7thNx36dyc06cznQ+G2w/hHBruTgQAB0WGEJXeicNsh9zFrYTlORz0B0WGIiHyfVycEFyxYgI+PDwMGDODqq6+mrq6OTz75xCPu22+/5de//jVZWVkMGjSI3/zmN+zdu7dFMSNGjGD69OkedX//+IgRI3j00Uf5/e9/T0ZGBldeeSXFxcU4nU7ee+89Jk+eTGZmJunp6YwZM4ZXX30Vp9PZ7LY8/fTTpKSkcODAgQZl6uvrGTp0KPfdd1/L30hps6xV1ZQUFhGbGO9xLrZLPCeO5jRarvRkMRUlZXRLSwVcXzpqbTUADBpxhXukQnlJGQAd4jt61BERE0V1ZRVlxSXNjhORplVWV1Nw8iRdO3f2OJfUuTOHjx1rtFxhcTHFpaVkpJ7p07YaV5++ZujQBqMKO0ZHU1lVRVlFhftYRVUV1VYrYSEh7mPfTwierk9EWkb3apH2xW6twVZcSVBcpMe5oE6RVOYWNbuuI8u3YDD5kjAqs8HxytwigmI96w+MjcRWXInd6vosqC4oBSAgxrXch6PW3uzXFpH2z2unDFdWVrJ69Wr69u1LVFQUw4YNw2w2M3/+fO644w533FdffcWtt95KTEwMd9xxB/7+/rz11lvccsstzJ07l/j4+GbFtMTChQvp2rUrv//97zl58iQRERH84x//4J///CeTJk3i5z//OVVVVcyfP5+nn36awMBApk6d2qz2jhs3jldffZXFixdz7733ul9z06ZNFBQUMH68FpZtT04/3IeEh3mcCw4LwVZtxVptxRLQcHHjonzXSNnA4CCWzPmEr9ZuoMZqIyImirE3XU9q394AmP1MANTYPBMB1ZVVAFSUVTQ7LjQi/HwuU8RrFJeWArjX8TtbeEgI1VYrVdXVBAY0XOfrREEBACHBwbw9bx4r16/HarPRITqaX06aRP/0dHfsxFGj2LJjB8+/+Sa3nJoe/M78+RiNRsZedZU7LufECdc95uOPWb91KzU1NcRERXHTuHFc3r//Rb5ykfZL92qR9qW2rBoAc4jnmpvmEAsOq506ay2+lqY3s6zKK6Z4dw5xQ9PwO6suR60dh9XeeP2nNiypKa3CZPGjKt+VxD+xaR+F2w5TV12DKdhC52HpxA3pdd7XKCLtg9eOEFy6dCk1NTVcc801AAQFBTFkyBD279/Ptm3b3HF///vfCQsLY+7cudx5553ceuutzJ49m/Lycv7zn/80O6YlbDYbL730EjfddBP33HMPdrudd955h+uuu46//e1v/PznP+e2227j3XffxWw2k52d3ez2pqSk0KNHD5YsWdLgNRctWkRwcDDDhg07n7dT2qgamw0Ak9nkcc731DF7ba3HOZvVCsDKeYvYt20X1/7iBn52x1RMZjPvvjCbAztdI05jYjviZ/Fn19fbGoxUtdfa3TF1dnuz40SkaadH4ZnNnl8izKZTX+Yb6UvVp/r0nIUL2bprF7dOnszd06fjZzLx1L/+xbY9e9yxURERTBo9mt0HDvDQ3/7GQ3/7Gzv27eP/3Xprg2nEx06cwGazUWWzcc/06dw5dSoWPz+e//e/WbtJUwtFmkv3apH25fQoPKPJc+yN4dQGQQ573Q/Wk7txLxh8iB3cs8HxOtu56z99rP5UG06PEKwuLKXbhMH0mDKUgJhQDn22iaOrvm3mFYlIe+W1IwQ/++wzAK6++mr3sauvvprVq1fz8ccfk5GRQVFREdu2beP2228nPPzMr6FJSUnMnTuXTp06NSumpbp06UKHs9ZkMplMrF+/Hvv3HsJKSkoICgqiutr1K1Rz2zJ+/Hiefvpp9u3bR48ePairq2Pp0qVcffXVjX7JlJ+u08/zPj4+LSpXd+ohxVZt5f4n/te9q2BK397843d/ZsXchXRLS8Ho68uQa65i1SdL+PCVt7nyulE4nfWsmLeI2hrXlxeDwdDsOBFp2ukv6S3t0/Y6V5+utlp59rHHCDo1grB/797cN3Mm7y9Y4J5OPOezz/h46VJ6duvGqMsvp76+nmXr1vHs66/zwK9+5R5NePrc6CuvdL/O5f3789vHH+ed+fO5IitL/VqkGXSvFmln3J36/Ktw2Oso2HqQyJ6d8Q8PajyoqfpPfZ5E9U4kOC6K+GHp7s+YmL5d2fbqYo6u+pZOA1MwBfqff0NF5CfNKxOCBQUFfPnllyQmJuLj40NOjmttltTUVHx8fFi0aBG///3vOX78OAAJCQkedfTq5RpifXo0YVMxLRUZ6bkehOn/b+++w6Os0j6Of9N7JQkhDUKA0JIQCEQ6QhBRIKKy7Iqoq76K2F3XFde1u7rYQexg3UUUQZCq9CIQEDCAElogpJAe0stM8v6RMBJnwEBCnd/nuriuzXOe+8w5WSfnmXtOcXBgzZo1rFy5ktTUVI4cOcLx4/VLTE58QGxKewFGjRrF66+/zrJly+jUqRMbN26kqKhIy4UvQ07O9SeRWZpZYGj45tDZ2fwhwKEhMdy1V4zpAwaAi6sLnXt0Z8ePW6murMLR2Ykrx4ygsryCTSvWsSup/kCDyJhuDLx6KD98swhXdzeAJt8nIqfm7FT/nq628J6ubvjSyNXCe9qp4T0dHxNjSgYCuLm60qt7d9YlJVFZVYXRaGThypVEhIXx1P33mz789+vZkydefZX3Z89mRufOODg4MHzAALPXcXRwYFDv3sxdupSjWVm0DQ5ufqdFLnMaq0UuL3YNy+9ra4xmZbUNX9DZO5vPCD7Z8UPHqK024Ne9nXn9jg2zAA3m9Z+YeXiiDQEx7c3usbGxIbB3J4qP5FCclkurLub7EouIdbDKhOCSJUuora3l8OHDDBs2zKz8+PHjrFixgqCg+lObTveNbW1t7R/eczpGo/kfcjs7u0Y/19XVMXnyZFavXk2vXr2IjY1l/Pjx9O7dm1tvvfWM2xIUFETPnj1ZunQpDzzwAEuXLsXf35/4+Piz6oNcvLxa1c8ULTleYlZWUlSMs6sLjg0fRE7m6VO/P5mbh/k3km6e7lBXR1VV/YcMGxsbrvnLWAZdk0B+di6evt74+Pnyw7zF2NjamvYaaup9InJqfg2zv4uKi83KCouLcXVxMSUNT+br7Q2Ap7v5e9rLw4O6ujoqqqooKCzEYDDQr1evRjOB7O3tGRAXx38XLCAjO5t2p9kb18vDA4AqC8kNETGnsVrk8uLkVf+erC6pMCurLq7AzsUBOwtbBJysICUdG3tbfCPNx1t7Z0fsXByoLi43r7/hNS3tL3iyE7MCdciIiHWzyoTgidOFX375Zdx/9+Fo7969TJ8+nfnz5/PCCy8AkJaWZlbHK6+8gpeXF4mJiX94z1133YWtra3ZjA6DwUBhYSFhYWGnbe+2bdtYvXo1kydP5sEHH2wUX1RURGjDaZMnlgT/UVugfpbgs88+y6FDh1i9ejWjR482S0TKpc/F1QVvP1+yjpifUJiZlk5wwgAUJQAAYlRJREFUO8vfCLYOboOdvT05mcfMygrzCrB3cDB9AEnesh0PLw/CO3fE3cvDdN/hlIMEtQ0x7YnU1PtE5NTcXF3xb9WK1HTz93Tq0aNEnGI8CW3TBnt7e44eM39P5+Tn4+DggJe7O8UNJwuf+ILpZLUNs9HrqD/c5IUZM+jXsyc3jhzZ6L6M7GwA/C3MdhcRcxqrRS4v9i6OOPm6WzxNuDQrH49gvz+sozgtB49gP+ydLW/n5B7UitLMArPrZVn5OLfywMHFiVqjkZ3vLsYj2I+OY/s1uq88t36lmbOPh1kdImI9rG4jkNTUVHbv3k2fPn247rrrSEhIaPTv7rvvxt/fn40bNwL1y4gXL15MaWmpqY6jR4/y2WefkZeXR+vWrf/wHgA/Pz9SU1OpbNg4GmDVqlVUVZmf5PZ7RQ2nSnbo0KHR9a+++oqKigoMDVPPm9oWgJEjR+Lg4MD06dMpKipi1KhRTf0VyiWmW68YDv6SQm5WtunagT0p5B/LISq+p8UYR2cnOsd2Z1/yHnIyskzXC3Pz2btjN51ju5tmD/24fA3fffFNo9muKT/vIW3/IeKH/raksKn3icjpxcfEsCslxZR4A0jeu5esnBz6neJ0X2cnJ+KiotixezdHs357T+fk57Nt1y7ioqKwtbUltE0bfLy8WLNli2kJMtQvR16XlISHuzuhgYH4entTXlHBqh9/NB1YApBXUMCaLVvo1qkTPp6e56D3IpcnjdUilxe/bm0pOphJeW6R6VrhgUwqcovxjw4/bWyt0Uh5dhFuQb6nrb8i9ziFBzJN18pziyg6mGWq39bODjsHe3J+PkRl0W+fDQ0V1WT++AvOrTzwCP3j5KSIXL6sbobgicNEbrzxRovlDg4O3HDDDbz33nssWLCAKVOmcOedd3LDDTcwbtw4bG1t+eKLL/D09OT//u//AJp0z6hRo3j++ee58847GTNmDEeOHOGrr74iuAn7K8XGxuLu7s5LL71ERkYGXl5ebNmyhSVLluDk5ERZWZnp3qa0BcDHx4f+/fuzZMkSQkND6dGjx9n+SuUiN3DkUHb+uJWPX5lB/xFXYqipYcOy1QS1CyXmivrkQUFOHmkHUgnrEI5vQP2DwYhxYzi89wCzps6g7/BB2NrZs2nFWhwcHRh+/bW/1X/NML5852O+eOtDuvaMpii/gI3L19Che2di+sad8X0icnpjEhJYl5TE89OnM2roUKpravhu5Urah4UxMK7+vZSdl0fKoUNEtm9Pa7/69/TNiYn8sn8/z02bxsghQ7C3s2Pp2rU4Ojjwl4Y9ZG1tbbl93DhenzmTf776Klf27UttbS2rN28mMzubeydOxL7hhMQ7/vQnXv3wQ/71xhsM69ePispKlq9bh11DHSLSdBqrRS4vIQO7k7PjILtmLid4QHdqDQbS1+/GPbgVAT0iAKgoKKH4SA6ebQNw8f1tpl5VURl1xlqcvU5xmAgQGNeJzE17+XX2akIGdsfOwZ709btx9HQluH83033tr+3Dz+8v4ef3lxDct35P+aytKVSXVtD9r1ed9bZXInJ5sKk7cSKFlRgxYgT5+fls2LDB4gbNUH84R0JCAu3atWPp0qX89NNPTJs2jeTkZJycnOjduzd///vfGy31/aN7amtreeedd5g7dy75+fl07tyZRx99lFmzZlFeXs7nn38OwNChQwkODjb9fHL9r776Knv37sXR0ZHw8HBuueUWkpOT+eyzz1i3bh1+DR/6mtJeqE+O/u1vf2PSpEk8/PDDzf7drkjb3uw65NzIO5bDktnzObzvII6OjnSK7sqIcaNx86x/+Ni+IYn5s/7H2NtvoueAPqa4gpw8vp/7HQd/2UddXR1tO7VnxLgxBAQFNqo/ect21i9ZQX52Hm6e7sRcEcegaxNwdHI8q/vk4tCnyOq+M7pkZGZn8+m8efx68CBODg7EduvGhMRE0/59a7Zs4d0vvuCem29myEn7w2bn5fHfBQvYlZJCXV0dXSIimHDddYQENn5P7963j7lLl3KwYQuK8JAQxo4YQezvDsvalpzM/O+/53BGBo4ODnTt2JGbxowhuHXrc/wbkLOV5G240E2QU9BYLWfjo4MrLnQT5BTKc49zaHESxw9nY+doj0+nYMKvjsPR3QWA7O0H2Dd3A51uHEDrnr+tBCs5msvOdxfT4bq+tOkTecr6q4rLSV2ylYJ96djY2ODVPpD2I3vj7Nt4GfDxw9kcWbmDkqO5gA2eYf60TeiJZ5j/Oem3NN+XVz52oZtw3hU3HNZ6rnhGR5/T+i9VVpcQlN8sWbKEhx9+mCVLlhAREdHs+pQQFLm8KCEocvlRQlDk8qKEoMjlRwnBlqeEoGVWt4eg1Kurq+PLL78kJiamRZKBIiIiIiIiIiJyadD0DytjMBh45JFHyMrKIjk5menTp1/oJomIiIiIiIiIyHmkhKCVsbe358iRI6Snp3Pfffdx1VVXXegmiYiIiIiIiIjIeaSEoBVasGDBhW6CiIiIiIiIiIhcINpDUERERERERERExIooISgiIiIiIiIiImJFlBAUERERERERERGxIkoIioiIiIiIiIiIWBElBEVERERERERERKyIEoIiIiIiIiIiIiJWRAlBERERERERERERK6KEoIiIiIiIiIiIiBVRQlBERERERERERMSK2F/oBoiIiIiIiIiIiJwLw4YNO235ypUrz1NLLi5KCEqL6VOk/5xELid35S+70E0QkRZ2p3fChW6CiLSgD1pdfaGbICIilyhlcERERERERERE5LJkrTMA/4j2EBQREREREREREbEiSgiKiIiIiIiIiIhYESUERURERERERERErIgSgiIiIiIiIiIiIlZECUERERERERERERErooSgiIiIiIiIiIiIFVFCUERERERERERExIooISgiIiIiIiIiImJFlBAUERERERERERGxIkoIioiIiIiIiIiIWBH7C90AOXPV1dV88sknLFq0iLS0NGxtbWnXrh1XX301t956K05OTqZ7S0tLqa6uxtfX97R1Pv7448yfP5+UlJRz3Xy5AHLy8/ls/nx+2b8fgJ7dujFx7Fi8PDyaFZebn899zzxz2jqeeuABunXsCEBqejr//fZbDqalYWdnR89u3bhpzBi8PT2b2UMR61JZUMKhpVs5fugYAL6dQwgf2RtHd5cWiSvYl8HRNT9TmpEPNjZ4hvrTdnhPPMP8z+o+ETk7hbn5LJ2zgNSUAwBERndl5PhE3DxPP36fTdyxo5m89/xrDLomgaHXjWy5TohYqYvl+ftk85YvZ+WPPzLj2WfPokcicrlRQvASYzAYuOOOO9i5cyfXXXcd48ePx2g0sm3bNl5//XVWrVrFZ599hqOjI7t37+aee+7h1VdfJT4+/kI3XS6QkrIynp02DaPRyJiEBGpra/lu5UrSMjP596OPYm9v+c9AU+I83N25d+JEs9jqmho+njsXL3d32gYHA5B+7BhPvfEGvl5ejLvmGsorKli8ejUphw7xn3/8A+eTEtkicmo15VUkz1xGnbGWkEHdqaurI339bsqOFdJj8ihs7eyaFVeUeow9n/6Aa4A37a7qSZ2xjswtv5L84VJi7hqJR6j/Gd0nImenvLSMWVNnYDQaGHj1UOrqatmwbDXZ6ZlM+tcj2J1i/D6bOKPRyDcz/4vRYDzX3RKxChfL8/fJdv76K98sXYq3l1eL91dELk1KCF5ili5dSlJSEtOnT+eqq64yXb/lllv46KOPeOWVV5g7dy433XQT+/btIycn5wK2Vi4Gi1etoqCoiFemTCEkMBCADm3b8uKMGazZsoWE/v3POs7ZyYlBffqYxX7yzTcYjUbuv/VW3F1dAZizeDF2trY889BD+DTMCGwfFsZ/3nuPdUlJXDVw4LnovshlJ2PDHqqOl9PrgURcA7wB8AjxZ/es78nefoA2vSObFXdocRJOXm70uGcUdo71jwkBPSP46Y35HP5hO1G3jzij+0Tk7Gz8fg3HC4u477nHCAiqH4eDw9vy6Wvvsn1jEr0H92uxuHWLV5CbeezcdUbEylwsz98nrNi4kY+//hqDUUl/EfmN9hC8xOzYsQOA/hYGkZtuugkHBwd27tx5nlslF7ON27fTtWNH00MFQHTnzrQJCODH7dtbPO5IRgbL1q5lSHw8XTp0MF23t7NjYO/epmQgQNeG8iOZmWfVNxFrlJt8CO/wQFNSD8CnQxAu/p7kJqc2K66mooqyrAL8otqZknwAju4ueIUHUpyWc0b3icjZ27VlO+GRHUxJPYAO3SJpFRjAri07Wizu2NFM1i76niGjlcQXaSkXy/M3wAtvv82HX35Jt06dCA8NbUavRORyo4TgJcbNzQ2AOXPmmJW5urqyfft2pk6dyvTp05kyZQpQP3tw6NChpvt2797N7bffTmxsLAMHDuT999+nrq7u/HRAzqvS8nJy8vJob2HwDw8NJfXo0RaNA5izaBGOjo78adSoRtcfvO027vjTnxpdO5KRAYCfj88f9kVE6hNxlQWluAe3Mitzb9OK0sz8ZsXZOzkQ9/D1BPfvZl5HeSU2trZndJ+InJ2KsnIKc/MJahdiVhYUFkJWWnqLxBmNRuZ/PJuIbpHE9I1rmcaLWLmL6fkbILeggDv+9Cem3HOPtugRkUa0ZPgSM2bMGD7++GP+85//MG/ePBISEujbty+xsbE4Ojri6OgIwPDhw8nNzWXOnDlMmjSJqKgoAPbv38/EiRPx9PRk8uTJ1NTUMGvWLKqrqy9kt+QcKSgqAsDXwl4hPp6elFdUUFZejtvvlhWcbdyRjAx+2r2bUUOHWow11X/8OPtTU/ls/nx8vLwY2rfvGfZMxDpVHy8HwNHT1azM0dMFY0UNhopq7F0czzrOxc/8kJ+yYwUUH8nBp2P9nkQ2trZNuk9Ezk5x4XEAPH28zco8vD2pLK+gorwCF1eXZsVtWLqS/Oxcbrrvdmpr9eWwSEu42J6/X3viiVPuWSgi1k1/GS4xHTt25O233+aJJ55g//797N+/n3fffRdXV1eGDh3KfffdR3h4OJ07d6ZHjx7MmTOHfv36mQ4VmT59OgBffvklbdq0AWDEiBFcd911F6pLcg5VVlUBmBLFJ3N0cACgqqYGtxaK+37DBmxtbbl60KDTtuvhF16gsrISW1tb7rvllj88bU1E6hmrawCwczAfvm0bHvaNNQazhODZxp2ITfl6PQAhg6NO27am3Ccif6yqshIAB0cHszL7hms11dVmCcEzicvJyGL1wuVcO+EGvHx9KMwraNE+iFiri+35W8lAETkVrem5BA0ZMoTVq1fzxhtvkJiYiL+/P+Xl5SxatIjExESSkpIsxtXW1rJ+/XoGDx5sSgYCREREMGDAgPPVfDmPTiwFt7GxOedx1TU1rN+6lV5RUfi3Ml+WeILRaOSOceN48K9/pXunTkz75BMWr159Ru0TsVontnc4s7f0WccZqw3s+XwlZVmFhAyOwjs8sFn3iUjTmN6yZzx+Ny2utraWeTNnE9ah/SkPJxGRs3MxPn+LiFiihOAlysnJiWuuuYapU6eyYcMG5s2bx6hRo6iqquLpp5+2GFNUVER5eTlhYWFmZe3btz/XTZYL4MQ+IZaWhFfX1M8YcnV2bpG43fv2UVVVRd/Y2NO2yc7OjkF9+tCvZ0+emDyZTu3bM2fxYioaZjWIyKnZOdXPEKitMT8lsNZgAMDe2Xxm0NnEGSqq2f3x9xw/eIzWcR1pN7ynxTY19T4RaTon5/pxuMbCOGxomPHrbGH8bmrchqWrOJaewVXjRlNWUkpZSSmV5fVbC1RX11BWUqr9pUXO0sX4/C0iYonmD19CysvLef/99+nWrRtXXXVVo7Ju3brx2muvUVxczLp16ygsLDxlPZUWEi+1tbUt3l658E4c1lFUXGxWVlhcjKuLi8XNhc8mbseePdjb2xPbtWuT22djY8MVPXqw79AhMrOziWjbtsmxItbIycsdgOqSCrOy6uIK7FwcsLOwVPBM46pLK9j9yQ+UZRYQ2KcTHRL7Wpyx0NT7ROTMeLWqH4dLjpeYlZUUFePs6oKjs/n43dS4/bt/xWgw8v7zr5vdt3HZKjYuW8UjU5/Cx8+3uV0RsToX+/O3iMgJSgheQpycnJg5cyaxsbFmCcETOnTowPr16y1+a+zj44O7uztHjhwxK0tPt3xanVza3Fxd8W/VilQL//+mHj1KhIXZomcbty81lfZhYbi6uJiVlZWXM+XVV7miRw9uGjOmUdmJmYGW9ksRkcbsXRxx8nW3eJpwaVY+HsF+zY4zVNWYknxB/bsScW0fi3U29T4ROXMuri54+/mSdcR8HM5MSye4nfkppGcSd/X466goK29UXlZcwtwPvyCmbxw9+vXG3VP7+4qcjYvl+VtE5I9oyfAlxM7OjmuuuYakpCQWLFhgVl5UVMTy5cvp168fLi4u2NrW/997YvafjY0Nw4cPZ/369ezfv98Ul56ezpo1a85LH+T8i4+JYVdKChnZ2aZryXv3kpWTQ79evVokzmAwkJ6VRXhIiMW63FxdcbC3Z+2WLZSW//YBpKy8nNWbNuHfqhUhgdpzTKQp/Lq1pehgJuW5RaZrhQcyqcgtxj86vNlxBxduqk/y9ety2iRfU+8TkbPTrVcMB39JITfrt3H4wJ4U8o/lEBV/6qX5TYkLbhdKh26Rjf6FdazfPsbXvxUdukVaPJhERJrmYnj+FhH5I5oheIl5/PHHSU5O5rHHHmPhwoUMHDgQd3d30tLSmDdvHjU1NTz11FMA+PrWL/OYPXs2eXl5jB49mgcffJA1a9Zw8803c9ttt2FnZ8fnn3+Om5ubxf0q5NI3JiGBdUlJPD99OqOGDqW6pobvVq6kfVgYA+PiAMjOyyPl0CEi27entZ9fk+NOyCssxGA0mpY6WHLHuHE8//bbPPXGGwzr1w+D0ciKjRspKi7m8Xvu0TJDkSYKGdidnB0H2TVzOcEDulNrMJC+fjfuwa0I6BEBQEVBCcVHcvBsG4CLr0eT48pzisjZcQg7Fwfcg1qRveOg2eu3jo1o8n0icvYGjhzKzh+38vErM+g/4koMNTVsWLaaoHahxFxRnxgoyMkj7UAqYR3C8Q3wa3KciJxbF8vzt4jI6SgheInx9fVl3rx5fPLJJ6xcuZIZM2ZQUVFBQEAAV111FZMmTSIgIACAvn37MnLkSFavXs3mzZu56qqraNOmDbNnz2bq1Kl89NFHODo6Mm7cOADef//9C9k1OUe8PDx49qGH+HTePL5asgQnBwd6R0czITERB4f6b/9/PXiQd7/4gntuvtn0QNKUuBNKy8oATrtcoWvHjjwxeTJfL1nC7O++w9bWli4RETx0223aO1DkDDi6uxD9fyM5tDiJIyt2YOdoT6suYYRfHYetvR0AxYez2Td3A51uHGBKCDYl7njqMQCMFTXsm7vB4uu3jo1o8n0icvbcPD24c8oDLJk9n5XfLsXR0ZEusVGMGDca+4Zx+PC+Q8yf9T/G3n6TKSHYlDgRObculudvEZHTsanTEWLSQoqTky90E0SkBd2Vv+xCN0FEWtidEQkXugki0oL6FGl+h8jlxjM6+kI34bw717kEa/ydNoX2EBQREREREREREbEiSgiKiIiIiIiIiIhYESUERURERERERERErIgSgiIiIiIiIiIiIlZECUERERERERERERErooSgiIiIiIiIiIiIFVFCUERERERERERExIooISgiIiIiIiIiImJFlBAUERERERERERGxIkoIioiIiIiIiIiIWBElBEVERERERERERKyIEoIiIiIiIiIiIiJWRAlBERERERERERERK6KEoIiIiIiIiIiIiBWxv9ANEBERERERkTNnXLv6QjdBRFpadPSFbsF5d87/llnh77QpNENQRERERERERETEiighKCIiIiIiIiIiYkWUEBQREREREREREbEiSgiKiIiIiIiIiIhYESUERURERERERERErIgSgiIiIiIiIiIiIlZECUERERERERERERErooSgiIiIiIiIiIiIFVFCUERERERERERExIooISgiIiIiIiIiImJFlBAUERERERERERGxIvYXugEicu7l5Ofz2fz5/LJ/PwA9u3Vj4tixeHl4tEjcwbQ0Zi9cSEpqKra2tnSNiGDi2LEEtW4NQG5+Pvc988xpX+upBx6gW8eOZ9lDEetSWVDCoaVbOX7oGAC+nUMIH9kbR3eXFokr2JfB0TU/U5qRDzY2eIb603Z4TzzD/OvrKSxl6ytzT/taUXeOwLt9m7PtoojVKczNZ+mcBaSmHAAgMrorI8cn4uZ5+rG6qXHvPfc6GYfTzOK79ormL/febrHuY0czee/51xh0TQJDrxt5Nt0SsVo5xSV8sXkzv2RmAhAbFsbEvlfg6XL6sbqpcXuzjjFn61YO5ubi7uREXNu23BgXh6eLc6P79mRk8tW2bRzJz8fV0ZH49u0Z3zsOZweHFuytiFyKlBC8iM2bN48pU6bw0ksvcf3115uuFxcXM2fOHJYsWUJaWhr29vaEh4dzww03kJiYiKOjY6N6Hn/8cebPn29Wv6OjI35+fvTt25dHHnkEPz+/c94nOf9Kysp4dto0jEYjYxISqK2t5buVK0nLzOTfjz6Kvb3lPwNNjcvMzubZadNwcnDghquvBmDxqlU89eabTH38cXy9vPBwd+feiRPNXqO6poaP587Fy92dtsHB5+6XIHIZqSmvInnmMuqMtYQM6k5dXR3p63dTdqyQHpNHYWtn16y4otRj7Pn0B1wDvGl3VU/qjHVkbvmV5A+XEnPXSDxC/XFwc6LTuIFmr1FrMHDwuy04uDnj1sb3nP4eRC4n5aVlzJo6A6PRwMCrh1JXV8uGZavJTs9k0r8ewe4UY3VT4+rq6sjJOkbn2Ci69YpuVIe3n+X3qtFo5JuZ/8VoMLZsZ0WsQEllJc8vWoSxtpbRMTHU1tWxKDmZowUFvDD2OuxPMVY3Ne6XzExeWrIUV0dHrovtga2NLUt37WJPZibPXpeIu5MTUJ8MfHHxYsL9/Lgpvg/5pWUs3b2bQ7m5PDNmNDY2NuftdyIiFx8lBC8x+/fvZ9KkSWRnZzN69GjGjx9PZWUlmzdv5l//+hdff/01M2bMwN/f3yx2ypQp+Pj4mH4uLS1l06ZNfPPNN+zevZu5c+eaJRPl0rd41SoKiop4ZcoUQgIDAejQti0vzpjBmi1bSOjfv1lxi9esoaqqimcfeojwkBAAojp14olXX2XxqlVMHDsWZycnBvXpY/Yan3zzDUajkftvvRV3V9dz0X2Ry07Ghj1UHS+n1wOJuAZ4A+AR4s/uWd+Tvf0AbXpHNivu0OIknLzc6HHPKOwc6x8TAnpG8NMb8zn8w3aibh+BnaMDrWMjzF7j4KIt1Blr6fynQTi4OLV850UuUxu/X8PxwiLue+4xAoLqx9zg8LZ8+tq7bN+YRO/B/ZoVV5RXQE1VNV1io+jRr3eT2rRu8QpyM4+1QO9ErM+S5F0UlJbxn3E3ENLw+atDgD//XryUtfv2MaxLl2bFfbLxR2xsbHg2cQyBXl4A9G7Xjse/+YZvt+/g5r5XAPDF5s20cnfn6TGjcWz4gsDP3Z1ZGzby89F0eoSFntPfg4hc3LSH4CWkrKyMu+++m8rKSubOnctLL73En//8Z2677Tbee+893n33XVJSUrj//vupra01i09ISCAxMdH0b8KECbz99tv85S9/ISUlhRUrVlyAXsm5tnH7drp27GhK6gFEd+5Mm4AAfty+vdlxOXl5eLi7m5KBABFt2+Lu5sbRrKxT1n8kI4Nla9cyJD6eLh06nG33RKxObvIhvMMDTUk9AJ8OQbj4e5KbnNqsuJqKKsqyCvCLamdKBgI4urvgFR5IcVrOKesvO1ZA5qZfad2rI17hgae8T0TM7dqynfDIDqakHkCHbpG0Cgxg15YdzY7LaUjs+bcJaFJ7jh3NZO2i7xkyesSZdkVEgB8PHqRrUBtTUg8gKiSENt5ebDp4qFlxuSUlHC0oZFDHjqZkIECwjzc9w8JYt69+q59qgwFPFxeGdu5sSgYCdGlTv53Hkfz8lumsiFyylBC8hHz00UdkZGTw73//m86dO5uVX3nlldx7773s2LHD4hLhUxk7diwAP//8c4u1VS4OpeXl5OTl0T7U/Nu/8NBQUo8ebXZcoL8/pWVlHC8pMV0rKSujvKICb0/PU7ZtzqJFODo68qdRo86kSyJWraaiisqCUtyDW5mVubdpRWmm5Yf7psbZOzkQ9/D1BPfvZl5HeSU2tqd+bDj8w3ZsHexpmxDb1O6ICFBRVk5hbj5B7ULMyoLCQshKS292XHZ6/Rd0/kH1e/tWV1adsj1Go5H5H88molskMX3jzqgvIgKlVVXkFJcQ7m++HVM7Pz9S8/KaFVdQVgZAqK/5cv/WXp6UVFaSX1qKo709U64Zydiejcflw/n19fj/wV7iInL5U0LwEvLdd9/Rrl07Bg8efMp7JkyYgIODA999912T63Vp2KC2rq6u2W2Ui0tBUREAvid9e3iCj6cn5RUVlJWXNysuMSGBVt7eTPv0U45kZHAkI4Npn3yCnZ0dI4cMsdiuIxkZ/LR7N8P797f4GiJiWfXx+vedo6f5EntHTxeMFTUYKqrPOs7G1hYXP0+cfndf2bECio/k4BlmeXZR2bECCn5Np018pFmsiJxeceFxADx9vM3KPLw9qSyvoKK8ollxOZnHcHR2YumX3/LcPY/x/OR/8Po/nid5i/lKgQ1LV5KfncuYieOa0SsR61XYkLDzdXUzK/NxdaW8qpqyKvOkfFPjnBpm+1XU1JjdV1JZCUCRhb8ZuSUlrE3Zx6c/biLU14e4dm3PoFcicjnSHoKXiJycHI4ePdrocBFL3NzciIqK4qeffmpy3evXrwega9euzWqjXHwqGx42LO0N6dhwslhVTQ2/f+w4kzg/X1/GjhjBrK+/5rGXXwbA1taWR+64o9Ey4pN9v2EDtra2XD1o0Nl0S8RqGavrH/7tHMyHb9uGDwjGGgP2Lo4tEnciNuXr+nEiZHCUxXZlbkkBWxuCrrC8J5KInFpVwwd4B0fzEz/tG67VVFfj4upy1nHZGVlUV1ZRWV7BjXfeTGVFBZt+WMvX739GrdFo2lcwJyOL1QuXc+2EG/Dy9aEwr6DlOipiJU4k6hwtHAbk2HAoSLXBgJuT01nFhfj44OLoQFJqKok9YkwHg1QbDCSnZ9T/b6OhUXxJZSUP/O9LU/239e9n8XVExLror8AlIienft+mppwE7O/vT3V1NUVFRXh7e5uuFxcXU1Dw24NdaWkp69ev5+233yYiIoJrr722xdstF9aJWZ9neoLYmcTNWbSIecuX06VDBxL696e2tpbvN2zgzVmzeOSOO+gV1TiBUF1Tw/qtW+kVFYV/K/PliyJyGidmcp/poYBnGWesNrDn85WUZRUSMiQKbwt7AxprDOTsOEirLqE4+7ifYcNExPT2POOxuulxvQf3o662lvhhv50OHtWnJ9P/9TLLvlpI9BW9AJg3czZhHdqf8hATEflj5/r5297Ojmujo5i7bTvTV63muh71pxF/tXUbVQ1JRbvfbfFhY2PDAwlDMRhrWbZ7Ny8uWsIDCcOIbx9+Rm0UkcuLEoKXIduGAcBoNDa6fmKvwJO5uLgwbNgwnnzySRwczL9hlkubc8M3j9XVFpYQNjwwuDo7n3VcWXk5C1euJCIsjKfuv9/0316/nj154tVXeX/2bGZ07tzov63d+/ZRVVVF31jtMyZypuyc6t9LtTVGs7JaQ/1sAHtn87/lZxNnqKhmz2crKD6SQ+u4jrQb3tNim44fOkZttQG/7u2a3hERMXFyrh9zayyMuYaG2b3OFsbqM4nrc2V/s3scHB3o0TeO1QuXk5NxjH3Jv3AsPYM7pzxIWUkpAJUN24NUV9dQVlKKq7vbGSc5RKyNS8Nzb7XBYFZW3fD5zMXCKpwzibu+Z0/KqqpZtns3mw4cBKBn2zBGx8TwZdJW3H83+9DdyYm+EREAxLcP5+9fz+WzTZuUEBSxckoIXiICAur3bcrNzf3De3Nzc7G3t280OxDglVdewc/Pj5qaGtavX89///tfRo4cyTPPPIPT7wYNuTz4NZxQVlRcbFZWWFyMq4uLKfl3NnEHjxzBYDDQr1cvUzIQwN7engFxcfx3wQIysrNpd9LS4R179mBvb0+slqiLnDEnr/oZeNUl5nsDVRdXYOfigJ2F5YNnGlddWsHuT36gLLOAwD6d6JDY95RJgIKUdGzsbfGNtLxFgIicnler+jG35HiJWVlJUTHOri44OpuP1WcbdzI3z/pDBaqrqti/+1eMBiPvP/+62X0bl61i47JVPDL1KXz8zA8yEJHftHKvH3OLLOzTXVhejquTI84WJmKcSZyNjQ239OtLYo8Yso4X08rdDX8PD+YkbcXWxgY/91PP2He0tyc2LIzlu/dQXFGJp4v5Fw4iYh2UELxEBAQEEBYW9od7A1ZUVLB7926ioqKwa9hr4oSePXsS0pCYGTx4MG3btuWFF16gqKiId955R9/4XobcXF3xb9WK1HTzEwpTjx4lIiysWXH2DXuP1NbWmt1X27Ds4fdH1exLTaV9WBiuLi5mMSJyevYujjj5uls8Tbg0Kx+PYMvbSpxJnKGqxpQMDOrflYhr+5y2TcVpOXgE+2HvbD7bQUT+mIurC95+vmQdMR9zM9PSCW4X2qy44sIiPnn1XaLie3LlmBGN7ss7Vr8ljY9/K64efx0VZY0TEWXFJcz98Ati+sbRo19v3D11KqnIH3FzcsLfw8PiacKH8/Jo7+/f7LgfDxzE29WFrkFBeLn+dpjXr1lZhPv74WhvT0ZhES8vXcqYmBiGd2v8RXxlTQ02NuBgpzNGRayZ/gJcQkaPHk1aWhqrVq1qdP0///kPX331FUajkS+//JLKykrGjBnzh/VNnDiRYcOGsWrVKj799NNz1Wy5wOJjYtiVkkJGdrbpWvLevWTl5NCvV69mxYW2aYOPlxdrtmwxLSWG+mXF65KS8HB3JzTwtz3HDAYD6VlZpzxsRET+mF+3thQdzKQ8t8h0rfBAJhW5xfhHn3rpT1PjDi7cVJ8M7NflD5OBtUYj5dlFuAVpxpBIc3TrFcPBX1LIzfptzD2wJ4X8YzlExVtert/UOE8fbyorKti2bhOVFb/NEi7KL2T7hi2Ed+6Ih5cnwe1C6dAtstG/sI7tAfD1b0WHbpEWDzAREXN9wtuxOyODjMIi07Vd6elkFR2nX8PS3ebELU5O5uMNP2I86Uv57UfSSDmWzVUNyb9AL0/Kq6tZ8euvGE7aSiq3pIQth1Lp0qaNxaXLImI9NEPwEnLnnXeycOFCnnzySWbNmkXnzp0BKCgo4NNPP+XLL79k//79dOrUiRtvvLFJdT733HNs27aNN998k2HDhhEaavlbaLl0jUlIYF1SEs9Pn86ooUOprqnhu5UraR8WxsC4OACy8/JIOXSIyPbtad1wcE1T4mxtbbl93DhenzmTf776Klf27UttbS2rN28mMzubeydONM0iBMgrLMRgNJqWJIvImQsZ2J2cHQfZNXM5wQO6U2swkL5+N+7BrQjoUf9hoaKghOIjOXi2DcDF16PJceU5ReTsOISdiwPuQa3I3nHQ7PVbx/72gaSqqIw6Yy3OXjpMRKQ5Bo4cys4ft/LxKzPoP+JKDDU1bFi2mqB2ocQ0HPhRkJNH2oFUwjqE4xvg1+Q4gFE3j2P22zP54MW3iBvcl+rKKjavXI+tnR2jbr7hgvRZ5HI2pkcM6/fv58XFi7k2Oopqg5FFycmE+/sxoGMHALKLi9l3LJtOga1p7enZ5Lj6+3rw5g8rmLpsOb3btSOvtIQlybuJDg1hQIf6++xsbbmtXz/eWb2GZ79bxMCOHSiprOL7PXuwtbXhtv46PEjE2ikheAlxdXXl/fffZ9KkSdx4442MHj2amJgYoqOj2b9/P3v27AFg4MCBjZIwp+Pn58ejjz7Kv/71L5555hlmzpx5LrsgF4CXhwfPPvQQn86bx1dLluDk4EDv6GgmJCaaDvv49eBB3v3iC+65+WZTQrApcQB9YmJ48r77mLt0KbO/+w6A8JAQ/jFpktk+gaVlZQBaLizSDI7uLkT/30gOLU7iyIod2Dna06pLGOFXx2FrX79VRPHhbPbN3UCnGweYEoJNiTueegwAY0UN++ZusPj6JycEDeVVANhZOMhERJrOzdODO6c8wJLZ81n57VIcHR3pEhvFiHGjsW8Ycw/vO8T8Wf9j7O03mRKCTYkD6Nozipvuv4O1i37g+6+/w8HRgXaRHbjqxlH4t2l9QfoscjnzdHHh6TGj+ezHTXy97Sec7O2Ja9uWCVfE49CwrdPerGO8t2Ytk4YMNiUEmxIH9QeD3D9sKAt37uTzTZvxcnFhVEw0iT16NNrXe2CnjjjY2bGg4T4ne3u6Bwfzp95xBP1uv3kRsT42dSfON5eLzrx585gyZQovvfQS119/vel6SUkJs2fPZunSpRw5cgQ7OztCQ0MZMWIEpaWlzJw5k8jISN544w3atWvH448/zvz581m5cqVpD8GT1dXVMWHCBH766Sf+85//cN11151Ve4uTk8+2qyJyEborf9mFboKItLA7IxIudBNEpAX1WrD+QjdBRFqYz/0PXugmnHeF0986p/Vb4++0KZQQvAylpKTwySef8M9//hP305ww1dKUEBS5vCghKHL5UUJQ5PKihKDI5ccak1dKCF4YWjJ8GYqMjOSll1660M0QEREREREREZGLkE4ZFhERERERERERsSJKCIqIiIiIiIiIiFgRJQRFRERERERERESsiBKCIiIiIiIiIiIiVkQJQRERERERERERESuihKCIiIiIiIiIiIgVUUJQRERERERERETEiighKCIiIiIiIiIiYkWUEBQREREREREREbEiSgiKiIiIiIiIiIhYESUERURERERERERErIgSgiIiIiIiIiIiIlbE/kI3QERERERERM6c3eArL3QTRETkEqUZgiIiIiIiIiIiIlZECUERERERERERERErooSgiIiIiIiIiIiIFVFCUERERERERERExIooISgiIiIiIiIiImJFlBAUERERERERERGxIkoIioiIiIiIiIiIWBElBEVERERERERERKyIEoIiIiIiIiIiIiJWRAlBERERERERERERK6KEoIiIiIiIiIiIiBWxv9ANkN+kp6czbNgwxo4dy8svv8zEiRPJyMhg1apVpntKS0uprq7G19fXdK26uprCwkJat259IZotl4Cc/Hw+mz+fX/bvB6Bnt25MHDsWLw+PJtfxwezZZObk8MyDD551/QfT0pi9cCEpqanY2trSNSKCiWPHEqT/dkWarbKghENLt3L80DEAfDuHED6yN47uLi0eV3asgB0zFhE6JIq2w2JbrhMiVqowN5+lcxaQmnIAgMjorowcn4ib5+nH6T+KK8wr4PXHnjttHbc/di/hnTsCkJ+dy7KvFnI45QCGGgMhEW256oZRhEa0a2YPRazTuX4GBygtL+fh559nwnXXMSQ+vlGZwWBg3vLlrN+2jYLCQjzc3YmLjuYvo0bh5up69h0TkcuCEoIXsUmTJlFRUWH6effu3dxzzz28+uqrxDf8sc/IyOD222/n7rvv5vrrr79QTZWLWElZGc9Om4bRaGRMQgK1tbV8t3IlaZmZ/PvRR7G3/+M/A6s2bWLljz/SpUOHs64/MzubZ6dNw8nBgRuuvhqAxatW8dSbbzL18cfx9fJq2Y6LWJGa8iqSZy6jzlhLyKDu1NXVkb5+N2XHCukxeRS2dnYtFldrrCVl7gbqjLXnulsiVqG8tIxZU2dgNBoYePVQ6upq2bBsNdnpmUz61yPYnWKcbkqcm7sbN9w5wSy2pqaGxf+dh5unO4GhwQCUlZQy8z/TqayopP9VQ3Bxc2XTinXMmjqDu598mMDQoHP6exC53JzrZ3CoT/i9OWsWxaWlFss/mjOH1Zs3MyAujs7DhnE0K4sVGzdy6MgRnnv44Sa1QUQuX/oLcBHr379/o5/37dtHTk5Oo2vp6ekcPnz4PLZKLjWLV62ioKiIV6ZMISQwEIAObdvy4owZrNmyhYTf/Xd2straWuYtX87cpUubXf/iNWuoqqri2YceIjwkBICoTp144tVXWbxqFRPHjm2pLotYnYwNe6g6Xk6vBxJxDfAGwCPEn92zvid7+wHa9I5ssbj0tcmUZxedo56IWJ+N36/heGER9z33GAFB9eNocHhbPn3tXbZvTKL34H5nHefo7ESPfr3NYpfMnofRaGTcXRNxcaufJfTTus2UFBXzl3tvp2uvaAC69orhrSf+zZrvlvPnyX89F90XuWyd62fwgqIi3vj4Y/YdOmSx/HB6Oqs3b2bU0KGNnrPDgoL48Msv2bRjBwN7m/99EBHroT0ERS5zG7dvp2vHjqYHEYDozp1pExDAj9u3nzKuuqaGf/znP3y9ZAkDe/fG19u7WfXn5OXh4e5uSgYCRLRti7ubG0ezsprRQxHJTT6Ed3igKakH4NMhCBd/T3KTU1ssruxYAWmrkwkbGtOSzRexaru2bCc8soMpqQfQoVskrQID2LVlR4vHHTuayaYV6+k5oA/tOkWYrhfmFZjqOMG7lQ8BwYEcS9c4LXKmzuUz+M+//spDL7zAkYwMrh482GI9vxyo30pgyBVXNLreN7Z+q4+U1FM/H4iIdVBC8CI2ceJEhg4dCsD06dOZMmUKALfccgtDhw5l3rx53HLLLQBMmTKFyMjfHuCOHz/O888/z8CBA+nevTsjR47k008/pa6uznTP9OnTiYqK4ocffqB///7Exsby9ddfn8ceyrlWWl5OTl4e7UNDzcrCQ0NJPXr0lLE1NTWUV1by0F//yr0TJ2Jra/7n4kzqD/T3p7SsjOMlJaZrJWVllFdU4O3peaZdE5EGNRVVVBaU4h7cyqzMvU0rSjPzWySu1ljLvm824tMxiIAeEWYxInLmKsrKKczNJ6hdiFlZUFgIWWnpLRoHsGLeYhwcHRg29ppG11u19gMgL/u31ShGg4HjBUV4eGucFjkT5/oZPCM7m+4dOzL1H/+gT4zlL+muvOIKXv7HP2jj79/oeklZGQB2FuoVEeuiJcOXiOHDh5Obm8ucOXOYNGkSUVFRREZGMmnSJN577z3Gjx9Pr169ACgvL+fmm28mKyuLm266icDAQDZv3sy///1vDh8+zNNPP22q12Aw8NRTT/HXv/6V6upqUx1yeSgoKgKwuD+fj6cn5RUVlJWXW9xU2NXFhWlPPYXdKfYeO9P6ExMS2L57N9M+/ZRbGpYtfPHtt9jZ2TFyyJAz75yIAFB9vBwAR0/z97GjpwvGihoMFdXYuzg2Ky59/S4q8ovpevNQ6mrrzGJE5MwVFx4HwNPH26zMw9uTyvIKKsorcHF1aZG4Y0czSfl5D/1HXImnd+Oxu9egvvy8aRvzP/6SMRPH4eLmyprvvqespJSxV/+lGb0UsT7n+hn8qgEDuKbh+Tm/4bV+z8XZudHKnBN+2LABgMj27f+gFyJyuVNC8BLRuXNnevTowZw5c+jXr5/pUJF+/frx3nvv0aNHDxITEwGYOXMmqampfPPNN6ZZgzfddBOvv/4677//PuPHj6dz585A/f4Uf/3rX7nrrrsuTMfknKqsqgLA0dHRrMzRwQGAqpoa3CzE2tjYnPZB5Ezr9/P1ZeyIEcz6+msee/llAGxtbXnkjjssPqyISNMYq2sAsHMwH9JtGzYLN9YYzBKCZxJXll1I2sqfiRgTj5OXG5WFljcvF5EzU1VZCYCDo4NZmX3DtZrqarPE3tnGJa3egI2tLfHDBprFubi6MPS6kXz9wed88OKbpuvXTrieyOiuZ9ArETnXz+BnexjI7n37WLp2LW0CAugTHX1WdYjI5UMJwcvQ999/T6dOnfD396egoMB0PSEhgffff5/Vq1ebEoIAvbWZ7GXrxBJxGxubC17/nEWLmLd8OV06dCChf39qa2v5fsMG3pw1i0fuuINeUVHnpI0il70TW0Gc6du8iXF1tbXs+2YDnu0CTnk4iYicHdPb8AzH6bOJq6muYeembXTu0R0fP1+z8p/Wb+bbj7+kdUgQ/a4agoOjAzs3bWXx/+ZjY2NL/NABZ9RGEWt2rp/Bz8b+w4d59cMPsbe354HbbtMJwyKihODlKC0tjcrKSvr27WuxPOt3Bzi0amW+f5RcHpydnACorq42K6uuqZ8d5OrsfM7rLysvZ+HKlUSEhfHU/feb9kLp17MnT7z6Ku/Pns2Mzp1xcDCf6SAip2fnVP++qa0xmpXVGgwA2Dubv7eaGpe+fjdlWYXE3H0NNWX1s5IMFfUzH4zVBmrKKrF3dbqoPvSIXCqcnOvH0RoL46ihYRavs4Vx+mziDu3dT01VNd1797DYlhXzluDp681dTzyIY0P9UX1i+fzND1g2ZwHdesXg7uXRxJ6JWLdz/Qx+pnbv28crH36I0Wjk7//3fxb3NhQR66OE4AVUVFSEu7u72bczfzRF/I8YjUZ69erFfffdZ7E8ICCg0c+WNqqVy4Ofjw8ARcXFZmWFxcW4uriYHljOZf0HjxzBYDDQr1evRv+92dvbMyAujv8uWEBGdjbttHRY5Iw5ebkDUF1SYVZWXVyBnYsDdhaWFTY1rnBfBnXGWna+s8jsvoz1e8hYv4fef78RZx/35nZFxOp4taofR0uOl5iVlRQV4+zqYkrONTduX/Iv2Nnb0ym6i1lMWXEJpceLuSJhkFlcbP/e7Ev+haOHDtMlVrP5RZriXD+Dn4mfdu3i9VmzsLW15bG77iL6pJViImLdlBC8QD7//HNeeOEFlixZQkRE/WmNlQ37wXg288TV4OBgysrK6NevX6Prx48fZ9OmTbRt27ZZ9culw83VFf9WrUhNNz9tMPXoUSLCws5L/SeS3rW1tWb31TYsqdARBSJnx97FESdfd4unCZdm5eMR7NesuPBremOoaDzDoaa0gpSv1hMQ256A2A44uJ+/WQ4ilxMXVxe8/XzJOmI+jmampRPczvIsnrOJSzuQSnC7UJxdXMzKTuwbWmu0MGO44RAhHSYk0nTn+hm8qXalpPD6zJnYOzjw+N1306VDh/PyuiJyadDUsAskODgYgF9++cV07cT/7tSpk8WYEzOrTk6qnJhNePK1oUOHsnfvXtauXdso/t133+XBBx9k//79LdADuVTEx8SwKyWFjOxs07XkvXvJysmhXwucKt2U+kPbtMHHy4s1W7aYlklA/ZKJdUlJeLi7ExoY2Oy2iFgrv25tKTqYSXlukela4YFMKnKL8Y8Ob1acR7AfPh2CGv3zbNsaAGdfD3w6BFk8mEREmqZbrxgO/pJCbtZv4+iBPSnkH8shKr5ni8QZDQZyM4/Rpq3lmfguri6EtG/Lnm0/U1by26FBdXV1bFu7CTt7O8I6nPpviYiYO9fP4H/keEkJb33yCTa2tvxz8mQlA0XEjJ7gL5ABAwYQEhLCCy+8QHZ2NrW1tcycORN/f3+GDx9uMcbXt34D6NmzZ5OXl8fo0aPxaZiOvnDhQurq6hg7dix3330333//Pffeey9//vOf6dixIz/99BMLFixg0KBBDBo06Lz1Uy68MQkJrEtK4vnp0xk1dCjVNTV8t3Il7cPCGBgXB0B2Xh4phw4R2b49rf0szyZqTv22trbcPm4cr8+cyT9ffZUr+/altraW1Zs3k5mdzb0TJ2pjY5FmCBnYnZwdB9k1cznBA7pTazCQvn437sGtCOhRPwu9oqCE4iM5eLYNwMXXo8lxInJuDRw5lJ0/buXjV2bQf8SVGGpq2LBsNUHtQom5oj5pUJCTR9qBVMI6hOMb4NfkuBOK8gsxGox4+fqcsh3X/GUss6bO4L3nXqf3kH44ODmyO2kHaQdSSbjhWu0fKHKGzvUz+B9ZtGoVJaWl9OjalWO5uRzLzW1UHujvT6dwJfpFrJk+gV8gjo6OfPLJJ/z73//mo48+oqamht69ezNlyhTc3S3vw9S3b19GjhzJ6tWr2bx5M1dddRURERFMnDiRefPmsWvXLuLj4wkLC2POnDlMmzaNZcuWMWfOHIKCgpg8eTJ33XWX9gy0Ml4eHjz70EN8Om8eXy1ZgpODA72jo5mQmGg6xOPXgwd594svuOfmm8/4YaQp9QP0iYnhyfvuY+7Spcz+7jsAwkNC+MekScR27dpyHRaxQo7uLkT/30gOLU7iyIod2Dna06pLGOFXx2FrXz+TvPhwNvvmbqDTjQNMCcGmxInIueXm6cGdUx5gyez5rPx2KY6OjnSJjWLEuNHYN4yjh/cdYv6s/zH29ptMCcGmxJ1QUVYOgLPLqZf3h0a0465/PsiKeUtYu/gHjAYjAcGB3Ph/NxPTN+4c9V7k8nWun8H/yC8HDgCw85df2HnSqrQTBsfHKyEoYuVs6k6ciS7STMXJyRe6CSLSgu7KX3ahmyAiLezOiIQL3QQRaUF9ijS/Q+Ry4xkdfaGbcN4VTn/rnNbvc/+D57T+S5WmiomIiIiIiIiIiFgRJQRFRERERERERESsiBKCIiIiIiIiIiIiVkQJQRERERERERERESuihKCIiIiIiIiIiIgVUUJQRERERERERETEiighKCIiIiIiIiIiYkWUEBQREREREREREbEiSgiKiIiIiIiIiIhYESUERURERERERERErIgSgiIiIiIiIiIiIlZECUERERERERERERErooSgiIiIiIiIiIiIFVFCUERERERERERExIrYX+gGiIiIiIiIyJkzrl19oZsgIi0tOvpCt0CshGYIioiIiIiIiIiIWBElBEVERERERERERKyIEoIiIiIiIiIiIiJWRAlBERERERERERERK6KEoIiIiIiIiIiIiBVRQlBERERERERERMSKKCEoIiIiIiIiIiJiRZQQFBERERERERERsSJKCIqIiIiIiIiIiFgRJQRFRERERERERESsiBKCIiIiIiIiIiIiVsS+JSp5/PHHmT9/PitXriQkJKRZdU2cOJGMjAxWrVrVEk1rdn1Llixh9uzZ7N27l6qqKgIDAxk0aBB33XUXAQEBje6tra0lMzPzjH8H8+bNY8qUKXz22WfEx8ef8r4tW7Zwyy238NJLL3H99deb/Zyens6wYcO47777uP/++01xR48eJTQ09Mw6LpeVnPx8Pps/n1/27wegZ7duTBw7Fi8Pj9PGHUxLY/bChaSkpmJra0vXiAgmjh1LUOvWje47XlLCl999x7Zdu6g2GAgPCWFCYiId27VrdN/uffuYs3gxRzIycHV25orYWP48ahTOTk4t2l+Ry11lQQmHlm7l+KFjAPh2DiF8ZG8c3V1OG3f8cDaHv99OaUYe9i6OtOoSRtuEWBzcnE8ZU3asgB0zFhE6JIq2w2IblZVk5HF4+U8Up+VgY2ODV3gg4SN74+rv1fxOiohFhbn5LJ2zgNSUAwBERndl5PhE3DxPP6Yf2XeIH+YtIiP1KC5uLnSJjWLodSNx83A/H80WsTo5xSV8sXkzv2RmAhAbFsbEvlfg6XL6sfpQbi6zk7ay71g2tjY2dGkTyM19ryDI2/uUMWn5+fxz/rck9ujBjXG9GpXtzTrGnK1bOZibi7uTE3Ft23JjXByeLqce+0XEOmiG4Gm88cYbPPzww7i6unLvvffyxBNPMHDgQObOnUtiYiJpaWmme0tLS/nTn/7E/Pnzz1l7IiIimDp1Kr1797ZY7uvry9SpUxk+fLjp2jvvvMPtt99+ztokF7+SsjKenTaNA4cPMyYhgVFDh/LT7t28OGMGBoPhlHGZ2dk8O20aRzIyuOHqqxl71VUcOHKEp958k4Ljx033VVRW8sxbb7Fpxw6uGjiQ8ddeS8Hx4zw7bRppDQ9AUJ8MfOHttzEaDEwYM4ZBffqwYuNGXnznHerq6s7p70DkclJTXkXyzGWUHM0lZFB3ggd2I3/vUXZ//D21RuMp44oOZbFr5nIq8o4TOiSaoCu6kLfnCD9/sJSaiiqLMbXGWlLmbqDOWGtWVp57nOQPl1F2rJCwK2MIHRJNSXoeP3+whKri8hbrr4j8pry0jFlTZ5B+6DADrx7KgBFDSPl5D5+89i7G04zpqXv38/GrM8jLymHwqOHEDxvInm0/89HL06go0/tVpKWVVFby/KJFHMjJYXRMDNdGR7M9LY1/L16C4TRjdWZREc99t4i0/Hyu7xnLdbE9OJibyzMLvqOwrMxijLG2lnfWrMVgYaz+JTOTFxcvJrOoiOtie3BVt25sSU3l2YULKa2yPPaLiPVokRmCl6OsrCw+/PBDJk6cyJNPPtmobNSoUUyYMIHXX3+dN998E4CioiJ27drF4MGDz1mb/Pz8SExMPGW5q6urWfmmTZswnmbQkcvf4lWrKCgq4pUpUwgJDASgQ9u2vDhjBmu2bCGhf3/LcWvWUFVVxbMPPUR4w6zXqE6deOLVV1m8ahUTx44FYMEPP5CVk8NT999P144dAejbsyf3P/MMC1es4L5bbgHgi2+/pZWPD8889BCODg4A+Pn4MPOrr9j566/Edu16Tn8PIpeLjA17qDpeTq8HEnEN8AbAI8Sf3bO+J3v7Adr0jrQYd/C7LdjY2hBz9zW4tPIEoFW3MLZPW8jRNcm0H2n+ZVP62mTKs4sst+PHX6itNhBz10jcg1oB4B0RxM53FpGxcY/F+kSkeTZ+v4bjhUXc99xjBATVj+nB4W359LV32b4xid6D+1mMW/TfedjY2PJ/TzxIq9b+AHTtGc2Mp6eydtEPXD3+1M+XInLmliTvoqC0jP+Mu4EQHx8AOgT48+/FS1m7bx/DunSxGLd0126qagw8M2Y07fz8AOgeHMyT879lcfIubu57hVnMtzt2klFYaLG+Tzb+iI2NDc8mjiHQq372fu927Xj8m2/4dvsOi/WJiPXQDMFT+PnnnzEajfS3kCyJjY0lOjqanTt3nv+GiZyhjdu307VjR1MyECC6c2faBATw4/btp4zLycvDw93dlAwEiGjbFnc3N45mZQFQV1fH2qQkYrt2NSUDAXw8Pbll7Fg6R0QAUF1Tg6e7O8P69TMlAwG6dOgAwJGMjJbprIgVyE0+hHd4oCkZCODTIQgXf09yk1MtxlQWllKeXURAbIQpGQjg6u+Nb5dQsrcfMIspO1ZA2upkwobGWK6zoAR7NydTMhDAI8QPe1cnyrMtfzARkebZtWU74ZEdTMlAgA7dImkVGMCuLTssxhTmFZCTkUWPfr1NyUAA/zatiYzpxo6NSee83SLW5seDB+ka1MaUDASICgmhjbcXmw4eOmVcdnExHs7OpmQgQESAP+7OThy1kPRLy8/n2x07GNsz1qwst6SEowWFDOrY0ZQMBAj28aZnWBjr9u0/2+6JyGXivCYEly5dys0330yvXr3o3r07Q4cOZerUqVRXV5vdu2rVKq699lqioqIYPXo0CxcuNLvnwIED3HvvvcTFxRETE8Of//xn1q9f3yJtdXNzA2D+/PkW2/fZZ5+xZs0aoH5vv2HDhgHw9ttvExkZSXp6OgBHjhzhH//4B4MGDaJ79+706dOHSZMmsX+/+R/gnJwc7r33Xnr06EG/fv14/vnnKS0tNZVv2bKFyMhI5s2bZ7HN6enpREZGMn36dACGDh1KUlISGRkZpuuPPPII3bt3p7i4uFFsSUkJUVFR/Oc//znD35RczErLy8nJy6O9hT0kw0NDST169JSxgf7+lJaVcbykxHStpKyM8ooKvD3rEwq5BQUUFBUR3bkzUJ8grGxYfnDVwIGm2YeODg48MXky148Y0eg1Dje8T/x9fZvRSxHrUVNRRWVBKe7BrczK3Nu0ojQz32JcdXH9MiO31j5mZS6+HhjKqqg6/ttSpFpjLfu+2YhPxyACekRYrNOllSeG8iqqSyt+a195FYbKahz+YC9DETlzFWXlFObmE9TOfK/qoLAQstLSLcYVF9Zv89E6JNCszDfAj/LSMo4XKIkv0lJKq6rIKS4h3N/PrKydnx+peXmnjG3j5UVpVSXFFb+NrSWVlZRXVeP9u70HjbW1vLd2HVHBwQw86Yv5EwoalhiHWnjObu3lSUllJfknfdYUEetz3hKCX3/9NQ899BAeHh48+uijPPbYYwQHBzNz5kzTstsTcnNzeeCBB4iPj+exxx7DycmJv//9740SYSkpKYwfP54DBw5w99138/DDD2MwGLjrrrtYsmRJs9sbHx9PSEgIy5cv58orr+TZZ59lxYoVHG/YO83R0dF0b0REBFOmTAFg+PDhTJ06FV9fX/Ly8vjTn/7Etm3buPnmm3n66acZNWoUGzZs4Pbbb6empqbRaz711FMUFhbyt7/9jWHDhvHf//6XyZMnn/X+ak888QTt27fHx8fHtLfgqFGjqKmpYcWKFY3u/f7776murmb06NFn9VpycSooKgLA18t8g38fT0/KKyooK7e8d1BiQgKtvL2Z9umnHMnI4EhGBtM++QQ7OztGDhkCQFZODgCeHh58Pn8+f33sMW599FEeeO45ftq165Ttys3PZ82WLXzyzTeEtmlD7+jo5nVUxEpUH69/vzp6upqVOXq6YKyowVBh/iWWrUP9DiHGqhqzspry+iR+dclvHz7S1++iIr+YDol9T9mWkEHdcfJyI2XOOsqOFVB2rIC9c9Zia2dLcD9tASDS0k4k9jx9vM3KPLw9qSyvoKK8wqzM0al+Zn5Vpfl+YeWl9QmDkuMlZmUicnZO7PXn6+pmVubj6kp5VTVlp9i/b3RMDL5ubkxfuYq0/HzS8vOZvnIVdna2jIzq3ujehTt/5tjx49wxcIDFupzs68f+ihrzsb+kshKAIgt/M0TEepy3PQRnzZpFbGws77zzDjY2NgDcdNNNDBs2jPXr1/PYY4+Z7q2uruapp55iwoQJAIwfP57ExERee+01xowZg729PS+88AK+vr7Mnz8fV9f6D0Y333wzt956Ky+++CIJCQmNknZnytHRkY8++ohHHnmEX375hf/973/873//w87Ojri4OO666y4GDKj/4+vn50dCQgIvvfQSkZGRpn38vvjiC44fP87//vc/IiJ+m2Hh5ubGBx98wL59++jWrZvpemRkJJ999hn2DX+8W7duzfTp01m9ejVDhw494z4kJCTw6aefUlVVZWpTREQE3t7eLF26lOuvv95075IlS2jfvj1dtY/bZeXEbD1L74UTS3eramowf1wBP19fxo4Ywayvv+axl18GwNbWlkfuuMO0jLi84dvLOYsXY29nx2033oitjQ3frVzJKx9+yBOTJ5tmD55QUlbGfc88Y2rXX8eNa7SMWEROzVhd/1Bv52A+fNs2jB3GGgP2Lo3f866tvbFzdiBvzxFCBkeZxmFjjYHC/fVL9mtr6g8kKMsuJG3lz0SMicfJy43KQsuzB5y93QkdEs3B7zazfVrDLH5bG7rcNKTRMmIRaRlVDR/gHRzNx0z7hms11dW4uDaeRRQQFIiTizO//JTMoGsSTO//muoaDuxJAcBgIWEgImfnRALO0d58rHa0swOg2mDAzcnJrNzPw53rYmP5ZONG/jG3fjKMrY0NDw1PaLSMOL2gkHnbt3Nb/360cncnt8Q8qR/i44OLowNJqakk9ogxvferDQaS0+vH/mrjqQ8jEpHL33mbIbhw4UI++OAD0x8igPz8fDw9PSn/3QwlT09Pxo8fb/rZ0dGR8ePHk5eXx+7duyksLCQpKYnBgwdTWVlJQUEBBQUFFBcXM3z4cPLy8th1mtlJTRUeHs68efP47LPPuOWWW4iIiMBoNLJlyxbuuOMOPvjgg9PG33XXXWzcuLFRMrCyshJb2/pf++/7fdttt5mSgQATJ04EMC1NbgkODg6MGDGCTZs2mWY7FhQUsHnzZq699toWex25OJyYXXry+66p5ixaxIdffkmn8HDuv/VW7p04kYi2bXlz1izT7L+ahhMNyysqeO7hhxkSH8+gPn145sEHcXN15cvvvjOr18bGhgf/+lfunTiR0MBAXnj7bbZoP06RpjkxY/wM39K2dnYE9+9GaUa+aUZfaWY+e2evoba6/n1sY2dLXW0t+77ZgGe7gFMeTnLC4R+2c+DbTXiGBRA5fhCdxg3EI8SPvbPXkv/rqbcjEJGzY3r7n+GYbmdvT7+rhpB5+Chfv/85x45mkpWWzpfvfkx1Vf2M4hPPpiLSfM15/v5q6zZmrt9Ap9atuW/olUy+cggRAf5MW7mSn44cAaC2tpZ316whMjDwlIeTANjb2XFtdBSpuXlMX7WatPx8Dufl8eYPK6hqSFra6b0vYtXO2wxBBwcHtm7dyqJFizh06BBpaWnk59fvdRQcHNzo3tDQ0EaJsRPXADIyMkwPLZ9//jmff/65xdfLajj0oLlsbGyIj48nPj4egMzMTL755hvef/993nrrLRITE2nduvUp42tqanjjjTfYs2cPaWlppKenm079ra1tfDR8+/btG/3s5eWFl5cXGS184MKYMWOYM2cOK1as4IYbbmDZsmUYDAYtF74MOTd882hpH8zqhgcBV2dns7Ky8nIWrlxJRFgYT91/v+k9169nT5549VXenz2bGZ0749Qw8zA+JgZ319+WMLq5utKre3fWJSVRWVVlageAu6sr/Xr2BOCK2Fj+9u9/8+k33xDfo0fLdFrkMmbXsPSvtsb89PjahgS9vbPlGbdhQ2MwVFaT+eMvpsNHfLuEEDKoO4eXb8fexYn09bspyyok5u5rqCmrn41kqKifaWysNlBTVom9qxPGyhrS1+/GPaQVUXeMwKbhb4R/dDt2vrOI/fM34tNxHLb2di37CxCxYk7O9WNpjYUx3dAwe9jZwpgOcOWYEVSWV7BpxTp2JdUfKBYZ042BVw/lh28W4epuaa2AiJwNl4aVL9UG89l31Q2fA10srN4pq6pi0c/JtPf348lR15qev/tGtOfJ+d/y4dr1RE8IYUnyLtIKCnhmzBiKKypNsQBVBgPFFZV4ODthY2PD9T17UlZVzbLdu9l04CAAPduGMTomhi+TtuJuYZaiiFiP85YQfP755/niiy/o2rUrPXr0IDExkdjYWJ5//nmz5J2lb1NOfNNia2trSqhNmDCBhIQEi6/XoeH00rP1+eefU1VVxZ133tnoelBQEPfffz9OTk689tpr7Ny5kxG/OyjhhG3btnHHHXfg6upKv379uOGGG+jatStpaWk899xzZvefqt92di37gapXr14EBQWxdOlSbrjhBpYuXUr37t1p27Zti76OXHh+DSebFf3uEBmAwuJiXF1cGiXrTjiWm4vBYKBfr16NZg3Y29szIC6O/y5YQEZ2Nr7e3gB4urub1eHl4UFdXR0Vv0sInszRwYGe3bqxbO1aiktLLdYjIr9x8qp/j5y8398J1cUV2Lk4YGdhOSHUjzER1/YhdHAUFXnFOHm54ezjzuHvt4OtDU7ebhTuy6DOWMvOdxaZxWes30PG+j30/vuN1JRVUmeoxT+6vSkZCPUzEQNiIkhdto3y3OO4t9GBQSItxatV/Zhuab+/kqJinF1dcHS2PN7a2NhwzV/GMuiaBPKzc/H09cbHz5cf5i3GxtYWL1/zA4dE5Oy0anieLbKwT3dheTmuTo44W9gu59jxYmqMRvp1iGj8/G1nR/+OHfjf5iQyi4r4+ehRDMZanpz/rVkdi35OZtHPyUy76c/4e3hgY2PDLf36ktgjhqzjxbRyd8Pfw4M5SVuxtbHBT8/eIlbtvCQEMzIy+OKLL0hMTGTq1KmNyvIsnLKUlZVFXV1dowTZ4cOHAQgLC8Pf3x8AOzs7+vXr1yj2wIEDpKen4+LSvBMOV6xYQXJyMjfddJNpj8KTderUCTj1N7EA06ZNw9nZmcWLF+N70ulO7733nsX7MzIy6HjSCVEnlkGHhYWdbTcssrGx4ZprruHTTz8lMzOTn376qdEejnL5cHN1xb9VK1LTzU8eTD16lIhT/Ld1Yobu72exAtQ2JOfrgNA2bbC3t+fosWNm9+Xk5+Pg4ICXuzsZ2dn8+513SExI4KqBAxvdV1lVhY2NDQ4W9lkRkcbsXRxx8nW3eJpwaVY+HsHmJxqekPPzIRw9XPBu3wbHk04BPn74GO7BrbBzsCf8mt5mh5LUlFaQ8tV6AmLbExDbAQd3Z4wNywypNT/0qq6u9sT/OIseisipuLi64O3nS9YR8zE9My2d4Hahp4xN3rIdDy8Pwjt3xN3Lw3T9cMpBgtqGWNyXUETOjpuTE/4eHhZPEz6cl0f7hs+yv+dgV58ErLUwftY2jLd1dXXc3PcKs0NJjldUMGPVGgZ07MCgTh3xavgs/OOBg3i7utA1KAivkz7T/pqVRbi/n8V9DkXEepyXTQNO7FX3+1l7a9eu5fDhwxh+N506Pz+flStXmn4uLy9n9uzZBAcH06VLFwICAujevTvz588nOzvbdF9NTQ1PPPEEDzzwgFmdZ2r06NGUl5fz8ssvmyVFamtr+frrr/H09KR3794Apll8J99bVFSEr69vo2RgSUkJ8+fPBzDNdDzh66+/bvTzzJkzARg2bNhZ98PW1tZiUmf06NHU1NTwyiuvUFdXx8iRI8/6NeTiFh8Tw66UFDJOeq8k791LVk4O/Xr1shgT2qYNPl5erNmyxbS0GOqXGa9LSsLD3Z3QwECcnZyIi4pix+7dHD1ppm9Ofj7bdu0iLioKW1tbAv38KK+o4IcNGxq9N3Pz89m8cyddOnTA5TTJdRH5jV+3thQdzKQ8t8h0rfBAJhW5xfhHh58yLmPjHg5+t4Va429jQv7eoxQfziEovv7wH49gP3w6BDX659m2flsMZ18PfDoEYedgj2uAN46eLhzbvh9jzW/vaWONgewdB7F3c8K1tXfLdlxE6NYrhoO/pJCb9duYfmBPCvnHcoiK73nKuB+Xr+G7L75p9OyZ8vMe0vYfIn6o5RNKReTs9Qlvx+6MDDIKi0zXdqWnk1V0nH4n7S9/shAfH3zcXFmbsq/RcuNqg4H1+/fj4exMiI8P7f39iQoJafQvMjAQgNaenkSFhJgSfYuTk/l4w48YT/o8uP1IGinHsrmqmw6TFLF2LfqVwBtvvIGbm/keJMOHDycoKIj33nuPqqoqAgMDSU5OZv78+Tg5OVHWcDT7CV5eXjz22GPceuuteHt7880335CVlcWMGTNM06effPJJbr31Vm644Qb+8pe/4O3tzeLFi/n555/529/+ho9P85Y+XH/99axfv545c+awY8cOrr76agIDA8nPz2fp0qWkpKTw2muvmWYPent7Y2try8qVKwkKCuKqq65i0KBBfPjhhzz44IMMGDCA3Nxc5s6da5oV+ft+b9u2jcmTJzN48GC2b9/Ot99+y8iRI+nbt+9Z98PX15etW7cya9YsevXqRUxMDACdO3emY8eOLFmyhPj4+NPugyiXtjEJCaxLSuL56dMZNXQo1TU1fLdyJe3DwhgYFwdAdl4eKYcOEdm+Pa39/LC1teX2ceN4feZM/vnqq1zZty+1tbWs3ryZzOxs7p040TSL8ObERH7Zv5/npk1j5JAh2NvZsXTtWhwdHPhLw76UdnZ2/PXGG5nx+ec8/dZbDOrdm5KyMpavW4etjQ1/vfHGC/b7EbnUhAzsTs6Og+yauZzgAd2pNRjq9/MLbkVAj/oPGRUFJRQfycGzbQAuvvWzgUIHRfHr/9bwy+craNW1LZVFpWRs2INPpyACerQ/3UuasbG1JWL0Ffz6v9XsfHcxgb06UldXR/ZP+6nIPU7kuIHYtvB2FyICA0cOZeePW/n4lRn0H3ElhpoaNixbTVC7UGKuqP+SryAnj7QDqYR1CMc3oH7W8MBrhvHlOx/zxVsf0rVnNEX5BWxcvoYO3TsT0zfuQnZJ5LI0pkcM6/fv58XFi7k2Oopqg5FFycmE+/sxoGP9JJns4mL2HcumU2BrWnt6Ymtry239+/HmDyv417cLGBIZSW1dLWv27iOzqIjJV9Y/Z59ZO3rw5g8rmLpsOb3btSOvtIQlybuJDg1hQDO32BKRS1+LJgQXLTLfcwjqD8v44IMPePnll/nss8+oq6sjLCyMJ554AoPBwIsvvsju3bvp3r07ABEREdx888289dZbZGVl0alTJ95//30GnrTUMDY2ltmzZzN9+nQ+/vhjDAYD4eHhvPzyy4wdO7bZfbG1teXNN99kwYIFLFiwgC+++IKSkhK8vLzo1asXzz77LNHR0ab7XVxcePjhh5k5cyYvvPACYWFh3H///RiNRpYsWcLq1asJCAigX79+3H777Vx77bVs3ryZ4cOHm+p44403mDlzJi+++CLe3t7cc8893Hvvvc3qx5133klKSgqvv/46119/vSkhCPWzBF9//XVGjRrVrNeQi5uXhwfPPvQQn86bx1dLluDk4EDv6GgmJCbi0LB/ya8HD/LuF19wz80309qv/sNDn5gYnrzvPuYuXcrshtOCw0NC+MekScR2/e0bRf9WrXjhb3/jvwsW8N3KldTV1dElIoIJ111nqgtgUJ8+ONjbs2DFCj6bNw8nJye6d+rEn0eNIkgJaZEmc3R3Ifr/RnJocRJHVuzAztGeVl3CCL86znSIR/HhbPbN3UCnGweYEoJ+3dsROX4Q6et2cWhJEg7uLoQM7E7o4OhG+wA2lV+3tkTdPoK0VTs5/MNPALgHtaLbrQn4dgppuQ6LiImbpwd3TnmAJbPns/LbpTg6OtIlNooR40Zj3zCmH953iPmz/sfY228yJQS7xcUw7u5bWL9kBUu//BY3T3cGXD2UQdcm6IRhkXPA08WFp8eM5rMfN/H1tp9wsrcnrm1bJlwRj0NDUm9v1jHeW7OWSUMG09rTE4A+4eH889pr+eann/gyaSsA4X6teOzqq+kRduptAU4lvn049w8bysKdO/l802a8XFwYFRNNYo8eeu+LCDZ1ddrkx1p98MEHTJ8+nQ0bNuDl5dXs+oqTk1ugVSJysbgrf9mFboKItLA7IywfxiYil6ZeC9Zf6CaISAvzuf/BC92E865w+lvntH5r/J02hb4WsFLV1dXMmzePhISEFkkGioiIiIiIiIjIpcFqjhUyGo0UFBQ06V4PD4/Tnh58KcvOzuall17iwIEDHDlyhFdeeeVCN0lERERERERERM4jq0kIZmVlNfm03pdeeonrr7/+HLfowvDy8mLbtm0YDAaefvppoqKiLnSTRERERERERETkPLKahKC/vz8ff/xxk+7tcBmfuOTs7MyGDRsudDNEREREREREROQCsZqEoJOTE/369bvQzRAREREREREREbmgdKiIiIiIiIiIiIiIFVFCUERERERERERExIooISgiIiIiIiIiInKShx56iMjISAoLC83K/vGPfxAZGck999xjVlZWVkbXrl155JFHzkczATh69OgZxyghKCIiIiIiIiIicpLevXsDkJycbFa2ZcsWHBwc2Lp1K0ajsVFZcnIyRqOR+Pj489LOd955h9tvv/2M45QQFBEREREREREROcmpEoKHDx8mKyuLUaNGUVJSwp49exqVb9++HYA+ffqcl3Zu2rTJLCnZFEoIioiIiIiIiIiInKRjx454e3vz888/N7q+efNmbG1tmTRpEjY2NmzatKlR+Y4dOwgICCA8PPx8NveMKSEoIiIiIiIiIiJyEhsbG+Li4ti1a1ej65s3b6Zz5860a9eOyMhINm/ebCqrq6sjOTnZNDvQaDTy0UcfMWLECLp3786AAQN4+umnKSgoMMVs2bKFyMhI5s+fz+jRo4mKimLKlCkAJCUlMWHCBOLi4oiNjeXPf/4zq1atMsUOHTqUpKQkMjIyiIyMZPr06U3unxKCIiIiIiIiIiIiv9O7d2+Kioo4fPgwUJ/wS0pKMu0PeMUVV7B9+3aqq6sBOHjwIMePH+eKK64A4OGHH+aVV16hU6dOTJkyhauvvpq5c+fyl7/8heLi4kav9dxzz9GnTx/+/ve/M2zYMA4dOsTdd99NXV0dDz/8MI8++igVFRVMnjyZbdu2AfDEE0/Qvn17fHx8mDp1KsOHD29y3+yb+8sRERERERERERG5GA0bNuy05StXrjxl2YmZfj///DPt2rVj37595OfnmxJ+8fHxfPLJJ2zfvp0rrriCHTt2mOLWrVvH8uXLueWWW/jnP/9pqrNXr1489NBDvPfeezz22GONrv/rX/8y/fzhhx9SXl7O22+/ja+vLwDXXHMNf/7zn/n111+Ji4sjISGBTz/9lKqqKhITE8/o96KEoLQYz+joC90EEWlBX6L3tIiIyEXt/p4XugUiIs3mc/+D5/YFvl141qGdO3fGw8OD5ORkEhMT2bx5M3Z2dsTFxQH1Mwjt7OxISkoyzRYMDAykbdu2fPzxxwDcfffdjeocOXIkb731FitXrmyUEDxxiMkJgYGBADz//PPccccddO/eHR8fH5YvX37W/TmZEoIiIiIiIiIiInJZOt0MwD9ia2tLr169TAeLbN68me7du+Pu7g6Ah4cHXbp04aeffgJg586dpuXE6enpeHp64ufnZ1ZvREQE69ata3TtxCzAE66++mp++OEHlixZwpIlS/D392fw4MGMHTvWlJBsDu0hKCIiIiIiIiIiYkFcXBx79+6lqqqKbdu2mZYLnxAfH09ycjIFBQWkpqaalhnX1dWdss7a2locHBwaXbOzs2v0s4ODA9OmTWPhwoXcf//9BAUFMW/ePCZMmMAHH3zQ7H4pISgiIiIiIiIiImJBnz59qKmpYenSpRQXF5tmAJ5wxRVXUF5ezuLFi6mrqzOVBwcHU1xcTF5enlmdqamptGnT5rSvm5mZybZt24iMjOS+++7jq6++YvXq1bRr146ZM2c2u19KCIqIiIiIiIiIiFjQrVs3XF1d+fLLL3FwcKBXr16Nynv16oW9vT3z588nODiY0NBQAIYOHQrA+++/3+j+FStWkJqaypAhQ077uu+99x633XYb2dnZpmuBgYEEBARga/tbOs/W1pba2toz7pf2EBQREREREREREbHA3t6e2NhYNm7cSFxcHM7Ozo3K3dzciIqKYseOHYwdO9Z0ffDgwQwbNozPPvuM7Oxs4uPjOXz4MLNnzyY0NNTssJHfmzBhAgsWLGDChAmMHz8eLy8vNm/eTFJSEg888IDpPl9fX7Zu3cqsWbPo1asXMTExTeqXZgiKiIiIiIiIiIicwokTgH+/f+AJJ5YJn9g/EMDGxoa33nqLBx98kL179/LSSy/x/fffM378eObOnYunp+dpXzMyMpKPP/6Ytm3bMmvWLJ5//nn279/Pv/71LyZPnmy6784776Rdu3a8/vrrfPPNN03uk03d6XY5FBERERERERERkcuKZgiKiIiIiIiIiIhYESUERURERERERERErIgSgiIiIiIiIiIiIlZECUERERERERERERErooSgiIiIiIiIiIiIFVFCUERERERERERExIooISgiIiIiIiIiImJFlBAUERERERERERGxIkoIioiIiIiIiIiIWBElBEVERERERERERKyIEoIiIiIiIiIiIiJWRAlBERERERERERERK6KEoIiIiIiIiIiIiBX5f8nSY0khJRacAAAAAElFTkSuQmCC" }, "metadata": {}, "output_type": "display_data" @@ -709,19 +717,19 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 42, "id": "2326c129", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:33:10.551403Z", - "start_time": "2024-06-01T21:33:10.084830Z" + "end_time": "2024-09-02T20:22:48.057808Z", + "start_time": "2024-09-02T20:22:47.683180Z" } }, "outputs": [ { "data": { "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAABTUAAAN2CAYAAAAolW1tAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gU5RbA4V/appdN75UQShq99ypFepeiKKAgYAE7IIhSREVEQUWQDkqV0Ks06RAgBEgglVRSSCXJZu8fcceEBEQvguW8z3Ofi7szs7ObnZ2Z853vHD2tVqtFCCGEEEIIIYQQQggh/iH0n/QOCCGEEEIIIYQQQgghxB8hQU0hhBBCCCGEEEIIIcQ/igQ1hRBCCCGEEEIIIYQQ/ygS1BRCCCGEEEIIIYQQQvyjSFBTCCGEEEIIIYQQQgjxjyJBTSGEEEIIIYQQQgghxD+KBDWFEEIIIYQQQgghhBD/KBLUFEIIIYQQQgghhBBC/KNIUFMIIYQQQgghhBBCCPGPIkFNIYQQQgghhBBCCCHEP4oENYUQQgghhBBCCCGEEP8oEtQUQgghhBBCCPGPpdVq//A6paWlAGg0mj+1vhBCiCdPTyu/4EIIIYQQQggh/uZKS0uJjIzkzJkz6OnpYWxszNy5c1m7di2+vr73XUdPTw89Pb0HbruoqAiVSvVX7LYQQoi/iGRqCiGEEOIfQaPRUFJS8qR3QwghxGOQkpLCtm3bKCoqUh7bvXs3gwcPZsmSJdy8eZPq1aszYcIEbG1tK6xbPm9HX1+/UkDz7t277N69m+joaObPn0/9+vWZNGkSqampf+2bEkII8UhJpqYQQggh/jIpKSnk5eURGRnJhg0bWLJkyZPeJSGEEP8Aixcv5rvvvuPHH3/Ew8MDgE6dOpGXl8enn36Kv78/FhYW6OnpYWBgoKxXWlqKvn5Z7k5qairR0dEANGjQAENDQwCuXbvG4MGDMTc3x9/fH09PT+rXr0/Lli2xsLB4zO9UCCHEn2X4pHdACCGEEP98eXl5mJubK/99/PhxZs6cSVRUFM8++yw2NjYYGBiQlZWFjY2NspxWq1WmBupuQu9VUFBAYWEhERERrF27ltq1azNkyBAsLS3/6rclhBDiCenTpw+tW7fG0dERjUaDgYEBJiYmuLm50aBBgwrL6qaOa7Va9PX1uXnzJrNmzeLYsWMYGRlhampKjRo1GDNmDA0aNMDS0pIWLVqwY8cOhgwZwqhRo9Bqtb87RV0IIcTfiwQ1hRBCCPF/ef/999m4cSNbt27Fy8sLrVbL119/TVpaGlOmTKF169ZYWFjQr18/rKysKqx7b4bNnTt3Kixz+vRp3nrrLZycnDAzMyMuLg5fX18JaAohxL+IVqtVApI69vb22NvbV1jO29ubixcv8umnn+Ln50e9evX48MMPycrKYvHixVhYWJCSksIbb7xBeno6U6dOxd3dnYsXL7J+/XpmzJjB4sWLsbOzQ61WY2pqSp06dQAkoCmEEP9AEtQUQgghxJ+im+LXo0cPmjZtqmRgpqWlcfv2bUJDQxkwYECFoOW9srOz+e6779ixYweZmZn4+/vTpUsXunTpgq2tLba2tjg4OHD27Fn69u3LBx98oEwfFEII8e9QVSMfjUbD+fPnyczMJDQ0lA8++IBdu3ZhZGTE4sWL6d+/P/Xq1cPc3JzIyEjy8vKwsLDg6NGjXL16lWXLlikBy8aNG9OiRQt69uzJhg0bGDduHB4eHhQVFUkwUwgh/sHkrkAIIYQQf4ouoyYkJKTCTaGjoyPe3t4kJyeTlJSERqPBzc2NTz75hNzcXKZPn45Go6GoqIiPP/6YPXv20LVrV5ycnDhx4gQzZ87k/PnzfPzxxzg6OmJlZYVKpeL555/H0dHxSb1dIf5Suky1h+nSLMQ/ga68iFarxcDAoML3uvxU77y8PK5fv05qaio+Pj74+/sDkJWVxezZs4mLi2PPnj107twZe3t7Vq5cyYQJExg2bBhGRkZUq1aNnTt3kpWVhb29PadOncLKyoo6deoQHx/P1atXuXjxItevXwfgyJEjjBkzBk9PT0pLS6U5kBBC/INJUFMIIYQQv0uj0QBUyLq8NwCTlpaGWq3m008/5fTp09y5c4f27dtTs2ZNNm3axJEjR4iPj2f69OkYGBhw6tQpfvjhB2bOnEmHDh2wsrJi1KhRLF26lNmzZ9OjRw9atGiBm5sbhYWFSoam1D0Tfye5ubmkpaXh4+NToUHJ79FoNBVqyUowU/zdHDp0iNWrVzNixAiaNGly3+/3/X6T7y0vcu/yRUVFzJkzh7CwMPLz87G0tMTExIR+/foxevRoLC0tqVOnDtHR0RQXF9OpUydq1KjBypUrAZQ6zu7u7hQVFREfH09AQADp6emkpaVRp04dCgoKMDMzw8XFBU9PTyZPnkz16tUxNDTE0dERCwsLbty48YeOXSGEEH8fEtQUQgghhJIlBlR5Y1f+xjQ7OxsDAwOlQ2xubi6DBg2iqKiIXbt2kZaWhru7O5cuXWLChAk0a9YMgDp16nDt2jUKCwsxMTFh/fr1+Pn50adPH6AsWyc+Pl55nS1bttCsWTN8fHwASExMxNXVVYKa4m/j9u3bDB48GAcHB1auXFnp2NFlqgGVgjv3/nd0dDQ3b97E3NycJk2a/LU7Lv6zyv9+pqamcvnyZWJiYlCr1TRv3hx7e3tlmfT0dA4dOkTjxo0rfCd132t9ff0Kwfh7f5uvX7/OoUOHOH36NBqNhkaNGtG/f3+srKzQarWsXr2aDRs2MGrUKOrWrUtubi6LFi1ixYoV9O/fH7VajYuLC3l5eSQkJGBra4uTkxM2NjbcvHmTnJwcLC0tcXR0xNTUlOjoaNq3b4+dnR0qlYrhw4fToUMHzMzMsLa2xtbWlvj4eNLS0tBoNNjZ2eHo6EhUVBQlJSWoVKrH+8cQQgjxf5OgphBCCPEPd+vWLX755Rfq16+Pp6fnnwr6/V6W2Pr169myZQtXr17F0tKSunXr8txzz1G7dm0sLCxwcXEhIiKCvLw8ZsyYwYEDB3jttddwcXEhODgYAFdXVwCuXr1KSEgIqamppKWlMXz4cOLj40lNTVVuNJs0aUKjRo3Q19fHxcUFgMuXL9OgQQMl+CrEk2ZnZ8fMmTMxNTWt8vn7ZaoBHD58mGPHjtG5c2fWrFnD9u3b0Wg0WFhYMGLECIYMGVKpsZYQ/y89PT1ycnL4/PPP2bFjB8XFxZiampKfn4+1tTXDhw/nmWeeAaB27dqYmppWGGzSbUP3vc7NzSUlJQVTU1PlNx7KBqHefPNN8vPz8fLyorS0lE8++YRjx46xYMECzM3N2bhxI40aNWLEiBHKMVSvXj0SExOVLEw3Nzf09fW5fv06wcHBmJqa4uXlRVxcHHfu3MHS0hK1Wo2jo6MyvTw4OJjNmzdjb29P7dq1K+z7999/z4kTJ1iwYAEODg74+PgQFxdHfn6+BDWFEOIfSIKaQgghxD9AaWkp8fHxaLVavL29gd+yYo4cOcKUKVOYPXs2np6eFdbTaDTKcg9q2HPz5k3Cw8O5c+cOtWvXpm7duspz27dv5/PPP6dOnTqMHz+epKQkVqxYQWJiIvPnz8fJyQkPDw9++eUXbty4QVBQEJ6enlhZWREdHU1RUREqlQp3d3cAIiIiCAkJwcPDg/DwcIyMjOjfvz9eXl54eHhgb2+Pnp4ed+/eBcDFxQW1Wk14eLjyvoX4u6hfv36Vj5eUlHD16lVOnTpFamoqoaGhNGvWTAnWXLhwgY0bN7JlyxaqVavGggUL0NPTY8mSJSxcuBBPT0+6du0q02LFn6bRaCr97qempjJu3Dhu3rzJs88+S+PGjTEzMyM+Pp7Fixczd+5cCgsLef755/Hw8MDc3Jy4uDjgtyz+2NhYli9fzr59+0hLS8PIyIhatWoxduxYGjVqhKGhIbNnzyYzM5OZM2dSo0YNzMzM+Pbbbzl37hzp6emYm5vj5OTEkSNH+OSTT2jRogVarVYZNNNxcHBArVZz5coV5TF/f38OHz5MRkYGbm5uWFlZ4e7uzs2bN9FoNDRu3JiaNWuyatUqgoKCqFmzJgUFBezdu5eVK1fSpk0bvL29yc/Px8HBgb1793L79m2l2Z0QQoh/DglqCiGEEH9TGo2GjRs38sMPPxAZGYmRkRG2trY0adKEYcOGUa1aNQCCgoLQ19cnMzMToELG5b03tPfe5Obm5jJ16lQOHz6MSqVCq9Wi0WgYM2YM/fr1w9zcnKVLlxIQEMC7776Lvb09BgYGNGzYkJs3byqvpasnGBUVRVBQkJK9GRUVRXFxMSqVChcXFywsLLh48SKDBg2ievXqbN++nV69etG1a1dKSkqUupnffvst4eHhfPLJJ9jb2+Pi4qJk4cjUc/E46UozPCiweOPGDczMzHB2dlam5i5atIjly5djYWGBnp4ey5cvp0GDBkycOJGQkBCCgoKAsmzPDz/8UAn629raMnjwYI4ePUrXrl0fy3sU/z6//PILy5cv58svv6wQGP/yyy+5fPkyK1euVDqDA9SoUYN69erRvXt3tm7dyuDBg5XAY3JyMpmZmajVarKzs5kzZw4xMTH06NEDHx8frl27xsqVK5k7dy6ffvopPj4+JCUl4ejoiJOTE2q1GoCxY8dW2MdXX32VOXPmsGLFClasWAGU1cm0t7end+/ejB49Gjs7O5ycnLh27ZqyXs2aNdm8eTNpaWkAmJmZ4e3tzc6dO0lNTcXX15fXX3+dl156iREjRtCiRQtKS0u5fPkyjRo14r333lPW69y5M97e3jg5Of11fwwhhBB/GQlqCiGEEH9Dubm5fPHFF2zatInmzZvTp08fjIyMOHv2LOvXr+fEiRN8+eWX+Pn54eLigrGxMbGxsUpWpG4bR44cYf/+/coNYdu2benXr58ypXv+/PkcPHiQiRMn0rhxYwoKCpgzZw5btmyhRYsW+Pn5YWJiQmxsLJcuXaJ58+YUFRXRoEED2rRpo+yvj48PKpWKq1evAmBhYYGXlxeRkZHk5+crN8e6aeoAzZs35/PPP+enn36ia9euSkAzIiKChQsX4uPjg6GhITY2Nri5ubFnzx6gcqBWiP9H+bqXuhqB5ZUvzZCSkkJubi7u7u4YGxsDsHfvXsaNG8eIESN488030dPTY+3atXzxxRcMHDiQQYMGYWJiwtGjR5k+fTr5+fmsW7cOX19fDAwMMDIyUhqdqFQqnJ2d8fDwICoqSnl9If4IrVbL0aNH2b9/P3l5eUp2cEpKCj/99BNPP/00gYGByrJ6enqUlJRga2vLqlWrlNkAAL6+vhw5coSEhATUajWrVq1i3759TJs2jYEDByoDZWZmZnz11Vdcv34dHx8fOnTowCeffMKwYcOoUaMGBgYG+Pr6Uq9ePYKCgnBycqJmzZp88cUXZGRkcPHiRRISEsjMzOTw4cN89913hISEULduXdzd3Tl//rxyjFSvXp2SkhJSUlIAMDU1xcfHh9u3b3Pr1i1cXFxo1qwZGzdu5Mcff+TcuXOYmJgwaNAgOnbsWGGafKNGjWjUqNHj++MIIYR4pCSoKYQQQvwNbdiwgWXLljF58mT69u2r1Nbr3bs3TZs25dVXX2XKlCnMnz9fyWSMi4sjNzcXW1tbSktL+fbbb9m+fTuurq7UqlWLGzdu8OWXXxIfH8/UqVNRqVRcvHiRZs2aMXToUOW1v/vuO7KysnB0dATgmWee4e2332bs2LFYWVlhaGiIj48PgYGBtGzZkmbNmuHi4oK1tTXR0dHAb5kzhw4d4s6dOzg4OGBnZ4e7uzsnTpwAICAggBdffJEvvviCwYMH07FjR/T19dm0aRP29va8/fbbAKhUKgICAkhMTCQ7Oxtra+vH+acQ/3K/V5ohPj6ezz77jKNHjyrTVVu2bMnQoUPx9fXF3d1dyWaDsum9y5cvp1atWkybNk3ZjpeXF7m5ucyfP5/du3fTpk0bXF1dyc7OBlAGI+zt7XF2dubatWvcvXtXCZ4Kca+qGlHpsjLt7e0ByMzMVIKaR44cIS8vj9atW2NkZFQhg1M3qKQLaBYXF2NkZIS/vz+7du0iJiaGoKAgnJ2dGT16NL169QJQ6l1GRkair6/PjRs3ABg4cCBqtZpdu3aRmZlJcnIyhw4dYunSpYSGhvLdd99hYmJCQUEB1tbWdOnSRXlfLVu25NlnnyU1NRWVSoWPjw8HDx7k9u3bShdzgGvXrikZ/k5OTlhbW1NYWKh8Nn5+fkyePFkGBsRfSqPRUFBQoDRP/CPr6evr/+5MACHEg0lQUwghhPibycrKYvHixbRs2ZLnnntOeVx3A9ulSxclo0t341qtWjWuXr1KWloatra2bNy4kUWLFvHss88yYsQIzM3NKS4u5rPPPmP37t1cv36dOnXqUKtWLVavXs2ECRNo2rQpWq0WJycnQkJClNdt3749Tk5OXL58mRs3bhATE0NiYiIrV65k3759bNiwATc3N+zt7ZWGEiYmJnh5eZGfn09KSoqS8ent7c2BAwfIyMjA1taWcePGYWVlxU8//cSXX35JcXExwcHBTJgwoUKtwnHjxjFu3LjH9BcQ/wYP6jxeXnx8PGfOnOHq1atYWVnRpk0batSoAZRlO8+dO5fw8HBGjx6Ng4MDp06dYs2aNRgYGPDuu+/i6uqKWq1WgjkGBgbExsYyfPhwZT+gLHjavn17FixYwPnz5+nYsSPu7u7ExcWRnp6Ovb29kvXm5ubGmTNniIuLw9/f/6/8mMQ/WFUBeX19fZKTkzlz5gwA3bt3x9HRkW+//Zb8/HygLJjye3RBloCAAKWmM5QNrEFZ47aNGzdy+vRpEhIScHBwQF9fn9jYWAAsLS3p168f/fr1IzExEY1Gg0qlYunSpSxfvpwjR45Qr149+vfvT4cOHXj55ZcpLS0lLS2NTZs2ASjZpPb29hQVFXHt2jVcXFywtbWlWbNmeHt7K8d427ZtlQEz3WdT/v+FeFTCw8M5cOAAMTExDBs2jKFDhzJ58mSGDh1a6fumK18CVApc6o5d3Tq3b9/GxMREGYQQQjwcCWoKIYQQj1n5qa7l6aYB7tmzh4yMDJ566ikAJROl/A1s+/btK6xbo0YNpXEClHVEDw0NZcKECZiYmCjL2drakp+fT1xcHHXq1GHkyJHcunWLQ4cOceDAAYqKigBwcnKiW7duTJo0CQMDA4KDgwkNDa2QOfb111/zySefEBERQZMmTXBzc+P48eOkpaXh4OCAk5MTJiYmREdH06hRIwwMDJSM06tXr9KkSRNKS0sZNmwYXbp0QaPRSF0z8YfdL3h5b8BHN3VVd5wBSpMtrVaLlZUVqamprF69mvfff5+2bduSkpLCnj17+PDDD+nZsyd6enp069aNhg0b4uDgAICVlRXOzs5cuHCBnJwc9PT0MDU1RV9fv0I5CCgLztjb2yvTZn18fNi7dy83b96sENT08fGhpKSEqKgo/P39K+yz+PcrLS1V/ub3y+DSaDRKI6rY2Fg8PT1p27Ytnp6eXLp0iZs3b2JoaIiHhweTJ0/GxcVFORfk5eX97j7ojh1fX19UKpXSLAjgp59+YsGCBZiZmdG4cWNat25NkyZNaNq0Kbdu3QKgsLCQ7du3U7NmTWrVqqWs26BBA77//ntUKhV2dnYEBgby/fffEx4ejqurK4mJiSQkJDB16lQlI1PXpM7X1xcAIyMjlixZUuX+CvGoZGZmsmHDBurWras0r7p27RqvvfYad+/eJSQkBBsbGz777DOqVatW5W90+fIl5Wm1Wvbu3UteXh4ajYaZM2diY2PD1KlTadWqlfzmC/EHSFBTCCGEeACNRkNkZCReXl4PPbXo9xqL6B4vLS0lKSkJKysrLC0tKSkpwcjISLnhNDU1rbD8g9SoUYOCggIlWPLyyy8zfvx4UlJS2LFjB8eOHePIkSNkZWWhr69PUlISAG5ubixcuJDc3FwuXbpESkoKRUVF/PjjjyxZsoQ+ffpgYWHBnDlzePrpp2nZsiVQFiDKy8tDX18fIyMjANzd3cnOziYyMhIHBwesrKwwMTHh1q1bSrCmV69etGvXTmlypHtvuoxTIR6kqm7O95s+npCQwJo1a/j555/Jz88nJCSEfv360aRJEwBycnJ44403qFWrFuPGjcPW1pbMzEwmTpzIyZMnadWqlRIE3bFjB05OTlSvXp2cnBxat25dIZvG09OTI0eOEBsbS/Xq1XF0dCQ2NlYpB6EbmCgsLFSypgE8PDyAshvlBg0aKNvz9fXFxMSEq1ev8tRTT8kN7r+UrjGbvr5+hd/58v/WarXKuaH892DVqlV89dVXWFtbY2JiwpYtW9i8eTMzZ86kffv2ODg48Oabb2JoaEjz5s0BlGZUusDj/b5TGo2G9PR01Go1Hh4eqNVqEhIS0Gg0lJaWsmDBAiwsLJg7dy5+fn7KeiqVioSEBNLT0zE0NGTWrFnY29szevRovL29uXXrFl988QXe3t7KOWDWrFm0b9+e3bt3k5KSQvXq1RkzZgxNmzZVpsQHBgYqWZtCPC7x8fFs2bIFe3t7goODMTQ05IcffiA+Pp4ZM2bQtWtXjIyM8PHxqbBe+eM0Ojqaixcvkp+fT6NGjZTjpbi4mD179rB161aCgoIYMGAAQUFBSuBefu+FeHgS1BRCCCF+lZCQQHR0NJcvX+bUqVNcu3aN7OxsSkpK+Oqrr2jTpk2Fi9X7BRrKj8xXtczevXtZtGgRV69exdzcnJo1a9K/f/8KwQtDQ0Plhu5+Qc3y9dB0F9WJiYnKPty8eZOPP/6YuLg4XFxceO655+jcuTN9+/YlPj6ewsJCTExMiIyMxNPTk2bNminbNjEx4c033yQxMZHQ0FDOnz/Pnj176N+/P9WrV+fatWvs2LGDvn37EhAQAJRNga9Vq5byfv39/dm3b1+F4I+zszPOzs5/8C8j/ouqymi+N3h548YNLCws2LFjBzt27MDZ2ZnPPvuMzMxMPvzwQ65du0ajRo2wsrJiz549bN++nXnz5tGlSxdiYmLIysqiV69eSrkFDw8PfvrpJ+U76+HhwQsvvMA333zDzz//DIC1tTUeHh6EhIQwYMAAqlevjqenJ1qtlmvXrhEYGEhQUBCHDx9WMpJ1x3JCQgJRUVE0btwYKAuGWllZcf369Qrvy9nZmYKCAi5fvvwXfLLi/5GYmMjly5c5f/48V65c4dy5cyxcuJBmzZpV+E1+GLrf+nuFh4ezYsUKzpw5g6GhIU2bNqVPnz4EBQUBcOHCBT766COGDBnCoEGDMDU1JSIighkzZnD+/Hlq165NrVq18Pb25uTJk8p2a9asCUBkZKTy+lXR1WOeM2cOAQEBuLq6kpSURHp6OiUlJWRkZNC1a1clQFNSUsJ3331HWloalpaW3Lhxg4YNG/Luu+/y7bff8vHHH1NSUkJ+fj5BQUG8/fbbuLu7o9FoMDMz4+mnn+bpp59+6M9NiMehRo0aLF68GEtLS+UxGxsbDA0NCQ4OxszMTHk8PT0dc3NzTE1N0dPTIy8vj1mzZrF9+3ZUKhWGhobMnz+f/v3789prr2FgYECDBg3YunUrDg4OvPHGG0/iLQrxryBBTSGEEP9ZhYWFLF68mPXr15Obm8vdu3eV52rXrs3QoUNxcXHBwcFBqbFXWlpaqQ5S+RvZvLw8rly5QmJiIl5eXoSGhlZ4zcOHDzNt2jQCAgJ49913ycnJISwsjFdffRV9fX06deqEhYUFGo2GnJycB+5/+ZtnZ2dnbGxslGZBFhYWvPbaayQnJyudzZ2dncnNzcXKyoqEhATy8/OJiYlhzJgxtG/fnueffx4jIyPS09PZsGED9vb2ShbpZ599xqpVq9i/fz8bN27E2tqanj17MmLECOWCv2fPnvTs2VPZJ5VKVWHqrfh3S0hIICIighs3blBSUkKDBg0e2FVYl9Fc1fS8ezOds7KysLGx4euvv8bZ2Znu3buTlZVFly5daNOmDQkJCfj4+FC9enVKS0tZsWIFx48fZ/r06bRt2xaVSsUbb7zB888/z7x586hRowbe3t74+vry1ltvsXfvXjw9PTEwMKB27dqEhISgVqvR19fnxRdfpGPHjsTExBAZGUl8fDwJCQmsWrWKO3fuKNlqxsbGRERE0Lt3b7p160ZYWBifffYZ1tbWWFlZER8fz5w5c7C1tVUCOK6urty9e5cLFy4AvzVr8fPzY8OGDUpmnTSReHIuX77MunXrOHnyJImJiRQXF2Nubo6rqyu+vr4MGjRIGagpn4Vf/r+h4gBXcXEx0dHRmJubs3r1ao4cOUKLFi2YPHkyly9fZurUqZSWltKpUycKCwvZsWMHP/30E19//TX16tUjOjoafX19+vbtqwQWXV1dadasmZLhb2RkhJubG3l5eUoNYxsbG0JDQzly5AiJiYm4ublV2C9duYTLly9z9epVZdaAj48PERERJCUlERgYiK+vL6tWrcLIyIhq1apx4sQJDh06RJ06dThz5gzr16+nYcOG9OjRg8aNG3P27FmMjY3x9/dXspO1Wq1MGRd/G7qSD/r6+srxoFKpcHV1rbCcp6cnJSUlfPbZZ7i5udGjRw8uXrzI9OnTWbp0KU2aNKG4uJhZs2axdetWJk6cSMOGDblz5w67du3im2++wcPDg/79+yvbrl69+mN/v0L8m0hQUwghxH+Wnp4e1tbWtGnThlq1ahEYGMjRo0eZP38+HTt2ZPTo0ZWmu5bvMBsVFUV+fr4SuNy0aRMLFizg9u3bWFhYUFxcTMuWLfnwww9RqVQUFRWxcOFC3N3d+fDDD5X6kc8//zx9+vRh4cKFtGzZEl9fX4yMjIiKinpg9+O1a9dy+vRpxo8fj6enJ25ubsTGxlJUVER4eDg3b97kxRdfpH///so6Z8+e5datW1haWpKamkqNGjXo1q0bS5cu5cSJE7i4uBATE4OhoSFvv/02ISEhaDQaAgMDef/990lPT8fBwUGZci7+mwoKCti4cSPnz5/n3LlzJCcnU1JSgoWFBdbW1qSlpbFq1SoGDhzIhAkTqtzGgzKa9fT0CA8PZ9GiRZw4cQIrKytGjRrFJ598Qrt27WjZsiVqtZratWtz4MABJk2axODBg4GyQNKuXbvo3Lkz3bt3B8qCNVlZWbi6unLkyBH279/PCy+8wKRJk1iyZAmnT5/m559/Jjc3FygLEI0dO5Y+ffpgaGiIv78/QUFByva0Wi2jRo3i1KlTaLVa3N3dUavVSpOUpk2bMnv2bKZMmcIzzzyDp6cnqamp2NjYMGvWLIKDg5XXWbJkiXJzW74TtW4gRTwZusGqmJgY1q9fj5eXF7Nnz8bc3BwnJyfUajXm5uYYGxtX+j3U/R01Gg0JCQno6+srwTyAM2fOMGLECDp16sSNGzcICQnBx8cHrVbLwoULyc7O5rPPPsPf3x8TExMmTZpEz549+fjjj1m2bBm1atXC1NSU5557jtatW2NjY4O5uTl16tQhKCgIc3PzCq957do1JTu4X79+XLp0iRUrVjBu3LgKZVVUKhWXLl3il19+oX379krAtHbt2mzZsoWrV68SGhrKuHHjWLx4MYsXLwbKBtWGDh1Kly5diIqKwsXFRdmmk5OTUh+6PJleK/5O7jdwFBERwZ49e+jduzd79+5l9uzZGBgY8Msvv9C4cWOMjIxwcXHBwMCAzMxMAJKTk9m2bRuvvfYaw4YNU7bVpEkTpdFcly5d8PDwwNTUFI1GU6n+shDi4UlQUwghxH+WsbExgwcPRqvVYmhoiIGBAebm5syfP1+pOVn+Qjc1NZUPPviA7t27s3jxYq5cuUKLFi1YtGgRe/fuZerUqXTo0IE+ffpgYGDA6dOnWbBgAebm5rz11ltkZ2dz/vx5PvnkE5ycnCgoKOD69eskJCRQWFhIdHQ0kZGRBAUF4e7uzi+//MKAAQOUqa3ls3yMjIy4fPkyO3fupE+fPnh6elK9enWOHDnCnTt3MDc3x9ramv3799O4cWNMTU05ceIEy5Ytw8zMjGvXrrFt2zZq1KjBuHHjaNGiBWFhYZSUlNC0aVOaNWumdF3WBXKryloQ/00lJSXMmDEDgGeffRYvLy/c3d2VDsgZGRm89957fPXVV3Tu3FkpUaALFOkGBa5du4axsTGtW7euEBiKj49n5syZpKenM3r0aAoKCli9ejUAd+/eJTs7GxsbGzw8PLh8+TJ16tRRMtRu3LiBVqslMjKS1157TckwKywsxM7OjtDQUKWGa8uWLWnZsiVZWVlcvXqV0tJSkpOTmTVrFt988w19+vRh165d/PDDD8yYMQMvLy/u3r1LVFQUycnJqNVq9PT0cHJywsLCgvDwcKDsWHn66aepW7cuYWFhZGRkEBAQQMOGDZXsS517s7nF34Pu97ZGjRrY2NigVqvp0qXLQ6177tw5vvjiC06ePImRkREODg507NiRsWPHYmJigo+PD2ZmZuzatYvFixfTsGFDjIyMyMzM5ODBg7z//vtK4Ds3N5eMjAycnJw4deoUly9fpm7durz55pusX7+eY8eOkZ2dTUFBAVCW9fX222/TuHFj5ff64sWLSlCzW7duXLx4kWXLlqGnp8dzzz2nNLUKDw9n/vz5aDQaevTogbW1NVCWnXb37l2lvEnLli0JDAwkJSUFFxcXbGxslPeua6AlxJN2vyZy90pNTeXixYvExcXh4OBA586dlaz5kydP8tVXX9GwYUNatGiBl5cX48ePp0GDBrz//vs4OjoCZQNRukGtS5cuUVBQQEBAANHR0Zw5c4bw8HDi4+OJjo7GyMiIhIQEvLy8cHJyUsoBSVBTiD9HgppCCCH+EzQajTK1qHyg8t6LSF3A4ebNm0DFbBJ9fX12797NiRMnaNCgAS+99BK2trYALFmyhNDQUGbOnKl0mG3UqBHp6els3ryZQYMGKdPCP//8cz7++GNSU1MpLS3FysqKwMBAGjdujJmZGYaGhnTq1ImvvvqKI0eOMHjw4ArT3o2MjEhOTmbv3r3Url2bOnXqAGXNFHbs2EFCQgLNmzfn2Wef5bPPPuO5557D0tKSoqIi2rdvz7PPPsu3336rFKQ3NzenadOmNG3a9K/46MU/QHx8PKWlpXh5eT3U8paWlgQHBxMbG8uIESOq7Fo/btw43nnnHbZv346Pjw8qlQp9fX0iIiKYNWsW58+fx9zcHI1Gg7u7O2+++SYNGzYEYPPmzVy+fJnZs2fTtWtXoCwY8+abb3Ljxg0yMjLw8vLC19cXY2NjJcMSym5era2tuXDhAq6urrRq1YoaNWrg6emJg4MDpaWlSi209PR0Ll26ROvWrStMlT906BDHjx9Hq9Xi5OTEyZMnGTFiBF27dkVfX58zZ85QUFCgBHZVKhUtWrQgJyeHgoICJcDq7u7O6NGj/8RfRDxuuumnUPYd0v32Ozk54eDgwI0bN4Dfyibolr23Q3lkZCTTpk2joKCA1157DRsbG/bt28c333xDeno6b775prJNXQMr3fclIiICMzMzdu7cye7du7l+/TppaWmUlpbi6elJ48aNlfNA37596du3LykpKdy8eRMjIyPOnTvHxx9/zPr162ncuDEuLi7Y29srtVl1dZQnTJiAsbExS5cuZdOmTQQGBpKbm0tUVBSurq58/PHHtGnTRmlwVb9+fQ4dOlThOLe1tVXOf0I8SrpB3NjYWN566y0CAgKYOnWq8n28V2lpaZVlTO5tIqcbEC5v6dKlLF++nLy8PGxsbMjIyGD58uUsXrwYtVpNtWrVMDExISkpifr161OtWjW8vLy4ffu2si9qtRp7e3vlNyIrKwtjY2OGDx+OgYGBMgDn4+PDtGnTcHNzw83NDQMDA7y9vZWyQVZWVtIUTog/QYKaQggh/tbu3r3LmjVrOHPmDAsWLPjT2yl/YXu/i0atVouxsTFOTk4kJiZy+/Zt7OzslOXVajVBQUFcvHiRF198kdq1awOQlpZGbGws/fv3p7CwkHPnznHx4kVu3rzJ4cOHKSgoICIiglq1amFubk5JSQnDhg3D2dkZDw8P7O3tUalUZGRkKFMBu3XrxvHjx5k7dy7Ozs60bdsWrVZLUVERSUlJfPrpp2RmZjJp0iQliOrt7U1hYSHXr1+nefPmDBs2jOrVqxMeHo6dnR0hISH4+fmhr6/PBx988Kc/S/HPV74ObEZGBl26dGHYsGG88sorlW4adcEeXfBGV5LBw8OD8PBwUlJScHJyUro46wLwNWrUwMnJiYSEBCVbJi4ujrfffpvCwkJmzZqFu7s7kZGRrFixgvfff1+pd3n58mV8fX2VgCaU1ZkcMmQIb731FmlpaQAEBARw9+5dsrKylOXs7OxQq9VYWloya9YsZXqw7pifNWsWKpWKV199lW3btjFr1iymTp1KgwYN0NPT48yZMxw4cICuXbtSXFxMw4YNWbp0KevWrWPPnj0UFRURFBTEqFGjlE7qAK+//nqVn3X5bKHy9drEk6Mb5CofvLzf9FMLCwvc3d25fv26UpvyQX/D77//nujoaL799lslO7Jnz55MmTKF9evX06ZNGzp27Ii7u7tynimf6WhjY0N4eDjt2rUjJCSEgIAA3NzcsLGxobi4WFk2Ojqa1NRUmjRpogQb/f392bJlCykpKQA4Ojri6+vL0aNHWbRoET4+PnTq1Am1Wq1Mad+9ezcxMTF4eHgwYMAAGjZsqNTa1P0WGBkZVTlwIcQfVf76KzY2lnPnznH58mWMjIxo1qwZTZs2VZ43MTEhPj6+wmCDbhvl6y7r/v/ea7vY2FjCwsL4+eefyc7Oxt/fnyFDhlC/fn0MDAw4efIkCxcupEuXLvTt2xcTExN27tzJqlWrOHbsGF27dsXe3h4LCwuuX7+u/I5Xr16dX375hYSEBGxtbTE3N8fLy4uYmBgKCwtxcnJCX1+fjh078vbbbyvHraWlJZmZmZw5c4bs7Gzc3d3x9fXlwoULSnkUOT8I8cdJUFMIIcQT8bCj0bogiVqtrlRzSBdseVDAMiUlBUdHR3755RdWrFhBdHQ07u7uPP/88zRo0KBCAEej0WBoaKhcsCYmJlYIahoYGODm5kZMTAwajUZZ79atW6jVahYtWsQ333yDgYEBjo6OeHp60qdPH7y8vGjSpAmlpaXY2NhgamrKiBEjKuzrrVu3eOutt2jVqhVjx47Fz8+PGTNm8Prrr/PSSy/RsGFDGjZsSGFhISdOnODmzZtMmjRJqfEHZZma7733Hq1btwbKshSaNGlSIfAiREpKCsePH1dq8anVapYuXYqTk1OVU/TuF+wJCAggLCyMyMhIZarsvcd0RkYGgBJ4P3z4MAkJCXz33XfKOsHBwdSqVYuBAwcSFhaGv78/aWlpyrbK17Vt0KABWq1WKQ+hq/l369Yt5TUtLCxo2bIl+/fvZ/PmzQwdOlR57vTp0yxbtowhQ4ZQWlpK//79OXToEB9++CHe3t5KgLRNmza8/vrrqFQqSktLadKkCSEhIRgbGz9wGmNJSUmFQJnuM5GGKI9GXl4e33zzDQEBATz11FN/KKup/LJV/T2uXbvGrl27iI+PJzQ0lKeffloZZPL29gbg+vXr1K5dm1OnThEREUFkZCRHjhzhww8/5KmnniI7O5srV67QsGFD6tatC/yWHfb000+zc+dODhw4QMeOHalevTqXLl2qEJB3dXXFxMQER0dHZs2aRVFREYaGhujr65Oens4nn3xC3bp1GTx4MN988w0//fQTn376KdWqVVMaCkVHRzNp0iSgbCr4iy++yDvvvMPixYvp3LkznTp1Asqmy9asWVPpiH4vCa6I/1dVx6fuv7/++mt++OEHioqKUKvV5Obm8v3339OwYUPmzZuHra0tTk5O+Pn5ERsbq5wH7m0ul5SURExMDPr6+kq2vW4A+JNPPiEiIoI6deqgVqvZs2cPI0eO5KuvvqJFixYcPXoUCwsLevfurZyPqlevzoABA7CzswPKBhlcXV25fv06RUVFGBsbExwczI4dO0hOTiY4OBiVSoWfnx87duwgLS0Nf39/bG1tSU1NVZqI6Zw6dYpXXnmFadOm0a9fP6pXr05+fr4yUCeE+OMkqCmEEOKxCg8PJyoqit69ez/U8kZGRgwcOBCNRlMhoHlvd+Tc3FwKCgoq1PM6cOAAL774IsOHDycxMZG7d+9St25dDh8+zNixY5k3bx5t2rSpkLUGZcHBw4cPEx8fT3BwsJIlAFCtWjUOHTqkdIUFsLa2xtjYGBcXFz799FPMzMyU0Xt9fX0uXrzInTt3CAgIoEOHDnzxxResW7eOAQMGoNFoyM7OZtmyZYSHhzNx4kRlu/7+/ixcuJCwsDCOHDnC1q1bKSkpoUaNGjz33HO0a9euwlQqa2trhgwZ8nB/CPGv8aBmUuXpvueLFy9m3759+Pr6Kllf9evXr3KdvLw8zp07x5kzZygsLKRly5bKFHFdQPHatWvAb8FPAwMD8vLy+PHHH8nPz1ey1QoLC4mIiMDExITatWtz4cIFIiMjuXz5MleuXKGkpITjx4/z2muvYWFhQVxcnLI9KDvmnZ2dleydoqIiXF1dsbS0JC4ursK07169ehEWFsaHH37IlStXaNKkCTk5OUrZhWHDhqGvr4+ZmRlffvklBw8eJCIiArVaTWhoKLVq1cLExKTC74xuyvqD6rRVNTVSPDpGRkYsWrSIzp0789RTT1UImJSWlirf8XsD8bpASFFREUVFRfz888/s27ePoqIiBg8ejJubGwsWLFC+R1u3biUxMZEXX3xRydQ0NDRk5MiRaDQaTExMcHJywt/fn379+illG27fvk1hYSFmZmZKQFz3nXB1dcXHx0c5XgICAsjOziY1NVXZTxcXF5o3b87y5cs5cOAAbdq0AcoC+zt27GDbtm00b94cKCvvEB4ezhtvvIGXlxfp6elotVqee+45nn32WeC3ga2NGzdWyAYV4q+QlZWl1Al3cnK6b0mb1157je3btzNkyBC6dOmCo6MjGo2Gbdu28dVXXzFq1CgWLlyIk5MTLi4uXLhwgfj4eLy9vdHT0+POnTt8//33bNiwgdTUVPT09JTg5LBhw3BxcWHDhg0cO3aMyZMn06NHD1QqFV27dmXdunUUFxcD4OPjQ1ZWFtOmTaNLly5YWFhgampKcHCwkplsZmaGp6cn4eHh5OfnY2lpSVBQEIBSY9bAwIBq1aqRlZVFYmIijRo1ok+fPnz++ed8+umnynVZZGQks2bNQq1WK7MQXFxcuHv3Ljdu3KBly5YymCDEnyBXXkIIIR6rL7/8kvT0dLp161YpSHm/KZq6YEJ5enp6xMTE8M0333DgwAHu3r2Lj48PTz31FN27d8fR0RFLS0tq167N999/z8CBA3nppZdwdHTk8OHDjBs3jm3bttGmTZtK0w8DAwOB3+pqlhcQEEBBQUGFG1FHR0d8fHxISEjA2dm5wsh8Tk4OEydOpFGjRsybN49nnnmGAwcOMHXqVA4fPkxgYCA3btxgz549PPvsszRo0KDC6+lq8g0aNAhzc3PJ+BKKEydOMGbMGCZOnMjw4cOrXKZ8rTFdcN7R0ZG0tDTl+NNqtRQXFxMREYGLi4tyM5eTk8PcuXPZvn270s14zZo1dO3alZkzZ+Ln54eBgQExMTFAWcfXGzduEB0dzenTpzl16hQvvPAC/fr1A8oac2VnZ5Oenk5ISIiSga1rcjVw4EDc3NwA8PX15eTJk8TGxioBIz09PeLi4pT6Zjk5OdjZ2eHp6UliYiI5OTmYmppSUlKCsbExU6ZMYfXq1Rw5coRt27ZhYGBAvXr1mDBhQoXaoaampjz11FMP3aFZMi+fDN3AlqurK5mZmWRnZ2NtbV2hNILuN1wX4DQ0NFSef+WVV0hKSqJhw4YcO3YMU1NToqKiOH/+PFqtlvr16zN//nwMDAyYN28emzZtonnz5jRp0gRPT0+MjIyoVq0as2bNAsrKHOhqIOu+JxYWFlhaWiq19cpnlFlbW2NiYqI8V61aNaBilrGpqSnDhg1j165dvPbaawwYMIDatWtz48YNli1bRrt27ZRMS3d3d9auXcuuXbtISkrC1dWVOnXqKLWSy5OApngU7s28PHv2LDt37uT06dPExMSQn5+PiYkJarWawsJC6tevz0cffaRkPAP8+OOPhIWFMWXKFAYPHlxh+2PHjuX27dvs2bOH5ORknJyc8Pb2pri4mOjoaOXf3377LT/++CM9e/akYcOG5OTksGnTJpYuXYqnpyeDBg0iPz+f3NzcCgMLQUFBSkYmQKdOncjJyWHBggUsWrSI/Px8oOxcVbNmTRYuXIharcbb25t9+/aRnZ2tDGYAJCQkAGVBTS8vL7RaLbdu3UJPT4+RI0dy/vx5vvnmG/bt24eNjQ23bt3C3NycTz75RLmuDQgIYP78+dSrV08CmkL8SRLUFEII8Vi9++67FZre6DwoUJCSksLHH3+Mn58fY8aMAcqmHE2bNo2oqCj69u2LjY0NBw4cYO7cuVy/fp2PPvoId3d3zMzMcHR0ZPjw4UqXylq1alG/fn0iIiIqXKTr/l/XqVkXrCmf9aO7YdRNf4WyoGvfvn0JCwvjgw8+4L333sPExITbt2+zaNEi0tPT6du3L1B2c/nJJ5+wceNGDh06xIkTJ3B3d+fFF19k8ODBlYrY61hZWT38hyz+1XTfWW9vb95///1K00fLf6ermjpuYmJCaWkpb7/9Nu7u7kyZMoXTp08zceJEZsyYQb9+/SgqKuKbb75h/fr1jB8/ni5duqDRaFi9ejWrV6+mV69e1KlTBwcHB06ePEmDBg3IyclBpVJRVFQEwIgRI3j55ZeB37JEra2tMTQ05K233qJx48aYmppiaWmJpaUl165d4/bt2wB07NhRuUl96623MDY2pqSkhLVr15KVlcWdO3eUmrdubm4cOXJEKTWhm6Lo7+/PlClTiI6ORk9PDy8vrwdmUupKStzb+EU8Wbrvju784OPjw82bN0lPT8fa2lr5rp8+fZrVq1dz7tw5VCoVrVu3pkePHtSqVQso+13XTQ8dNWoUXbt25cSJE0yfPh2A0aNHK9PMe/fuzc6dO4mOjqZJkyZ4e3tjbm5Ofn6+kqFcFbVajb+/P2FhYSQlJSmDAVDWkO3WrVs4OTlRVFSEp6cn5ubmJCUlKaVVtFotrq6uzJ07l9WrV7N9+3ZWrFiBhYUFnTt3ZsKECUo2MpSdF3SDBkL8FZKTk7lz5w6enp5KGRHdOWbbtm2sXr2axo0bM378eNzd3VGr1RgaGrJ7926WLVvGd999x+jRo5XZBGFhYfj4+NCyZUvgt/IiuiZAEyZMYMqUKcrr+/j4YGBgQGRkJO3ateP8+fN8/fXXdO/encmTJyvLBQcH0717d86fP8+gQYNo3rw5GzduZOrUqSxbtgw9PT08PDyU679mzZphamrK0KFDGTx4MFeuXCE+Pp68vDyuXbvG8uXLWbRoEe+88w5eXl4UFBSQlJSEv78/1tbWWFtbk5iYSH5+vnKdqa+vz5UrV5SGXF988QUHDx7kwIEDFBUV0alTJ5o2bVrhN8TGxkYZqBBC/DkS1BRCCPGXqarmpa67eHlarZYbN25w5MgRLl68iJGRkXLxp1KpyM3N5dy5c9y6dUsJav7000/88ssvzJo1i+7du2NgYMCIESOYPXs233//Pc2aNaNr1644OjoSFRWFnZ2dcnNsaWmJj48Pp0+fJjMzU+ngqrs51k01jI+Pr9Qt08nJCSsrK+Li4pQLV61WS5MmTXj++ef5/vvvuXTpEgEBAWRmZhIbG8ukSZOUDExdh+nx48czcuRICVaKP0x3Q+nk5ET37t3vW7MsMTGRmzdvYmJiojRGOH36NLNmzcLAwIDU1FRCQ0PR09PD398fAwODCvX91q5dS7t27XjppZeUx15//XV69OhB9erVMTAwwN3dnZSUFF566SUaNGiAtbU1MTExfP/99+zcuRMDAwNGjhypHGO1a9dmw4YNSg2y8pYuXcqZM2dYuHAhTZo0YdiwYXz99ddcvXqVdu3aER0dzdWrV6lVqxY3b97kzp07ALRp0wYbGxvs7e0rvH/dv3UZcbrP7t7SFTqSfflk6M4T92uiVL6hla2tLSEhIZw4cYLk5GTlO3T69GmlO3KXLl1IS0tj9erVbNu2jQ8++IA2bdoQGhoKQM2aNRkwYACAUiv1zJkzODs7K4EV3UCBLhPLyckJV1dXIiIiHvhedOeujRs3Mm/ePD766COMjIzIyclhy5YtxMfHM3LkSFQqFSqVCisrK86fP09WVhaOjo7o6elRWlpK/fr1qV27NgkJCVhYWFQIjgrxVyooKGDbtm1s376dCxcuAGVZxj4+PvTo0YPOnTsrAcratWtjYGBAy5YtGTFiRIXtBAcHc/36dfbu3Uu3bt3w9fUlMjKSqKgoGjZsiLu7e4UBbt2Ak7W1NYByLHp6emJhYaGUbXB2dub111+nY8eOQFmJlMjISDZu3EhpaakywyYgIIAFCxawadMmkpKSiI+PJzw8nOPHj/PVV1/x7bff0qxZM1JTU8nJySEwMFCZpQOwfft2MjIyKCkpwdXVFXNzc2JjYykpKcHIyAhHR0cuXLhAamoq3t7eWFtb07BhQxwcHJTfLJVKRceOHZV9FUL8NSSoKYQQooLy01X/X1UFDvLz8zlw4ADm5uZKQ5sLFy7wzjvvUFxcjLOzM9nZ2WzdupWBAwfy3nvvYWtrS2BgIOHh4Wi1WnJycti/fz++vr707NmzwuuNHTuWVatWsWfPHrp3746XlxdhYWFkZWUpAUSVSoWHhwd3795VuleWf//6+vp4eXmRmJhIamqq0glWV7fJ29ubhIQEsrOzlaw3AwMDXnnlFVq2bElYWBhxcXEEBgYyduxYGjVqpFywl687KAFN8Xvu16W5fLOEnJwcpX4rwN69e/n888+5ceOGUrKgfv36zJ07l6CgINatW8czzzxDYGAgEyZMUGrCmpmZERMTw927d0lJSaGoqIiGDRsqvwlarVapN6bj6+vL6dOnCQwMpF69emg0GqpVq0bdunV5++23WbJkCXl5eYwfPx5bW1saNWpEaGgoX331FQ4ODjRs2JC8vDx27NjBpk2b6NmzpzK1b9SoUTg6OrJhwwYWLlyIg4MDL730EmZmZrz66qtKRmivXr3o1avXAz/H8p+XTPH7/5WUlHD79m0lEPdHlC8zUv7/q6LValmzZg1LliwhJSWFDh06KM1zYmJiaNasmdJAJzMzk++++w4vLy9MTU154YUXGDRoELNnz6ZNmzZKcFs3FVar1WJiYoKvry979uwhPz8ftVoNlDXYMTU1JT4+Xhm88vDwIDw8nMTERKVMQlVatWrFgAEDWLduHVFRUTRr1ozs7Gz27NlD165dK2Rl9erVSzn2dHTHt6mpqXIsCPGoxcXF8e2339KwYUO6desGwJ07d1iwYAE7d+4kODiYV199FVtbW2JiYggLC+Ptt98mMzNTCWC6uLigUqmUkgpQds7SZbv7+fkRFRWlBEGLi4vJzMxUSqGUr1d+L93vgqurK7a2tsTHxwPg4eHB888/T0pKCrNnz+bkyZMkJyfj7u6Om5sbSUlJyjHr5+fH66+/Tm5uLkVFRdja2nL69GnGjh3L5s2bad68OVOnTuXatWvMmjWLatWqkZ2dzfbt20lPT6dhw4YYGhpiYWFBSUkJ586do2/fvhgZGdG7d28yMjKU6zg7OzuWLFnyaP9IQoiHIkFNIYT4D0tISODSpUtcuHCBiIgIUlNTsba2pnnz5nTu3LlChpOOrlbZ79WVu337NufPnycmJgZPT09atWqFSqUiMTGRyZMnExwcTOvWrcnIyGDevHno6+szf/587OzsyM3N5euvv1aKsFtZWeHm5saePXtITU3FycmJlJSUStkrWq0WKysr3N3dlZtR3XTCmzdv4unpqQQ3XFxc0NfXJyoqqkKQRhfUrFWrFjt27FBuYMtnFNjZ2XHmzBkyMzOVjtG6wJOuS7n4byrfqfthPaiD873bys7O5ueff1a63i9ZsoS5c+fy008/4e/vT1xcHDNnzqRatWq8/PLLWFpasnv3blavXk27du3o0qULISEh+Pj4kJqaqjRM0DVDiY2NpbCwkPz8fFQqFTk5OcrNpS6wqQukWlpaKlN7r1+/TvPmzZX6nLa2tkyfPp05c+awdu1aNBoNM2bMwM/Pj/HjxzN58mQmTpxISEgIANHR0bRp06bCdEILCwueeeYZunbtipWVlfJZbN68mZKSkgqDEVV1HS9PApl/XvnzxKVLl7h58yZFRUVYW1vTrl07Bg0ahJeXV4WGa7pgfFXniXsbvJ04cYIrV65gZWVF27ZtcXd3V9bdvn078+bNo169eowdO5Zr166xYcMGSkpKlFqU2dnZnD17ljFjxlCjRg1l2/7+/owYMYIvvviC8+fPExoaiqmpKVlZWUpzLT09PWXQKiYmBjc3N+UY9vLyIiEhgfT0dNzd3ZU6rFevXlXOCfdrSPTaa68RGhrKtm3b2LJlC2q1miFDhjBo0CAlcAowfvz4Kj9z+b6KRyEhIQEbGxssLCyU76bue/vjjz+yfv16pfEUlJ1P1q5dy0svvcTAgQMr/O4OGzaMV199ldmzZ+Pr60vLli1xcnLC0dGRq1evKtvQLR8XF8fx48fx8fFRBgEcHR0pKSmhoKCgwrJV0R1bVlZWuLq6cunSJXJzc7GwsODcuXNMmzaNO3fu0LZtWxo3bkyHDh2YMmUKGzduJD4+Hn9/fzZv3kxOTg7PPPOMMpjh5OSEkZGRMpDw9NNP88knnzB+/HiqVatGXl4et27d4rnnnlPOs66ursybNw8vLy9lPV0zLiHEkydBTSGE+A+KiYnhhRdeID4+Hmtra6XRTfXq1YmPj+eLL75g7dq1TJs2jfbt21e4eauqs+y9jh07xvTp08nMzEStVpOamkpISAgLFizAw8ODwMBAcnNzgbKpRhcuXKB37974+vpibGyMo6Oj0owByi58PTw80Gg03LhxAycnJ0xMTCgoKCAlJUVpbKLRaDA0NMTV1ZW4uDhycnJwc3PD2NiYq1ev0qpVqwpTd21tbStcjJfn4+NDSUkJV69erRSkfPfddzE0NFReF+Qm9L+uuLiYl156idjYWHbs2PG7gc3yx5Tuu1NVcHPv3r1s2LCB+Ph4WrRoAZRN0w4MDMTHx0dpABIbG4u/vz8///wzeXl5vPzyy0qwvnHjxvTo0QN3d3dl+9WrV+fIkSPcunVLmbbt7+/PqVOnyMzMxNrausLxodVqlePr1KlTLFmyhKlTpypBJN3UQD09PSUr2dHRkVdffZVbt27xww8/UFhYyEcffUTTpk354Ycf2LhxI+fPn8fS0pJu3brRsmXLCoHK8PBwVq5cycsvv4xaraaoqIi0tDTWrl2Ls7MzDg4OyrLSdfzRq+o84evrS4MGDdDX1+fUqVMsW7aMxMTESs1AHvT9j4+PZ/z48YwYMYJz586xf/9+DA0NSUpKYt26dSxZsgRnZ2cKCwtZtGgR7u7ufPLJJ8r2W7ZsyciRI0lMTESj0ZCQkIC+vj6BgYHKMaT7/8DAQFQqFZcvXyY0NBQfHx8SExPJyMhQBsWcnZ2Vc0SzZs2UAayaNWuyf/9+UlNTcXd3V+opX7x4kbZt21YZ1NS9tpWVFb169aJTp05VNroT4q/26aefsnjxYjp37syUKVOwtbVVAvbx8fFs376d1q1bK1OjIyIiWL58Oa1ateLFF1+ssC2NRoOFhQXTpk3j559/pnHjxsBvZRkiIyMpLCykoKCAGzduEB4ezqFDh4iPj+eDDz5QtuPk5ISlpWWFOrJVKS4uJj4+HiMjIzw8PPD09OT48ePcuHGD4OBg1q5dS0JCAl999VWF67Pi4mJKSkq4fv06/v7+HD58mLCwMK5cuUL79u25e/cu69evp6SkhA4dOgDQpUsXatWqxU8//URsbCxubm40bNiQOnXqKMeupaUl7du3f3R/HCHEIyVXgEII8R+k6xhbs2ZNPv74YywsLDAzM0OlUmFsbMylS5cYM2YMM2bMwNvbW8nY1Gg0/PLLL+zZs0fJfOzXrx9BQUFKsCQ6Oppx48bh7e3NW2+9hbu7O+fPn+edd95hzpw5TJ8+HWdnZ44fP05aWpoyBXXt2rVERkbi4eGhTAnUdZ01MzNTRtevXr1KkyZNCAwMZM+ePcTHx+Pk5KQEXAAli8jc3BwbGxucnJyUoIuOra0tVlZWnDx5ssLjupvU7t274+zsTKtWrYCKN+kPmnoo/psMDQ3R19cnJSWFrKws7OzsHri87nuWlZVFcnIydnZ2FYJ0AHv27GHatGm4urrStGlTjhw5omQvx8XF4ePjg7OzM2ZmZkRERNC+fXtUKhXFxcV8/vnn9OvXD7VaTWlpKTVr1sTa2lqZ+hscHMy2bdtISkpSgp81a9Zkx44dJCUlUb9+ferUqcPhw4e5evUqAQEByvF1/vx5Tp48ib6+Pu7u7lhaWhIbG1vhfem4urry+eefM3r0aO7cuUNWVhb29va4uLgwduzYB35GZmZmbN26lSNHjtC/f3/MzMyUWoqTJk363c9Y/H+qOk+Ym5sr9SALCwuZPn0627Zt48CBA0pWU3Z2NidPnuTw4cNER0djbm5O586d6datGyqVCgcHB65cucLChQsxMjJixowZeHl5cfToUWbMmMGSJUuYNGkS+fn53Lx5kzFjxigBzeLiYpo2bUrNmjVJTEwkNzcXlUqlHHv3DgpYWVmhUqlITU0Fyurs7d27t0Kmv4ODA/b29koAX7eNkJAQNm3aRFxcHHXr1lUGsc6ePQvcf9p8+X2QgKZ4UoYPH05JSQlLlizBxMSE6dOnK0HEI0eOkJCQwDvvvKMsHxERQUFBgVLSp3zQXjcbxcXFhT59+ih1xnUZ/r/88gutWrXizp07GBgYYGdnh5OTE4aGhowcOZLXX3+d7t27Y2JiQs2aNTl//jzx8fH4+flVOZh38uRJpk+fTt++fXnhhRfw9PRUBrWDg4PJyMjA2dkZT09PoKys0cGDB/n555+BsgGxLl26MHHiRNRqNQcOHGDPnj0UFBRQrVo1pk+frgwSAnh7eytN7YQQ/zwS1BRCiP8gS0tLHBwcSEpKwsfHp9LNWWBgIHPnzuXZZ59l+fLlSnfYbdu28dlnn6FWq3F1deXo0aP88MMPvP322wwePBhDQ0PWrVtHUVER8+fPx8PDAwA/Pz8cHR2VC1B3d3fy8/OJiYnBwcGB6dOn880333DhwgXOnDlDenq6Ui/vhRde4LXXXsPFxQW1Ws2VK1eAsuYgO3fuZMOGDUoTFIAtW7Zw9uxZJQhiYWGBg4MDZ86cAX674VSr1bRp04aSkpJKmahQVrdJt/9C/B5dVtihQ4dISEj43YDb5s2b+frrr4mJicHExITq1avTr18/nnrqKczMzMjIyOCzzz7DycmJefPm4ezsDMBnn33Gd999x4ULF2jVqhV2dnYVpv916tSJxMREFi9ezJEjR4CyGrK6epavvvoqTk5OyrRxXZ0yKAv4FBcXk5CQQJMmTRg0aBCbNm1i9uzZvPrqq1hYWBAeHs4333xD48aNK2Qqnzt3Tqljdi97e3s2bNhQ5edQvpxF+UYxpaWlVKtWje+//54NGzYQFhZGQUEB/v7+TJ48mc6dOz/sn0b8Sb93njA2NmbgwIFs3LiRiIgIunfvTlFREfPmzeOXX37B1tYWW1tbLl26xM8//0xOTg6DBg3CxMREyabfvn27kgHp7e3N2rVrOXPmDLm5uaSmpqJSqbC0tFReU/f9CA4O5ueffyY9PR0XFxfs7Oy4dOmSMq1cN8hVXFys1NODssYmusYhusZBtra2uLm5cfHixQqvERAQAJQN5gEEBQWxadMm5bzwezMWhHiSbG1tGTNmDKmpqWzevBmVSsX06dOV8j7BwcG0adNGWT48PBxDQ0OlqWFVWchQ1gyrqKgIPT09jIyMlFI+bdu2pVu3bjg6OirT1rOzs3nvvfeU2ujt2rWjbdu2nDx5kp9//hk/P78KU+J12Zu3bt0iNjaWu3fvAuDp6YlKpVIGpxs3bszcuXN59913adu2LbGxsRw9epQaNWpQUFDAhg0bGDVqFB4eHrz77rv06tVLadIotcyF+PeRoKYQQvwHGRoa4uHhwfnz50lMTKwUvNN1865evTq7d+9mwoQJ5OTkMGXKFNq3b89LL72EWq3G3Nycd999lzlz5uDn50ezZs2IjIzE19dXyerSTXdq0aKFcnOoq3N5/fp1GjRogJOTk9K5Njo6Gq1WS15eHgsXLmTTpk106NABLy8vXF1diY6OBqB58+Y888wzLF26lNjYWDp27Eh6ejrbt2+nXr16Sr0jGxsb6tevT0JCQoXpThYWFkyaNOlxfNziP0LXMTkqKkqpFVmVn376ialTp1K3bl3Gjh1LVlYWGzZs4J133uH27duMGjWK06dPEx0dzdSpUyvUgu3RowdhYWGcO3cOKAvOu7u7c/PmTbRaLdbW1rz88ssMGjSI69evc/36dW7fvk1sbCxbtmzB0tKSd999VwnY6DLYALy8vJRpwKWlpQQHB/POO++waNEiRo8ejbm5OXl5edStW7fClMKPP/4YGxsbpRlEVXTT1++te3m/cha6xxo1akRISAgajQZzc/OH+TOIR6Sq80T5rCo9PT2srKwwMTFRftsXLlzI+vXreeONN+jYsSOmpqYUFxfz3HPPsXXrVtq2bYuHhwc+Pj5kZmYqwUZdQLxmzZocPHiQ27dvY25ujqWlZYUse11jEV9fX9atW0dCQgKtWrWicePG7Ny5k86dO9OqVSvl/HP06FEApW5g+RquOpaWlnh4eJCdnV0hMF+nTh0iIyOV5XT7J8Q/haWlJR999BE5OTmsX78eBwcHvLy8SE1N5bXXXgN+K3uSnJyMnp4e+fn5SgdyKDs2z58/z5kzZ4iMjCQ2NpZbt24xb948WrVqhbu7OxqNBjc3N5o1a1bh9e3t7Xn++ecZN24cBw8epF27drRu3Zo9e/awevVqgoKCqF+/foVu4bm5uWzevBlnZ2elqZaPjw9qtZqIiAgAevfuTU5ODlu2bOHcuXM4OjrSsWNHBg0apDTa0pUy0Wq11K5d+y//rIUQT44ENYUQ4j+qVq1abN26lfj4+EpBTV1NsWbNmrF06VJSUlLYtWsX5ubmTJ06tcJI91NPPcX27dvZsWMHzZo1Q61Wk5WVpdzklp+2rfu3n58fJiYmys3q7du3OXfuHIGBgUqwBcpqp505cwZzc3OMjY3x9fXl4MGD5OXlYWVlxcSJE3FycuKnn35SpjK2atWKESNGKE0djI2NeeWVV/6aD1GIcry9vTEyMqoQCLlXeno63377LZ6enixcuBBTU1P09PTo1KkT48aNY9WqVXTv3l0JvuumpOuOSTc3N+rWrauUTbC2tsbLy4vTp0+TlZWl1J40NDSkRYsWFabYtWjRgujoaO7evYulpSVqtZqff/6Zhg0bUqNGDezs7FCpVFy4cIHc3FysrKwYOnQoTZo04eDBgxQWFhIUFESdOnWU3wCtVquUaHiQ8rU2/6iqsj/F46E7T8TFxSlBTR09PT3le6EL9p04cYIOHTpUaqLh4eHB5cuXSUpKwsPDg+rVq3Py5EkyMjKA34LYwcHBbN26VckWrlatGpcuXVJqJ+umvWq1WrRaLTdu3KBVq1YMGzaMgwcP8vrrrzN8+HCqVavGqVOnWLduHQMGDFDq7lWrVg0rK6sK08JNTU354IMPpC6y+FcyNDRk1qxZjBs3jiVLlmBoaEhAQABNmzYFypqsGRkZYWFhQWlpKYmJibi4uFBSUoKhoSFnzpxh9uzZ5OTkEBoaiouLC9euXSMqKopWrVrh6uqKjY2Ncj2nOzY1Gg1GRkZ4eXkpHdSh7Dw5btw4Ro8ezZQpU3jjjTdwd3fHwMCAmJgYvv/+e86dO8eLL76Iv78/8FstTl2DIbVazcSJExk0aBD29vYPrOErx7UQ/34S1BRCiP8oXfDw2rVrysXtvXQXlEePHlWyHNeuXUt8fDyXL18mMTGRvLw8DA0NsbCwICcnB29vb+VmVTeCb2BgQGZmJl9//TU1a9akdevWWFtbK9kyiYmJTJgwgbZt2/LCCy9gYmJCREQE33zzDbVq1cLX1xc9PT1sbGzIyMggLS1NCXSOGDGC7t27Y2xsXKFRhRCPm729PXZ2dpXqt0LFbJirV68yevRozMzMlKnXtra2PPvss0yYMIFjx47h6uoKlGXJwG8DAhYWFri5uXH79m2KioowMTHB3d2dwsJCEhISUKvVzJgxQ6lZ6ODgQGZmJufOnSMtLY1nnnlGCSANGTKEZcuWMW7cOAYOHMikSZMYMGBAheARlAWCdHV171V+urhMx/330Z0nYmJiaNasmfI3zs3N5fjx46xZs4b69esrmZDff/89xsbGJCYmcurUKY4dO8axY8dIT0/H1tZWqQkbFBREcXGx8t+675EuoyomJoY2bdrQo0cPJk+ezIoVK3j99dcpKSkhKiqKNWvWYGFhoaxfu3ZtFixYwLJly1i1ahU5OTlYW1szYsQIxo0bp3yfTU1NK9VRLv/6QvzbaDQabGxsmDt3Lu+//z4HDx6kefPmFQamAGrUqMH27du5fv069evXVx6vW7cuX3/9NUZGRtjZ2XHu3DkuXLignOecnJxwcnIiOjq6Qja+7rfCwsKC9PR0GjVqpOxTkyZN+Pbbb3nzzTcZO3Ys3t7e6OnpKeewt956i6FDhyrLGxsbs27dukoDXOVLoAgh/rskqCmEEP9R7u7umJmZVdn9W3eDp2uIc/nyZWrXrk1ycjIrVqzAw8ODoKAg+vTpg6+vL7a2tlhaWmJhYUH9+vVZvHgxZ8+eJTg4uMII+urVqxk1ahRWVla4ubmRkpKCVqulTp06jBkzhvXr1/Paa69RVFREfn4+9erVq5BBM2LECIYPH17pQlYahoi/AwsLC5ydnYmJiVFq++novsPlO4MDFWq5Vq9eXZn+HRQUhEqlIjo6WhlQ0N0w3rlzB4AbN25Qo0YNnJycMDAw4Pr16wQFBVG3bl12797NgAEDaNy4MUVFRZw5c4aOHTvSs2dPJcAzYsQIpYtt7dq1MTU15Y033qjyvWm12gq1L+8lAc1/J10jqL1795Kfn8/58+eJjo4mPT2d3NxcGjZsyIcffoiDgwOlpaUYGxtz+fJlFixYwK1bt3BwcODll1/G3d2dkSNHkpKSAqDUdE1ISAB+Oy50A2lxcXEAdOvWjUOHDvHtt99y6dIlgoODOXfuHH5+fiQkJHDt2jXy8/MxMzOjYcOG1KpVi4SEBGxsbJQ6tEL8l+muwezs7LCxsQFg48aNWFpa8sILLyjnpnr16qGnp8fRo0cZNGiQ8ripqSmmpqbK9vz9/XFwcODmzZvKdt3c3Dh+/LgymKC7hrt58yYLFy4EoH///hX2q2HDhoSFhXHs2DHCw8MxNTWlevXqBAcHY29vX+l9SMa+EOJ+JKgphBD/Uba2tjg6OlaZVaa7mNXdFBoYGGBubo6enh5Tp06lSZMmGBkZYWRkpExB3L17Ny+++CJNmzbFy8uLb775hjp16uDs7Exubi5ffvkld+/eVRp8WFpacvLkSeLi4vDy8mLixIm0adOGS5cuYWFhQc2aNfH396+QQaMLBAnxd2RoaIinpycXLlwgLS0Nd3f3KpcxNTUlLS1NCVbqsjhNTEywtrYmJyeH6tWrU7NmTbZu3Urv3r3x8PDAwMCA3Nxc5ZiNjIykRo0aODo6Ympqyvnz5+nduzf9+vXDz8+PzZs3c+XKFdRqNSNHjqRz584VBgR0gxD30k07LE9PT++BU/zEv5NarcbLy4vjx4+TnJyMj48PzZs358qVK0RERFC7dm0lo0tfX5/09HRGjhyJpaUlY8eOJTg4GE9PT5KSkoDfgpje3t4YGBiQkJCgBOu1Wi0WFhbKVNXc3FwsLCyU+rNbt25l48aN1KxZk2nTphEfH4+jo2OFqeQWFhbUqFHj8X9QQvxN6c4vkZGR7N27lyZNmpCdnc2nn36KjY0N/fr1A8qystu1a8fBgwc5ffo09evXV47N8pKTk8nMzOTOnTsUFRVhZmaGp6cnBw4cYOvWrahUKqKiorhx4wZxcXFoNBpmzJihlIAoz9TUlHbt2tGuXbvH8lkIIf6dJKgphBD/Uaampri6unL58mXl5lFHF0gsKSkByqaf1qpVC319fY4fP0779u0rbOvDDz8kOztbqW80e/ZsJk+ezDPPPENAQABFRUVkZmYyd+5cfHx8AOjbty8tW7ZUirlDWROHBzVYEeLvrnwNwqqCms7Ozjg7O3P+/HkyMjIqZJPFxsZy+/ZtpUnD8OHDef/993nxxRcZPHgwjo6OrFmzhoSEBAwMDDh37hw9e/ZErVYTGBhYoZFO3bp1qVu37u/ury4gVX7w4M/WvhT/PmZmZlhbW2NhYcHXX3+No6MjhoaGFBYWsnnzZmbMmMGuXbuYP38+QUFBnD17lqysLObOnVuhnuuBAwfQ19dXAiJqtRoPDw/i4uLIzMzE3t6e4uJiVCoVjo6O3L59WzkvWVlZMWTIEPr166fUmoXf6s0KIe5P99v+448/kpuby5QpUygtLWX48OFMnz4dGxsbOnTogIWFBWPGjOHMmTO8/fbbfPjhh8qgV0lJCdnZ2Zw4cYLFixeTnp7OW2+9pbyGpaUlWq2WDz/8ECMjI1xdXQkICGD48OE0atSIatWqSYkHIcRfRq5ahRDiP0pfXx8fHx+OHTtGUlIS/v7+FTrbAuzfvx8oC5CEhobSokULVq1ahZGRES1btkSlUrFq1Sri4uL46KOPsLe3R6vVEhoayqpVq9i9ezcXLlzA3d2dZs2aERISokxTbdOmzRN530L8le6tVavRaCrVF2vbti1Llixhz549DB06lKKiInJzc1mxYgUmJiZKMLJLly4YGRnx1Vdf8dFHH1FcXEzTpk159913+e6775Qpul5eXixbtqzK/dE1bNDtw703lnKjKR5EX18fb29vjh49SnFxsVJSwdzcnCFDhlBcXMzcuXN5+eWXWblyJUZGRhgaGnLixAlcXFyUTP6vv/4aAwMDzp8/z7lz52jbti2Ojo5ER0eTnZ2Nvb29EkxfuXJllfWRywc0hRAPLykpibCwMDp06ICrqyvGxsbMnj2bN998k8mTJ7No0SIaNGhAYGAg7733Hp999hljxoyhZs2a1KlTB2NjY65evcrZs2dxcXFh8eLFtGrVitLSUqCsYWTDhg1xd3fHxcXlCb9bIcR/jQQ1hRDiPywwMBAoyxArP9W7tLSU5ORk1qxZQ3BwsNIkZNq0aXz55Zds3ryZjRs3UlJSgqmpKZMnT6Zbt27Ab0ESBwcHhgwZwpAhQ57AOxPiydDVqr1+/TpAhal7hYWF6Onp0aNHD6Kiopg5cyb79u0jNDSUc+fOce3aNV555RUaN26sDDB06NCBli1bcvHiRdzc3HBxcaG0tJRPP/1UmXarCwZVNVXw/+k6LgT8dp64fv06vr6+wG8ZviNGjKCgoID58+fz+uuv8/bbb9OjRw++/fZbtm/fjrGxMXfu3GHkyJH4+Pjw448/KueI+fPnY21tXaGuLCAN34R4RHTnkZUrV5KXl0ffvn0xNjamuLiYZs2a8dZbbzF16lTGjx/P559/TqNGjejSpQsBAQHs27ePCxcusH//fnJzc3F1dWX48OG0adNGuSbUHbO+vr7Kb4MQQjxucpUrhBD/YX5+fujr63Px4kUaNWpEamoqqampREZGsmHDBjQaDa+88gp2dnZotVqcnZ15//336du3L3Fxcbi4uFCjRo0K016F+C/T1aq9cuUK0dHRJCcnc+vWLW7dusWNGzfIzc1lxIgRzJkzhw0bNhAWFsbGjRvx9fXljTfe4KmnngJ+GxzYunUr5ubmSs0xrVbLlStXiI2NrdR4QWpeir+C7jwRFRVFp06dgLLvpy6wOXLkSIqKivjqq6+YO3cukyZNolmzZpw5cwYvLy/q1q1LQEAARkZGdOjQASj7HqvV6if2noT4L9DT0yMtLY1du3YRHBxMvXr1AJRmcV26dKGkpITJkyfz6quv8vHHH9OkSRP8/Pzw8/MjNzcXQ0NDadIjhPhb09PqrkiEEEL856SmptK7d28KCwupVq0asbGxZGVlKZ1kR44cWWUjESFE1UpLSxk1ahRHjhzB1dWV9PR0ioqKADA2Nsbb25s33niDpk2bAijNgu6ly7AZNGgQ586d44UXXiA0NJTU1FSWLVuGSqXiyy+/xMPD47G+P/Hfk5qaSpcuXQgJCWHJkiUVntN9T3Nzc4mIiMDHx0dqXQrxN7J06VJmz57Nu+++yzPPPENpaamSYQll56CYmBisra0rNJITQoh/CsnUFEKI/zArKysCAwPJzs6mevXq9O3bl6CgIPz9/Stc9AohHo6+vj6enp54e3vj7e1N7969CQoKombNmjg6OlZaXtf9XFeb7N5syxkzZrB06VJ27drFypUrAWjQoAGvvvqqBDTFY2FtbU3t2rVxcHCoVHdZ928LC4squxsLIZ6coqIijh49SocOHWjbti1ApWs7lUpF9erVn8TuCSHEIyGZmkIIIYQQj8m9jYMeRBdAKioqIjo6Wsn0lAEHIYQQQgghJKgphBBCCPHIlZaWKtmX+vr6EogUQgghhBDiEZOgphBCCCGEEEIIIYQQ4h9F0gaEEEIIIYQQQgghhBD/KBLUFEIIIYQQQgghhBBC/KNIUFMIIYQQQgghhBBCCPGPIkFNIYQQQgghhBBCCCHEP4oENYUQQgghhBBCCCGEEP8oEtQUQgghhBBCCCGEEEL8o0hQUwghhHjE2rVrR7t27Z70bgjxtyXHiBD3J8eHEPcnx4cQojwJagohhBBCCCGEEEIIIf5RDJ/0DgghhBBCCCGEEEIIIR69N998k02bNlV4zMjICEdHR9q0acP48eOxtrb+S167qKiIzMxMnJyc/pLtS1BTCCGEEEIIIYQQQoh/sbfeegu1Wg3A3bt3iYqKYt26dVy8eJE1a9ZgYGDwSF8vMTGR5557jtGjR9O7d+9Hum0dCWoKIYQQQgghhBBCCPEv1r59e9zd3Ss85u3tzfvvv8/PP/9MmzZtHunrJSQkEBMT80i3eS+pqSmEEEIIIYQQQgghxH9Mo0aNALh+/foT3pM/R4KaQgghhBBCCCGEEEL8xyQnJwPg6empPBYVFcXYsWOpX78+ISEhDBw4kMOHD1dYr6ioiJkzZ9KuXTsCAwNp1aoV77//PtnZ2QBs3LiRYcOGAWXT3gMCAv6S/Zfp50IIIYQQQgghhBBC/E21a9fugc/v27fvd7dx584dMjIyACguLiY6OpoPPviA2rVr07ZtWwCuXr3K4MGDsbe3Z/To0RgZGbFt2zZGjRrFvHnz6NKlCwDTp09n27ZtDBs2DA8PD65fv86qVauIjY3lu+++o0GDBowZM4ZFixYxYMAA6tWr939+AlXT02q12r9ky0IIIR6rO+HhT3oXhPjbOmlT8qR3QYi/tXpbDv/+QkL8R70YePdJ74IQf2tr20x+0rvwSAw8MOdJ78J9pX2w64HPPyioWVX3cx0TExOWL19OSEgIAEOHDiU5OZktW7ZgZmYGQElJCcOHDycmJoYDBw6gUqkICQmhT58+TJkyRdnWZ599xuHDh1m+fDnm5uacOHGCYcOG8dFHH0mjICGEEEIIIYQQQggh/mseJhPz98ydOxd7e3ugLFMzMTGRVatWMWTIEL7++mtq1qzJyZMnGTp0KIWFhRQWFirrdujQgY8++oiLFy9Sr149nJ2d2b59O4GBgbRv3x4rKysmTpzIxIkT/+/9/CMkqCmEEEIIIYQQQgghxL9Y3bp1K3U/f+qpp+jYsSMzZsxg9uzZAKxYsYIVK1ZUuY2kpCQApk2bxsSJE3nrrbd47733CA0NpUOHDvTp0wdLS8u/9o2UI0FNIYQQQgghhBBCCCH+Y9RqNY0aNWLPnj1oNBoAhgwZQvv27atcvlq1agA0adKEAwcOKP87evQoH330EcuWLWPjxo3Y2to+lv2XoKYQQgghhBBCCCGEEP9BpaWlADg6OgJgYGBA06ZNKywTFRVFQkICpqamFBUVceXKFZydnenatStdu3altLSUpUuXMmfOHMLCwhg6dOhj2Xf9x/IqQgghhBBCCCGEEEKIv4309HR++eUXatasiZubG4GBgWzatImUlBRlmeLiYt5++23Gjx9PSUkJmZmZDBgwgMWLFyvL6OvrExQUpPwbyoKj8FvQ9K8gmZpCCCGEEEIIIYQQQvyL7d27F7VaDYBWqyU5OZn169dTUFDAK6+8AsC7777L8OHD6dOnD4MGDcLGxoawsDAuXLjAa6+9pqzfvXt3Vq9eTUFBAXXq1CErK4uVK1dib2/PU089BaAsu3XrVrRaLb169cLQ8NGGISWoKYQQQgghhBBCCCHEv9hHH32k/NvAwABra2uCgoKYOXMmTZo0AaBOnTqsWbOGBQsWsHTpUkpKSvDx8WHWrFn06tVLWX/GjBl4eHgQFhZGWFgYpqamNGnShFdeeUWpp+nn58fQoUPZuHEjFy9epFGjRnh6ej7S96Sn1Wq1j3SLQgghnog74eFPeheE+Ns6aVPypHdBiL+1elsOP+ldEOJv68XAu096F4T4W1vbZvKT3oVHYuCBOU96F+7r3/IZP2pSU1MIIYQQQgghhBBCCPGPIkFNIYQQQgghhBBCCCHEP4oENYUQQgghhBBCCCGEEP8oEtQUQgghhBBCCCGEEEL8o0j3cyGEEOJXqbdvs3zTJiKuXwegbu3aDO3VC2tLy4fextdr1nArNZVpEyZUei4yOpo1P/1EdFwcFmZm1A8Opn+XLlhZWNx3e7GJibw9dy49O3akX5cuf/xNCfGIZKbdZse6Ldy8GgVAQHAtnhrQA3Orhz8+Ni9bx+2UVEa+8fJv203P4JPJ0x+43nOTx+JTw7/S43eyslnw3mxqhgbSe+Tgh94PIR611Ds5rPzlFyJu3QKgjqcnQ5s0xsrU9IHrXYiPZ9PZc9xIT0dfTw9/R0f6N6iPv5PTfdeJu32bdzZtpkdoKH3r16vwXGRSMutOnSI6LQ0LY2Pqe3nRt359rExN/v83KcT/oTAjhxs7TpF9IxkA2xru+DzVAJXFg4+R8q5vOkZBejbBLzxV6bmMa4nEH7xAbuJt0NPDysMBrw51sfJ0qLBcTmI6MbvOcCcuFT09Pax9nPF5qgFmDtb/3xsUQjwREtQU/5c333yTTZs2PXCZdu3a8eWXXz6mPaqsbdu2uLm5sWLFCgCGDh1KYmIi+/fvf2z78Chec9euXaxfv55Lly5RWFiIi4sLzZs3Z/jw4Xh4eDzUNnR/r6tXrz6S5f6ohIQE2rVr91DL7tu3D6DK5Y2MjLC1taVZs2ZMmDABZ2fnB25fT08PS0tLfH19GTJkCE8//fT/8S7Ev1VOXh7vf/45Go2Gp9u3p7S0lJ/27SPu1i0+fP11DA1//5S5//hx9h07Rs1q1So9d/n6dT5cuBAzU1N6deyIvr4+2w8c4PK1a8x49VUszMwqraPRaPhy5UpKNJpH8h6F+LPyc/P4bs5CNJoSWnRui1ZbypGdB0hJuMWY917F4CGOjzOHf+HMz8fxDvCr8Li5hTl9nh9Safni4mLCVm3E3MoCZw+3Kre59fv1FObl/7k3JcQjklNYyIxt29CUltI9JIRSrZZt4eHEZ2TwQa+eGBoYVLlexK0kZu/YibtazcAGDdBoS9l9OYLpP21j6tPdqeboWGkdTWkpXx48RImmtIrt3eKj7TswU6noWScUfT19dly8yOVbt3i/Zw8sjI0f+XsX4mEU598lfMlOtJpS3FsGotVqSTh8ibzkTEJf6ob+fY6R8pJPXyP51DWsfSoH/LNuJnP5+z2YOdrg3bEuWo2WWyeuEP7NDkJGPYWlR1lgMz8tm/BvdmKgMsSzTQgAiUcjuPD1duq+3ANjq8rXYkKIvzcJaopH4q233kKtVlf5nIuLy2PemwcbM2YMBQUFT3o3HlpRURFvvPEG27dvJzg4mOeffx5ra2uuX7/Opk2b2LBhA3PnzqV9+/ZPeld/l62tLXPmzKnw2EcffQSUfYfuXTYjIwOA+vXr079/f+W5kpISoqKiWLVqFcePH2fr1q1YWVkpz9+7vFarJT4+nrVr1zJp0iQMDAzo2rXrI39/4p8tbP9+MrKymPvWW7j/Giiv5uXFzIULOXjiBO2bNbvvuqWlpWzctYsfd+y47zJLf/gBPX19Zrz6Ks4OZRfXDUNCmPzRR2zatYuhvXpVWmfT7t0kJCX9n+9MiP/f0d0Hyc7MYtz0yTi6lh0fbj5efD/vK84ePUmDVk3vu25paSmHtu1h/5adVT6vMjEmtGmDSo9vX7MRjUZDv1FDMTWvfKN5/tgpoi5H/sl3JMSjsz38Ihm5eczu1wf3X6+Hqzk68GHYDg5du0a7mjWrXG/58ePYmpszo2dPjI3Kbsta+vvz2vofWHfqNO90rZydv/nceRIzM6vc3rKjx9DT0+P9Hk/jbF2WddbA25s3N2xg89lzPNOk8aN4u0L8YYlHLnM3O59643tg5mgDgKW7A5e+203K2ShcGgTcd11taSnxB8OJ3Xf+vsvcCDuJsbU5oS92w0BVdiw51vXjzKebiNlzlqDnOpXtx7EISotKCBn1FBaudgDY+Lly/sttJB69jO9Tlc9FQoi/Nwlqikeiffv2uLu7P+ndeCjNHhCY+DuaM2cO27dvZ9KkSTz//PMVnhszZgzPP/88EydOZMOGDQQE3P+C4O/AzMyMHj16VHhs/vz5AJUeB5SgpoeHR5XPe3h48P7777N27VpGjRpV4fGqlu/duzddunRh4cKFEtQUlRw9e5Za/v5KQBMguEYNXBwdOXb27H2DmkXFxbzz8cfE3bpFy4YNuXTtWqVl0m7fJj4pifbNmikBTQA3JyfqBgVx6OTJSkHN2MRENu3aRe/OnVkfFvaI3qUQf87FE2fxCaimBDQBqtUOwM7ZkYsnzt03qFlcVMziDz4lJeEWoU0bEH2l8vFRleT4Wxzfe5i6zRviXd2v0vM52XcIW7OJ1t07sW/T9j/3poR4RI5FR1PL1UUJaAIEubvjYmPN8egbVQY1c+/eJe72bboEBSkBTQBrMzNqurgQnpBYaZ2427fZfO4cverW4YdTZyo8l5aTQ3xGJu1q1lACmgBuahvqenry87XrEtQUT0xa+A1sfJyVgCaAuporpg5WpIXfvG9QU1NcwvmvwshPzsSxjh9ZNyoP9BYX3CUvKQO35rWVgCaAysIUax9nMqN+O5YKM3IwNDdWApoAlu72GJoZk59S9WCBEOLvTRoFCfE3dvPmTVauXEnXrl0rBTQB7OzsmD9/Pnp6enzwwQdPYA+frC6/1hc8e/bsQy3v5uZGgwYNiI6OJjc396/cNfEPk5ufT2p6Or5VlHLw8fDgZnz8fdctLi4mv7CQic8+y9ihQ9HXr3xqzcjOBsCjisx1Z3t7cnJzuV0u80aj0bBo9WqCa9SgZQPJGhBPVkFePplpt3H1rjx46erpTlJcwn3XLSkp4W5BIQNeHE6f54dgoP/7UwwB9m4Mw0hlRLteVdeR3fr9emxsbWjxVNuHexNC/EVy794l9U4OPg72lZ7ztrfnZnp6leuZGRkxb0B/ugYHVXoup7AQA329Co9pSktZdOhngtzcaOFfub5sRl4eAB62tpWec7K2IqewkNty7SOegOKCuxRm5GLhZlfpOQsXO3Jv3b7vutqSUjR3i6gxqBUB/Vqgd89xAWBobET9V3rj1qx25dfOL0Sv3HWZqZ0VJfl3KcotKLfMXUoKizD6A7U9hRB/HxLUFI/Vjh076NmzJ8HBwXTr1o0DBw4wcuRIhg4dqizTtm3bCv99v8e1Wi1r1qyhb9++1KlTh6CgIDp37szXX3+NVqu97z4MHTqUtm3LboISEhIICAi47/8WLFigrBcVFcXYsWOpX78+ISEhDBw4kMOHD1fa/rFjxxg4cCChoaG0b9+eH3744U99VgBbtmxBq9UyZEjlWmM6np6etG/fnlOnTpGcnKw8funSJZ577jnq1KlDixYtWLx4cZWfy8Msp9Vq+eKLL+jUqRNBQUE0bdqUSZMmkfSEp8XqgkeaP1Bv0OzXuoUP+o7cz65du+jTpw916tShXr16PPvss5w5UzFTorS0lO+++47OnTsTGBhIixYt+OCDDyoEUV955RUCAgI4dOiQ8lhWVhbNmzenQ4cO5OdLfbjHLSMrCwBb68pF4tVWVuQXFJB3n7+Lmakpn0+ZQpO6de+7fZVKBUDB3buVnsv59buRdeeO8tiWvXtJSk3l+QEDHvo9CPFXuZNZFpS3UttUes7SxorC/AIK8qsu62JiasLEWe8Q2KDOQ79ecvwtrl64TMPWzbCyqXxMXjh+mmsXI+g9cvBD1fIU4q+U+Wsw0dbMvNJzajMz8u8WkVfFb7++vj4u1taozSuuF3f7NtdSUqh+T6OgrecvkJydzcgWzavcD+Nfj4WC4uJKz+UUFgKQdZ/jVIi/UlF22fWTqop6lSorUzQFxZQUFFW5roGJEfVf7YNDkM99t6+nr4+pvVWleph5yRnciU3FyvO32rTuLQMxtjbn6rqfyUvOIC85g8h1h9A30Metaa0/8/aEEE+YXAmKR+LOnTvKVOF7WVtbY2BgwObNm3njjTcICgpi0qRJ3Lhxg/Hjx2Nra4unp+cffs3PPvuMRYsW0atXL/r3709eXh6bN29m3rx5mJubPzAQqFNVjUeABQsWkJycTIsWLQC4evUqgwcPxt7entGjR2NkZMS2bdsYNWoU8+bNUzIGjx07xgsvvIC3tzcTJ04kIyODmTNnoqend9+aow9y/vx5DA0NCQqqPIpfXuPGjdm+fTtnzpyha9euXL9+naFDh2JlZcVLL71EcXEx3333HUVFFS8YHna5RYsWsXDhQoYMGUJAQAAJCQksX76cS5cusW3bNgweorj3X+H48eMA1Kr1cBchBQUFnDp1Cnd3dyz/QDdrgJMnT/LKK6/QsmVL+vXrR0FBAStXruTZZ58lLCxMadb0zjvvsGXLFnr27MmIESOIjo5mzZo1nD17ljVr1mBsbMx7773H8ePHmT59OmFhYZiYmDBjxgwyMjJYuXKlEngVj0/hrzecuuBjeSojIwDuFhdT+Za1rBHV7x0DHs7OmJqYcPLCBXp26ICeXlmmQVFxMeGRkcq/AeKTktiwYwfP9uuHnVpN2u37ZzAI8Tjc/TUgYqQyqvSc4a+PFRcVYWpWOcvlYY6Pe508cAQ9fX0atWtR6bnc7BzCVm+k+VPtcPH8Z5S9Ef9uuiCiqooAu+rX735RSQnmD9Gkp7C4mC8PHATg6dBQ5fGEjEw2nj3LiGZNsbOwIC0np9K67mo1piojTt68SY/QkN/OMyUlylT2Ik3JH3pvQjwKmqKyY8TAqPIxov/rcaMpLsHQtPI1mJ6eHnoGlbMzH+Y1r/5Qlnzi3uq3+ygTGws8WgcT/dMvnP186687oUfNwa0rTEkXQvxzSFBTPBK9qmhwobN582aqV6/OnDlz8PX1ZfXq1UrgwNfXlw8++OAPBzWLi4uVadmzZs1SHu/Xrx9NmjTh8OHDDxXUrKrG47fffkt8fDxTpkwh9NcLyg8++ABbW1s2bdqkBJyeeeYZhg8fzsyZM2nfvj0qlYqPP/4YBwcH1q1bh4WFBQBNmzZl+PDhfyqomZaWhrW1dZWBlvIcf+2OmZqaCqBkmK5du1Zp1NSpUyd69uxZYb2HXe6nn36iZcuWvPvuu8pjLi4urFmzhsTExD8VlP4jioqKKgTNs7OzOXfuHB9//DHm5uYMGjTogcuXlJQQHx/Pl19+SUZGBm+++eYf3oft27djYmLCV199pdwoNG3alPHjx3P58mU8PDw4ceIEGzdu5P3332fgwIHKuq1atWLkyJGsXbuW4cOHY2try5QpU3jllVdYvHgxgYGBSpC87gOy/cRfR5e5q/vbPmqGhoZ0a9uWH7Zv5/Pvv6dnhw6UarWs37aNwl8HEQwMDCgtLeWrlSsJ8PN7YGMiIR4nXWL7X3V8lFdcVMz546epERqI2r7yNNqtK37AwsqSNt07/uX7IsTDeFTnj7vFJXy8azextzPoUSeEWq5l12WlpaV8dfAgAc7O9204BGBoYEDX4CB+PH2WBfsP0DO0rAv7+lOnuftr4NWgivIoQvzllJPI43k5TVEJl1fsIy8pE/fWQdj4/FYLOmbPWeIPhGPt44RzwwC0pVqSTkQSueYQNQe3wa5m5TJEQoi/Nwlqikdi7ty52NtXriUEZdOjL168yO3btxk1alSFAN2AAQMqTPF+WEZGRhw7dozie6bYZGZmYmFh8aen7x4+fJhPPvmEHj16KEHRzMxMTp48ydChQyksLKTw14wVgA4dOvDRRx9x8eJFvL29uXz5Ms8//7wS0ISyLMqAgIA/VcNRq9U+VIaL4a+jnFqtltLSUg4fPkyrVq0qdJ738/OjefPm7N+/H+ChlwNwdnbmxIkTfP/993Tt2hV7e3sGDhxYIXD3VwoLCyOsikYp/v7+TJs2DedyjV0etLyvry+ffPLJn2oS5OzsTF5eHh988AGDBw/Gz8+PgIAAdu3apSyze/du9PT0aNWqVYWgaq1atXBwcODgwYMMHz4cKKsHGhYWxpIlS7CysqJGjRq8/PLLf3i/xKNh8msGzb1ZyvBbBqWZicn/9Rp9Oncmr6CAHQcPcuzXsgX1AgN5un171mzdioWZGVv37SM2MZHpr7zCnV9/M3ILyqYL3i0q4k5uLpbm5o8luCSEjrFJ2fFRXMXxUfJrBo7J/3l86NyIvE7x3SICG4RWei78xFmunA1nyPjnuVt4l7uFv03pLSkuIS8nFxNTE5mSLh4r01+z+YtKKmdBFv1aHsf0dwan8+7eZc7OXVxLTqF1jeoMKFdL+acL4cRlZDDt6ae5U1CoLA9wt6SEOwWFWJoYo6enR++6dcm7W8TOS5c4HhUNQF0vT7qHhLD25CksHiJbVIhHzcC47BgpLa5cLqr01+PG0KTyTIA/o6SgiMvL93InNhWn+v54d6hb4bmEw5ewcLcjaGQnpdamQ7A357/cxvVNR1H790Pf8MnMQBNC/Dly1Sceibp16z6w+/mtW7cAlCm6OiqVqtJjD8vIyIiDBw+yb98+bt68SWxsLNm/NuP4M/USY2JiePXVV/H392f69OnK4/G/NghZsWIFK1asqHLdpKQkjH69qK0qa9HX15fw8PA/vE+Ojo7Ex8dTUlKiBC6rosvQdHR0JCsri/z8/Pvuhy5Y+bDLAUyePJkXX3yRDz/8kI8++ojatWvTtm1b+vfvj0O5Ts5/lebNmzNy5EigLBNCpVLh4uKCq6vr7y6fnJzMt99+y507d5g2bRqNGjX6U/vwzDPPcOTIEVauXMnKlStxd3enTZs29O3blxo1agAQFxeHVquldevWVW7D/J66WdOmTaNjx46kpaXx5Zdf/m5Grvjr2P+aSV2+rqVO5p07mJmaKoHPP0tPT4/hvXvTo317ktPSsLOxwcHOjrU//YS+vj72tracj4igRKPh7Y8/rrT+T/v28dO+fXwxbRoOdjJFSjw+1nZlx0dOduUprzlZdzAxM0Vl8miCJdfCIzAwNKR6cOWMtKhLZaUaVn3+baXnLp48y8WTZ3lu8lh8alRuoiLEX8Xu14HsrCoG1DPz8zEzVmFidP+AzZ2CAj7cvoPY9Nu0q1mDkS2aVxi4uhAfT4mmlHc3ba607rYL4Wy7EM7ngwfiYGmJnp4ew5o2oUdoCEnZd7CzMMfB0pJ1J0+hr6eHfblBdyEeF2Prsu9dUU7lmq5FdwowMDXCoIryJn9UUW4Bl5btIe9WBs4Nq1OtR5MKx1LB7TtoS0pxCPat0DxI38AAxxA/bu48TX5aNhYulWcJCCH+viSoKR6rqoKNxg8ZKCjfDEar1fLSSy9x4MAB6tWrR506dRgwYAANGjRQMuH+iNzcXMaOHYuenh5ffPFFhYwT3esOGTKE9u3bV7l+tWrVSElJAaiQyalTWlr6h/cJoH79+hw/fpzw8PAHTks+ffo0enp61KnzWyOGh92Ph1muRo0a7Nq1i8OHD3PgwAEOHz7M559/ztKlS1m3bh1+fn5/5G39YQ4ODjRt2vRPL9+uXTv69evHCy+8wNKlS6lXr94f3gcLCwtWrlzJ+fPn2bt3Lz///DMrVqxg1apVzJkzh+7du1NaWoq5uTlffPFFldu497seERGhZBXv2rWL4ODgP7xf4tEwNzPDwc6OmwmVuzjfjI/H7xGUWDh65gw2VlbU9vfHxspKeTwiKgpfDw9URkYM7dWrUkOi7Jwcvli+nBYNGtCyYUOsy60rxONgamaKjb0tSbGVj49bcQm4eT+66XpxUTdx8/bAxLRyfc7mT7UluHHl3+/v532FX+0Amndui7OH2yPbFyEehrmxMQ6WllV2OY9JT8f3AYO/BUVFSkDzqaBAhjVtUmmZZ5o0rtRoKLuggIX7D9Lcvxotq/tj/evxciwqGhszU2q5umJdrj73laQkfBzsq6z7KcRfzdBUhbGtRZVdznOTbmPpVvVsvz+i5G6xEtB0bVYLv64NKy2jb/hrILO08v2oVluq+8f/vS9CiMdLzmzisfD29gbKsiHvFR8frzwPZd0g750CWlJSQmZmppJVePr0aQ4cOMBLL73EhAkTKiyXlZX1h7I/tVotkyZNIjo6msWLF1da182t7AbJwMCgUmAtKiqKhIQETE1NcXNzQ09Pj9jY2EqvkVBFoORhdOvWjS+//JLvvvvuvkHN5ORkdu7cSb169XBzc0Or1WJhYfG7+6FWqx9qOY1GQ2RkJBYWFrRr14527doBZTUmX3nlFX744Yc/VaPycbK2tmbevHkMHDiQ1157jW3btlUoEfAwbt68SU5ODqGhoYSGhvL6668TFRXFkCFDWLp0Kd27d8fNzY0jR44QGBiI1T2Bp507d1bIis3NzWXKlClUr16doKAgli5dSqdOnSSw+QQ1Cglhx6FDJKak4PZr19nwyEiSUlN5+j4DGn9E2P793C0uZs4bbyhlJc5cusTVGzd46ZlnAKoMnuoaBTnZ2xP8a1awEI9b7XohHN97iLSkFBxcyo6PqMtXuZ2cSoun2j6S19CUlJB2K5n6raoexHJ0dcbR1bnK56xsrKlWO+CR7IcQf1RDH292XrpEYmYWbmobAC4mJJCUlU33kJD7rvfdkaPEpt+m830CmkCVQVFdoyAnKyuCys2UCgsPp6hEw6y+vZX6mWdj47ianMKLbVr92bcnxP/NvrYXt45FkJ+WhZmDDQCZUbcoSLuDe4vA/3v70VuPlwU0m9asMqAJYOZog8rKlOSz13FpUkNpXKQpLiHlXDSG5saYOdn83/sihHi8pFq0eCxq1KiBp6cna9eurVDvcufOncrUaR17e3tu3rxZIYNw//793C03Sp2VlQWUZUiWt379egoKCiipoq7R/cyfP5/9+/czbtw4WrWqfMHn6OhIYGAgmzZtUrIxoaxZ0dtv/4+9O4+LstofOP4ZlmEHZVMWCUHFDdzN3QLMUnPNLUTzumRaLpVp67Wy7LqVmlt5tVxyS8EF1FQkKfxpbqFY5oKyyKKsyj4wvz+ASRzAARGk+32/Xr3u5XnOOXOecZ555vk+53zPe0yfPh2VSoW1tTWdOnVi79693Lnvaf25c+eIjIzUuT/3c3V1Zfz48Rw+fJjVq1dr7U9LS2P69Onk5+fz4YcfAkVTXPv06UNYWBhXrlzRlI2NjSU0NFTzt67lCgoKGDt2LJ9//nmp125T/CNdr44knff09GTChAnEx8ezaNGiStefP38+U6dOJTMzU7PNzc0NS0tLzXvg7V10Y//gv1VISAgzZsxg3759mm0LFy4kMTGRjz/+mHfeeQcrKyvef//9MnM6ipox0NcXMxMTPl2xgv0hIew+dIgv16/HzcWFnh07ApB45w7HT50isYwROQ8zqE8fYuPj+c/atRz59Ve27tvH0v/+lzYtWtDzvvxpQjyJer7gjYmpKRsWreTXQ8f4ef9PbF/9HY6ujWhTPHoyJekO58N/IyWp8ucHQFpyKgWqAqysK7+wnhC1aWDbNpgZGfFZUBBBEREEnD3HV0eO0tjOlh5Ni36rJmZkEPbXFRKL05zEpqbyy5WrmBopcbWxIeyvK1r/Vb4fbYlNTWXhwUMcufQH206d4qvDR/Bq5EyPB34zC1GTnHu2xsDEiAv/PUTsL5FEh/7OH1uPYe5kg33bohlf2Sl3STx3jewU7VQnFclKSiPp3HX0TQwxd7Qh8dw1rf8AFHp6uL/Yhezb6ZxfHUTcr5eI/SWS86v2k307Hff+ndHTYS0DIcSTRUZqimpx5MiRClf3HjRoEPPmzWPy5MmMHDmSYcOGcefOHTZt2qTJRVliwIABfPrpp0ycOJGBAwdy8+ZNduzYoRkxCdCuXTvMzc1ZsGABcXFxWFlZcfLkSYKDgzEyMioVeKpIaGgoa9aswd3dnWbNmrFv375SU69tbW3p3r07H3zwAePGjWPYsGGMHj2aevXqERQUxO+//85bb72lOfY5c+bg5+fHiBEj8PPzIzs7m++++65KK5+XmDVrFunp6Xz11VccO3aMvn37YmlpyfXr1wkMDCQnJ4clS5Zo8joCzJgxg9DQUMaMGcMrr7yCvr4+mzZtwszMrFTQTJdySqUSf39/Vq9ezbRp0+jZsyc5OTls374dExMThg0bVuVjq2lTp07lwIEDbN++nYEDB1ZqGvr48eOZNGkSfn5+DB48GCMjI44cOUJ0dDT/+c9/gKJVzn18fFi/fj1xcXF07dqVuLg4tmzZgqOjoybP54kTJ9ixYwcjRozQjMB95513mDt3LqtWrWLmzJnVfuzi4awsLPh45ky+372bHcHBGBka0snLC79BgzTfU39cu8bqzZt5bcwYGpSzOFp5nm7blumvvMKew4f5fvdurCwsGOjjw+DnnqszDwfE/y4zSwsmvjud4K0BHA08gFKppEU7T/oOfxGD4vPjxl/XCVj/A0P+9TLW9pWfTpidWfTQ09ikehYdEqKmWJqY8O+BL7Ix/AQ7T5/ByMCAjk89hV+XpzEsDpL8GZ/AmtCfmfJMbxpYWvJHfDwAWbl5rAn9ucx2ezarXH7Yp90a84aPN3vPn2fTif/DysSEAW28GNS2rVxnRK1SmpvgNekFrged4uaRc+grDbBp4ULj5ztqFubJuJHIXz/+QrOXemBibaFz2+lRCQAUZOfz14+/lFmmQbuiwKltq6fw/FdfokPOc+Nw0aKN5o42tBrni3Wz8teHEEI8uRTqqqyoIkSxuXPnEhAQ8NByly9fBuDkyZMsXbqUS5cu4ejoyIwZM1i8eDFOTk6aRXgKCwtZtWoVP/74I8nJyTRv3py3336b9evXk5WVpSl35swZFi9ezJ9//olSqaRx48aMHTuWiIgINm7cyPHjx7G1tcXb27tU+/7+/sTFxRESEsKKFSvKzX8I0LlzZ029yMhIVqxYwenTp1GpVJrXGzJkSKk6ERERLFmyhIiICCwtLRk/fjwXL17k7NmzpRbfqazjx4+zZcsWLl26REZGBg0bNqRXr174+/uXudhPVFQUCxcu5NSpUyiVSoYPHw7A2rVrNf8eupYrLCxk48aN7Nq1i9jYWPT19Wnfvj3Tp0+ndetHmzJSMrqxrPcmNjYWHx8fhgwZwhdffPHQtnQpHx4ezvjx43F3dycwMLBSi/OEhoaydu1arl27Rm5uLk2bNmX8+PGlVlPPz89n3bp1BAYGEhcXh7W1NV27dmXGjBk4OjqSnZ3Niy++SFZWFgcOHMDKykpTd8yYMZw/f56dO3fSooX2IhkPk1GFxaiE+F9xqp7uI/iF+F/UYU9YbXdBiCfWa61zH15IiP9h2559p7a7UC1GHVtY210o1z/lPa5uEtQUte7BoKMQomokqClE+SSoKUTFJKgpRPkkqClExf4pATcJatY9Mg9BCCGEEEIIIYQQQghRp0hOTSFqUEFBASkpKTqVtbCwwNi4buQVS0lJoaCg4KHljI2NsbDQPUfO41ZX+y2EEEIIIYQQQvyvk6CmEDUoPj4eHx8fncouWLCAoUOHPuYeVY+XXnqJuLi4h5bTNTdmTamr/RZCCCGEEEIIIf7XSVBT1LpHWTynrrGzs2PDhg06lW3SpMlj7k31WbRoEbm5D881ZG9vXwO90V1d7bcQQgghhBBCCPG/ToKaQtQgIyMjunXrVtvdqHYdOnSo7S5USV3ttxBCCCGEEEII8b9OFgoSQgghhBBCCCGEEELUKRLUFEIIIYQQQgghhBBC1CkS1BRCCCGEEEIIIYQQQtQpEtQUQgghhBBCCCGEEELUKRLUFEIIIYQQQgghhBBC1CkS1BRCCCGEEEIIIYQQQtQpEtQUQgghhBBCCCGEEELUKRLUFEIIIYQQQgghhBBC1CkS1BRCCCGEEEIIIYQQQtQpEtQUQgghhBBCCCGEEELUKQa13QEhhBDV41Q9VW13QYgnVuc0+ckjREVODepZ210Q4sl17Uht90AIIUQZZKSmEEIIIYQQQgghhBCiTpGgphBCCCGEEEIIIYQQok6RoKYQQgghhBBCCCGEEKJOkaCmEEIIIYQQQgghhBCiTpGgphBCCCGEEEIIIYQQok6RoKYQQgghhBBCCCGEEKJOkaCmEEIIIYQQQgghhBCiTpGgphBCCCGEEEIIIYQQok6RoKYQQgghhBBCCCGEEKJOkaCmEEIIIYQQQgghhBCiTpGgphBCCCGEEEIIIYQQok6RoKYQQgghhBBCCCGEEKJOMajtDgghhBBPitTbyRzYvoeoy1cB8PBqyQsjB2FmaVFhvSsX/iB0/2Fu3YhBoaegkZsrvkP70cjdtUrt69qeEDUpKTmZjQEBXLpyBYD2rVrhP2QIVhYVnx/n//iD3QcPcj0mBj09PZq6ujJqwACaurqWKpd+9y7b9u3j9IUL5KlUNHZ2xm/QIK1y16Kj2bp3L5ejotDT06Oluzv+Q4bg2KBBdR6uEJXypFw/rv9xhaMBwcTHxGFsYkzrTm3xHdIfpbFR9R2sEFWQk3KX6wd+I/16AgDWzZ1p/EInlOYmOrdxJSCc7DvpeE16QWvfuVX7uBebrLXdpvVTtHz5Wc3f6TcSufHTWe7F3cHARIlNCxee8m2HoZlxFY5KCFHbFGq1Wl3bnRBPtrlz5xIQEFBhGR8fH1atWlVDPdLm7e2Nk5MTmzZtAsDf35+4uDhCQkJqrA/V8ZqHDh1ix44dXLx4kZycHBwcHOjRowfjxo2jUaNGOrVR8u91+fLlailXWbGxsfj4+OhU9ujRowBlljc0NMTa2pru3bszY8YMGjZsWGH7CoUCCwsL3Nzc8PPzY+DAgY9wFHXTkeiztd2FOi3rXiarP15CQYGKLj69UKsL+eXgMerZ1GfKh2+ib1D2c8Coy1dZv3Al9o4N6dDzaQoKCjkV8gt309OZOHc6zm5PVap9XdsTldM5TZ7jPoq7mZnMXbiQgoICnu/dm8LCQvYdPYqdtTWfv/02BuWcH5euXOGTFStwbtiQZ7t2paCggENhYaSlp/PxzJk0KQ5YZufk8N7ixaSmp9P/2WcxMzXl4PHjpKSl8fnbb+Pi6AjArcRE5i5ahJGhIf29vQEICglBDSycOxdrK6uaeDv+kU7VU9V2F+qsJ+X6cf2PK2xYvAqnpxrRrnsn0lPTOHH4OI5POTPx3ekoFIoae0/+adZdO1LbXajT8rNyObdyL+qCQhy7tkCtVhMbdhHjeua0nToAPX39h7aRcPovruwOx6pxA62gplqtJvzjLdRv4ohNq9K/k4zrmWHVuOg+Iu16PBc3HMbARIlj1xYoFAriwi9hYGJEmyn9MDSR4H9VbXv2ndruQrUYdWxhbXehXP+U97i6yS98obN3332X+vXrl7nPwcGhhntTsSlTppCdnV3b3dBZXl4ec+bMITg4GC8vLyZOnIiVlRVXrlwhICCAXbt2sWjRInx9fWu7qw9lbW3NwoWlLwYLFiwAij5DD5ZNSUkBoGPHjowYMUKzT6VScfXqVbZs2cKJEyfYu3cvlpaWmv0Pller1cTExLBt2zZmz56Nvr4+/fv3r/bjE/9cv/4USnpqGq9/8g72jkU/fp0aP8X3S1Zz9tdTdOrdrcx6wVsDsKpfj1c/mIXSSAlAu26dWPbBAo7sDuKVt6dWqn1d2xOiJgWFhJCSlsaid9/FufghU5OnnuKzlSsJPXkS3+7dy6z3/e7d2NSrx2dvv42Rsujz3KtzZ9787DO27d/PB6+/DsCew4eJT0riozfeoGXTpgB0bd+eN+bNY++RI7w+dmxRP0JDyc3N5eOZM2ns7AyAZ7NmvLd4MUEhIfgPGfJY3wchyvKkXD8O7thDPev6TJj7BoZKQwCsrOuzf/OPXLn4J808WzzW90GI8sT9EkluehYdpg/C1L4eABbOdlxc/xOJZ6/i0Mmj3LrqwkJiQiO4efR8uWVyU+9RmKfCpqULDdq5l1vu2r6TKPQUtHm1HyY2RfcVNq1cOLt8LzGhEbi90KlKxyeEqD0S1BQ68/X1xbn4BuJJ172cm6sn1cKFCwkODmb27NlMnDix1L4pU6YwceJEZs6cya5du/DwKP+i/yQwNTVl0KBBpbYtW7YMQGs7oAlqNmrUqMz9jRo14uOPP2bbtm1Mnjy51Payyg8dOpR+/fqxcuVKCWqKSrlw8iyNPZpobhgBmrTywKahPRdOnivzpjQ7M4uEmFt0f+4ZzQ0pgLmVBa7N3LkW+fdIaF3ar0x7QtSkX8+epWXTppqAJoBX8+Y42NsTfvZsmUHNe1lZ3IyLo/+zz2oCmgD1LC1p0aQJEX/+CRQ9lPr51CnatWypCWgC1Le0ZOyQIejp/Z0CPunOHSzMzTUBTQD3p57C3MyMmPj4aj1mIXT1JFw/8vPyMbMwp1UHL01AE6CxR1GAJyE6ToKaotbcjrhOvcYNNQFNgPpNHDGxs+R2RFS5Qc2CfBXnVweRlZCKfTt30q6X/T2fmZQGgIlt+aP1c1LvkZWYRsPOzTQBTQBTu3pYt2hE4tmrEtQUog6ShYKEqGVRUVFs3ryZ/v37awU0AWxsbFi2bBkKhYL58+fXQg9rV79+/QA4e1a3qdVOTk506tSJa9euce/evcfZNfEPkp2ZRertZBxdtR/cOLo4Ex8dW2Y9IxNjZnz+Ht36PqO1L+teJnr6epVqX9f2hKhJ97KySLpzB7cy0qA0btSIqJiYMuuZGhvz5QcfaKaJ3+/uvXvoFwcrb6ekkJKWhlfz5kBRkDMnNxeA53r2LBUwbWhnx73MTNLv3v27rcxMsrKzqXffaH4hasqTcv0wVBoy7s0p9B7wXKky8dFxANSzta7UcQlRXfKzc8lJuYe5k43WPnMHG+7d0s6DWUKtKqQgN4/mo3vjMbwnCr2yUyhkJaYCYGpfFNQsyMvXKpOXkQmAWQPtmYcm1haoMnPJTc98+AEJIZ4oMlJTVLsDBw6wdu1arl+/jouLC2+99RabN28mLy9Pk/PywRyYJR7crlar2bZtG7t27eLatWuoVCqcnJwYOnQokyZNKjc30P35LR+W4/H111/njTfeAODq1at8+eWXnDx5kvz8fFq0aMG0adPo2bNnqTrh4eEsX76cP//8E1tbW1599dUqv1979uxBrVbj5+dXbhkXFxd8fX05cOAACQkJmvySFy9eZOnSpZw7dw5zc3PGjBlDWWlydSmnVqtZuXIl+/bt49atW1hYWNC9e3fefPPNWk0vUDJCp6CgQOc6pqamAGW+FxXZvXs37777LsuXL+c///kPycnJTJw4kTfeeIObN2+yatUqTpw4QUpKCqamprRv35633nqLpveNLMrLy2Pt2rXs27ePhIQEHBwcGDZsGBMmTEC/OF9Qbm4uq1atYt++fSQlJdGgQQMGDhzIa6+9hvK+0Uyi5mSkpgNgWb+e1j6LepbkZGWTnZWNiWnpZPZ6enrYNrDTqpMQc4voq1E0bd280u3r0p4QNSklLQ2gzHyV9S0tycrOJjMrC7Pi794Senp6ONjba9W5GRfHX1FRtGlRNGosPikJAEsLCzYFBHA0PJzsnBwa2NkxbsgQOnh6auoO8vXl7MWLLP/+e8YWTzXfHBiIvr4+LzzzTHUcrhCV8iRdP+6XeieFqD+vcnB7IPZODrRo56lVX4iakJeeBYDS0lRrn9LShILsfFTZeRiYaP8G1jc2pOObwx76UDcrKQ19IwOuB//G7YgoCvNUGFub81Sf9ti3cQNAz7Ao9FGQqx3wzM8qepCWdzcbIyuzyh2gEKJWSVBT6CwjI0MzVfhBVlZW6OvrExgYyJw5c/D09GT27Nlcv36d6dOnY21tjYuLS6Vf86uvvmLNmjUMGTKEESNGkJmZSWBgIEuWLMHMzKzCQGCJsnI8AqxYsYKEhARNwPLy5cu8/PLLmiCloaEh+/fvZ/LkySxZskQzYjA8PJxJkybh6urKzJkzSUlJ4bPPPkOhUJSbc7Qi58+fx8DAAE/Pin9sdunSheDgYM6cOUP//v25cuUK/v7+WFpaMnXqVPLz81m/fj15eXml6ulabs2aNaxcuRI/Pz88PDyIjY1l48aNXLx4kf3792sCcjXtxIkTALRs2VKn8tnZ2fz22284Oztj8ZAVecvz/vvvM2bMGMzNzWnbti137txhxIgRmoBw/fr1+eOPP9ixYweRkZGEhIRgaFg01WvatGkcP36cF198kfHjxxMREcGSJUtITk7m3XffpaCggFdffZWzZ88yYsQI3N3duXjxImvWrOGPP/5g9erVksi/FuTm5ACUmrJXwqB4W35entZNY1nycnLZtW4zAD37+Txy+2W1J0RNKhk1WdZDF2Xxd19ufj663Abm5OaysvjB5aDiPNFZxTmwtwcFYaCvzysvvYSeQsG+o0dZ9O23vDd1qmYUp621NUP69mX9zp2888UXQFFw6M0JE0pNSReipjyJ14+se5ksfeeT4npKBvgNLbO+EDWhZNSkvqF26EGveJGrgnxVmUFNhUKBQv/hv4szE9MoyFWhysnDY3hPVDl53Aq/xOXtx1EXqmnQzh3TBvXQNzbkTuRNnHt7an5vF+SrSL1SNKK5MF8WTBOirpGgptDZkAqS7wcGBtKsWTMWLlyIm5sbP/zwg+bmx83Njfnz51c6qJmfn6+Zlv1F8Y0LwPDhw+natSthYWE6BTXLyvG4bt06YmJi+Oijj2jbti0A8+fPx9ramoCAAM1IvzFjxjBu3Dg+++wzfH19USqVLF68GDs7O7Zv3465uTkA3bp1Y9y4cVUKat6+fRsrK6uHjtCzLx7tklQ8omXFihUAbNu2TTOSsm/fvgwePLhUPV3L7du3j169evHBBx9otjk4OLB161bi4uKqFJSujLy8vFJB8/T0dM6dO8fixYsxMzNj9OjRFZZXqVTExMSwatUqUlJSmDt3bpX70r9/f2bOnKn5+5tvviE9PZ0ffvgBd/e/k4+bmZnxzTff8Ndff9GqVSt+/vlnjh8/zqxZs5gyZQoAo0ePJj8/ny1btjBt2jSOHDnCiRMnWLduXakRwF5eXnz00UccPXq0TiwI9U9TMqj3UQPKebl5bF6+joSYW/Tq70tjjyaP1H557QlRk0pGvT/q+ZGbl8fCb77hZlwcg597TpM/M19VdBOZlZ3NVx9+iHnxNbhD69ZM/+QTtu3bpwlqbt+/n92HDtGiSRN8u3ensLCQn375ha/Wr+fNCRNKjeoUoiY8idcPhULBiCnjKFCp+L8jYWxYvJqRU8bRqmObR+qjEFWi+RA/vpdw6NQMtVqNY5e/88baeTXm7LJAog78hn2bxujp6+PUvRXRR89zeftxGj3jibpQzc0j5yjMK7oOKSTNjxB1jgQ1hc4WLVqEra1tmftcXFy4cOECycnJTJ48uVSAbuTIkZrAWmUYGhoSHh5Ofn7pKQKpqamYm5uTlZVV6TYBwsLCWLp0KYMGDdIERVNTUzl16hT+/v7k5OSQU/xUHKBPnz4sWLCACxcu4OrqSmRkJBMnTtQENKFoFKWHh0eVcjiq1WqdRkEaFD/JVKvVFBYWEhYWRu/evUtNDXd3d6dHjx6EhIQA6FwOoGHDhpw8eZLvv/+e/v37Y2try6hRoxg1alSlj6kqgoKCCAoK0tretGlT5s2bp5ly/7Dybm5uLF269JEWCerUqXSS8MmTJzNs2DBsbP7OBZSTk6OZGl/yWQwNDUVPT48xY8aUqj9nzhxee+01zMzM+Omnn7C2tqZVq1algrK9e/dGX1+f0NBQCWrWAiNjI6BotMuDVMUjDIyNjStsIzsrm81ffUP01Sja93wa36F/fwar0n5F7QlRk4yNij6/D47wB8grvkabPuT8yMzK4ou1a/nr+nWe7dKFUQMGaPaVLCL0dJs2moAmgJmpKR1at+b4qVPk5OZSUFDA3qNHcXdx4aM33tB8B3dr3573Fi9m7datrGzeXDNyXoia8CReP0zMTPHs3A6AVh3bsuLDLwjeFiBBTVEr9I2KvpML87VTSRUWP9QyMH60722Hp7XT8+gbGmDfzp3oo7+TlZSGWUNrXLzbaEZx3o6IAsC6hTPOvVpz49BZDEyMHqkfQoiaJ0FNobP27dtXuPr5rVu3gKJVqe+nVCq1tunK0NCQ0NBQjh49SlRUFDdv3iQ9vSi3UGXzJQLcuHGDN998k6ZNm/LJJ59otscUL3KwadMmrTyfJeLj4zU3SmWNWnRzcyMiIqLSfbK3tycmJgaVSqUJXJalZISmvb09aWlpZGVllduPkmClruUA3nnnHV577TU+//xzFixYQKtWrfD29mbEiBHY2WnnfKpuPXr0YMKECUDRCAOlUomDgwOOjo4PLZ+QkMC6devIyMhg3rx5PP3004/Ul/uDlyXy8/P58ssviYyMJDo6mtjYWE2ez8LCQgDi4uKwsbEpFfAGsLOz07yH0dHRpKSk0LVr1zJfO15W760VVjZFo6zvpt/V2nc3LQNjUxOUxuX/0M3MuMt3S9eQEB1Hx97dGDh2eKlRNZVt/2HtCVGTbItnIaRlZGjtS83IwNTERBP4LEv63bt8vmoVN2Jj8e3enYkjR5b6PFvXqweA5QPfnQBWFhao1Wqyc3NJSU1FpVLRrUOHUiuiGxgY0KNjR7bs2UNcYiKuMg1d1KAn7frxIEOlIR5tWvF/R46TefceZhba55kQj5ORVdFnLu9utta+vIxs9E0M0X9M6REMzYrSMhSUjMRUKHDv35lGvT3JvpOBkZUZxvXNufHTWdBTYFRP8mkKUddIUFNUu7KCjUYV3Ozc7/7FYNRqNVOnTuXYsWN06NCBdu3aMXLkSDp16sS4ceMq3a979+4xbdo0FAoFX3/9damn2iWv6+fnV+4ouSZNmpCYmAhQaiRniZLAVmV17NiREydOEBERQfv27cstd/r0aRQKBe3atdNs07UfupRr3rw5hw4dIiwsjGPHjhEWFsby5cvZsGED27dvLzXt+nGws7OjW7duVS7v4+PD8OHDmTRpEhs2bKBDhw5V7sv9N8tQ9N5PmDABU1NTunXrxrBhw2jZsiXR0dGlguO6LGZUUFCAq6sr//73v8vcbymr99YKE1MT6tlaE39Te5XaW9GxOLmW/2AmNydHc0PatU9v+o3WTtVRmfZ1aU+ImmRmaoqdjQ1Rsdqf36iYGNwrSE+SnZOjCWj2e/ZZxg0dqlWmkYMDBgYGxCQkaO1LSk7G0NAQK3NzMopXPC/rOldY/Nuj8o87hXg0T8r143Z8IhuXrqXHC9487d1D63VQKDAoI6ehEI+bgYkSI2vzMlc5vxefjIVT2TMBdZWbnsmFDT9h79UYF++2pfZl3ykaDGNcvyiwmvT7dZQWJtRzc0Bp/nce2vQbCZg72ZSZ91MI8WSTpBGi2ri6ugJFoyEfVDISsoSenp7WNDaVSkVqaqrm79OnT3Ps2DGmTp3KDz/8wHvvvcdLL72Ek5MTacUrsepKrVYze/Zsrl27xqJFi7RGjjo5OQGgr69Pt27dSv1nb29PXl4eJiYmODk5oVAouHnzptZrxJZxs6eLAQMGoK+vz/r168stk5CQwMGDB+nQoQNOTk7Ur18fc3Pzh/ZD13IFBQVERkYSHx+Pj48P8+fP5+eff+bLL7/k7t277Ny5s0rHVpOsrKxYsmQJBQUFvPXWW1VKBVCe5cuXY2xsTFBQEEuWLOHVV1+lZ8+e3L1betSEo6MjycnJZGZmltoeGRnJW2+9xdWrV3F2diYtLY0uXbqU+px16tSJtLQ0TT5XUfNadWjDtUuXuR2fqNl2NfIyyQlJeD5d/gOHfZt+LL4h7VVhAFLX9nVtT4ia9HSbNly4fJm4xL8/vxF//kl8UhLdKniI9N8dO7gRG8sLzzxTZkATiqa3d/T05NzFi8TcN1o9KTmZ0xcu0NHTEz09PRo5OFDfyorQkyc1096haAr88VOnsDA3p9EDqUqEqAlPwvXD2t6WnOxsfgsNp0D192InqXdSiDz9O64e7hg9ZBq8EI+LbaunSLt2i6zbaZptqVdvkX07Azuvxo/UtpGVGQU5ecT/9heqnL/vL3PS7pF45gpW7g1RWhT9vo77NZJr+05SWPD3w7HkP2PIuJGEYxlT2IUQTz4Jaopq07x5c1xcXNi2bVupfJcHDx7UTJ0uYWtrS1RUVKkRhCEhIeQWr7AKaAKXTZqUXhhjx44dZGdno1LpvjrdsmXLCAkJ4fXXX6d3795a++3t7WndujUBAQGa0ZhQNOX4vffeY/r06ahUKqytrenUqRN79+7lzp07mnLnzp0jMjJS5/7cz9XVlfHjx3P48GFWr16ttT8tLY3p06eTn5/Phx9+CBRNnejTpw9hYWFcuXJFUzY2NpbQ0FDN37qWKygoYOzYsXz++eelXrtNm6LcSw+OXHxSeXp6MmHCBOLj41m0aFG1tZuWloa1tTXW1taabXfv3iUgIAD4e4Rm7969KSws1AoCb926lQMHDmBra4u3tzdpaWls3bq1VJlt27Yxa9YszWrvoub1fMEbE1NTNixaya+HjvHz/p/Yvvo7HF0b0aZLUdAmJekO58N/IyWp6PxPupXA7ydOY2xqQsNGzpwP/03rv8q0X5n2hKhJA319MTMx4dMVK9gfEsLuQ4f4cv163Fxc6NmxIwCJd+5w/NQpEouvj7EJCYT99humJia4Ojtz/NQprf9KjBk0CFMTEz5Zvpzdhw6x98gR/v3VVygNDRn94otA0bXoX8OHcysxkfcXLyY4NJT9ISG8u2gRtxITGTd0aIVpXIR4XJ6E64e+vj79Xx5KYuwt1n2xgpNHwzi29xBrP12Knp4eA14eVvNvjBDFnHu2xsDEiAv/PUTsL5FEh/7OH1uPYe5kg33botlg2Sl3STx3jewU7VQLD+M+sAt56Vn8vjaYuF8vEX3sd86v2o9CT48mL3bRlGvUy5OsxDQubTpC/KnLRP10hj9+OEb9Zo7Yt3WrtuMVQtQc+eUndHbkyJEKV/ceNGgQ8+bNY/LkyYwcOZJhw4Zx584dNm3apJW0f8CAAXz66adMnDiRgQMHcvPmTXbs2KEZMQnQrl07zM3NWbBgAXFxcVhZWXHy5EmCg4MxMjLSGg1XntDQUNasWYO7uzvNmjVj3759paau2dra0r17dz744APGjRvHsGHDGD16NPXq1SMoKIjff/+dt956S3Psc+bMwc/PjxEjRuDn50d2djbfffddlVY+LzFr1izS09P56quvOHbsGH379sXS0pLr168TGBhITk4OS5YsoXnzv58gzpgxg9DQUMaMGcMrr7yCvr4+mzZtwszMrNQoWF3KKZVK/P39Wb16NdOmTaNnz57k5OSwfft2TExMGDas7vwQnjp1KgcOHGD79u0MHDjwkaahl+jVqxfffvstM2bMoEePHty+fZsff/xRE9gu+Sx6e3vTo0cPvvjiC65cuYKnpyfnzp0jMDCQadOmUa9ePYYPH05AQACffvopkZGReHl58ddff7F9+3ZatWrF0HJGMonHz8zSgonvTid4awBHAw+gVCpp0c6TvsNfxKD4O+zGX9cJWP8DQ/71Mtb2tty4fA2AnKxsAtb/UGa7bbt10r39SrQnRE2ysrDg45kz+X73bnYEB2NkaEgnLy/8Bg3SXOP/uHaN1Zs389qYMTSwteWPq1eBolXNV2/eXGa7vTp3BsDOxob5b73Flj172Hf0KGq1mhbu7vgNHkyD+xYp7NymDR+8/jo/HjjA1n37AGjs7MycKVNo17Ll43wLhCjXk3D9KClvYGjA8eCjHNgeiKGREe4tmuI7tD+2De0f87sgRPmU5iZ4TXqB60GnuHnkHPpKA2xauND4+Y7oGRQtmJpxI5G/fvyFZi/1wMTaolLt27Z8ipb+3kSHRhB16DR6hvrUa+yAa9/2mNrV+7tca1c8RvYi9vgFrgefwtDcBOeerWnU2wtFHRnEIYQoTaGuymor4n/K3LlzNSPSKnL58mUATp48ydKlS7l06RKOjo7MmDGDxYsX4+TkpFmEp7CwkFWrVvHjjz+SnJxM8+bNefvtt1m/fj1ZWVmacmfOnGHx4sX8+eefKJVKGjduzNixY4mIiGDjxo0cP35cM/rt/vb9/f2Ji4sjJCSEFStW8PXXX5fb786dO2vqRUZGsmLFCk6fPo1KpdK83pAhpacERUREsGTJEiIiIrC0tGT8+PFcvHiRs2fPllp8p7KOHz/Oli1buHTpEhkZGTRs2JBevXrh7+9f5mI/UVFRLFy4kFOnTqFUKhk+fDgAa9eu1fx76FqusLCQjRs3smvXLmJjY9HX16d9+/ZMnz6d1q1bV/mYoCjYB5T53sTGxuLj48OQIUP44osvHtqWLuXDw8MZP3487u7uBAYGoixeWfdhdu/ezbvvvsvGjRtLLTaUm5vLV199RXBwMKmpqdjb29OlSxf+9a9/0b9/f15++WXNKNrc3FxWrlzJvn37uHPnDi4uLrz88suMHj1aM+L13r17rFy5kkOHDpGUlIS9vT3e3t5MmzbtkYLjR6LPVrmuEP90ndPkOa4QFTlVT/cZMEL8r1l37Uhtd0GIJ9q2Z9+p7S5Ui1HHFtZ2F8r1T3mPq5sENUWNeDDoKISofhLUFKJ8EtQUomIS1BSifBLUFKJi/5SAmwQ16x4ZYy2EEEIIIYQQQgghhKhTZNiCENWsoKCAlJQUncpaWFhgXEdWokxJSdEsiFMRY2NjLCwqlwfncaqr/RZCCCGEEEIIIUT5JKgpRDWLj4/Hx8dHp7ILFiyoMwvDvPTSS8TFxT20nK65MWtKXe23EEIIIYQQQgghyidBTVEjHmXxnLrGzs6ODRs26FS2SZMmj7k31WfRokXk5uY+tJy9/ZO1umZd7bcQQgghhBBCCCHKJ0FNIaqZkZER3bp1q+1uVLsOHTrUdheqpK72WwghhBBCCCGEEOWThYKEEEIIIYQQQgghhBB1igQ1hRBCCCGEEEIIIYQQdYoENYUQQgghhBBCCCGEEHWKBDWFEEIIIYQQQgghhBB1igQ1hRBCCCGEEEIIIYQQdYoENYUQQgghhBBCCCGEEHWKBDWFEEIIIYQQQgghhBB1igQ1hRBCCCGEEEIIIYQQdYoENYUQQgghhBBCCCGEEHWKBDWFEEIIIYQQQgghhBB1ikFtd0AIIYQQ4nEr+PlYbXdBiCda597P1nYXhHhiravtDgghhCiTjNQUQgghhBBCCCGEEELUKRLUFEIIIYQQQgghhBBC1CkS1BRCCCGEEEIIIYQQQtQpEtQUQgghhBBCCCGEEELUKRLUFEIIIYQQQgghhBBC1CkS1BRCCCGEEEIIIYQQQtQpEtQUQgghhBBCCCGEEELUKRLUFEIIIYQQQgghhBBC1CkS1BRCCCGEEEIIIYQQQtQpEtQUQgghhBBCCCGEEELUKRLUFEIIIYQQQgghhBBC1CkS1BRCCCGEEEIIIYQQQtQpBrXdASGEEOJJlno7mQPb9xB1+SoAHl4teWHkIMwsLXRuI/C77SQnJjFhzhta++JuxHD4x31EX72BQk+Bq4c7L4wcjG1D+2o7BiGqQ1LGXTb/3/9x6dYtANq5uODftQuWJiYV1vs9JoaAs+e4fucOegoFTe3tGdGpI00bNChVLjLuFjtOn+ZmcjKmSiVPu7kxslNHjA0NAbh99y7Tf9hW4Wt9+GJ/Wjo6PsJRClE1ScnJbAwI4NKVKwC0b9UK/yFDsLLQ/Vrxzdat3EpKYt6MGVr7/rx2ja379nEtOhpzU1M6enkxol8/LM3NS5VLv3uXbfv2cfrCBfJUKho7O+M3aBBNXV0f6fiEeBxyUu5y/cBvpF9PAMC6uTONX+iE0rzi68r9rgSEk30nHa9JL2jtO7dqH/dik7W227R+ipYvP1v1jgshnhgS1HwCzJ07l4CAgArL+Pj4sGrVqhrqkTZvb2+cnJzYtGkTAP7+/sTFxRESElJjfaiO1zx06BA7duzg4sWL5OTk4ODgQI8ePRg3bhyNGjXSqY2Sf6/Lly9XS7nKio2NxcfHR6eyR48eBSizvKGhIdbW1nTv3p0ZM2bQsGHDCttXKBRYWFjg5uaGn58fAwcOfISjqFkFBQV8++237Nixg4yMDDp27MhHH32Eo9z4iofIupfJ+oUrKShQ0fN5b9TqQn45eIzE2FtM+fBN9A0efhk9E/Z/nDl+AlcPd619dxKS+O9/VqBUKnnmxecACP8plG8/X8a0T97Bsp5VtR+TEFVxNyeHT/fvp6CwkBfbtKFQrWZ/RAQxKSnMHzIYA339MutduhXPfw4cxLl+fUZ16kSBupCfIi/xyb79/HvgizSxLwreR8bd4rOgIBrb2vLy051JvpfJgYsXuX77NvMGvlh0DTI2Zuqzz2i9Rl6Biu9/PYGFiTEuNjaP8V0Qomx3MzP5ePlyCgoKGOjrS2FhIfuOHiX61i0+f/ttDHS4VoScOMHR8HBaNGmitS/yyhU+X7kSUxMThjz3HHp6egQfO0bkX3/x6ZtvYm5qCkB2Tg7zli0jNT2d/s8+i5mpKQePH+fj5cv5/O23cZHfPeIJkp+VS8R/D6IuKMS5V2vUajWxYRfJTEil7dQB6JVzXblfwum/SPjtL6waN9Dap1aryUpKx6alCzatniq1z7ieWbUdhxCidklQ8wny7rvvUr9+/TL3OTg41HBvKjZlyhSys7Nruxs6y8vLY86cOQQHB+Pl5cXEiROxsrLiypUrBAQEsGvXLhYtWoSvr29td/WhrK2tWbhwYaltCxYsAIo+Qw+WTUlJAaBjx46MGDFCs0+lUnH16lW2bNnCiRMn2Lt3L5aWlpr9D5ZXq9XExMSwbds2Zs+ejb6+Pv3796/243scVq1axcqVKxk/fjx2dnasWbOG1157jd27d6Ovww8m8b/r159CSU9N4/VP3sHesSjw79T4Kb5fspqzv56iU+9u5dYtLCzk5/2HCdlzsNwy4T+Fkp+bx6R3p+Pg4gyAW8tmrP10KeGHQnl+5KDqPSAhqig44gIp9zL5z/BhOBf/Vmlib8fnQQf4+a+/8GnRosx6G0+cwNrMjE8HD8bIsOhnZ6+mTXlrx062/3aa9/v3A2Dz//0fNubm/HvgiyiLA0C25uas/+VXfo+Jpa1LI4wNDenZrKnWa3wffgJVYQGvez+LuZHR4zh8ISoUFBJCSloai959F+fih8RNnnqKz1auJPTkSXy7dy+3bmFhIbsPHeLHAwfKLbNh504Uenp8+uabNLSzA6Bzmza8s2ABAYcO4T9kCAB7Dh8mPimJj954g5ZNi86Vru3b88a8eew9coTXx46trkMW4pHF/RJJbnoWHaYPwtS+HgAWznZcXP8TiWev4tDJo9y66sJCYkIjuHn0fLllclPvUZinwqalCw3aaT9YFkL8M0hQ8wni6+uLs7NzbXdDJ90r+HH2JFq4cCHBwcHMnj2biRMnlto3ZcoUJk6cyMyZM9m1axceHuVfQJ8EpqamDBpUOtCxbNkyAK3tgCao2ahRozL3N2rUiI8//pht27YxefLkUtvLKj906FD69evHypUr60xQc8eOHfTq1Ys5c+YARQHdJUuWcP36dZo21b5BFqLEhZNnaezRRBPQBGjSygObhvZcOHmu3KBmfl4+a+d/SWLsLdp268S1P/4qs1zK7WRMzc00AU0A58YumJiZkhgXX70HI8QjCL92jZaODpqAJoCnszMO9aw4ce16mUHNe7m5RCcn08/TUxPQBLAyNaWFgwMRsXEA5KlUWJqY0LlxY01AE6BF8QPdm8nJtHUpezZFdHIyhy5epLdHM015IWrar2fP0rJpU01AE8CreXMc7O0JP3u23KBmXn4+7y9eTPStW/Tq3JmLf2lfK24nJxMTH49v9+6agCaAU4MGtPf05OdTp/AfMgS1Ws3Pp07RrmVLTUAToL6lJWOHDEFPT5ZSEE+W2xHXqde4oSagCVC/iSMmdpbcjogqN6hZkK/i/OogshJSsW/nTtr1sn8vZSalAWBiK7NehPgnk6ub+MeLiopi8+bN9O/fXyugCWBjY8OyZctQKBTMnz+/FnpYu/r1Kxolc/bsWZ3KOzk50alTJ65du8a9e/ceZ9eqTU5ODvHx8ajVagByc3OBoin4QpQnOzOL1NvJOLpqP2xydHEmPjq23LoqlYrc7BxGvjaOYRP90Ncre0SwTQM7sjKzyMy4q9mWdS+TnOwcLKwsy6wjRE27l5tLUsZdGtvZau1ztbUl6s6dMuuZGhqyZOQI+nt5au27m5ODvp4CAKWBAe/2e4Eh7duVKnMjuahduwpyEm7/7TRKAwNGdOyo8/EIUZ3uZWWRdOcObmWkMWrcqBFRMTHl1s3PzycrJ4eZ48czzd+/zMBjSno6AI3KCNo3tLXl7r17JKemcjslhZS0NLyaNweKZtjkFP/eea5nzwpHiwpR0/Kzc8lJuYe5k3bKEHMHG+7d0s6DWUKtKqQgN4/mo3vjMbwniuJryYOyElMBMLUvCmoW5OVXQ8+FEE8aGalZBx04cIC1a9dy/fp1XFxceOutt9i8eTN5eXmanJcP5sAs8eB2tVrNtm3b2LVrF9euXUOlUuHk5MTQoUOZNGkSCkXZF4n781s+LMfj66+/zhtvFC2OcfXqVb788ktOnjxJfn4+LVq0YNq0afTs2bNUnfDwcJYvX86ff/6Jra0tr776apXfrz179qBWq/Hz8yu3jIuLC76+vhw4cICEhARNfsmLFy+ydOlSzp07h7m5OWPGjNEExu6nSzm1Ws3KlSvZt28ft27dwsLCgu7du/Pmm2/WanqBkh/QBQUFOtcxLc7dVNZ78TCHDh3im2++4fr16+jp6eHl5cXrr79Ohw4dNGUKCwv57rvv2LFjB7GxsdSvX5++ffsyc+ZMzIsT4s+aNYvg4GC++eYbevfuDUBaWhoDBgzAxMSEPXv2aPr5wgsvsH37dr755huaN2/O+vXr6dq1K64PJM0/efIkY8eO5YsvvmD9+vXcuHGDAQMGsGDBAm7fvs2qVas4fvw4iYmJGBkZ0apVK2bMmFGq72q1mk2bNrFjxw6io6OxtbWlX79+TJs2DZPixTR0OT5R+zJSi24kLevX09pnUc+SnKxssrOyMTHVTmZvbGLMzC/ef2h6g54v+HD5fCQ71m7ihVGDATi4Yw/6+vp07dPrkY9BiOqQmpkJgLWpdg6y+qamZOXmkZmbi9kDU7/19PRwsNIeIROdnMxfiYl4lTM75fbdu1y6Fc/m//s/GlnXp6PrU2WWi05O5uzNaPp7eVLfTPKjidqRkpYGgHUZn/X6lpZkZWeTmZWFWfFvkvuZmpiw/KOPKrxWKJVKALKLA5T3u1v8cDktI4N7WVkAWFpYsCkggKPh4WTn5NDAzo5xQ4bQwVP74YIQtSUvvejzqrTUPi+UliYUZOejys7DwESptV/f2JCObw5DT7/i8VlZSWnoGxlwPfg3bkdEUZinwtjanKf6tMe+jVv1HIgQotZJUPMJkpGRoZkq/CArKyv09fUJDAxkzpw5eHp6Mnv2bK5fv8706dOxtrbGxcWl0q/51VdfsWbNGoYMGcKIESPIzMwkMDCQJUuWYGZmVmEgsERZOR4BVqxYQUJCgiZgefnyZV5++WVNkNLQ0JD9+/czefJklixZohkxGB4ezqRJk3B1dWXmzJmkpKTw2WefoVAoys05WpHz589jYGCA50N+zHXp0oXg4GDOnDlD//79uXLlCv7+/lhaWjJ16lTy8/NZv349eXl5perpWm7NmjWsXLkSPz8/PDw8iI2NZePGjVy8eJH9+/fXWm7HEydOANCyZUudymdnZ/Pbb7/h7OyMRSVW9AQ4deoUs2bNolevXgwfPpzs7Gw2b97M+PHjCQoK0izW9P7777Nnzx4GDx7MK6+8wrVr19i6dStnz55l69atGBkZ8eGHH3LixAk++eQTgoKCMDY25tNPPyUlJYXNmzdrApoAb775JmFhYXz55Zeo1Wo6d+6smbJflk8++YShQ4cyfPhwHB0dycnJwc/Pj7t37+Ln50eDBg24ceMGW7duZeLEiRw5cgSb4sUpPv74Y7Zu3cqzzz7L6NGjiYqK0gRIv/76a52PT9S+3JwcAAyV2iN6DYq35efllRnUVCgUOp3T9Wzq03tAH/Zv+ZGV/y76HlXo6TFq6vhSU9KFqE3Z+UWjW5RlLHaiLP6c56lUWkHNsuTk57PqWCgAA9u21dp/NydHs8K50sCAV7p3K/N1AQ5f+gM9hYK+rVvpchhCPBYloyFLgo/3UxbPCMnNz6essLsu14pGDRtiYmzMqd9/Z3CfPpoBB3n5+UT8+afm/2cV57rfHhSEgb4+r7z0EnoKBfuOHmXRt9/y3tSpmlGcQtS2klGT+oba3+96xd/5BfmqMoOaCoUChX7ZA2/ul5mYRkGuClVOHh7De6LKyeNW+CUubz+OulAteTaF+IeQoOYTZEhxku+yBAYG0qxZMxYuXIibmxs//PCD5seTm5sb8+fPr3RQMz8/XzMt+4svvtBsHz58OF27diUsLEynoGZZOR7XrVtHTEwMH330EW2Lb1rmz5+PtbU1AQEBmoDTmDFjGDduHJ999hm+vr4olUoWL16MnZ0d27dv14xa69atG+PGjatSUPP27dtYWVmV+WPzfvbFK7AmJSUBRUFZgG3btmlGUvbt25fBgweXqqdruX379tGrVy8++OADzTYHBwe2bt1KXFxclYLSlZGXl1cqaJ6ens65c+dYvHgxZmZmjB49usLyKpWKmJgYVq1aRUpKCnPnzq10H4KDgzE2Nmb16tWaH+XdunVj+vTpREZG0qhRI06ePMnu3bv5+OOPGTVqlKZu7969mTBhAtu2bWPcuHFYW1vz0UcfMWvWLNauXUvr1q01QfL27duXet2QkBCysrJQq9WYmJiwdOlSrMoYUVGiQ4cOfPjhh6X6ffPmTdatW1dqVHGjRo3497//zZkzZ3juuee4evUq27ZtY8SIEXz66aeacmZmZqxZs4arV6+SnJys0/GJ2lcyELm8EevV4cjuYH7e/xOuHu507N0NdWEhp479yo413zFq6niat2392F5bCF2VjMp/1HMhN1/F4kM/cTM5hUHt2tDSUXuWgkKhYLqvN6qCQg5evMhn+4OZ7uvD026NS5XLU6kIu3KFDq5PVTg9XYjHrbrOj/IYGBgwwNubncHBLP/+ewb36UOhWs2O/fvJKX6Arq+vT75KBUBWdjZfffihZkX0Dq1bM/2TT9i2b58ENcWTQ/Mj6/G9hEOnZqjVahy7/J3z2c6rMWeXBRJ14Dfs2zRGIblmhajzJKj5BFm0aBG2ttr5qqBoevSFCxdITk5m8uTJpQJ0I0eO1ATWKsPQ0JDw8HDy80vnF0lNTcXc3Jys4mkslRUWFsbSpUsZNGiQJiiamprKqVOn8Pf3Jycnh5ziEVAAffr0YcGCBVy4cAFXV1ciIyOZOHFiqWm4Xbp0wcPDo0o5HNVqtU4jpgyKnwqq1WoKCwsJCwujd+/epaaGu7u706NHD0JCQgB0LgfQsGFDTp48yffff0///v2xtbVl1KhRpQJbj1NQUBBBQUFa25s2bcq8efM0U+4fVt7NzY2lS5dWaZGghg0bkpmZyfz583n55Zdxd3fHw8ODQ4cOacr89NNPKBQKevfuXSqo2rJlS+zs7AgNDdUE/fr160dQUBD//e9/sbS0pHnz5ppUByUWL17Mt99+S8+ePfH09GTVqlXMmTOHdevWce3aNS5evEjv3r2xtrbW1OnUqVOpNvr160eXLl1KBdXvH4lbcq6EhoaiVqvx9/cvVX/ChAn069cPFxcXtm7dqvPxidplZFw06iz/gVHXAKriEQbGxsZVbj87K5tfDobg5OrC+NnTNKkgPDu3Y82nSwn8bjtvL/LAQHK/ilpmUvwZzCsOmtwvrzh1iclDHhxm5uay8OAh/kpI5JnmzRj5wPdsCXMjI7q6F42eedqtMbN3/sjGEye0gpqRt26Rm6+ii5tMIRS1y7h4hPKDM3SgaAQlgOkjXCsAhj3/PJnZ2RwIDSX8zBmgKFg50NeXrXv3Ym5qilHxOfh0mzaagCaAmakpHVq35vipU+Tk5mr6K0Rt0jcquq4U5munvyosvtYYGD/a7x+Hp7WD+PqGBti3cyf66O9kJaVh1tC6jJpCiLpEgppPkPbt21e4+vmtW7cANFN0SyiVSq1tujI0NCQ0NJSjR48SFRXFzZs3SS9OSF6VfIk3btzgzTffpGnTpnzyySea7THFSdI3bdqkleezRHx8vGbhlrJGLbq5uREREVHpPtnb2xMTE4NKpdIELstSMkLT3t6etLQ0srKyyu1HSbBS13IA77zzDq+99hqff/45CxYsoFWrVnh7ezNixAjs7lvN8nHp0aMHEyZMAIpGEyiVShwcHHB0dHxo+YSEBNatW0dGRgbz5s3j6aefrlIfxowZwy+//MLmzZvZvHkzzs7OPPvss7z00ks0Lx49EB0djVqt5plnnimzDbMH8qbNmzeP5557TpPz8v6A/5kzZzQBzbVr16Kvr8/ly5c5evQoa9euJSMjg/Xr17Nnz55SQc37/38JhULBN998w7lz54iOjiY6OlrzQKCwsBCAuLiilXwfzNVpaWmJpaVllY5P1B4rm6Ig9t30u1r77qZlYGxqgtK46jeHyYm3KVCp8Hy6XanFIfQNDPDq0pGfdu7ldnwSDi5OVX4NIaqDTfFDxrQyHnamZmVhaqTEuILge0Z2Np8HH+DmnWR8WjRnQs8eOo1qUxoY0M7FhUMXI8nIzsHS5O/A0PnoGAz19ctdFV2ImmJb/MAzLSNDa19qRgamJiaPHEhUKBSMGzqUQb6+JNy+jU29etjZ2LBt3z709PSwtbYms3j6uWUZubmtLCxQq9VkS1BTPCGMrIo+p3l3s7X25WVko29iiH4Z6X+qg6FZUdqggjztB3VCiLpHgpp1UFnBRl1z8N2/GIxarWbq1KkcO3aMDh060K5dO0aOHEmnTp2qNFLs3r17TJs2DYVCwddff11qBFPJ6/r5+eHr61tm/SZNmpCYmAhQaiRniZLAUWV17NiREydOEBERoTUt+X6nT59GoVDQrt3fq6/q2g9dyjVv3pxDhw4RFhbGsWPHCAsLY/ny5WzYsIHt27fj7v5487rY2dnRrVu3Kpf38fFh+PDhTJo0iQ0bNpRaHEdX5ubmbN68mfPnz3PkyBGOHz/Opk2b2LJlCwsXLuTFF1+ksLAQMzMzTf7JBz34Wb906ZJmpOShQ4fw8vLS7Dt69CgA06ZN04zW/eKLLxgyZAgrVqzA1NQUV1dXTUC1xIMje69fv87o0aPJz8+nR48e9OvXjxYtWqBWq5k2bZqmnC6LLVX2+ETtMTE1oZ6tNfE3tVc5vxUdi5ProwVTSh6yFBZqf6erNd8flX+4JER1MzMyws7CosxVzm/cuYNbBQ/msvPyNAHNFzxbM7ZbV60ycalpfHHgAAPbtKFPq9L5nXPy81EowPCBBSEuJybS2M4W04eMEBXicTMzNcXOxoaoWO1rRVRMDO7VkF7o1zNnqGdpSaumTalX/JAU4NLVq7g1aoTS0JBGDg4YGBgQk5CgVT8pORlDQ0OsZDFC8YQwMFFiZG1e5irn9+KTsXAqe/airnLTM7mw4SfsvRrj4t221L7sO0UDeIzry/kgxD+BJJGoQ0pGf924cUNrX8lIyBJ6enpa02BUKhWpqamav0+fPs2xY8eYOnUqP/zwA++99x4vvfQSTk5OpBWv5KgrtVrN7NmzuXbtGosWLdIaOerkVDTSSF9fn27dupX6z97enry8PExMTHByckKhUHDz5k2t14gt48eiLgYMGIC+vj7r168vt0xCQgIHDx6kQ4cOODk5Ub9+fczNzR/aD13LFRQUEBkZSXx8PD4+PsyfP5+ff/6ZL7/8krt377Jz584qHVtNsrKyYsmSJRQUFPDWW29VKRVAVFQUERERtG3blrfffpu9e/cSFBSEpaUlGzZsAIo+K5mZmbRu3Vrrs5KRkaFZQRyKAukfffQRzZo1Y9iwYWzYsKHUaN6SBwD3ByktLS1ZtmwZenp63L17l7Fjxz60399++y0ZGRns3r2b5cuX8/rrr+Pj40N2dumnyyWjXh88HxMTE5k5cyanT5+u1PGJ2teqQxuuXbrM7fhEzbarkZdJTkjC8+nyH5Lowt6pIRb1LDn3y0ny8/5OA5Kfl8/58N8wNTfD3rFhBS0IUXM6N3blYlwccalpmm0XYmOJT0unWwUP5db/8is37yTzfDkBTYCGVpZk5eVx5I8/UN33cOj23bucvB5FCweHUtPbVQUFxKWm0tjW5tEPTIhq8HSbNly4fJm4xL+vFRF//kl8UhLdqvAQ+EFBISGs37mz1MPTMxcvcvn6dZ4rzvVtbGRER09Pzl28SEx8vKZcUnIypy9coKOnZ6lZAULUNttWT5F27RZZt9M021Kv3iL7dgZ2Xo3Lr6gDIyszCnLyiP/tL1Q5f98T56TdI/HMFazcG6K00F55XQhR98iVrQ5p3rw5Li4ubNu2rVS+y4MHD2qmTpewtbUlKiqq1AjCkJAQcotXaAQ0gcsmTZqUqrtjxw6ys7NRlZE7qzzLli0jJCSE119/nd69e2vtt7e3p3Xr1gQEBGhGY0LRYkXvvfce06dPR6VSYW1tTadOndi7dy937hsRcu7cOSIjI3Xuz/1cXV0ZP348hw8fZvXq1Vr709LSmD59Ovn5+ZrFYRQKBX369CEsLIwrV65oysbGxhIaGqr5W9dyBQUFjB07ls8//7zUa7dp0wagzvzI9PT0ZMKECcTHx7No0aJK158/fz5Tp04lMzNTs83NzQ1LS0vNe+Dt7Q2g9W8VEhLCjBkz2Ldvn2bbwoULSUxM5OOPP+add97BysqK999/XxPQ79KlCwBbt24t1VZSUpLmxmDXrl1awckHpaWlYWJiUmqqfl5eHtu2Fa3QW9JWyWf/wdfbvXs3Bw4cwNzcvFLHJ2pfzxe8MTE1ZcOilfx66Bg/7/+J7au/w9G1EW26FN2opiTd4Xz4b6QkaY9iq4ienh4D/F7idkISa+d/Sfjhn/n10DFWf7KE2wlJ9Bs9BP0KUmYIUZMGtm2DmZERnwUFERQRQcDZc3x15CiN7Wzp0bTod0RiRgZhf10hsXgabmxqKr9cuYqpkRJXGxvC/rqi9R+Avp4er3TrRnRyCh/v289PkZHsOnOWDwIC0dNT8Er30rMM7ty7h6qgUDMtXojaNtDXFzMTEz5dsYL9ISHsPnSIL9evx83FhZ4dOwKQeOcOx0+dIrGMEc8PM6hPH2Lj4/nP2rUc+fVXtu7bx9L//pc2LVrQ8778tGMGDcLUxIRPli9n96FD7D1yhH9/9RVKQ0NGv/hitR2vENXBuWdrDEyMuPDfQ8T+Ekl06O/8sfUY5k422LcteliWnXKXxHPXyE7RTgX0MO4Du5CXnsXva4OJ+/US0cd+5/yq/Sj09GjyYpfqPhwhRC2Ru6UnyJEjRypc3XvQoEHMmzePyZMnM3LkSIYNG8adO3fYtGmTJhdliQEDBvDpp58yceJEBg4cyM2bN9mxY4dmxCRAu3btMDc3Z8GCBcTFxWFlZcXJkycJDg7GyMioVOCpIqGhoaxZswZ3d3eaNWvGvn37Sk29trW1pXv37nzwwQeMGzeOYcOGMXr0aOrVq0dQUBC///47b731lubY58yZg5+fHyNGjMDPz4/s7Gy+++67Kq18XmLWrFmkp6fz1VdfcezYMfr27YulpSXXr18nMDCQnJwclixZUmoa8owZMwgNDWXMmDG88sor6Ovrs2nTJszMzEqNgtWlnFKpxN/fn9WrVzNt2jR69uxJTk4O27dvx8TEhGHDhlX52Gra1KlTOXDgANu3b2fgwIGVmoY+fvx4Jk2ahJ+fH4MHD8bIyIgjR44QHR3Nf/7zH6AoMOjj48P69euJi4uja9euxMXFsWXLFhwdHTV5Pk+cOMGOHTsYMWKEJq3AO++8w9y5c1m1ahUzZ86kd+/eeHt7s3v3bnJzc+ncuTO///47e/bsoWXLljz99NP897//5V//+hfffvttuf3u1asXISEhvPrqqzz//PPcvXuXwMBAoqOjATTnSosWLRg+fDibNm0iKSmJrl27alZEHzx4MM2bN8fDw0On4xNPBjNLCya+O53grQEcDTyAUqmkRTtP+g5/UbOAz42/rhOw/geG/OtlrO0rN12qZQcvxr89lWN7D3JkV9HCXA5POeM/czLNPFs8pLYQNcfSxIR/D3yRjeEn2Hn6DEYGBnR86in8ujyNYfFo+D/jE1gT+jNTnulNA0tL/igeLZaVm8ea0J/LbLdns6aa/zXU12fP+fNsOvF/GBkY0NrJiRGdOuJYr16pOveKH9CaGMrUc/FksLKw4OOZM/l+9252BAdjZGhIJy8v/AYN0vxG/+PaNVZv3sxrY8bQoJyFQcvzdNu2TH/lFfYcPsz3u3djZWHBQB8fBj/3XKkH43Y2Nsx/6y227NnDvqNHUavVtHB3x2/w4Eq/phCPm9LcBK9JL3A96BQ3j5xDX2mATQsXGj/fET2DoutKxo1E/vrxF5q91AMTa4tKtW/b8ila+nsTHRpB1KHT6BnqU6+xA65922NqV+8xHJEQojYo1FVZDUZUq7lz5xIQEPDQcpcvXwbg5MmTLF26lEuXLuHo6MiMGTNYvHgxTk5OmkV4CgsLWbVqFT/++CPJyck0b96ct99+m/Xr15OVlaUpd+bMGRYvXsyff/6JUqmkcePGjB07loiICDZu3Mjx48extbXF29u7VPv+/v7ExcUREhLCihUrys0PCNC5c2dNvcjISFasWMHp06dRqVSa1xsyZEipOhERESxZsoSIiAgsLS0ZP348Fy9e5OzZs6UW36ms48ePs2XLFi5dukRGRgYNGzakV69e+Pv7l7nYT1RUFAsXLuTUqVMolUqGDx8OwNq1azX/HrqWKywsZOPGjezatYvY2Fj09fVp374906dPp3Xr1lU+Jvh7dGNZ701sbCw+Pj4MGTKEL7744qFt6VI+PDyc8ePH4+7uTmBgYKnFeR4mNDSUtWvXcu3aNXJzc2natCnjx48vtZp6fn4+69atIzAwkLi4OKytrenatSszZszA0dGR7OxsXnzxRbKysjhw4ABWVlaaumPGjOH8+fPs3LmTFi1akJuby6pVq9i7dy+3b9/GwcGBgQMHMmnSJIyNjVm2bBlXr15l2bJl/Pbbb4wdO5YFCxYwdOhQTZtqtZpvvvmGnTt3kpiYiK2tLW3btmXGjBmMGjWKtm3bsmbNGqDo33n9+vXs3LmTuLg4HB0dGTx4MBMnTtS8Tw87vqo6En22ynWF+KfrsCestrsgxBNNv/eztd0FIZ5Yk5MP1nYXhHiibXv2ndruQrUYdWxhbXehXP+U97i6SVDzH+LBoKMQQndqtVqnlXifdBLUFKJ8EtQUomIS1BSifBLUFKJi/5SAmwQ16566kchPCCEeo39CQFMIIYQQQgghhPhfIjk1RZ1TUFBASkqKTmUtLCwwNjZ+zD2qHikpKaVWtSyPsbExFhaVyynzONXVfgshhBBCCCGEEKLukqCmqHPi4+Px8fHRqeyDuRGfZC+99BJxcXEPLadrbsyaUlf7LYQQQgghhBBCiLpLgpr/EI+yeE5dY2dnx4YNG3Qq26RJk8fcm+qzaNEicotXdK2Ivb19DfRGd3W130IIIYQQQgghhKi7JKgp6hwjIyO6detW292odh06dKjtLlRJXe23EEIIIYQQQggh6i5ZKEgIIYQQQgghhBBCCFGnSFBTCCGEEEIIIYQQQghRp0hQUwghhBBCCCGEEEIIUadIUFMIIYQQQgghhBBCCFGnSFBTCCGEEEIIIYQQQghRp0hQUwghhBBCCCGEEEIIUadIUFMIIYQQQgghhBBCCFGnSFBTCCGEEEIIIYQQQghRp0hQUwghhBBCCCGEEEIIUadIUFMIIYQQQgghhBBCCFGnGNR2B4QQQgghHrczg3rWdheEeKKtu3awtrsghBBCCFEpMlJTCCGEEEIIIYQQQghRp0hQUwghhBBCCCGEEEIIUadIUFMIIYQQQgghhBBCCFGnSFBTCCGEEEIIIYQQQghRp0hQUwghhBBCCCGEEEIIUadIUFMIIYQQQgghhBBCCFGnSFBTCCGEEEIIIYQQQghRp0hQUwghhBBCCCGEEEIIUadIUFMIIYQQQgghhBBCCFGnSFBTCCGEEEIIIYQQQghRp0hQUwghhBBCCCGEEEIIUadIUFMIIYQQQgghhBBCCFGnGNR2B0TdNnfuXAICAios4+Pjw6pVq2qoR9q8vb1xcnJi06ZNAPj7+xMXF0dISEiN9aE6XvPQoUPs2LGDixcvkpOTg4ODAz169GDcuHE0atRIpzZK/r0uX75cLeWqysPDo8L9JZ+Z2NhYfHx8tPYbGhpibW1N9+7dmTFjBg0bNgQot7xCocDCwgI3Nzf8/PwYOHBg9RyI+MdJvZ3Mge17iLp8FQAPr5a8MHIQZpYW1VLv5l/XObx7P3FRMZiYmdCinSfeg1/AzMK8VLm4GzEc/nEf0VdvoNBT4OrhzgsjB2Pb0L4aj1aIyqnq+XG/wO+2k5yYxIQ5b1RL+xW1J0RNykm5y/UDv5F+PQEA6+bONH6hE0pzk2qpl34jkRs/neVe3B0MTJTYtHDhKd92GJoZlyqX8lccMaG/cy8uGRQKLBvZ8VSf9li62FXj0QpReY/7HLkbd4cbh86QEZ2EQqHAqnFDGr/QCVM7qyqVE0LUDRLUFNXi3XffpX79+mXuc3BwqOHeVGzKlClkZ2fXdjd0lpeXx5w5cwgODsbLy4uJEydiZWXFlStXCAgIYNeuXSxatAhfX9/a7mqluLm5MWXKlDL3PfiZ6dixIyNGjND8rVKpuHr1Klu2bOHEiRPs3bsXS0vLcsur1WpiYmLYtm0bs2fPRl9fn/79+1fzEYm6LuteJusXrqSgQEXP571Rqwv55eAxEmNvMeXDN9E3KPuSqWu9qD+v8P3SNRibmNB7QB8UegpO/PQz1/+8wuT3ZmJiZgrAnYQk/vufFSiVSp558TkAwn8K5dvPlzHtk3ewrCc/ukXNq+r5cb8zYf/HmeMncPVwr5b2K2pPiJqUn5VLxH8Poi4oxLlXa9RqNbFhF8lMSKXt1AHo6es/Ur206/Fc3HAYAxMljZ7xQqFQEBd+ibTrCbSZ0g9DE6OiclEJRH5/GFP7erg+1x51gZpbJ/8g4tsDtJn8AhaNJLApasfjPkeybqcT8e1B9JUGuDzbBoC4Xy/x+zfBtH9jEEaWppUqJ4SoOySoKaqFr68vzs7Otd0NnXTv3r22u1ApCxcuJDg4mNmzZzNx4sRS+6ZMmcLEiROZOXMmu3bteugIyCeJra0tgwYN0qlso0aNyizbqFEjPv74Y7Zt28bkyZMfWn7o0KH069ePlStXSlBTaPn1p1DSU9N4/ZN3sHcsGv3r1Pgpvl+ymrO/nqJT726PVG//lt0oFHpMem8GNg2Kbixbtvdi5b8X8vP+wzw/sugzG/5TKPm5eUx6dzoOLkXfq24tm7H206WEHwrVlBOiJlX1/AAoLCzk5/2HCdlzsFra16U9IWpS3C+R5KZn0WH6IEzt6wFg4WzHxfU/kXj2Kg6dyv59pmu9a/tOotBT0ObVfpjYFD3EtWnlwtnle4kJjcDthU4AXA86hZGVGW1fG4C+sug2z769O2e+DODG4bN4/qvvY3wXhCjf4z5H4sIvUZinos3kFzB3tAGgnrsj51ftJ+7XSM05oms5IUTdITk1hXiCRUVFsXnzZvr3768V0ASwsbFh2bJlKBQK5s+fXws9rF39+vUD4OzZszqVd3JyolOnTly7do179+49zq6JOujCybM09miiCagANGnlgU1Dey6cPPdI9VLvpJAUF0/bbp00AU0AO4cGeLRpxblfT2m2pdxOxtTcTBPQBHBu7IKJmSmJcfHVcqxCVFZVz4/8vHxWzVtMSOAB2nbtiEX9skca69q+ru0JUZNuR1ynXuOGmqALQP0mjpjYWXI7IuqR6uWk3iMrMQ37du6agCaAqV09rFs0IvFsUbqG/OxcMuNTsPV01QQ0AZTmJlg1bkhGdFI1Ha0Qlfc4zxEomqJuYGakCVQCWDjbYmBqRFZiaqXLCSHqDglqihp14MABBg8ejJeXFwMGDODYsWNMmDABf39/TRlvb+9Sf5e3Xa1Ws3XrVl566SXatWuHp6cnzz//PN988w1qtbrcPvj7++Pt7Q0U5WD08PAo978VK1Zo6l29epVp06bRsWNH2rRpw6hRowgLC9NqPzw8nFGjRtG2bVt8fX3ZuXNnld4rgD179qBWq/Hz8yu3jIuLC76+vvz2228kJCRotl+8eJF//etftGvXjp49e7J27doy3xddyqnVar7++mv69u2Lp6cn3bp1Y/bs2cTH126ARU+v6CusoKBA5zqmpkXTSir6jJTn0KFDDBs2jHbt2tGhQwfGjx/PmTNnSpUpLCxk/fr1PP/887Ru3ZqePXsyf/78UkHUWbNm4eHhwc8//6zZlpaWRo8ePejTpw9ZWVmV7pt4NNmZWaTeTsbRVXvEuaOLM/HRsY9ULyM1HYAGzg21ylnb25J1L5P0lKIf0zYN7MjKzCIz466mTNa9THKyc7CwstSqL8TjVtXzA4rSheRm5zDytXEMm+iHvp72FMPKtK9Le0LUpPzsXHJS7mHuZKO1z9zBhnu3kh+pXl5GJgBmDbTTPJlYW6DKzCU3PRMDI0M6zhqKU/dW2q+VlYNCT277RO143OcIgImNJaqsXPLu/Z1iLD8rF1VOHob35d7UtZwQou6Q6eeiWmRkZJCSklLmPisrK/T19QkMDGTOnDl4enoye/Zsrl+/zvTp07G2tsbFxaXSr/nVV1+xZs0ahgwZwogRI8jMzCQwMJAlS5ZgZmZWYSCwhLW1NQsXLtTavmLFChISEujZsycAly9f5uWXX8bW1pZXX30VQ0ND9u/fz+TJk1myZIlmxGB4eDiTJk3C1dWVmTNnkpKSwmeffYZCoSg352hFzp8/j4GBAZ6enhWW69KlC8HBwZw5c4b+/ftz5coV/P39sbS0ZOrUqeTn57N+/Xry8vJK1dO13Jo1a1i5ciV+fn54eHgQGxvLxo0buXjxIvv370e/nDw4FcnPzy/zM2NoaIiFhW6LTpw4cQKAli1b6lQ+Ozub3377DWdnZ51fo8SpU6eYNWsWvXr1Yvjw4WRnZ7N582bGjx9PUFCQZrGm999/nz179jB48GBeeeUVrl27xtatWzl79ixbt27FyMiIDz/8kBMnTvDJJ58QFBSEsbExn376KSkpKWzevFkTeBU1pyToaFm/ntY+i3qW5GRlk52VjYmpSZXqKY0MAcjNydUql3Wv6Ib1bvpdrKzr0/MFHy6fj2TH2k28MGowAAd37EFfX5+ufXpV9RCFqLKqnh8AxibGzPzi/QqvE5VpX5f2hKhJeelFDyKVZeTiU1qaUJCdjyo7DwMTZZXq6RkW3a4V5OZrlcvPKrqm5N3NxsjKDBNb7QdfmQkpZNxMon5Tp0oemRDV43GfIwYmSpx7tSblzxgubz+OW//idAwHTqOnr4dTt7/vE3QtJ4SoOySoKarFkCFDyt0XGBhIs2bNWLhwIW5ubvzwww8olUUXLTc3N+bPn1/poGZ+fr5mWvYXX3yh2T58+HC6du1KWFiYTkFNU1NTrdyL69atIyYmho8++oi2bdsCMH/+fKytrQkICNAEnMaMGcO4ceP47LPP8PX1RalUsnjxYuzs7Ni+fTvm5kWrGXfr1o1x48ZVKah5+/ZtrKysNO9Xeezti1ZETkoqmlpUMsJ027ZtmkV3+vbty+DBg0vV07Xcvn376NWrFx988IFmm4ODA1u3biUuLq5KQelz587RtWtXre2dO3fWrFRfIi8vr1QAND09nXPnzrF48WLMzMwYPXp0heVVKhUxMTGsWrWKlJQU5s6dW+n+BgcHY2xszOrVq1EoFEDRv+306dOJjIykUaNGnDx5kt27d/Pxxx8zatQoTd3evXszYcIEtm3bxrhx47C2tuajjz5i1qxZrF27ltatW2uC5O3bt69038Sjy83JAcBQaai1z6B4W35enlbQRtd69o4NMTIx5tKZCHr189V8hvLz8rkaeRkAVX7RDWs9m/r0HtCH/Vt+ZOW/ix66KPT0GDV1fKkp6ULUlKqeHwAKheKhAcjKtK9Le0LUpIK8ou9ufUPt2yq94gWuCvJVWgEbXeuZNqiHvrEhdyJv4tzbU3P9KMhXkXolDoDCfFW5fbu8s2hWkXPvih+QC/G4PO5zxMBEiXE9cxo948W1ff/H2eV7iwspaPHyM6WmmutaTghRd0hQU1SLRYsWYWtrW+Y+FxcXLly4QHJyMpMnTy4VoBs5cmSpKd66MjQ0JDw8nPz80k+tU1NTMTc3r/L03bCwMJYuXcqgQYM0QdHU1FROnTqFv78/OTk55BTffAH06dOHBQsWcOHCBVxdXYmMjGTixImagCYUjaL08PCoUg5HtVqt082bQfGFXa1WU1hYSFhYGL179y61iri7uzs9evQgJCQEQOdyAA0bNuTkyZN8//339O/fH1tbW0aNGlUqcFdZHh4eZQYX71/FvERQUBBBQUFa25s2bcq8efNo2LChTuXd3NxYunRplRYJatiwIZmZmcyfP5+XX34Zd3d3PDw8OHTokKbMTz/9hEKhoHfv3qWCqi1btsTOzo7Q0FDGjRsHFOUDDQoK4r///S+WlpY0b96cN954o9L9EtWjJBtByc1iddfTNzCg23PPcGzPQXau3USv/r6o1YUcCQgmL7doZHRJOoUju4P5ef9PuHq407F3N9SFhZw69is71nzHqKnjad62deUOTohHVNXz40lpX4jHSvMBfjz19PT1cereiuij57m8/TiNnvFEXajm5pFzFOYVBTMV+tpTywvyVERuOkpmfCrOz3hSr7F2+hMhasRjPkcAbhw+S8yxCKwaN6BhZw/UhWriT/7Jn1t/psXLz2LTolGlygkh6g4Jaopq0b59+wpXP7916xaAZopuCaVSqbVNV4aGhoSGhnL06FGioqK4efMm6elFU9iqki/xxo0bvPnmmzRt2pRPPvlEsz0mJgaATZs2aY0gLBEfH4+hYdFokrJGLbq5uREREVHpPtnb2xMTE4NKpdIELstSMkLT3t6etLQ0srKyyu1HSbBS13IA77zzDq+99hqff/45CxYsoFWrVnh7ezNixAjs7Oy06uvCysqKbt3KXy33fj169GDChAlA0U2vUqnEwcEBR0fHh5ZPSEhg3bp1ZGRkMG/ePJ5++ukq9XfMmDH88ssvbN68mc2bN+Ps7Myzzz7LSy+9RPPmzQGIjo5GrVbzzDPPlNmGmZlZqb/nzZvHc889x+3bt1m1atVDR+SKx8fI2AgoGg32IFXxSAFjY+NHqvfswL7kZGVz4shxLpwqWtzKo00rej7vzeFd+zE1NyM7K5tfDobg5OrC+NnTNIFOz87tWPPpUgK/287bizwwMNQe0SbE41LV8+NJaV+Ix0m/OL1IYb52fu9CVVHQ0cBY+zu7MvVcvNugysnjVvglzeIo1i2cce7VmhuHzmJgYlSqvio7j8iNR8i4mUSDjk1x7SOzQETtedzniCo7j9iwi5g72+A5oa8mf6ydlyvnV+3nSsCv1G86nML8Ap3K6RnIbAAh6hIJaooaVVaw0cjIqIyS2u5fDEatVjN16lSOHTtGhw4daNeuHSNHjqRTp06akXCVce/ePaZNm4ZCoeDrr78udfNU8rp+fn74+vqWWb9JkyYkJiYClBrJWaKwsLDSfQLo2LEjJ06cICIiosJpyadPn0ahUNCuXTvNNl37oUu55s2bc+jQIcLCwjh27BhhYWEsX76cDRs2sH37dtzd3StzWJVmZ2encwC0rPI+Pj4MHz6cSZMmsWHDBjp06FDpPpibm7N582bOnz/PkSNHOH78OJs2bWLLli0sXLiQF198kcLCQszMzPj666/LbOPBz/qlS5c0o4oPHTqEl5dXpfslqoeVTVF6iLvpd7X23U3LwNjUBKWx9ndVZeopFAr6jR5Cr36+JCfextK6HvVtrTm8OwiFnh5W1vVJjIunQKXC8+l2moAmFI309OrSkZ927uV2fBIOLpIbTdScqp4fT0r7QjxORlZFs3Py7mZr7cvLyEbfxBD9MlIrVKaeQqHAvX9nGvX2JPtOBkZWZhjXN+fGT2dBT4FRvb8fmubdy+bid4fJvJVCw87NaDKoq4yCFrXqcZ8jd2PvoFYVYuflVmpBLD19fezbuBN18DRZt9NRFxTqVM7cwfqRj1kIUXMkqClqhKurK1A0GvJBMTExmv1QNAXzwYVqVCoVqampmlGFp0+f5tixY0ydOpUZM2aUKpeWllap0Z9qtZrZs2dz7do11q5dq1XXyakoeKCvr68VWLt69SqxsbGYmJjg5OSEQqHg5s2bWq8RG1v+yrAVGTBgAKtWrWL9+vXlBjUTEhI4ePAgHTp0wMnJCbVajbm5+UP7Ub9+fZ3KFRQU8Oeff2Jubo6Pjw8+Pj5AUY7JWbNmsXPnzirlqKxJVlZWLFmyhFGjRvHWW2+xf//+UikCdBEVFcXdu3dp27Ytbdu25e233+bq1av4+fmxYcMGXnzxRZycnPjll19o3bq11jT6gwcPlhoVe+/ePT766COaNWuGp6cnGzZsoG/fvhLYrCUmpibUs7Um/qb2uXorOhYn17K/UypTL+LkWSysLGjcvCnmVn8vVHXj8jUcn3LGUGmoGZFdWKj9AEitedhQ+ZHoQjyKqp4fT0r7QjxOBiZKjKzNy1zB+V58MhZOZadnqky9pN+vo7QwoZ6bA8r7VmhOv5GAuZONJuegKjdfE9B07N4S9/6dH/XwhHhkj/sc0TMoDlCW9dtJXVjyf3QuJ4SoW7QTsAjxGDRv3hwXFxe2bdtWKt/lwYMHNVOnS9ja2hIVFVVqBGFISAi5uX+vGpyWlgYUjZC8344dO8jOzkalKjthelmWLVtGSEgIr7/+Or1799bab29vT+vWrQkICNCMxoSixYree+89pk+fjkqlwtramk6dOrF3717u3LmjKXfu3DkiIyN17s/9XF1dGT9+PIcPH2b16tVa+9PS0pg+fTr5+fl8+OGHQNHT/D59+hAWFsaVK1c0ZWNjYwkNDdX8rWu5goICxo4dy+eff17qtdu0aQNQajTZk8zT05MJEyYQHx/PokWLKl1//vz5TJ06lczMTM02Nzc3LC0tNe+Bt7c3gNa/VUhICDNmzGDfvn2abQsXLiQxMZGPP/6Yd955BysrK95//32tgL6oOa06tOHapcvcjv/7PL8aeZnkhCQ8ny5/pLSu9cIPhbJv865So84v/x5J9JXrPO3dAwB7p4ZY1LPk3C8nyc/7O2dwfl4+58N/w9TcDHtHyYsmal5Vz48npX0hHifbVk+Rdu0WWbfTNNtSr94i+3YGdl6NH7le3K+RXNt3ksKCv2fSJP8ZQ8aNJByfbq7Zdm3viaKAZrcWEtAUT5THeY6Y2tdDaWlCwtkrFNy3aFZBvorEc9cwMDPCtEE9ncsJIeoWGakpqsWRI0cqXN170KBBzJs3j8mTJzNy5EiGDRvGnTt32LRpkyYXZYkBAwbw6aefMnHiRAYOHMjNmzfZsWOHZsQkQLt27TA3N2fBggXExcVhZWXFyZMnCQ4OxsjIqFTgqSKhoaGsWbMGd3d3mjVrxr59+0pNvba1taV79+588MEHjBs3jmHDhjF69Gjq1atHUFAQv//+O2+99Zbm2OfMmYOfnx8jRozAz8+P7OxsvvvuuyqtfF5i1qxZpKen89VXX3Hs2DH69u2LpaUl169fJzAwkJycHJYsWaLJ6wgwY8YMQkNDGTNmDK+88gr6+vps2rQJMzOzUkEzXcoplUr8/f1ZvXo106ZNo2fPnuTk5LB9+3ZMTEwYNmxYlY+tpk2dOpUDBw6wfft2Bg4cWKlp6OPHj2fSpEn4+fkxePBgjIyMOHLkCNHR0fznP/8BilY59/HxYf369cTFxdG1a1fi4uLYsmULjo6OmjyfJ06cYMeOHYwYMUIzAvedd95h7ty5rFq1ipkzZ1b7sYuH6/mCN+fDf2PDopV07/ssqvx8fjl4DEfXRrTpUvRZSUm6Q/TVKFyaNMba3lbnegA9+/mwbdUGNi/7lpbtvUhLTuHXQ6E0ad2cNl07AkUPCQb4vcTWVRtYO/9L2vd8GnVhIWfCTnI7IYmXJvqhX0F+XSEel6qeH9XZvhBPKueerUk6d40L/z2EU4/WFKpURbn7nGywb1uUoic75S4ZN5OwfMoeE2sLnesBNOrlyR8/hHJp0xFsWj5FTto94n6JpH4zR+zbugGQlZRG0rnr6JsYYu5oQ+K5a1r9bNDu8aYLEqI8j/McUejp4f5iF/744RjnVwfRsENT1Go1iWeukH07HY/hPdErXnhV13JCiLpDoa7KiipCFJs7dy4BAQEPLXf58mUATp48ydKlS7l06RKOjo7MmDGDxYsX4+TkpFmEp7CwkFWrVvHjjz+SnJxM8+bNefvtt1m/fj1ZWVmacmfOnGHx4sX8+eefKJVKGjduzNixY4mIiGDjxo0cP34cW1tbvL29S7Xv7+9PXFwcISEhrFixotz8hwCdO3fW1IuMjGTFihWcPn0alUqleb0hQ4aUqhMREcGSJUuIiIjA0tKS8ePHc/HiRc6ePVtq8Z3KOn78OFu2bOHSpUtkZGTQsGFDevXqhb+/f5mL/URFRbFw4UJOnTqFUqlk+PDhAKxdu1bz76FrucLCQjZu3MiuXbuIjY1FX1+f9u3bM336dFq3rvxKzB4eHqXe2/LExsbi4+PDkCFD+OKLLx7ari7lw8PDGT9+PO7u7gQGBlZqcZ7Q0FDWrl3LtWvXyM3NpWnTpowfP77Uaur5+fmsW7eOwMBA4uLisLa2pmvXrsyYMQNHR0eys7N58cUXycrK4sCBA1hZWWnqjhkzhvPnz7Nz505atGihc79KHIk+W+k6orQ7CUkEbw3gxl/XUCqVNPNqSd/hL2JmWfTj+uwvpwhY/wND/vUy7Xt01rleiYiTZwkLPkJy4h3MLM1p06Ujvfr7ojQq/Tm8/scVju09SFxU0UJlDk8503tAH5p5Vv5zIUR1qer5cb8lsz+hnm19Jsx5o9LtV7Y9UTnrrh2p7S7UaVm307kedIr0G4noKw2o38yJxs931EwXTzx7lb9+/IVmL/WgQfsmOtcrkfT7dWKPXyA7OQNDcxPs27jRqLcX+sqiB13xJ//k6p7/q7CPPT9/pXoPWohKeNznSNq1eKJDznM3rmjGnLmjDY2e8cK6mXOVyonK2fbsO7XdhWox6tjC2u5Cuf4p73F1k6CmqHUPBh2FEFUjQU0hhBBVJUFNIYQQVfVPCbhJULPuqRvJ8IQQQgghhBBCCCGEEKKYJOYSogYVFBSQkpKiU1kLCwuMjY0fc4+qR0pKSqnFT8pjbGyMhUX50whrWl3ttxBCCCGEEEII8b9OgppC1KD4+Hh8fHx0KrtgwQKGDh36mHtUPV566SXi4uIeWk7X3Jg1pa72WwghhBBCCCGE+F8nQU1R6x5l8Zy6xs7Ojg0bNuhUtkmTJg8v9IRYtGgRubm5Dy1nb29fA73RXV3ttxBCCCGEEEII8b9OgppC1CAjIyO6detW292odh06dKjtLlRJXe23EEIIIYQQQgjxv04WChJCCCGEEEIIIYQQQtQpEtQUQgghhBBCCCGEEELUKRLUFEIIIYQQQgghhBBC1CkS1BRCCCGEEEIIIYQQQtQpEtQUQgghhBBCCCGEEELUKRLUFEIIIYQQQgghhBBC1CkS1BRCCCGEEEIIIYQQQtQpEtQUQgghhBBCCCGEEELUKRLUFEIIIYQQQgghhBBC1CkS1BRCCCGEEEIIIYQQQtQpEtQUQgghhBBCCCGEEELUKQa13QEhhBDVY921I7XdBSGeWN/YPF/bXRDiibautjsgxBNsortvbXdBCCFEGWSkphBCCCGEEEIIIYQQok6RoKYQQgghhBBCCCGEEKJOkaCmEEIIIYQQQgghhBCiTpGgphBCCCGEEEIIIYQQok6RoKYQQgghhBBCCCGEEKJOkaCmEEIIIYQQQgghhBCiTpGgphBCCCGEEEIIIYQQok6RoKYQQgghhBBCCCGEEKJOkaCmEEIIIYQQQgghhBCiTpGgphBCCCGEEEIIIYQQok6RoKYQQgghhBBCCCGEEKJOkaCmEEIIIYQQQgghhBCiTjGo7Q6IJ9/cuXMJCAiosIyPjw+rVq2qoR5p8/b2xsnJiU2bNgHg7+9PXFwcISEhNdaH6njNQ4cOsWPHDi5evEhOTg4ODg706NGDcePG0ahRI53aKPn3unz5crWUqyoPD48K95d8ZmJjY/Hx8dHab2hoiLW1Nd27d2fGjBk0bNgQoNzyCoUCCwsL3Nzc8PPzY+DAgdVzIOJ/Sk7KXa4f+I306wkAWDd3pvELnVCam+jcxpWAcLLvpOM16YUqt39u1T7uxSZr1bdp/RQtX362MockRLVJSk5mY0AAl65cAaB9q1b4DxmClYWFzm18s3Urt5KSmDdjhta+9xYt4lp0tNb2zm3b8taECZq/0+/eZdu+fZy+cIE8lYrGzs74DRpEU1fXyh+UENXkSbl+pPwVR0zo79yLSwaFAstGdjzVpz2WLnaPcHRCPLrU28kc2L6HqMtXAfDwaskLIwdhZqn7NSTwu+0kJyYxYc4bWvuu/3GFowHBxMfEYWxiTOtObfEd0h+lsVGpclcu/EHo/sPcuhGDQk9BIzdXfIf2o5G76yMdnxCidkhQU+js3XffpX79+mXuc3BwqOHeVGzKlClkZ2fXdjd0lpeXx5w5cwgODsbLy4uJEydiZWXFlStXCAgIYNeuXSxatAhfX9/a7mqluLm5MWXKlDL3PfiZ6dixIyNGjND8rVKpuHr1Klu2bOHEiRPs3bsXS0vLcsur1WpiYmLYtm0bs2fPRl9fn/79+1fzEYl/svysXCL+exB1QSHOvVqjVquJDbtIZkIqbacOQE9f/6FtJJz+i4Tf/sKqcYMqt69Wq8lKSsempQs2rZ4q1YZxPbPqOVghKuluZiYfL19OQUEBA319KSwsZN/Ro0TfusXnb7+NgcHDf1KGnDjB0fBwWjRporVPrVYTm5hIRy8vnm7TptQ+O2trzf/Pzslh3rJlpKan0//ZZzEzNeXg8eN8vHw5n7/9Ni6Ojo9+sEJU0pNy/UiLSiDy+8OY2tfD9bn2qAvU3Dr5BxHfHqDN5BewaCSBTVE7su5lsn7hSgoKVPR83hu1upBfDh4jMfYWUz58E30driFnwv6PM8dP4OrhrrXv+h9X2LB4FU5PNaLvSy+SnprGicPHiYuKYeK701EoFABEXb7Kxq++wd6xIX2G9aegoJBTIb/w3/+sYOLc6Ti7PaXVthDiySZBTaEzX19fnJ2da7sbOunevXttd6FSFi5cSHBwMLNnz2bixIml9k2ZMoWJEycyc+ZMdu3a9dARkE8SW1tbBg0apFPZRo0alVm2UaNGfPzxx2zbto3Jkyc/tPzQoUPp168fK1eulKCmqJS4XyLJTc+iw/RBmNrXA8DC2Y6L638i8exVHDqVf+6pCwuJCY3g5tHzj9x+buo9CvNU2LR0oUE77R/uQtSGoJAQUtLSWPTuuzgXj5xv8tRTfLZyJaEnT+JbwXW3sLCQ3YcO8eOBA+WWuZ2SQm5uLp28vOjVuXO55fYcPkx8UhIfvfEGLZs2BaBr+/a8MW8ee48c4fWxY6t4hEJU3ZNy/bgedAojKzPavjYAfWXRbZ59e3fOfBnAjcNn8fxX32o5XiEq69efQklPTeP1T97B3rHoGuLU+Cm+X7Kas7+eolPvbuXWLSws5Of9hwnZc7DcMgd37KGedX0mzH0DQ6UhAFbW9dm/+UeuXPyTZp4tAAjeGoBV/Xq8+sEslEZKANp168SyDxZwZHcQr7w9tboOWQhRQySnphC1LCoqis2bN9O/f3+tgCaAjY0Ny5YtQ6FQMH/+/FroYe3q168fAGfPntWpvJOTE506deLatWvcu3fvcXZN/MPcjrhOvcYNNTeMAPWbOGJiZ8ntiKhy6xXkqzj79T5uHjmPfVt3lFamj9R+ZlIaACa2Vo90PEJUp1/PnqVl06aagCaAV/PmONjbE17B93Nefj5z/vMfdgYH07NTJ6zr1SuzXEx8PABODbRHqZVQq9X8fOoU7Vq21AQ0AepbWjJ2yBCau8tDAFE7noTrR352LpnxKdh6umoCmgBKcxOsGjckIzrp0Q5SiEdw4eRZGns00QQ0AZq08sCmoT0XTp4rt15+Xj6r5i0mJPAAbbt2xKK+9m+j/Lx8zCzM6di7iyagCdC4eERnQnQcANmZWSTE3KJ1p7aagCaAuZUFrs3cib5641EPUwhRCySoKardgQMHGDx4MF5eXgwYMIBjx44xYcIE/P39NWW8vb1L/V3edrVazdatW3nppZdo164dnp6ePP/883zzzTeo1epy++Dv74+3tzdQlIPRw8Oj3P9WrFihqXf16lWmTZtGx44dadOmDaNGjSIsLEyr/fDwcEaNGkXbtm3x9fVl586dVXqvAPbs2YNarcbPz6/cMi4uLvj6+vLbb7+RkJCg2X7x4kX+9a9/0a5dO3r27MnatWvLfF90KadWq/n666/p27cvnp6edOvWjdmzZxNffKNZW/T0ir6mCgoKdK5jalp0U1DRZ6Qsu3fvxsPDg0OHDuHt7U2bNm00n4+bN28yZ84cevXqRevWrencuTNTpkzhSnFuuRJ5eXmsWLGC5557Di8vL/r27cs333xTqv+5ubl8+eWXeHt707p1a3x8fFi2bBl5eXmV6q+oPvnZueSk3MPcyUZrn7mDDfduaee3LKFWFVKQm0fz0b3xGN4ThZ7ikdrPSkwFwNS+6Id7QV5+pY9HiOp0LyuLpDt3cCsjt3PjRo2Iiokpt25+fj5ZOTnMHD+eaf7+mu/0Bz0Y1MzJzdUqczslhZS0NLyaNweKvuNLyj3Xs2eFo0WFeFyelOuHgZEhHWcNxal7K+02snJQlHPuCfG4ZWdmkXo7GUdX7Rl/ji7OxEfHlltXpVKRm53DyNfGMWyiH/p62qkcDJWGjHtzCr0HPFdqe3xxMLOebVEKEyMTY2Z8/h7d+j6j1UbWvUz09OUcEaIukunnQmcZGRmkpKSUuc/Kygp9fX0CAwOZM2cOnp6ezJ49m+vXrzN9+nSsra1xcXGp9Gt+9dVXrFmzhiFDhjBixAgyMzMJDAxkyZIlmJmZVRgILGFtbc3ChQu1tq9YsYKEhAR69uwJwOXLl3n55ZextbXl1VdfxdDQkP379zN58mSWLFmiGTEYHh7OpEmTcHV1ZebMmaSkpPDZZ5+hUCjKzTlakfPnz2NgYICnp2eF5bp06UJwcDBnzpyhf//+XLlyBX9/fywtLZk6dSr5+fmsX79eKzCma7k1a9awcuVK/Pz88PDwIDY2lo0bN3Lx4kX279+Pvg75oB6Un59f5mfG0NAQCx0Xljhx4gQALVu21Kl8dnY2v/32G87Ozjq/xoPef/99xowZg7m5OW3btuXOnTuMGDECc3NzxowZQ/369fnjjz/YsWMHkZGRhISEYGhY9GR42rRpHD9+nBdffJHx48cTERHBkiVLSE5O5t1336WgoIBXX32Vs2fPMmLECNzd3bl48SJr1qzhjz/+YPXq1Zq8P6Lm5KVnAaC01B4lo7Q0oSA7H1V2HgYmSq39+saGdHxzWIU/hivTflZSGvpGBlwP/o3bEVEU5qkwtjbnqT7tsW/jVtVDFKLKUtLSALC20h4hU9/SkqzsbDKzsjAz1f58m5qYsPyjjx56DYmNj8fY2JiNu3cTfu4cubm52NvaMmrAALp36ABAfFLRSDNLCws2BQRwNDyc7JwcGtjZMW7IEDo85DoqxOPwJF0/TGwttcpkJqSQcTOJ+k2ddD4mIapTRmo6AJb162nts6hnSU5WNtlZ2ZiYai+qZWxizMwv3q/UfUjqnRSi/rzKwe2B2Ds50KJd0bVBT08P2wbaeWUTYm4RfTWKpq2b6/waQognhwQ1hc6GDBlS7r7AwECaNWvGwoULcXNz44cffkCpLPrx5ubmxvz58ysd1MzPz9dMy/7iiy8024cPH07Xrl0JCwvTKahpamqqlXtx3bp1xMTE8NFHH9G2bVsA5s+fj7W1NQEBAZqRfmPGjGHcuHF89tln+Pr6olQqWbx4MXZ2dmzfvh1zc3MAunXrxrhx46oU1Lx9+zZWVlaa96s89vb2ACQV39SVjCDctm2bZtGdvn37Mnjw4FL1dC23b98+evXqxQcffKDZ5uDgwNatW4mLi6tSUPrcuXN07dpVa3vnzp01K9WXyMvLKxUATU9P59y5cyxevBgzMzNGjx5dYXmVSkVMTAyrVq0iJSWFuXPnVrq/Jfr378/MmTM1f3/zzTekp6fzww8/4H7f9EYzMzO++eYb/vrrL1q1asXPP//M8ePHmTVrlmaBpNGjR5Ofn8+WLVuYNm0aR44c4cSJE6xbt04TUAfw8vLio48+4ujRo3VuQah/gpLRkPqG2pdFveLk9QX5qjJvShUKBQr9igPRlWk/MzGNglwVqpw8PIb3RJWTx63wS1zefhx1oVrybIoaVzIasqzrlLL4gU5ufj5lLWOlUCh0uhmNiY8nJyeHzJwcXvf3JzM7mwOhoSz/7jsKCgro1bkzWcULAG4PCsJAX59XXnoJPYWCfUePsujbb3lv6lTNKE4hasqTdP0oq+7lnUUzjpx7S9Bf1I7cnByAUlPDSxgUb8vPyyszqKnrNaRE1r1Mlr7zSfHrKRngN7TM1y2Rl5PLrnWbAejZz0fn1xFCPDkkqCl0tmjRImxtbcvc5+LiwoULF0hOTmby5MmlbnxGjhxZaoq3rgwNDQkPDyc/v/TUy9TUVMzNzcnKyqp0mwBhYWEsXbqUQYMGaYKiqampnDp1Cn9/f3JycsgpvvgC9OnThwULFnDhwgVcXV2JjIxk4sSJmoAmFI2i9PDwqFIOR7VardPFumRlWbVaTWFhIWFhYfTu3bvUKuLu7u706NGDkJAQAJ3LATRs2JCTJ0/y/fff079/f2xtbRk1ahSjRo2q9DGV8PDwKDO4eP8q5iWCgoIICgrS2t60aVPmzZtHw/vyuFVU3s3NjaVLlz7SIkGdOnUq9ffkyZMZNmwYNjZ/T/3KycnRTKMs+SyGhoaip6fHmDFjStWfM2cOr732GmZmZvz0009YW1vTqlWrUkHZ3r17o6+vT2hoqAQ1a0NJqoLHNUi2Eu07dGqGWq3GsUsLzTY7r8acXRZI1IHfsG/TWKYRihpVksrjcY4i9+3encLCQvr26qXZ1r1DB976/HM2BwbSo2NH8lUqALKys/nqww8xL34A2aF1a6Z/8gnb9u2ToKaoeU/Q9eN+BXkqIjcdJTM+FednPKnXuOHDKwnxGGg+wjUwE0mhUDBiyjgKVCr+70gYGxavZuSUcbTq2EarbF5uHpuXryMh5ha9+vvS2KPJY++fEKL6SVBT6Kx9+/YVrn5+69YtoGhV6vsplUqtbboyNDQkNDSUo0ePEhUVxc2bN0lPL5rCUNl8iQA3btzgzTffpGnTpnzyySea7THF+cA2bdqkNYKwRHx8vGaKcVmjFt3c3IiIiKh0n+zt7YmJiUGlUmkCl2UpGaFpb29PWloaWVlZ5fajJFipazmAd955h9dee43PP/+cBQsW0KpVK7y9vRkxYgR2dtpTNXRhZWVFt27lr2Z4vx49ejBhwgSg6AeJUqnEwcEBR0fHh5ZPSEhg3bp1ZGRkMG/ePJ5++ukq9bfE/cHLEvn5+Xz55ZdERkYSHR1NbGysJk9mYWEhAHFxcdjY2JQKeAPY2dlp3sPo6GhSUlLKHMEK1HoO0/9V+kZF53Zhvnbu1sLiQIqBcflP+quzfYentYMy+oYG2LdzJ/ro72QlpWHW0LrKfRGisoyNjADKzPubV/zg0dTY+JFeo0+PHlrblIaG9OrUiR8PHCAmPh6j4gemT7dpowloApiZmtKhdWuOnzpFTm6upr9C1IQn6fpRQpWdR+TGI2TcTKJBx6a49mlf5dcX4lEZGRd9J+eXcQ1RFY9ENn7Ea0gJEzNTPDu3A6BVx7as+PALgrcFaAU1s7Oy2fzVN0RfjaJ9z6fxHVr1wRBCiNolQU1R7coKNhrpeINx/2IqarWaqVOncuzYMTp06EC7du0YOXIknTp1Yty4cZXu171795g2bRoKhYKvv/661MWz5HX9/PzKHSXXpEkTEhMTAUqN5CxREtiqrI4dO3LixAkiIiJo3778H52nT59GoVDQrl07zTZd+6FLuebNm3Po0CHCwsI4duwYYWFhLF++nA0bNrB9+/ZS064fBzs7O50DoGWV9/HxYfjw4UyaNIkNGzbQoTgHW1U8uJDF6dOnmTBhAqampnTr1o1hw4bRsmVLoqOjSwXHdVnMqKCgAFdXV/7973+Xub+sUazi8TOyKgpE593N1tqXl5GNvokh+hVMX6qJ9g3NiqZlFeSpqtwPIarCtji1SlpGhta+1IwMTE1MHlsg0ao4N3JuXp5m5XTLBx4clZRTq9VkS1BT1LAn7fqRdy+bi98dJvNWCg07N6PJoK6Sq1vUKiubomvI3fS7WvvupmVgbGqC0rj6v7cNlYZ4tGnF/x05Tubde5hZFJ1LmRl3+W7pGhKi4+jYuxsDxw6Xc0RoTHSXGXN1jQQ1RbVxdXUFikZDPigmJkazH4qCRg+O+FCpVKSmpmpGFZ4+fZpjx44xdepUZsyYUapcWlpapUZ/qtVqZs+ezbVr11i7dq1WXSenouTpDegXxAABAABJREFU+vr6WoG1q1evEhsbi4mJCU5OTigUCm7evKn1GrGx5a/cV5EBAwawatUq1q9fX25QMyEhgYMHD9KhQwecnJxQq9WYm5s/tB/169fXqVxBQQF//vkn5ubm+Pj44ONTlFMmODiYWbNmsXPnzkfKUVkTrKysWLJkCaNGjeKtt95i//79WiMmq2r58uUYGxsTFBSEtfXfI+TWrFlTqpyjoyPh4eFkZmZiZvZ3drnIyEjWr1/Pa6+9hrOzMxcvXqRLly6lgqf5+fkcPnxYa5q9qBkGJkqMrM3LXKX2XnwyFk5lp96o7vZz0zO5sOEn7L0a4+LdtlS57DtFo9SN61fP51oIXZmZmmJnY0NUGde5qJgY3KuQc/l+KWlpzF+5km7t2/PSCy+U2hdX/DDRzsYGEyMjDAwMiElI0GojKTkZQ0NDrKrpe18IXT0p1w8AVW6+JqDp2L0l7v07P9JrC1EdTExNqGdrTfxN7WvIrehYnFyrNqOvxO34RDYuXUuPF7x52rv0qP/cnBxQKDAozkmbm5OjCWh27dObfqPLXzNCCFE3SFIuUW2aN2+Oi4sL27ZtK5Xv8uDBg5qp0yVsbW2JiooqNYIwJCSE3OLFCKBo6jQUjZC8344dO8jOzkal0n200rJlywgJCeH111+nd+/eWvvt7e1p3bo1AQEBmtGYUBRoeu+995g+fToqlQpra2s6derE3r17uXPnjqbcuXPniIyM1Lk/93N1dWX8+PEcPnyY1atXa+1PS0tj+vTp5Ofn8+GHHwJF07P79OlDWFgYV65c0ZSNjY0lNDRU87eu5QoKChg7diyff/55qddu06ZoqsaDIxefVJ6enkyYMIH4+HgWLVpUbe2mpaVhbW1dKqB59+5dAgICgL9HaPbu3ZvCwkJ27txZqv7WrVs5cOAAtrb/z959R0V17AEc/y69NxERBUFUUEFAQcWaYO8tdtGYGE1ibKn6kvg0Gk2MJjH2GEuixgp27FiwGzWxxN7oogIifVn2/bGwcQUVbEDe73MO5+i9M3fnXnaZvb/7mxl7goKCSE5OZuXKlTplVq1axZgxY7SrvYtXz752FZKvxZJ+J1m7LelqLBl3Uihfx+2VHN/Y2hxVZjZxJy6Tk/nPg5/M5FRun7yCtbsjRpYFV8AV4mVr4OPD2UuXtEFGgDMXLxKXkECj58iMB7CzsSE9I4Pww4e1iwEB3E1MZN+xY9SuUQNbKytMjI3x9/bm9LlzRD00VUfCvXv8cfYs/t7eZaa/Ev8upaH/ALi26YgmoNmopgQ0RalSu54P1/6+xJ24f/qQq+cvcS8+Ae8Gzzc9gp2DPZkZGZzYdxjVQ/eHSXcTOf/HX7h6uGOcN0Jv87J1eQHNZhLQFOJfQjI1RZHt3r37iat7d+nShQkTJjB06FB69+5Njx49uHv3LsuWLdPORZmvY8eOTJo0iSFDhtC5c2du3brFmjVrtBmTAH5+flhYWDB16lRiYmKwtrbm2LFjhIWFYWxsTFpaWpHavW/fPubPn4+7uzs1atRg8+bNOkOv7e3tady4MV988QWDBg2iR48e9O3bFxsbG7Zu3cpff/3FRx99pD33zz77jP79+9OrVy/69+9PRkYGS5cufaaVz/ONGTOG+/fv8+OPP7J3717atGmDlZUV169fZ8OGDWRmZjJjxgw8H1oAYdSoUezbt48BAwbw5ptvoq+vz7JlyzA3N9fJgi1KOSMjI4KDg5k3bx7Dhw+nadOmZGZmsnr1akxNTenRo8czn9ur9v7777Nt2zZWr15N586dn2sYer5mzZqxcOFCRo0aRZMmTbhz5w7r1q3TBrbz34tBQUE0adKEb775hitXruDt7c3p06fZsGEDw4cPx8bGhp49e7J+/XomTZrE+fPnqVOnDpcvX2b16tXUrl2b7t27P3d7xbOp3NSLhNPXOLtoB5WaeJGbk0N0xDksKpXDwVcz/UJG4gNSbiVgVcUBUzvLF358APfODbmwfC9/LQjD0b8GqmwlsUcuoNDTo1qnhi/0nIUoqs4tW3Lg+HEmzZpFx6AgspVKNu/ZQ1UXF5r6+wNw++5dLl2/jkfVqlR4zMKCj/N2r15MX7iQL3/4gRaNGpGRmcmOAwfQ19PjrZ49teUGdOnC31eu8NVPP9Hutdcw0Ndn2/79GBka0rdTpxd6zkIUVWnoP9ITkkk4fR19U0MsnMpx+/S1Asep4PdypxIS4nGatgviz8MnWPLdHBq3eZ0cpZKD2/fi5OqMT0PNd/XEhLtEXr2BSzU37ByK3ofo6+vToV93Qn5ZwS/fzMI30J/0tHSO7YlAT0+Pjv009zEJsfH8deQPTMxMcXSuzJ+HTxQ4lm+jgALbhBClmwQ1RZFNnTr1ifu7dOlC48aNWbx4Md9//z0zZszAycmJqVOnMn36dJ2y/fr1Izk5mXXr1jFp0iQ8PT2ZPXs2ixcv1mZ52tvb8/PPPzN9+nTmzZuHkZERbm5ufP/995w5c4bffvuNu3fvPnZF9nxnz55FrVZz7do1RowYUWB//fr1ady4MX5+fqxcuZJZs2axZMkScnJycHNz45tvvqFbt3+e5Hl5ebFs2TJmzJjB7NmzsbKy4oMPPuDcuXOcOnWqqJdTh4GBAZMnT6Z169asWLGCpUuXkpKSgqOjIx07diQ4OLjAYj8VK1Zk5cqVTJs2jV9++QUjIyN65t34LViwoNjlRo4ciY2NDSEhIXz77bfo6+tTt25dvvvuu5c+n+aLZGJiwsSJExk8eDBffvklGzZswChvcYlnNWLECFQqFWFhYezduxcHBwcaNWrEW2+9RYcOHTh69CitWrVCT0+PuXPnMmfOHDZv3symTZtwcXFh/Pjx9O3bF9AEkJcuXcqcOXPYsWMHmzZtwsHBgb59+zJ8+HBMTU1fxGUQz8DIwpQ677Tj+tbj3Np9Gn0jA8rVdMGtrT96BvoApNy8zeV1B6nxRpNi35QW5fgA9rWqUCs4iMh9Z7ix4w/0DPWxcauIa5u6mJW3eZGnLESRWVtaMnH0aH4NDWVNWBjGhoYE1KlD/y5dtA8uL1y7xrzly3lvwIBiBzUD6tThk3feYf3OnazYuBEjQ0NqVa9Ov86dqVShgrZc+XLlmPzRR6zYuJHNe/agVqup6e5O/65di/2aQrwopaH/uH9DMy2DKkPJ5XUHCz2OBDVFSTG3smTIuJGErVzPng3bMDIyoqafN216dsIgrw+5efk66xf/Tre3+hUrqAmaYKSBoQEHwvawbfUGDI2Nca9ZnZbdO2Dv6KA5/iVNoD8zPYP1i39/7HGEEGWLQv0sS0gLUUxBQUFUqlTpsSuLCyGeX5+900q6CUKUWj+Xa1vSTRCiVBt6b3tJN0GIUksWDxHiyVq6PN80AqXF7shnS1J6Ff4t1/hFk4mHhBBCCCGEEEIIIYQQZYoMPxfiBVOpVCQmJhaprKWlJSZ5E1eXdomJidoFcZ7ExMQES8viDat6mcpqu4UQQgghhBBCCPF4EtQU4gWLi4ujRYsWRSo7derUMrMwzBtvvEFMTMxTy3Xr1o1vvvnmFbSoaMpqu4UQQgghhBBCCPF4EtQUr0R4eHhJN+GVKV++PEuWLClS2WrVqr3k1rw43333HVlZWU8t5+Dg8ApaU3Rltd1CCCGEEEIIIYR4PAlqCvGCGRsb06hRo5JuxgtXr169km7CMymr7RZCCCGEEEIIIcTjyUJBQgghhBBCCCGEEEKIMkWCmkIIIYQQQgghhBBCiDJFgppCCCGEEEIIIYQQQogyRYKaQgghhBBCCCGEEEKIMkWCmkIIIYQQQgghhBBCiDJFgppCCCGEEEIIIYQQQogyRYKaQgghhBBCCCGEEEKIMkWCmkIIIYQQQgghhBBCiDJFgppCCCGEEEIIIYQQQogyRYKaQgghhBBCCCGEEEKIMkWCmkIIIYQQQgghhBBCiDJFgppCCCGEEEIIIYQQQogyRYKaQgghhBBCCCGEEEKIMkWCmkIIIYQQQgghhBBCiDJFgppCCCGEEEIIIYQQQogyRYKaQgghhBBCCCGEEEKIMkWCmkIIIYQQQgghhBBCiDJFgppCCCGEEEIIIYQQQogyRYKaQgghhBBCCCGEEEKIMkWCmkIIIYQQQgghhBBCiDJFgppCCCGEEEIIIYQQQogyRYKaQgghhBBCCCGEEEKIMkWCmkIIIYQQQgghhBBCiDJFgppCCCGEEEIIIYQQQogyxaCkGyBg7NixrF+//ollWrRowdy5c19RiwoKCgqiUqVKLFu2DIDg4GBiYmIIDw9/ZW14Ea+5Y8cO1qxZw7lz58jMzKRixYo0adKEQYMG4ezsXKRj5P++Ll269ELKPSsPD48n7s9/z0RHR9OiRYsC+w0NDbGzs6Nx48aMGjUKR0dHgMeWVygUWFpaUrVqVfr370/nzp1fzIm8AiqVioULF7JmzRpSUlLw9/dn/PjxODk5lXTTRCmTmfiA69tOcP96PAB2npVxaxeAkYVpkY9xZf1hMu7ep8477Z5YLi0+kdNztuD8mjdVWvg99/GEeNkS7t3jt/Xr+fvKFQDq1q5NcLduWFtaFvkYP69cSWxCAhNGjSqw71pkJCs3beLSjRvo6elRy92d4G7dcKpQAYA79+7xwYQJTzz++JEjqV29etFPSogX5GX3H8nX4ri1+zSpcYkYmBhi7+WKa+u66BsZ6pTLTs3g5s5TJF6MIleZg4VTOVzb+GPlUv75TlCI55R05x7bVm/kxqWrAHjUqUW73l0wtyp6H7Jh6Wru3U7g7c9GPLFcfFQs8yfNoFn7lgR11Xyeku4m8v2nXz2x3lufDsfNU/oQIcoSCWqWIuPGjcPW1rbQfRUrVnzFrXmyd999l4yMjJJuRpFlZ2fz2WefERYWRp06dRgyZAjW1tZcuXKF9evXExISwnfffUfLli1LuqnFUrVqVd59991C9z36nvH396dXr17a/+fk5HD16lVWrFjBkSNH2LRpE1ZWVo8tr1ariYqKYtWqVXzyySfo6+vToUOHF3xGL8fcuXOZM2cOgwcPpnz58syfP5/33nuP0NBQ9PX1S7p5opRQpmdxZtF21KpcKjfzQq1WEx1xjrT4JHzf74heEd4r8X9cJv7EZazdKjyxXK4ql0vrDqJW5b6Q4wnxsj1IS2PiTz+hUqno3LIlubm5bN6zh8jYWKZ8/DEGBk//Shl+5Ah7Dh+mZrVqBfbF3r7NxJ9+wtjQkB5t2wKwNTyc8T/+yLSxY7GztsbSwoLhwcEF6mYrlSxZtw5rCwuqVKr0/CcrRDG97P4j+VocZxfvwKJSOdza1iPrfjqxh/8mNeYedYa2Q6FQAJCTpeTMwu1kP0inUuNaGJgYE3v0AmcXbcf3vY6YOxZ+nyHEy5aemsbiaXNQqXJo2jYItTqXg9v3cjs6lne//BD9IvQhJyOOcvLAEVw93J9YTqVSEbJoBaoclc52cwtzegzpX6C8Uqlk64pQzK0scHSWPkSIskaCmqVIy5YtqVy5ckk3o0gaN25c0k0olmnTphEWFsYnn3zCkCFDdPa9++67DBkyhNGjRxMSEvLUDMjSxN7eni5duhSprLOzc6FlnZ2dmThxIqtWrWLo0KFPLd+9e3fat2/PnDlzykxQc82aNTRr1ozPPvsM0AR0Z8yYwfXr16kuGT0iT8zB82TdT6feyC6YOdgAYFm5POcW7+T2qatUDHj83wZ1bi5R+85wa8+fRXqt6P1nSL+d/MKOJ8TLtjU8nMTkZL4bN47KeZn91apU4es5c9h37Bgtn/C9IDc3l9AdO1i3bdvjj79vH1lZWUwcPRq3vO9C3jVq8J/p09kaHk5wt26YGBvTrH79AnWXhoSgUqkYMWgQFmZmz3mmQhTfy+4/rm87gbGNOXXeaYe+oeb2zdjanGubjpJ0JQa7GprPTPT+s2TcvY/3kLbYuGk+p+XruHJiegjREWfx6NnsxZywEMV0aOc+7icl88FXn+LgpHlvVnKrwq8z5nHq0HECmjd6bN3c3Fz2b9lF+MbtRXqtA1t3cyc2vsB2IxNjfBsFFNgetjIUlUpFz6HBmJpLHyJEWSNzaop/vRs3brB8+XI6dOhQIKAJUK5cOWbOnIlCoWDy5Mkl0MKS1b59ewBOnTpVpPKVKlUiICCAa9eukZqa+jKb9sJkZmYSFxeHWq0GICsrC9AMwRci350z17Fxc9TekALYVnPCtLwVd87ceGw9lTKHU7M3c2v3nzj4umNk/eQvxGnxiUTuPYNLkM8LOZ4Qr8KhU6eoVb26NqAJUMfTk4oODhx+Qv+RrVTy2bffsjYsjKYBAdjZ2BRaLuHuXSwtLLQBTQD3KlWwMDcnKi7usce/FRPD9v37ea1Bg0IzQIV4FV5m/6FS5mBkYYJjQA1tQBPQZnSmxSUCmhE1t09fxc6jsjagCWBkaYZbuwCsXCXjX5Scs8dO4eZRTRvQBKhW24Nyjg6cPXb6sfWU2UrmTphO+IZt+Ab6Y2lr/cTXiY+KZf+WnbzWqU2R2hUfFcuR3RHUbVIf1xpPzgAVQpROEtQsg7Zt20bXrl2pU6cOHTt2ZO/evbz99tsEPzQkKygoSOf/j9uuVqtZuXIlb7zxBn5+fnh7e9O2bVt+/vlnbQCoMMHBwQQFBQGaORg9PDwe+zNr1ixtvatXrzJ8+HD8/f3x8fGhT58+REREFDj+4cOH6dOnD76+vrRs2ZK1a9c+07UC2LhxI2q1mv79Cw43yOfi4kLLli05ceIE8fH/PNk7d+4cb731Fn5+fjRt2pQFCxYUel2KUk6tVjN79mzatGmDt7c3jRo14pNPPiHuCTdrr4KenubPgEqlekrJf5jlZcI86T3yODt27KBHjx74+flRr149Bg8ezMmTJ3XK5ObmsnjxYtq2bYuXlxdNmzZl8uTJOkHUMWPG4OHhwf79+7XbkpOTadKkCa1atSI9PV27vV27dly+fJmff/6Z/fv3s3jxYgIDA3F1ddV53WPHjuHh4cH69evp1KkT3t7ejBs3DoA7d+4wceJEWrRogZeXF/Xq1WPgwIEF2q5Wq/ntt9/o2LEjderUISgoiOnTp+tM11CU8xOvljIji8zEVCwqlSuwz6JiOVJj7z22rjonF1VWNp59m+PRsykKPcVjy+aqcrkccgjb6k44+Bb+5bk4xxPiVUhNTyfh7l2qFjL3tJuzMzeioh5bV6lUkp6ZyejBgxkeHKztcx7lWL48qWlp3H/wQLvtQVoa6RkZ2Dw0NcqjVm/ZgpGREb06dizGGQnx4rzs/kPf0ACvN1vj8prug7D8YKaxjQUAWUmpZN9Px6aaZr5wtVqNKlsJgFNDzydmiwrxMmWkpZN05x5OrgVHJDq5VCYuMvqxdXNycsjKyKT3e4PoMaQ/+nqPn8pBpVKxfslK3Gt74BPoX6S27Q7diqGRIS26tS9SeSFE6SPDz0uRlJQUEhMTC91nbW2Nvr4+GzZs4LPPPsPb25tPPvmE69evM3LkSOzs7HBxcSn2a/7444/Mnz+fbt260atXL9LS0tiwYQMzZszA3Nz8iYHAfHZ2dkybNq3A9lmzZhEfH0/Tpk0BuHTpEv369cPe3p5hw4ZhaGjIli1bGDp0KDNmzNBmDB4+fJh33nkHV1dXRo8eTWJiIl9//TUKheKxc44+yZ9//omBgQHe3t5PLNewYUPCwsI4efIkHTp04MqVKwQHB2NlZcX777+PUqlk8eLFZGdn69Qrarn58+czZ84c+vfvj4eHB9HR0fz222+cO3eOLVu2PNPcjkqlstD3jKGhIZZFXLjhyJEjANSqVatI5TMyMjhx4gSVK1cu8mvkO378OGPGjKFZs2b07NmTjIwMli9fzuDBg9m6dat2sabPP/+cjRs30rVrV958802uXbvGypUrOXXqFCtXrsTY2Jgvv/ySI0eO8NVXX7F161ZMTEyYNGkSiYmJLF++XBt4Bfjwww+JiIjghx9+QK1WU79+fWbOnPnYdn711Vd0796dnj174uTkRGZmJv379+fBgwf079+fChUqcPPmTVauXMmQIUPYvXs35cppbmYmTpzIypUref311+nbty83btxg8eLF3Lx5k9mzZxf5/MSrlX1fEwQ3siqYJWNkZYoqQ0lORjYGpkYF9uubGOL/YQ/09J/+nDA64iwZ91KoNSAIdW7hDwWKczwhXoXE5GQA7KwLZsjYWlmRnpFBWno65oUM/TYzNeWn8eOf2sd1admSU+fO8dOvvzKwWzcAlm/YgL6+Pu1ee63QOrdiYjh57hwdg4IKbZsQr8Kr6j/yZSalcv9GPNfDTmBWwYZytTTf/zPupQBgaG7C9W0niD9xGVWmEpNyllRtX59yNYu2IKYQL1pK0n0ArGxtCuyztLEiMz2DjPQMTM0KLqplYmrC6G8+L9J90sFte7h3+w79PniL3Md8x3pYfFQsl/46T+M2r2NlI32IEGWVBDVLkW55X+ILs2HDBmrUqMG0adOoWrUqv//+O0ZGmi9HVatWZfLkycUOaiqVSu2w7G+++Ua7vWfPngQGBhIREVGkoKaZmVmBuRd/+eUXoqKiGD9+PL6+vgBMnjwZOzs71q9frw04DRgwgEGDBvH111/TsmVLjIyMmD59OuXLl2f16tVYWGiePjdq1IhBgwY9U1Dzzp07WFtba6/X4zg4OACQkJAAoM0wXbVqlXbRnTZt2tC1a1edekUtt3nzZpo1a8YXX3yh3VaxYkVWrlxJTEzMMwWlT58+TWBgYIHt9evX165Uny87O1snAHr//n1Onz7N9OnTMTc3p2/fvk8sn5OTQ1RUFHPnziUxMZGxY8cWu71hYWGYmJgwb9487aT2jRo1YuTIkZw/fx5nZ2eOHTtGaGgoEydOpE+fPtq6zZs35+2332bVqlUMGjQIOzs7xo8fz5gxY1iwYAFeXl7aIHndunV1Xjc8PJz09HTUajWmpqZ8//33WD/hBrhevXp8+eWXOu2+desWv/zyizZID5p5R//73/9y8uRJWrduzdWrV1m1ahW9evVi0qRJ2nLm5ubMnz+fq1evcu/evSKdn3i18rNZHh7al08vb/J6lTKn0JtShUKBQv/p2ZRpt5OI3PMX7p0bYGxtTmZS4Zm5RT2eEK9KZt6UHYX1o0Z503hkKZWYF1JXoVAU6WbU3s6Obm3asHjtWj7N+06ip6fHh2+/rTMk/WE7Dx5ET0+Pts1knkBRcl5F/5FPmZ7Fie/WaY5tpI97pwba183J1DxMv7X7NAp9Pdw7NgCFguiIc/y9fA9eg1tjm5fFKcSrlJWZCYChUcFpnwzytimzswsNaha1D0mIiWPvph106N8Daztbku4Wnij0sON7D6LQ06NBi6ZPLSuEKL0kqFmKfPfdd9jb2xe6z8XFhbNnz3Lv3j2GDh2qc2PRu3dvnSHeRWVoaMjhw4dRKpU625OSkrCwsNAZvlscERERfP/993Tp0kUbFE1KSuL48eMEBweTmZlJZl7nBtCqVSumTp3K2bNncXV15fz58wwZMkQb0ARNFqWHh8czDc9Vq9VF6gzzV25Vq9Xk5uYSERFB8+bNdVYRd3d3p0mTJoSHhwMUuRyAo6Mjx44d49dff6VDhw7Y29vTp08fncBWcXl4eBQaXLQqZKje1q1b2bp1a4Ht1atXZ8KECTg+NE/ak8pXrVqV77///pkWCXJ0dCQtLY3JkyfTr18/3N3d8fDwYMeOHdoyO3fuRKFQ0Lx5c52gaq1atShfvjz79u3TBv3at2/P1q1bWbRoEVZWVnh6ejJixAid15w+fToLFy6kadOmeHt7M3fuXD777DN++eUXrl27xrlz52jevDl2dnbaOgEBupOIt2/fnoYNG+oE1R/OxM3/rOzbtw+1Wl1g6oe3336b9u3b4+LiwsqVK4t8fuIVyp9K4SXFEtW5uVwOOYiVq4MMARRlTv5UI/kPo16G1Vu2ELpjBzWrVaNl48bk5uay8+BBfly8mA/ffpt6j4y2yFYqiThxgnre3pQvV3DYrxCvzEvuP3QowLNPc3JVucQe+Zuzi3dSs09z7L1cyc3JBTTBTf8Pu2Noqhn1Uc7TmRMzQri586QENUWJ0H5EXlIfkpubS+iilbhUq/rEBYcepsxW8ueRP/D09cLW3u7pFYQQpZYENUuRunXrPnH189jYWADtEN18RkZGBbYVlaGhIfv27WPPnj3cuHGDW7ducf++ZojAs8yXePPmTT788EOqV6/OV199pd0elTff1rJlywpkEOaLi4vTLtxSWNZi1apVOXPmTLHb5ODgQFRUFDk5OdrAZWHyMzQdHBxITk4mPT39se3ID1YWtRzAp59+ynvvvceUKVOYOnUqtWvXJigoiF69elG+fPlinxdopiVo1KhonXeTJk14++23Ac2XCiMjIypWrIiTU+FfcB8uHx8fzy+//EJKSgoTJkygQYMGz9TeAQMGcPDgQZYvX87y5cupXLkyr7/+Om+88Qaenp4AREZGolaree0xww3NzXVzgSZMmEDr1q25c+cOc+fO1Qn4nzx5UhvQXLBgAfr6+ly6dIk9e/awYMECUlJSWLx4MRs3btQJaj7873wKhYKff/6Z06dPExkZSWRkpPaBQG6u5kYiJiYGoMBcnVZWVtpAc3HPT7wa+saavz25yoJzy+bm5ABgYPLsC0tFR5wjLS4Jn2HtUaZpHurkZGiy31TZOSjTMjEwM36pQSMhnpVJ3pQYj06rAprgIoCZickzHz8tPZ1Ne/bg7uLC+BEjtPNuNqpbl/9Mn86ClSuZ4+mps7jbucuXycrKItDP75lfV4gX4WX3Hw8zNDWmfB03AOy9qnBq5gaubT2OvZcr+oaaB/j2tatoA5oABqZG2HlWJuH0NVTZSvQLyZYT4mUyNtG8H5WF9CE5eZnOJs/RhxzcFk58dAxDxo0i7YEmASYzL+EgO1tJ2oNUzCzMdb5jXb94BWVWNl4Bvs/8ukKI0kGCmmVQYcHGos7B9/BiMGq1mvfff5+9e/dSr149/Pz86N27NwEBAc+UKZaamsrw4cNRKBTMnj1bp3PKf93+/fvTsmXLQutXq1aN27dvA+hkcubLDxwVl7+/P0eOHOHMmTMFhiU/7I8//kChUOD30A1SUdtRlHKenp7s2LGDiIgI9u7dS0REBD/99BNLlixh9erVuLu/3BX3ypcvX+QAaGHlW7RoQc+ePXnnnXdYsmQJ9erVK3YbLCwsWL58OX/++Se7d+/mwIEDLFu2jBUrVjBt2jQ6depEbm4u5ubm2vknH/Xoe/3vv//WZkru2LGDOnXqaPft2bMHgOHDh2uzdb/55hu6devGrFmzMDMzw9XVVRtQzfdoZu/169fp27cvSqWSJk2a0L59e2rWrIlarWb48OHackVZbKm45ydeDWNrTWZ49oOMAvuyUzLQNzV8rhvBpMsxqFW5/Dl3S4F9MRHniYk4T8Anb2Bia1FIbSFKln1elnpySkqBfUkpKZiZmmoDn88i/s4dcnJyaFSvns5CQgYGBjTx92fFxo3E3L6N60MPfk+fP4+BgQF+RZwPWoiX5WX3H4+jb2iAnaczsYcvoEzLxMhK81DU0LxgcMjIwhTUoMqSoKZ49azLafqQB/cfFNj3IDkFEzNTjEyevQ+5cu4CqhwVCyZ9X2Dfoe3hHNoezofTxutkZF4+8zf6BgbUqFPzmV9XCFE6SFCzDMnP/rp582aBfVFRUTrZYXp6egUyKnJyckhKStJmFf7xxx/s3buX999/n1GjRumUS05OLlb2p1qt5pNPPuHatWssWLCgQN1KlSoBmmDRo4G1q1evEh0djampKZUqVUKhUHDr1q0CrxEd/fiV8Z6kY8eOzJ07l8WLFz82qBkfH8/27dupV68elSpVQq1WY2Fh8dR22NraFqmcSqXi4sWLWFhY0KJFC1q0aAFo5mocM2YMa9eufaY5Kl8la2trZsyYQZ8+ffjoo4/YsmWLzhQBRXHjxg0ePHiAr68vvr6+fPzxx1y9epX+/fuzZMkSOnXqRKVKlTh48CBeXl4FhtFv375dJys2NTWV8ePHU6NGDby9vVmyZAlt2rTRBjbzHwA8HKS0srJi5syZ9OnThwcPHjBmzJintnvhwoWkpKSwbds2nc/Z5s2bdcrlZ71GRUXpBKlv377N1KlTGTBgQLHOT7w6BqZGGNtZFLpKbWrcPSwrFT41SFG5tQ8gJ0P3b7IyNYNLayJw8KuKg181DC2ePUtBiJfJ3MyM8uXKcaOQfvhGVBTuz/l3K38URWEPDXPz/o4/+jj38o0bVHVxwcy04BxsQrxKL7v/SL+TzLmlu6jc1BunhroPYVVZSlCAwkAfc0cbFAZ6pCckFzhGZlIqeob6hQY8hXjZTM1MsbG3I+5WwT4kNjKaSq7Pt4hV295dyUjTnTYtLeUB6xYuxyfQH99GAVhY6S5uGnn1BpVcnTGRPkSIMk+WVi1DPD09cXFxYdWqVTrzXW7fvl07dDqfvb09N27c0MkgDA8PJytvsn/QDJ0GTYbkw9asWUNGRgY5eUNmimLmzJmEh4fzwQcf0Lx58wL7HRwc8PLyYv369dpsTNAsVvSf//yHkSNHkpOTg52dHQEBAWzatIm7d+9qy50+fZrz588XuT0Pc3V1ZfDgwezatYt58+YV2J+cnMzIkSNRKpXaxWEUCgWtWrUiIiKCK1euaMtGR0ezb98+7f+LWk6lUjFw4ECmTJmi89o+Pj4AOpkppZm3tzdvv/02cXFxfPfdd8WuP3nyZN5//33S0tK026pWrYqVlZX2GgQFBQEU+F2Fh4czatQonUDitGnTuH37NhMnTuTTTz/F2tqazz//XBvQb9iwIQArV67UOVZCQoI2qzIkJISMjILZFQ9LTk7G1NRUZ6h+dnY2q1atAv7J0Mx/7z/6eqGhoWzbtg0LC4tinZ94texrVyH5Wizpd5K125KuxpJxJ0U73O9ZWVayx7aak86PVZUKAJjYWWJbzanQRSaEKC0a+Phw9tIlYh7qw89cvEhcQgKNniFz/2HOFStia23NvmPHtMPZQTO0/cDx41haWOD80LzPOTk5RMfFPXYBISFetZfZf5jYWZGTmU3c8UvkPjQiJDMplbvnbmLt5oiBsSYbtFxNFxIvRpN2O+mfcokPuHchEruazijKyPdN8e9Tu54P1/6+xJ24f/qQq+cvcS8+Ae8Gjx9JVxSVXJ2pVttD58elelUA7MqXo1ptD51FilQ5OdyJjadiFelDhPg3kDuoUmT37t1PXN27S5cuTJgwgaFDh9K7d2969OjB3bt3WbZsmc48U6DJTpw0aRJDhgyhc+fO3Lp1izVr1mgzJgH8/PywsLBg6tSpxMTEYG1tzbFjxwgLC8PY2Fgn8PQk+/btY/78+bi7u1OjRg02b96sk21hb29P48aN+eKLLxg0aBA9evSgb9++2NjYsHXrVv766y8++ugj7bl/9tln9O/fn169etG/f38yMjJYunTpM618nm/MmDHcv3+fH3/8kb1799KmTRusrKy4fv06GzZsIDMzkxkzZugMQx41ahT79u1jwIABvPnmm+jr67Ns2TLMzc11smCLUs7IyIjg4GDmzZvH8OHDadq0KZmZmaxevRpTU1N69OjxzOf2qr3//vts27aN1atX07lz52INQx88eDDvvPMO/fv3p2vXrhgbG7N7924iIyP59ttvAU1gsEWLFixevJiYmBgCAwOJiYlhxYoVODk5aef5PHLkCGvWrKFXr17aDNxPP/2UsWPHMnfuXEaPHk3z5s0JCgoiNDSUrKws6tevz19//cXGjRupVasWDRo0YNGiRbz11lssXLjwse1u1qwZ4eHhDBs2jLZt2/LgwQM2bNhAZGQkgPazUrNmTXr27MmyZctISEggMDBQuyJ6165d8fT0xMPDo0jnJ169yk29SDh9jbOLdlCpiRe5OTlER5zDolI5HHw1mbcZiQ9IuZWAVRUHTO0sn3JEIf49OrdsyYHjx5k0axYdg4LIVirZvGcPVV1caOrvD8Dtu3e5dP06HlWrUuExCx8WRk9Pj7d69uT7RYv4fPp0Xg8MJDc3l71HjxJ7+zbDg4N15sS+m5REjkqlHRYvREl7mf2Hnr4e7h0bcnltBGd+3oaDnzs56VnEHr0IegrNKud53Nr6c/9GPGcX7cCpUU309PSJOfI3eob6uLZ+vocPQjyPpu2C+PPwCZZ8N4fGbV4nR6nk4Pa9OLk649NQ895MTLhL5NUbuFRzw87h+TKcnyT5XhKqHBXWdtKHCPFvIEHNUmTq1KlP3N+lSxcaN27M4sWL+f7775kxYwZOTk5MnTqV6dOn65Tt168fycnJrFu3jkmTJuHp6cns2bNZvHixNsvT3t6en3/+menTpzNv3jyMjIxwc3Pj+++/58yZM/z222/cvXv3sSuy5zt79ixqtZpr164VWHkaoH79+jRu3Bg/Pz9WrlzJrFmzWLJkCTk5Obi5uWnnOMzn5eXFsmXLmDFjBrNnz8bKyooPPviAc+fOcerUqaJeTh0GBgZMnjyZ1q1bs2LFCpYuXUpKSgqOjo507NiR4ODgAsN+K1asyMqVK5k2bRq//PILRkZG9OzZE4AFCxYUu9zIkSOxsbEhJCSEb7/9Fn19ferWrct333330ufTfJFMTEyYOHEigwcP5ssvv2TDhg06i/M8SZMmTZg3bx4LFixg7ty5ZGVlUb16dZ3V1BUKBTNnzuSXX35hw4YNhIeHY2dnR+vWrRk1ahT29vZkZGTw5ZdfYmdnx0cffaQ9frdu3QgJCeGXX36hTZs21KxZkx9//JG5c+eyadMmdu7cScWKFXnvvfd45513MDExwdjYmKtXr2JmZvbYdvfp04eUlBTWrl3L5MmTsbe3x9fXl9mzZ9OnTx+OHj3Km2++CcBXX32Fq6sra9euJTw8HCcnJ4YPH86QIUOKfH6iZBhZmFLnnXZc33qcW7tPo29kQLmaLri19UfPQDOFQcrN21xed5AabzSRoKb4v2JtacnE0aP5NTSUNWFhGBsaElCnDv27dNE+WL1w7Rrzli/nvQEDihXUBKjv48MXH3zAum3bWJmXse5WuTKfvftugXkzU/MeJMnQc1FavOz+o4KfO3oGekTtP8v1rSfQNzLAxr0iVVrVxay8tbacia0FPu924Ob2P4iOOAdqsHatgFtbf+mzRIkyt7JkyLiRhK1cz54N2zAyMqKmnzdtenbCIK8PuXn5OusX/063t/q91KBm/lB1E1OZjkGIfwOF+lmWuBalTlBQEJUqVXrsyuJCiMdTq9X/ilWn++ydVtJNEKLU+rlc25JughCl2tB720u6CUKUWkPcC1/oVAih0dLl+aYRKC12Rz5bEtWr8G+5xi+aTKwihPi/928IaAohhBBCCCGEEP9PZPi5KHNUKhWJiYlFKmtpaYmJSdkYWpCYmKhdcOZJTExMsLQsPUOIymq7hRBCCCGEEEIIUXZJUFOUOXFxcbRo0aJIZadOnUr37t1fcotejDfeeIOYmJinluvWrRvffPPNK2hR0ZTVdgshhBBCCCGEEKLskqDmv0R4eHhJN+GVKV++PEuWLClS2WrVqr3k1rw43333HVlZWU8t5+Dg8ApaU3Rltd1CCCGEEEIIIYQouySoKcocY2NjGjVqVNLNeOHq1atX0k14JmW13UIIIYQQQgghhCi7ZKEgIYQQQgghhBBCCCFEmSJBTSGEEEIIIYQQQgghRJkiQU0hhBBCCCGEEEIIIUSZIkFNIYQQQgghhBBCCCFEmSJBTSGEEEIIIYQQQgghRJkiQU0hhBBCCCGEEEIIIUSZIkFNIYQQQgghhBBCCCFEmSJBTSGEEEIIIYQQQgghRJkiQU0hhBBCCCGEEEIIIUSZIkFNIYQQQgghhBBCCCFEmWJQ0g0QQgghhBBCCCGEEEIUrkWLFk/cv2fPnlfUktJFgppCCPEv8XO5tiXdBCFKreM2OSXdBCFKtXn7jUu6CUKUWu+xu6SbIESp1tKlbkk3QfyfkqCmEEIIIYQQQgghhBCl1P9rJubTyJyaQgghhBBCCCGEEEKIMkWCmkIIIYQQQgghhBBCiDJFgppCCCGEEEIIIYQQQogyRYKaQgghhBBCCCGEEEKIMkWCmkIIIYQQQgghhBBCiDJFgppCCCGEEEIIIYQQQogyRYKaQgghhBBCCCGEEEKIMkWCmkIIIYQQQgghhBBCiDJFgppCCCGEEEIIIYQQQogyRYKaQgghhBBCCCGEEEKIMkWCmkIIIYQQQgghhBBCiDLFoKQbIMSLNHbsWNavX6+zzdDQkHLlylG/fn2GDh1K9erVtfuCg4OJiYkhPDz8VTf1hcrOziYpKYkKFSq8tNcICgoCKNPXKjc3l9jYWCpXrlzSTRFlwM8rVxKbkMCEUaOeWvY/333HtcjIAtvr+/ry0dtva/9/8do1Vm7ezLXISCzMzPCvU4de7dtjZWGhU+/c5cus3rqVWzExmJmY0NDPjz4dO2JibPz8JybEC7Bh6Wru3U7g7c9GPLXs/K++J+Zmwc9HrXp16Dv8LZLuJvL9p1898RhvfTocN8/qBbbv37KTP/Yf5aPvxhe98UK8ZAsPRBCXnMz4zp2eWjYlI4NVx09w8tYtsnNUuNmXo2+D+lR/5Dvdxbh4Vp84wbU7d7AwNsa/ShXe8PfHytREp9z5mFjW/PEHt+7dw8zIiAZVq9I7wB8TQ8MXeo5CPI8r6w+Tcfc+dd5pV6x6afGJnJ6zBefXvKnSwg+AzKRUTny37on1vIe0waZqRQAeRN3h1p7TpNxKQJ2rxtzRFpcgX+w85P5AiLJIgpriX2ncuHHY2toCkJGRQWRkJCEhIezYsYOFCxfSoEEDAN59910yMjJKsqnPLSYmhrfeeothw4bRvXv3km5OqZWamsqbb75J8+bNGTHi6Tfh4v9b+JEj7Dl8mJrVqj21rFqtJvr2bfzr1KGBj4/OvvJ2dtp/n79yhSlz5mBmakq31q3R09MjbO9ezl++zKQPP8TCzAzQBDQnz55NVWdn+nfuzL3kZML27eNaZCRfjR6NQqF4sScrRDGdjDjKyQNHcPVwf2pZtVpNQlw8nn7e1K5XR2efjb3m82FuYU6PIf0L1FUqlWxdEYq5lQWOzpUK7L9y9gJ7N+3A0tr6Gc9EiBdv78VLhF+4SM2Kjk8tm5GdzcRNm0lKT6e9tzfmxsbsOH+eSVu28nW3rjjn9SF/x8YyNWwbZkZGdPXzRU+hx7azZzkfG8vErl2wyHvgdT4mlq+3bsXN3p5+DepzLzWNbefOcf3OHSZ07iT9hygV4v+4TPyJy1i7FS8ZI1eVy6V1B1GrcnW2G5obU6Nn04Llc3K4tvkYhuYmmFfUfJbS79znzC/bMTQ3wfm1OugZGHD71BXO/7abmv1ex752lWc/MSFEiZCgpvhXatmyZYFsvODgYHr06MHo0aPZvXs35ubmNG7cuIRa+OJER0dz8+bNkm5GqZecnMzZs2dp3rx5STdFlGK5ubmE7tjBum3bilznTmIiWVlZBNSpQ7P69R9bbsnatSj09Jj04Yc4li8PQH0fHz6dOpX1O3YQ3K0bAMs3bKCcrS0TRo/GKC+zxt7WlkVr1vDnhQv41ar1HGcoxLPLzc1l/5ZdhG/cXuQ6yXcTUWZlU9PPG99GAYWWMTIxLnRf2MpQVCoVPYcGY2puprPvxL7DbP09BFWOqngnIcRLkpuby/rTfxJy8mSR62z68y/i7t/ni44dqeWkySILdK/KyJWr2PTnXwwPeh2ApYcOo1AomNilM455QfwAV1fGhoSw4dRpBgQ2BGD50aOUs7Dgv507YWSguc2zt7Bg8cFD/BUVja+L84s8ZSGKRZ2bS9S+M9za8+cz1Y/ef4b028kFtusbGVLBr+BDtmtbjqFW5eLZqxmGpprA/80dJ1HoKfB9rwNGlpp+xbF+DU79tJEb2/+QoKYQZZDMqSn+b1SsWJHPPvuMxMREQkJCSro5QohSJlup5LNvv2VtWBhNAwKws7EpUr2ouDgAKj1h+oc79+4RFRdH8/r1tQHN/Dp1vb3Zf/y4tg1WFha0aNRIG9AEtBmjt2JiintaQrwQymwlcydMJ3zDNnwD/bG0LVp2ZEJsPADlKzoU6/Xio2I5sjuCuk3q41pD92Z16fS5bPptDW6e1alYRYYLipKXnZPDuND1rPvjJE2qV8fukSB8YdRqNQcuX8bX2Vkb0ASwMTMjuGFDPPMyPe88eEBUYhLNqlfXBjQBKtnaUNfFhQOXr2jbYGVqSpCnpzagCVCzoubYt+7deyHnKsSzUClzODV7M7d2/4mDrztG1k//jDwsLT6RyL1ncAnyeXrhvPKxRy5QoV51rN00nyW1Ws39G/HYVq+kDWgC6BsaYOfpTOa9B2Snlu0RfEL8P5Kgpvi/0rZtW4yMjIiIiAA02Zv5c0WCZm7Kr7/+mhYtWuDl5UXz5s2ZOHEi9+/f15YZO3YsrVq14vTp03Tv3p06derQtm1bVq5cWeD1jhw5wpAhQ2jQoAG1a9emadOmjB8/npSUFJ3jtW3blhUrVhAQEEBAQAAHDhwoUv3Q0FAGDhwIaIbce3h4aI97//59Jk2aRNOmTfHy8qJdu3b8+uuvqNXqF3ItQ0ND8fDw4OLFi4wcORI/Pz8aNmzIt99+i0qlYv369bRp0wZfX1/69OnDxYsXtXVnzZpFrVq1uH79OsHBwfj4+BAUFMTcuXNRqXSzbs6fP8+IESNo1KgRtWvXJjAwkI8++oj4+HidcqmpqUyZMoXXXnsNHx8fOnXqxNq1awE4duwYLVq0AGD27Nl4eHgQHR1drPM9fvw4/fv3x9/fHz8/P/r06VPo/KKhoaF07doVb29vGjZsyNixY0lISNDunz59Oh4eHqxYsUK7LTs7m06dOtGgQQNu375drHaJF0epVJKemcnowYMZHhyMnl7RushHg5qZWVkFyiTm/Q1xrlixwD5He3sepKZyLykJI0ND/vP++3Rv00anzM289+vDw9mFeJVycnLIysik93uD6DGkP/p6+kWqdzta8/ko76T5fGRnFvx8FGZ36FYMjQxp0a19gX3J95LoOOANBo4ZhrGJzDMrSp5SpSI9O5tRLVvw/uuvFan/uPMglcS0dOrkjSxSq9VkKpUAtKpdixY1awKQmJYGoB2K/rAK1lY8yMzkXmoqRgYGjGvfjm51/XTK3Lx3F4DylpbPfH5CPC91Ti6qrGw8+zbHo2dTFHpFnwohV5XL5ZBD2FZ3wsH36dOeANzcdQo9QwOqtPzn86BQKPAb3gm3dgVHBuSkZ2rK6Et4RIiyRoafi/8rxsbGuLi46ATYHvbVV1+xZcsWBg4ciLOzM1euXGHFihXcunWLxYsXa8slJyczZMgQmjdvTvfu3dm5cycTJkwgJSWFYcOGAXDw4EHeeecd6taty8iRI1EoFBw6dIjVq1dz//59Zs6cqT1eXFwc8+bN44MPPiAhIQFfX98i1Q8ICODdd99l/vz59O7dm3r16gGQnp7OgAEDiIuLo1+/fjg6OnL06FGmTJnCzZs3+e9///vCrunQoUOpV68eY8eOZefOnSxevJjLly9z6dIlBg0ahFqtZt68eYwcOZKwsDAM8rIH1Go1gwcPpnr16nzyySccO3aMmTNnEh8fz1dfaRaMuHTpEv369aNKlSoMHToUU1NTTp06xcaNG7l16xbr1mkmBc/OzqZ///5cuXKFXr164enpyf79+/niiy/IyMigffv2jBs3jqlTp9KqVStatWqFXTGCQ9evX2fYsGHUrFmTMWPGALBmzRref/99li9fjr+/P6AJmM6aNYs2bdrQq1cvbt++zfLlyzl+/Djr1q3Dzs6OESNGsHv3bn788UfatGmDvb09c+bM4fLly/zwww8vdbEn8WRmpqb8NH48+vpFC9bki46Lw8TEhN9CQzl8+jRZWVk42NvTp2NHGud9Jo2MjADIKCTg+SA1FYDklBTK5c0FnO/OvXucv3qVZevX41yxIgF16hSoL8SrYGJqwuhvPi/25yMhNh4jE2O2rdrA2eOnUWZlY1u+HC27d6BOg7qF1omPiuXSX+dp3OZ1rGwKZoSOmPQZ+gbyFVaUHmZGRvzYpzf6RXwYBhCf97DLytSU5UeOEn7xIhnZSipYWxEc2JB6VTTDYI3z3usZeQHPhz3I1ARiktMzKPfIgnN3Hjzg79g4lh89irOdLf6uMqxWlBx9E0P8P+yB3jMEDaMjzpJxL4VaA4JQ5z49OSMtPpHEC9FUalobYyvdjFATu4LB/ezUDO6ej8S0vLV2mLoQouyQb4Ti/46VlRWRhaxSDLB582Z69OjBhx9+qN1mZmZGREQEaWlpmJubA5CSksLAgQP5/PPPAejbty+DBg1i7ty59OnTB2tra5YuXUrFihVZsmSJNqDRr18/evfurc0UzZeZmcnUqVNp3/6fjJSi1Hd2dqZRo0bMnz8fX19funTpAsCiRYu4ceMGISEh2uzNfv368f3337NgwQJ69+6Np6fnc19LAF9fX3744QcA2rdvT2BgIIcPH2bTpk3alebT0tKYP38+0dHRuLq6Apq5p7y8vJg9ezYKhYIBAwbw8ccfs2bNGgYNGoS7uzu///47CoWC3377DZu8ocC9e/fWLB6xdSvJycnY2Niwbt06Ll68yPTp0+nUqZO23IABA/j5558ZMGAALVu2ZOrUqXh4eGivU1Ht2bOH9PR0Zs+erQ2Gtm/fnj59+nDhwgX8/f2Jiopizpw5DB06lI8++khbt0OHDnTv3p358+fzn//8B2NjY6ZMmUL//v2ZNm0agwYN4pdffqFDhw46v3/x6ikUimIHbECTqZmZmUlaZiYfBAeTlpHBtn37+GnpUlQqFc3q18fZ0RFTExOO//UXXVu10i7WkK1UcibvIUv2IzesD9LS+GDCBEATFB3cs6fOkHQhXqVn/XzcjokjOzOLzPQM3hgygMyMDI7s2s/aBb+Rq1IVOpfm8b0HUejp0aBFwYUfAAloilJHoVCgX8xFeNKzswFY88cfGOjpMahRI/QUCracOcOMHTsZ174d3pUrU9nWFlMjQ47fuEEXX59/+o+cHM5Ea6YkyVbl6Bz7QWYmI39fBYCRgQFvNm6kMyRdiFdNoVCg0C/+QlVpt5OI3PMX7p0bYGxtTmZS6lPrxB67BHoKnBrWfGrZXFUul9ZGkJudg3Nz72K3TwhR8iS/WvzfycnJeezqj46OjoSFhREaGqod4j169GhCQkK0Ac18+RmZAPr6+gwcOJDMzEwOHz4MwIIFCwgJCdEGJAGSkpKwsLAgPT29wGvnZ/vlK279h+3cuZMaNWpQvnx5EhMTtT8tW7YEYO/evU+sXxz5xwSwtLTEzs4OV1dXbUAT0C7adOfOHZ26Q4cO1fldDB48GLVarW3fhAkTCA8P1wY0QTPM3Dhvlc/867Bv3z7s7Ozo2LGjtpxCoWDatGmsWLHiuVf7dHTUzMUzadIkzp07B4CtrS07duwgODgYgF27dpGbm0tQUJDONbe3t6dmzZrs27dPe7y6desSHBzMpk2bGDlyJHZ2di80e1a8Wi0bN+atnj356O23qe/jw+sNGzL5o49wsLdn+YYN5ObmYmBgQMegIK5HRvLTr79yKyaGG9HR/LBoEZl5N7aPBowUCgWj8obCOzs6Mnn2bI79+WcJnKEQzy6geSM69u9B3+FvUateHeo2acDQz8dgW74c29dsIjdXdxVbZbaSP4/8gaevF7b2Mt2C+PdS5k23k56VzYQunWnuUYOmNaozvlNHzI2NWXX8BAAG+vp0qOPNjTt3mRW+l8h797h59y4/7tpNVt7DsEczRBUKBSNbBvH+669R2daGr7eEcez6jVd6fkI8L3VuLpdDDmLl6kDFAI+nV0Azd2fC6WuUq+mMia3FE8uqc3O5vDaC5CuxlK/jRoW61V5Es4UQr5g8shP/d5KTkx879HjChAmMHj2acePG8eWXX+Lr60urVq3o0aMHlg/NRWRjY4O9vb1O3Sp5w4Ri8hby0NfXJyoqipkzZ3L16lUiIyOfOF9iuXLldP5f3PoPi4yMJDMzk8DAwEL3x+XNAfgiPHodDAwMCj0XoMDNq7u77rw4j15DhUJBUlISCxYs4NKlS0RGRhIbG6udFzT/eDExMbi4uBQIXlaqVOl5Tk2rbdu27Nq1i7CwMMLCwihfvjzNmzenW7du2mB0fvZvnz59Cj2G4SMZdmPGjGHHjh1ER0fzww8/YG1dtEU3ROnTqkmTAtuMDA1pFhDAum3biIqLo0qlSvRo21abxXk4b3Xcel5edG7ZkpWbNmFhpjtEysLMjEZ1NcNzG/r58dGUKfwaEkIDX9+Xfk5CvCj1X29cYJuhkSG+gf7s3bSDhJh4HJ2dtPuuX7yCMisbrwDfV9hKIV69/MzJ+m6uWBj/M+TV3NiYui4uRFy5QqZSiYmhId3r1iUtK5vt585x5Oo1AOpWcaGTjw+rjp/QqQ9gYWxMYN53rAZV3fhk7Tp+O3KEBlXdXtHZCfH8oiPOkRaXhM+w9ijTNFMt5GRopvFRZeegTMvEwMxY5/v//evx5GbnYO/l+sRj5+aouLjmAPfO3cK2RiVq9Cz4XU4IUTZIUFP8X0lNTSUqKorXXnut0P2BgYHs3btX+3Po0CGmTp3K0qVLCQ0N1QZDHw1QwT8BtvwA3qJFi5g2bRpubm74+/vTunVrfHx8WLZsGZs3by5Q/9EsreLWf5hKpaJevXp88MEHhe53cCjeKrRPUthwxKJmRj56HR+9hmFhYXz88cc4ODjQsGFDmjVrhpeXFwcPHmTBggXaeiqV6rmzMZ/Wzp9++olLly6xa9cuDhw4QGhoKOvWreOjjz5i6NCh2rbPmzcPExOTpx7z1q1b3MtbiXTnzp0y9PxfyDrvQUhWXiamQqFgUPfudGnZkvg7dyhnY0P5cuVYtXkzenp62D9hnlcjQ0Pq1q7N9v37SUlNxcriydkHQpR25laaz0f2I/PMXj7zN/oGBtSo8/Rhg0KUZfkrpFuZmhbYZ21milqNNqipUCgY2CiQLr4+xN1PoZyFOeUtLVl9/AR6CgX2T+gTjAwM8HNxYce586RkZGJl+vTvKEKUBkmXY1Crcvlz7pYC+2IizhMTcZ6AT97QychMvBSNwkAPO4/Kjz2uKlvJ38vDSb4ah51nZWr2ex29Z5heRQhROkhQU/xf2b59O2q1WrsS9sOys7O5cOECjo6OdOjQgQ4dOpCbm8uSJUuYNm0aW7du1Q41vnv3rs4cmwA3b94ENNmGWVlZzJo1iwYNGrB48WLt4jiAzgJBj/O89StVqkRaWhqNGjXS2X7//n2OHDmizYgsaVFRUVSr9s9Qj4evIcCMGTOoUqUKISEhmD2UxfZoUNfJyYlLly4VOP7+/fsJCwvjk08+ea52xsbGEhsbi7+/Px4eHnzwwQfEx8czaNAgFi1axNChQ7VZoRUrVqRmTd2b8f3792Px0A1HTk4O//nPf7CxsaFr164sXLiQDh060KpVq+dqp3j1EpOTmTxnDo3q1uWNdu109sXkZVaXz8tcPnTyJDZWVtSuXh0bKyttub+vXqWqszNGhobE3L7NlLlz6dKyJa2b6s4nmJmVhUKhwFDmRRNlREpSMkunz8O7QV1e79xGZ9/d+AQAbMvrZvZHXr1BJVdnTAoJ9Ajxb+JsZ4ehvj7RSUkF9t1JeYChgT5WeQ9JD1+9ho2ZKbWcnLB+6PvQhbg43MrbY2RgQExSMt9s20ZnHx9a1a6lc7xMpRKFAgxlZWdRhri1DyAnI1tnmzI1g0trInDwq4qDXzUMLXSD9CmRCVhWssfAxIjC5KpyufD7XpKvxmHv7YpHr6YS0BSijJOeTfzfSEhI4KeffqJChQraxWQelpSURO/evXUyAPX09PD29tb+O59arWbFihXa/+fk5PDrr79iaWlJYGAgmZmZZGRk4OrqqhOQvHDhAsePH9fWeZzi1C9saHdQUBAXL15k//79OsedN28eo0aN4sqVK4997Vdp2bJlOv9fsmQJBgYGBAUFAZqpApycnHQCmnFxcezcuRPQZGgCNGvWjLt377Jr1y6d4/3666/s27cPW1vbxw6BL4r58+fz5ptv6gz/d3R0xMHBQfu+eP311wHNXKj5w+NB8zt77733+PXXX7XbFi1axPnz5xk3bhyjRo3C3d2diRMnkpycXOy2iZJlZ2NDekYG4YcPk56Rod1+NzGRfceOUbtGDWzzAphbw8NZvHat9n0LcPLcOS5dv64NYDra25OekcGugwd1/kbcuXePo3/+Sc1q1TAtQiawEKWBla0NmRkZ/HHgCJkPfT6S7yVx6uAx3DyrY2n9T4BflZPDndh4KlZ5fIaNEP8WJoaG1KviwunISKIT/wlsJqQ84OStSPyrVNF+x9h65gxLDh5G9dB3mFO3IrkUf5vWeQFMR2sr0rOz2X3hAjkP9TN3Hjzg2PUb1KxYEVOjwgM9QpRGlpXssa3mpPNjVaUCoFnF3LaaE/qG/9wn5apUpN9Oxtzp8SNfIvf+RdLlWMp5VcGzdzMJaArxLyDpHuJfaffu3dja2gKarMfr16+zYcMGsrKyWLhwYaHDg/ODnb///jsZGRn4+fmRnJzM8uXLsbe3p90jWVhz584lJiaG6tWrs23bNk6fPs3XX3+Nqakppqam+Pj4EBoaioWFBW5ubly5coW1a9dqv6CmpaU9dh5Fa2vrItfPP89NmzahVqvp1q0bw4YNY+fOnQwfPpw+ffpQvXp1Tp48ycaNG2nWrBnNmjV7Ydf6eaxfv57U1FTq1q1LREQEe/fuZfjw4dqsx2bNmhEWFsb48ePx9vYmOjqaNWvWkJF3c5yWlgZo5rEMCQlhzJgx9O/fHzc3N/bt28ehQ4eYMmUK+vr62NjYoKenx549e3BycqJ169ZFnseyf//+bNy4kf79+9O7d2+sra05evQox48fZ+TIkQDUqFGD4OBgli1bRnJyMi1bttS+f8zNzRk1ahQA165dY/bs2TRp0oQOHToA8N///peBAwfy9ddf8913373QayxerNt373Lp+nU8qlalQt58sm/36sX0hQv58ocfaNGoERmZmew4cAB9PT3e6tlTW7dLq1Z8v2gR3y5YQH0fH+4kJrIlPByfmjVpGqBZAVpfX5/Bb7zBnGXL+O/MmTQLCOBBWho7DhxAT6Fg8BtvlMh5C1EUiQl3ibx6A5dqbtg5aD4fHQf0ZOXsRfz89Uz8mweSnZnF0T0R6Onr03FAD536yfeSUOWosLazLYnmC/FS3U5J4XL8bWo4VqBC3sOufg0b8HdcHJO2bKGtlxcG+npsP3sOQwN9etcP0Nbt7OvLj7t2M237DgJcXbmb+oCwM+eo41yZJnkjXvT19HizUSPm7t3HxM1baFq9Gg8ys9h5/jx6egrebNyo0HYJUVpkJD4g5VYCVlUcMLWzfHqFR2Qlp6FW5WJiXfh0DMr0LGIizqHQ18OmakUS/iq4eJZ9bRf0jQpOMyaEKL0kqCn+laZOnar9t6GhIRUqVCAoKIh33nkHN7fHT5I+adIknJ2d2bp1K1u3bsXU1JTAwEDGjBlTYHGhRYsWMWHCBNavX0+1atWYPXu2zvDhmTNnMnXqVEJCQsjOzqZSpUoMHToUd3d3RowYwdGjR2nTps2jTSh2fXd3d4KDgwkNDeXs2bM0aNAAFxcXVq9ezU8//cT27dtZvXo1Tk5OvP/++wwdOlQn67QkzZ49mzlz5rBz506cnZ2ZNGkSvXr10u6fMGECZmZmhIeHs3HjRhwdHenatSutWrWib9++HD16lFq1amFiYsKyZcv48ccf2bp1Kw8ePMDd3Z0ff/xRG4w2NTVlzJgxLFq0iMmTJ+Pi4kKDBg2K1E4PDw+WLFnCnDlzWLx4Mampqbi6uvLll1/Sv39/bbnPP/+cqlWrsmrVKr799lssLS3x9/fXZmPm5uby+eefo1AodFY7b9CgAV26dGHjxo106NDhsXO+ipJ34do15i1fznsDBmiDmgF16vDJO++wfudOVmzciJGhIbWqV6df585UqlBBW7eBry8j33yTjbt28WtoKNaWlnRu0YKurVvrfCab1a+PoYEBG3fv5rfQUIyNjfGqUYM+HTvi9NDxhChtbl6+zvrFv9PtrX7aoGatut70G/E2+7fsYufazRgaGeLqUY3Wb3SkfEXd93NGWjoAJjLnn/gXuhgXz/x9+3n3tebaoGZ5S0u+6tqFlceOs+XMGdRqNZ6OjvRr2EBbBjSL/YxoEcSmP/9k2ZGjWJua0tGnDl18fXX6j6Y1qmOor8/GvHLGBgZ4VapErwB/nGxsXvUpC1EsKTdvc3ndQWq80eSZgpo56Zo5mvVNCg9KPoi+Q65Sk8V8bdPRQstYu74hQU0hyhiF+uFxkkKIpxo7dizr168vdA5HUTSzZs1i9uzZ7Nmzh8qVZZjhi5Jy5kxJN0GIUuu4zeOn/BBCQL2NESXdBCFKrfe8sp5eSIj/Y6te/7Skm/BC7I48VdJNeKyWLnVLugmlUulI1xJCCCGEEEIIIYQQQogikuHnQvyfSkxM1Fmw5HFMTEywtCz+EJDSLjk5GaVS+dRyhoaG2MiQLSGEEEIIIYQQolSRoKYQ/6feeOMNYmJinlquW7dufPPNN6+gRa/WiBEjtCvJP0n9+vULrNIuhBBCCCGEEEKIkiVzagrxf+rkyZNkZT19fiAHBweq5a2s+W9y7tw5UlJSnlrOysoKLy+vV9Ci5ydzagrxeDKnphBPJnNqCvF4MqemEE8mc2q+fDKnZuEkU1OI/1P16tUr6SaUqLISqBRCCCGEEEIIIURBslCQEEIIIYQQQgghhBCiTJGgphBCCCGEEEIIIYQQokyRoKYQQgghhBBCCCGEEKJMkaCmEEIIIYQQQgghhBCiTJGgphBCCCGEEEIIIYQQokyRoKYQQgghhBBCCCGEEKJMkaCmEEIIIYQQQgghhBCiTJGgphBCCCGEEEIIIYQQokyRoKYQQgghhBBCCCGEEKJMkaCmEEIIIYQQQgghhBCiTJGgphBCCCGEEEIIIYQQokwxKOkGCCGEeDGG3tte0k0QotT6mbYl3QQhSrWhXlkl3QQhSq0h7i1LuglCCCEKIZmaQgghhBBCCCGEEEKIMkWCmkIIIYQQQgghhBBCiDJFgppCCCGEEEIIIYQQQogyRYKaQgghhBBCCCGEEEKIMkWCmkIIIYQQQgghhBBCiDJFgppCCCGEEEIIIYQQQogyRYKaQgghhBBCCCGEEEKIMkWCmkIIIYQQQgghhBBCiDJFgppCCCGEEEIIIYQQQogyRYKaQgghhBBCCCGEEEKIMkWCmkIIIYQQQgghhBBCiDJFgppCCCGEEEIIIYQQQogyxaCkGyDEsxg7dizr16/X2WZoaEi5cuWoX78+Q4cOpXr16tp9wcHBxMTEEB4e/qqb+kJlZ2eTlJREhQoVXtprBAUFAZTpa5Wbm0tsbCyVK1cu6aaIMuzK+sNk3L1PnXfaPbVsdmoGN3eeIvFiFLnKHCycyuHaxh8rl/I65RIvxxC17y9SY+6BQoGVc3mqtKqrLZeZlMqJ79Y98bW8h7TBpmrFZz8xIV6An1euJDYhgQmjRj217MVr11i5eTPXIiOxMDPDv04derVvj5WFxTMd/88LFwjdvp3rUVHo6elR3dWVPh07Ut3V9XlOSYgX5mX0H8nX4ri1+zSpcYkYmBhi7+WKa+u66BsZ6pR7Wj8jRGmwYelq7t1O4O3PRjy1bFrKA3aFbOXin+dQKpU4ValM6zc64ezu+tg68VGxzJ80g2btWxLUVfM5TLqbyPeffvXE13rr0+G4eVZ/YhkhROkiQU1Rpo0bNw5bW1sAMjIyiIyMJCQkhB07drBw4UIaNGgAwLvvvktGRkZJNvW5xcTE8NZbbzFs2DC6d+9e0s0ptVJTU3nzzTdp3rw5I0Y8/YuSEIWJ/+My8ScuY+329AcIOVlKzizcTvaDdCo1roWBiTGxRy9wdtF2fN/riLmj5m9U8o14zv+6CzMHG1xb10WtUhN77AJnFm7DZ2g7LJ3LY2huTI2eTQu8Rm5ODtc2H8PQ3ATzinYv/HyFKI7wI0fYc/gwNatVe2rZ81euMGXOHMxMTenWujV6enqE7d3L+cuXmfThh1iYmRXr+H9fucI38+ZR2dGRvp06oVKp2BERwYQff2Ti6NFUk8CmKGEvpf+4FsfZxTuwqFQOt7b1yLqfTuzhv0mNuUedoe1QKBSackXoZ4QoaScjjnLywBFcPdyfWjYrM5Nfvp3Fg+QUGrVqjom5Gcf2RLB42hze/fJDKlQu+JBXpVIRsmgFqhyVznZzC3N6DOlfoLxSqWTrilDMrSxwdK707CcmhCgREtQUZVrLli0LZOMFBwfTo0cPRo8eze7duzE3N6dx48Yl1MIXJzo6mps3b5Z0M0q95ORkzp49S/PmzUu6KaIMUufmErXvDLf2/FnkOtH7z5Jx9z7eQ9pi4+YIQPk6rpyYHkJ0xFk8ejYD4PrW4xhbm+P7Xkf0jTTdr0Ndd07+sJ6bu07h/VYb9I0MqeBX8Ev+tS3HUKty8ezVDENT4+c/USGeQW5uLqE7drBu27Yi11mydi0KPT0mffghjuU1AZX6Pj58OnUq63fsILhbt2Id/9fQUMrZ2PD1xx9jbGQEQLP69fnw669ZtWULX3zwwTOenRDP56X2H9tOYGxjTp132qFvqOk/jK3NubbpKElXYrCrofkuXJR+RoiSkpuby/4tuwjfuL3IdQ6E7eFu/B1NBqWH5kGXd30/vv90EhHb9vDGOwMK1tm6mzux8QW2G5kY49sooMD2sJWhqFQqeg4NxtS84IM2IUTpJnNqin+dihUr8tlnn5GYmEhISEhJN0cIUUaolDmcmr2ZW7v/xMHXHSPrp3+xVavV3D59FTuPytobUgAjSzPc2gVg5arJ1FFmZJEWl4i9t6v2RhPAyMIUazdHUiITHvsaafGJxB65QIV61bF+6DWEeJWylUo++/Zb1oaF0TQgADsbm6fWuXPvHlFxcTSvX18b0ASoVKECdb292X/8eLGOn5qezq2YGBr6+WkDmgA2VlbUrFaNSzduPNc5CvGsXmb/oVLmYGRhgmNADW1AE9BmgqbFJQLP188I8bIps5XMnTCd8A3b8A30x9LW+ql11Go1pw8dp0admtqAJoCltRVte3ehSo2qBerER8Wyf8tOXutUtAB+fFQsR3ZHULdJfVxrPD1zVAhR+khQU/wrtW3bFiMjIyIiIgBN9mb+XJGgmZvy66+/pkWLFnh5edG8eXMmTpzI/fv3tWXGjh1Lq1atOH36NN27d6dOnTq0bduWlStXFni9I0eOMGTIEBo0aEDt2rVp2rQp48ePJyUlRed4bdu2ZcWKFQQEBBAQEMCBAweKVD80NJSBAwcCmiH3Hh4e2uPev3+fSZMm0bRpU7y8vGjXrh2//vorarX6hVzL0NBQPDw8uHjxIiNHjsTPz4+GDRvy7bffolKpWL9+PW3atMHX15c+ffpw8eJFbd1Zs2ZRq1Ytrl+/TnBwMD4+PgQFBTF37lxUKt0hIefPn2fEiBE0atSI2rVrExgYyEcffUR8vO6T1tTUVKZMmcJrr72Gj48PnTp1Yu3atQAcO3aMFi1aADB79mw8PDyIjo4u8rkeO3YMDw8P1q9fT6dOnfD29mbcuHEA3Llzh4kTJ2rfM/Xq1WPgwIGcPHlS5xhqtZrffvuNjh07UqdOHYKCgpg+fbrO9Ae5ubksXryYtm3b4uXlRdOmTZk8eTKpqalFbqt48dQ5uaiysvHs2xyPnk1R6CmeWicrKZXs++nYVHPSHEOtRpWtBMCpoScVAzSfVQNjQ/zHdKdS49oFjqFMz0Sh9/ju+OauU+gZGlClpd+znJYQL4RSqSQ9M5PRgwczPDgYvSe8Z/Ml5vWpzhULDg90tLfnQWoq95KSinx8MxMTfvjiCzo81J/ne5Cain4R2iTEy/Ay+w99QwO83myNy2s+OvXzg5nGNpq5aZ+nnxHiZcvJySErI5Pe7w2ix5D+6OvpP7VO8t1EHiTdp1ptT0DzGcnOzAKgQVATApo30imvUqlYv2Ql7rU98An0L1K7doduxdDIkBbd2hfzjIQQpYUMPxf/SsbGxri4uOgE2B721VdfsWXLFgYOHIizszNXrlxhxYoV3Lp1i8WLF2vLJScnM2TIEJo3b0737t3ZuXMnEyZMICUlhWHDhgFw8OBB3nnnHerWrcvIkSNRKBQcOnSI1atXc//+fWbOnKk9XlxcHPPmzeODDz4gISEBX1/fItUPCAjg3XffZf78+fTu3Zt69eoBkJ6ezoABA4iLi6Nfv344Ojpy9OhRpkyZws2bN/nvf//7wq7p0KFDqVevHmPHjmXnzp0sXryYy5cvc+nSJQYNGoRarWbevHmMHDmSsLAwDAw0f17UajWDBw+mevXqfPLJJxw7doyZM2cSHx/PV19pJuu+dOkS/fr1o0qVKgwdOhRTU1NOnTrFxo0buXXrFuvWaRZOyc7Opn///ly5coVevXrh6enJ/v37+eKLL8jIyKB9+/aMGzeOqVOn0qpVK1q1aoWdXfHnH/zqq6/o3r07PXv2xMnJiczMTPr378+DBw/o378/FSpU4ObNm6xcuZIhQ4awe/duypUrB8DEiRNZuXIlr7/+On379uXGjRssXryYmzdvMnv2bAA+//xzNm7cSNeuXXnzzTe5du0aK1eu5NSpU6xcuRJjYxleXBL0TQzx/7AHevpFv/HLuKd58GBobsL1bSeIP3EZVaYSk3KWVG1fn3I1nQFQ6Olham9VoH5afCIptxKwrV74HE5p8YkkXoimUtPaGFvJkChRcsxMTflp/Hj09Z9+I5rPKC+bMiMrq8C+B3kPcZJTUihna1uk4+vp6VHRwaHA9lsxMVy+cQOfmjWL3DYhXqSX2X88KjMplfs34rkedgKzCjaUq+UCPHs/I8SrYGJqwuhvPi9WH3Lv9h0AzC0t2L56I38cOEJWRiZ2Dva069MVT18vnfIHt+3h3u079PvgLXJzn57cER8Vy6W/ztO4zetY2Tw9c1QIUTpJUFP8a1lZWREZGVnovs2bN9OjRw8+/PBD7TYzMzMiIiJIS0vD3NwcgJSUFAYOHMjnn38OQN++fRk0aBBz586lT58+WFtbs3TpUipWrMiSJUu0N3D9+vWjd+/e2kzRfJmZmUydOpX27f95GliU+s7OzjRq1Ij58+fj6+tLly5dAFi0aBE3btwgJCREm73Zr18/vv/+exYsWEDv3r3x9PR87msJ4Ovryw8//ABA+/btCQwM5PDhw2zatEm70nxaWhrz588nOjoa17zFGnJzc/Hy8mL27NkoFAoGDBjAxx9/zJo1axg0aBDu7u78/vvvKBQKfvvtN2zyhhz27t1bM3H31q0kJydjY2PDunXruHjxItOnT6dTp07acgMGDODnn39mwIABtGzZkqlTp+Lh4aG9TsVVr149vvzyS+3/w8LCuHXrFr/88gtNm/6ziIuzszP//e9/OXnyJK1bt+bq1ausWrWKXr16MWnSJG05c3Nz5s+fz9WrV7l37x6hoaFMnDiRPn36aMs0b96ct99+m1WrVjFo0KBnard4PgqFAoX+07NrHpaTmQ3Ard2nUejr4d6xASgUREec4+/le/Aa3BrbvCycR6mylVxaq/mMV27uXWiZ2GOXQE+BU0MJ1oiSpVAoinUzCuDs6IipiQnH//qLrq1aaRczyVYqOZP30DFbqXzm4wNkZmUxZ9kyALq0bFns+kK8CK+q/1CmZ3HiO82DXj0jfdw7NdAZkv6oovQzQrwKz/I3PjNvlNOe9WHo6+vTvm939PQUHNy+lxWzFjHow3epVltz/5MQE8feTTvo0L8H1na2JN1NfOrxj+89iEJPjwYtCi7QKIQoO2QcgvjXysnJ0d5APcrR0ZGwsDBCQ0O1Q7xHjx5NSEiINqCZLz8jE0BfX5+BAweSmZnJ4cOHAViwYAEhISHagCRAUlISFhYWpKenF3htf3/d4RDFrf+wnTt3UqNGDcqXL09iYqL2p2Xejd3evXufWL84Wj50s2hpaYmdnR2urq7agCagXbTpzp07OnWHDh2q87sYPHgwarVa274JEyYQHh6uDWiCZph5fsZi/nXYt28fdnZ2dOzYUVtOoVAwbdo0VqxY8djfd3EFBOhOIt6+fXuOHDlCkyZNtNuys7O1/364fWq1muDgYJ36b7/9Nps2bcLFxYWdO3eiUCho3ry5zu+sVq1alC9fnn379r2QcxCvRm5OLqC5OfUZ1p4KdatRwc8dn3faYWBqzM2dJwutp8rO4fyyPaTFJVG5ubfOfGraMsocEk5fo1xNZ0xsLV7qeQjxMhgYGNAxKIjrkZH89Ouv3IqJ4UZ0ND8sWkRm3t/QZwlk5svKzmbazz9zKyaGLq1aUeuh/kiI0u6Z+g8FePZpTo2eTTFzsOHs4p3cPXez0OMXpZ8RojTLUeYAkJmewTv/GUXdJvXxbRTA22NHYGpmyu6QrUDeInOLVuJSrWqBIemPo8xW8ueRP/D09cLWvvijuoQQpYdkaop/reTk5McOPZ4wYQKjR49m3LhxfPnll/j6+tKqVSt69OiBpaWltpyNjQ329vY6datUqQJATEwMoLkhi4qKYubMmVy9epXIyEhu37792HblD1POV9z6D4uMjCQzM5PAwMBC98fFxRXpOEXx6HUwMDAo9FxA8+XiYe7uuhNvP3oNFQoFSUlJLFiwgEuXLhEZGUlsbKx2XtD848XExODi4lIgeFmp0osdUlXY+0ahUPDzzz9z+vRpIiMjiYyMRJmXYfRw+wBtlmo+KysrrKw0Q8IiIyNRq9W89tprhb72o0F1UbrpG2re8/a1q+isSm5gaoSdZ2USTl9Dla1E38hQuy8nI5vzv+0m5VYCFfyr49qqbqHHvn89ntzsHOy9XF/qOQjxMvVo25a0jAy27dvH4bw5iOt5edG5ZUtWbtqEhdmzTauQlp7ONwsWcPn6dV5v2JA+Dz3sEqIseJb+w9DUmPJ13DT1vKpwauYGrm09XqCfKGo/I0RpZpiX8FGrno/OquSmZqZ4+npx+vAJsjOzOLongvjoGIaMG0XaA83UJpl5CQfZ2UrSHqRiZmGuc/9w/eIVlFnZeAX4vroTEkK8FBLUFP9KqampREVFPTZwFBgYyN69e7U/hw4dYurUqSxdupTQ0FBtUMvQ0LBA3fwAVn4Ab9GiRUybNg03Nzf8/f1p3bo1Pj4+LFu2jM2bNxeo/2hWSnHrP0ylUlGvXj0++OCDQvc7FDL32LMqLJumqJmRj17HR69hWFgYH3/8MQ4ODjRs2JBmzZrh5eXFwYMHWbBggbaeSqV6YdmYT/LouV6/fp2+ffuiVCpp0qQJ7du3p2bNmqjVaoYPH67TvqfJzc3F3NxcO7/mo2Q+zbLFyEoThDY0Nym4z8IU1KDK+uemNDs1g3NLd5EWm4hj/RpU6xL42Pd04qVoFAZ62HlUfnknIMRLplAoGNS9O11atiT+zh3K2dhQvlw5Vm3ejJ6eHvbPMO/x/QcPmDJ3Ljejo2nZuDFDevd+JX2DEC9ScfuPR+kbGmDn6Uzs4Qso0zK1xylOPyNEaWaVt0K6uWXB0SrmVhagVpOVlcWVcxdQ5ahYMOn7AuUObQ/n0PZwPpw2Xicj8/KZv9E3MKBGHZneR4iyToKa4l9p+/btqNVq7UrYD8vOzubChQs4OjrSoUMHOnToQG5uLkuWLGHatGls3bpVO3z47t27OnNsAty8eRPQZBtmZWUxa9YsGjRowOLFi7WL4wA6CwQ9zvPWr1SpEmlpaTRqpDvU4v79+xw5ckSbEVnSoqKiqFatmvb/D19DgBkzZlClShVCQkIweyhr59GgrpOTE5cuXSpw/P379xMWFsYnn3zyEloPCxcuJCUlhW3btulkYRbWPtCc78PZqbdv32bq1KkMGDCASpUqcfDgQby8vLTZm/m2b9+Oi4vLSzkH8XKYO9qgMNAjPSG5wL7MpFT0DPW1N5o5WUrtjaZT41q4d6j/xGOnRCZgWckeAxOjJ5YTojQ7dPIkNlZW1K5eHZuH/ub9ffUqVZ2dMSrk4eGTZGRmagOa7V9/nUHdu7/oJgvxShS1/0i/k8y5pbuo3NQbp4a686SrspSgAIWB5mFscfsZIUqzCpUqom9gQEJsfIF9SXcTMTA0xNzSgra9u5KRpjtlV1rKA9YtXI5PoD++jQKwsLLU2R959QaVXJ0xMTV9qecghHj5ZE5N8a+TkJDATz/9RIUKFbSLyTwsKSmJ3r1762QA6unp4e3trf13PrVazYoVK7T/z8nJ4ddff8XS0pLAwEAyMzPJyMjA1dVVJyB54cIFjh8/rq3zOMWpX9jQ7qCgIC5evMj+/ft1jjtv3jxGjRrFlStXHvvar9KyvEUc8i1ZsgQDAwOCgoIAzVQBTk5OOgHNuLg4du7cCfyTAdmsWTPu3r3Lrl27dI7366+/sm/fPmxtbR87BP55JCcnY2pqqg1agiY4vmrVKp32NW/eHICVK1fq1A8NDWXbtm1YWFhoz3nevHk6ZcLDwxk1atRTs3NF6aJvZEi5mi4kXowm7XaSdntm4gPuXYjErqYziry/Kdc2HdHcaDaq+dQbzVyVivTbyZg7yTxPomzbGh7O4rVrdTLZT547x6Xr12ndtPiLMyxas4ab0dG0e+01CWiKMq2o/YeJnRU5mdnEHb9E7kOfo8ykVO6eu4m1myMGxpqHA8XpZ4Qo7YxMjPH08+LymfMkxPwzpVbSnXtcPH0OTz8v9PT0qOTqTLXaHjo/LtWrAmBXvhzVantg+FDGsyonhzux8VSsIiNhhPg3kExNUabt3r0bW1tbQJP1eP36dTZs2EBWVhYLFy7ExKTgkJ78YOfvv/9ORkYGfn5+JCcns3z5cuzt7WnXrp1O+blz5xITE0P16tXZtm0bp0+f5uuvv8bU1BRTU1N8fHwIDQ3FwsICNzc3rly5wtq1a7XB0bS0NKytrQttv7W1dZHr55/npk2bUKvVdOvWjWHDhrFz506GDx9Onz59qF69OidPnmTjxo00a9aMZs2avbBr/TzWr19PamoqdevWJSIigr179zJ8+HDtXJjNmjUjLCyM8ePH4+3tTXR0NGvWrCEjb9XDtLQ0APr06UNISAhjxoyhf//+uLm5sW/fPg4dOsSUKVPQ19fHxsYGPT099uzZg5OTE61bt37s9S+qZs2aER4ezrBhw2jbti0PHjxgw4YNREZG6rSvZs2a9OzZk2XLlpGQkEBgYKB2RfSuXbvi6emJh4cHLVq0YPHixcTExBAYGEhMTAwrVqzAycmJt99++7naKl6ujMQHpNxKwKqKA6Z2mqf+bm39uX8jnrOLduDUqCZ6evrEHPkbPUN9XFvXAyA9IZmE09fRNzXEwqkct09fK3DsCn7/ZPdmJaehVuViYi0LBImy4/bdu1y6fh2PqlWpkDcPc5dWrfh+0SK+XbCA+j4+3ElMZEt4OD41a9L0kUXZniY6Pp6IEycwMzXFtXJlDuQ9/HtYs/oSyBGl07P2H3r6erh3bMjltRGc+XkbDn7u5KRnEXv0IugpNKumU/x+RojSJjHhLpFXb+BSzQ07B00f0qZnZ25evMriaXMIbNUMPX0Djuzej6GRIa26d3im10m+l4QqR4W1ne2LbL4QooRIUFOUaVOnTtX+29DQkAoVKhAUFMQ777yDm5vbY+tNmjQJZ2dntm7dytatWzE1NSUwMJAxY8YUWCRm0aJFTJgwgfXr11OtWjVmz55Nq1attPtnzpzJ1KlTCQkJITs7m0qVKjF06FDc3d0ZMWIER48epU2bNo9tS1Hru7u7ExwcTGhoKGfPnqVBgwa4uLiwevVqfvrpJ7Zv387q1atxcnLi/fffZ+jQoTpZpyVp9uzZzJkzh507d+Ls7MykSZPo1auXdv+ECRMwMzMjPDycjRs34ujoSNeuXWnVqhV9+/bl6NGj1KpVCxMTE5YtW8aPP/7I1q1befDgAe7u7vz444/aYLSpqSljxoxh0aJFTJ48GRcXFxo0aPBc7e/Tpw8pKSmsXbuWyZMnY29vj6+vL7Nnz6ZPnz4cPXqUN998E4CvvvoKV1dX1q5dS3h4OE5OTgwfPpwhQ4YAmvnlZs6cyS+//MKGDRsIDw/Hzs6O1q1bM2rUqAILMonSJeXmbS6vO0iNN5pob0pNbC3webcDN7f/QXTEOVCDtWsF3Nr6a8vcv6EZOqXKUHJ53cFCj/3wzWZOehYA+ibFG5orREm6cO0a85Yv570BA7RBzQa+vox880027trFr6GhWFta0rlFC7q2bl3sPurC1asApGdkMG/58kLLSFBTlFbP2n+Apn/QM9Ajav9Zrm89gb6RATbuFanSqi5m5TUPbovbzwhR2ty8fJ31i3+n21v9tEFNW3s7hn4+mp3rNnNw+17UajVValSlTc/O2jLFlT9U3cS0YPKLEKLsUajzlxcWQugYO3Ys69evL3QOR1E0s2bNYvbs2ezZs4fKlWWIx8vWZ++0km6CEKXWz+XalnQThCjVht7bXtJNEKLUGuLesqSbIESp1tKlbkk34YXYHXmqpJvwWP+Wa/yilY40LiGEEEIIIYQQQgghhCgiGX4uxL9cYmKizgINj2NiYoKlpeVTy5U1ycnJKJXKp5YzNDTExsbm5TdICCGEEEIIIYQQz02CmkL8y73xxhvExMQ8tVy3bt345ptvXkGLXq0RI0ZoV5J/kvr16xdYpV0IIYQQQgghhBClk8ypKcS/3MmTJ8nKynpqOQcHB6pVq/YKWvRqnTt3jpSUlKeWs7KywsvL6xW06OWROTWFeDyZU1OIJ5M5NYV4PJlTU4gn+7fM9yhzapY9kqkpxL9cvXr1SroJJaqsByqFEEIIIYQQQghRkCwUJIQQQgghhBBCCCGEKFMkqCmEEEIIIYQQQgghhChTJKgphBBCCCGEEEIIIYQoUySoKYQQQgghhBBCCCGEKFMkqCmEEEIIIYQQQgghhChTJKgphBBCCCGEEEIIIYQoUySoKYQQQgghhBBCCCGEKFMkqCmEEEIIIYQQQgghhChTJKgphBBCCCGEEEIIIYQoUySoKYQQQgghhBBCCCGEKFMkqCmEEEIIIYQQQgghhChTDEq6AUIIIV6MIe4tS7oJQpRaqo17S7oJQpRqPzdvW9JNEKLUGnpte0k3QYhSraVL3ZJugvg/JZmaQgghhBBCCCGEEEKIMkWCmkIIIYQQQgghhBBCiDJFgppCCCGEEEIIIYQQQogyRYKaQgghhBBCCCGEEEKIMkWCmkIIIYQQQgghhBBCiDJFgppCCCGEEEIIIYQQQogyRYKaQgghhBBCCCGEEEKIMkWCmkIIIYQQQgghhBBCiDJFgppCCCGEEEIIIYQQQogyRYKaQgghhBBCCCGEEEKIMkWCmkIIIYQQQgghhBBCiDJFgppCCCGEEEIIIYQQQogyxaCkGyBKp7Fjx7J+/XqdbYaGhpQrV4769eszdOhQqlevrt0XHBxMTEwM4eHhr7qpL1R2djZJSUlUqFDhpb1GUFAQQJm+Vrm5ucTGxlK5cuWSbkqRrV69msWLF5OQkICXlxdffvklNWrUKOlmiVJsw9LV3LudwNufjXhq2bSUB+wK2crFP8+hVCpxqlKZ1m90wtndFYCku4l8/+lXTzzGW58Ox81T83d11bylnD/xZ4EyTq7OvDf+o2KfixAv2sIDEcQlJzO+c6enlr0YF8/qEye4ducOFsbG+Fepwhv+/liZmuiUS0h5wPKjR/k7NhYAPxcXggMbYmVqqlPur6go1p86zfW7d9FTKKju4ECvAH+qv8S+W4ji+HnlSmITEpgwatRjy9y5d48PJkx44nHGjxxJ7bzv2/cfPGDFxo2cPn+e7JwcvKpXZ2D37lSwt9epcyM6mhUbNnAtMhJ9fX3q1q5Nv86dsbGyeu7zEuJFubL+MBl371PnnXZPLZudmsHNnadIvBhFrjIHC6dyuLbxx8ql/DOVe1hafCKn52zB+TVvqrTwe+7zEkK8ehLUFE80btw4bG1tAcjIyCAyMpKQkBB27NjBwoULadCgAQDvvvsuGRkZJdnU5xYTE8Nbb73FsGHD6N69e0k3p9RKTU3lzTffpHnz5owY8fRgT2kQGhrK+PHj6dGjB7Vq1eKXX37h7bffZtu2bVhYWJR080QpdDLiKCcPHMHVw/2pZbMyM/nl21k8SE6hUavmmJibcWxPBIunzeHdLz+kQuWKmFuY02NI/wJ1lUolW1eEYm5lgaNzJe32hOg4XKq5EfBaI53yZpbyfhUlb+/FS4RfuEjNio5PLft3bCxTw7ZhZmREVz9f9BR6bDt7lvOxsUzs2gULY2MAHmRmMmnLFlS5uXTy8SFXrWbLmTNEJSYyuVtXDPT1844Xx7fbtlPZ1pY+AQGo1LnsPP83X23ewn87d6Kag8NLPXchnib8yBH2HD5MzWrVnljO0sKC4cHBBbZnK5UsWbcOawsLqlTS9AtKpZJv5s8nNiGBjq+/jqmJCVvCw5k4cybfjh2Lpbk5ANHx8Yz/4QfsrK3p2b496RkZbN27l0vXr/PtZ59hkvd5E6Ikxf9xmfgTl7F2e/qDqJwsJWcWbif7QTqVGtfCwMSY2KMXOLtoO77vdcTc0bZY5R6Wq8rl0rqDqFW5L/wchRCvjgQ1xRO1bNmyQDZecHAwPXr0YPTo0ezevRtzc3MaN25cQi18caKjo7l582ZJN6PUS05O5uzZszRv3rykm1Jka9asoVq1akyZMgUAOzs7xowZwx9//MFrr71Wso0TpUpubi77t+wifOP2Itc5ELaHu/F3NJmWHpqbWO/6fnz/6SQitu3hjXcGYGRijG+jgAJ1w1aGolKp6Dk0GFNzMwBUOTkk3rlLs4CWhdYRoqTk5uay/vSfhJw8WeQ6Sw8dRqFQMLFLZxytrQEIcHVlbEgIG06dZkBgQwDCzpwlMTWNb3v2oHLew9RqDuWZsnUb+y9fpkXNmgD8duQIdubmTOraFWNDzdfYZtWr89Gataw+8Qefd2j/Ik9ZiCLLzc0ldMcO1m3bVqTyJsbGNKtfv8D2pSEhqFQqRgwahIWZpl/Yf/w41yMj+Xz4cOp4egLgV7s2n0ydytbwcPp00mRMr966FX09PSaMHo1tXmZmVRcXvp0/nwPHj9O6adMXcapCPBN1bi5R+85wa8+fRa4Tvf8sGXfv4z2kLTZumgdp5eu4cmJ6CNERZ/Ho2axY5XSPfYb028nPfV5CiJIlc2qKYqtYsSKfffYZiYmJhISElHRzhHiqzMxMEhMTtdnEmZmZgGZKBSHyKbOVzJ0wnfAN2/AN9MfS1vqpddRqNacPHadGnZragCaApbUVbXt3oUqNqo+tGx8Vy5HdEdRtUh/XGv9khN6Nv4MqR0V5p6dnwQnxqmTn5DAudD3r/jhJk+rVscsLwj/JnQcPiEpMoln16tqAJkAlWxvqurhw4PIV7bbD165Ry6miNqAJ4F25MhVtrDly7ToAqVlZRN67R8OqVbUBTQBrMzNqVqzI5fjbL+JUhSi2bKWSz779lrVhYTQNCMDOxuaZjnMrJobt+/fzWoMGOpmeh0+dokL58tqAJkClChXwqlGDQ6dOabcZ6OvTNCBAG9AEqJV3nFt50zoIURJUyhxOzd7Mrd1/4uDrjpH10/sQtVrN7dNXsfOorA1UAhhZmuHWLgAr1wrFKvewtPhEIveewSXI5wWcnRCiJElQUzyTtm3bYmRkREREBKDJ3syfKxI0c1N+/fXXtGjRAi8vL5o3b87EiRO5f/++tszYsWNp1aoVp0+fpnv37tSpU4e2bduycuXKAq935MgRhgwZQoMGDahduzZNmzZl/PjxpKSk6Byvbdu2rFixgoCAAAICAjhw4ECR6oeGhjJw4EBAM+Tew8NDe9z79+8zadIkmjZtipeXF+3atePXX39FrVa/kGsZGhqKh4cHFy9eZOTIkfj5+dGwYUO+/fZbVCoV69evp02bNvj6+tKnTx8uXryorTtr1ixq1arF9evXCQ4OxsfHh6CgIObOnYtKpdJ5nfPnzzNixAgaNWpE7dq1CQwM5KOPPiI+Pl6nXGpqKlOmTOG1117Dx8eHTp06sXbtWgCOHTtGixYtAJg9ezYeHh5ER0cX63yPHz9O//798ff3x8/Pjz59+hQ6v2hoaChdu3bF29ubhg0bMnbsWBISErT7p0+fjoeHBytWrNBuy87OplOnTjRo0IDbt/+5uW3Xrh2JiYlMnTqVM2fOMGPGDKpWraqdPiFfdHQ0Hh4eLF26lL59++Ll5cWbb76pvS4zZsygbdu2eHt74+fnR69evdizZ0+Btm/cuJEePXrg6+tLs2bNGD9+PImJicU6P/Hq5eTkkJWRSe/3BtFjSH/09fSfWif5biIPku5TrbbmRlOtVpOdmQVAg6AmBDRv9Ni6u0O3YmhkSItuupllCbGaz2T5ipov4fnHE6IkKVUq0rOzGdWyBe+//hp6ek//CpmYlgaAs51dgX0VrK14kJnJvdRUUrOySEh5gFt5+wLlXO3tuXH3LgBmhobM6N2LDnW8C5R7kJmJvp6imGclxIuhVCpJz8xk9ODBDA8OLtLnozCrt2zByMiIXh076my/ERWFWyHzmLs5O5Nw9y6p6ekAjHrzTd7u1UunzK2YGADsbQsOvxXiVVHn5KLKysazb3M8ejZFUYS/11lJqWTfT8emmpPmGGo1qmwlAE4NPakY4FGscvlyVblcDjmEbXUnHHyfPs2QEKJ0k+Hn4pkYGxvj4uKiE2B72FdffcWWLVsYOHAgzs7OXLlyhRUrVnDr1i0WL16sLZecnMyQIUNo3rw53bt3Z+fOnUyYMIGUlBSGDRsGwMGDB3nnnXeoW7cuI0eORKFQcOjQIVavXs39+/eZOXOm9nhxcXHMmzePDz74gISEBHx9fYtUPyAggHfffZf58+fTu3dv6tWrB0B6ejoDBgwgLi6Ofv364ejoyNGjR5kyZQo3b97kv//97wu7pkOHDqVevXqMHTuWnTt3snjxYi5fvsylS5cYNGgQarWaefPmMXLkSMLCwjAw0Hx81Wo1gwcPpnr16nzyySccO3aMmTNnEh8fz1dfaRYmuXTpEv369aNKlSoMHToUU1NTTp06xcaNG7l16xbr1q0DNEHB/v37c+XKFXr16oWnpyf79+/niy++ICMjg/bt2zNu3DimTp1Kq1ataNWqFXaF3Kw+zvXr1xk2bBg1a9ZkzJgxgGZo+Pvvv8/y5cvx9/cHNAHTWbNm0aZNG3r16sXt27dZvnw5x48fZ926ddjZ2TFixAh2797Njz/+SJs2bbC3t2fOnDlcvnyZH374QWexp8GDB7Njxw5Wr17N2rVrqV69OvPmzdNew0fNnDmToKAgOnXqhLGxMWq1mmHDhvH3338zYMAAXFxciI+PZ9WqVXzwwQds2LBBGwhfuHAh06dPp169enz44Yfcu3ePX3/9lQsXLrBy5UoMDAyKdH7i1TMxNWH0N5+jr//0YGa+e7fvAGBuacH21Rv548ARsjIysXOwp12frnj6ehVaLz4qlkt/nadxm9exstHNCL0dHQfAif2HOXvsFBlp6VhYW9GsQ0sCWxYcPiXEq2BmZMSPfXqjX4xgjXHe39gMpbLAvgd5GfPJ6RkYGWQDYGdmXqCcrZkZ6VnZpGVlYW5sTEXrghnUkffucfn2beqUocXrxL+LmakpP40fX6z+41G3YmI4ee4cHYOCsHvofZ6ZlUV6Rkah2Z82lpYA3E1M1A5Vz5d4/z5Xbtzgt/XrsbW2Jigw8JnbJsTz0jcxxP/DHujpF70PybinST4xNDfh+rYTxJ+4jCpTiUk5S6q2r0+5ms7FKpcvOuIsGfdSqDUgCHXui0lSEUKUHAlqimdmZWVFZGRkofs2b95Mjx49+PDDD7XbzMzMiIiIIC0tDfO8Cc1TUlIYOHAgn3/+OQB9+/Zl0KBBzJ07lz59+mBtbc3SpUupWLEiS5YswcjICIB+/frRu3dvbaZovszMTKZOnUr79v9kPhWlvrOzM40aNWL+/Pn4+vrSpUsXABYtWsSNGzcICQnRBq369evH999/z4IFC+jduzeeDw0Feh6+vr788MMPALRv357AwEAOHz7Mpk2btCvNp6WlMX/+fKKjo3F1dQU0czh5eXkxe/ZsFAoFAwYM4OOPP2bNmjUMGjQId3d3fv/9dxQKBb/99hs2eV+Ke/furVmkZOtWkpOTsbGxYd26dVy8eJHp06fTKW9+pt69ezNgwAB+/vlnBgwYQMuWLZk6dSoeHh7a61RUe/bsIT09ndmzZ2sDd+3bt6dPnz5cuHABf39/oqKimDNnDkOHDuWjj/5Z5blDhw50796d+fPn85///AdjY2OmTJlC//79mTZtGoMGDeKXX36hQ4cOOr9/gEOHDpGcnAxogsDTpk2jUqVKPE7FihWZPn06CoXmKfJff/3FH3/8wcSJE+nTp4/O72zIkCEcPnwYDw8P7t+/z6xZs2jatCkLFizQ3txUrlyZL774gkOHDlG1atUinZ949RQKRbFvSDPzpjTYsz4MfX192vftjp6egoPb97Ji1iIGffgu1Wp7FKh3fO9BFHp6NGhRcH6z/EzNO7G36RTcE1VODqcOHifs91CyMjJ5rVPrZzg7IZ6PQqFAX1G8TMjKtraYGhly/MYNuvj6aP+mZufkcCZakz2WrcpBpdYs0mBUyIMmo7zPZHZODuaFLHKSqVQyd+8+ADr7+harfUK8KM/Sfzxq58GD6Onp0baZ7sOr9LwHAMaFTJmT/702Kzu7wL4xkyeTmZmJnp4eHwwciHVeAFSIkqBQKFDoF68PycnUvK9v7T6NQl8P944NQKEgOuIcfy/fg9fg1thWcypyOYC020lE7vkL984NMLY2JzMp9cWeqBDilZPh5+KZ5eTkaG9QHuXo6EhYWBihoaHaId6jR48mJCREG9DMl5+RCaCvr8/AgQPJzMzk8OHDACxYsICQkBDtFzeApKQkLCwsSM8bbvOw/Gy/fMWt/7CdO3dSo0YNypcvT2JiovanZcuWAOzdu/eJ9Ysj/5gAlpaW2NnZ4erqqg1oAtpFm+7cuaNTd+jQoTq/i8GDB6NWq7XtmzBhAuHh4dqAJmiGUxvn3SDmX4d9+/ZhZ2dHx4eGPSkUCqZNm8aKFSse+/suKkdHzTw3kyZN4ty5cwDY2tqyY8cOgvNWAN21axe5ubkEBQXpXHN7e3tq1qzJvn37tMerW7cuwcHBbNq0iZEjR2JnZ1cge/b333/nvffew9bWlv/85z+o1Wo++eQTMjMzuX37NqtWrSIuLk6njr+/v865+vj4cOLECbp3767dplKpyM3V3Iin5Q2xPHz4MFlZWfTv31/n5qZz586EhoZSv379Yp2fKP1ylDkAZKZn8M5/RlG3SX18GwXw9tgRmJqZsjtka4E6ymwlfx75A09fL2ztC2blegX40rJHBwZ/8j7e9f3wbRTA4E/ex6WaG/s27yTtgXwBF2WDgb4+Hep4c+POXWaF7yXy3j1u3r3Lj7t2k5WXvamvp6edzqW4fUyWMofpO3Zy614inX19qOVU8YWfgxCvQrZSScSJE9Tz9qZ8uXKFlnnS5+PRfSqVird79mTU4MF41ajBT0uXsvUFfmcV4lXIzdF8z87JzMZnWHsq1K1GBT93fN5ph4GpMTd3nixWOXVuLpdDDmLl6lBgSLoQouySTE3xzJKTkx87THbChAmMHj2acePG8eWXX+Lr60urVq3o0aMHlg89KbaxscHeXncOrSpVqgAQkzcHkL6+PlFRUcycOZOrV68SGRmpM1/io8o98mWwuPUfFhkZSWZmJoGPGbLzaDDseTx6HQwMDAo9F0AbTMvn7q47H8yj11ChUJCUlMSCBQu4dOkSkZGRxMbGam8k848XExODi4tLgS/HT8pqLI62bduya9cuwsLCCAsLo3z58jRv3pxu3bppg9H52b8PZ0Q+7NHFfcaMGcOOHTuIjo7mhx9+wPqhIVtRUVFMmTIFT09Pli1bhpmZGVFRUSxbtozJkyfj6enJpEmTmDNnDhUr/nMzXNj72sDAgFWrVnH8+HFu3bqlfW8A2uuYf73zr38+Y2Njateu/UznJ0o3w7yHJbXq+WhXLwcwNTPF09eL04dPkJ2ZhZHJPxlm1y9eQZmVjVeAb6HHrNOgboFtCoWCes0Cibx6g6hrNx87rF2I0qZ73bqkZWWz/dw5jly9BkDdKi508vFh1fETWBgbk5M3B3R2Tk6B+tl5+0wfejAJkJaVxbTtO7gcf5vXPGvQOyDgJZ+JEC/PucuXycrKItDPr8A+k7z3fnYh0zhk52VompqY6GzX19fXrqwe6OfH+B9/ZPXWrQQFBhYoK0RppW+oue+xr10FQ9N/vkcZmBph51mZhNPXUGUri1wu9sgF0uKS8BnWHmWa5jt8ToZm3nJVdg7KtEwMzIyfO4lDCPFqSVBTPJPU1FSioqJ47bXXCt0fGBjI3r17tT+HDh1i6tSpLF26lNDQUG3QqLAATn6ALT+At2jRIqZNm4abmxv+/v60bt0aHx8fli1bxubNmwvUf3T4T3HrP0ylUlGvXj0++OCDQvc7ODg8sX5xFDZsqaid6qPX8dFrGBYWxscff4yDgwMNGzakWbNmeHl5cfDgQRYsWKCtp1KpXmpHbmhoyE8//cSlS5fYtWsXBw4cIDQ0lHXr1vHRRx8xdOhQbdvnzZuHSRG+eN+6dYt79+4Bmszah4eeHzhwAKVSyZAhQzDLm2vq008/5cyZM6xduxYbGxssLS1p3LixzjEf/V0kJibSs2dPEhISaNy4MUFBQXh6elKpUiV69uypLZff9iddw+KenyjdrPJWSDe3tCiwz9zKAtRqsrJ0g5qXz/yNvoEBNerULNZrmVtpXiM7q+AwQyFKK4VCwcBGgXTx9SHufgrlLMwpb2nJ6uMn0FMosLewQJkXuEwuZPREUno6ZsZGmDzUz6VkZDAlbBu37t6jRU1P3m7aRG5CRZl2+vx5DAwM8KtVq8A+M1NTzExNSXpoccx8+dtsC5lrNp9CoaChry+Xr18n9vZt3B958CpEaWVkpRndZ2he8PuykYUpqEGVpSxyuaTLMaj/x959h0VxrQ8c/9J7EQQREUVULKBiF1tE7LFH7OXajTHGJCa2JL9c9WLsNbaoUYnGBmpUjN2osWvsYhcpgoAgHRb4/YFMXBcVBBSS9/M897nZmfPOnDPsuLvvnJKewV8/7tIoF3LsGiHHrlFv/EcYltD8TieEKLokqSneyt69e8nMzFRWwn5RamoqN27cwM7Ojg4dOtChQwcyMjJYs2YNM2fOZPfu3cpQ48jISLU5NgEePHgAZPV2S0lJYdGiRTRo0IDVq1erLezy4gJBr5Lf+DJlypCQkICHh/oKxrGxsZw8eVKjR9778ujRIypWrKi8fvEaAsyZM4dy5cqxbds2JbkHaCR17e3tCQwM1Dj+0aNH2bNnD+PHj89XPUNDQwkNDaVu3bq4uLjwySef8PjxYwYOHMiqVasYPny40iu0dOnSVK2qnvQ5evQopqZ/f9FQqVRMmjQJS0tLunTpwsqVK+nQoQOtWrVSi3txFVJ9fX3mz59P165diYmJYciQIRgZGb223hs2bCA4OJiff/5ZrdfuhQsX1Mpl9/YMCgrCyclJ2Z6amsr48ePp2LFjntonir5SZUqjo6urzIP5oqeR0ejq6WkkPIPu3KdM+bIY5vC+S1epWDZtHmXKO9JlUE+1fZFhWT3McxqyLkRR9eedu1gaG1HN3h6LFz5/boSF4WRTEn1dXfR1dbExM1NWOX/Rg8hIKtjYKK+TUlOVhGY7N1cGeMjiJ6L4u3X/PhUcHTF+xfcRp7Jluf/okcb2B8HBlLKxwdTYmITERCbOnk3DWrXo06mTWrmk5yNL9F/q8SxEUWZiZ4mWrjaJETEa+5KfxqOtp4OeiSE6Bnq5KufUvh6qJPUHw2nxSQRuPoatewVs3SuiZyodDoQobmROTZFnERERLFy4kFKlSimLybzo6dOn9OzZU60HoLa2Nm5ubsp/Z8vMzOSXX35RXqtUKtauXYuZmRmNGjUiOTmZpKQkypcvr5aQvHHjBmfOnFFiXiUv8TkN7fb09OTmzZscPXpU7bhLly5l7Nix3L59+5XnfpfWr1+v9nrNmjXo6uri6ekJZE0VYG9vr5bQDAsLY9++fUBWD02AZs2aERkZyf79+9WOt3btWo4cOUKJEiVeOQQ+N5YtW8agQYPUhv/b2dlha2urvC9atGgBZM2Fmj2sG7L+ZqNGjWLt2rXKtlWrVnHt2jUmTpzI2LFjcXZ25vvvv1cWBapXrx7a2tps2rRJrb6RkZGkpGQNNwkICFB6er5K9vFeTBxnZmbi6+sL/P0e8vDwQE9Pj82bN6vVfe/evezduzfP7RNFn76hAVXcXbl1+RoRIX9PR/H0SRQ3L16lirur2r956SoVT0IfU7pczqs06+jqoq+vz+XT54mJeqpsT0pM4uT+P7CyLYlDhaLxMEWI3Nh9+TJrjv9J+gv/Bl94GETg43BaV/+7V1p9p/JcDQkh5GmMsu1KcDBhMbF4vDDFyurjJ3gYGUVbSWiKfwiVSkVwWBhODjl/LgA0qFmT0PBwLt+8qWwLCQ/n6q1bNK6dNWWJibExerq6HD19mvgXej0nJCZy+ORJbKytcXg+t7kQxYGOvh7WVR2JvhlMQvjf34mSo+OIuhGEVdWyaGlr57qcWZmSlKhor/Y/83KlADC0MqNERXt09KTPlxDFjdy14rUOHDhAiRIlgKxej/fu3WP79u2kpKSwcuXKHIfPZic7N2zYQFJSEu7u7sTExODr60vJkiVp166dWvkff/yRkJAQKlWqREBAABcvXmT69OkYGRlhZGREzZo18fPzw9TUFCcnJ27fvs2WLVuUREFCQoLaPIovsrCwyHV8djt37txJZmYmXbt2ZcSIEezbt4/Ro0fTq1cvKlWqxPnz59mxYwfNmjWj2UsrVL4v/v7+xMfHU7t2bY4dO8bhw4cZPXq00iuwWbNm7Nmzh2+//RY3NzeCg4PZvHkzSc9Xbs5e6KZXr15s27aNcePG0bdvX5ycnDhy5AgnTpzgf//7Hzo6OlhaWqKtrc3Bgwext7endevWr7z+L+vbty87duygb9++9OzZEwsLC06dOsWZM2f49NNPAahcuTL9+/dn/fr1xMTE4OXlpbx/TExMGDt2LAB3795l8eLFNGnShA4dOgDw3XffMWDAAKZPn86sWbOoXLkyffv2Zf369QwbNoyWLVty7949Nm/ejK2tLd7e3syZM4d+/frx888/v7LezZo1Y/369YwYMYKPPvqItLQ0AgICuHr1Ktra2sr1s7a2ZvTo0cyfP5/Bgwfj5eXF48eP8fX1pUGDBnh6eqKtrZ2r9omiKToikqA793Gs6ISVbdY8uG16dOLBzTusnrmERq2aoa2jy8kDR9HT16NVtw5q8TFRT0lXpWNhVeKV52jXuys/+Sxgpc8CGrbM+jfm3NE/iX8Wx8AvRsowW1FkhT97xq3H4VS2K0Upc3Mga0Xy+fsPMHPv79QrX57I+Dj2XL5KjbIONHnhQVGnWjU5dvs203fvpkMNN1JV6ey6fBknm5I0qZRVLvjpU47fvoOxgT7lra05dkvzwWLTypU0tglRFIRHRhJ47x4uFSpQ6oV51COfPkWVnk7JEq/+XPBs1Ii9f/zBvNWr6diyJQb6+vx28CAlLCxo//xhKcCQHj2Yungx386bR0sPD1Tp6Rw4cYKYZ8+YMGqUfH6IIi0pOo5nDyMwL2eLkVXWGgxObesSe/8xV1b9jr1HVbS1dQg5eR1tPR3Kt66jxOa2nBDin0eSmuK1fHx8lP/W09OjVKlSeHp6MmzYMLXhtS+bOnUqZcuWZffu3ezevRsjIyMaNWrEuHHjNBZhWbVqFf/3f/+Hv78/FStWZPHixWrDhxcsWICPjw/btm0jNTWVMmXKMHz4cJydnRkzZgynTp2iTZs2r6xLbuOdnZ3p378/fn5+XLlyhQYNGuDo6MimTZtYuHAhe/fuZdOmTdjb2/Pxxx8zfPhwtR5Y79PixYtZsmQJ+/bto2zZskydOhVvb29l///93/9hbGzMoUOH2LFjB3Z2dnTp0oVWrVrRu3dvTp06RbVq1TA0NGT9+vXMnz+f3bt3ExcXh7OzM/Pnz1eS0UZGRowbN45Vq1Yxbdo0HB0dadCgQa7q6eLiwpo1a1iyZAmrV68mPj6e8uXL880339C3b1+l3OTJk6lQoQK//vorP/zwA2ZmZtStW1fpjZmRkcHkyZPR0tJSW+28QYMGdO7cmR07dtChQwc++OADJk2ahL29PZs2beJ///sf1tbW9OzZk08++QQLCwssLCzYuXMnFhYWROYw9BGykprTpk1j9erVzJgxAwsLC6pXr86mTZv45ptvOH36tFJ21KhR2NjYsG7dOmbMmIGNjQ3e3t6MGTNGeb+8qX2i6Hpw6x7+qzfQdXAfJalZoqQVwyd/xr6tv3F872EyMzMpV7kCbXp0UspkS0rI6j1jaPTq4U0OTo7858vRHNwewOEde0ELHJ3L89GwfpR1Ll9obRMiv26GPWbZkaOM/KC5ktRsUMGJMS092fnXX6w/eQoLIyM+rFmDzrVqqX2GmhsZ8V2njqz78yRbzp3HQFeXuuXK0bdhA/SejxC48XxxvsSUVJYdOapZASSpKYquG3fvstTXl1H9+qklNeOfPxh91dBzyPoO/s2YMaz392fngQNoa2tTrVIlBnTtitkLUzhVq1SJSR9/zJY9e9j4229oa2tT1dmZzwYNkrk0RZH37EE4t7Yep/JHTZSkpmEJU2qO7MCDvecIPnYVMsGifCmc2tZVyuSlnBDin0cr88Xxj0K8QxMmTMDf3z/HORxF7ixatIjFixdz8OBBHF4zbEm8XmZm5j+i98KBoAtvLiTEv1SdHcfedxWEKNJ0mrd4cyEh/qWGR+1931UQokj7tcVX77sKBaIo/57ycqz9vqtQJBWNbmZCCPEe/RMSmkIIIYQQQgghxL+JDD8XIp+io6OVhXZex9DQEDOzf97wh5iYGNLS0t5YTk9PD0tLy8KvkBBCCCGEEEIIIf7xJKkpRD599NFHhISEvLFc165dmTFjxjuo0bs1ZswYZSX516lfv77GKu1CCCGEEEIIIYQQb0Pm1BQin86fP09KSsoby9na2lLxhZVe/ymuXr3Ks2fP3ljO3NwcV1fXd1Cjf6+iPAeMEO+bzKkpxOvJnJpCvJrMqSnE68mcmoVP5tTMmfTUFCKf6tSp876r8F5JolIIIYQQQgghhBDvmiwUJIQQQgghhBBCCCGEKFYkqSmEEEIIIYQQQgghhChWJKkphBBCCCGEEEIIIYQoViSpKYQQQgghhBBCCCGEKFYkqSmEEEIIIYQQQgghhChWJKkphBBCCCGEEEIIIYQoViSpKYQQQgghhBBCCCGEKFYkqSmEEEIIIYQQQgghhChWJKkphBBCCCGEEEIIIYQoViSpKYQQQgghhBBCCCGEKFYkqSmEEEIIIYQQQgghhChWdN93BYQQQgghCtso15T3XQUhiraove+7BkIUWSus277vKggh3oH6MUU4Reb4vitQNElPTSGEEEIIIYQQQgghRLEiSU0hhBBCCCGEEEIIIUSxIklNIYQQQgghhBBCCCFEsSJJTSGEEEIIIYQQQgghRLEiSU0hhBBCCCGEEEIIIUSxIklNIYQQQgghhBBCCCFEsSJJTSGEEEIIIYQQQgghRLEiSU0hhBBCCCGEEEIIIUSxIklNIYQQQgghhBBCCCFEsSJJTSGEEEIIIYQQQgghRLEiSU0hhBBCCCGEEEIIIUSxIklNIYQQQgghhBBCCCFEsaL7visg8mfChAn4+/tz8OBBHBwc8nWs/v37ExISwqFDhwqkbvk93p49e9i4cSM3b94kJSUFOzs7mjVrxvDhw7G1tVUrm5GRQWhoaJ6vgZ+fHxMnTmTdunU0aNDgleVOnz7NgAED8PHxoVu3bhqvg4ODadmyJZ988gljxoxR4h49ekTZsmXz1vBcyv7bv0hPTw9ra2vq16/P8OHDqVSpktr+nP4mP//8Mz/99BPPnj1jwIABDBs2jAkTJnDy5En09PRYu3Yt1apVK5Q2CFHUPH0SRcCmHdwPvAOAS41qtOvZGRNzswKPe/wolGVT59CsvReeXdrlu5wQhS05Oo57AWeJvfcYAKsqDji1q4e+qVGBxEXfCuHRkUvEh0SBlhbmZW0o16o25o42auVS45N4sO8C0TcfkZGmwtTemvJt6mqUE+JdkvtDiNeLiIpinb8/12/fBqB29er079oVC7PXf8fKbVxsXBy//vYb565cIVWlwsnBgb6dO1OpfHm1cneDgti4cyeB9++jra1NNWdn+nftin2pUgXXWCHEOyNJTVEkzZs3j2XLlvHBBx8wevRoDA0NuX37Nlu3bmX37t1s2rQJR0dHAOLj4xk0aBDNmzdXSygWJGdnZ2bOnEnt2rVz3G9lZcXMmTNxcXFRtv3444/4+/uzf//+QqlTtokTJ1KiRAkAkpKSCAoKYtu2bfz++++sXLlSLVk7cuRIkpKSlNeBgYH4+PhQq1Ytxo4dS5UqVVi2bBmHDh1i0KBBVKhQgfIvfREQ4p8qMT6B1TOXkJ6uomlbTzIzMzi+9zDhwaGM/OZzdHRz/sh8m7j09HS2rfqFdFX6a+uU23JCFLa0xBQur9pLZnoGDs1cyczMJPjYVRIeP6XWxx+iraOTr7iY+4+5tnY/xraWlG9dm8z0TEJP3+DyygBqDm+HWdmshIwqJY3LK/eSGpdImcbV0DU0IPTUDa6s2kutUR9iYlfinV0TIbLJ/SHE68UlJPD9woWkp6fTycuLjIwMfjt4kKDQUP735ZfovuI7Vm7jkpKT+b8FC3gaG0uHFi0wMTZm7x9/8P3Chfzvyy9xtLcHIDQ8nO8XLsRAT4/ubdsCsPvQIb6dP5+ZEyZgZWHxbi6IEKLASFJTFDlhYWGsXLmS/v37M2XKFLV9H374IX379mXu3LnMnz8fgJiYGK5cuULz5s0LrU4lS5akc+fOr9xvbGyssf/kyZOkpxd+IsLLy0ujh2r//v3p3r07n332GQcOHMDExASAxo0bq5W7desWACNGjMDT0xPISihbWloyceLEQq+7EEXJiX1HiH0awyf//QpbezsAyjiVY+2cpVw4cYZ6zT0KLO6P3Qd4Evr4jXXKbTkhClvI8WukxCZS59POGNtaAmDmYMPV1fsIv3CH0vVc8hV3b/cZDCxMqDXqQ3T0s76e2tZ25vw8fx7sv4Db4DYABB+9QlJkLG5D22LplHW/2dQoz9nZ2wg+dgWXHs0K8SoIkTO5P4R4vd2HDhEdE8OsiRNxsMt6b1YsV47pS5Zw5PRpvF76jZLXuB379xMWEcG3Y8ZQ7flItUa1azPm//6PnQcO8MmAAVnHO3KElJQUvv/sM5ye/35yq1yZSbNns/vQIfp37Vqo10EIUfBkTk1R5Fy6dIn09HSNBByAu7s7NWrU4K+//nr3FStGSpcuzddff010dDTbtm17Zbm0tDQAJemZve3F10L8W1w5fQEnl4pKYhKgYnUXrO1suXL6YoHFPX4UytFd+/igY5vX1ie35YR4F55cvoelk52SeAEoUdEeIxtznly+n6+4tKQUEsKiKelWXknYAOibGmHhZMezoAgAMjMzCb94BysXByVhA6BvZoxTu3qYl5ehg+L9kPtDiNc7ceEC1SpVUhKTADWqVKG0rS1/XriQr7jMzEyOnjmDe7VqSkIToIS5OQO6dqWKs7OyLSIyEjNTUyWhCeBcrhymJiY8CgsrkLYKId4tSWr+SwQEBNCvXz/q1KmDq6srnp6ezJw5k9TUVI2yhw4dokOHDri5udGxY0d27typUebOnTuMHj2aunXrUrNmTXr16sWxY8cKpK7ZCTV/f/8c67du3TqOHDkCZM112bJlSwAWL16Mi4sLwcHBADx8+JCvv/6aZs2a4erqSv369Rk5ciS3n8/H8qKIiAhGjx5NrVq18PDwYOrUqcTHxyv7T58+jYuLC35+fjnWOTg4GBcXFxYtWgSAp6cnZ86cISQkRNn++eef4+rqyrNnz9Ri4+LicHNz44cffsjjlXq9tm3boq+vr/Z36d+/v9Ijs3///kpvzAEDBuDi4oKLi4tavSdMmKDE+vn50aVLF9zc3GjYsCETJkwgIiJC4xr8/PPP9O7dG1dXVwYNGpTn+O3btzNv3jyaNWuGm5sbPXr04NSpUxrt27FjB927d6dWrVo0a9aMb7/9lujoaLUybzpnXoSGhjJmzBiaNGmCm5sb7du3Z+XKlWRkZKiVu3jxIv/5z39wd3fH3d2dwYMHc/nyZWX/H3/8gYuLC2PHjlWL++abb3BxceGPP/54q/qJ/ElKSOTpkyjsy2vOy2vv6EBYUHCBxKWnp+O/ZiPO1V2o2ajuK+uT23JCvAtpSSkkR8djWsZaY59paWviQ6PyFadroEfdcd0o07i65jESk9HSzvq6mvI0ntTYRCwrZg0jzMzMJD016+GcfcMqr+wNJ0RhkvtDiNeLT0wkIjKSCjmsM+BUtiz3Hz3KV9yT6GiiY2KoUaUKkPXeT05JAaB106ZqvUDtbGyIT0ggNi5O2RaXkEBiUhKW5uZv30ghxHsjw8//BbZs2cKUKVPw9PTkyy+/JC0tjf3797Nq1SoAvvrqK6XskydP+PTTT/H29qZXr17s2LGD8ePHo1Kp6NatG5A1D2OfPn0oWbIkI0aMQE9Pj127djF8+HDmzJlD+/bt81XfBg0a4ODgwO+//8758+dp3bo1jRs3pl69elhYWKCvr6+UdXZ2ZuLEifj4+NCqVStatWqFlZUVkZGReHt7Y2pqSr9+/ShRogQ3btxg8+bNXLt2jUOHDqGnp6cc59tvv6Vq1ap88cUX3Lp1i19++YXbt2+zdu1atLS08tyGSZMmMWfOHJ4+fcrEiRNxcXEhNDSU3bt3c+DAAeVaAuzbt4/U1FQ6duyYr+v2MgMDAxwdHbl582aO+0eOHImTkxObNm1i5MiRlC9fHm1tbZYtW6bUO3ve0sWLF7No0SLatGmDt7c34eHh+Pr6cubMGbZu3YqVlZVy3AULFuDp6UnHjh0xMDB4q3gjIyMGDx5MWloaq1evZsSIERw5ckSZO3TlypXMnj2bOnXq8PnnnxMVFcXatWu5ceMGGzduRFdXN0/nfJO0tDSGDh1KcnIygwYNwtzcnKNHjzJ79mzS09MZOXIkACdOnGDEiBFUqVKFsWPHkpqaip+fH3379mXNmjXUrVuXZs2a0bVrV/z9/Tl27BhNmzbl+PHjbN68mV69etGsmQwNex+ePY0FwLyEpcY+M0tzkhOTSEpMwsjYKF9xxwMOEhX+hD6fDCYjI/OV9cltOSHehdTYRAD0zY019umbG5GelIYqKRVdI/23jjMqqfljMuFxNM8eRlCiUhkAkqKyHgrqmRhyL+Asj8/eIj05DUNrMyq0r4911cJZmE+I15H7Q4jXi46JAchxvsoS5uYkJiWRkJiIibHxW8WFPe+wYG5mxnp/fw7++SdJycmUsrFhYNeu1HFzU+I6e3lx4epVFq5dy4DnQ819t29HR0eHdh98UACtFUK8a5LU/BdYvXo17u7u/Pjjj0qCrk+fPrRs2ZJjx46pJTVTU1P59ttv6du3LwA9e/akc+fOzJkzh06dOqGrq8u0adOwsrLC398f4+cfPv369WPgwIFMnz4dLy8vtcRjXunr6/PTTz/x+eefc/36dTZs2MCGDRvQ0dGhbt26DB8+nCZNmgBZc116eXnh4+ODi4uLMq+lr68vsbGxbNiwAecXhhyYmJiwYsUKbt26RfXqfz/xdnFxYd26dcpk06VKlWLRokUcPnxY6dmYF15eXqxdu5aUlBSlTs7OzlhaWhIQEKCW1NyzZw8VKlQolBXGzc3NCQoKynFf48aNCQ8PZ9OmTXh4eCgLCm3dulWt3o8ePWLJkiUMHz6cL774Qonv0KED3bp1Y9myZUyaNEnZXrp0aWbPnq281/Ian5mZydatW5X3VpkyZRg3bhz79+/H29ub2NhYFi1aRNOmTVm+fDk6zyfRd3BwYMqUKZw4cYIKFSrk6ZxvcuPGDe7evcuCBQto+3xS8R49ejB06FDu388aHpaRkcF3332Hm5sbvr6+Sr369etHly5dmDZtGtu3bweyFnc6fvw4U6dOZdOmTXzzzTeUK1eOr7/+Otd1EgUrJTkZAD19PY19us+3paWmaiQ18xIXERLG4Z2/06FvdyysSvA0MlojBsh1OSHelezeXjp6ml8btZ9/bqanqTSSNm8blx0buCVrpIFD86wfpKrkrNEbDw9cREtHG+cPG4CWFsHHrnLd9yCu/2lNiee91IR4V+T+EOL1sntN5vT7UP95J5OUtDRenvwqt3GJzxdB3bR7N7o6Ogz66CO0tbT47eBBZq1cyaSPP1Z6cZa0sqJrmzas3rKFr2bMAEBbW5vPhwxRG5IuhCg+ZPj5v8DOnTtZsWKFWo/DqKgozM3NSUxMVCtrbm5Oz549ldf6+vr07NmTyMhIrl69ytOnTzlz5gzNmzcnOTmZ6OhooqOjefbsGa1atSIyMpIrV67ku85OTk74+fmxbt06BgwYgLOzM+np6Zw+fZohQ4awYsWK18YPHz6cEydOqCU0k5OT0X4+ROfldg8aNEht1b3+/fsDKMPcC4Kenh5t2rTh5MmTxMZm9e6Kjo7m1KlTdOjQocDO8yKVSvVWPU1ftH//fjIyMvD09FT+3tHR0ZQsWZKqVatqXKO6deuqnTOv8c2bN1cSmgBVnn8JefLkCQB//vknKSkp9O3bV0kcAnTq1Ak/Pz/q16+f53O+ia2tLVpaWixfvpxjx46RmpqKlpYWq1atUqYNuH79Oo8ePcLLy4vY2FjlnMnJybRo0YIbN24QHh4OgIWFBf/3f//Hw4cP6dGjB+Hh4cyYMUOt3eLdynzeGTKv90tu4zIyMvBbtRHHihVeueBQXsoJ8U4pb/R3E5eequLa+oMkhD3FobmbMj9ghiprug9Vcio1R7SnVO2KlHJ3puawdugaGfBg3/k8VlCIAiD3hxCvlfn8vZ7371i5i0tTqQBITEriv+PG8UGDBjSrX5//GzsWE2Njfv3tN6Xspl27WPnrr1R2cmLMwIGM7t8f53LlmL96NecL4DesEOLdk56a/wJ6enqcPXuWXbt2ce/ePYKCgoiKypqnp0yZMmply5Ytq5bcy94GEBISoiQF169fz/r163M8X1gBTbKspaVFgwYNlB6EoaGhbNu2jeXLl7NgwQI6d+5MqVKvnvQ8LS2NefPmce3aNYKCgggODlZWI395HsQKFSqovbawsMDCwoKQkJACaUu2Tp06sWnTJg4cOED37t3Zu3cvKpWqwIeeZ4uJicnTMOucZPf07NWrV477XxzGD2icL7/x2U9ns/9m2X+TcuXKqZUzMDBQet/m9ZxvYmdnx/jx45k7dy5Dhw7F2NiYRo0a0b59e9q1a4eOjo5yzpkzZzJz5swcjxMaGqq8Z728vGjdujX79u2jd+/e1K5dO091EgXLwDBrqoS0HObxVT3vTWNoaPjWcccDDvE4OIShE8eSEJc1X2/y84crqalpJMTFY2xqkuty+X1YIURe6Bhk/ZuZkZausS/j+Y9JXUPNf1ffJk6VlMq1dQd49jCCUnUrUb7V3/826uhlPcgqWb0cekYGynZdI32sqjgQcfEu6alp6OTQc1qIwiL3hxCvZ/h8Oqqc1kpIfb5oqXEO37FyG2fw/LdCg5o1MX2hg4CJsTF1XF3548wZklNSSE9PZ+fBgzg7OvLtmDHK71qP2rWZNHs2yzduZEmVKnn+nSCEeL8kqfkvMHXqVHx9falWrRq1atWic+fOuLu7M3XqVI0EZE4/lLOfkmlraytJwb59++Ll5ZXj+SpWrJiv+q5fv56UlBSGDh2qtt3e3p4xY8ZgYGDAnDlz+Ouvv2jTJudVgc+dO8eQIUMwNjbGw8OD7t27U61aNYKCgvjvf/+rUf5V7X6xJ2BBqFOnDvb29gQEBNC9e3cCAgJwdXXVSNAVhPj4eB49esQH+ZwfJjuZuHTp0hyTOi97+ZrlNT77C8ab6vO6pE5ez5kbQ4YM4cMPP2T//v0cPXqUEydOcPDgQbZv385PP/2knHPs2LHUqlUrx2O8mDxPTEzk+vXrABw/fpzExETpqfkeWVhnzdcaFxunsS8u5hmGxkboGxpo7Mtt3O2rN0hXpbN86lyNcif2HuLE3kN8PvPbXJcrUTJ/DyuEyAsDC1MAUuOSNPalPktCx0gvx0RJXuNS45O4+vN+EkKjsatfmYqdG6n9W69vnjU4Uc9E8991fVMjyIT0FEnaiHdL7g8hXq/k8znxY15aLBXg6bNnGBsZKQnMt4mzsrQEwNzUVKOchZkZmZmZJKWkEP30KSqVCo86ddR+b+jq6tKkbl1+2bGDkPBwysswdCGKFUlq/sOFhITg6+tL586dNXqPRUZGapQPCwsjMzNT7UvSgwcPAHB0dMTGxgbISlx5eKgPjbxz5w7BwcEYGanPOZdXBw4c4PLly/Tp0yfHJE/lypWBnHtNZVu4cCGGhobs3r1breffsmXLciwfEhJCpUqVlNfZQ+qzF8opKFpaWrRv3561a9cSGhrK+fPn1eY0LUh79+4lMzNTWR3+bWX35i1dujRVq1ZV23f06FFMc/gCUZDxLytdujSQ1RvTyclJ2Z6amsr48ePp2LFjgZ8zJiaGmzdvUrt2bfr160e/fv1ITExkwoQJ/P777wQGBirnzE6kv+jy5cvExsaqvWfnzp1LSEgIX331FbNmzWLu3LlMmTIlT/USBcfI2AjLklaEPdRc5Tw0KJgy5XNeYCG3cW17diEpQX3ai4RncWxd6UvNRnWp5VEPU3OzXJcT4l3SNdLHwMo0x1Wc48OiMCtTMt9xqpQ0JWFj37gazh3qa8SY2FmipatNYkSMxr7kp/Fo6+nkmNARojDJ/SHE65kYG2Njbc39YM3vSvcfPcL5Fb+3chtXtnRpdHV1efT4sUa5iKgo9PT0sDA15dnzFc9fHrEHkPG8E48szShE8SNzav7DZc/d+HLvyaNHj/LgwQNUz4e3ZIuKiuLgwYPK68TERDZu3EiZMmWoWrUqtra2uLq64u/vr8wPCFlDvSdNmsSnn36qccy86tixI4mJicyYMUPjQycjI4MtW7Zgbm5OvXr1gL97Br5YNnvY9YsJzbi4OPz9/QGUHqfZtmzZovY6e2X4/CQEtbW1c/zQ7NixI2lpacyaNYvMzEzatWv31ud4lYiICBYuXEipUqXyPbS9RYsWACxfvlzptQtZi+eMGjWKtWvXFmr8yzw8PNDT02Pz5s1qx9u7dy979+4tlHOeOHGCgQMHcujQIWWbsbGxkmDX0dHB1dUVGxsb1q9fT0JCglIuPj6ezz77jIkTJyrv1fPnz/PLL7/g7e3NkCFD6N69O7/88gvnzp3LU71EwapepyZ3rwfyJOzvf9vuXAsk6nEEbg1ePT1AbuLKlC9Lxeouav9zrJTVc9fKxpqK1V3Q09fLdTkh3rWS1csRczeUxCcxyrand0JJevIMmxpO+Y67u/NkVsLGo2qOCRsAHX09rKs6En0zmITwp8r25Og4om4EYVW1LFpv6O0vRGGQ+0OI12tQsyZXAgMJeeH34+WbNwmLiMCjTp18xRkaGFDXzY2LV6/y6IVRiBFRUZy7coW6bm5oa2tTtnRpSlhYcOT0aWX4OmQNZf/jzBnMTE0pa2dXkM0WQrwD0lPzH2LevHmYmLy8Zhy0atUKe3t7li1bRkpKCnZ2dly+fBl/f38MDAzUki+QNZfkV199xcCBA7G0tGTbtm2EhYWxZMkSpZv+lClTGDhwIN27d6d3795YWlqye/duLl26xBdffEGJ50MF3la3bt04duwYmzZt4uLFi7Rt2xY7OzuioqIICAggMDCQOXPmKL04LS0t0dbW5uDBg9jb29O6dWuaNWvGypUrGTt2LE2aNOHJkyds3bpV6Z36crvPnTvHxx9/TPPmzblw4QLbt2+nXbt2NGrU6K3bYWVlxdmzZ1m9ejV16tShZs2aQNbCN5UqVWLPnj00aNDgtfOC5saBAweUa56SksK9e/fYvn07KSkprFy5Mt/DrytXrkz//v1Zv349MTExeHl5ERMTg6+vLyYmJowdO7ZQ419mbW3N6NGjmT9/PoMHD8bLy4vHjx/j6+tLgwYN8PT0RFtbu0DP2aJFC5ycnJg8eTLXrl3D0dGRe/fu8csvv9CoUSPlocGUKVMYN24c3bp146OPPsLAwIAtW7YQGhrK7Nmz0dXVJSUlhcmTJ2NlZcWXX34JwJdffsmBAweYPHkyO3fuxCCHITii8DVt58lff55lzawlNG7TAlVaGsf3Hsa+fFlqNsz64hwdEUnQnfs4VnTCyrZkruOEKO4cmroScfEuV1b9TpkmrmSoVAQfu4ppGWtsa2UtypcUHcezhxGYl7PFyMos13GJETFEXLyHjpEepvbWhF+8q3H+Uu5ZZZ3a1iX2/mOurPode4+qaGvrEHLyOtp6OpRvLfebeD/k/hDi9Tp5efHHmTNMXbSIDz09SU1L47eDB6ng6EjTunUBCI+MJPDePVwqVKBUyZK5jgPo17kz12/f5r8LF9Lugw/Q1dEh4OhR9PX06P28g4e2tjaDe/Rg7qpVTJ49mxaNGpGRkcHhU6cIDQ9ndP/+GmtLCCGKPrlr/yF27dqV4/YKFSqwYsUKZsyYwbp168jMzMTR0ZFJkyahUqmYPn06V69exdXVFQBnZ2f69evHggULCAsLo3LlyixfvpymTZsqx3R3d2fjxo0sWrSINWvWoFKpcHJyYsaMGXTt2jXfbdHW1mb+/Pns2LGDHTt24OvrS1xcHBYWFtSpU4fvv/+eGjVqKOWNjIwYN24cq1atYtq0aTg6OjJmzBjS09PZs2cPhw8fxtbWFg8PDwYPHkyHDh04deoUrVq1Uo4xb948Vq1axfTp07G0tGTUqFGMHj06X+0YOnQogYGBzJ07l27duilJTcjqrTl37lw+/PDDfJ0DwMfHR/lvPT09SpUqhaenJ8OGDVMbnp0fkydPpkKFCvz666/88MMPmJmZUbduXcaOHau2wnxhxb9s1KhR2NjYsG7dOmbMmIGNjQ3e3t6MeWHS74I8p7GxMatXr2bhwoX89ttvREZGYmNjQ58+ffjkk0+Ucm3btsXCwoKlS5fy448/oq2tTaVKlVi6dKnSe3TRokXcv3+fWbNmYW5uDkCJEiUYP348kydPZv78+Xz99dd5viYi/0zMzRg68VP2bPTn4PYA9PX1qeruRpseHdF9Pmn8g1v38F+9ga6D+yhJzdzECVHc6ZsaUWNYO+7tPsPDAxfR0dfFuqojTm3roq2b1Qv92YNwbm09TuWPmihJm9zExd7PGjKYnpTGra3Hczx/dtLGsIQpNUd24MHecwQfuwqZYFG+FE5t6yrnFOJdk/tDiNezMDPj+88+Y62fH5v37MFAT496NWrQt3NnZWGeG3fvstTXl1H9+ilJzdzEAdhYWzPtiy/4ZccOfjt4kMzMTKo6O9O3SxflWAD1a9ZkyiefsDUggI3PV0V3cnDg65Ejca9W7R1eESFEQdHKfHFsphDinVixYgWLFi3i+PHjWFhYvO/qiH+IA0EX3ncVhCiyfrp74H1XQQghRDG1wrrt+66CEEWa+QudjoqzZ5cvv+8qvNI/5RoXNJlYRYh3LDU1FT8/P7y8vCShKYQQQgghhBBCCPEWZPi5KHTp6elER0fnqqyZmVm+54AsqsLDw/Hx8eHOnTs8fPiQWbNmqe1PTk4m7vmqfG9iZWWlLDoj3k5CQgKJiYlvLgjY2NgUcm2EEEIIIYQQQgiRF5LUFIUuLCws16uI+/j40K1bt0Ku0fthYWHBuXPnUKlUfPfdd7i5uant37NnDxMnTszVsQ4ePIiDg0NhVPNfY/Xq1SxevDhXZQMDAwu5NkIIIYQQQgghhMgLSWqKQmdjY8OaNWtyVTZ7Fel/IkNDQ44fz3mCd4AmTZrk+jpJz8H869KlC3XqyEqgQgghhBBCCCFEcSRJTVHoDAwM8PDweN/VKPJsbW2xtbV939X41yhbtixly5Z939UQQgghhBBCCCHEW5CFgoQQQgghhBBCCCGEEMWKJDWFEEIIIYQQQgghhBDFiiQ1hRBCCCGEEEIIIYQQxYokNYUQQgghhBBCCCGEEMWKJDWFEEIIIYQQQgghhBDFiiQ1hRBCCCGEEEIIIYQQxYokNYUQQgghhBBCCCGEEMWKJDWFEEIIIYQQQgghhBDFiiQ1hRBCCCGEEEIIIYQQxYokNYUQQgghhBBCCCGEEMWK7vuugBBCiILx090D77sKQgghhBD/OGcsVe+7CkIUaV7vuwLiX0t6agohhBBCCCGEEEIIIYoVSWoKIYQQQgghhBBCCCGKFUlqCiGEEEIIIYQQQgghihVJagohhBBCCCGEEEIIIYoVSWoKIYQQQgghhBBCCCGKFUlqCiGEEEIIIYQQQgghihVJagohhBBCCCGEEEIIIYoVSWoKIYQQQgghhBBCCCGKFUlqCiGEEEIIIYQQQgghihVJagohhBBCCCGEEEIIIYoVSWoKIYQQQgghhBBCCCGKFUlqCiGEEEIIIYQQQgghihVJagohhBBCCCGEEEIIIYoV3fddAfFmEyZMwN/fn4MHD+Lg4JCvY/Xv35+QkBAOHTpUIHXL7/H27NnDxo0buXnzJikpKdjZ2dGsWTOGDx+Ora2tWtmMjAxCQ0PzfA38/PyYOHEi69ato0GDBq8sd/r0aQYMGICPjw/dunXTeB0cHEzLli355JNPGDNmjBL36NEjypYtm7eG51L23/5Fenp6WFtbU79+fYYPH06lSpXU9uf0N/n555/56aefePbsGQMGDGDYsGFMmDCBkydPoqenx9q1a6lWrVqhtEGI4iQ5Oo57AWeJvfcYAKsqDji1q4e+qVGBxOW23MUffyM+OErjPNau5ajWp8Vbt0+IgpAan8T9ved4eiuEjDQVFhVKU6FDfYyszAosNrfl4kOjuL/3HHEhkWhpa2Pl4oBT27pvvGeFKCxF6f5IinrG/YBzxNwPI1OVgVlZG8q3roO5o02BtlmI3Hj6JIqATTu4H3gHAJca1WjXszMm5q+/N3Ibl9tyD2/dY7/fLkLuP8LIxIiq7m54dmmHiZlpQTVVCPEOSVJTvDfz5s1j2bJlfPDBB4wePRpDQ0Nu377N1q1b2b17N5s2bcLR0RGA+Ph4Bg0aRPPmzdUSigXJ2dmZmTNnUrt27Rz3W1lZMXPmTFxcXJRtP/74I/7+/uzfv79Q6pRt4sSJlChRAoCkpCSCgoLYtm0bv//+OytXrlRL1o4cOZKkpCTldWBgID4+PtSqVYuxY8dSpUoVli1bxqFDhxg0aBAVKlSgfPnyhVp/IYqDtMQULq/aS2Z6Bg7NXMnMzCT42FUSHj+l1scfoq2jk6+43JbLzMwkMSIW62qOWFcvp3YuQ0uTwr0IQrxBhiqda2sPkBQZS5km1dEx0Cfk+FUurwyg9pjO6Bkb5Ds2t+USI2K4tGIP+ubGlPN0Jz0lleAT13gWFEHtTzqho6/3Tq6JENmK0v2RlpDM5ZUBqJLTKNOkOnpG+oScvMGVVXupNaoDJnZW7+SaCAGQGJ/A6plLSE9X0bStJ5mZGRzfe5jw4FBGfvM5Oro5pyVyG5fbcvdv3mbt3GUYGhnR/MNWaGlrcXLfUe7dvM3wSZ9hZGL8zq6JEKJgSFJTvBdhYWGsXLmS/v37M2XKFLV9H374IX379mXu3LnMnz8fgJiYGK5cuULz5s0LrU4lS5akc+fOr9xvbGyssf/kyZOkp6cXWp2yeXl5afRQ7d+/P927d+ezzz7jwIEDmJhkJTsaN26sVu7WrVsAjBgxAk9PTyAroWxpacnEiRMLve5CFBchx6+REptInU87Y2xrCYCZgw1XV+8j/MIdStdzyVdcbsulPI0nI1WFdTVHSrk7F2qbhcir8It3iA+JwnVwa0pUtAfAyqUMFxbuIOT4Ncq3zvnBYF5ic1vuwYGLaGlrU3NYO/TNsn6ImpYpybW1Bwi/cBf7hlUK7ToIkZOidH88PneL1GdJVO3bgpLPH5BZVy/H+Xn+BB26RFXp9S/eoRP7jhD7NIZP/vsVtvZ2AJRxKsfaOUu5cOIM9Zp75Csut+V2/eKHlpY2wyaNxbpUVo/larVrsOS7mRzdtZ+2PV/9W1AIUTTJnJrivbh06RLp6ekaCTgAd3d3atSowV9//fXuK1aMlC5dmq+//pro6Gi2bdv2ynJpaWkAStIze9uLr4UQ8OTyPSyd7JSEI0CJivYY2Zjz5PL9fMfltlxCRAwARiUt8t0mIQrak8v3MbQ2U5IpAMY2llg6l+bJ5XsFEpvbctra2tjWclYSmgAWTqUASAh/+vaNFOItFaX7I/lpPAAlKv1dztDSFGNbS7k/xDt35fQFnFwqKglHgIrVXbC2s+XK6Yv5jstNuaeR0USEhFHLo56S0ASwKV0Kl5rVuXjiTIG0VQjxbklS8x8kICCAfv36UadOHVxdXfH09GTmzJmkpqZqlD106BAdOnTAzc2Njh07snPnTo0yd+7cYfTo0dStW5eaNWvSq1cvjh07ViB1zU6o+fv751i/devWceTIESBrrsuWLVsCsHjxYlxcXAgODgbg4cOHfP311zRr1gxXV1fq16/PyJEjuX37tsYxIyIiGD16NLVq1cLDw4OpU6cSHx+v7D99+jQuLi74+fnlWOfg4GBcXFxYtGgRAJ6enpw5c4aQkBBl++eff46rqyvPnj1Ti42Li8PNzY0ffvghj1fq9dq2bYu+vr7a36V///5Kj8z+/fsrvTEHDBiAi4sLLi4uavWeMGGCEuvn50eXLl1wc3OjYcOGTJgwgYiICI1r8PPPP9O7d29cXV0ZNGhQnuO3b9/OvHnzaNasGW5ubvTo0YNTp05ptG/Hjh10796dWrVq0axZM7799luio6PVyrzpnHnh4uLC/PnzGTlyJK6urnTo0AGVSkVaWhrLly+nU6dO1KxZkxo1atCpUye2bt2qcYyjR4/Sr18/3N3dady4MePGjVPer9kOHz5Mr169qFmzJvXq1WPMmDHcv//qpJkofGlJKSRHx2Naxlpjn2lpa+JDNee3zEtcXo6f+PzHprFtVlIzPTUt7w0SopDEh0Zhaq/5PjaxtyY5Op60pJR8x+a2XJVezanYqaFamYSwrM8IQwt5cCfevaJ0fxhZmwOQ9OTv76QZ6emkxCaoPQgQorAlJSTy9EkU9uU110Wwd3QgLCg4h6jcx+W23LOnsQCUcrDTKGdlW5LE+ARioyXhL0RxI8PP/yG2bNnClClT8PT05MsvvyQtLY39+/ezatUqAL766iul7JMnT/j000/x9vamV69e7Nixg/Hjx6NSqejWrRuQNQ9jnz59KFmyJCNGjEBPT49du3YxfPhw5syZQ/v27fNV3wYNGuDg4MDvv//O+fPnad26NY0bN6ZevXpYWFigr6+vlHV2dmbixIn4+PjQqlUrWrVqhZWVFZGRkXh7e2Nqakq/fv0oUaIEN27cYPPmzVy7do1Dhw6hp/f3fFrffvstVatW5YsvvuDWrVv88ssv3L59m7Vr16KlpZXnNkyaNIk5c+bw9OlTJk6ciIuLC6GhoezevZsDBw4o1xJg3759pKam0rFjx3xdt5cZGBjg6OjIzZs3c9w/cuRInJyc2LRpEyNHjqR8+fJoa2uzbNkypd7Z85YuXryYRYsW0aZNG7y9vQkPD8fX15czZ86wdetWrKz+nntpwYIFeHp60rFjRwwMDN4q3sjIiMGDB5OWlsbq1asZMWIER44cUeYOXblyJbNnz6ZOnTp8/vnnREVFsXbtWm7cuMHGjRvR1dXN0zlza+3atdSuXZspU6aQnJyMrq4uX375JQEBAfTu3Zv+/fvz9OlTNm/ezOTJk7GxsVGmRdi9ezdffPEFlSpVYsyYMUrbrly5gp+fH+bm5vj5+TFp0iQaNWrE+PHjiY2NZePGjXh7e7N582acnJzyXGeRf6mxiQDom2v+0NM3NyI9KQ1VUiq6RvpvFZeX4ydGxKBjoMu9PWd5cvk+GakqDK1MKdeqNrY1K+S7rUK8rfTUNNKT0nJ+Hz9fmCclJgE9I815A3Mbq62j/VbnSHmWSFxQBPcCzqJvbkSpupU04oUoTEXt/rCrW5mIv+5yy/8EFTs1QtdIn0dHLpGWkIxDU9d8tVWIvMhOJpqXsNTYZ2ZpTnJiEkmJSRgZG71VXG7L6Rtk/S5MSdZ8uJAYnwBAXGwcFlYlct02IcT7J0nNf4jVq1fj7u7Ojz/+qCTo+vTpQ8uWLTl27JhaUjM1NZVvv/2Wvn37AtCzZ086d+7MnDlz6NSpE7q6ukybNg0rKyv8/f0xNs764tSvXz8GDhzI9OnT8fLyUks85pW+vj4//fQTn3/+OdevX2fDhg1s2LABHR0d6taty/Dhw2nSpAmQNdell5cXPj4+uLi4KPNa+vr6Ehsby4YNG3B2/nveORMTE1asWMGtW7eoXr26st3FxYV169ah+3yi6FKlSrFo0SIOHz6s9GzMCy8vL9auXUtKSopSJ2dnZywtLQkICFBLau7Zs4cKFSoUygrj5ubmBAUF5bivcePGhIeHs2nTJjw8PJQFhbZu3apW70ePHrFkyRKGDx/OF198ocR36NCBbt26sWzZMiZNmqRsL126NLNnz1bea3mNz8zMZOvWrcp7q0yZMowbN479+/fj7e1NbGwsixYtomnTpixfvhyd5wuoODg4MGXKFE6cOEGFChXydM7c0tXVZcmSJRgaGgJZDwF27drFsGHD1M7j5eVFu3btOHbsGM2bNycjIwMfHx8qV67M5s2blXg3Nzf+85//8Ntvv9G5c2emT59O+/btmTt3rnIsb29vOnTowOzZs1myZEme6yzyL7s3pI6e5sei9vN/M9LTVBpJzdzG5eX4CeExpKeoUCWn4tKjKarkVEL/vE7gpj/IzMiUeTbFe6NKfvX7OHtbxit6Fuc29m3PcX6eH+kpKtDWwqVHU1n9XLxzRe3+0DXSp5yXOzc3/cGlZbuVcs4dG2DlotmjTYjCkpKcDIBeDou36T7flpaaqpHUzG1cbsvZ2tthYGTI9fOXadbeS/kdk5aaxp1rgQCo0mR0jBDFjQw//4fYuXMnK1asUOtxGBUVhbm5OYmJiWplzc3N6dmzp/JaX1+fnj17EhkZydWrV3n69ClnzpyhefPmJCcnEx0dTXR0NM+ePaNVq1ZERkZy5cqVfNfZyckJPz8/1q1bx4ABA3B2diY9PZ3Tp08zZMgQVqxY8dr44cOHc+LECbWEZnJyMtraWW/rl9s9aNAgJaEJWUOzAWWYe0HQ09OjTZs2nDx5ktjYrKeG0dHRnDp1ig4dOhTYeV6kUqneqqfpi/bv309GRgaenp7K3zs6OpqSJUtStWpVjWtUt25dtXPmNb558+ZKQhOgSpWsxRyePHkCwJ9//klKSgp9+/ZVEpoAnTp1ws/Pj/r16+f5nLlVo0YNJSEJYGNjw/nz5/n444+VbZmZmahUKgASErKe7F69epUnT57g7e2tFu/h4cGWLVvo3LkzJ06cID4+Hi8vL7U66+jo0LBhQ44fP64cV7xjmZlZ/5/XWym3cXk4ful6lXHu1IBqfbIWd7CrU4maIztgaGXK/YCzZGZk5LGSQhSw172P3/R5lNvYPJwjIz0D506NqNKrOZbOpQnc9AchJ669vh5CFJYicn88PneL6+sPYWhlRuWPmlClV3Osqjhwd9dpQk/lPMJHiMKgfAXK4++V3MbltpyOri4erT8g9MEjtixfz+NHoYQFBfPr0jWkpmRNh5b9O1IIUXxIT81/CD09Pc6ePcuuXbu4d+8eQUFBREVlzdFWpkwZtbJly5ZVS+5lbwMICQlR/jFfv34969evz/F8YWFhBVJvLS0tGjRooPQgDA0NZdu2bSxfvpwFCxbQuXNnSpUq9cr4tLQ05s2bx7Vr1wgKCiI4OFhZjTzjpR/+FSqoD9u0sLDAwsKCkJCQAmlLtk6dOrFp0yYOHDhA9+7d2bt3LyqVqsCHnmeLiYl5q2HWL8ru6dmrV68c9784jB/QOF9+47N7/Wb/zbL/JuXKlVMrZ2BgoPS+zes5cyuna6mvr8/OnTs5fvw4Dx484OHDh0oyM/P5N6lX1RmyEqUv1nncuHGvPH90dDS2trZvVXfx9nSeD0nKSEvX2JfxPNGsa6j5nsptnCoPxy/dQHPFZh09XWzdnQk6eInEiBhM7PJ3zwvxJulpKtKT1ee81tF/3hNMpfk+Tk/Leh9n3xMvy23s25xDW0db6cFc0q08l1cE8GD/RUrVrYzuK+ojRH4Uh/vjwf6L6FsYU2tke3Se91azqeHE1bX7uR9wlpKu5aRHs3gnDAyzplxIy2EdBdXznsUvdgjIa1xejt+iUxuSE5M4eeAPrpy5AIBLzeo0bevJ/m27MDaV+ZiFKG4kqfkPMXXqVHx9falWrRq1atWic+fOuLu7M3XqVI0EZE5PsbITM9ra2kpSsG/fvnh5eeV4vooVK+arvuvXryclJYWhQ4eqbbe3t2fMmDEYGBgwZ84c/vrrL9q0aZPjMc6dO8eQIUMwNjbGw8OD7t27U61aNYKCgvjvf/+rUf5V7X6xJ2BBqFOnDvb29gQEBNC9e3cCAgJwdXXNMdmVX/Hx8Tx69IgPPvggX8fJTiYuXbo0xy8VL3v5muU1/k1PQbOP97onrnk9Z2693LaUlBT69OnDjRs3aNCgAY0aNWLQoEHUr19f7brnpc5Tp07FwSHnoV8WFrLi9ftgYGEKQGpcksa+1GdJ6BjpKT8K3ybubY//Ij2TrB+f6anSm1cUvsgrD7i19bjaNseWNdEx0iP1WaJG+ez3dk5z/QHoGurnKja35V5FS0uLkq7lePYwgqQnsZg5lHxlWSHeVlG/P1Ljk0iLS8Leo6rGZ0up2hV5GhhC3KMnWFd1zEVrhcgfC+usOSrjYuM09sXFPMPQ2Ah9Q825ZnMbl5fja2lp0b53V5q19yIq/AnmVpaUKGnFfr/daGlry3yaQhRDktT8BwgJCcHX15fOnTszc+ZMtX2RkZEa5cPCwsjMzFRLvjx48AAAR0dHbGxsgKzkjoeHh1rsnTt3CA4Oxsgof092Dxw4wOXLl+nTp4/aMORslStXBnJ+apdt4cKFGBoasnv3brXedcuWLcuxfEhICJUq/b1wQPaQ+uyFcgqKlpYW7du3Z+3atYSGhnL+/Hm1OU0L0t69e8nMzFRWh39b2b15S5cuTdWqVdX2HT16FFNT00KNf1np0qWBrJ6NLy6ck5qayvjx4+nYsWOBn/NVAgICuHr1KtOnT+ejjz5StoeHh7+yzi+bOHEitWvXVupsZWWlcW+dPn2ajIyMfM1VK96erpE+BlamOa5yHh8WhVmZnBMjuY3LbbmU2ASurNmHbQ0nHD1rqZVLisya0sKwRMG8t4V4HcuK9rgObq22zdDKjNgH4cSHRmuUTwiLwtDaLMdFULKZ2lvnKjY35VRJqVz88TdKupbHqU0dtXLpKVk9c7T1CvahpRDZisP9AZCZrjldSWZGptr/C1HYjIyNsCxpRdhDzVXOQ4OCKVO+bL7i8nL8y6cvYGZhhlOVSphamCnbHwTexb6cQ47zcgohijaZNOIfIHvuxpd7Tx49epQHDx5ozNEXFRXFwYMHldeJiYls3LiRMmXKULVqVWxtbXF1dcXf318tcZOWlsakSZP49NNP8z3vX8eOHUlMTGTGjBkaw8QzMjLYsmUL5ubm1KtXD/i799yLZbOHXb+Y0IyLi8Pf3x9A6XGabcuWLWqvs1eGz09CUFtbW6P+kNW+tLQ0Zs2aRWZmJu3atXvrc7xKREQECxcupFSpUvke2t6iRQsAli9frvTaBbhx4wajRo1i7dq1hRr/Mg8PD/T09Ni8ebPa8fbu3cvevXsL5ZyvEhMTA2jeX+vWrQNQ7gVXV1esrKzw8/Mj9YXhL+fPn8fPz4/ExEQ8PDwwMDDgp59+Iu2FicjDw8P5+OOP1RZfEu9eyerliLkbSuKTGGXb0zuhJD15hk2NV69Kn9u43JQzsDAhPTmVsLO3UL0wtDE5Jp7w87excLZD3+zVvdSEKCgG5saUqGiv9j8jKzNKVi9H0pNYnt4JVcomPokh5m7Ya+8TINexuSmna6SPtq4O4RfukJb090q2qqRUHp+7jYGVKca2lvm9DELkqDjcH2ZlSxJ57SFpCclKuczMTB6fu4WWjjbm5WSqG/HuVK9Tk7vXA3kS9vdvyzvXAol6HIFbg9r5jsttuT9/P8JvvtvUficGXrpG0O17NPBsku92CiHePempWYzMmzcPExPNeT5atWqFvb09y5YtIyUlBTs7Oy5fvoy/vz8GBgbK3H/ZLCws+Oqrrxg4cCCWlpZs27aNsLAwlixZogwLnjJlCgMHDqR79+707t0bS0tLdu/ezaVLl/jiiy8oUSJ/XfO7devGsWPH2LRpExcvXqRt27bY2dkRFRVFQEAAgYGBzJkzR+nFaWlpiba2NgcPHsTe3p7WrVvTrFkzVq5cydixY2nSpAlPnjxh69atSu/Ul9t97tw5Pv74Y5o3b86FCxfYvn077dq1o1GjRm/dDisrK86ePcvq1aupU6cONWvWBLIWvqlUqRJ79uyhQYMGr50XNDcOHDigXPOUlBTu3bvH9u3bSUlJYeXKlfkefl25cmX69+/P+vXriYmJwcvLi5iYGHx9fTExMWHs2LGFGv8ya2trRo8ezfz58xk8eDBeXl48fvwYX19fGjRogKenJ9ra2gV6zlfx8PBAV1eXr776ir59+6Krq8vhw4c5fvw4enp6yvtMX1+fCRMm8PXXX9O7d286depEQkIC69atw9nZmR49emBsbMznn3+Oj48PPXv2pFOnTqhUKjZs2EBKSgpff/11gdRZvB2Hpq5EXLzLlVW/U6aJKxkqFcHHrmJaxhrbWlnz9SVFx/HsYQTm5WwxsjLLdVxeyjl3asgN38NcWr4Hu7qVSU9NI/TkDbS0tanYseG7vShCvMSubmVCT97kxsbDODR1RUdPl+BjV9E3N6ZM4+pKudT4JJ7eDsW0dAllDtjcxua2nHOnhlxZ9TuXlu+hdL3KZKRn8PhMIKlxSVQf5CUPicQ7V5TujwodGnBl1V4u/vgbpeu7oK2nS+SVBzx7GEH51rVlPk3xTjVt58lff55lzawlNG7TAlVaGsf3Hsa+fFlqNszqbR8dEUnQnfs4VnTCyrZkruPyVK59S379cQ2+C1ZSrXYNYqKiOfH7ESq6VqFmo7rv9qIIIQqEJDWLkV27duW4vUKFCqxYsYIZM2awbt06MjMzcXR0ZNKkSahUKqZPn87Vq1dxdXUFwNnZmX79+rFgwQLCwsKoXLkyy5cvp2nTpsox3d3d2bhxI4sWLWLNmjWoVCqcnJyYMWMGXbt2zXdbtLW1mT9/Pjt27GDHjh34+voSFxeHhYUFderU4fvvv1cWVwEwMjJi3LhxrFq1imnTpuHo6MiYMWNIT09nz549HD58GFtbWzw8PBg8eDAdOnTg1KlTtGrVSjnGvHnzWLVqFdOnT8fS0pJRo0YxevTofLVj6NChBAYGMnfuXLp166YkNSGrt+bcuXP58MMP83UOAB8fH+W/9fT0KFWqFJ6engwbNkxteHZ+TJ48mQoVKvDrr7/yww8/YGZmRt26dRk7dqzaCvOFFf+yUaNGYWNjw7p165gxYwY2NjZ4e3szZswYJfle0OfMSeXKlVm4cCGLFy9m7ty5mJiYUKlSJdasWcOGDRs4c+YMaWlp6Onp0blzZ8zMzFi2bBlz5szB3NycFi1a8MUXXygJ+kGDBlGqVCnWrFnDvHnzMDQ0pHr16syaNYs6deq8oTaiMOmbGlFjWDvu7T7DwwMX0dHXxbqqI05t66Ktm9Vb/NmDcG5tPU7lj5ooSc3cxOWlXMlq5ajW35OgI5e5//s5tPV0sHQqTfk2tTG2sXyn10SIl2nr6uA2pA3395wl+I+raGlpYVHBjgrt6qFn/PfQ2sSIGG5tOYZjy5pK0ia3sbktZ+lkh+t/WhF08C8e7LsAWlpYlC9FlV4fyFya4r0oSveHuaMNNUe058H+Czw6cpmM9AyMbS1x8W6q9iBNiHfBxNyMoRM/Zc9Gfw5uD0BfX5+q7m606dER3eeLez64dQ//1RvoOriPktTMTVxeylWvW5MeIwZwbM8BAn7djom5KU3aetKsg5esfC5EMaWV+eK4TSFEgVmxYgWLFi3i+PHjsviLeCd6HZ755kJCCCGEECJPhjrnvHiqECKLl+OrpxEoTp5dvvy+q/BK5i90+hJ/k8cRQhSC1NRU/Pz88PLykoSmEEIIIYQQQgghRAGT4eeiQKSnpxMdrbkSY07MzMzyPQdkURUeHo6Pjw937tzh4cOHzJo1S21/cnIycXFxuTqWlZWVskCSeDsJCQkkJibmqqyNjU0h10YIIYQQQgghhBAFRZKaokCEhYXlehVxHx8funXrVsg1ej8sLCw4d+4cKpWK7777Djc3N7X9e/bsYeLEibk61sGDB3FwcCiMav5rrF69msWLF+eqbGBgYCHXRgghhBBCCCGEEAVFkpqiQNjY2LBmzZpcla1YsWIh1+b9MTQ05Pjx46/c36RJk1xfJ+k5mH9dunSRxXeEEEIIIYQQQoh/IElqigJhYGCAh4fH+65GkWdra4utre37rsa/RtmyZSlbtuz7roYQQgghhBBCCCEKmCwUJIQQQgghhBBCCCGEKFYkqSmEEEIIIYQQQgghhChWJKkphBBCCCGEEEIIIYQoViSpKYQQQgghhBBCCCGEKFYkqSmEEEIIIYQQQgghhChWJKkphBBCCCGEEEIIIYQoViSpKYQQQgghhBBCCCGEKFYkqSmEEEIIIYQQQgghhChWJKkphBBCCCGEEEIIIYQoViSpKYQQQgghhBBCCCGEKFZ033cFhBBCFIyhzl7vuwpCFFk/3T3wvqsghBCimKofIz+bhXgtx/ddAfFvJT01hRBCCCGEEEIIIYQQxYokNYUQQgghhBBCCCGEEMWKJDWFEEIIIYQQQgghhBDFiiQ1hRBCCCGEEEIIIYQQxYokNYUQQgghhBBCCCGEEMWKJDWFEEIIIYQQQgghhBDFiiQ1hRBCCCGEEEIIIYQQxYokNYUQQgghhBBCCCGEEMWKJDWFEEIIIYQQQgghhBDFiiQ1hRBCCCGEEEIIIYQQxYokNYUQQgghhBBCCCGEEMWKJDWFEEIIIYQQQgghhBDFiiQ1hRBCCCGEEEIIIYQQxYru+65AUTBhwgT8/f05ePAgDg4O+TpW//79CQkJ4dChQwVSt/web8+ePWzcuJGbN2+SkpKCnZ0dzZo1Y/jw4dja2qqVzcjIIDQ0NM/XwM/Pj4kTJ7Ju3ToaNGjwynKnT59mwIAB+Pj40K1bN43XwcHBtGzZkk8++YQxY8YocY8ePaJs2bJ5a3guZf/tX6Snp4e1tTX169dn+PDhVKpUSW1/Tn+Tn3/+mZ9++olnz54xYMAAhg0bxoQJEzh58iR6enqsXbuWatWqFUobxJudO3eOWbNmcevWLcqUKcPYsWNp1arV+66WKIKePokiYNMO7gfeAcClRjXa9eyMiblZgcdt/3kTUeERDPl6jMa+21ducGTXfkIfPEJLW4uyFcrj1a09ZZ3Lv33jhMin5Og47gWcJfbeYwCsqjjg1K4e+qZGBRKX23KxD8J5sO8C8SGR6BrpY13VkXJe7uiZGBZUU4XIs6Jyf1z88Tfig6M0zmPtWo5qfVq8dfuEKAwRUVGs8/fn+u3bANSuXp3+XbtiYfb67125jfvrxg389u7l3qNHaGtrU6l8eXp9+CGVypcvlPYIId49SWr+g82bN49ly5bxwQcfMHr0aAwNDbl9+zZbt25l9+7dbNq0CUdHRwDi4+MZNGgQzZs3V0soFiRnZ2dmzpxJ7dq1c9xvZWXFzJkzcXFxUbb9+OOP+Pv7s3///kKpU7aJEydSokQJAJKSkggKCmLbtm38/vvvrFy5Ui1ZO3LkSJKSkpTXgYGB+Pj4UKtWLcaOHUuVKlVYtmwZhw4dYtCgQVSoUIHy8sH53ty9e5fBgwfj5ubGV199xe7du/n000/ZtGkTNWrUeN/VE0VIYnwCq2cuIT1dRdO2nmRmZnB872HCg0MZ+c3n6Ojm/JH5NnHnj53i/B8nKe/irLHvfuAd1s1fga29Ha26dyA9PYMzh46z6odFDJ3wKQ4VyhV424V4k7TEFC6v2ktmegYOzVzJzMwk+NhVEh4/pdbHH6Kto5OvuNyWi7kXxtU1+9E10qfsBzXQ0tIi5M/rxNx7TM2R7dEzMnhn10SIbEXl/sjMzCQxIhbrao5YV1f/rDC0NCnciyBEHsUlJPD9woWkp6fTycuLjIwMfjt4kKDQUP735ZfovuJ7V27jrt++zYylS3Gws6N3x46kp6fz+7Fj/N/8+Xz/2WdUlN9nQvwjSFLzHyosLIyVK1fSv39/pkyZorbvww8/pG/fvsydO5f58+cDEBMTw5UrV2jevHmh1alkyZJ07tz5lfuNjY019p88eZL09PRCq1M2Ly8vjR6q/fv3p3v37nz22WccOHAAE5OsL4ONGzdWK3fr1i0ARowYgaenJ5CVULa0tGTixImFXnfxejt37iQlJYVFixZhZWVFq1ataNy4MQEBAZLUFGpO7DtC7NMYPvnvV9ja2wFQxqkca+cs5cKJM9Rr7pHvuIyMDI7u2s+hHXtfWY89G/2xKGHJiCnj0DfQB8Ddox4LpvhwwG83g778uKCaLESuhRy/RkpsInU+7YyxrSUAZg42XF29j/ALdyhdzyVfcbktd/e302hpa1FzRHuMrM0BsK7uyIWFO3l05DIV2tUrvIsgxCsUlfsj5Wk8GakqrKs5Uspd86GZEEXJ7kOHiI6JYdbEiTjYZX1/qliuHNOXLOHI6dN4vfSbK69xa/38sLa0ZPqXX2Kgn/V9qln9+nw+fTq/7trFlE8+eQetFEIUNplT8x/q0qVLpKenayTgANzd3alRowZ//fXXu69YMVK6dGm+/vproqOj2bZt2yvLpaWlAShJz+xtL74W7092r9qQkBAAkpOTAdB//uVGiGxXTl/AyaWikpgEqFjdBWs7W66cvpjvuLTUNH78v9kc2h5ArUZ1MSthoXGspIREHj8KxbVeLSWhCWBqYUb5ys4E3XmQz1YK8XaeXL6HpZOdklABKFHRHiMbc55cvp/vuNyUS34aT2J4DLbuzkpCE8DYxhKrqmUJv3An/w0V4i0UhfsDICEiBgCjkpqfL0IUNScuXKBapUpKYhKgRpUqlLa15c8LF/IVF5+YyMOQEBq6uysJTQBLc3OqVqxI4P1X35dCiOJFkpp5EBAQQL9+/ahTpw6urq54enoyc+ZMUlNTNcoeOnSIDh064ObmRseOHdm5c6dGmTt37jB69Gjq1q1LzZo16dWrF8eOHSuQumYn1Pz9/XOs37p16zhy5AiQNddly5YtAVi8eDEuLi4EBwcD8PDhQ77++muaNWuGq6sr9evXZ+TIkdx+Pn/JiyIiIhg9ejS1atXCw8ODqVOnEh8fr+w/ffo0Li4u+Pn55Vjn4OBgXFxcWLRoEQCenp6cOXOGkJAQZfvnn3+Oq6srz549U4uNi4vDzc2NH374IY9X6vXatm2Lvr6+2t+lf//+So/M/v37K70xBwwYgIuLCy4uLmr1njBhghLr5+dHly5dcHNzo2HDhkyYMIGIiAiNa/Dzzz/Tu3dvXF1dGTRoUJ7jt2/fzrx582jWrBlubm706NGDU6dOabRvx44ddO/enVq1atGsWTO+/fZboqOj1cq86Zx5ERoaypgxY2jSpAlubm60b9+elStXkpGRoVbu4sWL/Oc//8Hd3R13d3cGDx7M5cuXlf1//PEHLi4ujB07Vi3um2++wcXFhT/++EPZ1q5dO2Xfo0eP+PLLLzEwMKBr164a9fP09GTKlClMmjSJGjVq0KxZM6Kjo8nMzGTjxo189NFHuLu74+bmRtu2bVmxYgWZmZlqx7h06RLDhg2jbt26NGjQgOHDhxMYGJin9ol3LykhkadPorAvrzmnsL2jA2FBwfmOU6lUpCQl03PUQLoP7YuOtuZwRAMjQ8b+bxIebT7Q2JcYn4C2jnxsi3cvLSmF5Oh4TMtYa+wzLW1NfKjm/H15icttudRnCQCYlCqhUc7IygxVQgopsQm5b5gQBaCo3B8AieFPATC2zUpqpqem5b1BQrwD8YmJRERGUiGHdROcypbl/qNH+YozNjRk3pQpdHj+m+1FcfHx6GjL9ykh/ilk+HkubdmyhSlTpuDp6cmXX35JWloa+/fvZ9WqVQB89dVXStknT57w6aef4u3tTa9evdixYwfjx49HpVLRrVs3IGsexj59+lCyZElGjBiBnp4eu3btYvjw4cyZM4f27dvnq74NGjTAwcGB33//nfPnz9O6dWsaN25MvXr1sLCwUOul5uzszMSJE/Hx8aFVq1a0atUKKysrIiMj8fb2xtTUlH79+lGiRAlu3LjB5s2buXbtGocOHUJPT085zrfffkvVqlX54osvuHXrFr/88gu3b99m7dq1aGlp5bkNkyZNYs6cOTx9+pSJEyfi4uJCaGgou3fv5sCBA8q1BNi3bx+pqal07NgxX9ftZQYGBjg6OnLz5s0c948cORInJyc2bdrEyJEjKV++PNra2ixbtkypd/a8pYsXL2bRokW0adMGb29vwsPD8fX15cyZM2zduhUrKyvluAsWLMDT05OOHTtiYGDwVvFGRkYMHjyYtLQ0Vq9ezYgRIzhy5Igyd+jKlSuZPXs2derU4fPPPycqKoq1a9dy48YNNm7ciK6ubp7O+SZpaWkMHTqU5ORkBg0ahLm5OUePHmX27Nmkp6czcuRIAE6cOMGIESOoUqUKY8eOJTU1FT8/P/r27cuaNWuoW7cuzZo1o2vXrvj7+3Ps2DGaNm3K8ePH2bx5M7169aJZs2bKed3d3enXrx++vr60bt0aCwsLli5d+sp5Tnfv3k2FChWYNGkSkZGRWFlZKfPTdu3aFW9vbxISEti+fTtz5szBxMSEvn37AlkLEg0aNAhbW1uGDh2KoaEh69atY8CAAWzbtg0HB4dctU+8e8+exgJgXsJSY5+ZpTnJiUkkJSZhZGz01nGGRoZ8NmMyOq+YWw1AW1ubkqVsNLY/fhRK0J37VHKtkodWCVEwUmMTAdA3N9bYp29uRHpSGqqkVHSN9N8qLrfltPWyvramp2gmatISU7LOGZeEgYWMlBDvTlG5P3SN9EmMiEHHQJd7e87y5PJ9MlJVGFqZUq5VbWxrVsh3W4UoKNExMQBYWWj2Ki5hbk5iUhIJiYmYGBu/dVzplxbFBXgYEsKt+/epWbVq/hshhCgSJKmZS6tXr8bd3Z0ff/xRSdD16dOHli1bcuzYMbWkZmpqKt9++62S6OjZsyedO3dmzpw5dOrUCV1dXaZNm4aVlRX+/v4YP//Hul+/fgwcOJDp06fj5eWVr+Gx+vr6/PTTT3z++edcv36dDRs2sGHDBnR0dKhbty7Dhw+nSZMmQNZcl15eXvj4+ODi4qLMa+nr60tsbCwbNmzA2fnveXlMTExYsWIFt27donr16sp2FxcX1q1bp0zOXKpUKRYtWsThw4eVno154eXlxdq1a0lJSVHq5OzsjKWlJQEBAWpJzT179lChQoVCWWHc3NycoKCgHPc1btyY8PBwNm3ahIeHh7Kg0NatW9Xq/ejRI5YsWcLw4cP54osvlPgOHTrQrVs3li1bxqRJk5TtpUuXZvbs2cp7La/xmZmZbN26VXlvlSlThnHjxrF//368vb2JjY1l0aJFNG3alOXLlytJFgcHB6ZMmcKJEyeoUKFCns75Jjdu3ODu3bssWLCAtm3bAtCjRw+GDh3K/edDQDIyMvjuu+9wc3PD19dXqVe/fv3o0qUL06ZNY/v27UDW4k7Hjx9n6tSpbNq0iW+++YZy5crx9ddfq533zp073LhxQzn+xx9/nOO0DNmSk5P58ccfKVWqFJCVjPX19aVDhw7MmDFDKdejRw8aNWrEsWPHlHv9hx9+wNLSkm3btinJ4+bNm9O+fXs2bNjAl19+mev2iXcr5fm0BHr6ehr7dJ9vS0tN1Uhq5iVOS0vrtQnNV0lNTmHbT74ANG3fMs/xQuRXdm8vHT3Nr43azz/z09NUGkmb3MbltpxxKUt0DPWIvPYQh+ZuymdkepqKp7ezphjJSFPlvYFC5ENRuT90jfRJCI8hPUWFKjkVlx5NUSWnEvrndQI3/UFmRqbMsymKjOSUrAdROf3e1X/eaSYlLY2XH1G9bVx27JL16wHo7OX1ljUXQhQ10u86l3bu3MmKFSvUehxGRUVhbm5OYmKiWllzc3N69uypvNbX16dnz55ERkZy9epVnj59ypkzZ2jevDnJyclER0cTHR3Ns2fPaNWqFZGRkVy5ciXfdXZycsLPz0/pKebs7Ex6ejqnT59myJAhrFix4rXxw4cP58SJE2oJzeTkZLSfd9d/ud2DBg1SW6Wuf//+AMow94Kgp6dHmzZtOHnyJLGxWT2koqOjOXXqFB06dCiw87xIpVK9VU/TF+3fv5+MjAw8PT2Vv3d0dDQlS5akatWqGteobt26aufMa3zz5s2VhCZAlSpZvbuePHkCwJ9//klKSgp9+/ZVS7J06tQJPz8/6tevn+dzvomtrS1aWlosX76cY8eOkZqaipaWFqtWrVKmDbh+/TqPHj3Cy8uL2NhY5ZzJycm0aNGCGzduEB4eDoCFhQX/93//x8OHD+nRowfh4eHMmDFDrd2XLl2iZ8+ePHz4kP/973+YmZkxb9487t69C8D69eu5fv26Wj0dHR2VhCZkvef+/PNP/vvf/6qVe/r0Kaampsp9EBUVxeXLl+nYsaOS0ISs+3Dbtm0MGzYsT+0T71b2LAJ5vdffNi63UlNS8V34E48fhdKsfUucXCoWynmEeC3ljV5Icbksp62jQ5nG1YkPiSJw0x8kPI4mPjSKmxuPkJGalczUkikaxLtWRO4PgNL1KuPcqQHV+rSgZPVy2NWpRM2RHTC0MuV+wFkyX5ruR4j3JXv6prx/73q7uJTUVGauWMHDkBA6t2pFtUqV8hQvhCi6pKdmLunp6XH27Fl27drFvXv3CAoKIioqaw6bMmXKqJUtW7asWnIvextkLVaSnRRcv349658/LXpZWFhYgdRbS0uLBg0aKD0IQ0ND2bZtG8uXL2fBggV07txZLYHzsrS0NObNm8e1a9cICgoiODhYWY385XkQK1RQH9ZiYWGBhYWFskBLQenUqRObNm3iwIEDdO/enb1796JSqQp86Hm2mJiYPA2zzkl2T89evXrluP/FYfyAxvnyG5/9NDP7b5b9NylXrpxaOQMDA6X3bV7P+SZ2dnaMHz+euXPnMnToUIyNjWnUqBHt27enXbt26OjoKOecOXMmM2fOzPE4oaGhynvWy8uL1q1bs2/fPnr37k3t2rWVcunp6UyYMIHMzEzWrVuHs7Mz5ubmfPLJJ3z22WdMnz6dadOmMXDgQLUevtbWmnNW6enpceTIEQ4ePMj9+/d5+PChklTP/nL1qmsKKMc/efJknton3h0Dw6xpHtJymINY9byXjKGhYYHF5UZSYhK+81cQdOc+tZs2wKtb4Ty4EeJNdAyy/r3PSEvX2Jehykom6hpqfibkNk6Vh+M7etZUep9lL5BiVdUBh2auPPj9ArpGBnlrnBD5VJTuj9INNKco0dHTxdbdmaCDl0iMiMHELn/faYUoCIbPp9fKae2H1OeLsBrn8P3pbeISEhOZsXw5t+7do0XDhvT68MP8VV4IUaRIUjOXpk6diq+vL9WqVaNWrVp07twZd3d3pk6dqpGAzOnJUXbiQ1tbW0kK9u3bF69XdH2vWDF/vXHWr19PSkoKQ4cOVdtub2/PmDFjMDAwYM6cOfz111+0adMmx2OcO3eOIUOGYGxsjIeHB927d6datWoEBQVp9FqDV7f7bYZbvk6dOnWwt7cnICCA7t27ExAQgKura47JpPyKj4/n0aNHfPDBB/k6TnYycenSpblKcLx8zfIar/2Gya+zj/e6p5x5PWduDBkyhA8//JD9+/dz9OhRTpw4wcGDB9m+fTs//fSTcs6xY8dSq1atHI/xYvI8MTFR6Wl5/PhxEhMTlZ6a9+/f5969e/Ts2VPpbdyqVSsGDRrEzz//zLBhwwA03v8vX/vMzEw+/vhjDh8+TJ06dXB3d6dnz57Uq1ePgQMHKuXyck1z2z7x7lhYZ/WujYuN09gXF/MMQ2Mj9A01kyVvG/cmCc/i+HnuMh4HhVC3uQedBvQotN6gQryJgYUpkDVf5ctSnyWhY6SHTg5TMOQ2Li/H19LSwrlDfco2dyMp8hkGFiYYljDlwb4LoK2FgaXMpyneraJ0f7yKnknW1CnpqTI9gygaSj4f1RTz0uKvAE+fPcPYyEhJYOYnLjYujv/9+CMPgoPxatyYoT17yvcpIf5hJKmZCyEhIfj6+tK5c2eN3lWRkZEa5cPCwsjMzFT7B/PBgwdA1tBWG5usRSB0dHTw8PBQi71z5w7BwcEYGanP25ZXBw4c4PLly/Tp00dtOG62ypUrA6/vQbRw4UIMDQ3ZvXu3Ws+/ZcuW5Vg+JCSESi905c8eUp+9UE5B0dLSon379qxdu5bQ0FDOnz+vNqdpQdq7dy+ZmZnK6vBvK7s3b+nSpan60sTUR48exdTUtFDjX1a6dGkgqzemk5OTsj01NZXx48fTsWPHAj9nTEwMN2/epHbt2vTr149+/fqRmJjIhAkT+P333wkMDFTOmZ1If9Hly5eJjY1Ve8/OnTuXkJAQvvrqK2bNmsXcuXOZMmUKoP4g4UVffvklf/31F3/99Reurq7UqVPntfU+d+4chw8f5uOPP1ZbbV2lUhETE6P0wn7xmr5s1qxZWFhYUK9evTy1T7w7RsZGWJa0Iuyh5irnoUHBlCmvucpmfuJeJyU5WUloNmrVnPa9u+b5GEIUJF0jfQysTHNcxTk+LAqzMiXzFZeX40dcuoe+mRGWFUqjb/r3d6XYB48xLWOd47yDQhSmonJ/pMQmcGXNPmxrOOHoWUutXFJk1ugSwxJ5++4mRGExMTbGxtqa+8Ga35/uP3qE8yt+P+YlLik5WUlotm/RgoEvrMcghPjnkImHciF7mOnLvSePHj3KgwcPUKnUn3pGRUVx8OBB5XViYiIbN26kTJkyVK1aFVtbW1xdXfH391ebPy8tLY1Jkybx6aefahwzrzp27EhiYiIzZszQGCaekZHBli1bMDc3V5Is2b3TXiybPez6xYRmXFwc/v7+AEqP02xbtmxRe529Mnx+EoLa2toa9Yes9qWlpTFr1iwyMzNp167dW5/jVSIiIli4cCGlSpXK99D2Fi1aALB8+XIl2QZZi+eMGjWKtWvXFmr8yzw8PNDT02Pz5s1qx9u7dy979+4tlHOeOHGCgQMHcujQIWWbsbGxkmDX0dHB1dUVGxsb1q9fT0JCglIuPj6ezz77jIkTJyrv1fPnz/PLL7/g7e3NkCFD6N69O7/88gvnzp0DsuaytLW1JSAggJjnKyVC1ns4Pj4egMDAQKX8q2THvnz/b968maSkJOVeLVWqFFWqVGH37t3K8SFrkad169YRGRmZp/aJd696nZrcvR7Ik7C//12+cy2QqMcRuDWoXeBxr/Lb+q3PE5rNJKEpioyS1csRczeUxCcxyrand0JJevIMmxpO+Y7LbbmQE9e4+9tpMtL//m4QdfMRzx5EYJ/D0Fsh3oWicH8YWJiQnpxK2NlbqJL/HpqbHBNP+PnbWDjboW+m2dFBiPelQc2aXAkMJOSF38OXb94kLCICj9d0Osht3KrNm3kQHEy7Dz6QhKYQ/2DyOPsF8+bNw8REc9hSq1atsLe3Z9myZaSkpGBnZ8fly5fx9/fHwMBALTkBWXNJfvXVVwwcOFBZCTksLIwlS5YovcamTJnCwIED6d69O71798bS0pLdu3dz6dIlvvjiC7WFRt5Gt27dOHbsGJs2beLixYu0bdsWOzs7oqKiCAgIIDAwkDlz5ii9OC0tLdHW1ubgwYPY29vTunVrmjVrxsqVKxk7dixNmjThyZMnbN26Vemd+nK7z507x8cff0zz5s25cOEC27dvp127djRq1Oit22FlZcXZs2dZvXo1derUoWbNmkDWwjeVKlViz549NGjQIN9zEB44cEC55ikpKdy7d4/t27eTkpLCypUr8917rnLlyvTv35/169cTExODl5cXMTEx+Pr6YmJiotYDsDDiX2Ztbc3o0aOZP38+gwcPxsvLi8ePH+Pr60uDBg3w9PREW1u7QM/ZokULnJycmDx5MteuXcPR0ZF79+7xyy+/0KhRIyVpOGXKFMaNG0e3bt346KOPMDAwYMuWLYSGhjJ79mx0dXVJSUlh8uTJWFlZ8eWXXwJZPTAPHDjA5MmT2blzJwYGBkyZMoWxY8fSu3dvevbsSUJCAhs3biQuLo7JkyezcOFChg8fztKlS5V5Z1/m7u6OqakpPj4+hISEYGFhwenTp9mzZ4/G/T9x4kSGDh1K9+7d6dGjB9ra2vj6+mJubs6wYcPQ09PLVfvE+9G0nSd//XmWNbOW0LhNC1RpaRzfexj78mWp2TDrS3J0RCRBd+7jWNEJK9uSuY7LrYjQx1w6eQ5DYyPsyjrw159nNcrU8qiX/8YKkUcOTV2JuHiXK6t+p0wTVzJUKoKPXcW0jDW2tbKm+EiKjuPZwwjMy9liZGWW67i8lCvbzI0bG45wff0BrKuVIzkmnpDj1yhR2R7bWjJ9h3g/isr94dypITd8D3Np+R7s6lYmPTWN0JM30NLWpmLHhu/2ogjxBp28vPjjzBmmLlrEh56epKal8dvBg1RwdKRp3boAhEdGEnjvHi4VKlCqZMlcxwU/fsyxs2cxNjKivIMDf5w5o3H+ZvXrv7vGCiEKjfx6fsGuXbty3F6hQgVWrFjBjBkzWLduHZmZmTg6OjJp0iRUKhXTp0/n6tWruLq6AuDs7Ey/fv1YsGABYWFhVK5cmeXLl9O0aVPlmO7u7mzcuJFFixaxZs0aVCoVTk5OzJgxg65d898zR1tbm/nz57Njxw527NiBr68vcXFxWFhYUKdOHb7//ntq1KihlDcyMmLcuHGsWrWKadOm4ejoyJgxY0hPT2fPnj0cPnwYW1tbPDw8GDx4MB06dODUqVO0atVKOca8efNYtWoV06dPx9LSklGjRjF69Oh8tWPo0KEEBgYyd+5cunXrpiQ1Iau35ty5c/mwACZ79vHxUf5bT0+PUqVK4enpybBhw9SGZ+fH5MmTqVChAr/++is//PADZmZm1K1bl7Fjx6qtMF9Y8S8bNWoUNjY2rFu3jhkzZmBjY4O3tzdjxoxRku8FeU5jY2NWr17NwoUL+e2334iMjMTGxoY+ffrwySefKOXatm2LhYUFS5cu5ccff0RbW5tKlSqxdOlSpffookWLuH//PrNmzcLc3ByAEiVKMH78eCZPnsz8+fP5+uuvadOmDUuXLmXp0qXMnTsXQ0NDGjZsqNS/Ro0aTJ48GTs7u1fWu2TJkqxYsYLZs2ezdOlS9PX1cXJyYu7cuVy+fFnphVmyZEkaNmzI2rVrWbhwIUuWLMHAwIB69eoxfvx4ZdqJ3LRPvB8m5mYMnfgpezb6c3B7APr6+lR1d6NNj47oPl8Y68Gte/iv3kDXwX2UpGZu4nLrQeBdAJITk/BfvSHHMpLUFO+DvqkRNYa1497uMzw8cBEdfV2sqzri1LYu2rpZPcyfPQjn1tbjVP6oiZK0yU1cXsqVdC2PS89mBP9xhXt7zqBnaoRDU1fKNq+B1hvmkxaisBSZ+6NaOar19yToyGXu/34ObT0dLJ1KU75NbYxtLN/pNRHiTSzMzPj+s89Y6+fH5j17MNDTo16NGvTt3FlZkPTG3bss9fVlVL9+SlIzV3F37gCQmJTEUl/fHM8vSU0h/hm0Ml8cVypEMbJixQoWLVrE8ePHsbCweN/VEcXUy/PfFmcHgi687yoIUWT9dPfA+66CEEKIYmqFddv3XQUhijTzFzpMFWfPLl9+31V4pX/KNS5o8khbFEupqan4+fnh5eUlCU2RL/+UhKYQQgghhBBCCPFvIsPPi4n09HSio6NzVdbMzOwfu4JyeHg4Pj4+3Llzh4cPHzJr1iy1/cnJycTFxeXqWFZWVrIoSz4lJCSQmJiYq7LZw6+FEEIIIYQQQggh8kuSmsVEWFhYrlcR9/Hxods/dIU3CwsLzp07h0ql4rvvvsPNzU1t/549e5g4cWKujnXw4EEcHBwKo5r/GqtXr2bx4sW5KhsYGFjItRFCCCGEEEIIIcS/hSQ1iwkbGxvWrFmTq7LZq0j/ExkaGnL8+PFX7m/SpEmur5P0HMy/Ll26UKdO3lZ3FkIIIYQQQgghhMgvSWoWEwYGBnh4eLzvahR5tra22Nravu9q/GuULVuWsmXLvu9qCCGEEEIIIYQQ4l9GFgoSQgghhBBCCCGEEEIUK5LUFEIIIYQQQgghhBBCFCuS1BRCCCGEEEIIIYQQQhQrktQUQgghhBBCCCGEEEIUK5LUFEIIIYQQQgghhBBCFCuS1BRCCCGEEEIIIYQQQhQrktQUQgghhBBCCCGEEEIUK5LUFEIIIYQQQgghhBBCFCuS1BRCCCGEEEIIIYQQQhQruu+7AkIIIYQQQgghhBBCiJy1bNnytfsPHjz4jmpStEhSUwgh/iF+unvgfVdBCCGEEOIf54yl6n1XQYgizet9V0D8a0lSUwghhBBCCCGEEEKIIurf2hPzTWROTSGEEEIIIYQQQgghRLEiSU0hhBBCCCGEEEIIIUSxIklNIYQQQgghhBBCCCFEsSJJTSGEEEIIIYQQQgghRLEiSU0hhBBCCCGEEEIIIUSxIklNIYQQQgghhBBCCCFEsSJJTSGEEEIIIYQQQgghRLEiSU0hhBBCCCGEEEIIIUSxIklNIYQQQgghhBBCCCFEsSJJTSGEEEIIIYQQQgghRLEiSU0hhBBCCCGEEEIIIUSxIklNIYQQQgghhBBCCCFEsaL7vivwvpw6dYqBAwdiaWnJsWPH0NfXV9vv6elJmTJlWL9+faHVISoqCiMjI4yNjQvkeBMmTMDf35/AwMACOd6LTp8+zYABA/jkk08YM2ZMjmU8PT0BOHToUIGfvyBkZGQQGhqKg4NDnuKy2+7j40O3bt3yfN5Hjx5RtmzZPMflRv/+/Tlz5ozaNgMDA2xsbGjSpAkjR46kdOnSavtffm9nZmYye/Zstm7dSkpKCuPHj+eDDz5gwoQJXLp0CSMjIwICArCysiqUNghR1KTGJ3F/7zme3gohI02FRYXSVOhQHyMrswKLzW25hMdPub/3HLEPwtHR18Wyoj3lW9XGsIRpgbZZiPx6F/fNi4KOXOLx2VvUH9+jIJshRL4Vpc+QpKhn3A84R8z9MDJVGZiVtaF86zqYO9oUaJuFyK2EZ3H8vuU3bl2+TlpaGhWqVKJdry5Y2ZYssNjgew85uD2AoDv3yUjPwK6sPR90aoNLjWpq5cKDw/h9y04e3LqLvr4+ztVd8OrWgRIl5TePEMXJv7an5m+//YaxsTExMTHvJQl39OhR2rZtS3R0dIEds2fPnsycObPAjvdPEh8fj7e3N/7+/nmOdXZ2ZubMmdSrVy/Psd9++y2TJk3Kc1xezZw5U/nfxIkTad68Odu3b6dz587cvXtXreykSZMYOXKk8vrIkSP89NNP1KpVi8mTJ9OoUSN++OEHzp07x4gRI/jiiy8koSn+NTJU6Vxbe4Coaw8p3cAFx5buxIdEcnllAGmJKQUSm9tyiU9iuLRiD7EPwinjUQ2Hpq7EPXrCX8t2kxwdV2jXQIi8ehf3zYuib4UQdPBSYTRFiHwpSp8haQnJXF4ZwNM7odg3qkb51rVJjonnyqq9JDwuuN8fQuSWKi2NdfNXcO38Jeq3aIxn57aEPAhi1czFJMYnFEhs5OMIVv2wmCeh4TTv0IpWH32IKi0N3wUruX7+slLuSVg4K30W8ODWXRq1ak6Tdp4E33vIiunzefokqtCugRCi4P0re2qmpqayb98+OnfuzK5du/D396dt27bvtA6XL1/m2bNnBXpMd3d33N3dC/SY/xQxMTFcuXKF5s2b5zm2ZMmSdO7c+a3Oe/z4ccqUKfNWsXmRU/169OhBr169GDt2LDt37kRbO+sZhpeXl1q57J69n3/+OS4uLsq2qlWrMnr06EKuuRBFS/jFO8SHROE6uDUlKtoDYOVShgsLdxBy/BrlW9fOd2xuy90POEd6Sho1h7fDvFwpAGzdnTk/fzv39p6jWp8WhXYdhMiLd3HfZAs7E8jd306TmZ5ReA0S4i0Vpc+Qx+dukfosiap9W1CyejkArKuX4/w8f4IOXaKqfIaId+zin2cJffCIgV+MomL1rN8clWtUY/G3P3Bi3xFadeuQ79jft/yGto42I74Zh5mFOQD1mnuw+Nsf+H3LTqrVqQHA3s07SElOYeiETylXyQkAd496LJjsw97NO+g9enChXQchRMH6V/bUPHr0KM+ePaNBgwY0adKE48eP8+TJk/ddLSEKVNWqVRkxYgS3b9/m8OHDryyXlpYGgImJidq2F18L8W/x5PJ9DK3NlB+KAMY2llg6l+bJ5XsFEpubchnp6Ty9HYplRXsloQmgb2pEqdrORF0PQpWUmu/2ClEQ3sV9A3Bl9e/c2X4SS2c7TOxlBIEoeorKZwhA8tN4AEpU+rucoaUpxraWJIQ/fftGCvGWrpy+iJVtSSUpCWBTuhQVqlbmyukL+Y7NzMzkwa27VHKtoiQ0AfT09XCpWZ3oiEgSnsWRrlJx91ogztUqKwlNABNzM9wb1+fGxaskJSYVVLOFEIXsX5nU/O2339DS0qJevXq0atUKlUrFjh073hh38eJF/vOf/yg9IgcPHszly5fVymRmZrJx40Y++ugj3N3dcXNzo23btqxYsYLMzEwga+7LxYsXA9CyZUv69++vxAcGBvLxxx9Tt25datSogbe3NwcOHFA7R//+/RkyZAjz5s3D3d2dRo0aERgYyIQJE5SedtnCw8OZNGkSTZo0wd3dne7du2scr7AsWrQINzc3Hjx4wIgRI3B3d6devXp8/fXXPH2q/mUqPj6e//3vf3zwwQfUrFmTjh07smXLFrUysbGxTJ06laZNm+Lq6kq7du1Yu3atcl1fPOf+/ftp3Lgx7u7ubNmyhZYtWwKwePFiXFxcCA4OBuDhw4d8/fXXNGvWDFdXV+rXr8/IkSO5ffu2cszTp0/j4uKCn5+f2usTJ07w/fff06hRI2rWrMnAgQO5efOmEufi4kJISAhnzpxR4nv27EmTJk3IyFDvYXL37l1cXFz45ZdfCuDK/61jx44AHDt2TNnm6empvOc8PT3V3ouenp4a9V60aBGQNSfp6tWradu2La6urjRt2pRp06YRHx+vca38/f3p2LEjbm5uTJw4Mc/xb7q2kHWvrVu3jg8//JAaNWrg6enJ7NmzSUr6+0tIbs6ZF4GBgQwZMoSGDRtSo0YNunbtytatWzXKHT58mF69elGzZk3q1avHmDFjuH//vrJ/48aNuLi4aEwXMWTIEFxdXTXaKt6d+NAoTO2tNbab2FuTHB1PWtKrhw/mNjY35dLik8lMz8DEroRGOUMrc8jIlOGDosh4F/cNQHJMPM6dGlJ9YCt0DfQKpvJCFKCi8hkCYGSdldRJevL3yLCM9HRSYhPQNyuY+fyFyIuwoGBKl9Nc28C+nANPn0SRlJCYr1gtLS0+/vYL2nhrjmDLHqKuraNDQlw86ap07BzsNcpZ2ZYkMyOD8ODQvDRNCPEe/euGn8fHx3PkyBFq1apFyZIlad68Ofr6+mzfvp2hQ4e+Mu7EiROMGDGCKlWqMHbsWFJTU/Hz86Nv376sWbOGunXrAjB//nyWLVtG165d8fb2JiEhge3btzNnzhxMTEzo27cvPXv2JD4+nv379zNx4kQqVaoEZA1JHzBgAKampvznP//BxMSEHTt2MHr0aL799lv69u2r1OfChQs8evSI8ePHExwcTMWKFTXqHBMTg7e3NzExMfTt25eyZcuya9cuPvnkExYvXqwxDLkwZGRkMGDAAOrWrcvXX3/NlStX2Lp1K8nJySxYsADImg6gb9++3L59G29vb6pUqcLRo0eZMmUKSUlJDBgwgMTERPr160dYWBh9+vTBzs6OU6dO8b///Y8HDx7w3XffKedUqVR8++23/Oc//yE1NZXKlSszceJEfHx8aNWqFa1atcLKyorIyEi8vb0xNTWlX79+lChRghs3brB582auXbvGoUOH0NN79Y+mKVOmYGtry8cff0xsbCw//fQTw4YN4/Dhw+jq6jJz5kx8fHwoUaIEI0eOpHbt2iQkJDBt2jTOnj1LgwYNlGPt3r0bXV1d2rVrV6DXv2zZshgZGb0ySTZp0iS2b9+uvBdtbW1JS0tTq3d2onzy5Mns2LGDLl26MGjQIO7evcvGjRu5cOECGzduxMDAQDnuf//7X7p160aPHj2wt7fPc/ybri3A999/z8aNG2nRogW9e/fm/v37rF69mgcPHiiJ2ryc802io6MZMmQIJUqUYNSoURgYGLB7924mT56MgYGBkkD28/Nj0qRJNGrUiPHjxxMbG8vGjRvx9vZm8+bNODk50atXLwICAli7di1dunShcuXKbN68mePHj/PFF19QpUqVPPyVRUFJT00jPSkNfXPNH3v6pkYApMQkoGek+b7Jbay2jnauyhlaZi0ElJ6SplFO9fwHa2q89CIQ79+7uG+yY+uM7YK2jk5BVl+IAlOUPkP0jAywq1uZiL/ucsv/BBU7NULXSJ9HRy6RlpCMQ1PXfLVViLxKTU4hOTEJc0sLjX2mz3tVxkQ9xchE872dl9gSNpoJ//jYOK5fuEzJ0rZZx9fSAiAlWfMhQ3ZiNT62YKeJE0IUnn9dUvP3338nJSWF1q1bA2BqaoqHhwdHjhzh8uXL1KhRQyMmIyOD7777Djc3N3x9fdF5/oW6X79+dOnShWnTprF9+3bS0tLw9fWlQ4cOzJgxQ4nv0aMHjRo14tixY/Tt2xd3d3dcXFzYv38/Xl5eymrc06ZNQ0tLi61bt2JnZwdA74mijrAAALiuSURBVN696d27NzNnzqRdu3bKgi2JiYnMmjWLmjVrvrKtK1eu5PHjx2zYsIE6deoA0K1bNz788EOWLVv2TpKaKpWK9u3bM2HCBAB69epFeHg4Bw4cICkpCSMjI7Zu3crNmzeZPXu2khjq2bMn/fr1Y8WKFfTr149Vq1Zx//59tm3bpiTZ+vTpw9y5c1m+fDk9e/ZUEkEZGRn85z//Yfjw4Uo9rK2t8fHxwcXFRZl/0tfXl9jYWDZs2ICzs7NS1sTEhBUrVnDr1i2qV6/+yrZZW1uzYcMG5f2gr6/PnDlzOH36NI0bN6Zz584sWLBAbU7O9u3b4+PjQ0BAgFpSc8+ePTRq1KhQFuQxNzcnJiYmx31eXl7cuHFD4734cr1Pnz6Nn58f33//Pb169VLimzdvzpAhQ/j1118ZOHCgsr1OnTp88803yuu8xr/p2t65c4dff/0Vb29vpk6dqsSZmJiwbNky7ty5Q1RUVJ7O+SanTp3iyZMnLF26FDc3NyDrfurVqxe3bt0Csh6aTJ8+nfbt2zN37lwl1tvbmw4dOjB79myWLFmClpYW06dPp2PHjnz//ffMmTOHH374gdq1a7/24YooXKrkrASijp7mR2P2toxUzSRjXmJzW07XSB8jG3OiA4NJT1Who/93+agbQVnlVDKnoHj/3sV9k00SmqIoK0qfIQC6RvqU83Ln5qY/uLRst1LOuWMDrFw0e7wJUZiSk5MB0DPQ19inp5/ViSQ1JedpdfITm56eztaffElLSaVZ+6zfvkbGRljb2XLrynVSU1LRf+G4Ny9eBUCVpspVu4QQ79+/bvj5rl27AGjVqpWyLfu/s4cXv+z69es8evQILy8vYmNjiY6OJjo6muTkZFq0aMGNGzcIDw9HT0+PP//8k//+979q8U+fPsXU1JTExFd3qY+MjOTSpUt07txZSWgCGBgYMGTIEJKTk/nzzz+V7YaGhkpi5VWOHDlC9erVlYRm9vFWrFjBwoULXxtbkF7ufVi1alVUKpWSaDty5AhWVlZ8+OGHShktLS1mzpzJL7/8gpaWFvv27aNy5crY2Ngo1z86OlpJzL48Z2RuViofPnw4J06cUEtoJicnKwvqvO7vBdC6dWsl6ZbdLuC187NaW1vTqFEj9u/fT3p6OpD1/rp//75a+wuSSqVC6/kTybe1b98+tLS0aN68udr1r1atGjY2Nhw5ckSt/MvXP6/xb7q2R44cITMzU23qBsgavr1z504cHR3zfM43yb4v58yZw7lz50hPT0dfXx8/Pz+++OILIKtHd3x8PF5eXmrn1NHRoWHDhhw/fhyVKutLUtmyZRk3bhznzp2jX79+ZGRk8MMPPyjvP/Eeve52edO9lNvYXJQr27wGqbGJXPc9SFxwJIkRMdzyO0FyVNbK51ra+buvhShQ7+K+EaI4KCKfIY/P3eL6+kMYWplR+aMmVOnVHKsqDtzddZrQUzLNjXg/tF7z5n3z7ZG32IyMDLat/IW71wJxq18b98b1lX3N2nvxLDqGDYt+Ivh+EBGhj/Ffs5GoJ5GAPEQTojj5V/XUjIiI4NSpU5QvXx4tLS1lXsUqVaqgpaXFnj17mDRpEvr66k+BgoKyesXMnDlTYw68bKGhoZQqVQo9PT2OHDnCwYMHuX//Pg8fPiQ2NhZAbe7Hl4WEhADg5OSksS876RYa+vfcHpaWlm9MfoSEhODp6amxPadzvEn2MN3shExOVCpVjovLvNz7MPv6Zif1QkJCcHR01Ei8vbhqeFBQEMnJyTRq1CjHc4eFham9trbWHHqQk7S0NObNm8e1a9cICgoiODhYqdfL816+7FXtelNcx44dOX78OGfPnqVhw4bs3r0bAwODQuk5m56ezrNnz97qb/6ioKAgMjMz+eCDD3Lc//Lf/eVrk9/4l69t9v1Svnx5tXLm5uaYm5u/1TnfpHbt2gwYMID169dz8uRJLC0tadKkCR07dlTOkf1vxbhx4155nOjoaGxtbYGs+XF37tzJ1atX+fLLL3F0dMxTncTbS09TkZ6s/lQ/uzdkhio9x/IAOq+Yxy+3sXk5R6naFUmNS+Thwb/468esB3Lm5WxxaluX2/5/opvDEEYhCtP7um+EKGqKw2fIg/0X0bcwptbI9ug8781mU8OJq2v3cz/gLCVdyylD1oUoSGmpaSQnqU+Rk90bUpWm2Vs57XnvYkMjwxyP9zaxqrQ0tqxYz/Xzl6nkVpXuQ/uo7a/dpD7xsc84tGMvy6dmja5yrOhEmx4d2fHzJoyM5d4Qorj4VyU19+zZQ0ZGBg8ePFAWjnlRbGwsBw4coH379mrbsxMpY8eOpVatWjkeu0KFCmRmZvLxxx9z+PBh6tSpg7u7Oz179qRevXpvHOb6uoRn9vlfnN9RJxdPj9LT0/PdQy9bdqIoISHhlWXi4uIoXbq0xvY31SE39UxPT6dOnTp88sknOe7PThJly01vt3PnzjFkyBCMjY3x8PCge/fuVKtWjaCgII3etjl52x51rVq14rvvviMgIICGDRsSEBDABx98gKmp6Vsd73Xu3LlDWlpavudozMjIwMTERJmr8mUvz0358vszr/FvurbZiefXyes5c2Py/7N332FRXG0Dh39L7yJNBUERFQxYsAZUVERssceKNWo0lteYvCkaX/2SGE2MJtbYsUas2MWK2HuJYuyiFBWxgPT+/YGsrou6ICgkz31dXJGZc2bOTGaY2WfPec5339GnTx927drFwYMH2bVrF9u2baN79+788MMPynv1xx9/VA7lf1mpUs/zAcXExHDnzh0A9u3bx8CBA6Wn5jvy8OJtrq0/rLLMoXlNtA11SXuq3ks7LT7n5TyvPGYAOgZ6GtXVtFwu+yY1KFffhcToJ+gaG2BkXYp7p64CYGhhqsmhClFo3td9I0RxU9yfIWkJyaTHJ2PrWU0Z0MxVpnZlnlyNIj4iBstq8mWqKHwXT55jo/8qlWXN2rfEwMiQ+Ng4tfK5y0zzyJkJYGBomK+6aSmprJq9mJt/X6NqzQ/oOWwA2jrqYQ+vtj7Ua9aQB5H3MDYzwaqsDacO5IyMLG1jpeHRCiHet39VUDN31vOff/5ZLYB05coVZs2axcaNG9WCmrk9BnODXy+6cOECcXFxGBgYcPr0afbv38+wYcMYNWqUskzuUGt7e/tXti13H7du3VJblztr8ovD0jVha2ur7Dn2oo0bN3LmzBnGjx+v1iv1VcqXL4+BgQE3btzIc31ERARJSUnKSY/y286rV6+qLT9w4AA7duzgq6++ws7OjsTERLXzHxcXx7Fjx6hQoUK+9ztz5kwMDAzYvn27Ss/AefPm5Xtb+WFsbEyzZs3Yv38/PXv2JCoqSjlDeGHbuXMnQJ5B/Pyws7Pj8OHDuLm5KQPcL+7jTT0M37b+y3InH4qIiFBJHxAdHc3kyZPp3bt3oe/z4cOHXL9+HQ8PDwYPHszgwYN58uQJw4cPZ+3atcrrFHJ6mr58rZ44cYKsrCyVe+7//u//SE9PZ/To0fz+++8sW7aMAQMG5KtdomDMK9vi9omvyjIDC1PibkeTcFd9VvHEe48wsDTNc4KHXCa2lhrV1bTcoysRAFi62FOqYhlluae3o9E1McDAUoKa4t16n/eNEMVJcX+GZCTn9CLNzlQfPZSdla3yXyEKW2U3Z/p9+ZnKMgtrS25fu8Xd8Ei18vfCo7CwscpzkqBc5RzKa1Q3MzOTgD+WcPPva7jWq0XXwb3zDGhe/esSAM41XalQtZJy+Z1rtzA2M8VSgppClBj/mi5BYWFhhIaGUr9+fTp27IiPj4/Kz5AhQ7C2tubIkSNER0er1HVzc8Pa2poVK1ao9FRMSEjg888/Z8yYMWhraytzRL48E/natWtJTk5WGbqd2xsrt4emtbU1bm5ubNmyhfv37yvLpaWlsWTJEvT09GjYsGG+jtnLy4uLFy8SGhqqXJaens7ixYsJDQ3VOKAJOcN/GzduzIkTJzh//rza+mXLlgGquUrz086HDx+yZ88etW2GhIRQunRpvL29uXLlCgcOHFApM3fuXEaNGsX169dfu4/cnoMvDg2PjY3FwsJCJaAZHx/Pxo0bAc16A76JlpZWnsPR27VrR3R0NPPnz8fU1JQmTZq89b5eduPGDZYuXYqrq+srh+1rKjeNwdy5c1WWBwcHM2rUKLZu3Vqk9V+We74CAgJUlgcGBhIUFISJiUmh7zMwMJD+/ftz8eJF5bLSpUtToUIFFAoFWlpaeHp6oq+vz6JFi0h/YYhMdHQ0w4YNY+rUqcpeydu2bSM4OJjhw4czdOhQPDw8mD59urLnpiha+mZGlK5sq/JjaGGKlWsFkmPieHLjebqPpJhYYm/ew7rG69M4aFpX03IPzt3k2obDZLwwA3pC1CNiLt7G9kOXQuuJL4Sm3ud9I0RxUtyfITqGepjaW/Hw0h3SE1OU5bKzs7l/+hoKbS3MKqiOchKisJiZl6Kyq7PKj4WNFa51avDw3gNuXHremSXmXjS3Ll+jev3ar92mpnVDtuziRugVPqhTg25D+uYZ0AQ4d/QUgYtXkZry/P64eyeC0FPnaeDdSN6xhChB/jU9NXMnCPr444/zXK+rq0uXLl2YN28emzdvVls3btw4Ro8eTefOnfn444/R19dn3bp13L17l6lTp6Kjo4O7uzsmJiZMnjyZqKgoSpUqxYkTJ9ixYwf6+voqAdHcQNqiRYvw8vKiefPmjBs3jn79+vHxxx/Ts2dPjI2N2bJlC5cuXWLcuHFqvc3eZOjQoezatYt+/frRu3dvbGxs2L59Ozdv3sTf3z9f2wL4+uuvOX/+PAMGDKBLly44OzuTnJzMwYMHOXToEJ07dy5QcK5Hjx5s2LCB0aNH4+fnh6OjIyEhIRw5coRJkyahra3NkCFD2L17N8OHD6dHjx5UqVKFM2fOsHnzZry8vPDy8nrtPnJzkO7btw9bW1t8fX3x8vJi4cKFjBo1ikaNGhETE8P69et5+DAnQfTrhtprysLCgitXrrBq1Srq16+vDHg3btwYc3NzduzYQefOnfMVYM7Li9dsUlISV69eZfPmzRgaGvLrr7++9YO5SZMmNG/eHH9/f6KiovDw8CAqKoo///wTW1tbBg4cWKT1X1atWjW6du3KihUrePDgAR4eHsoZ0Tt27IiLiwvOzs6Fus+OHTuyZMkShg4dSs+ePSlTpgyhoaFs2rSJTp06YWxsjLGxMV988QWTJ0+me/futG/fnoyMDFatWkVqairffPMNkJNXc+LEiVSpUkXZM3PChAm0a9eO7777jhUrVsjL1HtStm5V7h67wuWA/ZRv7Ia2rg6Rh0LRMzPCrqGrslxaQjJPrt/FpFxpjMta5KuupuXsGrry6O87XPTfRRn3ymQkpxJ1+BJGNubYvlBOiPftXdw3QpQExekZUqltAy4u3sm5P7ZSrr4zWro6PLx4m6d3HlDRt7bk0xTvXB2vDzkefIg1c5fSqFUzdPX0OLwzGDNzczx9n3+GTIiL58alK5S1t6Osva3GdZMSEjm8cz/aOtpUqlaVC8fPqLXhg9o10DPQp6FvUy6fvcCSX//AvWF9khOTOLI7BGvbMiptEUIUf/+qoKapqSm+vr6vLNOtWzcWLFig7Kn3olatWlGqVCnmzp3LH3/8gZaWFlWqVGHu3Lk0a9YMACsrKxYsWMDUqVOZO3cuenp6ODo68ttvv3HhwgWWL1/Ow4cPsbKyom3btuzevZvAwEBOnjxJ8+bNcXd3JyAggJkzZ+Lv709WVhYuLi7MmTOnQJPIWFpasmbNGqZNm8bq1atJS0vDxcUFf3//AvXcc3BwYMOGDSxcuJCDBw+ybt06DAwMcHR0ZPLkyXTq1Cnf24ScmdxXrFjB9OnT2b59O/Hx8Tg5OTF9+nTlzOnm5uasWbOGmTNnsnPnTtasWYOtrS3Dhg3j008/fWMeQkNDQ0aPHs3ixYuZOHEiDg4OjBw5kszMTHbs2MH+/fuxsbHB09OTTz75hLZt23L8+PEC9Tx90ciRI5kwYQKTJk1i+PDhyqCmnp4eLVu2ZM2aNYUy6/nXX3+t/Le+vj7lypWjS5cuDB48mDJlyrympmYUCgUzZsxg0aJFbNq0ieDgYCwsLPD19WXUqFFYWb1+iMbb1s/LDz/8QMWKFVm3bh3BwcHY2toyfPhwBg0aVCT7tLGxYfny5cycOZPVq1cTGxuLnZ0dI0aMYPDgwcpy/fv3p0yZMixZsoTff/8dAwMDXF1d+fXXX6lTpw6Qk3MzNjaW2bNnK3PlOjo6MnjwYP744w9WrVqFn59fvs+JeHtaOtpUH9iSsB2niDwYikKhoFSlslRqXQ9do+fDBpMexHJt3SEcmtdUfiDVtK6m5cwcrHHt14I7e84StvM0OoZ6WNeqRIXm7ujI5CmiGHkX940QJUFxe4bUHNKG23vOEhFygazMLIxszHHu1hibWs9T9wjxrujo6jLgq+HsXL2ZQ0HBKLS0cHSuTOvuHTAyeT6BZ8y9+2xY9CfN2rdUBjU1qRsZFq6cTGjbyvV5tqHCFCf0DPSxd6pIn8+HsG/jDnat24KhsRE1P6yDd4dW6BvkPWGREKJ4UmS/boYaIUSRmTBhAvv27ePAgQMaTfwkxJv02D/lfTdBCCGEEOIfZ5BT/juYCPFv4uPw+hQCJcXTCxfedxNeyaxGjffdhGLpX5NTU4jiJDY2lp07d9KxY0cJaAohhBBCCCGEEELk079m+LlQFxMTo1E5IyMjjI2N31xQvNGlS5dYtGgRFy5cIDU1VW2IcWJiIklJSRpty9rauiia+K8SHx9PygsJwl9FW1tbZUIpIYQQQgghhBBCvF8S1PwXa9SokUblRowYwciRI4u4Nf8OpqamHDt2DH19faZOnUq5cuVU1vv7+zN79myNtnX16tU3FxKv9dNPP+WZQ/dldnZ2BAcHv4MWCSGEEEIIIYQQQhMS1PwXW7JkiUbl7O3ti7gl/x4ODg4cP378les7duyonExGFL1BgwbRvn37N5bT15fJKoQQQgghhBBCiOJEgpr/Yp6enu+7CeIl9vb2EkR+hypXrqyckV4IIYQQQgghhBAlh0wUJIQQQgghhBBCCCGEKFEkqCmEEEIIIYQQQgghhChRJKgphBBCCCGEEEIIIYQoUSSoKYQQQgghhBBCCCGEKFEkqCmEEEIIIYQQQgghhChRJKgphBBCCCGEEEIIIYQoUSSoKYQQQgghhBBCCCGEKFEkqCmEEEIIIYQQQgghhChRJKgphBBCCCGEEEIIIYQoUSSoKYQQQgghhBBCCCGEKFF03ncDhBBCFI5BTj7vuwlCCCGEEP84i27ufd9NEKJY83Go/b6bIP6lpKemEEIIIYQQQgghhBCiRJGgphBCCCGEEEIIIYQQokSRoKYQQgghhBBCCCGEEKJEkaCmEEIIIYQQQgghhBCiRJGgphBCCCGEEEIIIYQQokSRoKYQQgghhBBCCCGEEKJEkaCmEEIIIYQQQgghhBCiRJGgphBCCCGEEEIIIYQQokSRoKYQQgghhBBCCCGEEKJEkaCmEEIIIYQQQgghhBCiRJGgphBCCCGEEEIIIYQQokSRoKYQQgghhBBCCCGEEKJEkaCmEEIIIYQQQgghhBCiRNF53w0oSsePH6dfv36Ym5tz6NAh9PT0VNZ7e3tjZ2fHihUriqwNjx49wtDQECMjo0LZ3rfffsvGjRu5evVqoWzvRSdOnKBv376MGDGCkSNH5lnG29sbgODg4ELff2HIysri7t27lC9fPl/1co998uTJdO7cOd/7jYiIwN7ePt/1NNGnTx9OnjypskxfXx9ra2saNWrE0KFDKVeunMr6l6/t7Oxspk6dyvr160lNTeWrr76iadOmfPvtt/z1118YGhoSFBSEhYVFkRyDECXFk5hHBK3ZTNjVGwA41/iA1t07YGxmWuj1Ni1dw6PoBwz8Ju+/t8mJScwYOwnfru2p3ah+AY9IiMKX+DSeXeu2cu3C36Snp1PJpQqte3TEwsaq0OpqWi468h671m3h9rWb6Onp4eTqjE/ntpS2kueZeLeK+vmhabk7126xJ3AbUWERGBobUs29Ot4dW2NsalJYhypEgaUlJBO28zRPrkWRlZ5BqUrlqNS2PoYWr79P8lNX03IJdx8RtvM08VEPUWhpYeFcHsdWddEzMSzUYxZCFK1/dFBz69atGBkZERsbS3BwMK1atXqn+z9w4AD//e9/2bhxY6EFNbt3746Hh0ehbOufJiEhgf79+9OkSZNXBmVfxcnJiSlTplC7du1873f8+PGEhYUVaXAcYMqUKcp/JyUlcf36dTZs2EBQUBABAQE4OTkp148dOxZDw+cP5JCQEBYtWkTTpk3x8fGhTp06/PLLL5w+fZoRI0ZgbW0tAU3xr5eUkIj/lDlkZmbQuJU32dlZHN65n+jIuwz93xdo6+T9yCxIvTOHjnPm4DEqOjvlsUXIzMhgzdylJMYnFOoxCvG2MtLTWT59AQ/vP6Chb1P0DQ04sms/i6fMZvj/fYWRifFb19W0XMy9aBZOnkFWVhYeLZpgaGTIqZCjLPhpOp+OHUVpa8t3ck6EKOrnh6blwq5cZ9lv8zAwNKTJRy1QaCk4tvsAt65c59Oxn2NoXDifR4QoiKyMTC4t20vywzjsGrmira9H1OFQLiwMovbIDuga6b91XU3LJT2I5a8FO9AzM6KCtzuZqWlEHrnE0/AH1B7RHm093XdyToQQb+8fG9RMS0tj9+7ddOjQgW3btrFx48Z3HtS8cOECT58+LdRturu74+7uXqjb/KeIjY3l4sWLNGnSJN91rays6NChQ4H2e/jwYezs7ApUNz/yal/Xrl3p0aMHo0aNYsuWLWhp5WSU8PHxUSmX27P3iy++wNnZWbmsWrVqDB8+vIhbLkTJcGR3CHFPYhnxw9fY2JYFwM6xAsumzeXskZPUa+L51vWysrI4sG0PwZt3vrIdT5/EsmbuMsJvhBXi0QlROM4dPcXd2xH0+/IzKrvmPE+q1viA2eN/4cjuEFp0bvvWdTUtt3PtZlJTUhn07X+oUMURAHfPesz4bjI7126m5/BPiuw8CPGion5+aFpu25+BKBRaDB47Cssy1gB8ULsGcyZM4cC2PbTqXrB3XSEKQ/S5GyREPcLtE19KV7YFwMLZjrMzNxN1+BIVfV/duUTTupqWu733HAotLWoObo2eaU6w38TOikvL9hJ99ia2H7oU2XkQQhSuf2xOzQMHDvD06VMaNGhAo0aNOHz4MDExMe+7WUIUqmrVqjFkyBCuX7/O/v37X1kuPT0dAGNjY5VlL/4uxL/dxRNncXSurPzACFDZ1RnLsjZcPHHureulp6Xzx/9NJXhTELU86mJaupTatm6EXmH62Enci4jiQx+vQjoyIQrPxRPnsLCxUgYbAazLlaFStapcPHG2UOpqUi4zI4Obl67i9EFVZUATwNjMFPeG9bl8LpTkpOS3Pl4hNFHUzw9Nyj15+JgHUfeo5VlPGdCEnHvHuaYr546opjIS4l2LuRCGgaWpMtgIYGRtjrlTOWIu3CqUupqW09LSwqaWkzKgCVDKsQwAidFPCn6QQoh37h8b1Ny6dSsKhYJ69erRokULMjIy2Lx58xvrnTt3jgEDBih7RH7yySdcuHBBpUx2djYBAQF8/PHHuLu7U716dVq1asWCBQvIzs4GcnJfzp49G4DmzZvTp08fZf2rV68ybNgw6tatS40aNejWrRt79+5V2UefPn0YOHAgv//+O+7u7nh4eHD16lW+/fZbZU+7XNHR0YwdO5ZGjRrh7u5Oly5d1LZXVGbNmkX16tW5ffs2Q4YMwd3dnXr16vHNN9/w5InqAyEhIYFJkybRtGlTatasSbt27Vi3bp1Kmbi4OH788UcaN26Mm5sbrVu3ZtmyZcrz+uI+9+zZQ8OGDXF3d2fdunU0b94cgNmzZ+Ps7ExkZCQAd+7c4ZtvvsHLyws3Nzfq16/P0KFDuX79unKbJ06cwNnZmcDAQJXfjxw5wvfff4+Hhwc1a9akX79+XLlyRVnP2dmZqKgoTp48qazfvXt3GjVqRFZWlsqx3bx5E2dnZ/78889COPPPtWvXDoBDhw4pl3l7eyuvOW9vb5Vr0dvbW63ds2bNAnJ6kfn7+9OqVSvc3Nxo3LgxEydOJCHh+RDY3HOzceNG2rVrR/Xq1RkzZky+67/p3ELOvbZ8+XI++ugjatSogbe3N1OnTiU5+fkHVU32qanIyEicnZ1ZunQpPXv2xM3Njf79+wM51++0adNo1aoV1atXx93dnW7durFv3z617WzevJkuXbpQq1YtvLy8GD9+PI8fP1YpExgYSMeOHalevToffvgh3377LQ8ePMh3m0XhSE5M4knMI2wrqufjtXUoz73wyLeul5GRQWpyCt0/60eXQX5oa2mr1XlwL5pKLlUY/n9f8UHt6m9xREIUjXvhkZSrkMf1XqE8T2IekZyY9NZ1NSmXGJ9AZkYmZcvbqpWzsLEiOyuL6Mi7+Tk0IQqkqJ8fmpZ7+iQOgDLly6qVs7CxIikhkbjHEqwR70/C3UeY2KqnBTG2tSTlcQLpyalvXVfTci49mlC5/YcqZRLv5byrG5SSTh9ClCT/yOHnCQkJhISEUKtWLaysrGjSpAl6enps2rSJQYMGvbLekSNHGDJkCC4uLowaNYq0tDQCAwPx8/NjyZIl1K1bF4Dp06czb948OnXqRLdu3UhMTGTTpk1MmzYNY2Nj/Pz86N69OwkJCezZs4cxY8ZQpUoVIGdIet++fTExMWHAgAEYGxuzefNmhg8fzvjx4/Hz81O25+zZs0RERPDVV18RGRlJ5cqV1docGxtLt27diI2Nxc/PD3t7e7Zt28aIESOYPXu22jDkopCVlUXfvn2pW7cu33zzDRcvXmT9+vWkpKQwY8YMICcdgJ+fH9evX6dbt264uLhw4MABxo0bR3JyMn379iUpKYnevXtz7949evXqRdmyZTl+/DiTJk3i9u3bTJgwQbnPjIwMxo8fz4ABA0hLS6Nq1aqMGTOGyZMn06JFC1q0aIGFhQUPHz6kW7dumJiY0Lt3b0qXLs3ly5dZu3Ytly5dIjg4GF3dV+dMGTduHDY2NgwbNoy4uDgWLVrE4MGD2b9/Pzo6OkyZMoXJkydTunRphg4dSu3atUlMTGTixImcOnWKBg0aKLe1fft2dHR0aN26daGef3t7ewwNDdUCgrnGjh3Lpk2blNeijY0N6enpKu3ODZR/9913bN68mY4dO9K/f39u3rxJQEAAZ8+eJSAgAH3957lufvjhBzp37kzXrl2xtbXNd/03nVuA77//noCAAJo1a0bPnj0JCwvD39+f27dvKwO1+dmnpmbMmIG3tzft2rVDX1+f7OxshgwZwt9//03v3r1xcHDg/v37rF69mhEjRrBp0yblOVy4cCFTp06lTp06fPHFFzx69Ihly5Zx+fJlAgIC0NHRYfbs2cyaNYuWLVvSrVs3oqOjWblyJSdPnmT9+vWS3/Q9yP0waFbaXG2dqbkZKUnJJCclY2hkWOB6BoYGfP7zd2hrqwczczVo1hDPFk2ebTu2YAcjRBFJS0klJSkZM3P1XsYmpcwAiH30JM+8fZrW1dbW1qic+bOJgFJT1D8E5wZHE+IKNwWQEHkp6ueHpuX09HPeZ/O6J5ISEgGIj4unlEVpjY9NiMKSmZZOZnI6embqz4fciXlSYxPRNVR/b9e0rpa2VoH2kfo0ifjwB9wKOoWemSFl6lbJ/wEKId6bf2RQc9euXaSmpuLr6wuAiYkJnp6ehISEcOHCBWrUqKFWJysriwkTJlC9enVWrlyp/NDZu3dvOnbsyMSJE9m0aRPp6emsXLmStm3b8vPPPyvrd+3aFQ8PDw4dOoSfnx/u7u44OzuzZ88efHx8lLNxT5w4EYVCwfr16ylbNueb1J49e9KzZ0+mTJlC69atlQGNpKQkfv31V2rWrPnKY124cCH3799n1apV1KlTB4DOnTvz0UcfMW/evHcS1MzIyKBNmzZ8++23APTo0YPo6Gj27t1LcnIyhoaGrF+/nitXrjB16lRlz8Lu3bvTu3dvFixYQO/evVm8eDFhYWFs2LBBGSDq1asXv/32G/Pnz6d79+64uOTkN8nKymLAgAF8+umnynZYWloyefJknJ2dlfknV65cSVxcHKtWrVKZSMfY2JgFCxZw7do1XF1dX3lslpaWrFq1Snk96OnpMW3aNE6cOEHDhg3p0KEDM2bMUMnJ2aZNGyZPnkxQUJBKUHPHjh14eHgUScDKzMyM2NjYPNf5+Phw+fJltWvx5XafOHGCwMBAvv/+e3r06KGs36RJEwYOHMjq1avp16+fcnmdOnX43//+p/w9v/XfdG5v3LjB6tWr6datGz/++KOynrGxMfPmzePGjRs8evQoX/vUVLly5Zg6dSoKhQKAv/76i9OnT6vtp1atWgwaNIijR4/i7OxMXFwcs2bNonHjxsyfP195bOXLl2fcuHEcOXKESpUqMWfOHD799FO+/PJL5bbatm1L586dmTdvHmPHjs13m8XbSU1JAUA3j8TwOs+WpaelqX0ozU89hULx2oAm8MrJJIQoDlJyr3d9PbV1ufdAWmraW9XVtJyhkSGWZW24dvFv0lLT0Huh/JVzoQBkpGdodmBCvIWifn5oWs7Gtiz6hgb8feYCXm18lO8w6Wnp3LiUk1s941k6IiHetYyUnGtPW1f9PSd3WVZa3tenpnULuo8zvweSmZoBWgqcuzaW2c+FKGH+kcPPt23bBkCLFi2Uy3L/nTu8+GV///03ERER+Pj4EBcXx+PHj3n8+DEpKSk0a9aMy5cvEx0dja6uLkePHuWHH35Qqf/kyRNMTExISnr1sKuHDx/y119/0aFDB2VAE0BfX5+BAweSkpLC0aNHlcsNDAyoXv31ww9DQkJwdXVVBjRzt7dgwQJmzpz52rqF6eXeh9WqVSMjI0MZaAsJCcHCwoKPPvpIWUahUDBlyhT+/PNPFAoFu3fvpmrVqlhbWyvP/+PHj5WB2ZdzRtarV++N7fr00085cuSISkAzJSVFOaHO6/5/Afj6+qoEIapVqwbw2vyslpaWeHh4sGfPHjIzM4Gc6yssLEzl+AtTRkaG8uW1oHbv3o1CoaBJkyYq5/+DDz7A2tqakJAQlfIvn//81n/TuQ0JCSE7O1sldQPAwIED2bJlCw4ODvnep6bq1q2rcj5r1qzJqVOn6Ny5s3JZZmamMsVAYmJOD4ijR4+SmpqKn5+fyrG1b9+ewMBA6tevz549e8jKysLb21ulzVZWVlSrVq3AbRZvJzfDRX7vo4LWE6IkU/Dq6/1Nt4KmdTUp59XGh6ePY1k1axGRYeE8uHufjUsCeBTzEACtN3yJIERhKOrnh6bltHV08PRtyt3bEaybv4L7EXe5Fx7J6rlLlF825L7/CvHevO4yfvMDRLO6+dhHVmYWTu09cOnRBHOnclxdc5CoI5de3w4hRLHyj+sS8uDBA44fP07FihVRKBTKvIouLi4oFAp27NjB2LFj0dNT7QEQHh4OwJQpU5gyZUqe27579y5lypRBV1eXkJAQ9u3bR1hYGHfu3CEuLmdoyIu5H18WFRUFgKOjo9q63KDb3bvP8z+Zm5u/8eUjKioKb29vteV57eNNcofpZmS8umdDRkZGnpPLvNz7MPf85gb1oqKicHBwUHshe3HW8PDwcFJSUvDw8Mhz3/fu3VP53dJSPV9KXtLT0/n999+5dOkS4eHhREZGKtv1ct7Ll73quN5Ur127dhw+fJhTp07x4Ycfsn37dvT19Yuk52xmZiZPnz4t0P/zF4WHh5OdnU3Tpk3zXP/y//eXz83b1n/53ObeLxUrVlQpZ2ZmhpmZWYH2qam8etPq6OiwevVqTp48yZ07d5TXKzy/73PbXKFCBZW6+vr6yh7BuX9rXuzx+aLXpUMQRUffIOfvX3qaei+zjGff6hsYGBRaPSGKu/S0dFKSVSfaye0NmVdvr/Tc690w7+td07r52UftRvVJiHtK8OadzP/xNwAcKjvSsms7Ni9do9YzToiiUNTPj/xsv1n7lqQkJXNs70EunsyZVMu5piuNW3mzZ8M2jEwkV6AoepnpGWSmqF6v2nrPekpmZOZZHkBbP+93YE3rFmQfWtpalHHP+RxuVb0iFxYEcXvPOcrUrYrOK9oj/tkyD7x68t33Lo8Rx+IfGNTcsWMHWVlZ3L59WzlxzIvi4uLYu3cvbdq0UVmeG0gZNWoUtWrVynPblSpVIjs7m2HDhrF//37q1KmDu7s73bt3p169em8c5vq6gGfu/l8MaLxpmCLkBLQKq4dQbqAot9dZXuLj4ylXrpza8je1QZN2ZmZmUqdOHUaMGJHnehsbG5XfNfm2+fTp0wwcOBAjIyM8PT3p0qULH3zwAeHh4Wq9bfNS0G+0W7RowYQJEwgKCuLDDz8kKCiIpk2bYmJiUqDtvc6NGzdIT09XDs0vqKysLIyNjZW5Kl/2cm7Kl6/P/NZ/07nNDTy/Tn73qamXj+3x48d07dqVBw8e0LBhQ7y9vXFxccHOzo6uXbuqtAdefz/klpk7d64Eu4qRUpY5Ocbi4+LV1sXHPsXAyBA9A/XrqaD1hCjuLp48x0b/VSrLmrVviYGRIfGxcWrlc5eZ5pELE8DA0FCjupqWy+XV1od6zRryIPIexmYmWJW14dSBnFEvpW2sNDlUId5KUT8/8rN9hUJBm56d8Grjw6PoGMwszCltZcGewO0otLQkn6Z4Jx5evM219YdVljk0r4m2oS5pT9VHyaXF53yBllcuTAAdAz2N6mpa7lUUCgVWbhV4eucByTFxmJaXZ4gQJcE/LqiZO+v5zz//rBZAunLlCrNmzWLjxo1qQc3cHoO5wa8XXbhwgbi4OAwMDDh9+jT79+9n2LBhjBo1Slkmd6i1vb39K9uWu49bt26prQsLCwNQGZauCVtbW2XPrxdt3LiRM2fOMH78eLVeqa9Svnx5DAwMuHHjRp7rIyIiSEpKUk56lN92Xr16VW35gQMH2LFjB1999RV2dnYkJiaqnf+4uDiOHTum1vtNEzNnzsTAwIDt27er9L6bN29evreVH8bGxjRr1oz9+/fTs2dPoqKilDOEF7adO3cC5BnEzw87OzsOHz6Mm5ubMsD94j4cHByKtP7LcicfioiIUEkfEB0dzeTJk+ndu3eh7/NVVq1aRWRkJEuXLlXpSXz27FmVcrkB//DwcJWes2lpaXz11Ve0a9dO+XegXLlyyiH3uQ4cOFAkgW/xZoZGhphbWXDvjvostXfDI7GrmPff9oLWE6K4q+zmTL8vP1NZZmFtye1rt7ibx2zO98KjsLCxynOSoFzlHMprVFfTclf/yhki6FzTlQpVKynL3bl2C2MzUywlqCnegaJ+fuRn+xdOnMW0lCmOLlUwKWWqXH776k1sK5TPMy+nEIXNvLItbp/4qiwzsDAl7nY0CXcfq5VPvPcIA0vTPCcJymVia6lRXU3KZSSnce6PrVi5VcSxZR2VcpmpOb2ftXQlfYkQJcU/KrFKWFgYoaGh1K9fn44dO+Lj46PyM2TIEKytrTly5AjR0dEqdd3c3LC2tmbFihUqPRUTEhL4/PPPGTNmDNra2sockS/PRL527VqSk5NVhm7n9kTL7aFpbW2Nm5sbW7Zs4f79+8pyaWlpLFmyBD09PRo2bJivY/by8uLixYuEhoYql6Wnp7N48WJCQ0M1DmhCzvDfxo0bc+LECc6fP6+2ftmyZYBqrtL8tPPhw4fs2bNHbZshISGULl0ab29vrly5woEDB1TKzJ07l1GjRnH9+vXX7iO3d92LQ8NjY2OxsLBQCWjGx8ezceNGQLPegG+ipaWV53D0du3aER0dzfz58zE1NaVJkyZvva+X3bhxg6VLl+Lq6vrKYfuayk1jMHfuXJXlwcHBjBo1iq1btxZp/Zflnq+AgACV5YGBgQQFBWFiYlLo+3yVvO777OxsVq5cCTxP2eDp6Ymuri5r165V6Zm9c+dOZfC5WbNmAMyfP1+lzOXLl/nss8+U95l491zr1OTm31eJuff8+XDj0lUe3X9A9Qa1C72eEMWZmXkpKrs6q/xY2FjhWqcGD+89UE48AhBzL5pbl69Rvf7rr3dN62pa7tzRUwQuXqWcSAXg7p0IQk+dp4F3I8l1K96Zon5+aFru6K4Qtq7coPJ+e/WvS4Rfv0UD70ZvfZxCaELfzIjSlW1VfgwtTLFyrUByTBxPbjxPt5YUE0vszXtY13h9Gi1N62pSTsdQDy0dbaLP3iA9OVVZLiM5jfunr6NvYYKRjfnbngYhxDvyj+qpmTtB0Mcff5znel1dXbp06cK8efPYvHmz2rpx48YxevRoOnfuzMcff4y+vj7r1q3j7t27TJ06FR0dHdzd3TExMWHy5MlERUVRqlQpTpw4wY4dO9DX11cJiOYG0hYtWoSXlxfNmzdn3Lhx9OvXj48//piePXtibGzMli1buHTpEuPGjVPrbfYmQ4cOZdeuXfTr14/evXtjY2PD9u3buXnzJv7+/vnaFsDXX3/N+fPnGTBgAF26dMHZ2Znk5GQOHjzIoUOH6Ny5c4GCcz169GDDhg2MHj0aPz8/HB0dCQkJ4ciRI0yaNAltbW2GDBnC7t27GT58OD169KBKlSqcOXOGzZs34+XlhZeX12v3kZuDdN++fdja2uLr64uXlxcLFy5k1KhRNGrUiJiYGNavX8/DhzmTCLxuqL2mLCwsuHLlCqtWraJ+/frKwFfjxo0xNzdnx44ddO7cOV8B5ry8eM0mJSVx9epVNm/ejKGhIb/++utbf3hr0qQJzZs3x9/fn6ioKDw8PIiKiuLPP//E1taWgQMHFmn9l1WrVo2uXbuyYsUKHjx4gIeHh3JG9I4dO+Li4oKzs3Oh7vNVvLy8WLFiBUOGDOHjjz8mPT2doKAgQkND0dLSUl5HlpaWDB8+nOnTp/PJJ5/g4+PD/fv3WblyJQ0aNMDb2xstLS369OnDihUriI2NxcfHh9jYWFauXImxsbFKD3DxbjVu7c35o6dY8uscGrZsRkZ6Ood37se2oj01P8z5Jv/xg4eE3wjDobIjFs96gWlST4h/ijpeH3I8+BBr5i6lUatm6OrpcXhnMGbm5nj6Pn8/SIiL58alK5S1t6OsvW2+6mparqFvUy6fvcCSX//AvWF9khOTOLI7BGvbMirlhChqRf380Lhcm+as/mMJK2cs5IPaNYh99Jgju0Ko7OZCTY+67/akCPGSsnWrcvfYFS4H7Kd8Yze0dXWIPBSKnpkRdg1dleXSEpJ5cv0uJuVKY1zWIl91NS3n1P5DLi7exV/zd1CuXlWyMrO4f/IqafHJuPb3kS/FhChB/nFBTVNTU3x9fV9Zplu3bixYsEDZU+9FrVq1olSpUsydO5c//vgDLS0tqlSpwty5c5W9q6ysrFiwYAFTp05l7ty56Onp4ejoyG+//caFCxdYvnw5Dx8+xMrKirZt27J7924CAwM5efIkzZs3x93dnYCAAGbOnIm/vz9ZWVm4uLgwZ86cAk0iY2lpyZo1a5g2bRqrV68mLS0NFxcX/P39C9Rzz8HBgQ0bNrBw4UIOHjzIunXrMDAwwNHRkcmTJ9OpU6d8bxNyEpivWLGC6dOns337duLj43FycmL69OnKmdPNzc1Zs2YNM2fOZOfOnaxZswZbW1uGDRvGp59++sYcjIaGhowePZrFixczceJEHBwcGDlyJJmZmezYsYP9+/djY2ODp6cnn3zyCW3btuX48eMF6nn6opEjRzJhwgQmTZrE8OHDlUFNPT09WrZsyZo1awpl1vOvv/5a+W99fX3KlStHly5dGDx4MGXKlHnr7SsUCmbMmMGiRYvYtGkTwcHBWFhY4Ovry6hRo7Cyev0wvretn5cffviBihUrsm7dOoKDg7G1tWX48OEMGjSoyPaZFy8vLyZOnIi/vz8///wzpUqVwtXVlTVr1vC///2PEydOKMt+9tlnWFtbs3z5cn7++Wesra3p1q0bI0eOVF7D3333HZUqVWL16tX88ssvmJqaUrduXUaNGqUy1F68W8Zmpgwa8x92BGxk36Yg9PT0qOZenZZd26HzLN/x7Wu32Oi/ik6f9FJ+KNWknhD/FDq6ugz4ajg7V2/mUFAwCi0tHJ0r07p7B5VJSGLu3WfDoj9p1r6lMqipaV1Ny9k7VaTP50PYt3EHu9ZtwdDYiJof1sG7Qyv0JWexeIeK+vmhaTnXujXpOqQvh3bsJWj1JozNTGjUyhuvtj4y87l477R0tKk+sCVhO04ReTAUhUJBqUplqdS6HrpGz4eeJz2I5dq6Qzg0r6kMampaV9Ny5o5lcRvQgvB957m9+ywoFJSqWAaXHk0ll6YQJYwi+3Wz1wgh3sqECRPYt28fBw4c0GjiJyHext7ws28uJIQQQggh8mXRzb3vuwlCFGurm3395kIlwJNZM953E16p9EgZ0ZcX+cpOiCISGxvLzp076dixowQ0hRBCCCGEEEIIIQrRP2r4uVAXExOjUTkjIyOMjY3fXFC80aVLl1i0aBEXLlwgNTUVPz8/lfWJiYkkJSVptC1ra+uiaOK/Snx8PCkvTCLxKtra2ioTSgkhhBBCCCGEEKL4kqDmP1yjRprNdDhixAhGjhxZxK35dzA1NeXYsWPo6+szdepUypUrp7Le39+f2bNna7Stq1evvrmQeK2ffvopzxy6L7OzsyM4OPgdtEgIIYQQQgghhBBvS4Ka/3BLlizRqJy9vX0Rt+Tfw8HBgePHj79yfceOHalTR2ZEflcGDRpE+/bt31hOX1//jWWEEEIIIYQQQghRPEhQ8x/O09PzfTdBvMTe3l6CyO9Q5cqVlTPSCyGEEEIIIYQQ4p9BJgoSQgghhBBCCCGEEEKUKBLUFEIIIYQQQgghhBBClCgS1BRCCCGEEEIIIYQQQpQoEtQUQgghhBBCCCGEEEKUKBLUFEIIIYQQQgghhBBClCgS1BRCCCGEEEIIIYQQQpQoEtQUQgghhBBCCCGEEEKUKBLUFEIIIYQQQgghhBBClCgS1BRCCCGEEEIIIYQQQpQoEtQUQgghhBBCCCGEEEKUKDrvuwFCCCEKx6Kbe993E4QotgY5+bzvJghRrMkzRIhXk2eIEEIUT9JTUwghhBBCCCGEEEIIUaJIUFMIIYQQQgghhBBCCFGiSFBTCCGEEEIIIYQQQghRokhQUwghhBBCCCGEEEIIUaJIUFMIIYQQQgghhBBCCFGiSFBTCCGEEEIIIYQQQghRokhQUwghhBBCCCGEEEIIUaJIUFMIIYQQQgghhBBCCFGiSFBTCCGEEEIIIYQQQghRokhQUwghhBBCCCGEEEIIUaJIUFMIIYQQQgghhBBCCFGiSFBTCCGEEEIIIYQQQghRokhQUwghhBBCCCGEEEIIUaLovE3l48eP069fP8zNzTl06BB6enoq6729vbGzs2PFihVv1cjXefToEYaGhhgZGRXK9r799ls2btzI1atXC2V7Lzpx4gR9+/ZlxIgRjBw5Ms8y3t7eAAQHBxf6/gtDVlYWd+/epXz58vmql3vskydPpnPnzvneb0REBPb29vmup4k+ffpw8uRJlWX6+vpYW1vTqFEjhg4dSrly5VTWv3xtZ2dnM3XqVNavX09qaipfffUVTZs25dtvv+Wvv/7C0NCQoKAgLCwsiuQYxJvt3buXmTNnEhERQaVKlRgzZgx169Z9380SxUzK43huBZ0i7tZ9ACxcyuPYuh56JoaFUk/TcrE373Fn7zkS7j1Gx0AXK7eKVPStjbaebmEdqhAFlvg0nl3rtnLtwt+kp6dTyaUKrXt0xMLGqkjqHti2m9MHjvPlr+PV1q2eu5RLp86rLbetaM9n47/M13EJ8TaKy/PjRdc3HiX5YRw1Brd+m0MTotAUp+fHo+gYdq7dwu2rN8hIz6C8UwV8u3yEvVPFtzlEIcQ79lZBza1bt2JkZERsbCzBwcG0atWqsNqlkQMHDvDf//6XjRs3FlpQs3v37nh4eBTKtv5pEhIS6N+/P02aNHllUPZVnJycmDJlCrVr1873fsePH09YWFiRBscBpkyZovx3UlIS169fZ8OGDQQFBREQEICTk5Ny/dixYzE0fP4SGRISwqJFi2jatCk+Pj7UqVOHX375hdOnTzNixAisra0loPkeHT9+nBEjRuDt7U3Pnj1ZtWoVgwcPZtu2bdjZ2b3v5oliIj0plQuLd5KdmUV5Lzeys7OJPBRK4v0n1Br2EVra2m9VT9NysTfvcdF/FyZ2lji2qkNqXBJ3j/5NQtQjanzaGoVC8c7OiRAvy0hPZ/n0BTy8/4CGvk3RNzTgyK79LJ4ym+H/9xVGJsaFWvf6xcvs37IL01Kl8tzmg8h7OFR2pF5TT5XlRqYmb3egQuRDcXl+vOj+6WvcP3WNUo5livTYhdBUcXp+JMYnsPiXWaQkp9DQtymGxkYc23sQ/ylzGDJuNGXtbQv12IUQRafAQc20tDR2795Nhw4d2LZtGxs3bnznQc0LFy7w9OnTQt2mu7s77u7uhbrNf4rY2FguXrxIkyZN8l3XysqKDh06FGi/hw8ffieBp7za17VrV3r06MGoUaPYsmULWlo5GRt8fHxUyuX27P3iiy9wdnZWLqtWrRrDhw8v4paLN1m3bh3GxsbMnDkTHR0dPvjgA7p160ZISAh+fn7vu3mimIg6fInUuCTq/KcDRjbmAJiWtybUfzfRZ29Qrp7zW9XTtNytoFPomxtTY3BrtHVzHtP6pYy5ueU4T65HYVE1fz3lhShM546e4u7tCPp9+RmVXXOu2ao1PmD2+F84sjuEFp3bFlrdUyFH2b5qA5kZmXluLzMjg8cxD/Gq50Mtz3qFdIRC5F9xeX4AZGdlERFygTv7zhfV4QpRIMXp+XHm4HHiY5/Sc/gnfFCnBgAf1KnJjLGTCNm6ix7DBhTGIQsh3oEC59Q8cOAAT58+pUGDBjRq1IjDhw8TExNTmG0T4r2rVq0aQ4YM4fr16+zfv/+V5dLT0wEwNjZWWfbi7+L9SUlJISUlhSdPnih/B9DVlaG84rmYC7cwdyyr/MAIULqyLYbWZsRcCHvrepqUy0zPQM/EgLL1qioDmoCyp03ivcdveZRCvJ2LJ85hYWOl/FAJYF2uDJWqVeXiibOFVnfp1D/Ysnwtji5VKFch70D+w/sxZGZkYm1b9i2OSIi3VxyeH5DzDDk7eyt39p7HppYTeqUKZySbEIWhOD0/njzMeZ96cXvmlqWxsSvL/ch7+T42IcT7U+Cg5tatW1EoFNSrV48WLVqQkZHB5s2b31jv3LlzDBgwQNkj8pNPPuHChQsqZbKzswkICODjjz/G3d2d6tWr06pVKxYsWEB2djaQk/ty9uzZADRv3pw+ffoo61+9epVhw4ZRt25datSoQbdu3di7d6/KPvr06cPAgQP5/fffcXd3x8PDg6tXr/Ltt98qe9rlio6OZuzYsTRq1Ah3d3e6dOmitr2iMmvWLKpXr87t27cZMmQI7u7u1KtXj2+++UYZoMmVkJDApEmTaNq0KTVr1qRdu3asW7dOpUxcXBw//vgjjRs3xs3NjdatW7Ns2TLleX1xn3v27KFhw4a4u7uzbt06mjdvDsDs2bNxdnYmMjISgDt37vDNN9/g5eWFm5sb9evXZ+jQoVy/fl25zRMnTuDs7ExgYKDK70eOHOH777/Hw8ODmjVr0q9fP65cuaKs5+zsTFRUFCdPnlTW7969O40aNSIrK0vl2G7evImzszN//vlnIZz559q1awfAoUOHlMu8vb2V15y3t7fKtejt7a3W7lmzZgE5OUn9/f1p1aoVbm5uNG7cmIkTJ5KQkKB2rjZu3Ei7du2oXr06Y8aMyXf9N51byLnXli9fzkcffUSNGjXw9vZm6tSpJCcnK8toss/8uHr1KgMHDuTDDz+kRo0adOrUifXr16uV279/Pz169KBmzZrUq1ePkSNHEhb2/MU9ICAAZ2dnlbQBAAMHDsTNzU3lWFu3bk1GRgZjx47l5s2bTJgwAQsLC1q2bKm2X2dnZ6ZPn87QoUNxc3Ojbdu2ZGRkkJ6ezvz582nfvj01a9akRo0atG/fPs+2HzhwgN69e+Pu7k7Dhg0ZPXq08n7R9PjEu5WenErK4wRM7CzV1pmUsyTh7qO3qqdpOW1dHdz6++LQtKZKmdxgpr65DKkV79e98Mg8PyTaVijPk5hHJCcmFUrd2EdP+Kj3x/QdPQR9A/08t/fgbk5uQetyOUH/tJTUfB2LEIWhuDw/ALIzsshMTcOlZxOcuzZGoSXpSkTxUZyeH5ZlcvJwPox+oFyWmZFB3ONYTM3NND4mIcT7V6Dh5wkJCYSEhFCrVi2srKxo0qQJenp6bNq0iUGDBr2y3pEjRxgyZAguLi6MGjWKtLQ0AgMD8fPzY8mSJcpJO6ZPn868efPo1KkT3bp1IzExkU2bNjFt2jSMjY3x8/Oje/fuJCQksGfPHsaMGUOVKlWAnCHpffv2xcTEhAEDBmBsbMzmzZsZPnw448ePVxlqevbsWSIiIvjqq6+IjIykcuXKam2OjY2lW7duxMbG4ufnh729Pdu2bWPEiBHMnj1bbRhyUcjKyqJv377UrVuXb775hosXL7J+/XpSUlKYMWMGkJMOwM/Pj+vXr9OtWzdcXFw4cOAA48aNIzk5mb59+5KUlETv3r25d+8evXr1omzZshw/fpxJkyZx+/ZtJkyYoNxnRkYG48ePZ8CAAaSlpVG1alXGjBnD5MmTadGiBS1atMDCwoKHDx/SrVs3TExM6N27N6VLl+by5cusXbuWS5cuERwc/NrecOPGjcPGxoZhw4YRFxfHokWLGDx4MPv370dHR4cpU6YwefJkSpcuzdChQ6lduzaJiYlMnDiRU6dO0aBBA+W2tm/fjo6ODq1bF24ydHt7ewwNDdUCgrnGjh3Lpk2blNeijY0N6enpKu3ODZR/9913bN68mY4dO9K/f39u3rxJQEAAZ8+eJSAgAH395w/eH374gc6dO9O1a1dsbW3zXf9N5xbg+++/JyAggGbNmtGzZ0/CwsLw9/fn9u3bykBtfvb5Jo8fP2bgwIGULl2azz77DH19fbZv3853332Hvr6+MoAcGBjI2LFj8fDw4KuvviIuLo6AgAC6devG2rVrcXR0pEePHgQFBbFs2TI6duxI1apVWbt2LYcPH+bLL7/ExcVFud+2bduybds29u/fz+HDhylXrhyLFy+m1CtytC1btozatWszbtw4UlJS0NHR4b///S9BQUH07NmTPn368OTJE9auXct3332HtbW1Mi3D9u3b+fLLL6lSpQojR44kPT0df39/Ll68SGBgIGZmZhodn3i30uJyXob1zNR7teiZGZKZnE5Gcho6hnoFqlfQ7ac8SSAu7D63dpzCqIw5lh84FOwAhSgEaSmppCQlY2au/rfTpFTOh8DYR08wNFa/zvNbd+SP36Ct8/rX1OhnvWlOHTjKxRNnSU5MwqSUGV5tffDw8crfwQlRQMXp+aFtoEvdL7qgpV3gfitCFIni9vyo4+XBX8dOs3HJatr36YqhsREhW3eTGJ9Ap1Y98318Qoj3p0BBzV27dpGamoqvry8AJiYmeHp6EhISwoULF6hRo4ZanaysLCZMmED16tVZuXIl2s8SWvfu3ZuOHTsyceJENm3aRHp6OitXrqRt27b8/PPPyvpdu3bFw8ODQ4cO4efnh7u7O87OzuzZswcfHx/lbNwTJ05EoVCwfv16ypbNGY7Us2dPevbsyZQpU2jdurVywpakpCR+/fVXatasyassXLiQ+/fvs2rVKurUqQNA586d+eijj5g3b947CWpmZGTQpk0bvv32WwB69OhBdHQ0e/fuJTk5GUNDQ9avX8+VK1eYOnWqMjDUvXt3evfuzYIFC+jduzeLFy8mLCyMDRs2KINsvXr14rfffmP+/Pl0795dGQjKyspiwIABfPrpp8p2WFpaMnnyZJydnZX5J1euXElcXByrVq1SmUjH2NiYBQsWcO3aNVxdXV95bJaWlqxatUp5Pejp6TFt2jROnDhBw4YN6dChAzNmzFDJydmmTRsmT55MUFCQSlBzx44deHh4FMmEPGZmZsTGxua5zsfHh8uXL6tdiy+3+8SJEwQGBvL999/To0cPZf0mTZowcOBAVq9eTb9+/ZTL69Spw//+9z/l7/mt/6Zze+PGDVavXk23bt348ccflfWMjY2ZN28eN27c4NGjR/na55scP36cmJgY5s6dS/Xq1YGc+6lHjx5cu3YNyPnS5KeffqJNmzb89ttvyrrdunWjbdu2TJ06lTlz5qBQKPjpp59o164d33//PdOmTeOXX36hdu3aal+unDt3jqioKCDn2v7uu+/44IMPXtlOHR0d5syZg4GBAQAxMTFs27aNwYMH8+WXz2fT9fHxoXXr1hw6dIgmTZqQlZXF5MmTlQHW3PrVq1dnwIABbN26lQ4dOmh0fOLdykzLSSHx4pDvXFrPXowz0zPUPpRqWq8g209PSuXUrzk9gbX0tHFq1yDP+kK8K8rUHfp6aut09XK+wExLTSuUum/6QArPe2rG3I2mXZ+uZGZkcPbwSXasCiQ1OYWm7XzfuA0h3lZxen4oFAoU2tI7UxQ/xe35YWhkiHfH1qxbsIIFP01XLm/r1xnnGq/+jCCEKH4K9DXetm3bAGjRooVyWe6/c4cXv+zvv/8mIiICHx8f4uLiePz4MY8fPyYlJYVmzZpx+fJloqOj0dXV5ejRo/zwww8q9Z88eYKJiQlJSa/ulv7w4UP++usvOnTooAxoAujr6zNw4EBSUlI4evSocrmBgYEysPIqISEhuLq6KgOaudtbsGABM2fOfG3dwvRy78Nq1aqRkZGhDLSFhIRgYWHBRx99pCyjUCiYMmUKf/75JwqFgt27d1O1alWsra2V5//x48fKwOzLOSPr1Xtz0v1PP/2UI0eOqAQ0U1JSlBPqvO7/F4Cvr68y6JZ7XMBr87NaWlri4eHBnj17yMzMSf78999/ExYWpnL8hSkjI+OtZxzevXs3CoWCJk2aqJz/Dz74AGtra0JCQlTKv3z+81v/Tec2JCSE7OxsldQNkDN8e8uWLTg4OOR7n2+Se19OmzaN06dPk5mZiZ6eHoGBgcpg4ZEjR0hISMDHx0dln9ra2nz44YccPnyYjIwMIKcX7ejRozl9+jS9e/cmKyuLX375RXn9Aezbt4++ffuSmprKxIkT0dXVZcKECTx69Ijk5GSWL1+uNuy7Ro0ayoAkgLW1NWfOnGHYsGHKZdnZ2cp2JCYmAhAaGkpMTAzdunVTqe/p6cm6devo0KFDvo5PvEO5KTjye5trWq8g21eAS48mVO3aGCMbcy767+Zh6O18NlCIwqd4zYX8pkfl29R9mVu9Wvh0acuAr4ZRvb47tTzrMeCrYThUdlT2uBGiyBXH54cQxVRxeX6cOXScVbMWY2FtRadPetFtaD+q1vyA7as2ciL4cP42JoR4r/Ld5ePBgwccP36cihUrolAolHniXFxcUCgU7Nixg7Fjx6Knp/pNSnh4OABTpkxRy4GX6+7du5QpUwZdXV1CQkLYt28fYWFh3Llzh7i4OACV3I8vy+2JldfQzdyg2927d5XLzM3NVYIfr9qmt7e32vKCDA/NHab7uoBFRkZGnpPLvNz7MPf85gb1oqKicHBwUAu8vThreHh4OCkpKXh4eOS573v3VJMiW1qq5+7JS3p6Or///juXLl0iPDycyMhIZbteznv5slcd15vqtWvXjsOHD3Pq1Ck+/PBDtm/fjr6+fpH0nM3MzOTp06dvPSQ4PDyc7OxsmjZtmuf6l/+/v3xu3rb+y+c2936pWLGiSjkzMzPMzMwKtM83qV27Nn379mXFihUcO3YMc3NzGjVqRLt27ZT7yP1bMXr06Fdu5/Hjx9jY2AA5+XG3bNlCaGgo//3vf3FweD48NyEhgbFjxyp7rVpZWZGYmMjkyZP5+uuv6dWrFz/99BNjx45V+f+bV29fPT09tmzZwuHDh7l9+zZ37txRBjNz/y7lntMKFSqo1c/twZ7f4xPvhrZ+zjf9Wenqs2RmPfubrWOgnkpD03oZBdi+rqE+1jVyrksrtwqcnbGJm9tPYuVWUaNjEuJtpKelk/JCfmUAvWe9ZDKeTY73cnkAA0MDtXVvW/dVajSorbZMoVBQx8uD8BthRNy8jUstt3xtU4j8Ko7PDyHep5Lw/NgbuAMzC3M+HTsKvWd5N6vXd2fF9AXsXLMZ1zo1MSllmq9tCiHej3wHNXfs2EFWVha3b99WThzzori4OPbu3UubNm1UlucGUkaNGkWtWrXy3HalSpXIzs5m2LBh7N+/nzp16uDu7k737t2pV6/eG4e5vi7gmbv/F/M7vtiL7VUyMzPfuodertxAUW4gJC/x8fGUK1dObfmb2qBJOzMzM6lTpw4jRozIc/3LQZQ3BXwBTp8+zcCBAzEyMsLT05MuXbrwwQcfEB4ertbbNi+a7CMvLVq0YMKECQQFBfHhhx8SFBRE06ZNMTEp/Ek0bty4QXp6ukqOxoLIysrC2NhYmavyZS/npnz5+sxv/Ted29zA8+vkd5+a+O677+jTpw+7du3i4MGD7Nq1i23bttG9e3d++OEH5b36448/Kofyv+zFXJgxMTHcuXMHyOmVOXDgQOWxnzlzhtjYWL744gusrHISgvfv35/Tp0+zZ88eQkND0dbWVul1DurnPjU1lV69enH58mUaNGiAh4cH/fv3p379+ioB39y2v+5ezO/xiXdDv1TO3460+GS1dWlPk9E21EVbT/1Do6b1Crr9XNq6Oli42HP36GXSE1PQNc7fy7sQ+XXx5Dk2+q9SWdasfUsMjAyJj41TK5+7zDSPnGcABoaGBa6bX8Zmz+63VwxlFKIwFffnhxDvWnF/fiQ+jSch7ikf+ngpA5q53BvW49qFv4m4dZtq7q8f0SmEKB7yHdTMnfX8559/VgsgXblyhVmzZrFx40a1oGZuj8Hc4NeLLly4QFxcHAYGBpw+fZr9+/czbNgwRo0apSyTO9Ta3t7+lW3L3cetW7fU1uUOL31xWLombG1tlT2rXrRx40bOnDnD+PHj1Xqlvkr58uUxMDDgxo0bea6PiIggKSlJOelRftt59epVteUHDhxgx44dfPXVV9jZ2ZGYmKh2/uPi4jh27FievcveZObMmRgYGLB9+3aV3m3z5s3L97byw9jYmGbNmrF//3569uxJVFSUcobwwrZz506APIP4+WFnZ8fhw4dxc3NTBrhf3MeLPQyLov7LcicfioiIUEkfEB0dzeTJk+ndu3eh7/Phw4dcv34dDw8PBg8ezODBg3ny5AnDhw9n7dq1yusUcnpLvnytnjhxgqysLJV77v/+7/9IT09n9OjR/P777yxbtowBAwYAz7/oeDnAO3nyZK5cuUJERAStWrVSnotXCQoKIjQ0lJ9++omPP/5Y5Vy9KPcLibz+ZowZM4batWvn+/jEu6FjqIe+hUmes9Qm3HuEqZ3VW9XTtFxSTCyhS/dQvnF1bD9U/SIlMzUdFKDQefMXckK8rcpuzvT78jOVZRbWlty+dou74ZFq5e+FR2FhY5XnJA+5yjmUL3Ddl2VmZDBv4u/YVXSgY//uKuse3sv521zaqvBzbAvxsuLy/BCiuCjuz4/cXLRZeXTwyMrK+eyQnfXqzlJCiOIlX93kwsLCCA0NpX79+nTs2BEfHx+VnyFDhmBtbc2RI0fUPuy7ublhbW3NihUrVHoqJiQk8PnnnzNmzBi0tbWVOSJfnol87dq1JCcnqwzdzg1U5AYurK2tcXNzY8uWLdy/f19ZLi0tjSVLlqCnp0fDhg3zc8h4eXlx8eJFQkNDlcvS09NZvHgxoaGh+Qo+6Onp0bhxY06cOMH58+fV1i9btgxArdeYpu18+PAhe/bsUdtmSEgIpUuXxtvbmytXrnDgwAGVMnPnzmXUqFFcv379tfvI7b324tDw2NhYLCwsVAKa8fHxbNy4EdCsN+CbaGlp5TkcvV27dkRHRzN//nxMTU2Vs08Xphs3brB06VJcXV1fOWxfU7lpDObOnauyPDg4mFGjRrF169Yirf+y3PMVEBCgsjwwMJCgoCBMTEwKfZ+BgYH079+fixcvKpeVLl2aChUqoFAo0NLSwtPTE319fRYtWkT6C8NMoqOjGTZsGFOnTlX2hNy2bRvBwcEMHz6coUOH4uHhwfTp05U9N2vUqIGhoSGBgYGkpT3vsRMbG6tMOn706NE8vwh50av+Li1fvhx4nlLCzc0NCwsLtf2dOXOGwMBAkpKS8nV84t2ycq1A7M27JMXEKpc9uXGX5JinymHgb1NPk3IGFmZkpKRx7+RVlZftlCcJPAy9TSnHsujoS48cUfTMzEtR2dVZ5cfCxgrXOjV4eO8BNy49/yI15l40ty5fo3p99eHgL3qbui/T1tFBT0+PCyfOEPvoiXJ5clIyx/YcxMLGivKV8v9lrRAFURyeH0IUF8X9+WFoZEj5ShW4dPovldzL2dnZnD5wDG0dbRwqy30lREmRr56auRMEvdhT6UW6urp06dKFefPmsXnzZrV148aNY/To0XTu3JmPP/4YfX191q1bx927d5k6dSo6Ojq4u7tjYmLC5MmTiYqKolSpUpw4cYIdO3agr6+vEhDNDaQtWrQILy8vmjdvzrhx4+jXrx8ff/wxPXv2xNjYmC1btnDp0iXGjRun1tvsTYYOHcquXbvo168fvXv3xsbGhu3bt3Pz5k38/f3ztS2Ar7/+mvPnzzNgwAC6dOmCs7MzycnJHDx4kEOHDtG5c+cCBed69OjBhg0bGD16NH5+fjg6OhISEsKRI0eYNGkS2traDBkyhN27dzN8+HB69OhBlSpVOHPmDJs3b8bLywsvL6/X7iM3B+m+ffuwtbXF19cXLy8vFi5cyKhRo2jUqBExMTGsX7+ehw8fAq8faq8pCwsLrly5wqpVq6hfv74ysNS4cWPMzc3ZsWMHnTt3fuvebS9es0lJSVy9epXNmzdjaGjIr7/++taBpiZNmtC8eXP8/f2JiorCw8ODqKgo/vzzT2xtbRk4cGCR1n9ZtWrV6Nq1KytWrODBgwd4eHgoZ0Tv2LEjLi4uODs7F+o+O3bsyJIlSxg6dCg9e/akTJkyhIaGsmnTJjp16oSxsTHGxsZ88cUXTJ48me7du9O+fXsyMjJYtWoVqampfPPNN0BO3smJEydSpUoVZc/MCRMm0K5dO7777jtWrFiBhYUFn3/+ubLnafv27Xnw4AEBAQFoaWkxduxYfv31V/r27Yu/vz9Vq1bNs92enp7o6Ojw9ddf4+fnh46ODvv37+fw4cPo6uoqr3M9PT2+/fZbvvnmG3r27En79u1JTExk+fLlODk50bVrV4yMjDQ6PvHulW/sxoNzN7m4eBd2jdzIysgg8lAoJnaW2NTK6c2c/Diep3ceYFbBBkMLU43raVpOS1sLp48+5Nq6Q1xYEISNuxMZSancPX4FtBQ4fdTg3Z8YIV5Qx+tDjgcfYs3cpTRq1QxdPT0O7wzGzNwcT9/n7y8JcfHcuHSFsvZ2lLW3zVddTbXu2YlFk2ewcPIMPmye8w5z+sBREp7G0+/LofIFkXhnisPzQ4jirjg9P9r07IT/lDnM++E36jX1RFdfj9CT5wi/EYZPl7aST1OIEiTfQU1TU1N8fX1fWaZbt24sWLBA2VPvRa1ataJUqVLMnTuXP/74Ay0tLapUqcLcuXNp1qwZAFZWVixYsICpU6cyd+5c9PT0cHR05LfffuPChQssX76chw8fYmVlRdu2bdm9ezeBgYGcPHmS5s2b4+7uTkBAADNnzsTf35+srCxcXFyYM2dOgSaRsbS0ZM2aNUybNo3Vq1eTlpaGi4sL/v7+Beq55+DgwIYNG1i4cCEHDx5k3bp1GBgY4OjoyOTJk+nUqVO+twk5M7mvWLGC6dOns337duLj43FycmL69OnKmdPNzc1Zs2YNM2fOZOfOnaxZswZbW1uGDRvGp59++sYcjIaGhowePZrFixczceJEHBwcGDlyJJmZmezYsYP9+/djY2ODp6cnn3zyCW3btuX48eMF6nn6opEjRzJhwgQmTZrE8OHDlUFNPT09WrZsyZo1awpl1vOvv/5a+W99fX3KlStHly5dGDx4MGXKlHnr7SsUCmbMmMGiRYvYtGkTwcHBWFhY4Ovry6hRo5Q5H4uqfl5++OEHKlasyLp16wgODsbW1pbhw4czaNCgItmnjY0Ny5cvZ+bMmaxevZrY2Fjs7OwYMWIEgwcPVpbr378/ZcqUYcmSJfz+++8YGBjg6urKr7/+Sp06dYCcnJSxsbHMnj1bmSvX0dGRwYMH88cff7Bq1Sr8/Pzo378/ZmZmLF26lF9++QVTU1N8fHwYNWoUZcuWpXz58syaNeu1x1K1alVmzpzJ7Nmz+e233zA2NqZKlSosWbKEVatWcfLkSdLT09HV1aVDhw6Ympoyb948pk2bhpmZGc2aNePLL7/EyMhI4+MT756eiSE1Brfm1vaT3Nl7Dm09HSyrOeDYqi5az4Z8P70dzbX1h6n6cSPlh1JN6uWnXBl3J7R0tIg4cJFb20+hraeDuVM5KrSojZG15FsV75eOri4DvhrOztWbORQUjEJLC0fnyrTu3gEjk+eTx8Xcu8+GRX/SrH1L5YdSTetqqryjAwP+O5x9m4LYv3knKMDBqSIfD+6NvVPFwjpkId6ouDw/hCjOitPzw96pIp9+N4q9gTs4sH0PmRmZ2NiV5ePBvanpUbfQjlkIUfQU2a+bXUeIYm7ChAns27ePAwcOaDTxkxB5yc7O/kf06Omxf8r7boIQxdYgp/x/sSnEv8mim3vfdxOEKLbkGSLE6/k45C8NQHH1ZNaM992EVyo9ctSbC/0LFWzqaSGKgdjYWHbu3EnHjh0loCneyj8hoCmEEEIIIYQQQvyb5Hv2c6EqJiZGo3JGRkYYG+e/a7xQd+nSJRYtWsSFCxdITU3Fz89PZX1iYiJJSUkabcva2roomvivEh8fr5x053W0tbVVJpQSQgghhBBCCCGEKCgJar6lRo0aaVRuxIgRjBw5sohb8+9gamrKsWPH0NfXZ+rUqZQrV05lvb+/P7Nnz9ZoW1evXn1zIfFaP/30U545dF9mZ2dHcHDwO2iREEIIIYQQQggh/ukkqPmWlixZolE5e3v7Im7Jv4eDgwPHjx9/5fqOHTvKZCvv0KBBg2jfvv0by+nr67+D1gghhBBCCCGEEOLfQIKab8nT0/N9N0G8xN7eXoLI71DlypWVM9ILIYQQQgghhBBCvAsyUZAQQgghhBBCCCGEEKJEkaCmEEIIIYQQQgghhBCiRJGgphBCCCGEEEIIIYQQokSRoKYQQgghhBBCCCGEEKJEkaCmEEIIIYQQQgghhBCiRJGgphBCCCGEEEIIIYQQokSRoKYQQgghhBBCCCGEEKJEkaCmEEIIIYQQQgghhBCiRJGgphBCCCGEEEIIIYQQokSRoKYQQgghhBBCCCGEEKJE0XnfDRBCCFE4Bjn5vO8mCFFsLbq59303QYhibYFlq/fdBCGKr9j33QAhijmH990A8W8lPTWFEEIIIYQQQgghhBAligQ1hRBCCCGEEEIIIYQQJYoENYUQQgghhBBCCCGEECWKBDWFEEIIIYQQQgghhBAligQ1hRBCCCGEEEIIIYQQJYoENYUQQgghhBBCCCGEECWKBDWFEEIIIYQQQgghhBAligQ1hRBCCCGEEEIIIYQQJYoENYUQQgghhBBCCCGEECWKBDWFEEIIIYQQQgghhBAligQ1hRBCCCGEEEIIIYQQJYoENYUQQgghhBBCCCGEECWKBDWFEEIIIYQQQgghhBAlis77boAQovCkpaWxdOlStm3bRnh4OFpaWlSsWJFWrVrRr18/9PX1lWUTEhJIS0vDwsLitdv89ttv2bhxI1evXs1XW06cOEHfvn3VlmtpaWFmZoazszODBw+mcePG+dpurrS0NJ48eUKZMmUACAwMZMyYMSxfvpwGDRoUaJvi3+1JzCOC1mwm7OoNAJxrfEDr7h0wNjN9bb07126xJ3AbUWERGBobUs29Ot4dW2NsavLKOvcj7jLvx2l4tfHBu2PrnP0/fMxvX//w2n198vVwHF2q5PPIhHh/rm88SvLDOGoMbv3GsimP47kVdIq4W/cBsHApj2PreuiZGBZ1M4UoVAsCArj74AH/N2rUG8s+ePSI5Rs38vf16wDUdnWlT6dOlDLNefbEPHrEiP/7v9duY/x//oNrlZxnw+/+/hw/d06tTCUHByZ/9VU+j0SIwvOma/1Vrty8ScDWrdwMD8fEyIi6NWrQrU0bzExU37POX75M4M6d3IqIQEtLiyoVK9Ljo4+oUrFigbYnhCgZJKgpxD9ERkYGAwcO5Pz583Ts2JHu3buTmZnJ6dOn+e233wgODmb58uXo6ekRGhrKZ599xtSpU4s8ANiiRQtatGih/D0zM5Nbt26xatUqhgwZwooVK6hTp06+thkVFcUnn3zCkCFD6Ny5MwD16tVjypQpODk5FWr7xb9DUkIi/lPmkJmZQeNW3mRnZ3F4536iI+8y9H9foK2T9+My7Mp1lv02DwNDQ5p81AKFloJjuw9w68p1Ph37OYbGRmp1MjMz2bD4TzIzMlWWG5sY02WQn1r59PR0tv8ZiLGZCWXt7QrngIV4B+6fvsb9U9co5VjmjWXTk1K5sHgn2ZlZlPdyIzs7m8hDoSTef0KtYR+hpa39DlosxNsLPnaMfUePUq1y5TeWjU9M5PuZM8nMzKS9jw9ZWVls3beP8Lt3mfTf/6Kjo4OpiQnD+/RRq5uWns6S9espZWJCBbvnz4aIe/eoWqkSLRo2VClvKgEb8R5pcq3n5dL160yaMwcjQ0M6+fqipaXFjv37uXTtGj9+8QUmRjnvWX9fv87Pc+dSvmxZerZrR2ZmJrsOHeL/pk/n+88/p/KzwKam2xNClBwS1BTiHyIoKIiTJ08ya9YsfH19lcv79u3LokWL+PXXX1m/fj29evXi2rVrPHjw4J20y9nZmQ4dOqgtb9GiBd27d2fevHksXLgwX9uMjIzk9u3bKsvs7e2xt7d/m6aKf7Eju0OIexLLiB++xsa2LAB2jhVYNm0uZ4+cpF4TzzzrbfszEIVCi8FjR2FZxhqAD2rXYM6EKRzYtodW3dWv/YPb9xJz977acj0DfWp51lNbviMgkMzMTLp+2ifPIKkQxU12VhYRIRe4s++8xnWiDl8iNS6JOv/pgJGNOQCm5a0J9d9N9NkblKvnXDSNFaKQZGVlEbhrF+uDgjSusz04mMexsfw6Zgzly+Y8eypXqMBPc+YQcuIEPg0bYqCvj1f9+mp1l27YQGZmJiP79VMGYjIyMoiOiaGjr2+edYR4XzS51vOyZN06FFpa/PjFF5S1znnPql+zJl9PnszGXbvo06kTAMsCA7E0N+en//4XfT09ALzq1+eLn35i9bZtjBsxIl/bE0KUHJJTU4h/iHPPhho1zOOloFevXujq6nL+/Pl33KpXq1mzJo6Ojvz111/vuylCcPHEWRydKysDmgCVXZ2xLGvDxRPqw/ggZ7j4g6h71PKspwxoAliXK4NzTVfOHTmpVud+xF0ObNtN03YtNWrX/Yi7HNt7iNqN6lOxqvRCFsVfZnoGZ2dv5c7e89jUckKvlGaB+JgLtzB3LKsMaAKUrmyLobUZMRfCiqi1QhSOtPR0vvnlF9bt2EHjevWwMDfXqN6Rs2f5oEoVZZAHoIaLC+VsbDh69uwr692JimLngQM0bdBApUfo3QcPyMjMxO6F7QlRHBTkWo959IiIe/doUr++MgAJYFemDLWrV+fAyZz3rISkJO5ERfGhu7syoAlgbmZGtcqVuRoWlq/tCSFKFglqCvEPYWxsDMCaNWvU1hkZGXH27FmmTJnCrFmzGDNmDJDTi9Pb21tZLjQ0lE8++QR3d3caN27M/Pnzyc7OLrI2Gxoaqm3/2LFjDBo0iAYNGuDq6krjxo0ZP348T58+BXJyZ+bm6hwzZgzOzs7K5c7Ozpw4cUK5reTkZKZNm4a3tzdubm54e3szdepUkpOTC9TekydP4ufnR926dXF3d6dHjx4EBwerlQsMDKRjx45Ur16dDz/8kG+//ValZ+zUqVNxdnbmzz//VC5LS0ujXbt2NGjQgOjo6AK1TxRMcmIST2IeYVuxvNo6W4fy3AuPzLPe0ydxAJQpr/7h0cLGiqSEROIeP1Euy8zMZOOSAJxcnanpUVejtu0N3I6uni7NO7XRqLwQ71t2RhaZqWm49GyCc9fGKLQUb6yTnpxKyuMETOws1daZlLMk4e6jomiqEIUmPT2dpJQUPh8wgOF9+qCl9eaPWAlJSTx4+JBKeYwycbS3Jywi4pV112zbhp6eHt0++khleeT9nFEAds/yjaekpubnMIQoEgW91h/H5bxn2Zcrp7aurJUV8QkJPHryBCMDA34fN462L3ymyRWfkID2s/tR0+0JIUoWGX4uxD9E+/btWbJkCb/88guBgYH4+Pjg4eGBu7s7enp66D375rJFixbExMSwZs0ahg4dSvXq1QG4fv06ffr0wczMjGHDhpGeno6/vz9paWlF0t7o6GiuXbtG7dq1lcsOHz7M4MGDqV27Nv/5z39QKBQcOXKENWvWEBcXx4wZM6hXrx5Dhw5l3rx5dO/e/ZX5ONPS0hgwYADnz5+nc+fOuLm5ceHCBRYuXMiZM2dYvnw5urq6Grf31q1bDBkyhGrVqjF69GgA1q5dy7Bhw1i5ciV16+YEqWbPns2sWbNo2bIl3bp1Izo6mpUrV3Ly5EnWr1+PhYUFI0eOZO/evUyfPp2WLVtiZWXFnDlzuHbtGr///rty8iPxbuQGJ81Km6utMzU3IyUpmeSkZAyNVCcr0dPPuX5SU9Q/NCYlJAIQHxdPKYvSABwO2sej6Bh6jfiErKw3f1lwP+IuV/+6RMOWzTAzL5WvYxLifdE20KXuF13Q0tb8e/O0uCQA9MzUe3XqmRmSmZxORnIaOoZ6auuFKA6MDA2ZOX482vnI/fo4NhYAi1Lqf99Lm5mRlJxMYlISxi/l+LsTFcWZ0FA+8vZWqxtx9y4Ae48c4ejZsyQkJmJuZkbHFi1o3bRp/g5KiEJS0Gs997NLch7B+fiEBABinz7FsnRpytnYqJW5ExXFtbAwalarlu/tCSFKDumpKcQ/RJUqVZg9ezaWlpZcv36duXPn0rdvXxo0aMCXX35J2LOhFy4uLtSqVQsAT09PfHx8AJg1axYAq1evZvDgwQwbNoxVq1aRkZHxVu1KTk7m8ePHyp/o6GiOHj3KZ599RlZWFiOe5bgBWLp0KeXKlWPJkiX4+fnRq1cv5syZQ61atTh06BCQkzvT0zMnv2GtWrXyzNcJsGHDBs6dO8e3337LpEmT6NWrFz///DNfffUVZ8+eZe3atfk6jn379pGUlMTs2bPx8/PDz8+PpUuXUqFCBS5fvgxAREQEc+bM4dNPP2XmzJn06tWL0aNHExAQwIMHD5g3bx4A+vr6TJo0iYSEBKZMmcKlS5dYtGgRbdu2pU0b6ZH3rqWmpACgq6ce5NZ5tiw9j+C+jW1Z9A0N+PvMBZUex+lp6dy4dBWAjPR0AB5E3WP/ll207NZeGeR8k5P7D6PQ0qJB88b5OyAh3iOFQpGvgCZAZlrOfaKtq/5du9azySMy09/uWSREUVIoFPkKaMLzXpR6eurBer1nX7qmPnuGvGj34cNoaWnRystLbV3Es56aUdHRDOzWjeF9+mBXtixLN2xgw86d+WqfEIWloNe6fdmyGBoYcPKvv1Tes9LS07lw5Yry36/a55wVKwDo8OyzzttsTwhRfElQU4h/kKZNm7J//35+//13OnTogLW1NUlJSWzbto0OHTpw8hW5YrKysjh06BBNmjSh3AtDMpycnGjUqNFbtWnx4sV4eHgof7y8vBgwYIByXf0XEtnPnz+fDRs2qLz0PHnyBBMTE5KSkvK13+DgYExMTPDzU51Num/fvpiYmOQ5bPx1yj7LAfTjjz8SGhoKQOnSpdm1axd9ns1KumfPHrKysvD29lYJ5FpZWVGtWjVCQkKU26tduzZ9+vRhy5Yt/Oc//8HCwoIJEybkq02icOS+1yoUbx4m+yJtHR08fZty93YE6+av4H7EXe6FR7J67hLSUnOCoFpaWjmTRywOwKFypVdOOPSy9LR0zh87jUstN0pbWeSrXUKUOMqb8P02Q4h3KTeokp9nT1p6OodOnaJO9epYW6qna/Bwd6dHu3b8b8QIPGvXxqt+ff43YgRVK1UicNcunj7rjSbEu1SQax1AR0eHj7y9uRUezsxly7gTFUVYZCS/L15MyrMvm/P6MiE1LY0pCxZwJyqKDi1a8EGVKm+1PSFE8SbDz4X4h9HX16dNmzbKHn+XLl3C39+fbdu2MWHCBILymJUzNjaWpKQkHBwc1NZVqlQp3wHAF3Xo0IGOHTuSnZ3N7du3WbBgAQYGBkyaNAkXFxeVstra2kRERDBjxgxu3LhBeHh4gfNLRkZGYm9vrzbEXE9PD3t7e6KiovK1vVatWrFnzx527NjBjh07sLa2pkmTJnTq1Ek59Dw8PByAHj165LmNl9syevRodu3aRWRkJL///jul8hiWI4qevoE+kHdvzIxnPcgMDAzyrNusfUtSkpI5tvcgF0/mJLp3rulK41be7NmwDSMTYw4HBXM/MopBY0aRGJ/zgTLlWZA+LS2dxPgEjEyMVV72b125TnpqGm71ahXacQpRXGk/S+WQlZ6pti7r2WgBHQPN04UIURIY6Oc8e/JK85PbW8zopWdP6LVrpKam4uHunuc2G+aRkkehUNDc05Nrt25xPSyMOs/SDgnxrhTkWs/VpVUrEpOTCQoJ4eiZMwDUcXOjvY8PAVu2YPLSkPXEpCR+nj+fa7du0ezDD+nxUt7Z/G5PCFH8SVBTiH+ApKQk5s+fj6urK76+virrXF1dmTZtGk+fPuXgwYM8eU0C7JRnw3BflJWV9VZte3G4eMOGDWnSpAldunShX79+rFmzhooVKyrLLl68mClTpuDo6EjdunXx9fWlZs2arFixgq1bt+Zrv6+b4CgrKytf+TQhJyA5c+ZMrl69yp49ezh48CCBgYGsX7+eL7/8kk8//VR5rubOnfvKINiL7ty5w6NHORNg7N69W4aevyelLHOGg8fHxauti499ioGRIXrPAp8vUygUtOnZCa82PjyKjsHMwpzSVhbsCdyOQkuLUhaluR56mcyMTOb/+Jta/SM7gzmyM5gvpoxX6ZF57cLfaOvoULVGtUI6SiGKL/1SJgCkxatP4pb2NBltQ12080gPIURJZvUsb1/ss4kQX/Tk6VOMDA2VwaBc5y5dQkdHB/cPPsjXvsxMcu6xlCLKky7E6xTkWs+lUCjo17kzHXx8uB8Tg6W5OdaWlqzeuhUtLS2sLJ6/O8XFxzPpjz+4HRmJT8OGDOreXa13aH62J4QoGSSoKcQ/gL6+PosXL8bd3V0tqJmrcuXKHDp0KM9gW+nSpTExMeHOnTtq6yIj8575uaDKly/PTz/9xPDhw/niiy9Yu3YtOjo6pKamMmvWLBo0aIC/vz86Os//PM2YMSPf+7Gzs+P8+fOkp6erBDDT0tKIjIxU9q7U1N27d7l79y5169bF2dmZESNGcP/+ffr168fixYv59NNPsbOzA6BcuXJUq6YajDpw4AAmzz5UAGRkZDB27FjMzc3p2LEjCxcupG3btrRo0SLfxyrejqGRIeZWFty7o36t3w2PxK6i+myduS6cOItpKVMcXapgUspUufz21ZvYViiPrp4urbp3JDlRNX1C4tN41i9cSU2PutTyrIeJmanK+vAbYdhVtMfAUHVyIiH+iXQM9dC3MMlzlvOEe48wtbN6D60SomgZGxlhbWlJWB7vWWERETjlMXrmWlgYlRwcMMrj2ZCRkcF306bh5ODApz17qqy7+2zUi00eQ9aFKGoFudZzHTlzBnMzM1yrVMHczEy5/O8bN6hkb6/MyZmckqIMaLZp1ox+nTu/1faEECWH5NQU4h9AW1ubNm3acPLkSTZv3qy2PjY2ll27duHp6YmhoSFaWjm3fm7PQoVCQYsWLTh06BDXr19X1ouMjFTJA1lYfHx8+Oijj5RD4yGnl2hycjIVK1ZUCWhevnxZmQs0d9Ki3Hw3r+tF6u3tTUJCAn/++afK8lWrVpGYmEjTfM4COm/ePPr3768yHL5s2bLY2Ngoz2ezZs2AnNygL/YUvXz5Mp999hnLli1TLlu8eDGXLl1izJgxjBo1CicnJ77//ntin80QKd4t1zo1ufn3VWLuPf//e+PSVR7df0D1BrVfWe/orhC2rtxAZubzYbNX/7pE+PVbNPDOyUdrV9Geyq7OKj8OVSoBYGFtSWVXZ5VJijIzMoi5e59yFcoX9mEKUWxZuVYg9uZdkmJilcue3LhLcsxTrGs4vr+GCVGEGtSsycWrV4l64d3iwpUr3HvwAM+XhpJnZGQQee8ejuXzfjbo6Oigp6fH4TNnePj4sXJ5YlISQSEhlLG2pnKFCkVzIEK8QX6u9RdtDw7Gf906lfesM6GhXL11C9/GzydSXLx2LbcjI2ndtOkrA5r52Z4QouSQnppC/EN8++23XLhwga+//potW7bQuHFjTExMCA8PJzAwkPT0dMaPHw+AxbOhFQEBATx8+JB27doxatQoQkJC6N27N/3790dbW5sVK1ZgbGycZw6ctzVmzBgOHTrEnDlzaNWqFQ4ODtSsWZPAwEBMTExwdHTk+vXrrFu3Thk0TExMpFSpUpR+Noxly5YtZGdn06lTJ7Xtd+3alY0bN/Lzzz9z7do13NzcCA0NJTAwkFq1atG1a9d8tdfPz4/Nmzfj5+dH9+7dKVWqFMePH+fkyZP85z//AaBq1ar06dOHFStWEBsbi4+PD7GxsaxcuRJjY2NGjRoFwM2bN5k9ezaNGjWibdu2AEyYMIG+ffvy008/8euvvxb4vIqCadzam/NHT7Hk1zk0bNmMjPR0Du/cj21Fe2p+mPOy/fjBQ8JvhOFQ2RELm5yeY43bNGf1H0tYOWMhH9SuQeyjxxzZFUJlNxdqeuSvN3Cu2EdPyMzI1HiWdCFKmuTH8Ty98wCzCjYYWuT0Ui7f2I0H525ycfEu7Bq5kZWRQeShUEzsLLGp5fSeWyzE24t++JCrt27hXKkSZaxyniHtfXw4ePIkP86axUfe3qSlp7N13z4qOTjQ+KURJQ+fPCEjM1M5lDcv/Tt3ZvzvvzP+999p1aQJAHuPHiU2Pp7vhg3L90QtQhQWTa71vO6RDi1a8Nvixfwyfz71a9Yk5vFjtgUHU7NaNRrXqwdA5P37HDp1CiNDQyqWL8/BPCZG9Xo2Makm2xNClCwS1BTiH8LCwoLAwECWLl3Kvn37mDNnDsnJydjY2ODr68vQoUOxsbEBwMPDg9atW7N//36OHz+Or68v5cqVIyAggClTprBo0SL09PSUgb/58+cXenutrKz46quvGDduHOPHj2fp0qXMmDGDyZMns2HDBtLS0rCzs+PTTz/FycmJkSNHcvz4cVq2bImTkxN9+vQhMDCQixcv0qBBA7Xt6+npsXTpUubMmUNQUBBbtmyhbNmyDBkyhM8++yzfOTWdnZ1ZsmQJc+bMwd/fn4SEBCpWrMj//vc/lRnWv/vuOypVqsTq1av55ZdfMDU1pW7dusremFlZWXz33XcoFAqV2c4bNGhAhw4d2Lx5M23bts13T1LxdozNTBk05j/sCNjIvk1B6OnpUc29Oi27tkPn2bVy+9otNvqvotMnvZRBTde6Nek6pC+HduwlaPUmjM1MaNTKG6+2PspgfH7lDlU3MHxzXlYhSqKnt6O5tv4wVT9upAxq6pkYUmNwa25tP8mdvefQ1tPBspoDjq3qoqUjs9GKku/yzZvMXbmSz3r3VgZsSpma8v3nn7MsMJC1O3agr6tLvRo18OvQQe09JSExESDPoee5nCpU4H8jR7J2xw7WBQWhUCioWrEiI/v2pcoLOcyFeNc0udbzukca1KrFf/r3Z/OePSwLDKSUqSntmzeno6+v8j3r8o0bACQlJzN35co8958b1NRke0KIkkWR/brZNIQQQpQYe8PPvu8mCFFsLbq59303QYhibYFlq/fdBCGEECWUWY0a77sJheLJrPzP5fCulB456n03oViSryOEEEIIIYQQQgghhBAligw/F0JoLCYmRqNyRkZGGBsbF3Fr3l5sbCzp6elvLKerq4u5uXnRN0gIIYQQQgghhBAakaCmEEJjjRo10qjciBEjGDlyZBG35u2NHDlSObP669SvX58VK1a8gxYJIYQQQgghhBBCExLUFEJobMmSJRqVs7e3L+KWFI5vvvmGp0+fvrGcmZnZO2iNEEIIIYQQQgghNCVBTSGExjw9Pd93EwqVm5vb+26CEEIIIYQQQgghCkAmChJCCCGEEEIIIYQQQpQoEtQUQgghhBBCCCGEEEKUKBLUFEIIIYQQQgghhBBClCgS1BRCCCGEEEIIIYQQQpQoEtQUQgghhBBCCCGEEEKUKBLUFEIIIYQQQgghhBBClCgS1BRCCCGEEEIIIYQQQpQoEtQUQgghhBBCCCGEEEKUKBLUFEIIIYQQQgghhBBClCgS1BRCCCGEEEIIIYQQQpQoOu+7AUIIIQrHopt733cThBBClFAnzTPedxOEKLbqx8rHZiGEKI6kp6YQQgghhBBCCCGEEKJEkaCmEEIIIYQQQgghhBCiRJGgphBCCCGEEEIIIYQQokSRoKYQQgghhBBCCCGEEKJEkaCmEEIIIYQQQgghhBCiRJGgphBCCCGEEEIIIYQQokSRoKYQQgghhBBCCCGEEKJEkaCmEEIIIYQQQgghhBCiRJGgphBCCCGEEEIIIYQQokSRoKYQQgghhBBCCCGEEKJEkaCmEEIIIYQQQgghhBCiRJGgphBCCCGEEEIIIYQQokSRoKYQQgghhBBCCCGEEKJE0XnfDRBC5E9aWhpLly5l27ZthIeHo6WlRcWKFWnVqhX9+vVDX19fWTYhIYG0tDQsLCxeu81vv/2WjRs3cvXq1Xy15cSJE/Tt21dtuZaWFmZmZjg7OzN48GAaN26cr+3mSktL48mTJ5QpUwaAwMBAxowZw/Lly2nQoEGBtinE66Q8judW0Cnibt0HwMKlPI6t66FnYvjaenG3o7m9+ywJUQ/RMdTDspoDFXzc0TU2KFC5+KiH3N51hqfhD1AoFJRyLItj63oYWZcq3AMWIh+Ky/2RlpDM7d1neXwlgqz0DExsLanYsi5mDtaFe8BCFKJNS9fwKPoBA78Z+cayT2IeEbRmM2FXbwDgXOMDWnfvgLGZqUq56xcvE7JtD3dvR6DQUmBfqSI+ndtg71SxKA5BiEKzICCAuw8e8H+jRr2x7INHj1i+cSN/X78OQG1XV/p06kQpU9NX1rkTFcXYX3+lo68vXdu0UVl3MzycgC1buBoWhpaWFh84OdGnUydsn33eEEKULNJTU4gSJCMjg4EDBzJr1ixq1qzJV199xeeff0758uX57bff6NevH2lpaQCEhobSunVrrj97AShKLVq0YMqUKcqfn376ia5duxIaGsqQIUM4c+ZMvrcZFRVFu3btOHLkiHJZvXr1mDJlCk5OToXZfCEASE9K5cLincRHxFDeyw27xq48uhJB6JLdZGVmvrJe7K17XFy8i+SHcdg3rYHth9V4eOkOfy0IIj05Nd/lkmLiuLBwJ4n3n+DQrCb2TWsQH/mQvxbsIPVpUpGeAyFepbjcHxmp6VxYuJOHobcp18CZCj61SX2axMXFOfeMEMXRmUPHOXPwmEZlkxIS8Z8yh8hbt2ncyptGLZty9a9LLJ02l8yMDGW5sKs3WD59ASlJybTo0pZm7Vvx+MFDFv8yi8hbd4rqUIR4a8HHjrHv6FGNysYnJvL9zJncuH2b9j4+fOTtzZnQUH6aM4eMF+6HF2VmZvLHypVk5PFsuhsdzfczZ3InKoourVrRydeXG3fuMH76dB7Hxb3VcQkh3g/pqSlECRIUFMTJkyeZNWsWvr6+yuV9+/Zl0aJF/Prrr6xfv55evXpx7do1Hjx48E7a5ezsTIcOHdSWt2jRgu7duzNv3jwWLlyYr21GRkZy+/ZtlWX29vbY29u/TVOFeKWow5dIjUuizn86YGRjDoBpeWtC/XcTffYG5eo551nv5tYTKLQU1BzSBkNLMwAsXR04O3MLESEXqNS6Xr7KRR39m6y0DGp+2hoTW0sAzJ1sOf/HNqKOXFKWE+JdKi73R+SBiyQ/jKP6oFaYO5YFwLpGRU5N3UDkoYs4d/UqytMgRL5kZWVxYNsegjfv1LjOkd0hxD2JZcQPX2Njm3ON2zlWYNm0uZw9cpJ6TTwB2BGwkVKlzRkybjR6+noAuHvWY8a4yewN3E7//w4r/AMS4i1kZWURuGsX64OCNK6zPTiYx7Gx/DpmDOXL5twPlStU4Kc5cwg5cQKfhg3V6mzcvZvIe/fy3l5ICKmpqXz/+ec4li8PQPWqVRk7dSrbg4Pp06lTAY5MCPE+SU9NIUqQc+fOAdAwjwd4r1690NXV5fz58++4Va9Ws2ZNHB0d+euvv953U4R4o5gLtzB3LKsM2ACUrmyLobUZMRfC8qyT8iSBpOhYbNydlIEYACNrcyyq2RN99ka+ykHOEF8dY31lQBPAtLwVOkb6JEVLTzTxfhSH+yM7O5voczewcC6vDGgC6Jka4di6HmYVZeigKD7S09L54/+mErwpiFoedTEtrVn6kIsnzuLoXFkZ0ASo7OqMZVkbLp7IeQ9MTkzifsRd3OrVUgY0AUxKmVKxqhPhN24X6rEI8bbS0tP55pdfWLdjB43r1cPC3FyjekfOnuWDKlWUAU2AGi4ulLOx4ejZs2rl70RFsXHXLjq3apXn9h48fIipiYkyoAngVKECJsbGRLwiECqEKN4kqClECWJsbAzAmjVr1NYZGRlx9uxZpkyZwqxZsxgzZgyQ04vT29tbWS40NJRPPvkEd3d3GjduzPz588nOzi6yNhsaGqpt/9ixYwwaNIgGDRrg6upK48aNGT9+PE+fPgVycmfm5uocM2YMzs7OyuXOzs6cOHFCua3k5GSmTZuGt7c3bm5ueHt7M3XqVJKTk/Pd1hMnTuDs7MzGjRtp164d1atXV57HmJgYvv/+e5o3b46bmxt16tShb9++akPrs7OzWb58OR999BE1atTIsz1ZWVn4+/vTqlUr3NzcaNy4MRMnTiQhISHfbRaFIz05lZTHCZjYWaqtMylnScLdR3nWS3uaCIBxmdJq6wwtTMlITCU1LlHjcgCGlmZkJKWSlvD8mklPSiUjJQ3dN+QuFKIoFJf7I/VJAmlxSZhXtgVy/t5mpqUDYPuhyyt7iwrxPmRkZJCanEL3z/rRZZAf2lrab6yTnJjEk5hH2FYsr7bO1qE898IjAdA3NGDUpLF4tmyqVi4pIREtbfmIJ4qX9PR0klJS+HzAAIb36YOW1puv0YSkJB48fEilPEZpOdrbExYRobIsMzOTeatWUcPFBa96eY9qKWttTUJiInHx8cpl8YmJJCUnY25mlmcdIUTxJsPPhShB2rdvz5IlS/jll18IDAzEx8cHDw8P3N3d0dPTQ08v59v6Fi1aEBMTw5o1axg6dCjVq1cH4Pr16/Tp0wczMzOGDRtGeno6/v7+yjychS06Oppr165Ru3Zt5bLDhw8zePBgateuzX/+8x8UCgVHjhxhzZo1xMXFMWPGDOrVq8fQoUOZN28e3bt3p06dOnluPy0tjQEDBnD+/Hk6d+6Mm5sbFy5cYOHChZw5c4bly5ejq6ub73b/8MMPdO7cma5du2Jra0tKSgp+fn7Ex8fj5+dHmTJluH37NgEBAQwaNIi9e/diaZnzYf/7778nICCAZs2a0bNnT8LCwvD39+f27dvMnj0bgO+++47NmzfTsWNH+vfvz82bNwkICODs2bMEBASoTPYk3o20uJxclXpmRmrr9MwMyUxOJyM5DR1DPZV1Wro5j9HM1HS1eulJOXkA0+KTNS6nX8qY8l5uPL4SwdU1B6nUNuel/FbQabS0tbDz/KCghyhEgRWX+yPjWW5NXWMDbgWd4v6pa2SmpGNgaUqlNvWxrCbpSUTxYWBowOc/f4e29puDmbmePsnJ6WdW2lxtnam5GSlJySQnJWNoZIhVGfWJse5H3CX8RhhV3FwK3G4hioKRoSEzx4/P1/3wODYWAItS6r2cS5uZkZScTGJSEsZGOc+mzXv3cu/BA/47aBBZWVl5brODjw9nQ0OZuWwZfZ8NNV+5aRPa2tq0bto0fwclhCgWJKgpRAlSpUoVZs+ezdixY7l+/TrXr19n7ty5GBkZ4e3tzYgRI3B0dMTFxYVatWqxZs0aPD09lTOFz5o1C4DVq1dTrlw5AFq2bEnHjh3fql3Jyck8fvxY+Xt6ejo3b95k6tSpZGVlMWLECOW6pUuXUq5cOZYsWaIMwvbq1Yvu3btz6NAhICd3pqenJ/PmzaNWrVp55usE2LBhA+fOnWPMmDH0799fua3KlSvz66+/snbtWvz8/PJ9PHXq1OF///uf8vcdO3Zw584dFi1apDKTu729PRMmTODMmTP4+vpy48YNVq9eTbdu3fjxxx+V5YyNjZk3bx43btzg0aNHBAYG8v3339OjRw9lmSZNmjBw4EBWr15Nv3798t1m8XZye3tp66o/FrV0ngVc0jPUgjZGZczRNtDl4aU7lG9SHYVCoSz75HoUAFnpGZg6WGtUDsDA3AT7pjW4ufU4Z2duedYIBdV6NVUZki7Eu1Jc7o+MlJwv4O7sPYdCWwunjxqAQkHkoVD+XrkPtwG+lH7Wi1OI902hUOQrgAOQmpICgK6e+heyOs+WpaelYWik3ms/LSWVDYtWAtC4TfP8NleIIlWQ+yElNeeLrNzPCy/Se9ZpITU9HWMg4t49NgQFMaBrVyxLlybmUd4jCKwsLOjUsiX+69bx9c8/A6ClpcUXAweqDEkXQpQcMjZBiBKmadOm7N+/n99//50OHTpgbW1NUlIS27Zto0OHDpw8eTLPellZWRw6dIgmTZooA5oATk5ONGrU6K3atHjxYjw8PJQ/Xl5eDBgwQLmufv36yrLz589nw4YNKi8oT548wcTEhKSk/M3sHBwcjImJiVrgsm/fvpiYmBAcHFyg46n30pCVNm3acOzYMZXz9GLv1tx2h4SEkJ2dTZ8+fVTqDxw4kC1btuDg4MDu3btRKBQ0adKEx48fK38++OADrK2tCQkJKVCbxVvKTZGgyF81LW1t7Bq6khD1iKtrDpJ4/zEJdx9xJSCErLScIKVCW0vjcgC395zlxqZjmDnY4Nzdi6pdG2Na3oorAQd4dDnilW0RosgUk/sjKyOn501GSho1h7ShTO3KlHF3oubg1ugY6nN795lXtkWIkkB5qynyd7OlpaaxcuYi7kfcxatNcxydKxdB64R4t3LTV73pfsjKymLuypU4OznlOXHQi9Zs28bC1aup6ujIyH79GN6nD04VKjDd358zFy8WWtuFEO+O9NQUogTS19enTZs2tGnTBoBLly7h7+/Ptm3bmDBhAkF5zCoYGxtLUlISDg4OausqVapU4AAgQIcOHejYsSPZ2dncvn2bBQsWYGBgwKRJk3BxUR0Cpa2tTUREBDNmzODGjRuEh4cTHR1doP1GRkZib2+vNsRcT08Pe3t7oqKiCrRdCwsLtWUKhYIFCxZw7tw5wsPDCQ8PJz09p/dS7hCX3P1VrFhRpa6ZmRlmz/L0hIeHk52dTdNXDHHJzZsq3i1t/ZxrKCs9U21dVkZOUEXHIO9UBg7eNclISePu0b+VE6ZYVCtPeS83bu86i46hvsblMpLTiDwUikl5S6oPbIniWc4p6xoVOf/HNq5vPELpKl3R0slfbwch3kZxuT+0dXO+QLJyrYCu4fM0HTqGeli4lOfBuZtkpqWjnUcvNyFKAn2DnOs6PY+0QBnPekwbGBioLE9OSmbl9AWE3wijduMG+HRuW/QNFeIdMHiWjimvNFlpz97BjQwM2LJvH3eiovhh9GiePstPn/Asl31qWhpPExIwNTYmKTmZLfv24eTgwPiRI5V5PT1r12bs1KnMDwhgjotLgVJXCSHeHwlqClFCJCUlMX/+fFxdXfH19VVZ5+rqyrRp03j69CkHDx7kyZNXz5Cc8mxo04telXdGU7nDxSFnZvYmTZrQpUsX+vXrx5o1a1SCfIsXL2bKlCk4OjpSt25dfH19qVmzJitWrGDr1q352u/rJjjKysoq8EvJy8Njbt26Rc+ePUlPT6dRo0a0adOGatWqkZ2dzfDhw5XlMjPVP/Dn1S5jY2Nlfs2XST7N90O/lAmQk7fvZWlPk9E21H1loEShUODUtj72TaqT/PAp+qWMMShtwu3dZ0FLgb65scblkqJjyc7IwrpGJWVAE3J6vNnUdCJs52mSYuIwKaceeBeiqBSX+yMjOeeDra6xgdp+9EwMITsnL6cENUVJVcoyZ7Ks+Lh4tXXxsU8xMDJEz+D5e0Li03iW/jaP++FR1G3iSfu+XfPdy1OI4sqqdM79EPtsItEXPXn6FCNDQwz09Tn/999kZGYydupUtXJb9+1j6759zP6//+NpQgIZGRl41qmjMlGRjo4OjerW5c/Nm4mKjqaiDEMXokSRoKYQJYS+vj6LFy/G3d1dLaiZq3Llyhw6dEjtW3yA0qVLY2Jiwp07d9TWRUZGFmpby5cvz08//cTw4cP54osvWLt2LTo6OqSmpjJr1iwaNGiAv78/OjrP/wTNmDEj3/uxs7Pj/PnzpKenqwQw09LSiIyMpG7duoVyPAsXLuTp06cEBQWpBGhfDsLa2ubkcouIiMDJyUm5PDo6msmTJ9O7d2/s7Ow4fPgwbm5uyt6buXbu3JlnT1pR9HQM9dC3MMlzFueEe48wtbN6Zd0Hf91Cz9QQ80rlcgIrz8Tdvo+JnaUyD6Em5bR0nr1kZ6kH7LOzs3L/UZBDFKLAisv9YVzWHIWOFkkPYtX2k/IkAS1d7TwDnkKUFIZGhphbWXDvjvp72d3wSOwqPp8MKzUlRRnQ9GjRhDY9O73LpgpR5IyNjLC2tCQsj88pYREROD17Z+7TqROJL6WwiouPZ/by5TSuVw+v+vUpZWZG0rOOHXl15sh69m4lb1hClDySU1OIEkJbW5s2bdpw8uRJNm/erLY+NjaWXbt24enpiaGhofIbyNwHt0KhoEWLFhw6dIjr168r60VGRhZJHkcfHx8++ugj5dB4yOklmpycTMWKFVUCmpcvX1bmAs14NpQxt7fk63qRent7k5CQwJ9//qmyfNWqVSQmJr5yiHd+xcbGYmhoqAxaQk7gdPXq1cDzHppNmjQBICAgQKV+YGAgQUFBmJiY4O3tDcDcuXNVygQHBzNq1Kh891YVhcfKtQKxN++SFBOrXPbkxl2SY55iXcPxlfWijlzi5tYTZGU+v1YfXYng6e0H2DZwyVc5Ixtz9MwMuX/2OpnPJg6CnAlTos/dRMdYH6My5oVwtELkT3G4P7T1dLGs5sDjK5EkRj8fkZDyOJ5Hl8OxqGav0sNZiJLItU5Nbv59lZh7z1Pz3Lh0lUf3H1C9QW3lsq0r1j8LaHpJQFP8YzWoWZOLV68S9UKqqgtXrnDvwQM869QBwMnBgRouLio/LpUqAVDGyur/27vz+Jqu/f/jr8yjzCJESAQxhBhCUFNjnqraq1wpVbRoqWpvB72tfjv3KrdVtLSmiiJolLpC1fCjiFBDTEURkSAREUHm5Pz+OMmpNKFSU6Lv5+Ph8Wj2Xnufz949K9nnc9b6LBrXq4e1lRU+Vavi6uzM5p07TdPXwTiVfUtMDJUcHfHx8rq3Fygit00jNUUqkNdff53Y2FheffVVVq1aRbt27XB0dCQ+Pp7IyEhyc3OZOHEi8HtdyMWLF5OSkkKfPn0YN24cmzdv5sknn2To0KFYWFgQHh6Og4NDqfVqbteECRPYunUrM2bMoHv37tSoUYOgoCAiIyNxdHTEz8+P48ePs2zZMlMS9tq1azg7O+NaOOVk1apVGAwG+vUr+cDev39/VqxYwccff8yxY8cIDAzk4MGDREZG0qRJE/r3739HrqN9+/Zs3LiRkSNH0r17d65cucL3339PfHy8KWaA+vXr079/f8LDw0lOTqZ169amFdEfffRR6tWrR0BAAJ06dWLu3LkkJibSunVrEhMT+fbbb6lWrRrDhw+/IzFL2VVvF0jy3hMcmLMO77aBFOTlGetbervj2cQ48jYz9Qrpp5NxqumJnVslAHzaN+LIos0cDv8J9wY1yUq7SuLPh3CtWw3PJrVM57+Vdmbm5vj3acWRRZvY9+X/8GpeB4PBQNIvx8m8cJmA/u0wL+PqoSJ3QnnoHwB+3YO5fOo8B+aso1qb+pibW5C44zDmVhb4dm1+b2+KyG1KTU4h/rdT1Kjth5unccRzux6h7Nu+i3mfzOChbg+Tl5vLz2s3Uc3Xh6BWxvd48tnz7N+xG1t7O7x8qrNv+64S527SpkWJbSLlWVJKCkdPniSgVi2qeBj7wyOdO7MlJob3pk2jd2goObm5/LBhA7Vq1KBdGWdkmZubM6x/f/47Zw7/njyZh1u3pqCggE3R0ZxNSuL5wYOLDboQkYpBvVakAnFzcyMyMpL58+ezYcMGZsyYQWZmJp6ennTt2pVRo0bh6ekJQOvWrenRowebNm0iOjqarl27UrVqVRYvXsykSZOYPXs21tbWpsTfrFmz7ni8Hh4evPLKK7z55ptMnDiR+fPnM3XqVD766CO+++47cnJy8Pb25tlnn8Xf35+xY8cSHR1Nt27d8Pf3Z/DgwURGRnLgwAFCQkJKnN/a2pr58+czY8YMoqKiWLVqFV5eXowcOZLRo0ffsULfAwcOJD09nWXLlvH+++/j4eFBkyZNmD59OgMHDiQ6OpqhQ4cC8O677+Lr68uyZcvYuHEj1apV4/nnn2fEiBGAccTs1KlTmT17Nt9//z0bN27Ezc2Nrl27Mm7cODw8bjyNU+4ua0c7Gj/Tg5P/i+H0T3uxsLbEvX4N/LoHmxbmSY9L4tjyn6n7j7ampI1HoC8BA9qTsOUAJ9fEYOVoR/V2gfh0aFxs1Ngtt2tYk0bDuhG/cR9x642rOTtWc6fhU51xq6s6T3J/lJf+YevqSNCoXsSt3U3C1oNgAGffKvh1Dza9pkhFEXfsJCvmLqLfsEGmpKaDUyVGTHiBNYtXsOH7KKytranftBHd+vfBsvC5Ju7oCQCyMjJZMXdRqedWUlMqmiMnTvDlwoWMfvJJU1LTuVIl3nnxRb6JjGTpmjXYWFnRonFjwvr2/UvP+S2DgnhzzBiWR0WxuHB2lF/16rw2ahRNGzS4o9cjIveGmeFmK22IiEiFMXDTpPsdgoiIVFAj/Dvf7xBEyq2WaRoLJHIzTo0b3+8Q7ohL08q+zsO94jp23P0OoVxS4SERERERERERERGpUPSVk4gUc+HChVtqZ29vj4ODw12O5valpaWRe10x8BuxsrLCxcXl7gckIiIiIiIiIrdNSU0RKaZt27a31G7MmDGMHTv2Lkdz+8aOHWtaWf1mWrZsSXh4+D2ISERERERERERul5KaIlLMvHnzbqmdj4/PXY7kznjttddIT0//03ZOTk73IBoRERERERERuROU1BSRYtq0aXO/Q7ijAgMD73cIIiIiIiIiInKHaaEgERERERERERERqVCU1BQREREREREREZEKRUlNERERERERERERqVCU1BQREREREREREZEKRUlNERERERERERERqVCU1BQREREREREREZEKRUlNERERERERERERqVCU1BQREREREREREZEKRUlNERERERERERERqVCU1BQREREREREREZEKxfJ+ByAiIiIiIvdXyzR9LBC5kRiXvPsdgki51vl+ByB/WxqpKSIiIiIiIiIiIhWKkpoiIiIiIiIiIiJSoSipKSIiIiIiIiIiIhWKkpoiIiIiIiIiIiJSoSipKSIiIiIiIiIiIhWKkpoiIiIiIiIiIiJSoSipKSIiIiIiIiIiIhWKkpoiIiIiIiIiIiJSoSipKSIiIiIiIiIiIhWKkpoiIiIiIiIiIiJSoSipKSIiIiIiIiIiIhWKkpoiIiIiIiIiIiJSoSipKSIiIiIiIiIiIhWK5f0OQKS8ycnJYf78+axevZr4+HjMzc3x9fWle/fuPPXUU9jY2JjaXr16lZycHNzc3G56ztdff50VK1Zw9OjRMsWyc+dOhgwZUmK7ubk5Tk5OBAQE8Mwzz9CuXbsynbdITk4Oly5dokqVKgBERkYyYcIEFixYQEhIyF86Z3kVERHB3LlzSU5OJjAwkLfeeou6deve77CknMlKvcLJqF1cPnkeALd61fHr0QJrR7ubHnc5Lom4H/dwNTEFSztr3OvXoGbnplg52BZrdyUxhbh1v5Aen4yZmRnOfl749WiBfWXnYu1yrmYS9+MeUn89Q0FuHo7V3PHtFoxTjcp39oJFyqC89I+9X/zA1YSLJV7HPbAmDQY9fJtXKXL7vlq8mLPJyfzfuHF/2jb54kUWrFjB4ePHAWjWsCGD+/XDuVKlYu3e+OQTTsTHlzi+ZZMmvDx8uOnnfUeOELl2LSfPnMHc3Jw6vr4M7N2bOr6+t3dRInfQ9/MjuJiUzPDXxv5p20sXLhIVsZJTR38DIKBxA3oM6IuDU/E+cvLIcTasWMO5M4nY2tkS2KIJnfv1wtrWprTTljkOESmflNQUuU5eXh7Dhw9n3759PProowwYMID8/Hx2797Nf//7XzZu3MiCBQuwtrbm4MGDjB49msmTJ9/1BGCXLl3o0qWL6ef8/HxOnjzJokWLGDlyJOHh4TRv3rxM50xMTGTYsGGMHDmSxx57DIAWLVowadIk/P3972j891tkZCQTJ07k8ccfp0GDBsyePZvhw4cTFRWFo6Pj/Q5PyoncjGxi56zFkF9A9faBGAwGErYe5Nr5SzR5rjfmFhalHpd28hwH563H0s4an46NMTMzI3H7YdJOnidoVE+s7IwP0xkXLhP79VosrC2p8XAQAInbDrP/qzU0G9sXGyd7APKyc4n9ei05VzLwfqgBlrY2nI0+woE5a2kyujcOXq735oaIXKe89A+DwUBG8mXcG9TAvWHNYq9l6+JwF++AyK3ZuGMHG7Zvp37t2n/a9sq1a7zz+efk5+fzSOfOFBQU8MOGDcSfPcuH//oXlpbGj2oGg4GEpCSCGzcmJCio2DkqX/fF+uHjx/n4yy+p7uXFP/v0IT8/n3Vbt/J/n33GOy++SG0lNqUc+GVrNL9s2YFvwJ9/3si4eo25k2aQn59Hu+6hGAwF/Lx2E0kJZxn11ktYFPaRk0eOM2/yF3jX9KHbP/pw+VIaO9ZvIfHUGUZMeAEzM7PbikNEyi8lNUWuExUVRUxMDNOmTaNr166m7UOGDGH27Nl88sknLF++nEGDBnHs2DGSk5PvSVwBAQH07du3xPYuXbowYMAAZs6cyddff12mcyYkJBAXF1dsm4+PDz4+PrcTarm0dOlSateuzYcffgiAm5sb48ePZ/fu3XTs2PH+BiflRuLPh8i+nEHzF/pi7+kCQKXqlTk490eS9vxG1RYBpR534oedmJmbETSyJ3buTgC4N6zBns9XcWZzLLV6tDCef/thCnLyCHq2B47V3AFw8a/Gvi9Wk7jtkKldwv87QGbKZRqN6I6LnxcAlRv7smvydyRsPUBA//Z38zaIlKq89I/sS1cpyMnDvUENqjTVB1EpPwoKCohct47lUVG3fMz/Nm4kNS2NTyZMoLqX8fd97Zo1+WDGDDbv3Ennhx4C4EJqKtnZ2bRo3Jj2LVve8HzfREbi7uLCB//6FzbW1gC0b9mSlz74gCWrV/PmmDG3cYUit6egoID/t3o9G1euveVjtv24mcuX0hjz7qt4VjP2EW+/mnwz5Uv2bIuhRYc2AKxduhIXN1eGvz4WK2srAJzdXFm9cDnHD/5K3Ub1bysOESm/VFNT5Dp79+4F4KHCh8jrDRo0CCsrK/bt23ePo7qxoKAg/Pz82L9///0OpVzLysoiNTWVzMxM088AVlZW9zMsKWcuxJ7Exc/LlLABcK1dDbvKTlyIPVXqMVmXrpKRlIZnU39TwgbAvrILbvV9SNrz2+9tU69g6WBjStgAVKrugaW9DRlJlwDjaJykvb/hFlDdlNAEsK5kj1+PFjj5VrlTlytSJuWhfwBcS04DwM6j+JR0kfspJzeX1/7zH5atWUO7Fi1wc3G5peO27dlDgzp1TAlNgMb16lHV05Pte/aYtp05dw4A7yo3/htwNSOD04mJtGra1JTQBHBxcqJ+7docPVV6PxW5F3Jzcvni/yaz8fsomrQOppLrrf0OP7BzD34BtU0JTYDaDQNw9/LkwM69pnM7VHIkuEMrU0ITwK9wBOb5+MTbjkNEyi8lNUWu4+BgnLoWERFRYp+9vT179uxh0qRJTJs2jQkTJgDGUZyhoaGmdgcPHmTYsGE0bdqUdu3aMWvWLAwGw12L2c7OrsT5d+zYwYgRIwgJCaFhw4a0a9eOiRMnkp6eDhinYxfV6pwwYQIBAQGm7QEBAezcudN0rszMTKZMmUJoaCiBgYGEhoYyefJkU4KwrGJiYggLCyM4OJimTZsycOBANm7cWKJdZGQkjz76KI0aNaJVq1a8/vrrxUbGTp48mYCAAL799lvTtpycHPr06UNISAhJSUmm7T169CA1NZWPPvqI2NhYpkyZQq1atUqUDUhISCAgIID58+fzz3/+k8DAQIYOHQoY66dOmTKF7t2706hRI5o2bcoTTzzBhg0bSsS+cuVKHn/8cZo0aUL79u2ZOHEiqampZbo+ubdyM7PJSr2Ko7d7iX2OVd25erZk/T6AnPRrADhUKTkl3M6tEnnXssm+bGxj5+5EXkY2OVd/7zu5GdnkZeVgVViTMPvSVXIuZ+BSuxpgTHLm5+QCUK1VvRuOhhO5m8pL/wBMCU57T+MH0aL+IXI/5ebmkpGVxYtPP83zgwdjbv7nH7GuZmSQnJJCrVJmyPj5+HDqzBnTz39MamZlZ5c4xt7Wlk/ffJNe1z2TFrly9SoWtxCTyN2Sl5dHdmYWA0Y/xeMjwrAwL71kyfUyr2Vw6cJFqvlWL7GvWo3qnItPAMDK2oqnXhpFh95di7U5V5jMdPH4vUTDX4lDRMo3TT8Xuc4jjzzCvHnz+M9//kNkZCSdO3emdevWNG3aFGtra6wLv/nu0qULFy5cICIiglGjRtGoUSMAjh8/zuDBg3FycuK5554jNzeXuXPnkpOTc1fiTUpK4tixYzRr1sy07eeff+aZZ56hWbNmvPCCsYbMtm3biIiI4PLly0ydOpUWLVowatQoZs6cyYABA25YjzMnJ4enn36affv28dhjjxEYGEhsbCxff/01v/zyCwsWLCjTaMeTJ08ycuRI6tevz/jx4wHj1PDnnnuOhQsXEhwcDMD06dOZNm0a3bp144knniApKYmFCxcSExPD8uXLcXNzY+zYsfz000989tlndOvWDQ8PD2bMmMGxY8f49NNPTYsfATz99NOsW7eOiIgIli1bRp06dfjyyy9Ntar+aOrUqYSGhtKnTx9sbGwwGAyMHDmSw4cP8+STT1KjRg3Onz/PkiVLGDNmDN9//70pMfz1118zefJkmjdvzksvvcTFixf55ptvOHLkCIsXL8bS0vKWrk/urZzLGQBYF9btu561kx35mbnkZeZgaWddbJ+5lfE9lJ9dMrGSm2H80JlzJRMbZweqtw8k9dczHI3YQq1exqm0J6N2Y25hjnebBgBkXjR+8WDlYMvJqF2c33WM/KxcbN0rUatnS9zrP3jlIaT8Ky/9AyAjOQ0LG0tOrtnFhdhTFOTkYevmSM0uzfAMqnVnLlikjOzt7Ph84kQsblBbtjSpaWkAuDmXHCnm6uRERmYm1zIycLC3J+HcOWxtbVkQGcn2vXvJzs7G08ODgb1781DhM5y5uTlVPT1LnOt0YiLHTp0iqH79EvtE7hVbO1te/PjfZeoj6ZcuA+Dk6lJiXyUXJ7IyMsnMyMTOvvhidZdSUjn162+sjfgeT++q1G/a6LbiEJHyTUlNkevUqVOH6dOn88Ybb3D8+HGOHz/Ol19+ib29PaGhoYwZMwY/Pz/q1atHkyZNiIiIoE2bNqYRf9OmTQNgyZIlVK1aFYBu3brx6KOP3lZcmZmZxUb65ebmcuLECSZPnkxBQQFjrquRNH/+fKpWrcq8efNMSdhBgwYxYMAAtm7dChhrZ7Zp04aZM2fSpEmTUut1Anz33Xfs3buXCRMmmEYsDho0iNq1a/PJJ5+wdOlSwsLCbvk6NmzYQEZGBtOnTzcl7nr27MnAgQM5cuQIwcHBnDlzhhkzZvDss8/y8ssvm47t1asXjz32GDNnzuSNN97AxsaGDz/8kLCwMCZNmsRTTz3F7Nmz6dWrFz179iz2utu2bSOt8MODwWBg0qRJeHt73zDOqlWrMnnyZFNR8f3797N7927eeecdBg4caGrXpEkTRowYwfbt2wkICODy5ctMmzbNNEK36IGpevXqvPnmm2zbto1atWrd0vXJvVU02svCquSfRfPC5Hd+bl6JpI19FRcsbK1IOXSa6h0amd4z+bl5XDpuHCFQkJsHgK2LIz4dG3Pih2j2fL6q8ORm1B/U0TTlNi/L+AXI6Z/2YmZhjn/vEDAzI2HrQQ4v3EDg011xLRzFKXKvlJf+AXAtKY387DzysnII6N+OvKwczm4/zNGILRgKDKqzKfeFmZlZmZMkRaMtra2tS+yzLvzCODs3FweMIzWzsrK4lpXFmMGDuZaZSdTmzXw+fz75+fk3rLOZlZ3NjPBwAPp27lym+ETupL/SR7KLykVZlxxAYVm4LTcnp1hSM+PqNf776ruFx1nTO+yxYsf/lThEpHzTPASRP+jYsSObNm3i008/pW/fvlSuXJmMjAxWr15N3759iYmJKfW4goICtm7dSocOHUwJTQB/f3/atm17WzHNmTOH1q1bm/61b9+ep59+2rSv5XUPs7NmzeK7774r9pB86dIlHB0dycjIKNPrbty4EUdHxxKJyyFDhuDo6FjqtPGb8SqsGfXee+9x8OBBAFxdXVm3bh2DBw8GYP369RQUFBAaGkpqaqrpn4eHB/Xr12fz5s2m8zVr1ozBgwezatUqXnjhBdzc3Hj77beLveaiRYsYPXo0rq6uvPHGGxgMBl555RWysrJISkpiyZIlnCuc1lUkODi42CqJQUFB7Nq1y7RKPBhXoC8oKADg2jXj9Mnt27eTnZ1NWFhYsQemRx55hMjISFq2bFmm65N7qKiEQ8nFMW/K3MIC74cacjXxIkcjtnDtfCpXz17k18WbKcgxJmvMLIx/auPW7+G373fgVMOTgAHtqdu/HZWqe/Dr4v/HxSPGaYYFecb3VF5WDkEje1KlWW2qNPUn6JkeWNrZEPfjL3fmekXKopz0D4CqLeri/0gIDQY9jEfDmng1r0PQqF7YujlyKmoXhsLfyyLlXVHpoNJWZf6jzg89xLD+/Xl5+HBaBgXxcKtWvP/yy3h6eLDw++9NzyPXy87JYdJXX3E6MZG+XbrQoE6dO34NIneT6U/PLfSRImZmZjwxyji13LOaF/Mmf8mh3Vp7QORBppGaIqWwsbGhZ8+ephF/hw4dYu7cuaxevZq3336bqFJWtkxLSyMjI4MaNWqU2FerVq0yJwCv17dvXx599FEMBgNxcXF89dVX2Nra8uGHH1KvXr1ibS0sLDhz5gxTp07lt99+Iz4+vlh9ybJISEjAx8enxBRza2trfHx8SExMvMGRpevevTvr169nzZo1rFmzhsqVK9OhQwf69etnmnoeHx8PUGxE5PX+GMv48eNZt24dCQkJfPrppzhfN43rzJkzpnsUHh6Ovb09Z86cITw8nPfff5969erx3nvvMWPGjGKJ6NKmf1taWrJkyRJiYmI4ffo08fHxpgWHij6YFN2PmjVrFjvWxsaGhg0b/qXrk3vDwsZ43wty80vsK8gzJl8sbUv/f1MjNMg0WqxowRS3+tWp3j6QuHV7sLSzIS8zh4StB3Gs7k6j4d0wK6xtVrmxL/u+WM3xFdtwrdMfCytjMtyjYU2s7GxMr2FpZ41bveok7z1Bfk4uFqWMWhC5W8pL/zC3tKBqSL0Sr2FhZYlnU3/iN+wnIzkNBy+V8JDyz9bG+Du+tBJFObnG0dH2trYAdCnly3FrKyvat2jB8qgozpw7R83rZqBcy8jg41mzOHbyJA+3asXA3r3vxiWI3FU2tsY+kltKH8krnEFgW9hHitg52NOoZVMAGgY3YdpbH7NmyQoaBgfd5WhF5H5RUlOkUEZGBrNmzaJhw4Z07Vq80HTDhg2ZMmUK6enpbNmyhUuXLt3gLL+vrH290r5BL4ui6eJgXJm9Q4cOPP744zz11FNERETg6+trajtnzhwmTZqEn58fwcHBdO3alaCgIMLDw/nhhx/K9Lo3W+CooKCgzAk4KysrPv/8c44ePcr69evZsmULkZGRLF++nJdffplnn33WdK++/PLLEg8qpTl9+jQXLxoXqfjxxx+LTT3fsmULubm5jBgxAnt7Yy24V199ldjYWJYtW4aLiwuVKlUqsdr9H6elpKam0r9/f5KTk3nooYcIDQ2lXr16eHt7079//2L3BG7+jXJZr0/uDRtnR8BY3++PctIzsbCzumEi0czMDP9eLfHp0IjMlHRsnB2wdXUk7sc9YG6GjYsDGUlpGPIKqNy4lilhA8aRbJ5B/pxau5uMC5exdjIuVmblUPK9Ye1oBwZjfUIlNeVeKi/9w7HqjZOVVg7G6Yf5hSNARco7D1fjAlpphYs4Xu9Sejr2dnamxOeNOFeqBBhHZRa5fOUKH37xBXEJCXR+6CFGDBhQppFuIuWFs7uxj1y5fKXEvitp6dja22Fte+M+YmVtRUBQQ6J/2sK1K1dxqOR412IVkftH089FCtnY2DBnzhzCC2sPlaZ27dqYmZmVmoxydXXF0dGR06dPl9iXkJBwR2OtXr06H3zwAWlpabz00kvkFY6Uyc7OZtq0aYSEhLB69Wref/99hgwZQlBQUInVt2+Ft7c3Z86cITe3+CIPOTk5JCQkFBvdeCvOnj3L7t27CQgIYMyYMSxdupRNmzbh6+vLnDlzTK8JxrqWbdq0KfYvNzcXm+se8PPy8njjjTdwcXHhmWeeISoqivXr15d43etXIbW2tuazzz7DxcWFtLQ0nnjiCezs7Eocc71FixaRkJDAV199xcyZMxk/fjw9evQw3fciRfejaDRmkZycHMaNG8dPP/1UpuuTe8fSzhobN8dSV3G+eu4ilbw9bnhs8v6TpJ08h7WjHc6+VbB1NT40X447j6O3OxZWlphbFr4HC0p+UWAwFBT9Bw5eLphZmpORnFaiXdalq5hbWZSa8BS5m8pL/8i+fI3dn60gfuO+Eu0yU4wLShSdX6S8c7C3p7K7O6dKeUY8deYM/oUzf1LT0njpgw9YXsosocTCmTiV3Y11ZzOzskwJzZ4PP8wzAwcqoSkVlp29HS4ebpw7XbKPnI1PwNvXuHjihXNJTHnlXXZu/LlEu+ysLDAzw7KUmtAi8mBQUlOkkIWFBT179iQmJoaVK1eW2J+Wlsa6deto06YNdnZ2pkTZ9aPzunTpwtatWzl+/LjpuISEhLtSJ7Fz58707t3bNDUejKNEMzMz8fX1Lbay95EjR0y1QIsScUWjEW82ijQ0NJSrV6/y7bffFtu+aNEirl27RseOHcsU88yZMxk6dGix6fBeXl54enqa7ufDDz8MGGuDXj9S9MiRI4wePZpvvvnGtG3OnDkcOnSICRMmMG7cOPz9/XnnnXdMiwK1aNECc3NzIiIiil1nSkoK2YUF+qOiokwjPW+k6Hy1a9c2bTMYDCxcuBD4/Z62adMGKysrli5dWiz2tWvXsnbt2jJfn9xbHg1rknbiLBkX0kzbLv12lswL6VRu7HfD4xK3HeLEDzspyP/9PXbx1zOkxyVTrXCqrL2nC9ZOdpzfc5z83N+T4fm5eSTtPYGlg41xURVrK9zr1yD11wSuJf0+Ijwr9QoXj8TjVt+n2Eg2kXulPPQPG2cH8rNyOLfrmGlRLYCstKsk/XIcZ38vrCuVXKFdpLwKCQriwNGjpuQkQOyvv3IuOZk2hauau7m4kJGZycbt28nI/H20dEpqKpt37qRh3bq4OjkBMGfpUuISEujRsSNPXVcHXKSiatg8iBOHj3Lh3O995LdDR7l4PplGIc0AcPP0ICszk12bt5N/3YCDSympHNq9H98Af2w0O0rkgaWvLESu8/rrrxMbG8urr77KqlWraNeuHY6OjsTHxxMZGUlubi4TJ04Efq+7uHjxYlJSUujTpw/jxo1j8+bNPPnkkwwdOhQLCwvCw8NxcHAotWbS7ZowYQJbt25lxowZdO/enRo1ahAUFERkZCSOjo74+flx/Phxli1bZkoaXrt2DWdnZ1wLpz2tWrUKg8FAv379Spy/f//+rFixgo8//phjx44RGBjIwYMHiYyMpEmTJsWmXt+KsLAwVq5cSVhYGAMGDMDZ2Zno6GhiYmJ44YUXAKhbty6DBw8mPDyctLQ0OnfuTFpaGgsXLsTBwYFx48YBcOLECaZPn07btm3p1asXAG+//TZDhgzhgw8+4JNPPqFu3bqEhYURHh7OM888Q6dOnTh58iRLly7F09OTJ554gilTpvDkk08yf/78G8bdvn17wsPDGTlyJP/4xz/Izc0lKiqKgwcPYm5ublooyN3dneeff57PPvuMYcOG0blzZ86fP8/ChQsJCQkhNDQUc3PzW7o+ufeqtwskee8JDsxZh3fbQAry8ox1/rzd8WxiXFE5M/UK6aeTcarpiZ2bcdqfT/tGHFm0mcPhP+HeoCZZaVdJ/PkQrnWr4dmkFgBm5ub492nFkUWb2Pfl//BqXgeDwUDSL8fJvHCZgP7tMC/8osGvezCXT53nwJx1VGtTH3NzCxJ3HMbcygLfrs3vz82Rv73y0j/8H2nFkYWb2D9rDV7BdcnPyeXsjiOYmZtTu0+r+3NzRG5BUkoKR0+eJKBWLap4GEc3P9K5M1tiYnhv2jR6h4aSk5vLDxs2UKtGDdoV1hoHGP7EE0z++mve+vRTOrVpQ2ZWFuu2bMHC3Jxhhc9iCefPs3XXLuzt7PCtXp0tpSxseaNV0kXKg9TkFOJ/O0WN2n64eRr7SLseoezbvot5n8zgoW4Pk5eby89rN1HN14egVsZnIgsLC3oNeozvZn/L7I+n0aR1MBnXMti5YSvm5ub0HvT4/bwsEbnLzAw3K5on8jeUkZHB/Pnz2bBhA/Hx8WRmZuLp6UnHjh0ZNWoUnp6eAOTm5vLKK6+wadMmbGxs2Lp1KzY2Npw6dYpJkyYRExODtbW1KfE3a9Ysjh49WqZYdu7cyZAhQxgzZgxjx44ttc2yZct48803ad26NfPnz+fcuXN89NFH7Ny5k5ycHLy9venVqxf+/v6MHTuWzz//nG7dugHw/vvvExkZicFgYOXKlezevZsJEyawYMECQkJCALh69SozZswgKiqKlJQUvLy86NWrF6NHj/5LNSH37NnDjBkzOHz4MFevXsXX15cBAwYQFhZmmiJlMBhYvHgxS5Ys4dSpU1SqVIlmzZoxbtw46tSpQ0FBAYMGDeLw4cOsXr262OJMr776KitXrmTWrFl07NiRgoIC5s+fT0REBImJibi7u9O1a1fGjBmDs7MzERERrFq1ijlz5pCSkkKnTp1Kvd/Lli1j7ty5JCYm4uzsTMOGDRk7dixvvfUWubm5xeqVLl++nAULFnDq1CkqV65Mly5dGDt2LI6Ojrd0fX/VwE2T/vKxYpRx4TIn/xfD5bgkLKwtca3rjV/3YGM9SyBpz28cW/4zdf/RlirNfh+5m7z/JAlbDpB5MR0rRzs8g2rh06ExFtbFvztMO3GO+I37uJKYAoBjNXd8OjbGrW71Yu0yU68Qt3Y3l06cBQM4+1bBr3sw9p4ud/cGiNxEeekfF4/EE785lmvnUjG3ssDFryq+3ZphX9nl7t6AB9xX7t3vdwgPjOfffpvKbm7833VfVG7euZMvFy5k9JNP0rHwGQvgbFIS30RGcuTECWysrGjasCFhffua6mUW2R0by4offyQuMRFrKysa1KnDoEcewbtKFQDW//wzsyMibhpXxLRpd/Aq/15iXFSv906a8sq7uHi4Mvy135+39/wcw4q5i+g3bBDN2v6egE85n8yaxSuIO3YCa2tr6jZuQLf+fXBwKt5HDu7ay5Y1G0hOPIeVjQ3+9evQ+bFeeHh5likO+Ws612h2v0O4Iy5Nm3q/Q7gh17Ea/FIaJTVF5G/PYDA8EDWnlNQUEZG/SklNkRtTUlPk5pTUvPuU1CydCnOJyN/eg5DQFBEREREREfk7UU1NkXvswoULt9TO3t4eBweHuxzN7UtLSyuxOnpprKyscHFxufsBiYiIiIiIiMgDT0lNkXusbdu2t9TuZnU0y5OxY8eaVla/mZYtWxIeHn4PIhIRERERERGRB52SmiL32Lx5826pnY+Pz12O5M547bXXSE9P/9N2Tk5O9yAaEREREREREfk7UFJT5B5r06bN/Q7hjgoMDLzfIYiIiIiIiIjI34wWChIREREREREREZEKRUlNERERERERERERqVCU1BQREREREREREZEKRUlNERERERERERGRB8yLL75IQEAAly5dKrHvtddeIyAggNGjR5fYd+3aNRo0aMBLL710L8IE4MyZM2U+RklNERERERERERGRB0yLFi0AiI2NLbFv586dWFlZsWvXLvLz84vti42NJT8/n5CQkHsS5xdffMGwYcPKfJySmiIiIiIiIiIiIg+YGyU14+LiOHfuHL179+bKlSscOnSo2P49e/YA0LJly3sS544dO0okVm+FkpoiIiIiIiIiIiIPmDp16uDi4sL+/fuLbY+Ojsbc3JxRo0ZhZmbGjh07iu3fu3cvnp6e+Pn53ctwy0xJTRERERERERERkQeMmZkZwcHBHDhwoNj26Oho6tWrh6+vLwEBAURHR5v2GQwGYmNjTaM08/PzmT17Nt26dSMwMJC2bdvy9ttvk5qaajpm586dBAQEsGLFCvr06UOjRo2YMGECADExMYSFhREcHEzTpk0ZOHAgGzduNB0bGhpKTEwMiYmJBAQEMG3atFu+PiU1RUREREREREREHkAtWrQgLS2NuLg4wJi0jImJMdXLbNWqFXv27CEnJweAEydOcPnyZVq1agXA+PHj+eSTT6hbty4TJkyge/fuLF++nH/+85+kp6cXe613332Xli1b8sorr9CpUydOnjzJyJEjMRgMjB8/nn/9619kZmby3HPPsXv3bgDeeOMNatWqhaurK5MmTaJLly63fG2Wt3tzRERERERERERE5O7o1KnTTfdv2LDhhvuKRlzu378fX19fjh07xsWLF01Jy5CQEObPn8+ePXto1aoVe/fuNR23ZcsW1q1bx5AhQ/j3v/9tOmfz5s158cUXmTlzJq+++mqx7W+99Zbp56+//pqMjAymT5+Om5sbAD179mTgwIEcOXKE4OBgOnfuzDfffEN2djZ9+/Yt031RUlNE5AGx5OFX/7yRiIiIiJRJ5/sdgIjcE65jx93vEG7s+1V/+dB69epRqVIlYmNj6du3L9HR0VhYWBAcHAwYR3JaWFgQExNjGrXp5eVFzZo1mTdvHgAjR44sds4ePXowdepUNmzYUCypWbQwUREvLy8A3nvvPYYPH05gYCCurq6sW7fuL1/P9ZTUFBERERERERERKaduNhLzz5ibm9O8eXPTYkHR0dEEBgbi6OgIQKVKlahfvz6//PILAPv27TNNTU9ISMDJyQkPD48S5/X392fLli3FthWNxizSvXt31q9fz5o1a1izZg2VK1emQ4cO9OvXz5RUvR2qqSkiIiIiIiIiIvKACg4O5tdffyU7O5vdu3ebpp4XCQkJITY2ltTUVE6dOmWasm4wGG54zoKCAqysrIpts7CwKPazlZUVn3/+OatWrWLs2LFUq1aNyMhIwsLC+Oqrr277upTUFBEREREREREReUC1bNmS3NxcoqKiSE9PN43ELNKqVSsyMjL43//+h8FgMO339vYmPT2dlJSUEuc8deoUVatWvenrnj17lt27dxMQEMCYMWNYunQpmzZtwtfXlzlz5tz2dSmpKSIiIiIiIiIi8oBq2LAh9vb2LFmyBCsrK5o3b15sf/PmzbG0tGTFihV4e3vj4+MDQGhoKACzZs0q1v6nn37i1KlTdOzY8aavO3PmTIYOHUpSUpJpm5eXF56enpib/56SNDc3p6CgoMzXpZqaIiIiIiIiIiIiDyhLS0uaNm3Ktm3bCA4OxtbWtth+BwcHGjVqxN69e+nXr59pe4cOHejUqRMLFiwgKSmJkJAQ4uLiWLx4MT4+PiUWEPqjsLAwVq5cSVhYGAMGDMDZ2Zno6GhiYmJ44YUXTO3c3NzYtWsXc+fOpXnz5gQFBd3SdWmkpoiIiIiIiIiIyAOsaGXyP9bTLFI05byoniaAmZkZU6dOZdy4cfz666989NFH/PjjjwwYMIDly5fj5OR009cMCAhg3rx51KxZk7lz5/Lee+9x/Phx3nrrLZ577jlTuxEjRuDr68t///tfvvvuu1u+JjPDzap+ioiIiIiIiIiIiJQzGqkpIiIiIiIiIiIiFYqSmiIiIiIiIiIiIlKhKKkpIiIiIiIiIiIiFYqSmiIiIiIiIiIiIlKhKKkpIiIiIiIiIiIiFYqSmiIiIiIiIiIiIlKhKKkpIiIiIiIiIiIiFYqSmiIiIiIiIiIiIlKhKKkpIiIiIiIiIiIiFYqSmiIiIiIiIiIiIlKhKKkpIiIiIiIiIiIiFYqSmiIiIiIiIiIiIlKhKKkpIiIiIiIiIiIiFcr/B1JbI3PQpiVTAAAAAElFTkSuQmCC" + "image/png": "iVBORw0KGgoAAAANSUhEUgAABTUAAAN2CAYAAAAolW1tAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3QUZRfA4V/apvfeGyEB0ugdpIoU6V2KooCCgAVUVEBApQiKiIDSpIPSCUgHadIhQGgJpJJKCqkk2ez3R9wxIQHRj2K5zzkedXdmdnazszNz3/veq6PRaDQIIYQQQgghhBBCCCHEP4Tus94BIYQQQgghhBBCCCGE+DMkqCmEEEIIIYQQQgghhPhHkaCmEEIIIYQQQgghhBDiH0WCmkIIIYQQQgghhBBCiH8UCWoKIYQQQgghhBBCCCH+USSoKYQQQgghhBBCCCGE+EeRoKYQQgghhBBCCCGEEOIfRYKaQgghhBBCCCGEEEKIfxQJagohhBBCCCGEEEIIIf5RJKgphBBCCCGEEEIIIYT4R5GgphBCCCGEEEIIIYQQ4h9FgppCCCGEEEIIIf6xNBrNn16npKQEALVa/ZfWF0II8ezpaOQXXAghhBBCCCHE31xJSQlXr17lzJkz6OjoYGhoyMyZM1m7di0+Pj4PXEdHRwcdHZ2HbruwsBCVSvUkdlsIIcQTIpmaQgghhPhHUKvVFBcXP+vdEEII8RQkJyezfft2CgsLlcd2795Nv379WLx4Mbdu3aJq1aqMHj0aGxubcuuWzdvR1dWtENC8d+8eu3fvJioqijlz5lCnTh3Gjh1LSkrKk31TQgghHivJ1BRCCCHEE5OcnExubi5Xr15lw4YNLF68+FnvkhBCiH+AhQsXsmTJEn766Sfc3d0BeP7558nNzeXLL7/Ez88PMzMzdHR00NPTU9YrKSlBV7c0dyclJYWoqCgA6tati76+PgDXr1+nX79+mJqa4ufnh4eHB3Xq1KFZs2aYmZk95XcqhBDir9J/1jsghBBCiH++3NxcTE1Nlf8/fvw4n376KZGRkbz88stYWVmhp6dHZmYmVlZWynIajUaZGqi9Cb1ffn4+BQUFREREsHbtWmrUqEH//v0xNzd/0m9LCCHEM9K9e3eee+45HBwcUKvV6OnpYWRkhKurK3Xr1i23rHbquEajQVdXl1u3bjFt2jSOHTuGgYEBxsbGBAQEMHz4cOrWrYu5uTlNmzZl586d9O/fn6FDh6LRaP5wiroQQoi/FwlqCiGEEOL/8sknn7Bx40a2bt2Kp6cnGo2G7777jtTUVCZMmMBzzz2HmZkZPXv2xMLCoty692fY3L17t9wyp0+f5oMPPsDR0RETExNiY2Px8fGRgKYQQvyLaDQaJSCpZWdnh52dXbnlvLy8uHjxIl9++SW+vr7Url2bzz77jMzMTBYuXIiZmRnJycm89957pKWlMXHiRNzc3Lh48SLr169nypQpLFy4EFtbW6ytrTE2NqZmzZoAEtAUQoh/IAlqCiGEEOIv0U7x69y5M40aNVIyMFNTU7lz5w6hoaH07t27XNDyfllZWSxZsoSdO3eSkZGBn58f7du3p3379tjY2GBjY4O9vT1nz56lR48eTJ06VZk+KIQQ4t+hskY+arWa8+fPk5GRQWhoKFOnTmXXrl0YGBiwcOFCevXqRe3atTE1NeXq1avk5uZiZmbG0aNHuXbtGsuWLVMClg0aNKBp06Z06dKFDRs2MHLkSNzd3SksLJRgphBC/IPJXYEQQggh/hJtRk1ISEi5m0IHBwe8vLxISkoiMTERtVqNq6srs2fPJicnh8mTJ6NWqyksLOSLL75gz549dOjQAUdHR06cOMGnn37K+fPn+eKLL3BwcMDCwgKVSsWrr76Kg4PDs3q7QjxR2ky1R+nSLMQ/gba8iEajQU9Pr9z3uuxU79zcXG7cuEFKSgre3t74+fkBkJmZyfTp04mNjWXPnj20a9cOOzs7Vq5cyejRoxk4cCAGBgZUqVKFn3/+mczMTOzs7Dh16hQWFhbUrFmTuLg4rl27xsWLF7lx4wYAR44cYfjw4Xh4eFBSUiLNgYQQ4h9MgppCCCGE+ENqtRqgXNbl/QGY1NRUrK2t+fLLLzl9+jR3796ldevWVKtWjU2bNnHkyBHi4uKYPHkyenp6nDp1ih9//JFPP/2UNm3aYGFhwdChQ1m6dCnTp0+nc+fONG3aFFdXVwoKCpQMTal7Jv5OcnJySE1Nxdvbu1yDkj+iVqvL1ZKVYKb4uzl06BCrV69m8ODBNGzY8IHf7wf9Jt9fXuT+5QsLC5kxYwZhYWHk5eVhbm6OkZERPXv2ZNiwYZibm1OzZk2ioqIoKiri+eefJyAggJUrVwIodZzd3NwoLCwkLi4Of39/0tLSSE1NpWbNmuTn52NiYoKzszMeHh6MGzeOqlWroq+vj4ODA2ZmZty8efNPHbtCCCH+PiSoKYQQQgglSwyo9Mau7I1pVlYWenp6SofYnJwc+vbtS2FhIbt27SI1NRU3NzcuXbrE6NGjady4MQA1a9bk+vXrFBQUYGRkxPr16/H19aV79+5AabZOXFyc8jpbtmyhcePGeHt7A5CQkICLi4sENcXfxp07d+jXrx/29vasXLmywrGjzVQDKgR37v//qKgobt26hampKQ0bNnyyOy7+s8r+fqakpHD58mWio6OxtramSZMm2NnZKcukpaVx6NAhGjRoUO47qf1e6+rqlgvG3//bfOPGDQ4dOsTp06dRq9XUr1+fXr16YWFhgUajYfXq1WzYsIGhQ4dSq1YtcnJyWLBgAStWrKBXr15YW1vj7OxMbm4u8fHx2NjY4OjoiJWVFbdu3SI7Oxtzc3McHBwwNjYmKiqK1q1bY2tri0qlYtCgQbRp0wYTExMsLS2xsbEhLi6O1NRU1Go1tra2ODg4EBkZSXFxMSqV6un+MYQQQvzfJKgphBBC/MPdvn2bX3/9lTp16uDh4fGXgn5/lCW2fv16tmzZwrVr1zA3N6dWrVq88sor1KhRAzMzM5ydnYmIiCA3N5cpU6Zw4MAB3nnnHZydnQkODgbAxcUFgGvXrhESEkJKSgqpqakMGjSIuLg4UlJSlBvNhg0bUr9+fXR1dXF2dgbg8uXL1K1bVwm+CvGs2dra8umnn2JsbFzp8w/KVAM4fPgwx44do127dqxZs4YdO3agVqsxMzNj8ODB9O/fv0JjLSH+Xzo6OmRnZ/P111+zc+dOioqKMDY2Ji8vD0tLSwYNGsRLL70EQI0aNTA2Ni432KTdhvZ7nZOTQ3JyMsbGxspvPJQOQr3//vvk5eXh6elJSUkJs2fP5tixY8ydOxdTU1M2btxI/fr1GTx4sHIM1a5dm4SEBCUL09XVFV1dXW7cuEFwcDDGxsZ4enoSGxvL3bt3MTc3x9raGgcHB2V6eXBwMJs3b8bOzo4aNWqU2/cffviBEydOMHfuXOzt7fH29iY2Npa8vDwJagohxD+QBDWFEEKIf4CSkhLi4uLQaDR4eXkBv2fFHDlyhAkTJjB9+nQ8PDzKradWq5XlHtaw59atW4SHh3P37l1q1KhBrVq1lOd27NjB119/Tc2aNRk1ahSJiYmsWLGChIQE5syZg6OjI+7u7vz666/cvHmToKAgPDw8sLCwICoqisLCQlQqFW5ubgBEREQQEhKCu7s74eHhGBgY0KtXLzw9PXF3d8fOzg4dHR3u3bsHgLOzM9bW1oSHhyvvW4i/izp16lT6eHFxMdeuXePUqVOkpKQQGhpK48aNlWDNhQsX2LhxI1u2bKFKlSrMnTsXHR0dFi9ezLx58/Dw8KBDhw4yLVb8ZWq1usLvfkpKCiNHjuTWrVu8/PLLNGjQABMTE+Li4li4cCEzZ86koKCAV199FXd3d0xNTYmNjQV+z+KPiYlh+fLl7Nu3j9TUVAwMDKhevTojRoygfv366OvrM336dDIyMvj0008JCAjAxMSERYsWce7cOdLS0jA1NcXR0ZEjR44we/ZsmjZtikajUQbNtOzt7bG2tubKlSvKY35+fhw+fJj09HRcXV2xsLDAzc2NW7duoVaradCgAdWqVWPVqlUEBQVRrVo18vPz2bt3LytXrqRFixZ4eXmRl5eHvb09e/fu5c6dO0qzOyGEEP8cEtQUQggh/qbUajUbN27kxx9/5OrVqxgYGGBjY0PDhg0ZOHAgVapUASAoKAhdXV0yMjIAymVc3n9De/9Nbk5ODhMnTuTw4cOoVCo0Gg1qtZrhw4fTs2dPTE1NWbp0Kf7+/nz00UfY2dmhp6dHvXr1uHXrlvJa2nqCkZGRBAUFKdmbkZGRFBUVoVKpcHZ2xszMjIsXL9K3b1+qVq3Kjh076Nq1Kx06dKC4uFipm7lo0SLCw8OZPXs2dnZ2ODs7K1k4MvVcPE3a0gwPCyzevHkTExMTnJyclKm5CxYsYPny5ZiZmaGjo8Py5cupW7cuY8aMISQkhKCgIKA02/Ozzz5Tgv42Njb069ePo0eP0qFDh6fyHsW/z6+//sry5cv59ttvywXGv/32Wy5fvszKlSuVzuAAAQEB1K5dm06dOrF161b69eunBB6TkpLIyMjA2tqarKwsZsyYQXR0NJ07d8bb25vr16+zcuVKZs6cyZdffom3tzeJiYk4ODjg6OiItbU1ACNGjCi3j2+//TYzZsxgxYoVrFixAiitk2lnZ0e3bt0YNmwYtra2ODo6cv36dWW9atWqsXnzZlJTUwEwMTHBy8uLn3/+mZSUFHx8fHj33Xd54403GDx4ME2bNqWkpITLly9Tv359Pv74Y2W9du3a4eXlhaOj45P7YwghhHhiJKgphBBC/A3l5OTwzTffsGnTJpo0aUL37t0xMDDg7NmzrF+/nhMnTvDtt9/i6+uLs7MzhoaGxMTEKFmR2m0cOXKE/fv3KzeELVu2pGfPnsqU7jlz5nDw4EHGjBlDgwYNyM/PZ8aMGWzZsoWmTZvi6+uLkZERMTExXLp0iSZNmlBYWEjdunVp0aKFsr/e3t6oVCquXbsGgJmZGZ6enly9epW8vDzl5lg7TR2gSZMmfP3112zbto0OHTooAc2IiAjmzZuHt7c3+vr6WFlZ4erqyp49e4CKgVoh/h9l615qawSWVbY0Q3JyMjk5Obi5uWFoaAjA3r17GTlyJIMHD+b9999HR0eHtWvX8s0339CnTx/69u2LkZERR48eZfLkyeTl5bFu3Tp8fHzQ09PDwMBAaXSiUqlwcnLC3d2dyMhI5fWF+DM0Gg1Hjx5l//795ObmKtnBycnJbNu2jRdffJHAwEBlWR0dHYqLi7GxsWHVqlXKbAAAHx8fjhw5Qnx8PNbW1qxatYp9+/YxadIk+vTpowyUmZiYMH/+fG7cuIG3tzdt2rRh9uzZDBw4kICAAPT09PDx8aF27doEBQXh6OhItWrV+Oabb0hPT+fixYvEx8eTkZHB4cOHWbJkCSEhIdSqVQs3NzfOnz+vHCNVq1aluLiY5ORkAIyNjfH29ubOnTvcvn0bZ2dnGjduzMaNG/npp584d+4cRkZG9O3bl7Zt25abJl+/fn3q16//9P44QgghHisJagohhBB/Qxs2bGDZsmWMGzeOHj16KLX1unXrRqNGjXj77beZMGECc+bMUTIZY2NjycnJwcbGhpKSEhYtWsSOHTtwcXGhevXq3Lx5k2+//Za4uDgmTpyISqXi4sWLNG7cmAEDBiivvWTJEjIzM3FwcADgpZdeYvz48YwYMQILCwv09fXx9vYmMDCQZs2a0bhxY5ydnbG0tCQqKgr4PXPm0KFD3L17F3t7e2xtbXFzc+PEiRMA+Pv78/rrr/PNN9/Qr18/2rZti66uLps2bcLOzo7x48cDoFKp8Pf3JyEhgaysLCwtLZ/mn0L8y/1RaYa4uDi++uorjh49qkxXbdasGQMGDMDHxwc3Nzclmw1Kp/cuX76c6tWrM2nSJGU7np6e5OTkMGfOHHbv3k2LFi1wcXEhKysLQBmMsLOzw8nJievXr3Pv3j0leCrE/SprRKXNyrSzswMgIyNDCWoeOXKE3NxcnnvuOQwMDMplcGoHlbQBzaKiIgwMDPDz82PXrl1ER0cTFBSEk5MTw4YNo2vXrgBKvcurV6+iq6vLzZs3AejTpw/W1tbs2rWLjIwMkpKSOHToEEuXLiU0NJQlS5ZgZGREfn4+lpaWtG/fXnlfzZo14+WXXyYlJQWVSoW3tzcHDx7kzp07ShdzgOvXrysZ/o6OjlhaWlJQUKB8Nr6+vowbN04GBsQTpVaryc/PV5on/pn1dHV1/3AmgBDi4SSoKYQQQvzNZGZmsnDhQpo1a8Yrr7yiPK69gW3fvr2S0aW9ca1SpQrXrl0jNTUVGxsbNm7cyIIFC3j55ZcZPHgwpqamFBUV8dVXX7F7925u3LhBzZo1qV69OqtXr2b06NE0atQIjUaDo6MjISEhyuu2bt0aR0dHLl++zM2bN4mOjiYhIYGVK1eyb98+NmzYgKurK3Z2dkpDCSMjIzw9PcnLyyM5OVnJ+PTy8uLAgQOkp6djY2PDyJEjsbCwYNu2bXz77bcUFRURHBzM6NGjy9UqHDlyJCNHjnxKfwHxb/CwzuNlxcXFcebMGa5du4aFhQUtWrQgICAAKM12njlzJuHh4QwbNgx7e3tOnTrFmjVr0NPT46OPPsLFxQVra2slmKOnp0dMTAyDBg1S9gNKg6etW7dm7ty5nD9/nrZt2+Lm5kZsbCxpaWnY2dkpWW+urq6cOXOG2NhY/Pz8nuTHJP7BKgvI6+rqkpSUxJkzZwDo1KkTDg4OLFq0iLy8PKA0mPJHtEEWf39/paYzlA6sQWnjto0bN3L69Gni4+Oxt7dHV1eXmJgYAMzNzenZsyc9e/YkISEBtVqNSqVi6dKlLF++nCNHjlC7dm169epFmzZtePPNNykpKSE1NZVNmzYBKNmkdnZ2FBYWcv36dZydnbGxsaFx48Z4eXkpx3jLli2VATPtZ1P230I8LuHh4Rw4cIDo6GgGDhzIgAEDGDduHAMGDKjwfdOWLwEqBC61x652nTt37mBkZKQMQgghHo0ENYUQQoinrOxU17K00wD37NlDeno6L7zwAoCSiVL2BrZ169bl1g0ICFAaJ0BpR/TQ0FBGjx6NkZGRspyNjQ15eXnExsZSs2ZNhgwZwu3btzl06BAHDhygsLAQAEdHRzp27MjYsWPR09MjODiY0NDQcplj3333HbNnzyYiIoKGDRvi6urK8ePHSU1Nxd7eHkdHR4yMjIiKiqJ+/fro6ekpGafXrl2jYcOGlJSUMHDgQNq3b49arZa6ZuJPe1Dw8v6Aj3bqqvY4A5QmWxqNBgsLC1JSUli9ejWffPIJLVu2JDk5mT179vDZZ5/RpUsXdHR06NixI/Xq1cPe3h4ACwsLnJycuHDhAtnZ2ejo6GBsbIyurm65chBQGpyxs7NTps16e3uzd+9ebt26VS6o6e3tTXFxMZGRkfj5+ZXbZ/HvV1JSovzNH5TBpVarlUZUMTExeHh40LJlSzw8PLh06RK3bt1CX18fd3d3xo0bh7Ozs3IuyM3N/cN90B47Pj4+qFQqpVkQwLZt25g7dy4mJiY0aNCA5557joYNG9KoUSNu374NQEFBATt27KBatWpUr15dWbdu3br88MMPqFQqbG1tCQwM5IcffiA8PBwXFxcSEhKIj49n4sSJSkamtkmdj48PAAYGBixevLjS/RXiccnIyGDDhg3UqlVLaV51/fp13nnnHe7du0dISAhWVlZ89dVXVKlSpdLf6LLlS8rSaDTs3buX3Nxc1Go1n376KVZWVkycOJHmzZvLb74Qf4IENYUQQoiHUKvVXL16FU9Pz0eeWvRHjUW0j5eUlJCYmIiFhQXm5uYUFxdjYGCg3HAaGxuXW/5hAgICyM/PV4Ilb775JqNGjSI5OZmdO3dy7Ngxjhw5QmZmJrq6uiQmJgLg6urKvHnzyMnJ4dKlSyQnJ1NYWMhPP/3E4sWL6d69O2ZmZsyYMYMXX3yRZs2aAaUBotzcXHR1dTEwMADAzc2NrKwsrl69ir29PRYWFhgZGXH79m0lWNO1a1datWqlNDnSvjdtxqkQD1NZN+cHTR+Pj49nzZo1/PLLL+Tl5RESEkLPnj1p2LAhANnZ2bz33ntUr16dkSNHYmNjQ0ZGBmPGjOHkyZM0b95cCYLu3LkTR0dHqlatSnZ2Ns8991y5bBoPDw+OHDlCTEwMVatWxcHBgZiYGKUchHZgoqCgQMmaBnB3dwdKb5Tr1q2rbM/HxwcjIyOuXbvGCy+8IDe4/1Laxmy6urrlfufL/rdGo1HODWW/B6tWrWL+/PlYWlpiZGTEli1b2Lx5M59++imtW7fG3t6e999/H319fZo0aQKgNKPSBh4f9J1Sq9WkpaVhbW2Nu7s71tbWxMfHo1arKSkpYe7cuZiZmTFz5kx8fX2V9VQqFfHx8aSlpaGvr8+0adOws7Nj2LBheHl5cfv2bb755hu8vLyUc8C0adNo3bo1u3fvJjk5mapVqzJ8+HAaNWqkTIkPDAxUsjaFeFri4uLYsmULdnZ2BAcHo6+vz48//khcXBxTpkyhQ4cOGBgY4O3tXW69ssdpVFQUFy9eJC8vj/r16yvHS1FREXv27GHr1q0EBQXRu3dvgoKClMC9/N4L8egkqCmEEEL8Jj4+nqioKC5fvsypU6e4fv06WVlZFBcXM3/+fFq0aFHuYvVBgYayI/OVLbN3714WLFjAtWvXMDU1pVq1avTq1atc8EJfX1+5oXtQULNsPTTtRXVCQoKyD7du3eKLL74gNjYWZ2dnXnnlFdq1a0ePHj2Ii4ujoKAAIyMjrl69ioeHB40bN1a2bWRkxPvvv09CQgKhoaGcP3+ePXv20KtXL6pWrcr169fZuXMnPXr0wN/fHyidAl+9enXl/fr5+bFv375ywR8nJyecnJz+5F9G/BdVltF8f/Dy5s2bmJmZsXPnTnbu3ImTkxNfffUVGRkZfPbZZ1y/fp369etjYWHBnj172LFjB7NmzaJ9+/ZER0eTmZlJ165dlXIL7u7ubNu2TfnOuru789prr/H999/zyy+/AGBpaYm7uzshISH07t2bqlWr4uHhgUaj4fr16wQGBhIUFMThw4eVjGTtsRwfH09kZCQNGjQASoOhFhYW3Lhxo9z7cnJyIj8/n8uXLz+BT1b8PxISErh8+TLnz5/nypUrnDt3jnnz5tG4ceNyv8mPQvtbf7/w8HBWrFjBmTNn0NfXp1GjRnTv3p2goCAALly4wOeff07//v3p27cvxsbGREREMGXKFM6fP0+NGjWoXr06Xl5enDx5UtlutWrVALh69ary+pXR1mOeMWMG/v7+uLi4kJiYSFpaGsXFxaSnp9OhQwclQFNcXMySJUtITU3F3NycmzdvUq9ePT766CMWLVrEF198QXFxMXl5eQQFBTF+/Hjc3NxQq9WYmJjw4osv8uKLLz7y5ybE0xAQEMDChQsxNzdXHrOyskJfX5/g4GBMTEyUx9PS0jA1NcXY2BgdHR1yc3OZNm0aO3bsQKVSoa+vz5w5c+jVqxfvvPMOenp61K1bl61bt2Jvb8977733LN6iEP8KEtQUQgjxn1VQUMDChQtZv349OTk53Lt3T3muRo0aDBgwAGdnZ+zt7ZUaeyUlJRXqIJW9kc3NzeXKlSskJCTg6elJaGhoudc8fPgwkyZNwt/fn48++ojs7GzCwsJ4++230dXV5fnnn8fMzAy1Wk12dvZD97/szbOTkxNWVlZKsyAzMzPeeecdkpKSlM7mTk5O5OTkYGFhQXx8PHl5eURHRzN8+HBat27Nq6++ioGBAWlpaWzYsAE7Ozsli/Srr75i1apV7N+/n40bN2JpaUmXLl0YPHiwcsHfpUsXunTpouyTSqUqN/VW/LvFx8cTERHBzZs3KS4upm7dug/tKqzNaK5set79mc6ZmZlYWVnx3Xff4eTkRKdOncjMzKR9+/a0aNGC+Ph4vL29qVq1KiUlJaxYsYLjx48zefJkWrZsiUql4r333uPVV19l1qxZBAQE4OXlhY+PDx988AF79+7Fw8MDPT09atSoQUhICNbW1ujq6vL666/Ttm1boqOjuXr1KnFxccTHx7Nq1Sru3r2rZKsZGhoSERFBt27d6NixI2FhYXz11VdYWlpiYWFBXFwcM2bMwMbGRgnguLi4cO/ePS5cuAD83qzF19eXDRs2KJl10kTi2bl8+TLr1q3j5MmTJCQkUFRUhKmpKS4uLvj4+NC3b19loKZsFn7Z/4fyA1xFRUVERUVhamrK6tWrOXLkCE2bNmXcuHFcvnyZiRMnUlJSwvPPP09BQQE7d+5k27ZtfPfdd9SuXZuoqCh0dXXp0aOHElh0cXGhcePGSoa/gYEBrq6u5ObmKjWMraysCA0N5ciRIyQkJODq6lpuv7TlEi5fvsy1a9eUWQPe3t5ERESQmJhIYGAgPj4+rFq1CgMDA6pUqcKJEyc4dOgQNWvW5MyZM6xfv5569erRuXNnGjRowNmzZzE0NMTPz0/JTtZoNDJlXPxtaEs+6OrqKseDSqXCxcWl3HIeHh4UFxfz1Vdf4erqSufOnbl48SKTJ09m6dKlNGzYkKKiIqZNm8bWrVsZM2YM9erV4+7du+zatYvvv/8ed3d3evXqpWy7atWqT/39CvFvIkFNIYQQ/1k6OjpYWlrSokULqlevTmBgIEePHmXOnDm0bduWYcOGVZjuWrbDbGRkJHl5eUrgctOmTcydO5c7d+5gZmZGUVERzZo147PPPkOlUlFYWMi8efNwc3Pjs88+U+pHvvrqq3Tv3p158+bRrFkzfHx8MDAwIDIy8qHdj9euXcvp06cZNWoUHh4euLq6EhMTQ2FhIeHh4dy6dYvXX3+dXr16KeucPXuW27dvY25uTkpKCgEBAXTs2JGlS5dy4sQJnJ2diY6ORl9fn/HjxxMSEoJarSYwMJBPPvmEtLQ07O3tlSnn4r8pPz+fjRs3cv78ec6dO0dSUhLFxcWYmZlhaWlJamoqq1atok+fPowePbrSbTwso1lHR4fw8HAWLFjAiRMnsLCwYOjQocyePZtWrVrRrFkzrK2tqVGjBgcOHGDs2LH069cPKA0k7dq1i3bt2tGpUyegNFiTmZmJi4sLR44cYf/+/bz22muMHTuWxYsXc/r0aX755RdycnKA0gDRiBEj6N69O/r6+vj5+REUFKRsT6PRMHToUE6dOoVGo8HNzQ1ra2ulSUqjRo2YPn06EyZM4KWXXsLDw4OUlBSsrKyYNm0awcHByussXrxYubkt24laO5Aing3tYFV0dDTr16/H09OT6dOnY2pqiqOjI9bW1piammJoaFjh91D7d1Sr1cTHx6Orq6sE8wDOnDnD4MGDef7557l58yYhISF4e3uj0WiYN28eWVlZfPXVV/j5+WFkZMTYsWPp0qULX3zxBcuWLaN69eoYGxvzyiuv8Nxzz2FlZYWpqSk1a9YkKCgIU1PTcq95/fp1JTu4Z8+eXLp0iRUrVjBy5MhyZVVUKhWXLl3i119/pXXr1krAtEaNGmzZsoVr164RGhrKyJEjWbhwIQsXLgRKB9UGDBhA+/btiYyMxNnZWdmmo6OjUh+6LJleK/5OHjRwFBERwZ49e+jWrRt79+5l+vTp6Onp8euvv9KgQQMMDAxwdnZGT0+PjIwMAJKSkti+fTvvvPMOAwcOVLbVsGFDpdFc+/btcXd3x9jYGLVaXaH+shDi0UlQUwghxH+WoaEh/fr1Q6PRoK+vj56eHqampsyZM0epOVn2QjclJYWpU6fSqVMnFi5cyJUrV2jatCkLFixg7969TJw4kTZt2tC9e3f09PQ4ffo0c+fOxdTUlA8++ICsrCzOnz/P7NmzcXR0JD8/nxs3bhAfH09BQQFRUVFcvXqVoKAg3Nzc+PXXX+ndu7cytbVslo+BgQGXL1/m559/pnv37nh4eFC1alWOHDnC3bt3MTU1xdLSkv3799OgQQOMjY05ceIEy5Ytw8TEhOvXr7N9+3YCAgIYOXIkTZs2JSwsjOLiYho1akTjxo2VrsvaQG5lWQviv6m4uJgpU6YA8PLLL+Pp6Ymbm5vSATk9PZ2PP/6Y+fPn065dO6VEgTZQpB0UuH79OoaGhjz33HPlAkNxcXF8+umnpKWlMWzYMPLz81m9ejUA9+7dIysrCysrK9zd3bl8+TI1a9ZUMtRu3ryJRqPh6tWrvPPOO0qGWUFBAba2toSGhio1XJs1a0azZs3IzMzk2rVrlJSUkJSUxLRp0/j+++/p3r07u3bt4scff2TKlCl4enpy7949IiMjSUpKwtraGh0dHRwdHTEzMyM8PBwoPVZefPFFatWqRVhYGOnp6fj7+1OvXj0l+1Lr/mxu8feg/b0NCAjAysoKa2tr2rdv/0jrnjt3jm+++YaTJ09iYGCAvb09bdu2ZcSIERgZGeHt7Y2JiQm7du1i4cKF1KtXDwMDAzIyMjh48CCffPKJEvjOyckhPT0dR0dHTp06xeXLl6lVqxbvv/8+69ev59ixY2RlZZGfnw+UZn2NHz+eBg0aKL/XFy9eVIKaHTt25OLFiyxbtgwdHR1eeeUVpalVeHg4c+bMQa1W07lzZywtLYHS7LR79+4p5U2aNWtGYGAgycnJODs7Y2Vlpbx3bQMtIZ61BzWRu19KSgoXL14kNjYWe3t72rVrp2TNnzx5kvnz51OvXj2aNm2Kp6cno0aNom7dunzyySc4ODgApQNR2kGtS5cukZ+fj7+/P1FRUZw5c4bw8HDi4uKIiorCwMCA+Ph4PD09cXR0VMoBSVBTiL9GgppCCCH+E9RqtTK1qGyg8v6LSG3A4datW0D5bBJdXV12797NiRMnqFu3Lm+88QY2NjYALF68mNDQUD799FOlw2z9+vVJS0tj8+bN9O3bV5kW/vXXX/PFF1+QkpJCSUkJFhYWBAYG0qBBA0xMTNDX1+f5559n/vz5HDlyhH79+pWb9m5gYEBSUhJ79+6lRo0a1KxZEyhtprBz507i4+Np0qQJL7/8Ml999RWvvPIK5ubmFBYW0rp1a15++WUWLVqkFKQ3NTWlUaNGNGrU6El89OIfIC4ujpKSEjw9PR9peXNzc4KDg4mJiWHw4MGVdq0fOXIkH374ITt27MDb2xuVSoWuri4RERFMmzaN8+fPY2pqilqtxs3Njffff5969eoBsHnzZi5fvsz06dPp0KEDUBqMef/997l58ybp6el4enri4+ODoaGhkmEJpTevlpaWXLhwARcXF5o3b05AQAAeHh7Y29tTUlKi1EJLS0vj0qVLPPfcc+Wmyh86dIjjx4+j0WhwdHTk5MmTDB48mA4dOqCrq8uZM2fIz89XArsqlYqmTZuSnZ1Nfn6+EmB1c3Nj2LBhf+EvIp427fRTKP0OaX/7HR0dsbe35+bNm8DvZRO0y97fofzq1atMmjSJ/Px83nnnHaysrNi3bx/ff/89aWlpvP/++8o2tQ2stN+XiIgITExM+Pnnn9m9ezc3btwgNTWVkpISPDw8aNCggXIe6NGjBz169CA5OZlbt25hYGDAuXPn+OKLL1i/fj0NGjTA2dkZOzs7pTarto7y6NGjMTQ0ZOnSpWzatInAwEBycnKIjIzExcWFL774ghYtWigNrurUqcOhQ4fKHec2NjbK+U+Ix0k7iBsTE8MHH3yAv78/EydOVL6P9yspKam0jMn9TeS0A8JlLV26lOXLl5Obm4uVlRXp6eksX76chQsXYm1tTZUqVTAyMiIxMZE6depQpUoVPD09uXPnjrIv1tbW2NnZKb8RmZmZGBoaMmjQIPT09JQBOG9vbyZNmoSrqyuurq7o6enh5eWllA2ysLCQpnBC/AUS1BRCCPG3du/ePdasWcOZM2eYO3fuX95O2QvbB100ajQaDA0NcXR0JCEhgTt37mBra6ssb21tTVBQEBcvXuT111+nRo0aAKSmphITE0OvXr0oKCjg3LlzXLx4kVu3bnH48GHy8/OJiIigevXqmJqaUlxczMCBA3FycsLd3R07OztUKhXp6enKVMCOHTty/PhxZs6ciZOTEy1btkSj0VBYWEhiYiJffvklGRkZjB07Vgmienl5UVBQwI0bN2jSpAkDBw6katWqhIeHY2trS0hICL6+vujq6jJ16tS//FmKf76ydWDT09Np3749AwcO5K233qpw06gN9miDN9qSDO7u7oSHh5OcnIyjo6PSxVkbgA8ICMDR0ZH4+HglWyY2Npbx48dTUFDAtGnTcHNz4+rVq6xYsYJPPvlEqXd5+fJlfHx8lIAmlNaZ7N+/Px988AGpqakA+Pv7c+/ePTIzM5XlbG1tsba2xtzcnGnTpinTg7XH/LRp01CpVLz99tts376dadOmMXHiROrWrYuOjg5nzpzhwIEDdOjQgaKiIurVq8fSpUtZt24de/bsobCwkKCgIIYOHap0Ugd49913K/2sy2YLla3XJp4d7SBX2eDlg6afmpmZ4ebmxo0bN5TalA/7G/7www9ERUWxaNEiJTuyS5cuTJgwgfXr19OiRQvatm2Lm5ubcp4pm+loZWVFeHg4rVq1IiQkBH9/f1xdXbGysqKoqEhZNioqipSUFBo2bKgEG/38/NiyZQvJyckAODg44OPjw9GjR1mwYAHe3t48//zzWFtbK1Pad+/eTXR0NO7u7vTu3Zt69eoptTa1vwUGBgaVDlwI8WeVvf6KiYnh3LlzXL58GQMDAxo3bkyjRo2U542MjIiLiys32KDdRtm6y9p/339tFxMTQ1hYGL/88gtZWVn4+fnRv39/6tSpg56eHidPnmTevHm0b9+eHj16YGRkxM8//8yqVas4duwYHTp0wM7ODjMzM27cuKH8jletWpVff/2V+Ph4bGxsMDU1xdPTk+joaAoKCnB0dERXV5e2bdsyfvx45bg1NzcnIyODM2fOkJWVhZubGz4+Ply4cEEpjyLnByH+PAlqCiGEeCYedTRaGySxtrauUHNIG2x5WMAyOTkZBwcHfv31V1asWEFUVBRubm68+uqr1K1bt1wAR61Wo6+vr1ywJiQklAtq6unp4erqSnR0NGq1Wlnv9u3bWFtbs2DBAr7//nv09PRwcHDAw8OD7t274+npScOGDSkpKcHKygpjY2MGDx5cbl9v377NBx98QPPmzRkxYgS+vr5MmTKFd999lzfeeIN69epRr149CgoKOHHiBLdu3WLs2LFKjT8ozdT8+OOPee6554DSLIWGDRuWC7wIkZyczPHjx5VafNbW1ixduhRHR8dKp+g9KNjj7+9PWFgYV69eVabK3n9Mp6enAyiB98OHDxMfH8+SJUuUdYKDg6levTp9+vQhLCwMPz8/UlNTlW2VrWtbt25dNBqNUh5CW/Pv9u3bymuamZnRrFkz9u/fz+bNmxkwYIDy3OnTp1m2bBn9+/enpKSEXr16cejQIT777DO8vLyUAGmLFi149913UalUlJSU0LBhQ0JCQjA0NHzoNMbi4uJygTLtZyINUR6P3Nxcvv/+e/z9/XnhhRf+VFZT2WUr+3tcv36dXbt2ERcXR2hoKC+++KIyyOTl5QXAjRs3qFGjBqdOnSIiIoKrV69y5MgRPvvsM1544QWysrK4cuUK9erVo1atWsDv2WEvvvgiP//8MwcOHKBt27ZUrVqVS5culQvIu7i4YGRkhIODA9OmTaOwsBB9fX10dXVJS0tj9uzZ1KpVi379+vH999+zbds2vvzyS6pUqaI0FIqKimLs2LFA6VTw119/nQ8//JCFCxfSrl07nn/+eaB0umy1atWUjuj3k+CK+H9Vdnxq//+7777jxx9/pLCwEGtra3Jycvjhhx+oV68es2bNwsbGBkdHR3x9fYmJiVHOA/c3l0tMTCQ6OhpdXV0l2147ADx79mwiIiKoWbMm1tbW7NmzhyFDhjB//nyaNm3K0aNHMTMzo1u3bsr5qGrVqvTu3RtbW1ugdJDBxcWFGzduUFhYiKGhIcHBwezcuZOkpCSCg4NRqVT4+vqyc+dOUlNT8fPzw8bGhpSUFKWJmNapU6d46623mDRpEj179qRq1ark5eUpA3VCiD9PgppCCCGeqvDwcCIjI+nWrdsjLW9gYECfPn1Qq9XlApr3d0fOyckhPz+/XD2vAwcO8PrrrzNo0CASEhK4d+8etWrV4vDhw4wYMYJZs2bRokWLcllrUBocPHz4MHFxcQQHBytZAgBVqlTh0KFDSldYAEtLSwwNDXF2dubLL7/ExMREGb3X1dXl4sWL3L17F39/f9q0acM333zDunXr6N27N2q1mqysLJYtW0Z4eDhjxoxRtuvn58e8efMICwvjyJEjbN26leLiYgICAnjllVdo1apVualUlpaW9O/f/9H+EOJf42HNpMrSfs8XLlzIvn378PHxUbK+6tSpU+k6ubm5nDt3jjNnzlBQUECzZs2UKeLagOL169eB34Ofenp65Obm8tNPP5GXl6dkqxUUFBAREYGRkRE1atTgwoULXL16lcuXL3PlyhWKi4s5fvw477zzDmZmZsTGxirbg9Jj3snJScneKSwsxMXFBXNzc2JjY8tN++7atSthYWF89tlnXLlyhYYNG5Kdna2UXRg4cCC6urqYmJjw7bffcvDgQSIiIrC2tiY0NJTq1atjZGRU7ndGO2X9YXXaKpsaKR4fAwMDFixYQLt27XjhhRfKBUxKSkqU7/j9gXhtIKSwsJDCwkJ++eUX9u3bR2FhIf369cPV1ZW5c+cq36OtW7eSkJDA66+/rmRq6uvrM2TIENRqNUZGRjg6OuLn50fPnj2Vsg137tyhoKAAExMTJSCu/U64uLjg7e2tHC/+/v5kZWWRkpKi7KezszNNmjRh+fLlHDhwgBYtWgClgf2dO3eyfft2mjRpApSWdwgPD+e9997D09OTtLQ0NBoNr7zyCi+//DLw+8DWxo0by2WDCvEkZGZmKnXCHR0dH1jS5p133mHHjh3079+f9u3b4+DggFqtZvv27cyfP5+hQ4cyb948HB0dcXZ25sKFC8TFxeHl5YWOjg53797lhx9+YMOGDaSkpKCjo6MEJwcOHIizszMbNmzg2LFjjBs3js6dO6NSqejQoQPr1q2jqKgIAG9vbzIzM5k0aRLt27fHzMwMY2NjgoODlcxkExMTPDw8CA8PJy8vD3Nzc4KCggCUGrN6enpUqVKFzMxMEhISqF+/Pt27d+frr7/myy+/VK7Lrl69yrRp07C2tlZmITg7O3Pv3j1u3rxJs2bNZDBBiL9ArryEEEI8Vd9++y1paWl07NixQpDyQVM0tcGEsnR0dIiOjub777/nwIED3Lt3D29vb1544QU6deqEg4MD5ubm1KhRgx9++IE+ffrwxhtv4ODgwOHDhxk5ciTbt2+nRYsWFaYfBgYGAr/X1SzL39+f/Pz8cjeiDg4OeHt7Ex8fj5OTU7mR+ezsbMaMGUP9+vWZNWsWL730EgcOHGDixIkcPnyYwMBAbt68yZ49e3j55ZepW7duudfT1uTr27cvpqamkvElFCdOnGD48OGMGTOGQYMGVbpM2Vpj2uC8g4MDqampyvGn0WgoKioiIiICZ2dn5WYuOzubmTNnsmPHDqWb8Zo1a+jQoQOffvopvr6+6OnpER0dDZR2fL158yZRUVGcPn2aU6dO8dprr9GzZ0+gtDFXVlYWaWlphISEKBnY2iZXffr0wdXVFQAfHx9OnjxJTEyMEjDS0dEhNjZWqW+WnZ2Nra0tHh4eJCQkkJ2djbGxMcXFxRgaGjJhwgRWr17NkSNH2L59O3p6etSuXZvRo0eXqx1qbGzMCy+88MgdmiXz8tnQDmy5uLiQkZFBVlYWlpaW5UojaH/DtQFOfX195fm33nqLxMRE6tWrx7FjxzA2NiYyMpLz58+j0WioU6cOc+bMQU9Pj1mzZrFp0yaaNGlCw4YN8fDwwMDAgCpVqjBt2jSgtMyBtgay9ntiZmaGubm5UluvbEaZpaUlRkZGynNVqlQBymcZGxsbM3DgQHbt2sU777xD7969qVGjBjdv3mTZsmW0atVKybR0c3Nj7dq17Nq1i8TERFxcXKhZs6ZSK7ksCWiKx+H+zMuzZ8/y888/c/r0aaKjo8nLy8PIyAhra2sKCgqoU6cOn3/+uZLxDPDTTz8RFhbGhAkT6NevX7ntjxgxgjt37rBnzx6SkpJwdHTEy8uLoqIioqKilP9etGgRP/30E126dKFevXpkZ2ezadMmli5dioeHB3379iUvL4+cnJxyAwtBQUFKRibA888/T3Z2NnPnzmXBggXk5eUBpeeqatWqMW/ePKytrfHy8mLfvn1kZWUpgxkA8fHxQGlQ09PTE41Gw+3bt9HR0WHIkCGcP3+e77//nn379mFlZcXt27cxNTVl9uzZynWtv78/c+bMoXbt2hLQFOIvkqCmEEKIp+qjjz4q1/RG62GBguTkZL744gt8fX0ZPnw4UDrlaNKkSURGRtKjRw+srKw4cOAAM2fO5MaNG3z++ee4ublhYmKCg4MDgwYNUrpUVq9enTp16hAREVHuIl37b22nZm2wpmzWj/aGUTv9FUqDrj169CAsLIypU6fy8ccfY2RkxJ07d1iwYAFpaWn06NEDKL25nD17Nhs3buTQoUOcOHECNzc3Xn/9dfr161ehiL2WhYXFo3/I4l9N+5318vLik08+qTB9tOx3urKp40ZGRpSUlDB+/Hjc3NyYMGECp0+fZsyYMUyZMoWePXtSWFjI999/z/r16xk1ahTt27dHrVazevVqVq9eTdeuXalZsyb29vacPHmSunXrkp2djUqlorCwEIDBgwfz5ptvAr9niVpaWqKvr88HH3xAgwYNMDY2xtzcHHNzc65fv86dO3cAaNu2rXKT+sEHH2BoaEhxcTFr164lMzOTu3fvKjVvXV1dOXLkiFJqQjtF0c/PjwkTJhAVFYWOjg6enp4PzaTUlpS4v/GLeLa03x3t+cHb25tbt26RlpaGpaWl8l0/ffo0q1ev5ty5c6hUKp577jk6d+5M9erVgdLfde300KFDh9KhQwdOnDjB5MmTARg2bJgyzbxbt278/PPPREVF0bBhQ7y8vDA1NSUvL0/JUK6MtbU1fn5+hIWFkZiYqAwGQGlDttu3b+Po6EhhYSEeHh6YmpqSmJiolFbRaDS4uLgwc+ZMVq9ezY4dO1ixYgVmZma0a9eO0aNHK9nIUHpe0A4aCPEkJCUlcffuXTw8PJQyItpzzPbt21m9ejUNGjRg1KhRuLm5YW1tjb6+Prt372bZsmUsWbKEYcOGKbMJwsLC8Pb2plmzZsDv5UW0TYBGjx7NhAkTlNf39vZGT0+Pq1ev0qpVK86fP893331Hp06dGDdunLJccHAwnTp14vz58/Tt25cmTZqwceNGJk6cyLJly9DR0cHd3V25/mvcuDHGxsYMGDCAfv36ceXKFeLi4sjNzeX69essX76cBQsW8OGHH+Lp6Ul+fj6JiYn4+flhaWmJpaUlCQkJ5OXlKdeZurq6XLlyRWnI9c0333Dw4EEOHDhAYWEhzz//PI0aNSr3G2JlZaUMVAgh/hoJagohhHhiKqt5qe0uXpZGo+HmzZscOXKEixcvYmBgoFz8qVQqcnJyOHfuHLdv31aCmtu2bePXX39l2rRpdOrUCT09PQYPHsz06dP54YcfaNy4MR06dMDBwYHIyEhsbW2Vm2Nzc3O8vb05ffo0GRkZSgdX7c2xdqphXFxchW6Zjo6OWFhYEBsbq1y4ajQaGjZsyKuvvsoPP/zApUuX8Pf3JyMjg5iYGMaOHatkYGo7TI8aNYohQ4ZIsFL8adobSkdHRzp16vTAmmUJCQncunULIyMjpTHC6dOnmTZtGnp6eqSkpBAaGoqOjg5+fn7o6emVq++3du1aWrVqxRtvvKE89u6779K5c2eqVq2Knp4ebm5uJCcn88Ybb1C3bl0sLS2Jjo7mhx9+4Oeff0ZPT48hQ4Yox1iNGjXYsGGDUoOsrKVLl3LmzBnmzZtHw4YNGThwIN999x3Xrl2jVatWREVFce3aNapXr86tW7e4e/cuAC1atMDKygo7O7ty71/739qMOO1nd3/pCi3Jvnw2tOeJBzVRKtvQysbGhpCQEE6cOEFSUpLyHTp9+rTSHbl9+/akpqayevVqtm/fztSpU2nRogWhoaEAVKtWjd69ewMotVLPnDmDk5OTEljRDhRoM7EcHR1xcXEhIiLioe9Fe+7auHEjs2bN4vPPP8fAwIDs7Gy2bNlCXFwcQ4YMQaVSoVKpsLCw4Pz582RmZuLg4ICOjg4lJSXUqVOHGjVqEB8fj5mZWbngqBBPUn5+Ptu3b2fHjh1cuHABKM0y9vb2pnPnzrRr104JUNaoUQM9PT2aNWvG4MGDy20nODiYGzdusHfvXjp27IiPjw9Xr14lMjKSevXq4ebmVm6AWzvgZGlpCaAcix4eHpiZmSllG5ycnHj33Xdp27YtUFoi5erVq2zcuJGSkhJlho2/vz9z585l06ZNJCYmEhcXR3h4OMePH2f+/PksWrSIxo0bk5KSQnZ2NoGBgcosHYAdO3aQnp5OcXExLi4umJqaEhMTQ3FxMQYGBjg4OHDhwgVSUlLw8vLC0tKSevXqYW9vr/xmqVQq2rZtq+yrEOLJkKCmEEKIcspOV/1/VRY4yMvL48CBA5iamioNbS5cuMCHH35IUVERTk5OZGVlsXXrVvr06cPHH3+MjY0NgYGBhIeHo9FoyM7OZv/+/fj4+NClS5dyrzdixAhWrVrFnj176NSpE56enoSFhZGZmakEEFUqFe7u7ty7d0/pXln2/evq6uLp6UlCQgIpKSlKJ1ht3SYvLy/i4+PJyspSst709PR46623aNasGWFhYcTGxhIYGMiIESOoX7++csFetu6gBDTFH3lQl+ayzRKys7OV+q0Ae/fu5euvv+bmzZtKyYI6deowc+ZMgoKCWLduHS+99BKBgYGMHj1aqQlrYmJCdHQ09+7dIzk5mcLCQurVq6f8Jmg0GqXemJaPjw+nT58mMDCQ2rVro1arqVKlCrVq1WL8+PEsXryY3NxcRo0ahY2NDfXr1yc0NJT58+djb29PvXr1yM3NZefOnWzatIkuXbooU/uGDh2Kg4MDGzZsYN68edjb2/PGG29gYmLC22+/rWSEdu3ala5duz70cyz7eckUv/9fcXExd+7cUQJxf0bZMiNl/10ZjUbDmjVrWLx4McnJybRp00ZpnhMdHU3jxo2VBjoZGRksWbIET09PjI2Nee211+jbty/Tp0+nRYsWSnBbOxVWo9FgZGSEj48Pe/bsIS8vD2tra6C0wY6xsTFxcXHK4JW7uzvh4eEkJCQoZRIq07x5c3r37s26deuIjIykcePGZGVlsWfPHjp06FAuK6tr167KsaelPb6NjY2VY0GIxy02NpZFixZRr149OnbsCMDdu3eZO3cuP//8M8HBwbz99tvY2NgQHR1NWFgY48ePJyMjQwlgOjs7o1KplJIKUHrO0ma7+/r6EhkZqQRBi4qKyMjIUEqhlK1Xfj/t74KLiws2NjbExcUB4O7uzquvvkpycjLTp0/n5MmTJCUl4ebmhqurK4mJicox6+vry7vvvktOTg6FhYXY2Nhw+vRpRowYwebNm2nSpAkTJ07k+vXrTJs2jSpVqpCVlcWOHTtIS0ujXr166OvrY2ZmRnFxMefOnaNHjx4YGBjQrVs30tPTles4W1tbFi9e/Hj/SEKIRyJBTSGE+A+Lj4/n0qVLXLhwgYiICFJSUrC0tKRJkya0a9euXIaTlrZW2R/Vlbtz5w7nz58nOjoaDw8PmjdvjkqlIiEhgXHjxhEcHMxzzz1Heno6s2bNQldXlzlz5mBra0tOTg7fffedUoTdwsICV1dX9uzZQ0pKCo6OjiQnJ1fIXtFoNFhYWODm5qbcjGqnE966dQsPDw8luOHs7Iyuri6RkZHlgjTaoGb16tXZuXOncgNbNqPA1taWM2fOkJGRoXSM1gaetF3KxX9T2U7dj+phHZzv31ZWVha//PKL0vV+8eLFzJw5k23btuHn50dsbCyffvopVapU4c0338Tc3Jzdu3ezevVqWrVqRfv27QkJCcHb25uUlBSlYYK2GUpMTAwFBQXk5eWhUqnIzs5Wbi61gU1tINXc3FyZ2nvjxg2aNGmi1Oe0sbFh8uTJzJgxg7Vr16JWq5kyZQq+vr6MGjWKcePGMWbMGEJCQgCIioqiRYsW5aYTmpmZ8dJLL9GhQwcsLCyUz2Lz5s0UFxeXG4yorOt4WRLI/OvKnicuXbrErVu3KCwsxNLSklatWtG3b188PT3LNVzTBuMrO0/c3+DtxIkTXLlyBQsLC1q2bImbm5uy7o4dO5g1axa1a9dmxIgRXL9+nQ0bNlBcXKzUoszKyuLs2bMMHz6cgIAAZdt+fn4MHjyYb775hvPnzxMaGoqxsTGZmZlKcy0dHR1l0Co6OhpXV1flGPb09CQ+Pp60tDTc3NyUOqzXrl1TzgkPakj0zjvvEBoayvbt29myZQvW1tb079+fvn37KoFTgFGjRlX6mcv3VTwO8fHxWFlZYWZmpnw3td/bn376ifXr1yuNp6D0fLJ27VreeOMN+vTpU+53d+DAgbz99ttMnz4dHx8fmjVrhqOjIw4ODly7dk3Zhnb52NhYjh8/jre3tzII4ODgQHFxMfn5+eWWrYz22LKwsMDFxYVLly6Rk5ODmZkZ586dY9KkSdy9e5eWLVvSoEED2rRpw4QJE9i4cSNxcXH4+fmxefNmsrOzeemll5TBDEdHRwwMDJSBhBdffJHZs2czatQoqlSpQm5uLrdv3+aVV15RzrMuLi7MmjULT09PZT1tMy4hxLMnQU0hhPgPio6O5rXXXiMuLg5LS0ul0U3VqlWJi4vjm2++Ye3atUyaNInWrVuXu3mrrLPs/Y4dO8bkyZPJyMjA2tqalJQUQkJCmDt3Lu7u7gQGBpKTkwOUTjW6cOEC3bp1w8fHB0NDQxwcHJRmDFB64evu7o5arebmzZs4OjpiZGREfn4+ycnJSmMTtVqNvr4+Li4uxMbGkp2djaurK4aGhly7do3mzZuXm7prY2NT7mK8LG9vb4qLi7l27VqFIOVHH32Evr6+8rogN6H/dUVFRbzxxhvExMSwc+fOPwxslj2mtN+dyoKbe/fuZcOGDcTFxdG0aVOgdJp2YGAg3t7eSgOQmJgY/Pz8+OWXX8jNzeXNN99UgvUNGjSgc+fOuLm5KduvWrUqR44c4fbt28q0bT8/P06dOkVGRgaWlpbljg+NRqMcX6dOnWLx4sVMnDhRCSJppwbq6OgoWckODg68/fbb3L59mx9//JGCggI+//xzGjVqxI8//sjGjRs5f/485ubmdOzYkWbNmpULVIaHh7Ny5UrefPNNrK2tKSwsJDU1lbVr1+Lk5IS9vb2yrHQdf/wqO0/4+PhQt25ddHV1OXXqFMuWLSMhIaFCM5CHff/j4uIYNWoUgwcP5ty5c+zfvx99fX0SExNZt24dixcvxsnJiYKCAhYsWICbmxuzZ89Wtt+sWTOGDBlCQkICarWa+Ph4dHV1CQwMVI4h7b8DAwNRqVRcvnyZ0NBQvL29SUhIID09XRkUc3JyUs4RjRs3VgawqlWrxv79+0lJScHNzU2pp3zx4kVatmxZaVBT+9oWFhZ07dqV559/vtJGd0I8aV9++SULFy6kXbt2TJgwARsbGyVgHxcXx44dO3juueeUqdEREREsX76c5s2b8/rrr5fbllqtxszMjEmTJvHLL7/QoEED4PeyDFevXqWgoID8/Hxu3rxJeHg4hw4dIi4ujqlTpyrbcXR0xNzcvFwd2coUFRURFxeHgYEB7u7ueHh4cPz4cW7evElwcDBr164lPj6e+fPnl7s+Kyoqori4mBs3buDn58fhw4cJCwvjypUrtG7dmnv37rF+/XqKi4tp06YNAO3bt6d69eps27aNmJgYXF1dqVevHjVr1lSOXXNzc1q3bv34/jhCiMdKrgCFEOI/SNsxtlq1anzxxReYmZlhYmKCSqXC0NCQS5cuMXz4cKZMmYKXl5eSsalWq/n111/Zs2ePkvnYs2dPgoKClGBJVFQUI0eOxMvLiw8++AA3NzfOnz/Phx9+yIwZM5g8eTJOTk4cP36c1NRUZQrq2rVruXr1Ku7u7sqUQG3XWRMTE2V0/dq1azRs2JDAwED27NlDXFwcjo6OSsAFULKITE1NsbKywtHRUQm6aNnY2GBhYcHJkyfLPa69Se3UqRNOTk40b94cKH+T/rCph+K/SV9fH11dXZKTk8nMzMTW1vahy2u/Z5mZmSQlJWFra1suSAewZ88eJk2ahIuLC40aNeLIkSNK9nJsbCze3t44OTlhYmJCREQErVu3RqVSUVRUxNdff03Pnj2xtrampKSEatWqYWlpqUz9DQ4OZvv27SQmJirBz2rVqrFz504SExOpU6cONWvW5PDhw1y7dg1/f3/l+Dp//jwnT55EV1cXNzc3zM3NiYmJKfe+tFxcXPj6668ZNmwYd+/eJTMzEzs7O5ydnRkxYsRDPyMTExO2bt3KkSNH6NWrFyYmJkotxbFjx/7hZyz+P5WdJ0xNTZV6kAUFBUyePJnt27dz4MABJaspKyuLkydPcvjwYaKiojA1NaVdu3Z07NgRlUqFvb09V65cYd68eRgYGDBlyhQ8PT05evQoU6ZMYfHixYwdO5a8vDxu3brF8OHDlYBmUVERjRo1olq1aiQkJJCTk4NKpVKOvfsHBSwsLFCpVKSkpACldfb27t1bLtPf3t4eOzs7JYCv3UZISAibNm0iNjaWWrVqKYNYZ8+eBR48bb7sPkhAUzwrgwYNori4mMWLF2NkZMTkyZOVIOKRI0eIj4/nww8/VJaPiIggPz9fKelTNmivnY3i7OxM9+7dlTrj2gz/X3/9lebNm3P37l309PSwtbXF0dERfX19hgwZwrvvvkunTp0wMjKiWrVqnD9/nri4OHx9fSsdzDt58iSTJ0+mR48evPbaa3h4eCiD2sHBwaSnp+Pk5ISHhwdQWtbo4MGD/PLLL0DpgFj79u0ZM2YM1tbWHDhwgD179pCfn0+VKlWYPHmyMkgI4OXlpTS1E0L880hQUwgh/oPMzc2xt7cnMTERb2/vCjdngYGBzJw5k5dffpnly5cr3WG3b9/OV199hbW1NS4uLhw9epQff/yR8ePH069fP/T19Vm3bh2FhYXMmTMHd3d3AHx9fXFwcFAuQN3c3MjLyyM6Ohp7e3smT57M999/z4ULFzhz5gxpaWlKvbzXXnuNd955B2dnZ6ytrbly5QpQ2hzk559/ZsOGDUoTFIAtW7Zw9uxZJQhiZmaGvb09Z86cAX6/4bS2tqZFixYUFxdXyESF0rpN2v0X4o9os8IOHTpEfHz8HwbcNm/ezHfffUd0dDRGRkZUrVqVnj178sILL2BiYkJ6ejpfffUVjo6OzJo1CycnJwC++uorlixZwoULF2jevDm2trblpv89//zzJCQksHDhQo4cOQKU1pDV1rN8++23cXR0VKaNa+uUQWnAp6ioiPj4eBo2bEjfvn3ZtGkT06dP5+2338bMzIzw8HC+//57GjRoUC5T+dy5c0ods/vZ2dmxYcOGSj+HsuUsyjaKKSkpoUqVKvzwww9s2LCBsLAw8vPz8fPzY9y4cbRr1+5R/zTiL/qj84ShoSF9+vRh48aNRERE0KlTJwoLC5k1axa//vorNjY22NjYcOnSJX755Reys7Pp27cvRkZGSjb9jh07lAxILy8v1q5dy5kzZ8jJySElJQWVSoW5ubnymtrvR3BwML/88gtpaWk4Oztja2vLpUuXlGnl2kGuoqIipZ4elDY20TYO0TYOsrGxwdXVlYsXL5Z7DX9/f6B0MA8gKCiITZs2KeeFP5qxIMSzZGNjw/Dhw0lJSWHz5s2oVComT56slPcJDg6mRYsWyvLh4eHo6+srTQ0ry0KG0mZYhYWF6OjoYGBgoJTyadmyJR07dsTBwUGZtp6VlcXHH3+s1EZv1aoVLVu25OTJk/zyyy/4+vqWmxKvzd68ffs2MTEx3Lt3DwAPDw9UKpUyON2gQQNmzpzJRx99RMuWLYmJieHo0aMEBASQn5/Phg0bGDp0KO7u7nz00Ud07dpVadIotcyF+PeRoKYQQvwH6evr4+7uzvnz50lISKgQvNN2865atSq7d+9m9OjRZGdnM2HCBFq3bs0bb7yBtbU1pqamfPTRR8yYMQNfX18aN27M1atX8fHxUbK6tNOdmjZtqtwcautc3rhxg7p16+Lo6Kh0ro2KikKj0ZCbm8u8efPYtGkTbdq0wdPTExcXF6KiogBo0qQJL730EkuXLiUmJoa2bduSlpbGjh07qF27tlLvyMrKijp16hAfH19uupOZmRljx459Gh+3+I/QdkyOjIxUakVWZtu2bUycOJFatWoxYsQIMjMz2bBhAx9++CF37txh6NChnD59mqioKCZOnFiuFmznzp0JCwvj3LlzQGlw3s3NjVu3bqHRaLC0tOTNN9+kb9++3Lhxgxs3bnDnzh1iYmLYsmUL5ubmfPTRR0rARpvBBuDp6alMAy4pKSE4OJgPP/yQBQsWMGzYMExNTcnNzaVWrVrlphR+8cUXWFlZKc0gKqOdvn5/3csHlbPQPla/fn1CQkJQq9WYmpo+yp9BPCaVnSfKZlXp6OhgYWGBkZGR8ts+b9481q9fz3vvvUfbtm0xNjamqKiIV155ha1bt9KyZUvc3d3x9vYmIyNDCTZqA+LVqlXj4MGD3LlzB1NTU8zNzctl2Wsbi/j4+LBu3Tri4+Np3rw5DRo04Oeff6Zdu3Y0b95cOf8cPXoUQKkbWLaGq5a5uTnu7u5kZWWVC8zXrFmTq1evKstp90+Ifwpzc3M+//xzsrOzWb9+Pfb29nh6epKSksI777wD/F72JCkpCR0dHfLy8pQO5FB6bJ4/f54zZ85w9epVYmJiuH37NrNmzaJ58+a4ubmhVqtxdXWlcePG5V7fzs6OV199lZEjR3Lw4EFatWrFc889x549e1i9ejVBQUHUqVOnXLfwnJwcNm/ejJOTk9JUy9vbG2trayIiIgDo1q0b2dnZbNmyhXPnzuHg4EDbtm3p27ev0mhLW8pEo9FQo0aNJ/5ZCyGeHQlqCiHEf1T16tXZunUrcXFxFYKa2ppijRs3ZunSpSQnJ7Nr1y5MTU2ZOHFiuZHuF154gR07drBz504aN26MtbU1mZmZyk1u2Wnb2v/29fXFyMhIuVm9c+cO586dIzAwUAm2QGnttDNnzmBqaoqhoSE+Pj4cPHiQ3NxcLCwsGDNmDI6Ojmzbtk2Zyti8eXMGDx6sNHUwNDTkrbfeejIfohBleHl5YWBgUC4Qcr+0tDQWLVqEh4cH8+bNw9jYGB0dHZ5//nlGjhzJqlWr6NSpkxJ8105J1x6Trq6u1KpVSymbYGlpiaenJ6dPnyYzM1OpPamvr0/Tpk3LTbFr2rQpUVFR3Lt3D3Nzc6ytrfnll1+oV68eAQEB2NraolKpuHDhAjk5OVhYWDBgwAAaNmzIwYMHKSgoICgoiJo1ayq/ARqNRinR8DBla23+WZVlf4qnQ3ueiI2NVYKaWjo6Osr3QhvsO3HiBG3atKnQRMPd3Z3Lly+TmJiIu7s7VatW5eTJk6SnpwO/B7GDg4PZunWrki1cpUoVLl26pNRO1k571Wg0aDQabt68SfPmzRk4cCAHDx7k3XffZdCgQVSpUoVTp06xbt06evfurdTdq1KlChYWFuWmhRsbGzN16lSpiyz+lfT19Zk2bRojR45k8eLF6Ovr4+/vT6NGjYDSJmsGBgaYmZlRUlJCQkICzs7OFBcXo6+vz5kzZ5g+fTrZ2dmEhobi7OzM9evXiYyMpHnz5ri4uGBlZaVcz2mPTbVajYGBAZ6enkoHdSg9T44cOZJhw4YxYcIE3nvvPdzc3NDT0yM6OpoffviBc+fO8frrr+Pn5wf8XotT22DI2tqaMWPG0LdvX+zs7B5aw1eOayH+/SSoKYQQ/1Ha4OH169eVi9v7aS8ojx49qmQ5rl27lri4OC5fvkxCQgK5ubno6+tjZmZGdnY2Xl5eys2qdgRfT0+PjIwMvvvuO6pVq8Zzzz2HpaWlki2TkJDA6NGjadmyJa+99hpGRkZERETw/fffU716dXx8fNDR0cHKyor09HRSU1OVQOfgwYPp1KkThoaG5RpVCPG02dnZYWtrW6F+K5TPhrl27RrDhg3DxMREmXptY2PDyy+/zOjRozl27BguLi5AaZYM/D4gYGZmhqurK3fu3KGwsBAjIyPc3NwoKCggPj4ea2trpkyZotQstLe3JyMjg3PnzpGamspLL72kBJD69+/PsmXLGDlyJH369GHs2LH07t27XPAISgNB2rq69ys7XVym4/77aM8T0dHRNG7cWPkb5+TkcPz4cdasWUOdOnWUTMgffvgBQ0NDEhISOHXqFMeOHePYsWOkpaVhY2Oj1IQNCgqiqKhI+X/t90ibURUdHU2LFi3o3Lkz48aNY8WKFbz77rsUFxcTGRnJmjVrMDMzU9avUaMGc+fOZdmyZaxatYrs7GwsLS0ZPHgwI0eOVL7PxsbGFeool319If5t1Go1VlZWzJw5k08++YSDBw/SpEmTcgNTAAEBAezYsYMbN25Qp04d5fFatWrx3XffYWBggK2tLefOnePChQvKec7R0RFHR0eioqLKZeNrfyvMzMxIS0ujfv36yj41bNiQRYsW8f777zNixAi8vLzQ0dFRzmEffPABAwYMUJY3NDRk3bp1FQa4ypZAEUL8d0lQUwgh/qPc3NwwMTGptPu39gZP2xDn8uXL1KhRg6SkJFasWIG7uztBQUF0794dHx8fbGxsMDc3x8zMjDp16rBw4ULOnj1LcHBwuRH01atXM3ToUCwsLHB1dSU5ORmNRkPNmjUZPnw469ev55133qGwsJC8vDxq165dLoNm8ODBDBo0qMKFrDQMEX8HZmZmODk5ER0drdT209J+h8t2BgfK1XKtWrWqMv07KCgIlUpFVFSUMqCgvWG8e/cuADdv3iQgIABHR0f09PS4ceMGQUFB1KpVi927d9O7d28aNGhAYWEhZ86coW3btnTp0kUJ8AwePFjpYlujRg2MjY157733Kn1vGo2mXO3L+0lA899J2whq79695OXlcf78eaKiokhLSyMnJ4d69erx2WefYW9vT0lJCYaGhly+fJm5c+dy+/Zt7O3tefPNN3Fzc2PIkCEkJycDKDVd4+Pjgd+PC+1AWmxsLAAdO3bk0KFDLFq0iEuXLhEcHMy5c+fw9fUlPj6e69evk5eXh4mJCfXq1aN69erEx8djZWWl1KEV4r9Mew1ma2uLlZUVABs3bsTc3JzXXntNOTfVrl0bHR0djh49St++fZXHjY2NMTY2Vrbn5+eHvb09t27dUrbr6urK8ePHlcEE7TXcrVu3mDdvHgC9evUqt1/16tUjLCyMY8eOER4ejrGxMVWrViU4OBg7O7sK70My9oUQDyJBTSGE+I+ysbHBwcGh0qwy7cWs9qZQT08PU1NTdHR0mDhxIg0bNsTAwAADAwNlCuLu3bt5/fXXadSoEZ6ennz//ffUrFkTJycncnJy+Pbbb7l3757S4MPc3JyTJ08SGxuLp6cnY8aMoUWLFly6dAkzMzOqVauGn59fuQwabSBIiL8jfX19PDw8uHDhAqmpqbi5uVW6jLGxMampqUqwUpvFaWRkhKWlJdnZ2VStWpVq1aqxdetWunXrhru7O3p6euTk5CjH7NWrVwkICMDBwQFjY2POnz9Pt27d6NmzJ76+vmzevJkrV65gbW3NkCFDaNeuXbkBAe0gxP200w7L0tHReegUP/HvZG1tjaenJ8ePHycpKQlvb2+aNGnClStXiIiIoEaNGkpGl66uLmlpaQwZMgRzc3NGjBhBcHAwHh4eJCYmAr8HMb28vNDT0yM+Pl4J1ms0GszMzJSpqjk5OZiZmSn1Z7du3crGjRupVq0akyZNIi4uDgcHh3JTyc3MzAgICHj6H5QQf1Pa88vVq1fZu3cvDRs2JCsriy+//BIrKyt69uwJlGZlt2rVioMHD3L69Gnq1KmjHJtlJSUlkZGRwd27dyksLMTExAQPDw8OHDjA1q1bUalUREZGcvPmTWJjY1Gr1UyZMkUpAVGWsbExrVq1olWrVk/lsxBC/DtJUFMIIf6jjI2NcXFx4fLly8rNo5Y2kFhcXAyUTj+tXr06urq6HD9+nNatW5fb1meffUZWVpZS32j69OmMGzeOl156CX9/fwoLC8nIyGDmzJl4e3sD0KNHD5o1a6YUc4fSJg4Pa7AixN9d2RqElQU1nZyccHJy4vz586Snp5fLJouJieHOnTtKk4ZBgwbxySef8Prrr9OvXz8cHBxYs2YN8fHx6Onpce7cObp06YK1tTWBgYHlGunUqlWLWrVq/eH+agNSZQcP/mrtS/HvY2JigqWlJWZmZnz33Xc4ODigr69PQUEBmzdvZsqUKezatYs5c+YQFBTE2bNnyczMZObMmeXquR44cABdXV0lIGJtbY27uzuxsbFkZGRgZ2dHUVERKpUKBwcH7ty5o5yXLCws6N+/Pz179lRqzcLv9WaFEA+m/W3/6aefyMnJYcKECZSUlDBo0CAmT56MlZUVbdq0wczMjOHDh3PmzBnGjx/PZ599pgx6FRcXk5WVxYkTJ1i4cCFpaWl88MEHymuYm5uj0Wj47LPPMDAwwMXFBX9/fwYNGkT9+vWpUqWKlHgQQjwxctUqhBD/Ubq6unh7e3Ps2DESExPx8/Mr19kWYP/+/UBpgCQ0NJSmTZuyatUqDAwMaNasGSqVilWrVhEbG8vnn3+OnZ0dGo2G0NBQVq1axe7du7lw4QJubm40btyYkJAQZZpqixYtnsn7FuJJur9WrVqtrlBfrGXLlixevJg9e/YwYMAACgsLycnJYcWKFRgZGSnByPbt22NgYMD8+fP5/PPPKSoqolGjRnz00UcsWbJEmaLr6enJsmXLKt0fbcMG7T7cf2MpN5riYXR1dfHy8uLo0aMUFRUpJRVMTU3p378/RUVFzJw5kzfffJOVK1diYGCAvr4+J06cwNnZWcnk/+6779DT0+P8+fOcO3eOli1b4uDgQFRUFFlZWdjZ2SnB9JUrV1ZaH7lsQFMI8egSExMJCwujTZs2uLi4YGhoyPTp03n//fcZN24cCxYsoG7dugQGBvLxxx/z1VdfMXz4cKpVq0bNmjUxNDTk2rVrnD17FmdnZxYuXEjz5s0pKSkBShtG1qtXDzc3N5ydnZ/xuxVC/NdIUFMIIf7DAgMDgdIMsbJTvUtKSkhKSmLNmjUEBwcrTUImTZrEt99+y+bNm9m4cSPFxcUYGxszbtw4OnbsCPweJLG3t6d///7079//GbwzIZ4Nba3aGzduAJSbuldQUICOjg6dO3cmMjKSTz/9lH379hEaGsq5c+e4fv06b731Fg0aNFAGGNq0aUOzZs24ePEirq6uODs7U1JSwpdffqlMu9UGgyqbKvj/dB0XAn4/T9y4cQMfHx/g9wzfwYMHk5+fz5w5c3j33XcZP348nTt3ZtGiRezYsQNDQ0Pu3r3LkCFD8Pb25qefflLOEXPmzMHS0rJcXVlAGr4J8ZhozyMrV64kNzeXHj16YGhoSFFREY0bN+aDDz5g4sSJjBo1iq+//pr69evTvn17/P392bdvHxcuXGD//v3k5OTg4uLCoEGDaNGihXJNqD1mfXx8lN8GIYR42uQqVwgh/sN8fX3R1dXl4sWL1K9fn5SUFFJSUrh69SobNmxArVbz1ltvYWtri0ajwcnJiU8++YQePXoQGxuLs7MzAQEB5aa9CvFfpq1Ve+XKFaKiokhKSuL27dvcvn2bmzdvkpOTw+DBg5kxYwYbNmwgLCyMjRs34uPjw3vvvccLL7wA/D44sHXrVkxNTZWaYxqNhitXrhATE1Oh8YLUvBRPgvY8ERkZyfPPPw+Ufj+1gc0hQ4ZQWFjI/PnzmTlzJmPHjqVx48acOXMGT09PatWqhb+/PwYGBrRp0wYo/R5bW1s/s/ckxH+Bjo4Oqamp7Nq1i+DgYGrXrg2gNItr3749xcXFjBs3jrfffpsvvviChg0b4uvri6+vLzk5Oejr60uTHiHE35qORntFIoQQ4j8nJSWFbt26UVBQQJUqVYiJiSEzM1PpJDtkyJBKG4kIISpXUlLC0KFDOXLkCC4uLqSlpVFYWAiAoaEhXl5evPfeezRq1AhAaRZ0P22GTd++fTl37hyvvfYaoaGhpKSksGzZMlQqFd9++y3u7u5P9f2J/56UlBTat29PSEgIixcvLvec9nuak5NDREQE3t7eUutSiL+RpUuXMn36dD766CNeeuklSkpKlAxLKD0HRUdHY2lpWa6RnBBC/FNIpqYQQvyHWVhYEBgYSFZWFlWrVqVHjx4EBQXh5+dX7qJXCPFodHV18fDwwMvLCy8vL7p160ZQUBDVqlXDwcGhwvLa7ufa2mT3Z1tOmTKFpUuXsmvXLlauXAlA3bp1efvttyWgKZ4KS0tLatSogb29fYW6y9r/NjMzq7S7sRDi2SksLOTo0aO0adOGli1bAlS4tlOpVFStWvVZ7J4QQjwWkqkphBBCCPGU3N846GG0AaTCwkKioqKUTE8ZcBBCCCGEEEKCmkIIIYQQj11JSYmSfamrqyuBSCGEEEIIIR4zCWoKIYQQQgghhBBCCCH+USRtQAghhBBCCCGEEEII8Y8iQU0hhBBCCCGEEEIIIcQ/igQ1hRBCCCGEEEIIIYQQ/ygS1BRCCCGEEEIIIYQQQvyjSFBTCCGEEEIIIYQQQgjxjyJBTSGEEEIIIYQQQgghxD+KBDWFEEKIx6xVq1a0atXqWe+GEH9bcowI8WByfAjxYHJ8CCHKkqCmEEIIIYQQQgghhBDiH0X/We+AEEIIIYQQQgghhBDi8Xv//ffZtGlTuccMDAxwcHCgRYsWjBo1CktLyyfy2oWFhWRkZODo6PhEti9BTSGEEEIIIYQQQggh/sU++OADrK2tAbh37x6RkZGsW7eOixcvsmbNGvT09B7r6yUkJPDKK68wbNgwunXr9li3rSVBTSGEEEIIIYQQQggh/sVat26Nm5tbuce8vLz45JNP+OWXX2jRosVjfb34+Hiio6Mf6zbvJzU1hRBCCCGEEEIIIYT4j6lfvz4AN27ceMZ78tdIUFMIIYQQQgghhBBCiP+YpKQkADw8PJTHIiMjGTFiBHXq1CEkJIQ+ffpw+PDhcusVFhby6aef0qpVKwIDA2nevDmffPIJWVlZAGzcuJGBAwcCpdPe/f39n8j+y/RzIYQQQgghhBBCCCH+plq1avXQ5/ft2/eH27h79y7p6ekAFBUVERUVxdSpU6lRowYtW7YE4Nq1a/Tr1w87OzuGDRuGgYEB27dvZ+jQocyaNYv27dsDMHnyZLZv387AgQNxd3fnxo0brFq1ipiYGJYsWULdunUZPnw4CxYsoHfv3tSuXfv//AQqp6PRaDRPZMtCCCGeqrvh4c96F4T42zppVfysd0GIv7XaWw7/8UJC/Ee9HnjvWe+CEH9ra1uMe9a78Fj0OTDjWe/CA6VO3fXQ5x8W1Kys+7mWkZERy5cvJyQkBIABAwaQlJTEli1bMDExAaC4uJhBgwYRHR3NgQMHUKlUhISE0L17dyZMmKBs66uvvuLw4cMsX74cU1NTTpw4wcCBA/n888+lUZAQQgghhBBCCCGEEP81j5KJ+UdmzpyJnZ0dUJqpmZCQwKpVq+jfvz/fffcd1apV4+TJkwwYMICCggIKCgqUddu0acPnn3/OxYsXqV27Nk5OTuzYsYPAwEBat26NhYUFY8aMYcyYMf/3fv4ZEtQUQgghhBBCCCGEEOJfrFatWhW6n7/wwgu0bduWKVOmMH36dABWrFjBihUrKt1GYmIiAJMmTWLMmDF88MEHfPzxx4SGhtKmTRu6d++Oubn5k30jZUhQUwghhBBCCCGEEEKI/xhra2vq16/Pnj17UKvVAPTv35/WrVtXunyVKlUAaNiwIQcOHFD+OXr0KJ9//jnLli1j48aN2NjYPJX9l6CmEEIIIYQQQgghhBD/QSUlJQA4ODgAoKenR6NGjcotExkZSXx8PMbGxhQWFnLlyhWcnJzo0KEDHTp0oKSkhKVLlzJjxgzCwsIYMGDAU9l33afyKkIIIYQQQgghhBBCiL+NtLQ0fv31V6pVq4arqyuBgYFs2rSJ5ORkZZmioiLGjx/PqFGjKC4uJiMjg969e7Nw4UJlGV1dXYKCgpT/htLgKPweNH0SJFNTCCGEEEIIIYQQQoh/sb1792JtbQ2ARqMhKSmJ9evXk5+fz1tvvQXARx99xKBBg+jevTt9+/bFysqKsLAwLly4wDvvvKOs36lTJ1avXk1+fj41a9YkMzOTlStXYmdnxwsvvACgLLt161Y0Gg1du3ZFX//xhiElqCmEEEIIIYQQQgghxL/Y559/rvy3np4elpaWBAUF8emnn9KwYUMAatasyZo1a5g7dy5Lly6luLgYb29vpk2bRteuXZX1p0yZgru7O2FhYYSFhWFsbEzDhg156623lHqavr6+DBgwgI0bN3Lx4kXq16+Ph4fHY31POhqNRvNYtyiEEOKZuBse/qx3QYi/rZNWxc96F4T4W6u95fCz3gUh/rZeD7z3rHdBiL+1tS3GPetdeCz6HJjxrHfhgf4tn/HjJjU1hRBCCCGEEEIIIYQQ/ygS1BRCCCGEEEIIIYQQQvyjSFBTCCGEEEIIIYQQQgjxjyJBTSGEEEIIIYQQQgghxD+KdD8XQgghfpNy5w7LN20i4sYNAGrVqMGArl2xNDd/5G18t2YNt1NSmDR6dIXnrkZFsWbbNqJiYzEzMaFOcDC92rfHwszsgduLSUhg/MyZdGnblp7t2//5NyXEY5KReoed67Zw61okAP7B1Xmhd2dMLR79+Ni8bB13klMY8t6bv283LZ3Z4yY/dL1Xxo3AO8CvwuN3M7OY+/F0qoUG0m1Iv0feDyEet5S72az89Vcibt8GoKaHBwMaNsDC2Pih612Ii2PT2XPcTEtDV0cHPwcHetWtg5+j4wPXib1zhw83baZzaCg96tQu99zVxCTWnTpFVGoqZoaG1PH0pEedOlgYG/3/b1KI/0NBejY3d54i62YSADYBbni/UBeV2cOPkbJubDpGfloWwa+98Je3nxmVSMzec+QkpqNvZIBdoBdebWuhpzL4P96dEOJZkaCm+L+8//77bNq06aHLtGrVim+//fYp7VFFLVu2xNXVlRUrVgAwYMAAEhIS2L9//1Pbh8fxmrt27WL9+vVcunSJgoICnJ2dadKkCYMGDcLd3f2RtqH9e127du2xLPdnxcfH06pVq0dadt++fQCVLm9gYICNjQ2NGzdm9OjRODk5PXT7Ojo6mJub4+PjQ//+/XnxxRf/j3ch/q2yc3P55OuvUavVvNi6NSUlJWzbt4/Y27f57N130df/41Pm/uPH2XfsGNWqVKnw3OUbN/hs3jxMjI3p2rYturq67DhwgMvXrzPl7bcxMzGpsI5arebblSspVqsfy3sU4q/Ky8llyYx5qNXFNG3XEo2mhCM/HyA5/jbDP34bvUc4Ps4c/pUzvxzHy9+33OOmZqZ0f7V/heWLiooIW7URUwsznNxdK93m1h/WU5Cb99felBCPSXZBAVO2b0ddUkKnkBBKNBq2h4cTl57O1K5d0NfTq3S9iNuJTN/5M27W1vSpWxe1poTdlyOYvG07E1/sRBUHhwrrqEtK+PbgIYrVJZVs7zaf79iJiUpFl5qh6OrosvPiRS7fvs0nXTpjZmj42N+7EI+iKO8e4Yt/RqMuwa1ZIBqNhvjDl8hNyiD0jY7oPuAYKSvp9HWSTl3H0rtiwP9Rt58ZlcjFJbswc7XFu11t7mXlcftYBDkJdwge+gI6OjqP/b0LIZ4sCWqKx+KDDz7A2tq60uecnZ2f8t483PDhw8nPz3/Wu/HICgsLee+999ixYwfBwcG8+uqrWFpacuPGDTZt2sSGDRuYOXMmrVu3fta7+odsbGyYMWNGucc+//xzoPQ7dP+y6enpANSpU4devXopzxUXFxMZGcmqVas4fvw4W7duxcLCQnn+/uU1Gg1xcXGsXbuWsWPHoqenR4cOHR77+xP/bGH795OemcnMDz7A7bdAeRVPTz6dN4+DJ07QunHjB65bUlLCxl27+Gnnzgcus/THH9HR1WXK22/jZG8PQL2QEMZ9/jmbdu1iQNeuFdbZtHs38YmJ/+c7E+L/d3T3QbIyMhk5eRwOLqXHh6u3Jz/Mms/Zoyep27zRA9ctKSnh0PY97N/yc6XPq4wMCW1Ut8LjO9ZsRK1W03PoAIxNKwb9zx87ReTlq3/xHQnx+OwIv0h6Ti7Te3bH7bfr4SoO9nwWtpND16/Tqlq1Stdbfvw4NqamTOnSBUOD0tuyZn5+vLP+R9adOs2HHSpm528+d56EjIxKt7fs6DF0dHT4pPOLOFlaAlDXy4v3N2xg89lzvNSwweN4u0L8aQlHLnMvK4/aozpj4mAFgLmbPZeW7Cb5bCTOdf0fuK6mpIS4g+HE7Dv/f2//5s5TGFqZEvzaC+j9dswZWpoStfVXMm4kYFPV7bG8XyHE0yNBTfFYtG7dGje3f8ZJoPFDAhN/RzNmzGDHjh2MHTuWV199tdxzw4cP59VXX2XMmDFs2LABf/8HXxD8HZiYmNC5c+dyj82ZMwegwuOAEtR0d3ev9Hl3d3c++eQT1q5dy9ChQ8s9Xtny3bp1o3379sybN0+CmqKCo2fPUt3PTwloAgQHBODs4MCxs2cfGNQsLCriwy++IPb2bZrVq8el69crLJN65w5xiYm0btxYCWgCuDo6UisoiEMnT1YIasYkJLBp1y66tWvH+rCwx/QuhfhrLp44i7d/FSWgCVClhj+2Tg5cPHHugUHNosIiFk79kuT424Q2qkvUlYrHR2WS4m5zfO9hajWph1dV3wrPZ2fdJWzNJp7r9Dz7Nu34a29KiMfkWFQU1V2clYAmQJCbG85WlhyPullpUDPn3j1i79yhfVCQEtAEsDQxoZqzM+HxCRXWib1zh83nztG1Vk1+PHWm3HOp2dnEpWfQqlqAEtAEcLW2opaHB79cvyFBTfHMpIbfxMrbSQk4AlhXccHY3oLU8FsPDGqqi4o5Pz+MvKQMHGr6knmz8oHeR9m+uqgYlZkRdoGeSkATUDI/cxPTJagpxD+QNAoS4m/s1q1brFy5kg4dOlQIaALY2toyZ84cdHR0mDp16jPYw2er/W/1Bc+ePftIy7u6ulK3bl2ioqLIycl5krsm/mFy8vJISUvDp5JSDt7u7tyKi3vgukVFReQVFDDm5ZcZMWAAuroVT63pWVkAuFeSue5kZ0d2Tg53ymTeqNVqFqxeTXBAAM3qVsxgE+Jpys/NIyP1Di5eFW/2XDzcSIyNf+C6xcXF3MsvoPfrg+j+an/0dP94iiHA3o1hGKgMaNW18jqyW39Yj5WNFU1faPlob0KIJyTn3j1S7mbjbW9X4TkvOztupaVVup6JgQGzeveiQ3BQheeyCwrQ0y0/DVZdUsKCQ78Q5OpKU7+K9WXTc3MBcLexqfCco6UF2QUF3JFrH/EMFOXfoyA9BzNX2wrPmTnbknP7zgPX1RSXoL5XSEDf5vj3bIqObsXp4Y+6fT0DfQIHt8XjuZByy+QmliZRGFo9uL65EOLvS4Ka4qnauXMnXbp0ITg4mI4dO3LgwAGGDBnCgAEDlGVatmxZ7v8f9LhGo2HNmjX06NGDmjVrEhQURLt27fjuu+/QaDQP3IcBAwbQsmXpTVB8fDz+/v4P/Gfu3LnKepGRkYwYMYI6deoQEhJCnz59OHz4cIXtHzt2jD59+hAaGkrr1q358ccf/9JnBbBlyxY0Gg39+1esNabl4eFB69atOXXqFElJScrjly5d4pVXXqFmzZo0bdqUhQsXVvq5PMpyGo2Gb775hueff56goCAaNWrE2LFjSXzG02K1wSP1n6g3aPJb3cKHfUceZNeuXXTv3p2aNWtSu3ZtXn75Zc6cKZ8pUVJSwpIlS2jXrh2BgYE0bdqUqVOnlguivvXWW/j7+3Po0CHlsczMTJo0aUKbNm3Iy5P6cE9bemYmADZlslu0rC0syMvPJ/cBfxcTY2O+njCBhrVqPXD7KpUKgPx79yo8l/3bdyPz7l3lsS1795KYksKrvXs/8nsQ4km5m1EalLewtqrwnLmVBQV5+eTnVV7WxcjYiDHTPiSwbs1Hfr2kuNtcu3CZes81xsKq4jF54fhprl+MoNuQfo9Uy1OIJynjt2CijYlpheesTUzIu1dIbiW//bq6ujhbWmJtWn692Dt3uJ6cTNX7GgVtPX+BpKwshjRtUul+GP52LOQXFVV4LrugAIDMBxynQjxJhVml108qi4plRFQWxqjziyjOL6x0XT0jA+q83R37IO/Hvv2CjBySz0YStf0kJo5W2Fb3eKT3I4T4e5ErQfFY3L17V5kqfD9LS0v09PTYvHkz7733HkFBQYwdO5abN28yatQobGxs8PD48yeRr776igULFtC1a1d69epFbm4umzdvZtasWZiamj40EKhVWY1HgLlz55KUlETTpk0BuHbtGv369cPOzo5hw4ZhYGDA9u3bGTp0KLNmzVIyBo8dO8Zrr72Gl5cXY8aMIT09nU8//RQdHZ0H1hx9mPPnz6Ovr09QUMVR/LIaNGjAjh07OHPmDB06dODGjRsMGDAACwsL3njjDYqKiliyZAmFheVP6I+63IIFC5g3bx79+/fH39+f+Ph4li9fzqVLl9i+fTt6j1Dc+0k4fvw4ANWrV3+k5fPz8zl16hRubm6Y/4lu1gAnT57krbfeolmzZvTs2ZP8/HxWrlzJyy+/TFhYmNKs6cMPP2TLli106dKFwYMHExUVxZo1azh79ixr1qzB0NCQjz/+mOPHjzN58mTCwsIwMjJiypQppKens3LlSiXwKp6egt9uOLXBx7JUBqXdMO8VFVHxlrW0EdUfHQPuTk4YGxlx8sIFurRpoxSiLywqIvzqVeW/AeISE9mwcycv9+yJrbU1qXcenMEgxNNw77eAiEElnWH1f3usqLAQY5OKHWwf5fi438kDR9DR1aV+q6YVnsvJyiZs9UaavNAKZw+ZJiiePW0QUVVJgF3123e/sLgY00do0lNQVMS3Bw4C8GJoqPJ4fHoGG8+eZXDjRtiamZGanV1hXTdra4xVBpy8dYvOoSG/n2eKi5Wp7IXq4j/13oR4HNSFpcdI2SnfWrq/HTfqomL0jSteg+no6KCj9/DmPX9l+0V59zg186fSZVR6+HaqX+n6Qoi/PzlyxWPRtZIGF1qbN2+matWqzJgxAx8fH1avXq0EDnx8fJg6deqfDmoWFRUp07KnTZumPN6zZ08aNmzI4cOHHymoWVmNx0WLFhEXF8eECRMI/e2CcurUqdjY2LBp0yYl4PTSSy8xaNAgPv30U1q3bo1KpeKLL77A3t6edevWYWZWOoWhUaNGDBo06C8FNVNTU7G0tKw00FKWw2/dMVNSUgCUDNO1a9cqjZqef/55unTpUm69R11u27ZtNGvWjI8++kh5zNnZmTVr1pCQkPCXgtJ/RmFhYbmgeVZWFufOneOLL77A1NSUvn37PnT54uJi4uLi+Pbbb0lPT+f999//0/uwY8cOjIyMmD9/vnKj0KhRI0aNGsXly5dxd3fnxIkTbNy4kU8++YQ+ffoo6zZv3pwhQ4awdu1aBg0ahI2NDRMmTOCtt95i4cKFBAYGKkHyWg/J9hNPjjZz90l1vdTX16djy5b8uGMHX//wA13atKFEo2H99u0U/DaIoKenR0lJCfNXrsTf1/ehjYmEeJq0ie1PoytsUWER54+fJiA0EGu7itNot674ETMLc1p0avvE90WIR/G4zh/3ior5YtduYu6k07lmCNVdSq/LSkpKmH/wIP5OTg9sOASgr6dHh+Agfjp9lrn7D9AltLQL+/pTp7n3W+BVr5LyKEI8ccpJ5G+0fR0I6NOcEnUJt49HcHHJbqr1aY5doNeT2EMhxBMkQU3xWMycORM7u4q1hKB0evTFixe5c+cOQ4cOLReg6927d7kp3o/KwMCAY8eOUXTfFJuMjAzMzMz+8vTdw4cPM3v2bDp37qwERTMyMjh58iQDBgygoKCAgt8yVgDatGnD559/zsWLF/Hy8uLy5cu8+uqrSkATSrMo/f39/1INR41G80gZLvq/jUJqNBpKSko4fPgwzZs3L9d53tfXlyZNmrB//36AR14OwMnJiRMnTvDDDz/QoUMH7Ozs6NOnT7nA3ZMUFhZGWCWNUvz8/Jg0aRJOZRq7PGx5Hx8fZs+e/ZeaBDk5OZGbm8vUqVPp168fvr6++Pv7s2vXLmWZ3bt3o6OjQ/PmzcsFVatXr469vT0HDx5k0KBBQGk90LCwMBYvXoyFhQUBAQG8+eabf3q/xONh9FsGzf1ZyvB7BqWJkdH/9Rrd27UjNz+fnQcPcuy3sgW1AwN5sXVr1mzdipmJCVv37SMmIYHJb73F3d9+M3LyS6cL3iss5G5ODuampk8luCSElqFR6fFRVMnxUfxbhozR/3l8aN28eoOie4UE1g2t8Fz4ibNcORtO/1Gvcq/gHvcKfp/SW1xUTG52DkbGRjIlXTxVxr9l8xcWV8yCLPytPI7xHwxO5967x4yfd3E9KZnnAqrSu0wt5W0XwolNT2fSiy9yN79AWR7gXnExd/MLMDcyREdHh261apF7r5CfL13ieGQUALU8PegUEsLak6cwe4RsUSEeNz3D0mOkpKhiuaiS344bfaOKMwGe5PYNjA2xDy6d0m4X6MnZOZuJCjspQU0h/oHkqk88FrVq1Xpo9/Pbt28DKFN0tVQqVYXHHpWBgQEHDx5k37593Lp1i5iYGLJ+a8bxV+olRkdH8/bbb+Pn58fkyZOVx+N+axCyYsUKVqxYUem6iYmJGPx2UVtZ1qKPjw/h4eF/ep8cHByIi4ujuLhYCVxWRpuh6eDgQGZmJnl5eQ/cD22w8lGXAxg3bhyvv/46n332GZ9//jk1atSgZcuW9OrVC/synZyflCZNmjBkyBCgNBNCpVLh7OyMi4vLHy6flJTEokWLuHv3LpMmTaJ+/fp/aR9eeukljhw5wsqVK1m5ciVubm60aNGCHj16EBAQAEBsbCwajYbnnnuu0m2Y3lc3a9KkSbRt25bU1FS+/fbbP8zIFU+O3W+Z1GXrWmpl3L2LibGxEvj8q3R0dBjUrRudW7cmKTUVWysr7G1tWbttG7q6utjZ2HA+IoJitZrxX3xRYf1t+/axbd8+vpk0CXvbisXwhXhSLG1Lj4/srIpTXrMz72JkYozK6PEES66HR6Cnr0/V4IoZaZGXSks1rPp6UYXnLp48y8WTZ3ll3Ai8Ayo2URHiSbH9bSA7s5IB9Yy8PEwMVRgZPDhgczc/n8927CQm7Q6tqgUwpGmTcgNXF+LiKFaX8NGmzRXW3X4hnO0Xwvm6Xx/szc3R0dFhYKOGdA4NITHrLrZmptibm7Pu5Cl0dXSwM5NGKOLpM7Qs/d4VZles6Vp4Nx89YwP0Kilv8rS2r2egj02AO7ePXaEotwAD08czSCeEeDokqCmeqsqCjYaPGCgo2wxGo9HwxhtvcODAAWrXrk3NmjXp3bs3devWVTLh/oycnBxGjBiBjo4O33zzTbmME+3r9u/fn9atW1e6fpUqVUhOTgYol8mpVVJS8qf3CaBOnTocP36c8PDwh05LPn36NDo6OtSs+Xsjhkfdj0dZLiAggF27dnH48GEOHDjA4cOH+frrr1m6dCnr1q3D19f3z7ytP83e3p5GjRr95eVbtWpFz549ee2111i6dCm1a9f+0/tgZmbGypUrOX/+PHv37uWXX35hxYoVrFq1ihkzZtCpUydKSkowNTXlm2++qXQb93/XIyIilKziXbt2ERwc/Kf3SzwepiYm2Nvaciu+YhfnW3Fx+D6GEgtHz5zBysKCGn5+WFlYKI9HREbi4+6OysCAAV27VmhIlJWdzTfLl9O0bl2a1auHZZl1hXgajE2MsbKzITGm4vFxOzYeV6+/NjhZmdjIW7h6uWNkXLE+Z5MXWhLcoOLv9w+z5uNbw58m7Vri5O762PZFiEdhamiIvbl5pV3Oo9PS8HnI4G9+YaES0HwhKJCBjRpWWOalhg0qNBrKys9n3v6DNPGrQrOqflj+drwci4zCysSY6i4uWJapz30lMRFve7tK634K8aTpG6swtDGrtMt5TuIdzF0rn+33uLefl5rJpWV7cGsahEuDgHLLqe8VgQ7o6D+bPgFCiL9OCquIp8LLywsozYa8nzYTUktXV7fCFNDi4mIyMjKU/z99+jQHDhzgjTfeYPXq1YwfP54ePXrg6upK5m9djB+VRqNh7NixREVFMXPmzAqZo66upTdIenp6NGrUqNw/Dg4OFBYWYmxsjKurKzo6OsTExFR4jfhKAiWPomPHjujp6bFkyZIHLpOUlMTPP/9M7dq1cXV1xdraGjMzsz/cj0ddTq1Wc/nyZRITE2nVqhVTp07l0KFDfPnll2RnZ/9f3d2fFktLS2bNmoVareadd975S6UAbt26RXh4OKGhobz77rts3bqVsLAwLCwsWLp0KVD6XcnNzSUwMLDCd+Xu3bsYl7lJz8nJYcKECVStWpXu3buzdOnSv5TNKx6f+iEhXLx2jYTfBigAwq9eJTElhUZ/IRB+v7D9+1ny44/lBmjOXLrEtZs3aftbUzJfDw+CAwLK/RPg4wOAo50dwQEBSuMiIZ6mGrVDiIq4Rmri78dH5OVr3ElKIaj+46kFrC4uJvV2Es6elc/8cHBxokoN/wr/AFhYWVKlhj/GptJoTTx99by9uJSQQEJGpvLYxfh4EjOzaPSQgd8lR44Sk3aHdg8IaAL42NsT5OZW7h//38ruOFpYEOTmpgQrw8LDWXrkGOoyg9NnY2K5lpRM2xqP1lRRiCfBroYnmVG3yUvNVB7LiLxNfupdZRr4k96+kY0FxQWFJJ68RkmZa7GCjBzSLkVj6e2EvqFcYwnxTyNBTfFUBAQE4OHhwdq1a8vVu/z555+VqdNadnZ23Lp1q1wG4f79+7lXZpRaG7isUqVKuXXXr19Pfn4+xZXUNXqQOXPmsH//fkaOHEnz5s0rPO/g4EBgYCCbNm1SsjGhtFnR+PHjGTVqFMXFxdjY2FC3bl22bt1KWpnR+nPnznH58uVH3p+yvLy8ePnll9mzZw/z58+v8HxmZiajRo2iqKiIjz/+GCid4tqmTRsOHz7MjRs3lGXj4+M5ePCg8v+PupxarWbgwIF89tln5V47JCQEKA1C/xMEBQUxZMgQEhMTmTlz5p9ef+rUqbzxxhvk5uYqj/n4+GBhYaF8Bi1btgSo8Lfav38/o0ePZtu2bcpjM2bMIDk5mU8++YRx48ZhaWnJhx9+WGlNR/F0vNi6NabGxkyZO5ft+/ezcdcuvlyyBB8PD5rWqQNAcloav5w8SXIlGTl/pHObNsQnJjJ94UL2Hj3Kmm3bmL14MSHVqtG0TP00If6Omr7QEmMTE5bOnMfRXQc4tH036+Yvw8XLnZDfsifTU9I4f+wU/2PvvuOqrv4Hjr8ue6MsZYqg4sKtuS3ALDVnrpDMryPTclSmza+VZblKzZlpOXKluEAtRZLCn9sQzIUoQ4YyZa/7+wO4iRfwggjS9/18PHwUn885557P5XP5fO77c877JCVU/vMBkJKYTEF+AeYWlV9YT4jaNKhdW4z19fnCzw+/kBB8z1/g26PHaGxtRc+mRfeq8WlpBF27TnxxmpPo5GT+uH4DI309nC0tCbp2Xe1f5fvRjujkZBYePsLRy3+z/fRpvv3tKG0cHej50D2zEDXJoVdrdAz1ufTDEaL/CCMy8C/+3nYcE3tLbNoVBf6zku4TfyGcrCT1VCfV0b6WthauA7uSGZdMyLpD3Pm/v4kMuMjF1QdBS4HrwKqlqBJC1C6ZgyCqxdGjRytc3Xvw4MHMmzePyZMnM2rUKIYPH869e/fYvHmzKhdliYEDB/L5558zceJEBg0axO3bt9m5c6dqxCRA+/btMTExYcGCBcTExGBubs6pU6fw9/dHX1+/VOCpIoGBgaxZswZXV1eaNWvGgQMHSk29trKyokePHnz00UeMGzeO4cOHM2bMGOrVq4efnx9//fUX77zzjurY58yZg7e3NyNHjsTb25usrCx+/PHHKq18XmLWrFmkpqby7bffcvz4cfr164eZmRk3b95k7969ZGdns2TJElVeR4AZM2YQGBjI2LFjee2119DW1mbz5s0YGxuXCpppUk5PTw8fHx9Wr17NtGnT6NWrF9nZ2ezYsQNDQ0OGDx9e5WOraVOnTuXQoUPs2LGDQYMGVWoa+vjx45k0aRLe3t4MGTIEfX19jh49SmRkJF9//TVQtMq5p6cnGzZsICYmhm7duhETE8PWrVuxs7NT5fk8efIkO3fuZOTIkaq0Au+99x5z585l1apVzJw5s9qPXTyauakpn86cyU979rDT3x99XV06t2mD9+DBqr9Tf4eHs3rLFt4YO5YG5SyOVp5n2rVj+muvse+33/hpzx7MTU0Z5OnJkOefrzMPB8T/LmMzUya+Px3/bb4c23sIPT09WrR3p9+Il9Ap/nzcunYT3w0/M/Q/r2BhU/nphFkZRQ89DQwln5moW8wMDfnvoJfYFHySXWfPoa+jQ6dGjfDu+gy6xQs+XomNY03g70x5tg8NzMz4OzYWgMycXNYE/l5mu72aVS4/7DMujXnL04P9Fy+y+eT/YW5oyMC2bRjcrp1cZ0St0jMxpM2kF7npd5rbRy+graeDZQsnGr/QCa3iKd9pt+K59ssfNHu5J4YWptXePkCD9q5o6WgR9fslbvqdQVtPh3qutjTq2wEja/NqPWYhRM1QKKuyoooQxebOnYuvr+8jy129ehWAU6dOsXTpUi5fvoydnR0zZsxg8eLF2NvbqxbhKSwsZNWqVfzyyy8kJibSvHlz3n33XTZs2EBmZqaq3Llz51i8eDFXrlxBT0+Pxo0b8+qrrxISEsKmTZs4ceIEVlZWeHh4lGrfx8eHmJgYAgICWLFiRbn5DwG6dOmiqhcWFsaKFSs4e/Ys+fn5qtcbOnRoqTohISEsWbKEkJAQzMzMGD9+PKGhoZw/f77U4juVdeLECbZu3crly5dJS0ujYcOG9O7dGx8fnzIX+4mIiGDhwoWcPn0aPT09RowYAcDatWtVvw9NyxUWFrJp0yZ2795NdHQ02tradOjQgenTp9O6desqHxP8M7qxrPcmOjoaT09Phg4dyldfffXItjQpHxwczPjx43F1dWXv3r2VWpwnMDCQtWvXEh4eTk5ODk2bNmX8+PGlVlPPy8tj/fr17N27l5iYGCwsLOjWrRszZszAzs6OrKwsXnrpJTIzMzl06BDm5v/cQI0dO5aLFy+ya9cuWrRQXyTjUdJk+roQ5TpdT/MR/EL8L+q4L6i2uyDEU+uN1jmPLiTE/7Dtz71X212oFqOPL6ztLpTr3/IeVzcJaopa93DQUQhRNRLUFKJ8EtQUomIS1BSifBLUFKJi/5aAmwQ16x6ZhyCEEEIIIYQQQgghhKhTJKemEDWooKCApKQkjcqamppiYFA38oolJSWVWtG5PAYGBpiaVi5HzpNUV/sthBBCCCGEEEL8r5OgphA1KDY2Fk9PT43KLliwgGHDhj3hHlWPl19+mZiYmEeW0zQ3Zk2pq/0WQgghhBBCCCH+10lQU9S6x1k8p66xtrZm48aNGpVt0qTJE+5N9Vm0aBE5OY/ONWRjY1MDvdFcXe23EEIIIYQQQgjxv06CmkLUIH19fbp3717b3ah2HTt2rO0uVEld7bcQQgghhBBCCPG/ThYKEkIIIYQQQgghhBBC1CkS1BRCCCGEEEIIIYQQQtQpEtQUQgghhBBCCCGEEELUKRLUFEIIIYQQQgghhBBC1CkS1BRCCCGEEEIIIYQQQtQpEtQUQgghhBBCCCGEEELUKRLUFEIIIYQQQgghhBBC1CkS1BRCCCGEEEIIIYQQQtQpEtQUQgghhBBCCCGEEELUKRLUFEIIIYQQQgghhBBC1Ck6td0BIYQQ1eN0vfza7oIQT60uKXLLI0RFTg/uVdtdEOLpFX60tnsghBCiDDJSUwghhBBCCCGEEEIIUadIUFMIIYQQQgghhBBCCFGnSFBTCCGEEEIIIYQQQghRp0hQUwghhBBCCCGEEEIIUadIUFMIIYQQQgghhBBCCFGnSFBTCCGEEEIIIYQQQghRp0hQUwghhBBCCCGEEEIIUadIUFMIIYQQQgghhBBCCFGnSFBTCCGEEEIIIYQQQghRp0hQUwghhBBCCCGEEEIIUadIUFMIIYQQQgghhBBCCFGnSFBTCCGEEEIIIYQQQghRp+jUdgeEEEKIp0Xy3UQO7dhHxNUbALi1acmLowZjbGZaYb3rl/4m8OBv3LkVhUJLgaOLM17D+uPo6lyl9jVtT4ialJCYyCZfXy5fvw5Ah1at8Bk6FHPTij8fF//+mz2HD3MzKgotLS2aOjszeuBAmjo7lyqXev8+2w8c4OylS+Tm59PYwQHvwYPVyoVHRrJt/36uRkSgpaVFS1dXfIYOxa5Bg+o8XCEq5Wm5ftz8+zrHfP2JjYrBwNCA1p3b4TV0AHoG+tV3sEJUQXbSfW4eOkPqzTgALJo70PjFzuiZGGrcxnXfYLLupdJm0otq+y6sOkB6dKLadsvWjWj5ynOqn1NvxXPr1/Okx9xDx1APyxZONPJqj66xQRWOSghR2xRKpVJZ250QT7e5c+fi6+tbYRlPT09WrVpVQz1S5+Hhgb29PZs3bwbAx8eHmJgYAgICaqwP1fGaR44cYefOnYSGhpKdnY2trS09e/Zk3LhxODo6atRGye/r6tWr1VKusqKjo/H09NSo7LFjxwDKLK+rq4uFhQU9evRgxowZNGzYsML2FQoFpqamuLi44O3tzaBBgx7jKOqmo5Hna7sLdVpmegarP11CQUE+XT17o1QW8sfh49SzrM+Uj99GW6fs54ARV2+wYeFKbOwa0rHXMxQUFHI64A/up6Yyce50HFwaVap9TdsTldMlRZ7jPo77GRnMXbiQgoICXujTh8LCQg4cO4a1hQVfvvsuOuV8Pi5fv85nK1bg0LAhz3XrRkFBAUeCgkhJTeXTmTNpUhywzMrO5oPFi0lOTWXAc89hbGTE4RMnSEpJ4ct338XJzg6AO/HxzF20CH1dXQZ4eADgFxCAElg4dy4W5uY18Xb8K52ul1/bXaiznpbrx82/r7Nx8SrsGznSvkdnUpNTOPnbCewaOTDx/ekoFIoae0/+bdaHH63tLtRpeZk5XFi5H2VBIXbdWqBUKokOCsWgngntpg5ES1v7kW3Enb3G9T3BmDduoBbUVCqVBH+6lfpN7LBsVfo+yaCeMeaNi75HpNyMJXTjb+gY6mHXrQUKhYKY4MvoGOrTdkp/dA0l+F9V2597r7a7UC1GH19Y210o17/lPa5ucocvNPb+++9Tv379MvfZ2trWcG8qNmXKFLKysmq7GxrLzc1lzpw5+Pv706ZNGyZOnIi5uTnXr1/H19eX3bt3s2jRIry8vGq7q49kYWHBwoWlLwYLFiwAis6hh8smJSUB0KlTJ0aOHKnal5+fz40bN9i6dSsnT55k//79mJmZqfY/XF6pVBIVFcX27duZPXs22traDBgwoNqPT/x7/flrIKnJKbz52XvY2BXd/No3bsRPS1Zz/s/TdO7Tvcx6/tt8Ma9fj9c/moWevh4A7bt3ZtlHCzi6x4/X3p1aqfY1bU+ImuQXEEBSSgqL3n8fh+KHTE0aNeKLlSsJPHUKrx49yqz30549WNarxxfvvou+XtH53LtLF97+4gu2HzzIR2++CcC+334jNiGBT956i5ZNmwLQrUMH3po3j/1Hj/Lmq68W9SMwkJycHD6dOZPGDg4AuDdrxgeLF+MXEIDP0KFP9H0QoixPy/Xj8M591LOoz4S5b6GrpwuAuUV9Dm75heuhV2jm3uKJvg9ClCfmjzByUjPpOH0wRjb1ADB1sCZ0w6/En7+BbWe3cusqCwuJCgzh9rGL5ZbJSU6nMDcfy5ZONGjvWm658AOnUGgpaPt6fwwti75XWLZy4vzy/UQFhuDyYucqHZ8QovZIUFNozMvLC4fiLxBPux7lfLl6Wi1cuBB/f39mz57NxIkTS+2bMmUKEydOZObMmezevRs3t/Iv+k8DIyMjBg8eXGrbsmXLANS2A6qgpqOjY5n7HR0d+fTTT9m+fTuTJ08utb2s8sOGDaN///6sXLlSgpqiUi6dOk9jtyaqL4wATVq5YdnQhkunLpT5pTQrI5O4qDv0eP5Z1RdSABNzU5ybuRIe9s9IaE3ar0x7QtSkP8+fp2XTpqqAJkCb5s2xtbEh+Pz5MoOa6ZmZ3I6JYcBzz6kCmgD1zMxo0aQJIVeuAEUPpX4/fZr2LVuqApoA9c3MeHXoULS0/kkBn3DvHqYmJqqAJoBro0aYGBsTFRtbrccshKaehutHXm4exqYmtOrYRhXQBGjsVhTgiYuMkaCmqDV3Q25Sr3FDVUAToH4TOwytzbgbElFuULMgL5+Lq/3IjEvGpr0rKTfL/jufkZACgKFV+aP1s5PTyYxPoWGXZqqAJoCRdT0sWjgSf/6GBDWFqINkoSAhallERARbtmxhwIABagFNAEtLS5YtW4ZCoWD+/Pm10MPa1b9/fwDOn9dsarW9vT2dO3cmPDyc9PT0J9k18S+SlZFJ8t1E7JzVH9zYOTkQGxldZj19QwNmfPkB3fs9q7YvMz0DLW2tSrWvaXtC1KT0zEwS7t3DpYw0KI0dHYmIiiqznpGBAd989JFqmviD7qeno10crLyblERSSgptmjcHioKc2Tk5ADzfq1epgGlDa2vSMzJIvX//n7YyMsjMyqLeA6P5hagpT8v1Q1dPl3FvT6HPwOdLlYmNjAGgnpVFpY5LiOqSl5VDdlI6JvaWavtMbC1Jv6OeB7OEMr+Qgpxcmo/pg9uIXii0yk6hkBmfDICRTVFQsyA3T61MbloGAMYN1GceGlqYkp+RQ05qxqMPSAjxVJGRmqLaHTp0iLVr13Lz5k2cnJx455132LJlC7m5uaqclw/nwCzx8HalUsn27dvZvXs34eHh5OfnY29vz7Bhw5g0aVK5uYEezG/5qByPb775Jm+99RYAN27c4JtvvuHUqVPk5eXRokULpk2bRq9evUrVCQ4OZvny5Vy5cgUrKytef/31Kr9f+/btQ6lU4u3tXW4ZJycnvLy8OHToEHFxcar8kqGhoSxdupQLFy5gYmLC2LFjKStNribllEolK1eu5MCBA9y5cwdTU1N69OjB22+/XavpBUpG6BQUFGhcx8jICKDM96Iie/bs4f3332f58uV8/fXXJCYmMnHiRN566y1u377NqlWrOHnyJElJSRgZGdGhQwfeeecdmj4wsig3N5e1a9dy4MAB4uLisLW1Zfjw4UyYMAHt4nxBOTk5rFq1igMHDpCQkECDBg0YNGgQb7zxBnoPjGYSNSctORUAs/r11PaZ1jMjOzOLrMwsDI1KJ7PX0tLCqoG1Wp24qDtE3oigaevmlW5fk/aEqElJKSkAZearrG9mRmZWFhmZmRgX/+0toaWlha2NjVqd2zExXIuIoG2LolFjsQkJAJiZmrLZ15djwcFkZWfTwNqacUOH0tHdXVV3sJcX50NDWf7TT7xaPNV8y969aGtr8+Kzz1bH4QpRKU/T9eNByfeSiLhyg8M79mJjb0uL9u5q9YWoCbmpmQDomRmp7dMzM6QgK4/8rFx0DNXvgbUNdOn09vBHPtTNTEhBW1+Hm/5nuBsSQWFuPgYWJjTq2wGbti4AaOkWhT4KctQDnnmZRQ/Scu9noW9uXLkDFELUKglqCo2lpaWppgo/zNzcHG1tbfbu3cucOXNwd3dn9uzZ3Lx5k+nTp2NhYYGTk1OlX/Pbb79lzZo1DB06lJEjR5KRkcHevXtZsmQJxsbGFQYCS5SV4xFgxYoVxMXFqQKWV69e5ZVXXlEFKXV1dTl48CCTJ09myZIlqhGDwcHBTJo0CWdnZ2bOnElSUhJffPEFCoWi3JyjFbl48SI6Ojq4u1d8s9m1a1f8/f05d+4cAwYM4Pr16/j4+GBmZsbUqVPJy8tjw4YN5Obmlqqnabk1a9awcuVKvL29cXNzIzo6mk2bNhEaGsrBgwdVAbmadvLkSQBatmypUfmsrCzOnDmDg4MDpo9Ykbc8H374IWPHjsXExIR27dpx7949Ro4cqQoI169fn7///pudO3cSFhZGQEAAurpFU72mTZvGiRMneOmllxg/fjwhISEsWbKExMRE3n//fQoKCnj99dc5f/48I0eOxNXVldDQUNasWcPff//N6tWrJZF/LcjJzgYoNWWvhE7xtrzcXLUvjWXJzc5h9/otAPTq7/nY7ZfVnhA1qWTUZFkPXfSK//bl5OWhydfA7JwcVhY/uBxcnCc6szgH9g4/P3S0tXnt5ZfRUig4cOwYi77/ng+mTlWN4rSysGBov35s2LWL9776CigKDr09YUKpKelC1JSn8fqRmZ7B0vc+K66nx0DvYWXWF6ImlIya1NZVDz1oFS9yVZCXX2ZQU6FQoNB+9H1xRnwKBTn55Gfn4jaiF/nZudwJvszVHSdQFipp0N4Vowb10DbQ5V7YbRz6uKvutwvy8km+XjSiuTBPFkwToq6RoKbQ2NAKku/v3buXZs2asXDhQlxcXPj5559VX35cXFyYP39+pYOaeXl5qmnZXxV/cQEYMWIE3bp1IygoSKOgZlk5HtevX09UVBSffPIJ7dq1A2D+/PlYWFjg6+urGuk3duxYxo0bxxdffIGXlxd6enosXrwYa2trduzYgYmJCQDdu3dn3LhxVQpq3r17F3Nz80eO0LMpHu2SUDyiZcWKFQBs375dNZKyX79+DBkypFQ9TcsdOHCA3r1789FHH6m22drasm3bNmJiYqoUlK6M3NzcUkHz1NRULly4wOLFizE2NmbMmDEVls/PzycqKopVq1aRlJTE3Llzq9yXAQMGMHPmTNXP69atIzU1lZ9//hlX13+SjxsbG7Nu3TquXbtGq1at+P333zlx4gSzZs1iypQpAIwZM4a8vDy2bt3KtGnTOHr0KCdPnmT9+vWlRgC3adOGTz75hGPHjtWJBaH+bUoG9T5uQDk3J5cty9cTF3WH3gO8aOzW5LHaL689IWpSyaj3x/185OTmsnDdOm7HxDDk+edV+TPz8ou+RGZmZfHtxx9jUnwN7ti6NdM/+4ztBw6ogpo7Dh5kz5EjtGjSBK8ePSgsLOTXP/7g2w0beHvChFKjOoWoCU/j9UOhUDByyjgK8vP5v6NBbFy8mlFTxtGqU9vH6qMQVaI6iZ/cS9h2boZSqcSu6z95Y63bNOb8sr1EHDqDTdvGaGlrY9+jFZHHLnJ1xwkcn3VHWajk9tELFOYWXYcUkuZHiDpHgppCY4sWLcLKyqrMfU5OTly6dInExEQmT55cKkA3atQoVWCtMnR1dQkODiYvr/QUgeTkZExMTMjMzKx0mwBBQUEsXbqUwYMHq4KiycnJnD59Gh8fH7Kzs8kufioO0LdvXxYsWMClS5dwdnYmLCyMiRMnqgKaUDSK0s3NrUo5HJVKpUajIHWKn2QqlUoKCwsJCgqiT58+paaGu7q60rNnTwICAgA0LgfQsGFDTp06xU8//cSAAQOwsrJi9OjRjB49utLHVBV+fn74+fmpbW/atCnz5s1TTbl/VHkXFxeWLl36WIsEde5cOkn45MmTGT58OJaW/+QCys7OVk2NLzkXAwMD0dLSYuzYsaXqz5kzhzfeeANjY2N+/fVXLCwsaNWqVamgbJ8+fdDW1iYwMFCCmrVA30AfKBrt8rD84hEGBgYGFbaRlZnFlm/XEXkjgg69nsFr2D/nYFXar6g9IWqSgX7R+fvwCH+A3OJrtNEjPh8ZmZl8tXYt127e5LmuXRk9cKBqX8kiQs+0basKaAIYGxnRsXVrTpw+TXZODgUFBew/dgxXJyc+eest1d/g7h068MHixazdto2VzZurRs4LUROexuuHobER7l3aA9CqUztWfPwV/tt9JagpaoW2ftHf5MI89VRShcUPtXQMHu/vtu0z6ul5tHV1sGnvSuSxv8hMSMG4oQVOHm1VozjvhkQAYNHCAYferbl15Dw6hvqP1Q8hRM2ToKbQWIcOHSpc/fzOnTtA0arUD9LT01PbpildXV0CAwM5duwYERER3L59m9TUotxClc2XCHDr1i3efvttmjZtymeffabaHlW8yMHmzZvV8nyWiI2NVX1RKmvUoouLCyEhIZXuk42NDVFRUeTn56sCl2UpGaFpY2NDSkoKmZmZ5fajJFipaTmA9957jzfeeIMvv/ySBQsW0KpVKzw8PBg5ciTW1uo5n6pbz549mTBhAlA0wkBPTw9bW1vs7OweWT4uLo7169eTlpbGvHnzeOaZZx6rLw8GL0vk5eXxzTffEBYWRmRkJNHR0ao8n4WFhQDExMRgaWlZKuANYG1trXoPIyMjSUpKolu3bmW+dqys3lsrzC2LRlnfT72vtu9+ShoGRoboGZR/o5uRdp8fl64hLjKGTn26M+jVEaVG1VS2/Ue1J0RNsiqehZCSlqa2LzktDSNDQ1Xgsyyp9+/z5apV3IqOxqtHDyaOGlXqfLaoVw8As4f+dgKYm5qiVCrJyskhKTmZ/Px8unfsWGpFdB0dHXp26sTWffuIiY/HWaahixr0tF0/Hqarp4tb21b839ETZNxPx9hU/XMmxJOkb150zuXez1Lbl5uWhbahLtpPKD2CrnFRWoaCkpGYCgWuA7rg2MedrHtp6JsbY1DfhFu/ngctBfr1JJ+mEHWNBDVFtSsr2KhfwZedBz24GIxSqWTq1KkcP36cjh070r59e0aNGkXnzp0ZN25cpfuVnp7OtGnTUCgUfPfdd6Weape8rre3d7mj5Jo0aUJ8fDxAqZGcJUoCW5XVqVMnTp48SUhICB06dCi33NmzZ1EoFLRv3161TdN+aFKuefPmHDlyhKCgII4fP05QUBDLly9n48aN7Nixo9S06yfB2tqa7t27V7m8p6cnI0aMYNKkSWzcuJGOHTtWuS8PflmGovd+woQJGBkZ0b17d4YPH07Lli2JjIwsFRzXZDGjgoICnJ2d+e9//1vmfjNZvbdWGBoZUs/Kgtjb6qvU3omMxt65/AczOdnZqi+k3fr2of8Y9VQdlWlfk/aEqEnGRkZYW1oSEa1+/kZEReFaQXqSrOxsVUCz/3PPMW7YMLUyjra26OjoEBUXp7YvITERXV1dzE1MSCte8bys61xh8b1H5R93CvF4npbrx93YeDYtXUvPFz14xqOn2uugUKBTRk5DIZ40HUM99C1MylzlPD02EVP7smcCaionNYNLG3/Fpk1jnDzaldqXda9oMIxB/aLAasJfN9EzNaSeiy16Jv/koU29FYeJvWWZeT+FEE83SRohqo2zszNQNBryYSUjIUtoaWmpTWPLz88nOTlZ9fPZs2c5fvw4U6dO5eeff+aDDz7g5Zdfxt7enpTilVg1pVQqmT17NuHh4SxatEht5Ki9vT0A2tradO/evdQ/GxsbcnNzMTQ0xN7eHoVCwe3bt9VeI7qML3uaGDhwINra2mzYsKHcMnFxcRw+fJiOHTtib29P/fr1MTExeWQ/NC1XUFBAWFgYsbGxeHp6Mn/+fH7//Xe++eYb7t+/z65du6p0bDXJ3NycJUuWUFBQwDvvvFOlVADlWb58OQYGBvj5+bFkyRJef/11evXqxf37pUdN2NnZkZiYSEZGRqntYWFhvPPOO9y4cQMHBwdSUlLo2rVrqfOsc+fOpKSkqPK5iprXqmNbwi9f5W5svGrbjbCrJMYl4P5M+Q8cDmz+pfgLae8KA5Catq9pe0LUpGfatuXS1avExP9z/oZcuUJsQgLdK3iI9MPOndyKjubFZ58tM6AJRdPbO7m7cyE0lKgHRqsnJCZy9tIlOrm7o6WlhaOtLfXNzQk8dUo17R2KpsCfOH0aUxMTHB9KVSJETXgarh8WNlZkZ2VxJjCYgvx/FjtJvpdE2Nm/cHZzRf8R0+CFeFKsWjUiJfwOmXdTVNuSb9wh624a1m0aP1bb+ubGFGTnEnvmGvnZ/3y/zE5JJ/7cdcxdG6JnWnR/HfNnGOEHTlFY8M/DscQrUaTdSsCujCnsQoinnwQ1RbVp3rw5Tk5ObN++vVS+y8OHD6umTpewsrIiIiKi1AjCgIAAcopXWAVUgcsmTUovjLFz506ysrLIz9d8dbply5YREBDAm2++SZ8+fdT229jY0Lp1a3x9fVWjMaFoyvEHH3zA9OnTyc/Px8LCgs6dO7N//37u3bunKnfhwgXCwsI07s+DnJ2dGT9+PL/99hurV69W25+SksL06dPJy8vj448/BoqmTvTt25egoCCuX7+uKhsdHU1gYKDqZ03LFRQU8Oqrr/Lll1+Weu22bYtyLz08cvFp5e7uzoQJE4iNjWXRokXV1m5KSgoWFhZYWFiott2/fx9fX1/gnxGaffr0obCwUC0IvG3bNg4dOoSVlRUeHh6kpKSwbdu2UmW2b9/OrFmzVKu9i5rX60UPDI2M2LhoJX8eOc7vB39lx+ofsXN2pG3XoqBNUsI9LgafISmh6POfcCeOv06excDIkIaODlwMPqP2rzLtV6Y9IWrSIC8vjA0N+XzFCg4GBLDnyBG+2bABFycnenXqBED8vXucOH2a+OLrY3RcHEFnzmBkaIizgwMnTp9W+1di7ODBGBka8tny5ew5coT9R4/y32+/RU9XlzEvvQQUXYv+M2IEd+Lj+XDxYvwDAzkYEMD7ixZxJz6eccOGVZjGRYgn5Wm4fmhrazPglWHER99h/VcrOHUsiOP7j7D286VoaWkx8JXhNf/GCFHMoVdrdAz1ufTDEaL/CCMy8C/+3nYcE3tLbNoVzQbLSrpP/IVwspLUUy08iuugruSmZvLXWn9i/rxM5PG/uLjqIAotLZq81FVVzrG3O5nxKVzefJTY01eJ+PUcf/98nPrN7LBp51JtxyuEqDly5yc0dvTo0QpX9x48eDDz5s1j8uTJjBo1iuHDh3Pv3j02b96slrR/4MCBfP7550ycOJFBgwZx+/Ztdu7cqRoxCdC+fXtMTExYsGABMTExmJubc+rUKfz9/dHX11cbDVeewMBA1qxZg6urK82aNePAgQOlpq5ZWVnRo0cPPvroI8aNG8fw4cMZM2YM9erVw8/Pj7/++ot33nlHdexz5szB29ubkSNH4u3tTVZWFj/++GOVVj4vMWvWLFJTU/n22285fvw4/fr1w8zMjJs3b7J3716ys7NZsmQJzZv/8wRxxowZBAYGMnbsWF577TW0tbXZvHkzxsbGpUbBalJOT08PHx8fVq9ezbRp0+jVqxfZ2dns2LEDQ0NDhg+vOzfCU6dO5dChQ+zYsYNBgwY91jT0Er179+b7779nxowZ9OzZk7t37/LLL7+oAtsl56KHhwc9e/bkq6++4vr167i7u3PhwgX27t3LtGnTqFevHiNGjMDX15fPP/+csLAw2rRpw7Vr19ixYwetWrViWDkjmcSTZ2xmysT3p+O/zZdjew+hp6dHi/bu9BvxEjrFf8NuXbuJ74afGfqfV7CwseLW1XAAsjOz8N3wc5nttuveWfP2K9GeEDXJ3NSUT2fO5Kc9e9jp74++ri6d27TBe/Bg1TX+7/BwVm/Zwhtjx9LAyoq/b9wAilY1X71lS5nt9u7SBQBrS0vmv/MOW/ft48CxYyiVSlq4uuI9ZAgNHliksEvbtnz05pv8cugQ2w4cAKCxgwNzpkyhfcuWT/ItEKJcT8P1o6S8jq4OJ/yPcWjHXnT19XFt0RSvYQOwamjzhN8FIcqnZ2JIm0kvctPvNLePXkBbTwfLFk40fqETWjpFC6am3Yrn2i9/0OzlnhhamFaqfauWjWjp40FkYAgRR86ipatNvca2OPfrgJF1vX/KtXbGbVRvok9c4qb/aXRNDHHo1RrHPm1Q1JFBHEKI0hTKqqy2Iv6nzJ07VzUirSJXr14F4NSpUyxdupTLly9jZ2fHjBkzWLx4Mfb29qpFeAoLC1m1ahW//PILiYmJNG/enHfffZcNGzaQmZmpKnfu3DkWL17MlStX0NPTo3Hjxrz66quEhISwadMmTpw4oRr99mD7Pj4+xMTEEBAQwIoVK/juu+/K7XeXLl1U9cLCwlixYgVnz54lPz9f9XpDh5aeEhQSEsKSJUsICQnBzMyM8ePHExoayvnz50stvlNZJ06cYOvWrVy+fJm0tDQaNmxI79698fHxKXOxn4iICBYuXMjp06fR09NjxIgRAKxdu1b1+9C0XGFhIZs2bWL37t1ER0ejra1Nhw4dmD59Oq1bt67yMUFRsA8o872Jjo7G09OToUOH8tVXXz2yLU3KBwcHM378eFxdXdm7dy96xSvrPsqePXt4//332bRpU6nFhnJycvj222/x9/cnOTkZGxsbunbtyn/+8x8GDBjAK6+8ohpFm5OTw8qVKzlw4AD37t3DycmJV155hTFjxqhGvKanp7Ny5UqOHDlCQkICNjY2eHh4MG3atMcKjh+NPF/lukL823VJkee4QlTkdD3NZ8AI8b9mffjR2u6CEE+17c+9V9tdqBajjy+s7S6U69/yHlc3CWqKGvFw0FEIUf0kqClE+SSoKUTFJKgpRPkkqClExf4tATcJatY9MsZaCCGEEEIIIYQQQghRp8iwBSGqWUFBAUlJSRqVNTU1xaCOrESZlJSkWhCnIgYGBpiaVi4PzpNUV/sthBBCCCGEEEKI8klQU4hqFhsbi6enp0ZlFyxYUGcWhnn55ZeJiYl5ZDlNc2PWlLrabyGEEEIIIYQQQpRPgpqiRjzO4jl1jbW1NRs3btSobJMmTZ5wb6rPokWLyMnJeWQ5G5una3XNutpvIYQQQgghhBBClE+CmkJUM319fbp3717b3ah2HTt2rO0uVEld7bcQQgghhBBCCCHKJwsFCSGEEEIIIYQQQggh6hQJagohhBBCCCGEEEIIIeoUCWoKIYQQQgghhBBCCCHqFAlqCiGEEEIIIYQQQggh6hQJagohhBBCCCGEEEIIIeoUCWoKIYQQQgghhBBCCCHqFAlqCiGEEEIIIYQQQggh6hQJagohhBBCCCGEEEIIIeoUCWoKIYQQQgghhBBCCCHqFAlqCiGEEEIIIYQQQggh6hSd2u6AEEIIIcSTVvD78drughBPtS59nqvtLgjx1Fpf2x0QQghRJhmpKYQQQgghhBBCCCGEqFMkqCmEEEIIIYQQQgghhKhTJKgphBBCCCGEEEIIIYSoUySoKYQQQgghhBBCCCGEqFMkqCmEEEIIIYQQQgghhKhTJKgphBBCCCGEEEIIIYSoUySoKYQQQgghhBBCCCGEqFMkqCmEEEIIIYQQQgghhKhTJKgphBBCCCGEEEIIIYSoUySoKYQQQgghhBBCCCGEqFMkqCmEEEIIIYQQQgghhKhTJKgphBBCCCGEEEIIIYSoU3RquwNCCCHE0yz5biKHduwj4uoNANzatOTFUYMxNjPVuI29P+4gMT6BCXPeUtsXcyuK3345QOSNWyi0FDi7ufLiqCFYNbSptmMQojokpN1ny//9H5fv3AGgvZMTPt26YmZoWGG9v6Ki8D1/gZv37qGlUNDUxoaRnTvRtEGDUuXCYu6w8+xZbicmYqSnxzMuLozq3AkDXV0A7t6/z/Sft1f4Wh+/NICWdnaPcZRCVE1CYiKbfH25fP06AB1atcJn6FDMTTW/Vqzbto07CQnMmzFDbd+V8HC2HThAeGQkJkZGdGrThpH9+2NmYlKqXOr9+2w/cICzly6Rm59PYwcHvAcPpqmz82MdnxCPKzvpPjcPnSH1ZhwAFs0daPxiZ/RMKr6GPOi6bzBZ91JpM+lFtX1J12KICvyL9JhEUCgwc7SmUd8OmDlZlyp3YdUB0qMT1epbtm5Ey1eeq+RRCSFqmwQ1nwJz587F19e3wjKenp6sWrWqhnqkzsPDA3t7ezZv3gyAj48PMTExBAQE1FgfquM1jxw5ws6dOwkNDSU7OxtbW1t69uzJuHHjcHR01KiNkt/X1atXq6VcZUVHR+Pp6alR2WPHjgGUWV5XVxcLCwt69OjBjBkzaNiwYYXtKxQKTE1NcXFxwdvbm0GDBj3GUdSsgoICvv/+e3bu3ElaWhqdOnXik08+wU6++IpHyEzPYMPClRQU5NPrBQ+UykL+OHyc+Og7TPn4bbR1Hn0ZPRf0f5w7cRJnN1e1fffiEvjh6xXo6enx7EvPAxD8ayDff7mMaZ+9h1k982o/JiGq4n52Np8fPEhBYSEvtW1LoVLJwZAQopKSmD90CDra2mXWu3wnlq8PHcahfn1Gd+5MgbKQX8Mu89mBg/x30Es0sSkK3ofF3OELPz8aW1nxyjNdSEzP4FBoKDfv3mXeoJeKrkEGBkx97lm118gtyOenP09iamiAk6XlE3wXhCjb/YwMPl2+nIKCAgZ5eVFYWMiBY8eIvHOHL999Fx0NrhUBJ09yLDiYFk2aqO0Lu36dL1euxMjQkKHPP4+Wlhb+x48Tdu0an7/9NiZGRgBkZWczb9kyklNTGfDccxgbGXH4xAk+Xb6cL999Fye57xG1JC8zh5AfDqMsKMShd2uUSiXRQaFkxCXTbupAtMq5hjwo7uw14s5cw7xxA7V9KRFxhP30G0Y29XB+vgPKAiV3Tv1NyPeHaDv5RUwdiwKbSqWSzIRULFs6YdmqUak2DOoZV8/BCiFqlAQ1nyLvv/8+9evXL3Ofra1tDfemYlOmTCErK6u2u6Gx3Nxc5syZg7+/P23atGHixImYm5tz/fp1fH192b17N4sWLcLLy6u2u/pIFhYWLFy4sNS2BQsWAEXn0MNlk5KSAOjUqRMjR45U7cvPz+fGjRts3bqVkydPsn//fszMzFT7Hy6vVCqJiopi+/btzJ49G21tbQYMGFDtx/ckrFq1ipUrVzJ+/Hisra1Zs2YNb7zxBnv27EFbg5so8b/rz18DSU1O4c3P3sPGrijwb9+4ET8tWc35P0/TuU/3cusWFhby+8HfCNh3uNwywb8GkpeTy6T3p2Pr5ACAS8tmrP18KcFHAnlh1ODqPSAhqsg/5BJJ6Rl8PWI4DsX3Kk1srPnS7xC/X7uGZ4sWZdbbdPIkFsbGfD5kCPq6RbedvZs25Z2du9hx5iwfDugPwJb/+z8sTUz476CX0CsOAFmZmLDhjz/5Kyqadk6OGOjq0qtZU7XX+Cn4JPmFBbzp8Rwm+vpP4vCFqJBfQABJKSksev99HIofEjdp1IgvVq4k8NQpvHr0KLduYWEhe44c4ZdDh8ots3HXLhRaWnz+9ts0tC4KznRp25b3FizA98gRfIYOBWDfb78Rm5DAJ2+9RcumRZ+Vbh068Na8eew/epQ3X321ug5ZiEqJ+SOMnNRMOk4fjJFNPQBMHawJ3fAr8edvYNvZrdy6ysJCogJDuH3sYrllbvqdRt/cmHZvDERbr+gaYtPBlXPf+HLrt/O4/6cfADnJ6RTm5mPZ0okG7dUfNgsh6h4Jaj5FvLy8cHBwqO1uaKRHBTdnT6OFCxfi7+/P7NmzmThxYql9U6ZMYeLEicycOZPdu3fj5lb+RfVpYGRkxODBpQMdy5YtA1DbDqiCmo6OjmXud3R05NNPP2X79u1Mnjy51Payyg8bNoz+/fuzcuXKOhPU3LlzJ71792bOnDlAUUB3yZIl3Lx5k6ZN1b8gC1Hi0qnzNHZrogpoAjRp5YZlQxsunbpQblAzLzePtfO/IT76Du26dyb872tllku6m4iRibEqoAng0NgJQ2Mj4mNiq/dghHgMweHhtLSzVQU0AdwdHLCtZ87J8JtlBjXTc3KITEykv7u7KqAJYG5kRAtbW0KiYwDIzc/HzNCQLo0bqwKaAC2KH+jeTkyknVPZsykiExM5EhpKH7dmqvJC1LQ/z5+nZdOmqoAmQJvmzbG1sSH4/Plyg5q5eXl8uHgxkXfu0LtLF0KvqV8r7iYmEhUbi1ePHqqAJoB9gwZ0cHfn99On8Rk6FKVSye+nT9O+ZUtVQBOgvpkZrw4dipaWLKUgas/dkJvUa9xQFdAEqN/EDkNrM+6GRJQb1CzIy+fiaj8y45Kxae9Kyk31e6O8rBwyYpOw79lKFdAE0DMxxLxxQ5JvxKi2ZSSkAGBoJTNhhPi3kKub+NeLiIhgy5YtDBgwQC2gCWBpacmyZctQKBTMnz+/FnpYu/r3Lxolc/78eY3K29vb07lzZ8LDw0lPT3+SXas22dnZxMbGolQqAcjJyQGKpuALUZ6sjEyS7yZi56z+sMnOyYHYyOhy6+bn55OTlc2oN8YxfKI32lpljwi2bGBNZkYmGWn3Vdsy0zPIzsrG1NyszDpC1LT0nBwS0u7T2NpKbZ+zlRUR9+6VWc9IV5clo0YyoI272r772dloaykA0NPR4f3+LzK0Q/tSZW4lFrVrXUFOwh1nzqKno8PITp00Ph4hqlN6ZiYJ9+7hUkYao8aOjkRERZVbNy8vj8zsbGaOH880H58yA49JqakAOJYRtG9oZcX99HQSk5O5m5REUkoKbZo3B4pm2GQX3+8836tXhaNFhXiS8rJyyE5Kx8RePT2Iia0l6XfU81uWUOYXUpCTS/MxfXAb0QtF8XXjQTr6unSaNQz7Hq3UXzszG8UDn6vM+GQAjGyKgpoFuXmVPh4hxNNFRmrWQYcOHWLt2rXcvHkTJycn3nnnHbZs2UJubq4q5+XDOTBLPLxdqVSyfft2du/eTXh4OPn5+djb2zNs2DAmTZqEQqF+4YDS+S0flePxzTff5K23ihbHuHHjBt988w2nTp0iLy+PFi1aMG3aNHr16lWqTnBwMMuXL+fKlStYWVnx+uuvV/n92rdvH0qlEm9v73LLODk54eXlxaFDh4iLi1PllwwNDWXp0qVcuHABExMTxo4dqwqMPUiTckqlkpUrV3LgwAHu3LmDqakpPXr04O23367V9AIlN9AFBQUa1zEqzt1U1nvxKEeOHGHdunXcvHkTLS0t2rRpw5tvvknHjh1VZQoLC/nxxx/ZuXMn0dHR1K9fn379+jFz5kxMihPiz5o1C39/f9atW0efPn0ASElJYeDAgRgaGrJv3z5VP1988UV27NjBunXraN68ORs2bKBbt244P5Q0/9SpU7z66qt89dVXbNiwgVu3bjFw4EAWLFjA3bt3WbVqFSdOnCA+Ph59fX1atWrFjBkzSvVdqVSyefNmdu7cSWRkJFZWVvTv359p06ZhWLyYhibHJ2pfWnLRF0mz+vXU9pnWMyM7M4uszCwMjdQT3BsYGjDzqw8fmd6g14ueXL0Yxs61m3lx9BAADu/ch7a2Nt369n7sYxCiOiRnZABgYaSeb6y+kRGZOblk5ORg/NDUby0tLWzN1UfDRCYmci0+njblzE65e/8+l+/EsuX//g9Hi/p0cm5UZrnIxETO345kQBt36htLLjRRO5JSUgCwKONcr29mRmZWFhmZmRgX35M8yMjQkOWffFLhtUJPTw+ArOIA5YPuFz9cTklLIz0zEwAzU1M2+/pyLDiYrOxsGlhbM27oUDq6qz9cEKIm5KYWnZt6ZuqfAT0zQwqy8sjPykXHUE9tv7aBLp3eHo6WdvljsRRaWhhaqT8IzohLIu12AvWb2qu2ZSakoK2vw03/M9wNiaAwNx8DCxMa9e2ATVuXqhyeEKKWSVDzKZKWlqaaKvwwc3NztLW12bt3L3PmzMHd3Z3Zs2dz8+ZNpk+fjoWFBU5OTpV+zW+//ZY1a9YwdOhQRo4cSUZGBnv37mXJkiUYGxtXGAgsUVaOR4AVK1YQFxenClhevXqVV155RRWk1NXV5eDBg0yePJklS5aoRgwGBwczadIknJ2dmTlzJklJSXzxxRcoFIpyc45W5OLFi+jo6OD+iJu5rl274u/vz7lz5xgwYADXr1/Hx8cHMzMzpk6dSl5eHhs2bCA3N7dUPU3LrVmzhpUrV+Lt7Y2bmxvR0dFs2rSJ0NBQDh48WGu5HU+ePAlAy5YtNSqflZXFmTNncHBwwLQSK3oCnD59mlmzZtG7d29GjBhBVlYWW7ZsYfz48fj5+akWa/rwww/Zt28fQ4YM4bXXXiM8PJxt27Zx/vx5tm3bhr6+Ph9//DEnT57ks88+w8/PDwMDAz7//HOSkpLYsmWLKqAJ8PbbbxMUFMQ333yDUqmkS5cuqin7Zfnss88YNmwYI0aMwM7OjuzsbLy9vbl//z7e3t40aNCAW7dusW3bNiZOnMjRo0exLF6c4tNPP2Xbtm0899xzjBkzhoiICFWA9LvvvtP4+ETty8nOBkBXT31Er07xtrzc3DKDmgqFQqPPdD3L+vQZ2JeDW39h5X+L/o4qtLQYPXV8qSnpQtSmrLyikSx6ZSx2old8nufm56sFNcuSnZfHquOBAAxq105t//3sbNUK53o6OrzWo3uZrwvw2+W/0VIo6NdafXSOEDWlZDRkSfDxQXrFM0Jy8vIoK+yuybXCsWFDDA0MOP3XXwzp21c14CA3L4+QK1dU/59ZnOt+h58fOtravPbyy2gpFBw4doxF33/PB1OnqkZxClGTSkZDauuq/y3XKv77XpCXX2ZQU6FQoNAue5DNo17z6q4gABz6/PMdMCM+hYKcfPKzc3Eb0Yv87FzuBF/m6o4TKAuVkmdTiDpIgppPkaHFSb7LsnfvXpo1a8bChQtxcXHh559/Vt08ubi4MH/+/EoHNfPy8lTTsr/66ivV9hEjRtCtWzeCgoI0CmqWleNx/fr1REVF8cknn9Cu+EvL/PnzsbCwwNfXVxVwGjt2LOPGjeOLL77Ay8sLPT09Fi9ejLW1NTt27FCNWuvevTvjxo2rUlDz7t27mJubl3mz+SCb4hVYExISgKKgLMD27dtVIyn79evHkCFDStXTtNyBAwfo3bs3H330kWqbra0t27ZtIyYmpkpB6crIzc0tFTRPTU3lwoULLF68GGNjY8aMGVNh+fz8fKKioli1ahVJSUnMnTu30n3w9/fHwMCA1atXq27Ku3fvzvTp0wkLC8PR0ZFTp06xZ88ePv30U0aPHq2q26dPHyZMmMD27dsZN24cFhYWfPLJJ8yaNYu1a9fSunVrVZC8Q4cOpV43ICCAzMxMlEolhoaGLF26FPMyRlSU6NixIx9//HGpft++fZv169eXGlXs6OjIf//7X86dO8fzzz/PjRs32L59OyNHjuTzzz9XlTM2NmbNmjXcuHGDxMREjY5P1L6SgcjljVivDkf3+PP7wV9xdnOlU5/uKAsLOX38T3au+ZHRU8fTvF3rJ/baQmiqZFT+434WcvLyWXzkV24nJjG4fVta2qnPUlAoFEz38iC/oJDDoaF8cdCf6V6ePOPSuFS53Px8gq5fp6NzowqnpwvxpFXX56M8Ojo6DPTwYJe/P8t/+okhfftSqFSy8+BBsosfoGtra5OXnw9AZlYW3378sWpF9I6tWzP9s8/YfuCABDVF7VDdUNXMyxXk5hO2+RgZsck4POtOvcb/5Lq17dwMpVKJXdd/8kBbt2nM+WV7iTh0Bpu2jUtNVxdCPP0kqPkUWbRoEVZW6vmqoGh69KVLl0hMTGTy5MmlAnSjRo1SBdYqQ1dXl+DgYPLySucSSU5OxsTEhMziaSyVFRQUxNKlSxk8eLAqKJqcnMzp06fx8fEhOzub7OIRUAB9+/ZlwYIFXLp0CWdnZ8LCwpg4cWKpabhdu3bFzc2tSjkclUqlRiOmdIqfFCqVSgoLCwkKCqJPnz6lpoa7urrSs2dPAgICADQuB9CwYUNOnTrFTz/9xIABA7CysmL06NGlAltPkp+fH35+fmrbmzZtyrx581RT7h9V3sXFhaVLl1ZpkaCGDRuSkZHB/PnzeeWVV3B1dcXNzY0jR46oyvz6668oFAr69OlTKqjasmVLrK2tCQwMVAX9+vfvj5+fHz/88ANmZmY0b95cleqgxOLFi/n+++/p1asX7u7urFq1ijlz5rB+/XrCw8MJDQ2lT58+WFhYqOp07ty5VBv9+/ena9eupYLqD47ELfmsBAYGolQq8fHxKVV/woQJ9O/fHycnJ7Zt26bx8YnapW9QNOos76FR1wD5xaMODAwMqtx+VmYWfxwOwN7ZifGzp6lSQbh3ac+az5ey98cdvLvIDR3J/SpqmWHxOZhbHDR5UG5x6hLDRzw4zMjJYeHhI1yLi+fZ5s0Y9dDf2RIm+vp0cy0aKfOMS2Nm7/qFTSdPqgU1w+7cIScvn64uMl1Q1C6D4hHKD8/QgaIRlABGj3GtABj+wgtkZGVxKDCQ4HPngKJg5SAvL7bt34+JkRH6xZ/BZ9q2VQU0AYyNjOjYujUnTp8mOydH1V8haoq2ftE1pDBPPdVVYfF1Rcegeu518rNyCdt0lLTbCTTo1BTnvqUHOtg+ox7Y19bVwaa9K5HH/iIzIQXjhhZqZYQQTy8Jaj5FOnToUOHq53fu3AFQTdEtoaenp7ZNU7q6ugQGBnLs2DEiIiK4ffs2qcUJyauSL/HWrVu8/fbbNG3alM8++0y1Pao4SfrmzZvV8nyWiI2NVS3cUtaoRRcXF0JCQirdJxsbG6KiosjPz1cFLstSMkLTxsaGlJQUMjMzy+1HSbBS03IA7733Hm+88QZffvklCxYsoFWrVnh4eDBy5EisH1jN8knp2bMnEyZMAIpGE+jp6WFra4udnd0jy8fFxbF+/XrS0tKYN28ezzzzTJX6MHbsWP744w+2bNnCli1bcHBw4LnnnuPll1+mefHogcjISJRKJc8++2yZbRg/lDdt3rx5PP/886qclw8G/M+dO6cKaK5duxZtbW2uXr3KsWPHWLt2LWlpaWzYsIF9+/aVCmo++P8lFAoF69at48KFC0RGRhIZGal6IFBYWAhATEzR6ooP5+o0MzPDzMysSscnao+5ZVEQ+37qfbV991PSMDAyRM+g6l8OE+PvUpCfj/sz7UstDqGto0Obrp34ddd+7sYmYOtkX0ErQjx5lsUPGVPKeNiZnJmJkb4eBhUE39OysvjS/xC37yXi2aI5E3r11GhUm56ODu2dnDgSGkZaVjZmhv8Ehi5GRqGrrV3uquhC1BSr4geeKWlpavuS09IwMjR87ECiQqFg3LBhDPbyIu7uXSzr1cPa0pLtBw6gpaWFlYUFGcXTz83KyM1tbmqKUqkkS4Kaohbomxedk7n3s9T25aZloW2oi3YZqX4qKzc9i9AffyPjThINuzSjyeBuGo+g1jUuSiVUkKv+8E4I8XSToGYdVFawUdMcfA8uBqNUKpk6dSrHjx+nY8eOtG/fnlGjRtG5c+cqjRRLT09n2rRpKBQKvvvuu1IjmEpe19vbGy8vrzLrN2nShPj4eIBSIzlLlASOKqtTp06cPHmSkJAQtWnJDzp79iwKhYL27f9ZfVXTfmhSrnnz5hw5coSgoCCOHz9OUFAQy5cvZ+PGjezYsQNX1yebw8Xa2pru3btXubynpycjRoxg0qRJbNy4sdTiOJoyMTFhy5YtXLx4kaNHj3LixAk2b97M1q1bWbhwIS+99BKFhYUYGxur8k8+7OFz/fLly6qRkkeOHKFNmzaqfceOHQNg2rRpqtG6X331FUOHDmXFihUYGRnh7OysCqiWeHhk782bNxkzZgx5eXn07NmT/v3706JFC5RKJdOmTVOV02Sxpcoen6g9hkaG1LOyIPa2+irndyKjsXd+vGBKyUOWwkL1v+lK1d+Pyj9cEqK6GevrY21qWuYq57fu3cOlggdzWbm5qoDmi+6tebV7N7UyMckpfHXoEIPatqVvq9L5nbPz8lAoQPehRSKuxsfT2NoKo0eMEBXiSTM2MsLa0pKIaPVrRURUFK7VkF7oz3PnqGdmRqumTaln9s+CKJdv3MDF0RE9XV0cbW3R0dEhKi5OrX5CYiK6urqYy2KEohboGOqhb2FS5irn6bGJmNqXPVOxMvJz8lQBTbseLXEd0EWtTE5qBpc2/opNm8Y4ebQrtS/rXtGgHoP68hkRoq6RhBF1SMnor1u3bqntKxkJWUJLS0ttGkx+fj7Jycmqn8+ePcvx48eZOnUqP//8Mx988AEvv/wy9vb2pBSv5KgppVLJ7NmzCQ8PZ9GiRWojR+3ti0YaaWtr071791L/bGxsyM3NxdDQEHt7exQKBbdv31Z7jegybhY1MXDgQLS1tdmwYUO5ZeLi4jh8+DAdO3bE3t6e+vXrY2Ji8sh+aFquoKCAsLAwYmNj8fT0ZP78+fz+++9888033L9/n127dlXp2GqSubk5S5YsoaCggHfeeadKqQAiIiIICQmhXbt2vPvuu+zfvx8/Pz/MzMzYuHEjUHSuZGRk0Lp1a7VzJS0tTbWCOBQF0j/55BOaNWvG8OHD2bhxY6nRvCUPAB4MUpqZmbFs2TK0tLS4f/8+r7766iP7/f3335OWlsaePXtYvnw5b775Jp6enmRllX7iXDLq9eHPY3x8PDNnzuTs2bOVOj5R+1p1bEv45avcjY1XbbsRdpXEuATcnyn/IYkmbOwbYlrPjAt/nCIv9580IHm5eVwMPoORiTE2dg0raEGImtOlsTOhMTHEJKeotl2KjiY2JZXuFTyU2/DHn9y+l8gL5QQ0ARqam5GZm8vRv/8m/4GHQ3fv3+fUzQha2NqWmt6eX1BATHIyja0sH//AhKgGz7Rty6WrV4mJ/+daEXLlCrEJCXSvwkPgh/kFBLBh165SD0/PhYZy9eZNni/O9W2gr08nd3cuhIYSFRurKpeQmMjZS5fo5O5ealaAEDXJqlUjUsLvkHk3RbUt+cYdsu6mYd2mcfkVNRS+/2RRQLN7izIDmgD65sYUZOcSe+Ya+dn/fE/OTkkn/tx1zF0bomeqvkK7EOLpJle2OqR58+Y4OTmxffv2UvkuDx8+rJo6XcLKyoqIiIhSIwgDAgLIKV6hEVAFLps0aVKq7s6dO8nKyiK/jNxZ5Vm2bBkBAQG8+eab9OnTR22/jY0NrVu3xtfXVzUaE4oWK/rggw+YPn06+fn5WFhY0LlzZ/bv38+9B0aEXLhwgbCwMI378yBnZ2fGjx/Pb7/9xurVq9X2p6SkMH36dPLy8lSLwygUCvr27UtQUBDXr19XlY2OjiYwMFD1s6blCgoKePXVV/nyyy9LvXbbtm0B6sxNpru7OxMmTCA2NpZFixZVuv78+fOZOnUqGRkZqm0uLi6YmZmp3gMPDw8Atd9VQEAAM2bM4MCBA6ptCxcuJD4+nk8//ZT33nsPc3NzPvzwQ1VAv2vXrgBs27atVFsJCQmqLwa7d+9WC04+LCUlBUNDw1JT9XNzc9m+vWiF3pK2Ss79h19vz549HDp0CBMTk0odn6h9vV70wNDIiI2LVvLnkeP8fvBXdqz+ETtnR9p2LfqimpRwj4vBZ0hKUB/FVhEtLS0Ger/M3bgE1s7/huDffufPI8dZ/dkS7sYl0H/MULQrSJkhRE0a1K4txvr6fOHnh19ICL7nL/Dt0WM0traiZ9Oi+4j4tDSCrl0nvngabnRyMn9cv4GRvh7OlpYEXbuu9g9AW0uL17p3JzIxiU8PHOTXsDB2nzvPR7570dJS8FqP0rMM7qWnk19QqJoWL0RtG+TlhbGhIZ+vWMHBgAD2HDnCNxs24OLkRK9OnQCIv3ePE6dPE1/GiOdHGdy3L9GxsXy9di1H//yTbQcOsPSHH2jbogW9HshPO3bwYIwMDfls+XL2HDnC/qNH+e+336Knq8uYl16qtuMVorIcerVGx1CfSz8cIfqPMCID/+LvbccxsbfEpl3Rg7GspPvEXwgnK0k97U9FMhNSSLhwE21DXUzsLIm/EK72r4TroK7kpmby11p/Yv68TOTxv7i46iAKLS2avNS1Wo9ZCFEz5NvSU+To0aMVru49ePBg5s2bx+TJkxk1ahTDhw/n3r17bN68WZWLssTAgQP5/PPPmThxIoMGDeL27dvs3LlTNWISoH379piYmLBgwQJiYmIwNzfn1KlT+Pv7o6+vXyrwVJHAwEDWrFmDq6srzZo148CBA6WmXltZWdGjRw8++ugjxo0bx/DhwxkzZgz16tXDz8+Pv/76i3feeUd17HPmzMHb25uRI0fi7e1NVlYWP/74Y5VWPi8xa9YsUlNT+fbbbzl+/Dj9+vXDzMyMmzdvsnfvXrKzs1myZEmpacgzZswgMDCQsWPH8tprr6Gtrc3mzZsxNjYuNQpWk3J6enr4+PiwevVqpk2bRq9evcjOzmbHjh0YGhoyfPjwKh9bTZs6dSqHDh1ix44dDBo0qFLT0MePH8+kSZPw9vZmyJAh6Ovrc/ToUSIjI/n666+BosCgp6cnGzZsICYmhm7duhETE8PWrVuxs7NT5fk8efIkO3fuZOTIkaq0Au+99x5z585l1apVzJw5kz59+uDh4cGePXvIycmhS5cu/PXXX+zbt4+WLVvyzDPP8MMPP/Cf//yH77//vtx+9+7dm4CAAF5//XVeeOEF7t+/z969e4mMjARQfVZatGjBiBEj2Lx5MwkJCXTr1k21IvqQIUNo3rw5bm5uGh2feDoYm5ky8f3p+G/z5djeQ+jp6dGivTv9RrykWsDn1rWb+G74maH/eQULm8pNoWrZsQ3j353K8f2HObq7aGEu20YO+MycTDP3Fo+oLUTNMTM05L+DXmJT8El2nT2Hvo4OnRo1wrvrM+gWj4a/EhvHmsDfmfJsHxqYmfF38WixzJxc1gT+Xma7vZo1Vf1XV1ubfRcvsvnk/6Gvo0Nre3tGdu6EXb16peqkFz+gNdSVqefi6WBuasqnM2fy05497PT3R19Xl85t2uA9eLDqHv3v8HBWb9nCG2PH0qCchUHL80y7dkx/7TX2/fYbP+3Zg7mpKYM8PRny/POlHoxbW1oy/5132LpvHweOHUOpVNLC1RXvIUMq/ZpCVCc9E0PaTHqRm36nuX30Atp6Oli2cKLxC53Q0im6hqTdiufaL3/Q7OWeGFqYatx2akRRyoWCrDyu/fJHmWUatC8KnFq1bERLHw8iA0OIOHIWLV1t6jW2xblfB4ys6z3eQQohaoVCWZXVYES1mjt3Lr6+vo8sd/XqVQBOnTrF0qVLuXz5MnZ2dsyYMYPFixdjb2+vWoSnsLCQVatW8csvv5CYmEjz5s1599132bBhA5mZmapy586dY/HixVy5cgU9PT0aN27Mq6++SkhICJs2beLEiRNYWVnh4eFRqn0fHx9iYmIICAhgxYoV5eYHBOjSpYuqXlhYGCtWrODs2bPk5+erXm/o0KGl6oSEhLBkyRJCQkIwMzNj/PjxhIaGcv78+VKL71TWiRMn2Lp1K5cvXyYtLY2GDRvSu3dvfHx8ylzsJyIigoULF3L69Gn09PQYMWIEAGvXrlX9PjQtV1hYyKZNm9i9ezfR0dFoa2vToUMHpk+fTuvWrat8TPDP6May3pvo6Gg8PT0ZOnQoX3311SPb0qR8cHAw48ePx9XVlb1795ZanOdRAgMDWbt2LeHh4eTk5NC0aVPGjx9fajX1vLw81q9fz969e4mJicHCwoJu3boxY8YM7OzsyMrK4qWXXiIzM5NDhw5hbm6uqjt27FguXrzIrl27aNGiBTk5OaxatYr9+/dz9+5dbG1tGTRoEJMmTcLAwIBly5Zx48YNli1bxpkzZ3j11VdZsGABw4YNU7WpVCpZt24du3btIj4+HisrK9q1a8eMGTMYPXo07dq1Y82aNUDR73nDhg3s2rWLmJgY7OzsGDJkCBMnTlS9T486vqo6Gnm+ynWF+LfruC+otrsgxFNNu89ztd0FIZ5akxMP13YXhHiqbX/uvdruQrUYfXxhbXehXP+W97i6SVDzX+LhoKMQQnNKpVLj1RGfZhLUFKJ8EtQUomIS1BSifBLUFKJi/5aAmwQ16566kchPCCGeoH9DQFMIIYQQQgghhPhfIjk1RZ1TUFBAUlKSRmVNTU0xMDB4wj2qHklJSaVWtSyPgYEBpqaa55l50upqv4UQQgghhBBCCFF3SVBT1DmxsbF4enpqVPbh3IhPs5dffpmYmJhHltM0N2ZNqav9FkIIIYQQQgghRN0lQc1/icdZPKeusba2ZuPGjRqVbdKkyRPuTfVZtGgROcUrulbExsamBnqjubrabyGEEEIIIYQQQtRdEtQUdY6+vj7du3ev7W5Uu44dO9Z2F6qkrvZbCCGEEEIIIYQQdZcsFCSEEEIIIYQQQgghhKhTJKgphBBCCCGEEEIIIYSoUySoKYQQQgghhBBCCCGEqFMkqCmEEEIIIYQQQgghhKhTJKgphBBCCCGEEEIIIYSoUySoKYQQQgghhBBCCCGEqFMkqCmEEEIIIYQQQgghhKhTJKgphBBCCCGEEEIIIYSoUySoKYQQQgghhBBCCCGEqFMkqCmEEEIIIYQQQgghhKhTdGq7A0IIIapHlxT5ky5Eufo8V9s9EOKpdrpefm13QYinV2Jtd0AIIURZZKSmEEIIIYQQQgghhBCiTpGgphBCCCGEEEIIIYQQok6RoKYQQgghhBBCCCGEEKJOkaCmEEIIIYQQQgghhBCiTpGgphBCCCGEEEIIIYQQok6RoKYQQgghhBBCCCGEEKJOkaCmEEIIIYQQQgghhBCiTpGgphBCCCGEEEIIIYQQok6RoKYQQgghhBBCCCGEEKJOkaCmEEIIIYQQQgghhBCiTpGgphBCCCGEEEIIIYQQok6RoKYQQgghhBBCCCGEEKJO0antDoi6be7cufj6+lZYxtPTk1WrVtVQj9R5eHhgb2/P5s2bAfDx8SEmJoaAgIAa60N1vOaRI0fYuXMnoaGhZGdnY2trS8+ePRk3bhyOjo4atVHy+7p69Wq1lKsqNze3CveXnDPR0dF4enqq7dfV1cXCwoIePXowY8YMGjZsCFBueYVCgampKS4uLnh7ezNo0KDqORDxr5OQmMgmX18uX78OQIdWrfAZOhRzU9NqqXclPJxtBw4QHhmJiZERndq0YWT//piZmJQqFx4Zybb9+7kaEYGWlhYtXV3xGToUuwYNqvFohaicqn4+HrRu2zbuJCQwb8aMamm/ovaEqEnJdxM5tGMfEVdvAODWpiUvjhqMsVnFnw9N692+dpPf9hwkJiIKQ2NDWrR3x2PIixiblr5+XL/0N4EHf+POrSgUWgocXZzxGtYfR1fn6jtYIaogO+k+Nw+dIfVmHAAWzR1o/GJn9EwMq71eRlwSF1YexPFZdxp5ti+1L/VWPLd+PU96zD10DPWwbOFEI6/26BobPOYRCiFqgwQ1RbV4//33qV+/fpn7bG1ta7g3FZsyZQpZWVm13Q2N5ebmMmfOHPz9/WnTpg0TJ07E3Nyc69ev4+vry+7du1m0aBFeXl613dVKcXFxYcqUKWXue/ic6dSpEyNHjlT9nJ+fz40bN9i6dSsnT55k//79mJmZlVteqVQSFRXF9u3bmT17Ntra2gwYMKCaj0jUdfczMvh0+XIKCgoY5OVFYWEhB44dI/LOHb589110dMq+ZGpaL+z6db5cuRIjQ0OGPv88Wlpa+B8/Tti1a3z+9tuYGBkBcCc+nk+XL0dfV5fhL7wAgF9AAJ98+y0L587Fwty8Zt4QIR5Q1c/HgwJOnuRYcDAtmjSplvYrak+ImpSZnsGGhSspKMin1wseKJWF/HH4OPHRd5jy8dtol/P50LRexJXr/LR0DQaGhvQZ2BeFloKTv/7OzSvXmfzBTAyNi64fEVdvsOnbddjYNaTv8AEUFBRyOuAPfvh6BRPnTsfBpVGNvSdCPCgvM4eQHw6jLCjEoXdrlEol0UGhZMQl027qQLS0tautXmFBIVd/+QNlQaHavpSbsYRu/A0dQz0cn22DQqEgJvgyKTfjaDulP7qG+tV+7EKIJ0uCmqJaeHl54eDgUNvd0EiPHj1quwuVsnDhQvz9/Zk9ezYTJ04stW/KlClMnDiRmTNnsnv37keOgHyaWFlZMXjwYI3KOjo6llnW0dGRTz/9lO3btzN58uRHlh82bBj9+/dn5cqVEtQUavwCAkhKSWHR++/jUDz6t0mjRnyxciWBp07hVc7fDk3rbdy1C4WWFp+//TYNra0B6NK2Le8tWIDvkSP4DB1a1F5gIDk5OXw6cyaNi/+uujdrxgeLF+MXEKAqJ0RNqurnA6CwsJA9R47wy6FD1dK+Ju0JUZP+/DWQ1OQU3vzsPWzsis5f+8aN+GnJas7/eZrOfbo/Vr2DW/egUGgx6YMZWDYoun607NCGlf9dyO8Hf+OFUUX3PP7bfDGvX4/XP5qFnr4eAO27d2bZRws4useP196d+kTfByHKE/NHGDmpmXScPhgjm3oAmDpYE7rhV+LP38C2c9nfYapSL/r3EDLjU8psL/zAKRRaCtq+3h9Dy6IBEZatnDi/fD9RgSG4vNj5sY9VCFGzJKemEE+xiIgItmzZwoABA9QCmgCWlpYsW7YMhULB/Pnza6GHtat///4AnD9/XqPy9vb2dO7cmfDwcNLT059k10Qd9Of587Rs2lQVUAFo07w5tjY2BFdwjmlS725iIlGxsfTp0kUV0ASwb9CADu7u/H76tGpbwr17mJqYqAKaAK6NGmFibExUbGy1HKsQlVXVz0duXh5zvv6aXf7+9OrcGYt69R6rfU3bE6ImXTp1nsZuTVSBSYAmrdywbGjDpVMXHqte8r0kEmJiade9syqgCWBt2wC3tq248GfR9SMrI5O4qDu07txOFdAEMDE3xbmZK5E3blXX4QpRaXdDblKvcUNVYBKgfhM7DK3NuBsSUW31MuKSiDwegpNHW7V92cnpZManYNPeVRXQBDCyrodFC0fiz9+o2sEJIWqVBDVFjTp06BBDhgyhTZs2DBw4kOPHjzNhwgR8fHxUZTw8PEr9XN52pVLJtm3bePnll2nfvj3u7u688MILrFu3DqVSWW4ffHx88PDwAIpyMLq5uZX7b8WKFap6N27cYNq0aXTq1Im2bdsyevRogoKC1NoPDg5m9OjRtGvXDi8vL3bt2lWl9wpg3759KJVKvL29yy3j5OSEl5cXZ86cIS4uTrU9NDSU//znP7Rv355evXqxdu3aMt8XTcoplUq+++47+vXrh7u7O927d2f27NnE1nKARUur6E9YQUGBxnWMiqf4VnSOlOfIkSMMHz6c9u3b07FjR8aPH8+5c+dKlSksLGTDhg288MILtG7dml69ejF//vxSQdRZs2bh5ubG77//rtqWkpJCz5496du3L5mZmZXum3g86ZmZJNy7h0sZ+WkbOzoSERX1WPWSUlMBcCwjHUdDKyvup6eTmJxc9LO1NekZGaTev68qcz8jg8ysLOo9kGZBiJpS1c8HQF5eHpnZ2cwcP55pPj6qv9tVbV+T9oSoSVkZmSTfTcTOWX3Gkp2TA7GR0Y9VLy256PrRwKGhWjkLGysy0zNITUpG39CAGV9+QPd+z6qVy0zPQEtbPiuiduRl5ZCdlI6JvaXaPhNbS9LvJFZLvcKCQq7t/pP6Te2waeeqVic3LQMA4wbqKdMMLUzJz8ghJzVDo2MSQjw9ZPq5qBZpaWkkJSWVuc/c3BxtbW327t3LnDlzcHd3Z/bs2dy8eZPp06djYWGBk5NTpV/z22+/Zc2aNQwdOpSRI0eSkZHB3r17WbJkCcbGxhUGAktYWFiwcOFCte0rVqwgLi6OXr16AXD16lVeeeUVrKyseP3119HV1eXgwYNMnjyZJUuWqEYMBgcHM2nSJJydnZk5cyZJSUl88cUXKBSKcnOOVuTixYvo6Ojg7u5eYbmuXbvi7+/PuXPnGDBgANevX8fHxwczMzOmTp1KXl4eGzZsIDc3t1Q9TcutWbOGlStX4u3tjZubG9HR0WzatInQ0FAOHjyIdjl5cCqSl5dX5jmjq6uLqYaLTpw8eRKAli1balQ+KyuLM2fO4ODgoPFrlDh9+jSzZs2id+/ejBgxgqysLLZs2cL48ePx8/NTLdb04Ycfsm/fPoYMGcJrr71GeHg427Zt4/z582zbtg19fX0+/vhjTp48yWeffYafnx8GBgZ8/vnnJCUlsWXLFlXgVdScpJQUgDLzVdY3MyMzK4uMzEyMH/rdaFpPT69o1ExWTo5aufvFAe+UtDQs69dnsJcX50NDWf7TT7xaPNV8y969aGtr8+Kzz1b1EIWosqp+PgCMDA1Z/sknFV4nKtO+Ju0JUZNKgo5m9eup7TOtZ0Z2ZhZZmVkYGhlWqZ6evi4AOdnq14/M9KIAzP3U+5hb1MfqgZGcJeKi7hB5I4KmrZtX6riEqC65qUUP6/XM1K8RemaGFGTlkZ+Vi46h3mPViw66RFZiGi3HeqAsVB+8oKVbFPooyMlT25eXWfT5yr2fhb65cWUOTwhRyySoKarF0ApyvO3du5dmzZqxcOFCXFxc+Pnnn1Vf8F1cXJg/f36lg5p5eXmqadlfffWVavuIESPo1q0bQUFBGgU1jYyM1HIvrl+/nqioKD755BPatWsHwPz587GwsMDX11cVcBo7dizjxo3jiy++wMvLCz09PRYvXoy1tTU7duzApHg14+7duzNu3LgqBTXv3r2Lubm56v0qj42NDQAJCQkAqhGm27dvVy26069fP4YMGVKqnqblDhw4QO/evfnoo49U22xtbdm2bRsxMTFVCkpfuHCBbt26qW3v0qWLaqX6Erm5uaUCoKmpqVy4cIHFixdjbGzMmDFjKiyfn59PVFQUq1atIikpiblz51a6v/7+/hgYGLB69WoUCgVQ9LudPn06YWFhODo6curUKfbs2cOnn37K6NGjVXX79OnDhAkT2L59O+PGjcPCwoJPPvmEWbNmsXbtWlq3bq0Kknfo0KHSfROPL7s42FjWZ01Pt/gLZV4eD9/malrPsWFDDA0MOP3XXwzp21d1DuXm5RFy5Yrq/wGsLCwY2q8fG3bt4r3iv29aWlq8PWFCqSnpQtSUqn4+ABQKxSMDkJVpX5P2hKhJOdnZAOjq6art0ynelpebqxbU1LSejV1D9A0NuHwuhN79vVTXj7zcPG6EXQUgP089SAOQm53D7vVbAOjV37PSxyZEdSjILTo/tXXVQw9axYthFeTlqwU1K1MvIz6ZyGN/4TroGfTNjclOVk8zZdSgHtoGutwLu41DH3fVZ6kgL5/k6zEAFOblV/UwhRC1RIKaolosWrQIKyurMvc5OTlx6dIlEhMTmTx5cqkvLaNGjSo1xVtTurq6BAcHk/fQTVxycjImJiZVnr4bFBTE0qVLGTx4sCoompyczOnTp/Hx8SE7O5vs4ptQgL59+7JgwQIuXbqEs7MzYWFhTJw4URXQhKJRlG5ublXK4ahUKjX68layKqxSqaSwsJCgoCD69OlTahVxV1dXevbsSUBAAIDG5QAaNmzIqVOn+OmnnxgwYABWVlaMHj26VOCustzc3MoMLpqVMb3Wz88PPz8/te1NmzZl3rx5NGzYUKPyLi4uLF26tEqLBDVs2JCMjAzmz5/PK6+8gqurK25ubhw5ckRV5tdff0WhUNCnT59SQdWWLVtibW1NYGAg48aNA4rygfr5+fHDDz9gZmZG8+bNeeuttyrdL1E9StIRlNzgVnc9HR0dBnp4sMvfn+U//cSQvn0pVCrZefAg2cUjo0s+6zsOHmTPkSO0aNIErx49KCws5Nc//uDbDRt4e8IEOj5i5LYQ1a2qn4+npX0hnqSSbDaVv35oVk9bR4fuzz/L8X2H2bV2M70HeKFUFnLU15/cnKLrR1lpGHJzctmyfD1xUXfoPcCLxm5NKtU/IaqN6mR/MvWUhYVc2/0HZs425S44BKClrY19j1ZEHrvI1R0ncHzWHWWhkttHL1CYWxTMVEiaBiHqHAlqimrRoUOHClc/v3PnDoBqim4JPT09tW2a0tXVJTAwkGPHjhEREcHt27dJLc5bV5V8ibdu3eLtt9+madOmfPbZZ6rtUcW5vDZv3qw2grBEbGwsusWjScoateji4kJISEil+2RjY0NUVBT5+fmqwGVZSkZo2tjYkJKSQmZmZrn9KAlWaloO4L333uONN97gyy+/ZMGCBbRq1QoPDw9GjhyJtbX6VCdNmJub07172auBPqxnz55MmDABKLr519PTw9bWFjs7u0eWj4uLY/369aSlpTFv3jyeeeaZKvV37Nix/PHHH2zZsoUtW7bg4ODAc889x8svv0zz5kVTuiIjI1EqlTxbzhRhY+PS45jmzZvH888/z927d1m1atUjR+SKJ8dAXx9ALfUC/DOC0sjA4LHqDX/hBTKysjgUGEhwcS7Wjq1bM8jLi23792NiZERGZib7jx3D1cmJT956S/VFtXuHDnyweDFrt21jZfPmqr83QtSEqn4+npb2hXiS9A2Kzt+8Ms7f/OKRZgZlnL+VqffcoH5kZ2Zx8ugJLp0uWjjLrW0rer3gwW+7D2JkUvr+Iisziy3friPyRgQdej2D17DKP8wVorpoF6dQKMxTz4FfmF8UTNQxUL+v0bRedFAoGbHJtH29P3kZRYNP8rOKZgAU5OaTl5GNjpE+CoUCJ4+25Gfncif4smqhIYsWDjj0bs2tI+fRMdR/3MMVQtQwCWqKGlVWsFFfX7OLx4OLwSiVSqZOncrx48fp2LEj7du3Z9SoUXTu3Fk1Eq4y0tPTmTZtGgqFgu+++67UzWfJ63p7e+Pl5VVm/SZNmhAfHw9QaiRnicLCwkr3CaBTp06cPHmSkJCQCqclnz17FoVCQfv27VXbNO2HJuWaN2/OkSNHCAoK4vjx4wQFBbF8+XI2btzIjh07cHVVT8ZdnaytrTUOgJZV3tPTkxEjRjBp0iQ2btxIx44dK90HExMTtmzZwsWLFzl69CgnTpxg8+bNbN26lYULF/LSSy9RWFiIsbEx3333XZltPHyuX758WTWq+MiRI7Rp06bS/RLVw6o4PURKWpravuS0NIwMDVWBl6rWUygUjBs2jMFeXsTdvYtlvXpYW1qy/cABtLS0sLKwIOrOHfLz8+nesWOpkTc6Ojr07NSJrfv2ERMfj7NMQxc1qKqfj6elfSGeJHPLovP3fup9tX33U9IwMDJEz0D9/K1MPYVCQf8xQ+nd34vE+LuYWdSjvpUFv+3xQ6GlhbnFPymOMtLu8+PSNcRFxtCpT3cGvTpCRkGLWqVvXjSDLfd+ltq+3LQstA110S4jDYOm9ZKvxaAsKOTiqoNq5WKCwogJCqPz7JcxqG+CQqHAdUAXHPu4k3UvDX1zYwzqm3Dr1/OgpUC/nuTTFKKukaCmqBHOzs5A0WjIh0VFRan2Q9EUmodHa+Tn55OcnKwaVXj27FmOHz/O1KlTmTFjRqlyKSkplRr9qVQqmT17NuHh4axdu1atrr29PVA0NfThwNqNGzeIjo7G0NAQe3t7FAoFt2/fVnuN6OiyV758lIEDB7Jq1So2bNhQblAzLi6Ow4cP07FjR+zt7VEqlZiYmDyyH/Xr19eoXEFBAVeuXMHExARPT088PYtyMvn7+zNr1ix27dpVpRyVNcnc3JwlS5YwevRo3nnnHQ4ePFgqRYAmIiIiuH//Pu3ataNdu3a8++673LhxA29vbzZu3MhLL72Evb09f/zxB61bt1abRn/48OFSo2LT09P55JNPaNasGe7u7mzcuJF+/fpJYLOWGBsZYW1pSUQZn9WIqChcy8kbW5l6f547Rz0zM1o1bVpqFfPLN27g4uiInq6uakR2WQ8gCosfClV+HLoQj6eqn4+npX0hniRDI0PqWVkQe1v9/L0TGY29c9n3pJWpF3LqPKbmpjRu3hQT838WOrx1NRy7Rg6qvJw52dmqgGa3vn3oP6b8nPdC1BQdQz30LUzKXOU8PTYRU/uyU5hpWq9x/87kZ5X+7piXnsXVnUHYtHfBpn0TdE2KBqwk/HUTPVND6rnYomfyT57b1FtxmNhblpm/UwjxdJOkEaJGNG/eHCcnJ7Zv314q3+Xhw4dVU6dLWFlZERERUWoEYUBAADkPrBqcUrxSapMmpfMD7dy5k6ysLPLzNU/yvGzZMgICAnjzzTfp06eP2n4bGxtat26Nr6+vajQmFC1W9MEHHzB9+nTy8/OxsLCgc+fO7N+/n3v37qnKXbhwgbCwMI378yBnZ2fGjx/Pb7/9xurVq9X2p6SkMH36dPLy8vj444+Boqf5ffv2JSgoiOvXr6vKRkdHExgYqPpZ03IFBQW8+uqrfPnll6Veu23btkDZeZyeRu7u7kyYMIHY2FgWLVpU6frz589n6tSpZGRkqLa5uLhgZmameg88PDwA1H5XAQEBzJgxgwMHDqi2LVy4kPj4eD799FPee+89zM3N+fDDD8ucfilqxjNt23Lp6lViHvich1y5QmxCAt0rGN2raT2/gAA27NpVatT5udBQrt68yfO9egHgaGtLfXNzAk+dUk27haIpuCdOn8bUxATHh3LIClETqvr5eFraF+JJatWxLeGXr3I39p/z90bYVRLjEnB/pvyZNprWCz4SyIEtu0tdP67+FUbk9Zs849FTte3A5l+KA5q9JaApnipWrRqREn6HzLspqm3JN+6QdTcN6zaNH6ueqb0V9ZvYlfpn1qgBAAYWptRvYqcKVsb8GUb4gVMUFvzz8DjxShRptxKwe6Z5NR6xEKKmyKMIUS2OHj1a4eregwcPZt68eUyePJlRo0YxfPhw7t27x+bNm9Vyww0cOJDPP/+ciRMnMmjQIG7fvs3OnTtVIyYB2rdvj4mJCQsWLCAmJgZzc3NOnTqFv78/+vr6pQJPFQkMDGTNmjW4urrSrFkzDhw4UGqElJWVFT169OCjjz5i3LhxDB8+nDFjxlCvXj38/Pz466+/eOedd1THPmfOHLy9vRk5ciTe3t5kZWXx448/Vmnl8xKzZs0iNTWVb7/9luPHj9OvXz/MzMy4efMme/fuJTs7myVLlqjyOgLMmDGDwMBAxo4dy2uvvYa2tjabN2/G2Ni4VNBMk3J6enr4+PiwevVqpk2bRq9evcjOzmbHjh0YGhoyfPjwKh9bTZs6dSqHDh1ix44dDBo0qFLT0MePH8+kSZPw9vZmyJAh6Ovrc/ToUSIjI/n666+BolXOPT092bBhAzExMXTr1o2YmBi2bt2KnZ2dKs/nyZMn2blzJyNHjlSNwH3vvfeYO3cuq1atYubMmdV+7OLRBnl5ceL0aT5fsYKBHh7k5uVx4NgxXJyc6NWpEwDx9+5x9eZN3FxcaFC8OJom9QAG9+3L0h9+4Ou1a+nSti13k5I4GBBA2xYt6NW5M1D0kOA/I0aw9Icf+HDxYp7r1o3CwkKO/9//cSc+nmk+PhXm1xXiSanq56M62xfiadXrRQ8uBp9h46KV9Oj3HPl5efxx+Dh2zo607Vp0r5GUcI/IGxE4NWmMhY2VxvWgaOXy7as2smXZ97Ts0IaUxCT+PBJIk9bNadut6PORcCeOv06excDIkIaODlwMPqPWz3bdO9fAuyGEOoderUm4EM6lH45g37M1hfn5RAeFYmJviU27ojRWWUn3SbudgFkjGwwtTDWuVxmOvd35++dALm8+imXLRmSnpBPzRxj1m9lh086lWo9ZCFEzFMqqrKgiRLG5c+fi6+v7yHJXr14F4NSpUyxdupTLly9jZ2fHjBkzWLx4Mfb29qpFeAoLC1m1ahW//PILiYmJNG/enHfffZcNGzaQmZmpKnfu3DkWL17MlStX0NPTo3Hjxrz66quEhISwadMmTpw4gZWVFR4eHqXa9/HxISYmhoCAAFasWFFu/kOALl26qOqFhYWxYsUKzp49S35+vur1hg4t/SQ8JCSEJUuWEBISgpmZGePHjyc0NJTz58+XWnynsk6cOMHWrVu5fPkyaWlpNGzYkN69e+Pj41PmYj8REREsXLiQ06dPo6enx4gRIwBYu3at6vehabnCwkI2bdrE7t27iY6ORltbmw4dOjB9+nRat25d6WNxc3Mr9d6WJzo6Gk9PT4YOHcpXX331yHY1KR8cHMz48eNxdXVl7969lVqcJzAwkLVr1xIeHk5OTg5NmzZl/PjxpVZTz8vLY/369ezdu5eYmBgsLCzo1q0bM2bMwM7OjqysLF566SUyMzM5dOgQ5ubmqrpjx47l4sWL7Nq1ixYtWmjcrxJpVViMSpR2Jz6en/bs4e/wcPR1dWnfqhXegwdjblp0cx146hSrt2zhjbFjefaBRaceVa/En+fOse+334i9exdzU1N6derEkOefR/+h8zD02jV+OXSI8MhIABo7ODC0Xz/at2z5hN8BIcpX1c/Hg6b9979YW1gw74HUMZq2X9n2ROWcrqf5LBeh7l5cAv7bfLl1LRw9PT2atWlJvxEvYWxWdP6e/+M0vht+Zuh/XqFDzy4a1ysRcuo8Qf5HSYy/h7GZCW27dqL3AC/09IuuH6eP/8mBzbsq7OPnG76t3oP+H7I+/Ghtd6HOy7ybyk2/06TeikdbT4f6zexp/EIn1TTw+PM3uPbLHzR7uScNOjTRuF5ZspPTObPoF5w829LIs32pfQl/3ST6xCWyEtPQNTHEpq0Ljn3aoK0nD40fx/bn3qvtLlSL0ccX1nYXyvVveY+rmwQ1Ra17OOgohKgaCWoKIYSoKglqClE+CWoKUbF/S8BNgpp1T91IhieEEEIIIYQQQgghhBDFZIy1EDWooKCApKQkjcqamppiYGDwhHtUPZKSkkolry+PgYEBphVMI6xpdbXfQgghhBBCCCHE/zoJagpRg2JjY/H09NSo7IIFCxg2bNgT7lH1ePnll4mJiXlkOU1zY9aUutpvIYQQQgghhBDif50ENUWte5zFc+oaa2trNm7cqFHZJk2aPLrQU2LRokXk5OQ8spyNjU0N9EZzdbXfQgghhBBCCCHE/zoJagpRg/T19enevXttd6PadezYsba7UCV1td9CCCGEEEIIIcT/OlkoSAghhBBCCCGEEEIIUadIUFMIIYQQQgghhBBCCFGnSFBTCCGEEEIIIYQQQghRp0hQUwghhBBCCCGEEEIIUadIUFMIIYQQQgghhBBCCFGnSFBTCCGEEEIIIYQQQghRp0hQUwghhBBCCCGEEEIIUadIUFMIIYQQQgghhBBCCFGnSFBTCCGEEEIIIYQQQghRp0hQUwghhBBCCCGEEEIIUadIUFMIIYQQQgghhBBCCFGn6NR2B4QQQlSPyYmHa7sLQjy11lm+UNtdEOKptj78aG13QYin1kRXr9rughBCiDLISE0hhBBCCCGEEEIIIUSdIkFNIYQQQgghhBBCCCFEnSJBTSGEEEIIIYQQQgghRJ0iQU0hhBBCCCGEEEIIIUSdIkFNIYQQQgghhBBCCCFEnSJBTSGEEEIIIYQQQgghRJ0iQU0hhBBCCCGEEEIIIUSdIkFNIYQQQgghhBBCCCFEnSJBTSGEEEIIIYQQQgghRJ0iQU0hhBBCCCGEEEIIIUSdIkFNIYQQQgghhBBCCCFEnSJBTSGEEEIIIYQQQgghRJ2iU9sdEE+/uXPn4uvrW2EZT09PVq1aVUM9Uufh4YG9vT2bN28GwMfHh5iYGAICAmqsD9XxmkeOHGHnzp2EhoaSnZ2Nra0tPXv2ZNy4cTg6OmrURsnv6+rVq9VSrqrc3Nwq3F9yzkRHR+Pp6am2X1dXFwsLC3r06MGMGTNo2LAhQLnlFQoFpqamuLi44O3tzaBBg6rnQMT/lOyk+9w8dIbUm3EAWDR3oPGLndEzMdS4jeu+wWTdS6XNpBer3P6FVQdIj05Uq2/ZuhEtX3muMockRLVJSExkk68vl69fB6BDq1b4DB2Kuampxm2s27aNOwkJzJsxQ23fB4sWER4Zqba9S7t2vDNhgurn1Pv32X7gAGcvXSI3P5/GDg54Dx5MU2fnyh+UENXkabl+JF2LISrwL9JjEkGhwMzRmkZ9O2DmZP0YRyfE40u+m8ihHfuIuHoDALc2LXlx1GCMzTS/huz9cQeJ8QlMmPOW2r7rl/4m8OBv3LkVhUJLgaOLM17D+uPo6lyq3M2/r3PM15/YqBgMDA1o3bkdXkMHoGeg/1jHJ4SoHRLUFBp7//33qV+/fpn7bG1ta7g3FZsyZQpZWVm13Q2N5ebmMmfOHPz9/WnTpg0TJ07E3Nyc69ev4+vry+7du1m0aBFeXl613dVKcXFxYcqUKWXue/ic6dSpEyNHjlT9nJ+fz40bN9i6dSsnT55k//79mJmZlVteqVQSFRXF9u3bmT17Ntra2gwYMKCaj0j8m+Vl5hDyw2GUBYU49G6NUqkkOiiUjLhk2k0diJa29iPbiDt7jbgz1zBv3KDK7SuVSjITUrFs6YRlq0al2jCoZ1w9BytEJd3PyODT5cspKChgkJcXhYWFHDh2jMg7d/jy3XfR0Xn0LWXAyZMcCw6mRZMmavuUSiXR8fF0atOGZ9q2LbXP2sJC9f9Z2dnMW7aM5NRUBjz3HMZGRhw+cYJPly/ny3ffxcnO7vEPVohKelquHykRcYT99BtGNvVwfr4DygIld079Tcj3h2g7+UVMHSWwKWpHZnoGGxaupKAgn14veKBUFvLH4ePER99hysdvo63BNeRc0P9x7sRJnN1c1fZFXL3Bpm/XYWPXkL7DB1BQUMjpgD/44esVTJw7HQeXovupm39fZ+PiVdg3cqTfyy+RmpzCyd9OEBMRxcT3p6NQKKr92IUQT5YENYXGvLy8cHBwqO1uaKRHjx613YVKWbhwIf7+/syePZuJEyeW2jdlyhQmTpzIzJkz2b179yNHQD5NrKysGDx4sEZlHR0dyyzr6OjIp59+yvbt25k8efIjyw8bNoz+/fuzcuVKCWqKSon5I4yc1Ew6Th+MkU09AEwdrAnd8Cvx529g27n8z56ysJCowBBuH7v42O3nJKdTmJuPZUsnGrRXv3EXojb4BQSQlJLCovffx6F45HyTRo34YuVKAk+dwquC625hYSF7jhzhl0OHyi1zNymJnJwcOrdpQ+8uXcott++334hNSOCTt96iZdOmAHTr0IG35s1j/9GjvPnqq1U8QiGq7mm5ftz0O42+uTHt3hiItl7R1zybDq6c+8aXW7+dx/0//arleIWorD9/DSQ1OYU3P3sPG7uia4h940b8tGQ15/88Tec+3cutW1hYyO8HfyNg3+Fyy/hv88W8fj1e/2gWevp6ALTv3pllHy3g6B4/Xnt3KgCHd+6jnkV9Jsx9C109XQDMLepzcMsvXA+9QjP3FtV1yEKIGiI5NYWoZREREWzZsoUBAwaoBTQBLC0tWbZsGQqFgvnz59dCD2tX//79ATh//rxG5e3t7encuTPh4eGkp6c/ya6Jf5m7ITep17ih6gsjQP0mdhham3E3JKLcegV5+Zz/7gC3j17Epp0reuZGj9V+RkIKAIZW5o91PEJUpz/Pn6dl06aqgCZAm+bNsbWxIbiCv8+5eXnM+fprdvn706tzZyzq1SuzXFRsLAD2DdRHqZVQKpX8fvo07Vu2VAU0AeqbmfHq0KE0d5WHAKJ2PA3Xj7ysHDJik7Byd1YFNAH0TAwxb9yQtMiExztIIR7DpVPnaezWRBXQBGjSyg3LhjZcOnWh3Hp5uXmsmreYgL2HaNetE6b11e+NsjIyiYu6Q+vO7VQBTQATc1Ocm7kSeeOWqi1jUxM69emqCmgCNC4e+RkXGfO4hymEqAUS1BTV7tChQwwZMoQ2bdowcOBAjh8/zoQJE/Dx8VGV8fDwKPVzeduVSiXbtm3j5Zdfpn379ri7u/PCCy+wbt06lEpluX3w8fHBw8MDKMrB6ObmVu6/FStWqOrduHGDadOm0alTJ9q2bcvo0aMJCgpSaz84OJjRo0fTrl07vLy82LVrV5XeK4B9+/ahVCrx9vYut4yTkxNeXl6cOXOGuLg41fbQ0FD+85//0L59e3r16sXatWvLfF80KadUKvnuu+/o168f7u7udO/endmzZxNb/EWztmhpFf2ZKigo0LiOkVHRl4KKzpGy7NmzBzc3N44cOYKHhwdt27ZVnR+3b99mzpw59O7dm9atW9OlSxemTJnC9eLcciVyc3NZsWIFzz//PG3atKFfv36sW7euVP9zcnL45ptv8PDwoHXr1nh6erJs2TJyc3Mr1V9RffKycshOSsfE3lJtn4mtJel31PNbllDmF1KQk0vzMX1wG9ELhZb61KXKtJ8ZnwyAkU3RjXtBbl6lj0eI6pSemUnCvXu4lJHbubGjIxFRUeXWzcvLIzM7m5njxzPNx0f1N/1hDwc1s3Ny1MrcTUoiKSWFNs2bA0V/40vKPd+rV4WjRYV4Up6W64eOvi6dZg3Dvkcr9TYys1GU89kT4knLysgk+W4ids7qM/7snByIjYwut25+fj45WdmMemMcwyd6o62lnspB39CAGV9+QPd+z6rty0zPQEu76NzX1dNl3NtT6DPw+VJlYouDmfWsLNTqCyGefjL9XGgsLS2NpKSkMveZm5ujra3N3r17mTNnDu7u7syePZubN28yffp0LCwscHJyqvRrfvvtt6xZs4ahQ4cycuRIMjIy2Lt3L0uWLMHY2LjCQGAJCwsLFi5cqLZ9xYoVxMXF0atXLwCuXr3KK6+8gpWVFa+//jq6urocPHiQyZMns2TJEtWIweDgYCZNmoSzszMzZ84kKSmJL774AoVCUW7O0YpcvHgRHR0d3N3dKyzXtWtX/P39OXfuHAMGDOD69ev4+PhgZmbG1KlTycvLY8OGDWqBMU3LrVmzhpUrV+Lt7Y2bmxvR0dFs2rSJ0NBQDh48iLYG+aAelpeXV+Y5o6uri6mGC0ucPHkSgJYtW2pUPisrizNnzuDg4KDxazzsww8/ZOzYsZiYmNCuXTvu3bvHyJEjMTExYezYsdSvX5+///6bnTt3EhYWRkBAALq6RU98p02bxokTJ3jppZcYP348ISEhLFmyhMTERN5//30KCgp4/fXXOX/+PCNHjsTV1ZXQ0FDWrFnD33//zerVqyWfTy3ITc0EQM9MfZSMnpkhBVl55GflomOop7Zf20CXTm8PV900P277mQkpaOvrcNP/DHdDIijMzcfAwoRGfTtg09alqocoRJUlpaQAYGGuPkKmvpkZmVlZZGRmYmykfn4bGRqy/JNPHnkNiY6NxcDAgE179hB84QI5OTnYWFkxeuBAenTsCEBsQtFIMzNTUzb7+nIsOJis7GwaWFszbuhQOj7iOirEk/A0XT8MrczUymTEJZF2O4H6Te01PiYhqlNacioAZvXrqe0zrWdGdmYWWZlZGBqpL6plYGjAzK8+rPAaoqWlhVUD9XyxcVF3iLwRQdPWzcusl3wviYgrNzi8Yy829ra0aC/XECHqIglqCo0NHTq03H179+6lWbNmLFy4EBcXF37++Wf09Ipu3lxcXJg/f36lg5p5eXmqadlfffWVavuIESPo1q0bQUFBGgU1jYyM1HIvrl+/nqioKD755BPatWsHwPz587GwsMDX11c10m/s2LGMGzeOL774Ai8vL/T09Fi8eDHW1tbs2LEDExMTALp37864ceOqFNS8e/cu5ubmqverPDY2NgAkFH+pKxlBuH37dtWiO/369WPIkCGl6mla7sCBA/Tu3ZuPPvpItc3W1pZt27YRExNTpaD0hQsX6Natm9r2Ll26qFaqL5Gbm1sqAJqamsqFCxdYvHgxxsbGjBkzpsLy+fn5REVFsWrVKpKSkpg7d26l+1tiwIABzJw5U/XzunXrSE1N5eeff8b1gemNxsbGrFu3jmvXrtGqVSt+//13Tpw4waxZs1QLJI0ZM4a8vDy2bt3KtGnTOHr0KCdPnmT9+vWqgDpAmzZt+OSTTzh27FidWxDq36BkNKS2rvplUas4eX1BXn6ZX0oVCgUK7YoD0ZVpPyM+hYKcfPKzc3Eb0Yv87FzuBF/m6o4TKAuVkmdT1LiS0ZBlXaf0ih/o5OTlUdYyVgqFQqOHYlGxsWRnZ5ORnc2bPj5kZGVxKDCQ5T/+SEFBAb27dCGzeAHAHX5+6Ghr89rLL6OlUHDg2DEWff89H0ydqhrFKURNeZquH2XVvbqraMaRQx8J2IjakZOdDVBqyncJneJtebm5ZQY1Nb2GPCw3O4fd67cA0Ku/p9r+zPQMlr73WXG/9BjoPazM/gkhnn4S1BQaW7RoEVZWVmXuc3Jy4tKlSyQmJjJ58uRSX3xGjRpVaoq3pnR1dQkODiYvr/TUy+TkZExMTMjMzKx0mwBBQUEsXbqUwYMHq4KiycnJnD59Gh8fH7Kzs8kuvvgC9O3blwULFnDp0iWcnZ0JCwtj4sSJqoAmFI2idHNzq1IOR6VSqdHFumRlWaVSSWFhIUFBQfTp06fUKuKurq707NmTgIAAAI3LATRs2JBTp07x008/MWDAAKysrBg9ejSjR4+u9DGVcHNzKzO4+OAq5iX8/Pzw8/NT2960aVPmzZtHwwfyuFVU3sXFhaVLlz7WIkGdO3cu9fPkyZMZPnw4lpb/TP3Kzs5WTaMsORcDAwPR0tJi7NixperPmTOHN954A2NjY3799VcsLCxo1apVqaBsnz590NbWJjAwUIKataEkVcGTGiRbifZtOzdDqVRi1/WfZPXWbRpzftleIg6dwaZtY5lGKGpUSSqPJzmK3KtHDwoLC+nXu7dqW4+OHXnnyy/ZsncvPTt1Ii8/H4DMrCy+/fhjTIofQHZs3Zrpn33G9gMHJKgpat5TdP14UEFuPmGbj5ERm4zDs+7Ua9zw0ZWEeAJUp3ANzUTKzclly/L1xEXdofcALxq7NVEro1AoGDllHAX5+fzf0SA2Ll7NqCnjaNWpbY30UQhRfSSoKTTWoUOHClc/v3PnDlC0KvWD9PT01LZpSldXl8DAQI4dO0ZERAS3b98mNbVoCkNl8yUC3Lp1i7fffpumTZvy2WefqbZHFecD27x5s9oIwhKxsbGqKcZljVp0cXEhJCSk0n2ysbEhKiqK/Px8VeCyLCUjNG1sbEhJSSEzM7PcfpQEKzUtB/Dee+/xxhtv8OWXX7JgwQJatWqFh4cHI0eOxNpafUqHJszNzenevfzVDB/Us2dPJkyYABTdaOjp6WFra4udnd0jy8fFxbF+/XrS0tKYN28ezzzzTJX6W+LB4GWJvLw8vvnmG8LCwoiMjCQ6OlqVJ7OwsBCAmJgYLC0tSwW8AaytrVXvYWRkJElJSWWOYAVqPYfp/ypt/aLPdmGeeu7WwuJAio5B1Z/gV6Z922fUgzLaujrYtHcl8thfZCakYNxQ8j6JmmOgrw9QZt7f3OIHj0YGBo/1Gn179lTbpqerS+/Onfnl0CGiYmPRL35g+kzbtqqAJoCxkREdW7fmxOnTZOfkqPorRE14mq4fJfKzcgnbdJS02wk06NQU574dqvz6QjwufYOiv8l5ZVxD8otHIhs85jWkRFZmFlu+XUfkjQg69HoGr2FlD3IwNDbCvUt7AFp1aseKj7/Cf7uvBDWFqIMkqCmqXVnBRn0NGWR6KwABAABJREFUv2A8uJiKUqlk6tSpHD9+nI4dO9K+fXtGjRpF586dGTduXKX7lZ6ezrRp01AoFHz33XelLp4lr+vt7V3uKLkmTZoQHx8PUGokZ4mSwFZlderUiZMnTxISEkKHDuXfdJ49exaFQkH79u1V2zTthyblmjdvzpEjRwgKCuL48eMEBQWxfPlyNm7cyI4dO0pNu34SrK2tNQ6AllXe09OTESNGMGnSJDZu3EjH4hxsVfHwQhZnz55lwoQJGBkZ0b17d4YPH07Lli2JjIwsFRzXZDGjgoICnJ2d+e9//1vm/rJGsYonT9+8KBCdez9LbV9uWhbahrpoP8a0pOpoX9e4aFpWQW5+lfshRFVYFadWSUlLU9uXnJaGkaHhEwskmhfnRs7JzVWtnG720IOjknJKpZIsCWqKGva0XT9y07MI/fE3Mu4k0bBLM5oM7ia5ukWtMrcsuobcT72vtu9+ShoGRoboGTz+3+2MtPv8uHQNcZExdOrTnUGvjtDo3NfV08WtbSv+7+gJMu6nY2yqfo0R/zsmusqMubpGgpqi2jg7OwNFoyEfFhUVpdoPRUGjh0d85Ofnk5ycrBpVePbsWY4fP87UqVOZMWNGqXIpKSmVGv2pVCqZPXs24eHhrF27Vq2uvX1R8nRtbW21wNqNGzeIjo7G0NAQe3t7FAoFt2/fVnuN6OjyV+6ryMCBA1m1ahUbNmwoN6gZFxfH4cOH6dixI/b29iiVSkxMTB7Zj/r162tUrqCggCtXrmBiYoKnpyeenkW5Z/z9/Zk1axa7du16rByVNcHc3JwlS5YwevRo3nnnHQ4ePKg2YrKqli9fjoGBAX5+flhY/DNCbs2aNaXK2dnZERwcTEZGBsbG/2SXCwsLY8OGDbzxxhs4ODgQGhpK165dSwVP8/Ly+O2339Sm2YuaoWOoh76FSZmr1KbHJvL/7N13WFTH18Dx79I7iIjYEEQFFQQVVGwk2HuLFdEYjSn2VE3xp9FIYjSJsUdFEzXYACt27D1qYom9UQQRAZGy1H3/ADauoIIiJe/5PI9Pwt6ZuzOXvdy9556ZMa1W8NQbxb3/tEfJXFixG+uG9th6u2mUS43NyVI3qCBftkXJMjYyolLFitwu4Dp3Ozwch5eYc/lJcQkJzFiwgBaNG/NW584a2yJzHyZWqlgRQ319dHR0CI+OzrePmIcP0dXVxbyY/u4LUVhl5foBkJmWoQ5oVm1ZH4euTV/pvYUoDoZGhlhYWRJ1N/815F5YBNXsXm5E35PSlEp1QNOzvRddBuVfC+JB1H1+/3EJrTp708y7Vb76KBToFDB3rRCibJNJuUSxcXJywtbWlrVr12rMd7lz50710Ok8VlZW3L59WyODMDQ0lLTcxQggZ+g05GRIPmn9+vWkpqaSmVn4bKW5c+cSGhrKmDFj8PLyyrfd2toaZ2dngoOD1dmYkBNo+uKLLxg3bhyZmZlYWlri4eHBli1biI2NVZc7d+4cly5dKnR7nmRnZ8fw4cPZs2cPixYtyrc9ISGBcePGkZGRwddffw3kDM9u3749hw8f5vr16+qyERERHDhwQP1zYctlZWUxdOhQZs6cqfHerq45QzCezlwsq1xcXBgxYgRRUVH88MMPxbbfhIQELC0tNQKajx8/Jjg4GPg3Q9PLy4vs7Gw2bNigUT8gIIAdO3ZgZWWFt7c3CQkJBAQEaJRZu3YtEydOVK/2LkqeVYOaJNy8R8qDBPVr8TfukfogkUoN7Utk//rmxmQp04k6fY1M5b8PfpQJSdw/cx1zBxv0TPOvgCvE69bM1ZULV6+qg4wA569cISomhhavkBkPYGlhQUpqKqHHjqkXAwKIjYvjwMmTNKhblwpmZhjo6+Pu4sK5ixcJf2KqjpiHD/nzwgXcXVzKzfVK/LeUhesHwM0tx3MCmi3qSUBTlCkNmrhy85+rPIj69xpy49JVHkbH4NLs1adH2LpqY25As02BAU0AS2srlKmpnD5wjKwn7iPjY+O49Off2Dk6oF9Mw+CFECVHHkWIQtu7d+9zV/fu2bMnU6dOZdSoUQwYMIC+ffsSGxvLqlWr1HNR5unWrRvTp09n5MiR9OjRg7t377J+/Xp1xiRAo0aNMDExwc/Pj8jISMzNzTl58iQhISHo6+uTnJxcqHYfOHCAxYsX4+DgQN26ddm6davG0GsrKytatmzJV199xbBhw+jbty+DBg3CwsKC7du38/fff/Pxxx+r+/7555/j4+ND//798fHxITU1lZUrV77Uyud5Jk6cyKNHj/j555/Zv38/HTt2xMzMjFu3brFp0yaUSiVz5szB6YkFEMaPH8+BAwcYMmQIb7/9Ntra2qxatQpjY2ONLNjClNPT08PX15dFixYxevRoWrdujVKpZN26dRgaGtK3b9+X7ltJ+/DDD9mxYwfr1q2jR48erzQMPU+bNm1YunQp48ePp1WrVjx48ICNGzeqA9t5n0Vvb29atWrFd999x/Xr13FxceHcuXNs2rSJ0aNHY2FhQb9+/QgODmb69OlcunSJhg0bcu3aNdatW0eDBg3o06fPK7dXvJzqrZ2JOXeTC8t3Ua2VM9mZmUQcvohJtYpYu+VMv5Aa95jEuzGY1bTG0NK02PcP4NCjOZdX7+fvJSHYuNclKz2De8cvo9DSonb35sXaZyEKq0e7dhw6dYrp8+bRzdub9IwMtu7bRy1bW1q7uwNwPzaWq7du4VirFpWfsbDgs4zo35/ZS5fy9U8/0bZFC1KVSnYdOoS2lhbv9OunLjekZ0/+uX6db375hc5vvIGOtjY7Dh5ET1eXQd27F2ufhSissnD9SIlJIObcLbQNdTGpWpH7527m20/lRq93KiEhnqV1Z2/+OnaaFT8soGXHN8nMyODIzv1UtauBa/Oc7+pxMbGE3biNbW17LK0Lfw2JuRfN38f/xMDIEJsa1fnr2Ol8ZdxaeKCtrU3XwX0IXLaGZd/Nw83TnZTkFE7uO4yWlhbdBpef+x0hxL8kqCkKzc/P77nbe/bsScuWLfH39+fHH39kzpw5VK1aFT8/P2bPnq1RdvDgwSQkJLBx40amT5+Ok5MT8+fPx9/fX53laWVlxa+//srs2bNZtGgRenp62Nvb8+OPP3L+/Hl+//13YmNjn7kie54LFy6gUqm4efMmY8eOzbe9adOmtGzZkkaNGhEQEMC8efNYsWIFmZmZ2Nvb891339G7979P/JydnVm1ahVz5sxh/vz5mJmZMWbMGC5evMjZs2cLezg16OjoMGPGDDp06MCaNWtYuXIliYmJ2NjY0K1bN3x9ffMt9lOlShUCAgKYNWsWy5YtQ09Pj365N35Lliwpcrlx48ZhYWFBYGAg33//Pdra2jRu3Jgffvjhtc+nWZwMDAyYNm0aw4cP5+uvv2bTpk3o5S4u8bLGjh1LVlYWISEh7N+/H2tra1q0aME777xD165dOXHiBO3bt0dLS4uFCxeyYMECtm7dypYtW7C1tWXKlCkMGjQIyAkgr1y5kgULFrBr1y62bNmCtbU1gwYNYvTo0RgaGhbHYRAvQc/EkIbvdubW9lPc3XsObT0dKtazxb6TO1o62gAk3rnPtY1HqPtWqyLflBZm/wBW9WtS39ebsAPnub3rT7R0tbGwr4Jdx8YYVbIozi4LUWjmpqZMmzCB34KCWB8Sgr6uLh4NG+LTs6f6weXlmzdZtHo1HwwZUuSgpkfDhnz67rsE797Nms2b0dPVpX6dOgzu0YNqlSury1WqWJEZH3/Mms2b2bpvHyqVinoODvj06lXk9xSiuJSF68ej2znTMmSlZnBt45EC9yNBTVFajM1MGTl5HCEBwezbtAM9PT3qNXKhY7/u6OReQ+5cu0Ww/x/0fmdwkYKad67mBPCVKakE+/9RYBm3Fh7q/+ro6nAoZB871m1CV18fh3p1aNenK1Y21q/YSyFEaVCoXmYJaSGKyNvbm2rVqj1zZXEhxKsbuH9WaTdBiDLr14qdSrsJQpRpox7uLO0mCFFmyeIhQjxfO9tXn0agLNgb9nJJSiXhv3KMi5tMPCSEEEIIIYQQQgghhChXZPi5EMUsKyuLuLi4QpU1NTXFoJxMSB0XF6deEOd5DAwMMDUt2rCq16m8tlsIIYQQQgghhBDPJkFNIYpZVFQUbdu2LVRZPz+/crMwzFtvvUVkZOQLy/Xu3ZvvvvuuBFpUOOW13UIIIYQQQgghhHg2CWqKEhEaGlraTSgxlSpVYsWKFYUqW7t27dfcmuLzww8/kJaW9sJy1tZla5Lt8tpuIYQQQgghhBBCPJsENYUoZvr6+rRo0aK0m1HsmjRpUtpNeCnltd1CCCGEEEIIIYR4NlkoSAghhBBCCCGEEEIIUa5IUFMIIYQQQgghhBBCCFGuSFBTCCGEEEIIIYQQQghRrkhQUwghhBBCCCGEEEIIUa5IUFMIIYQQQgghhBBCCFGuSFBTCCGEEEIIIYQQQghRrkhQUwghhBBCCCGEEEIIUa5IUFMIIYQQQgghhBBCCFGuSFBTCCGEEEIIIYQQQghRrkhQUwghhBBCCCGEEEIIUa5IUFMIIYQQQgghhBBCCFGu6JR2A4QQQhSPkQ7tSrsJQpRdCaXdACGEEOXVspt7S7sJQpRp7Wwbl3YTxP9TkqkphBBCCCGEEEIIIYQoVySoKYQQQgghhBBCCCGEKFckqCmEEEIIIYQQQgghhChXJKgphBBCCCGEEEIIIYQoVySoKYQQQgghhBBCCCGEKFckqCmEEEIIIYQQQgghhChXJKgphBBCCCGEEEIIIYQoVySoKYQQQgghhBBCCCGEKFckqCmEEEIIIYQQQgghhChXJKgphBBCCCGEEEIIIYQoVySoKYQQQgghhBBCCCGEKFckqCmEEEIIIYQQQgghhChXdEq7AQImTZpEcHDwc8u0bduWhQsXllCL8vP29qZatWqsWrUKAF9fXyIjIwkNDS2xNhTHe+7atYv169dz8eJFlEolVapUoVWrVgwbNowaNWoUah95v6+rV68WS7mX5ejo+NzteZ+ZiIgI2rZtm2+7rq4ulpaWtGzZkvHjx2NjYwPwzPIKhQJTU1Nq1aqFj48PPXr0KJ6OlICsrCyWLl3K+vXrSUxMxN3dnSlTplC1atXSbpooY+IfPGTHus3cvnoDAMeG9ek8oCfGZqaF3semlet4eD+GEZ+PfW656PB7LJ4+hzZd2uHdq/Mr70+I1y3m4UN+Dw7mn+vXAWjcoAG+vXtjblr48+PXgADuxcQwdfz4fNtuhoURsGULV2/fRktLi/oODvj27k3VypUBePDwIWOmTn3u/qeMG0eDOnUK3ykhioky7jG3dpzm0a1oACydqmPf2QM9E8NC7+N68DFSYx/R8N3814SEm1Hc3XuOpKg4dAx0sXK2w65DY7T1dDXKpSelcmf3WeKuhJOdkYlJ1YrYdXTHzLbSq3VQiFdUVs6Rcwu3khTxMF/9is41qT/4zSL2SghR2iSoWYZMnjyZChUqFLitSpUqJdya53v//fdJTU0t7WYUWnp6Op9//jkhISE0bNiQkSNHYm5uzvXr1wkODiYwMJAffviBdu3alXZTi6RWrVq8//77BW57+jPj7u5O//791T9nZmZy48YN1qxZw/Hjx9myZQtmZmbPLK9SqQgPD2ft2rV8+umnaGtr07Vr12Lu0euxcOFCFixYwPDhw6lUqRKLFy/mgw8+ICgoCG1t7dJunigjUpKS8Z+1gKysTFp38kalyubIzv3cj7jH+19/hLbOiy+ZZw6f4Myh49g5Ojy3XFZWFoHL15CVmVUs+xPidXucnMy0X34hKyuLHu3akZ2dzdZ9+wi7d4+Zn3yCTiHOj9Djx9l37Bj1atfOt+3e/ftM++UX9HV16dupEwDbQ0OZ8vPPzJo0CUtzc0xNTBjt65uvbnpGBis2bsTcxISa1aq9emeFKKKMlDTOL9+JKiub6m2cUalURBy+SHJ0PG4fdkOrEN81ov+8RvTpa5jbV863LeFmFBf8d2FSrSL2nZqQ9iiFe8f+ISnyIQ1HdUahUACQmZbB+aU7SX+cQrWW9dEx0OfeictcWL4Ttw+6YWxT8H2GEK9bWTlHVCoVKTGPqFjflooNamrsw8DCuHg6K4QoURLULEPatWtH9erVS7sZhdKyZcvSbkKRzJo1i5CQED799FNGjhypse39999n5MiRTJgwgcDAwBdmQJYlVlZW9OzZs1Bla9SoUWDZGjVqMG3aNNauXcuoUaNeWL5Pnz506dKFBQsWlJug5vr162nTpg2ff/45kBPQnTNnDrdu3aKOZPSIXEd3H+BRfAJjvvkM66o5mcvV7Gvy25xFnD16Cg+vFs+sm52dzcFtewjdvLNQ73Vo+14e3Isutv0J8bptDw0lLiGBHyZPpnpuZn/tmjX5dsECDpw8SbvnfC/Izs4maNcuNu7Y8ez9HzhAWloa0yZMwD73u5BL3bp8MXs220ND8e3dGwN9fdo0bZqv7srAQLKyshg7bBgmRkav2FMhii7yyCXSHqXQZFxPjKwtADCtXomL/ru5f/YGVTye/d1SlZ1N+IHz3N331zPL3NpxGn0LYxq+2xlt3ZzbN31zY25uOUH89Ugs6+acMxEHL5Aa+wiXkZ2wsM85Tys1tOP07EAiDl/AsV+b4umwEEVUVs6RtPgkstMzqVjflsqN5IGxEP8FMqem+M+7ffs2q1evpmvXrvkCmgAVK1Zk7ty5KBQKZsyYUQotLF1dunQB4OzZs4UqX61aNTw8PLh58yZJSUmvs2nFRqlUEhUVhUqlAiAtLQ3IGYIvRJ4LJ89i71hbHdAEqN3AkYo21lw4ee6Z9TLSM1g4dTahm3bg5umOaQXz575PdPg9Dm7bzRvdOxbL/oQoCUfPnqV+nTrqgCZAQycnqlhbc+w514/0jAw+//57NoSE0NrDA0sLiwLLxcTGYmpiog5oAjjUrImJsTHhUVHP3P/dyEh2HjzIG82aFZgBKkRJeHD+Fhb2NupgDUCF2lUxrGTGg/O3n1kvKyOTs/O3cnfvX1i7OaBnnj8on5WRiZ6JATYeddXBGkCdrZYcFQfkZKDdP3cDS8fq6oAmgJ6pEfadPTCzy5/dJkRJKQvnCEByTAIAhlby3UqI/woJapZDO3bsoFevXjRs2JBu3bqxf/9+RowYge8TQ7K8vb01fn7W6yqVioCAAN566y0aNWqEi4sLnTp14tdff1UHgAri6+uLt7c3kDMHo6Oj4zP/zZs3T13vxo0bjB49Gnd3d1xdXRk4cCCHDx/Ot/9jx44xcOBA3NzcaNeuHRs2bHipYwWwefNmVCoVPj4+zyxja2tLu3btOH36NNHR/2ZPXbx4kXfeeYdGjRrRunVrlixZUuBxKUw5lUrF/Pnz6dixIy4uLrRo0YJPP/2UqOfcrJUELa2cPwNZWc8fBvsko9xMmOd9Rp5l165d9O3bl0aNGtGkSROGDx/OmTNnNMpkZ2fj7+9Pp06dcHZ2pnXr1syYMUMjiDpx4kQcHR05ePCg+rWEhARatWpF+/btSUlJUb/euXNnrl27xq+//srBgwfx9/fH09MTOzs7jfc9efIkjo6OBAcH0717d1xcXJg8eTIADx48YNq0abRt2xZnZ2eaNGnC0KFD87VdpVLx+++/061bNxo2bIi3tzezZ8/WmK6hMP0TJSs1OYX4Bw+papc/W76qbXWiwiKeWTczM5O0VCUDPhhG35E+aGs9ewhVVlYWwSsCcGjgiKun+yvvT4iSkJSSQkxsLLUKmHvavkYNboeHP7NuRkYGKUolE4YPZ7Svr/qa8zSbSpVISk7m0ePH6tceJyeTkpqKxRNTozxt3bZt6Onp0b9btyL0SIjik5GahjIuCZNqFfNtM6lSkaR7+efuy6PKzCYrLR2nQV449muNQkuRr4y2rg7Ob3fA9g1XjdfzAjX6FiZATgZa+qMULGrnzBeuUqnISs8AoGpzp+dmwgnxOpWVcwQg5X48AEbWOUHNvHNECFF+yfDzMiQxMZG4uLgCt5mbm6Otrc2mTZv4/PPPcXFx4dNPP+XWrVuMGzcOS0tLbG1ti/yeP//8M4sXL6Z3797079+f5ORkNm3axJw5czA2Nn5uIDCPpaUls2bNyvf6vHnziI6OpnXr1gBcvXqVwYMHY2VlxXvvvYeuri7btm1j1KhRzJkzR50xeOzYMd59913s7OyYMGECcXFxfPvttygUimfOOfo8f/31Fzo6Ori4uDy3XPPmzQkJCeHMmTN07dqV69ev4+vri5mZGR9++CEZGRn4+/uTnp6uUa+w5RYvXsyCBQvw8fHB0dGRiIgIfv/9dy5evMi2bdteam7HjIyMAj8zurq6mBZy4Ybjx48DUL9+/UKVT01N5fTp01SvXr3Q75Hn1KlTTJw4kTZt2tCvXz9SU1NZvXo1w4cPZ/v27erFmr788ks2b95Mr169ePvtt7l58yYBAQGcPXuWgIAA9PX1+frrrzl+/DjffPMN27dvx8DAgOnTpxMXF8fq1avVgVeAjz76iMOHD/PTTz+hUqlo2rQpc+fOfWY7v/nmG/r06UO/fv2oWrUqSqUSHx8fHj9+jI+PD5UrV+bOnTsEBAQwcuRI9u7dS8WKOV/Upk2bRkBAAG+++SaDBg3i9u3b+Pv7c+fOHebPn1/o/omSlRj/CACzChb5tplamKFMSSU1JRVDo/yT2RsYGjDhuy8LdQ4f2bGPh/cfMHjMO2RnF/xQoCj7E6IkxCUkAGBpnj+zpYKZGSmpqSSnpGBcwNBvI0NDfpky5YWf557t2nH24kV++e03hvbuDcDqTZvQ1tam8xtvFFjnbmQkZy5epJu3d4FtE6IkpD/KeYiqZ5b/869nZkhWagaZqenoGOrl265toIv7R33R0i58nokyPolHt6O5FXIao8oWVKyf8/0/9WEiALrGBtzacZro09fIUmZgUNGUWl2aUrFe4RbEFKK4lZVzBCAlJgFtfR1uhZzmwfnbZKdnYmBpQs32jbF2rfUSvRNClDYJapYhvXO/xBdk06ZN1K1bl1mzZlGrVi3++OMP9PRy/vDXqlWLGTNmFDmomZGRoR6W/d1336lf79evH56enhw+fLhQQU0jI6N8cy8uW7aM8PBwpkyZgpubGwAzZszA0tKS4OBgdcBpyJAhDBs2jG+//ZZ27dqhp6fH7NmzqVSpEuvWrcPEJOfJWosWLRg2bNhLBTUfPHiAubm5+ng9i7W1NQAxMTEA6gzTtWvXqhfd6dixI7169dKoV9hyW7dupU2bNnz11Vfq16pUqUJAQACRkZEvFZQ+d+4cnp6e+V5v2rSpeqX6POnp6RoB0EePHnHu3Dlmz56NsbExgwYNem75zMxMwsPDWbhwIXFxcUyaNKnI7Q0JCcHAwIBFixapJ+xu0aIF48aN49KlS9SoUYOTJ08SFBTEtGnTGDhwoLqul5cXI0aMYO3atQwbNgxLS0umTJnCxIkTWbJkCc7OzuogeePGjTXeNzQ0lJSUFFQqFYaGhvz444+YP+cGuEmTJnz99dca7b579y7Lli1TB+khZ97R//3vf5w5c4YOHTpw48YN1q5dS//+/Zk+fbq6nLGxMYsXL+bGjRs8fPiwUP0TJStNqQRAVy//lAQ6ua9lpKcXGNRUKBSFCkDGREaxf8suuvr0xdyyAvGxBT/EKuz+hCgpytwpOwq6jurlTuORlpFBQUssFPbzbGVpSe+OHfHfsIHPcr+TaGlp8dGIERpD0p+0+8gRtLS06NRG5gkUpScv0+vJYa95tHIX0MrKyCwwYKNQKFBo5888e5aMlDRO/7AxZ9962jh0b6Z+30xlzsP0u3vPodDWwqFbM1AoiDh8kX9W78N5eAcq5GZxClGSyso5ApB8P4GstEwylek49mtNpjKde8f+4eq6Q6iyVTLPphDlkAQ1y5AffvgBKyurArfZ2tpy4cIFHj58yKhRozRuLAYMGKAxxLuwdHV1OXbsGBkZmmn38fHxmJiYaAzfLYrDhw/z448/0rNnT3VQND4+nlOnTuHr64tSqUSZG0AAaN++PX5+fly4cAE7OzsuXbrEyJEj1QFNyMmidHR0fKnhuSqVqlA3VHkrt6pUKrKzszl8+DBeXl4aq4g7ODjQqlUrQkNDAQpdDsDGxoaTJ0/y22+/0bVrV6ysrBg4cKBGYKuoHB0dCwwumhUwVG/79u1s37493+t16tRh6tSp2DwxT9rzyteqVYsff/zxpRYJsrGxITk5mRkzZjB48GAcHBxwdHRk165d6jK7d+9GoVDg5eWlEVStX78+lSpV4sCBA+qgX5cuXdi+fTvLly/HzMwMJycnxo4dq/Ges2fPZunSpbRu3RoXFxcWLlzI559/zrJly7h58yYXL17Ey8sLS0tLdR0PDw+NfXTp0oXmzZtrBNWfzMTNO1cOHDiASqXKN/XDiBEj6NKlC7a2tgQEBBS6f6Lk5M2kkBdsL27Z2dkELQ/Atnat5y44JERZlDfVyOs6PyBnGHnQrl3Uq12bdi1bkp2dze4jR/jZ35+PRoygyVOjLdIzMjh8+jRNXFyoVDH/kEYhSoz6AlIC76UAp4FeZGdlc+/4P1zw3029gV5YOduRnZkN5AQ33T/qg65hzqiPik41OD0nkDu7z0hQU5SOMnKOAFTxqItKpaJq83rqKpUa2nN27iZu7ziNtas9imdMkyKEKJskqFmGNG7c+Lmrn9+7dw9APUQ3j56eXr7XCktXV5cDBw6wb98+bt++zd27d3n0KGcY5svMl3jnzh0++ugj6tSpwzfffKN+PTx3vq1Vq1blyyDMExUVpV64paCsxVq1anH+/Pkit8na2prw8HAyMzPVgcuC5GVoWltbk5CQQEpKyjPbkResLGw5gM8++4wPPviAmTNn4ufnR4MGDfD29qZ///5UqlSpyP2CnGkJWrQoXICkVatWjBgxAsi5MdXT06NKlSpUrVrwF9wny0dHR7Ns2TISExOZOnUqzZo1e6n2DhkyhCNHjrB69WpWr15N9erVefPNN3nrrbdwcnICICwsDJVKxRvPGG5obKyZCzR16lQ6dOjAgwcPWLhwoUbA/8yZM+qA5pIlS9DW1ubq1avs27ePJUuWkJiYiL+/P5s3b9YIaj75/3kUCgW//vor586dIywsjLCwMPUDgezsnBuJyMhIgHxzdZqZmakDzUXtnygZ+gY5N38ZT00bAZCZm2FgYGDw0vs/siOU6IhIRk4eT/LjnIczytxgeHp6BsmPkzAyMX6tQSMhXpZB7pQYT0+rAjnBRQCjVzg/klNS2LJvHw62tkwZO1Y972aLxo35YvZslgQEsMDJSWNxt4vXrpGWloZno0Yv/b5CFAdt/ZzPZXZG/rnJszMzAdAxKJ6FCXUN9anU0B4AK+eanJ27iZvbT2HlbIe2bs4DfKsGNdUBTQAdQz0snaoTc+4mWekZaBcwIkGI16msnCMAVZo55W+frg7WjRwI2/c3KTEJGNvkvw8QQpRdEtQshwoKNhZ2Dr4nF4NRqVR8+OGH7N+/nyZNmtCoUSMGDBiAh4fHS2WKJSUlMXr0aBQKBfPnz9cIAOS9r4+PD+3atSuwfu3atbl//z6ARiZnnrzAUVG5u7tz/Phxzp8/n29Y8pP+/PNPFAoFjZ64QSpsOwpTzsnJiV27dnH48GH279/P4cOH+eWXX1ixYgXr1q3DweH1DneoVKlSoQOgBZVv27Yt/fr1491332XFihU0adKkyG0wMTFh9erV/PXXX+zdu5dDhw6xatUq1qxZw6xZs+jevTvZ2dkYGxur55982tOf9X/++UedKblr1y4aNmyo3rZv3z4ARo8erc7W/e677+jduzfz5s3DyMgIOzs7dUA1z9OZvbdu3WLQoEFkZGTQqlUrunTpQr169VCpVIwePVpdrjCLLRW1f6JkmFfMycJ9/Ohxvm2PExIxMDJEz+DlfzfXL14mKzOLJdN/zLft6M5Qju4M5aNZU6hgJV+kRdljlZulnpCYmG9bfGIiRoaG6sDny4h+8IDMzExaNGmisZCQjo4OrdzdWbN5M5H372P3xIPfc5cuoaOjQ6NCzgctxOuib54zsij9cWq+bemJqWgb6r6WQKK2rg6WTjW4d+wyGclK9MxyHorqGud/wKBnYggqyEqToKYoeWXlHCno3Mija5wzvVBWemaxt0MI8XpJULMcycv+unPnTr5t4eHhGtlhWlpa+TIqMjMziY+PV2cV/vnnn+zfv58PP/yQ8ePHa5RLSEgoUvanSqXi008/5ebNmyxZsiRf3WrVqgE5waKnA2s3btwgIiICQ0NDqlWrhkKh4O7du/neIyLi2asPP0+3bt1YuHAh/v7+zwxqRkdHs3PnTpo0aUK1atVQqVSYmJi8sB0VKlQoVLmsrCyuXLmCiYkJbdu2pW3btkDOXI0TJ05kw4YNLzVHZUkyNzdnzpw5DBw4kI8//pht27ZpTBFQGLdv3+bx48e4ubnh5ubGJ598wo0bN/Dx8WHFihV0796datWqceTIEZydnfMNo9+5c6dGVmxSUhJTpkyhbt26uLi4sGLFCjp27KgObOY9AHgySGlmZsbcuXMZOHAgjx8/ZuLEiS9s99KlS0lMTGTHjh0a59nWrVs1yuVlvYaHh2sEqe/fv4+fnx9DhgwpUv9EyTE0MsTCypKou/n/ztwLi6Ca3astsNBpQC9SkzWn9EhOfMzGpatx9XTHrYUHJmZFW3hLiJJibGREpYoVuV3Adfh2eDgOr/h3K28URUEPDbNz/44//Tj32u3b1LK1xcgw/zy3QpQkHUM99C1NClzBOSnqIabVCp5aqrBSHiRwceUeqrd2oWpzzYewWWkZoACFjjbGNhYodLRIiUnItw9lfBJautrPDeoI8bqUlXMk7VEyF1bsxrqhPbbebhrlUmNzRioaVCjavY0QovTJhBHliJOTE7a2tqxdu1ZjvsudO3eqh07nsbKy4vbt2xoZhKGhoaTlTvYPOUOnISdD8knr168nNTWVzMzCP6maO3cuoaGhjBkzBi8vr3zbra2tcXZ2Jjg4WJ2NCTmLFX3xxReMGzeOzMxMLC0t8fDwYMuWLcTGxqrLnTt3jkuXLhW6PU+ys7Nj+PDh7Nmzh0WLFuXbnpCQwLhx48jIyFAvDqNQKGjfvj2HDx/m+vXr6rIREREcOHBA/XNhy2VlZTF06FBmzpyp8d6urq4AGpkpZZmLiwsjRowgKiqKH374ocj1Z8yYwYcffkhycrL6tVq1amFmZqY+Bt7e3gD5flehoaGMHz9eI5A4a9Ys7t+/z7Rp0/jss88wNzfnyy+/VAf0mzdvDkBAQIDGvmJiYtRZlYGBgaSm5n9y/KSEhAQMDQ01huqnp6ezdu1a4N8MzbzP/tPvFxQUxI4dOzAxMSlS/0TJatDElZv/XOVB1L9/o25cusrD6Bhcmj07y7swqtnVoHYDR41/tnVyVtm0rFSR2g0cC1ykSIiyopmrKxeuXiXyiWv4+StXiIqJocVLZO4/qUaVKlQwN+fAyZPq4eyQM7T90KlTmJqYUOOJeZ8zMzOJiIp65gJCQpQ0qwY1Sbh5j5QHCerX4m/cI/VBonoo7MsysDQjU5lO1KmrZD8xIkQZn0TsxTuY29ugo5+T6Vaxni1xVyJIvh//b7m4xzy8HIZlvRoyV6AoNWXhHNE3NyZLmU7U6WvqhbUAlAlJ3D9zHXMHG/RM86/QLoQo2yRTswzZu3fvc1f37tmzJ1OnTmXUqFEMGDCAvn37Ehsby6pVqzTmmYKc7MTp06czcuRIevTowd27d1m/fr06YxKgUaNGmJiY4OfnR2RkJObm5pw8eZKQkBD09fU1Ak/Pc+DAARYvXoyDgwN169Zl69atGtkWVlZWtGzZkq+++ophw4bRt29fBg0ahIWFBdu3b+fvv//m448/Vvf9888/x8fHh/79++Pj40NqaiorV658qZXP80ycOJFHjx7x888/s3//fjp27IiZmRm3bt1i06ZNKJVK5syZozEMefz48Rw4cIAhQ4bw9ttvo62tzapVqzA2NtbIgi1MOT09PXx9fVm0aBGjR4+mdevWKJVK1q1bh6GhIX379n3pvpW0Dz/8kB07drBu3Tp69OhRpGHow4cP591338XHx4devXqhr6/P3r17CQsL4/vvvwdyAoNt27bF39+fyMhIPD09iYyMZM2aNVStWlU9z+fx48dZv349/fv3V2fgfvbZZ0yaNImFCxcyYcIEvLy88Pb2JigoiLS0NJo2bcrff//N5s2bqV+/Ps2aNWP58uW88847LF269JntbtOmDaGhobz33nt06tSJx48fs2nTJsLCwgDU50q9evXo168fq1atIiYmBk9PT/WK6L169cLJyQlHR8dC9U+UvNadvfnr2GlW/LCAlh3fJDMjgyM791PVrgauzXM+53ExsYTduI1tbXssrV8ts0CI8qRHu3YcOnWK6fPm0c3bm/SMDLbu20ctW1tau7sDcD82lqu3buFYqxaVn7HwYUG0tLR4p18/fly+nC9nz+ZNT0+ys7PZf+IE9+7fZ7Svr8ac2LHx8WRmZamHxQtR2qq3dibm3E0uLN9FtVbOZGdmEnH4IibVKmLtljNyIzXuMYl3YzCraY2hZeEz87W0tXDo1pxrGw5z/tcdWDdyIDMljXsnroCWImeV81z2ndx5dDuaC8t3UbVFPbS0tIk8/g9autrYdXi1hw9CvIqyco449GjO5dX7+XtJCDbudclKz+De8csotLSo3b15sfdbCPH6SVCzDPHz83vu9p49e9KyZUv8/f358ccfmTNnDlWrVsXPz4/Zs2drlB08eDAJCQls3LiR6dOn4+TkxPz58/H391dneVpZWfHrr78ye/ZsFi1ahJ6eHvb29vz444+cP3+e33//ndjY2GeuyJ7nwoULqFQqbt68mW/laYCmTZvSsmVLGjVqREBAAPPmzWPFihVkZmZib2+vnuMwj7OzM6tWrWLOnDnMnz8fMzMzxowZw8WLFzl79mxhD6cGHR0dZsyYQYcOHVizZg0rV64kMTERGxsbunXrhq+vb75hv1WqVCEgIIBZs2axbNky9PT06NevHwBLliwpcrlx48ZhYWFBYGAg33//Pdra2jRu3Jgffvjhtc+nWZwMDAyYNm0aw4cP5+uvv2bTpk0ai/M8T6tWrVi0aBFLlixh4cKFpKWlUadOHY3V1BUKBXPnzmXZsmVs2rSJ0NBQLC0t6dChA+PHj8fKyorU1FS+/vprLC0t+fjjj9X77927N4GBgSxbtoyOHTtSr149fv75ZxYuXMiWLVvYvXs3VapU4YMPPuDdd9/FwMAAfX19bty4gZHRs5/MDhw4kMTERDZs2MCMGTOwsrLCzc2N+fPnM3DgQE6cOMHbb78NwDfffIOdnR0bNmwgNDSUqlWrMnr0aEaOHFno/onSYWxmysjJ4wgJCGbfph3o6elRr5ELHft1Ryf3wdGda7cI9v+D3u8MlqCm+H/F3NSUaRMm8FtQEOtDQtDX1cWjYUN8evZUP1i9fPMmi1av5oMhQ4oU1ARo6urKV2PGsHHHDgJyM9btq1fn8/ffzzdvZlLugyQZei7KCj0TQxq+25lb209xd+85tPV0qFjPFvtO7mjp5EyBk3jnPtc2HqHuW62KFLABqNzIAS0dLcIPXuDW9tNo6+lg4VCFmu0bY1TJXF3OoIIJru935c7OP4k4fBFUYG5XGftO7kV+TyGKU1k5R6zq16S+rzdhB85ze9efaOlqY2FfBbuOjTGqZFGcXRZClBCF6mWWuBZljre3N9WqVXvmyuJCiGdTqVT/iVWn94a9XNBfiP8PmibIc1whnmfUw52l3QQhhBDl1No3PyvtJhSLsnw/1c721abD+q+SiVWEEP/v/RcCmkIIIYQQQgghxP8nkrYgyp2srCzi4uIKVdbU1BQDg/Kx0mNcXJx6wZnnMTAwwNS07AwhKq/tFkIIIYQQQgghRPklQU1R7kRFRdG2bdtClfXz86NPnz6vuUXF46233iIyMvKF5Xr37s13331XAi0qnPLabiGEEEIIIYQQQpRfEtT8jwgNDS3tJpSYSpUqsWLFikKVrV279mtuTfH54YcfSEtLe2E5a2vrEmhN4ZXXdgshhBBCCCGEEKL8kqCmKHf09fVp0aJFaTej2DVp0qS0m/BSymu7hRBCCCGEEEIIUX7JQkFCCCGEEEIIIYQQQohyRYKaQgghhBBCCCGEEEKIckWCmkIIIYQQQgghhBBCiHJFgppCCCGEEEIIIYQQQohyRYKaQgghhBBCCCGEEEKIckWCmkIIIYQQQgghhBBCiHJFgppCCCGEEEIIIYQQQohyRYKaQgghhBBCCCGEEEKIckWCmkIIIYQQQgghhBBCiHJFgppCCCGEEEIIIYQQQohyRae0GyCEEEIIIYQQQgghhChY27Ztn7t93759JdSSskWCmkII8R/RNEH+pAvxLKcsMku7CUKUaYsO6pd2E4Qosz5wTivtJgghhCiA3AELIYQQQgghhBBCCFFG/X/NxHwRmVNTCCGEEEIIIYQQQghRrkhQUwghhBBCCCGEEEIIUa5IUFMIIYQQQgghhBBCCFGuSFBTCCGEEEIIIYQQQghRrkhQUwghhBBCCCGEEEIIUa5IUFMIIYQQQgghhBBCCFGuSFBTCCGEEEIIIYQQQghRrkhQUwghhBBCCCGEEEIIUa5IUFMIIYQQQgghhBBCCFGuSFBTCCGEEEIIIYQQQghRrkhQUwghhBBCCCGEEEIIUa7olHYDhChOkyZNIjg4WOM1XV1dKlasSNOmTRk1ahR16tRRb/P19SUyMpLQ0NCSbmqxSk9PJz4+nsqVK7+29/D29gYo18cqOzube/fuUb169dJuiigHfg0I4F5MDFPHj39h2S9++IGbYWH5Xm/q5sbHI0aof75y8yYBW7dyMywMEyMj3Bs2pH+XLpiZmGjUu3jtGuu2b+duZCRGBgY0b9SIgd26YaCv/+odE6IYbFq5jof3Yxjx+dgXll38zY9E3sl/ftRv0pBBo98hPjaOHz/75rn7eOez0dg71cn3+sFtu/nz4Ak+/mFK4RsvxGu29NBhohISmNKj+wvLJqamsvbUac7cvUt6Zhb2VhUZ1KwpdZ76TnclKpp1p09z88EDTPT1ca9Zk7fc3TEzNNAodynyHuv//JO7Dx9ipKdHs1q1GODhjoGubrH2UYhXcT34GKmxj2j4bucXlk24GcXdvedIiopDx0AXK2c77Do0RltP96XKvWw7hBBlkwQ1xX/S5MmTqVChAgCpqamEhYURGBjIrl27WLp0Kc2aNQPg/fffJzU1tTSb+soiIyN55513eO+99+jTp09pN6fMSkpK4u2338bLy4uxY198Ey7+fws9fpx9x45Rr3btF5ZVqVRE3L+Pe8OGNHN11dhWydJS/f+Xrl9n5oIFGBka0rtDB7S0tAjZv59L164x/aOPMDEyAnICmjPmz6dWjRr49OjBw4QEQg4c4GZYGN9MmIBCoSjezgpRRGcOn+DMoePYOTq8sKxKpSImKhqnRi40aNJQY5uFVc75YWxiTN+RPvnqZmRksH1NEMZmJtjUqJZv+/ULl9m/ZRem5uYv2RMhit/+K1cJvXyFelVsXlg2NT2daVu2Ep+SQhcXF4z19dl16RLTt23n2969qJF7Dfnn3j38QnZgpKdHr0ZuaCm02HHhApfu3WNar56Y5D7wuhR5j2+3b8feyorBzZryMCmZHRcvcuvBA6b26C7XD1EmRP95jejT1zC3f3EyRsLNKC7478KkWkXsOzUh7VEK9479Q1LkQxqO6qz+TBe23Mu2QwhRdklQU/wntWvXLl82nq+vL3379mXChAns3bsXY2NjWrZsWUotLD4RERHcuXOntJtR5iUkJHDhwgW8vLxKuymiDMvOziZo1y427thR6DoP4uJIS0vDo2FD2jRt+sxyKzZsQKGlxfSPPsKmUiUAmrq68pmfH8G7duHbuzcAqzdtomKFCkydMAG93MwaqwoVWL5+PX9dvkyj+vVfoYdCvLzs7GwObttD6Oadha6TEBtHRlo69Rq54NbCo8Ayegb6BW4LCQgiKyuLfqN8MTQ20th2+sAxtv8RSFZmVtE6IcRrkp2dTfC5vwg8c6bQdbb89TdRjx7xVbdu1K9aBQBPh1qMC1jLlr/+ZrT3mwCsPHoMhULBtJ49sMkN4nvY2TEpMJBNZ88xxLM5AKtPnKCiiQn/69EdPZ2c2zwrExP8jxzl7/AI3GxrFGeXhSgSVXY24QfOc3ffX4Wuc2vHafQtjGn4bme0dXM+0/rmxtzccoL465FY1q1epHIv2w4hRNklc2qK/zeqVKnC559/TlxcHIGBgaXdHCFEGZOekcHn33/PhpAQWnt4YGlhUah64VFRAFR7zvQPDx4+JDwqCq+mTdUBzbw6jV1cOHjqlLoNZiYmtG3RQh3QBNQZo3cjI4vaLSGKRUZ6BgunziZ00w7cPN0xrVC47MiYe9EAVKpiXaT3iw6/x/G9h2ncqil2dTUzQlfOXsiW39dj71SHKjVlOhFR+tIzM5kcFMzGP8/Qqk4dLJ8KwhdEpVJx6No13GrUUAc0ASyMjPBt3hyn3EzPB48fEx4XT5s6ddQBTYBqFSxobGvLoWvX1W0wMzTE28lJHdAEqFclZ993Hz4slr4K8TKyMjI5O38rd/f+hbWbA3rmLz5HsjIy0TMxwMajrjpQCagzK5Oj4opU7mXbIYQo2ySoKf5f6dSpE3p6ehw+fBjIyd7MmysScuam/Pbbb2nbti3Ozs54eXkxbdo0Hj16pC4zadIk2rdvz7lz5+jTpw8NGzakU6dOBAQE5Hu/48ePM3LkSJo1a0aDBg1o3bo1U6ZMITExUWN/nTp1Ys2aNXh4eODh4cGhQ4cKVT8oKIihQ4cCOUPuHR0d1ft99OgR06dPp3Xr1jg7O9O5c2d+++03VCpVsRzLoKAgHB0duXLlCuPGjaNRo0Y0b96c77//nqysLIKDg+nYsSNubm4MHDiQK1euqOvOmzeP+vXrc+vWLXx9fXF1dcXb25uFCxeSlaWZdXPp0iXGjh1LixYtaNCgAZ6ennz88cdER0drlEtKSmLmzJm88cYbuLq60r17dzZs2ADAyZMnadu2LQDz58/H0dGRiIiIIvX31KlT+Pj44O7uTqNGjRg4cGCB84sGBQXRq1cvXFxcaN68OZMmTSImJka9ffbs2Tg6OrJmzRr1a+np6XTv3p1mzZpx//79IrVLFJ+MjAxSlEomDB/OaF9ftLQKd4l8OqipTEvLVyYu929IjSpV8m2zsbLicVISD+Pj0dPV5YsPP6RPx44aZe7kfl6fHM4uREnKzMwkLVXJgA+G0XekD9pa2oWqdz8i5/yoVDXn/EhX5j8/CrI3aDu6erq07d0l37aEh/F0G/IWQye+h76BzDMrSl9GVhYp6emMb9eWD998o1DXjwePk4hLTqFh7sgilUqFMiMDgPYN6tO2Xj0A4pKTAdRD0Z9U2dyMx0olD5OS0NPRYXKXzvRu3EijzJ2HsQBUMjV96f4J8apUmdlkpaXjNMgLx36tUWi9eCoEbV0dnN/ugO0bmlP75AUp9S1MilTuZdshhCjbZPi5+H9FX18fW1tbjQDbk7755hu2bdvG0KFDqVGjBtevX2fNmjXcvXsXf39/dbmEhARGjhyJl5cXffr0Yffu3UydOpXExETee+89AI4cOcK7775L48aNGTduHAqFgqNHj7Ju3ToePXrE3Llz1fuLiopi0aJFjBkzhpiYGNzc3ApV38PDg/fff5/FixczYMAAmjRpAkBKSgpDhgwhKiqKwYMHY2Njw4kTJ5g5cyZ37tzhf//7X7Ed01GjRtGkSRMmTZrE7t278ff359q1a1y9epVhw4ahUqlYtGgR48aNIyQkBJ3c7AGVSsXw4cOpU6cOn376KSdPnmTu3LlER0fzzTc5C0ZcvXqVwYMHU7NmTUaNGoWhoSFnz55l8+bN3L17l40bNwI5QUEfHx+uX79O//79cXJy4uDBg3z11VekpqbSpUsXJk+ejJ+fH+3bt6d9+/ZYFiE4dOvWLd577z3q1avHxIkTAVi/fj0ffvghq1evxt3dHcgJmM6bN4+OHTvSv39/7t+/z+rVqzl16hQbN27E0tKSsWPHsnfvXn7++Wc6duyIlZUVCxYs4Nq1a/z000+vdbEn8XxGhob8MmUK2tqFC9bkiYiKwsDAgN+Dgjh27hxpaWlYW1kxsFs3Wuaek3p6egCkFhDwfJyUBEBCYiIVc+cCzvPg4UMu3bjBquBgalSpgkfDhvnqC1ESDAwNmPDdl0U+P2LuRaNnoM+OtZu4cOocGWnpVKhUkXZ9utKwWeMC60SH3+Pq35do2fFNzCzyZ4SOnf452jryFVaUHUZ6evw8cADahXwYBhCd+7DLzNCQ1cdPEHrlCqnpGVQ2N8PXszlNatYEQD/3s56aG/B80mOlEoCElFQqPrXg3IPHj/nnXhSrT5yghmUF3O1qvlTfhCgO2ga6uH/UFy3tl8+pUsYn8eh2NLdCTmNU2YKK9W2LXK442iGEKFvkG6H4f8fMzIywAlYpBti6dSt9+/blo48+Ur9mZGTE4cOHSU5OxtjYGIDExESGDh3Kl19+CcCgQYMYNmwYCxcuZODAgZibm7Ny5UqqVKnCihUr1AGNwYMHM2DAAHWmaB6lUomfnx9duvybkVKY+jVq1KBFixYsXrwYNzc3evbsCcDy5cu5ffs2gYGB6uzNwYMH8+OPP7JkyRIGDBiAk5PTKx9LADc3N3766ScAunTpgqenJ8eOHWPLli3qleaTk5NZvHgxERER2NnZATlzTzk7OzN//nwUCgVDhgzhk08+Yf369QwbNgwHBwf++OMPFAoFv//+Oxa5Q4EHDBiQs3jE9u0kJCRgYWHBxo0buXLlCrNnz6Z79+7qckOGDOHXX39lyJAhtGvXDj8/PxwdHdXHqbD27dtHSkoK8+fPVwdDu3TpwsCBA7l8+TLu7u6Eh4ezYMECRo0axccff6yu27VrV/r06cPixYv54osv0NfXZ+bMmfj4+DBr1iyGDRvGsmXL6Nq1q8bvX5Q8hUJR5IAN5GRqKpVKkpVKxvj6kpyayo4DB/hl5UqysrJo07QpNWxsMDQw4NTff9OrfXv1hPXpGRmcz33Ikv7UDevj5GTGTJ0K5ARFh/frpzEkXYiS9LLnx/3IKNKVaShTUnlr5BCUqakc33OQDUt+Jzsrq8C5NE/tP4JCS4tmbVsXuE8JaIqyRqFQoF3ERXhS0tMBWP/nn+hoaTGsRQu0FAq2nT/PnF27mdylMy7Vq1O9QgUM9XQ5dfs2Pd1c/71+ZGZyPiJnSpL0rEyNfT9WKhn3x1oA9HR0eLtlC40h6UKUNIVCgUL75bMiM1LSOP1DTjKDlp42Dt2baQw1L2y5V22HEKLskUcU4v+dzMzMZ67+aGNjQ0hICEFBQeoh3hMmTCAwMFAd0MyTl5EJoK2tzdChQ1EqlRw7dgyAJUuWEBgYqA5IAsTHx2NiYkJKSkq+987L9stT1PpP2r17N3Xr1qVSpUrExcWp/7Vr1w6A/fv3P7d+UeTtE8DU1BRLS0vs7OzUAU1AvWjTgwcPNOqOGjVK43cxfPhwVCqVun1Tp04lNDRUHdCEnGHm+rmrfOYdhwMHDmBpaUm3bt3U5RQKBbNmzWLNmjWvvNqnjU3OvFbTp0/n4sWLAFSoUIFdu3bh6+sLwJ49e8jOzsbb21vjmFtZWVGvXj0OHDig3l/jxo3x9fVly5YtjBs3DktLy2LNnhUlq13LlrzTrx8fjxhBU1dX3mzenBkff4y1lRWrN20iOzsbHR0dunl7cyssjF9++427kZHcjojgp+XLUebe2D4dMFIoFIzPHQpfw8aGGfPnc/Kvv0qhh0K8PA+vFnTz6cug0e9Qv0lDGrdqxqgvJ1KhUkV2rt9Cdna2RvmM9Az+Ov4nTm7OVLCS6RbEf1dG7nQ7KWnpTO3ZAy/HurSuW4cp3bthrK/P2lOnAdDR1qZrQxduP4hlXuh+wh4+5E5sLD/v2Uta7sOwpzNEFQoF49p58+Gbb1C9ggXfbgvh5K3bJdo/IYqVApwGelG3X2uMrC244L+b2It3Xr6cEOI/Qx7Zif93EhISnjn0eOrUqUyYMIHJkyfz9ddf4+bmRvv27enbty+mT8xFZGFhgZWVlUbdmrnDhCJzF/LQ1tYmPDycuXPncuPGDcLCwp47X2LFihU1fi5q/SeFhYWhVCrx9PQscHtU7hyAxeHp46Cjo1NgX4B8N68ODpqLPzx9DBUKBfHx8SxZsoSrV68SFhbGvXv31POC5u0vMjISW1vbfMHLatWqvUrX1Dp16sSePXsICQkhJCSESpUq4eXlRe/evdXB6Lzs34EDBxa4D92nMuwmTpzIrl27iIiI4KeffsLcvHCLboiyp32rVvle09PVpY2HBxt37CA8Koqa1arRt1MndRbnsdzVcZs4O9OjXTsCtmzBxEhzsnoTIyNaNM4Zntu8USM+njmT3wIDaebm9tr7JERxafpmy3yv6erp4ubpzv4tu4iJjMamRlX1tltXrpORlo6zh1sJtlKIkpeXOdnU3g4T/X/nhjXW16exrS2Hr19HmZGBga4ufRo3JjktnZ0XL3L8xk0AGte0pburK2tPndaoD2Cir49n7nesZrXs+XTDRn4/fpxmtexLqHdCFC9dQ30qNcz5/Fo51+Ts3E3c3H4KK2e7lyonhPjvkKCm+H8lKSmJ8PBw3njjjQK3e3p6sn//fvW/o0eP4ufnx8qVKwkKClIHQ58OUMG/Aba8AN7y5cuZNWsW9vb2uLu706FDB1xdXVm1ahVbt27NV//pLK2i1n9SVlYWTZo0YcyYMQVut7Yu2iq0z1PQcMTCZkY+fRyfPoYhISF88sknWFtb07x5c9q0aYOzszNHjhxhyZIl6npZWVmvnI35onb+8ssvXL16lT179nDo0CGCgoLYuHEjH3/8MaNGjVK3fdGiRRgYGLxwn3fv3uVh7kqku3fvlqHn/0HmuQ9C0nIzMRUKBcP69KFnu3ZEP3hARQsLKlWsyNqtW9HS0sLqOfO86unq0rhBA3YePEhiUhJmT82dJkR5Y2yWc36kPzXP7LXz/6Cto0PdhvVKo1lClJi8FdLNDA3zbTM3MkSlQh3UVCgUDG3hSU83V6IeJVLRxJhKpqasO3UaLYUCq+dcE/R0dGhka8uui5dITFViZvji7yhClGXaujpYOtXg3rHLZCQr0TUu+DNd2HJCiPJNgpri/5WdO3eiUqnUK2E/KT09ncuXL2NjY0PXrl3p2rUr2dnZrFixglmzZrF9+3b1UOPY2FiNOTYB7ty5A+RkG6alpTFv3jyaNWuGv7+/enEcQGOBoGd51frVqlUjOTmZFi1aaLz+6NEjjh8/rs6ILG3h4eHUrl1b/fOTxxBgzpw51KxZk8DAQIyeyGJ7OqhbtWpVrl69mm//Bw8eJCQkhE8//fSV2nnv3j3u3buHu7s7jo6OjBkzhujoaIYNG8by5csZNWqUOiu0SpUq1KuneTN+8OBBTJ644cjMzOSLL77AwsKCXr16sXTpUrp27Ur79u1fqZ2i5MUlJDBjwQJaNG7MW507a2yLzM2srpSbuXz0zBkszMxoUKcOFmZm6nL/3LhBrRo10NPVJfL+fWYuXEjPdu3o0FpzPkFlWhoKhQJdmRdNlBOJ8QmsnL0Il2aNebNHR41tsdExAFSopJnZH3bjNtXsamBQQKBHiP+SGpaW6GprExEfn2/bg8TH6OpoY5b7kPTYjZtYGBlSv2pVzJ/4PnQ5Kgr7Slbo6egQGZ/Adzt20MPVlfYN6mvsT5mRgUIBurI4iihHUh4kcHHlHqq3dqFqc821ALLSMkABCh3tQpcTQvw3yZVN/L8RExPDL7/8QuXKldWLyTwpPj6eAQMGaGQAamlp4eLiov7/PCqVijVr1qh/zszM5LfffsPU1BRPT0+USiWpqanY2dlpBCQvX77MqVOn1HWepSj1Cxra7e3tzZUrVzh48KDGfhctWsT48eO5fv36M9+7JK1atUrj5xUrVqCjo4O3tzeQM1VA1apVNQKaUVFR7N69G8jJ0ARo06YNsbGx7NmzR2N/v/32GwcOHKBChQrPHAJfGIsXL+btt9/WGP5vY2ODtbW1+nPx5ptvAjlzoeYNj4ec39kHH3zAb7/9pn5t+fLlXLp0icmTJzN+/HgcHByYNm0aCQkJRW6bKF2WFhakpKYSeuwYKamp6tdj4+I4cPIkDerWpUJuAHN7aCj+GzaoP7cAZy5e5OqtW+oApo2VFSmpqew5ckTjb8SDhw858ddf1KtdG8NCZAILURaYVbBAmZrKn4eOo3zi/Eh4GM/ZIyexd6qDqfm/Af6szEwe3IumSs3qpdFcIUqUga4uTWraci4sjIi4fwObMYmPOXM3DPeaNdXfMbafP8+KI8fIeuI7zNm7YVyNvk+H3ACmjbkZKenp7L18mcwnrjMPHj/m5K3b1KtSBcMn5mkXoqwzsDQjU5lO1KmrZD/xmVbGJxF78Q7m9jbo6OsWupwQ4r9J0j3Ef9LevXupUKECkJP1eOvWLTZt2kRaWhpLly4tcHhwXrDzjz/+IDU1lUaNGpGQkMDq1auxsrKi81NZWAsXLiQyMpI6deqwY8cOzp07x7fffouhoSGGhoa4uroSFBSEiYkJ9vb2XL9+nQ0bNqi/oCYnJz9zHkVzc/NC18/r55YtW1CpVPTu3Zv33nuP3bt3M3r0aAYOHEidOnU4c+YMmzdvpk2bNrRp06bYjvWrCA4OJikpicaNG3P48GH279/P6NGj1VmPbdq0ISQkhClTpuDi4kJERATr168nNffmODk5GciZxzIwMJCJEyfi4+ODvb09Bw4c4OjRo8ycORNtbW0sLCzQ0tJi3759VK1alQ4dOhR6HksfHx82b96Mj48PAwYMwNzcnBMnTnDq1CnGjRsHQN26dfH19WXVqlUkJCTQrl079efH2NiY8ePHA3Dz5k3mz59Pq1at6Nq1KwD/+9//GDp0KN9++y0//PBDsR5jUbzux8Zy9dYtHGvVonLufLIj+vdn9tKlfP3TT7Rt0YJUpZJdhw6hraXFO/36qev2bN+eH5cv5/slS2jq6sqDuDi2hYbiWq8erT1yVoDW1tZm+FtvsWDVKv43dy5tPDx4nJzMrkOH0FIoGP7WW6XSbyEKIy4mlrAbt7GtbY+ldc750W1IPwLmL+fXb+fi7uVJujKNE/sOo6WtTbchfTXqJzyMJyszC3PLCqXRfCFeq/uJiVyLvk9dm8pUzn3YNbh5M/6JimL6tm10cnZGR1uLnRcuoqujzYCmHuq6Pdzc+HnPXmbt3IWHnR2xSY8JOX+RhjWq0yp3xIu2lhZvt2jBwv0HmLZ1G63r1OaxMo3dly6hpaXg7ZYtCmyXEGVFatxjEu/GYFbTGkNLU7S0tXDo1pxrGw5z/tcdWDdyIDMljXsnroCWAoduzQAKXU4I8d8kQU3xn+Tn56f+f11dXSpXroy3tzfvvvsu9vbPniR9+vTp1KhRg+3bt7N9+3YMDQ3x9PRk4sSJ+RYXWr58OVOnTiU4OJjatWszf/58jeHDc+fOxc/Pj8DAQNLT06lWrRqjRo3CwcGBsWPHcuLECTp27Ph0E4pc38HBAV9fX4KCgrhw4QLNmjXD1taWdevW8csvv7Bz507WrVtH1apV+fDDDxk1apRG1mlpmj9/PgsWLGD37t3UqFGD6dOn079/f/X2qVOnYmRkRGhoKJs3b8bGxoZevXrRvn17Bg0axIkTJ6hfvz4GBgasWrWKn3/+me3bt/P48WMcHBz4+eef1cFoQ0NDJk6cyPLly5kxYwa2trY0a1a4LzmOjo6sWLGCBQsW4O/vT1JSEnZ2dnz99df4+Pioy3355ZfUqlWLtWvX8v3332Nqaoq7u7s6GzM7O5svv/wShUKhsdp5s2bN6NmzJ5s3b6Zr167PnPNVlL7LN2+yaPVqPhgyRB3U9GjYkE/ffZfg3btZs3kzerq61K9Th8E9elCtcmV13WZubox7+20279nDb0FBmJua0qNtW3p16KBxTrZp2hRdHR02793L70FB6Ovr41y3LgO7daPqE/sToqy5c+0Wwf5/0PudweqgZv3GLgweO4KD2/awe8NWdPV0sXOsTYe3ulGpiubnOTU5BQADmfNP/AddiYpm8YGDvP+GlzqoWcnUlG969STg5Cm2nT+PSqXCycaGwc2bqctAzmI/Y9t6s+Wvv1h1/ATmhoZ0c21ITzc3jetH67p10NXWZnNuOX0dHZyrVaO/hztVLSxKustCFEninftc23iEum+1wtAyZ97lyo0c0NLRIvzgBW5tP422ng4WDlWo2b4xRpX+TU4obDkhxH+PQvXkOEkhxAtNmjSJ4ODgAudwFIUzb9485s+fz759+6heXYYZFpfE8+dLuwlClFmnLJ495YcQAppsPlzaTRCizPrAOe3FhYT4f2ztm5+VdhOKxd6ws6XdhGdqZ9u4tJtQJpWNdC0hhBBCCCGEEEIIIYQoJBl+LsT/U3FxcRoLljyLgYEBpqamJdCikpWQkEBGRsYLy+nq6mIhQ7aEEEIIIYQQQogyRYKaQvw/9dZbbxEZGfnCcr179+a7774rgRaVrLFjx6pXkn+epk2b5lulXQghhBBCCCGEEKVL5tQU4v+pM2fOkJb24vmBrK2tqZ27suZ/ycWLF0lMTHxhOTMzM5ydnUugRa9O5tQU4tlkTk0hnk/m1BTi2WROTSGeT+bUfP1kTs2CSaamEP9PNWnSpLSbUKrKS6BSCCGEEEIIIYQQ+clCQUIIIYQQQgghhBBCiHJFgppCCCGEEEIIIYQQQohyRYKaQgghhBBCCCGEEEKIckWCmkIIIYQQQgghhBBCiHJFgppCCCGEEEIIIYQQQohyRYKaQgghhBBCCCGEEEKIckWCmkIIIYQQQgghhBBCiHJFgppCCCGEEEIIIYQQQohyRYKaQgghhBBCCCGEEEKIckWCmkIIIYQQQgghhBBCiHJFgppCCCGEEEIIIYQQQohyRae0GyCEEKJ4nLLILO0mCFFmNU2QrzxCPM+pnq1LuwlClF0395Z2C4QQQhRAMjWFEEIIIYQQQgghhBDligQ1hRBCCCGEEEIIIYQQ5YoENYUQQgghhBBCCCGEEOWKBDWFEEIIIYQQQgghhBDligQ1hRBCCCGEEEIIIYQQ5YoENYUQQgghhBBCCCGEEOWKBDWFEEIIIYQQQgghhBDligQ1hRBCCCGEEEIIIYQQ5YoENYUQQgghhBBCCCGEEOWKBDWFEEIIIYQQQgghhBDligQ1hRBCCCGEEEIIIYQQ5YoENYUQQgghhBBCCCGEEOWKTmk3QIiXMWnSJIKDgzVe09XVpWLFijRt2pRRo0ZRp04d9TZfX18iIyMJDQ0t6aYWq/T0dOLj46lcufJrew9vb2+Acn2ssrOzuXfvHtWrVy/tpohybNPKdTy8H8OIz8e+sGxy4mP2BG7nyl8XycjIoGrN6nR4qzs1HOw0yl2/cJkD2/Zw7044Ci0FNWrZ0a5PF3W5+Ng4fvzsm+e+1zufjcbeqc5zywjxuv0aEMC9mBimjh//wrJXbt4kYOtWboaFYWJkhHvDhvTv0gUzE5OX2v9fly8TtHMnt8LD0dLSoo6dHQO7daOOnd2rdEmIYvM6rh+3Ll9nX3AIUeGRGBga4OzhRrveXdEz0Nco96LrjBBlwfXgY6TGPqLhu51fWDY9KZU7u88SdyWc7IxMTKpWxK6jO2a2lV5q/3HXIgk/8DdJkQ9BocCsRiVqtm/83P0JIcouydQU5drkyZOZNWsWs2bN4quvvqJr164cOnSIvn37cvLkSXW5999/ny+++KIUW/rqIiMj6d69O0ePHi3tppRpSUlJ9O/fP1/QW4iiOHP4BGcOHS9U2TSlkmXfz+Pin3/R9M2WtO3dhcT4R/jPWsD9iCh1udtXb/D7z7+iTEmlfd+uvNmjE3ExsSz/fh4Rt+4CYGxiTN+RPvn+9RjWH20dHcwsLbCpUe219FmIwgo9fpx9x44Vquyl69eZPm8e9+7fp3eHDnRs04aT587xv59/Jiklpcj7/+f6db5btIiU1FQGde/OW506Ef3gAVN//pkbd+68bJeEKDav4/px6/J1VsxeSFZmFh3f6o5bCw9OHzjObz8uRqVSqcsV5jojRGmL/vMa0aevFapsZloG55fuJPbiHao0c6Rmu8akJaZwYflOkqPji7z/hNvRXPptD5mp6dh1aExNbzdS4xI5v3QHj8MfvHSfhBClRzI1RbnWrl27fNl4vr6+9O3blwkTJrB3716MjY1p2bJlKbWw+ERERHBHbtheKCEhgQsXLuDl5VXaTRHlUHZ2Nge37SF0885C1zkUso/Y6Ac5GZSOtQFwadqIHz+bzuEd+3jr3SEAhAQEY17Bgve+moievh4AjVp4MPcrP/YGbeftTz5Ez0AftxYe+d4jJCCIrKws+o3yxdDYqBh6KkTRZWdnE7RrFxt37Ch0nRUbNqDQ0mL6Rx9hUyknC6apqyuf+fkRvGsXvr17F2n/vwUFUdHCgm8/+QR9vZzzqE3Tpnz07bes3baNr8aMecneCfFqXuf1Y+f6zVhYVmDEpLHo6ukCYG5ZgW2rN3L94hXqutQDCnedEaK0qLKzCT9wnrv7/ip0nYiDF0iNfYTLyE5Y2NsAUKmhHadnBxJx+AKO/doUaf+3tp9C39wYtw+6oa2XEwqxbuzAmZ+CubPnLC7vdHypvgkhSo9kaor/nCpVqvD5558TFxdHYGBgaTdHCFFOZKRnsHDqbEI37cDN0x3TCuYvrKNSqTh39BR1G9ZT35ACmJqb0WlAT2rWrQVAanIK0eH3cPZwU99oApiYm2JX14GwG3ee+R7R4fc4vvcwjVs1xa6uw8t3UIhXkJ6Rwefff8+GkBBae3hgaWHxwjoPHj4kPCoKr6ZN1QFNgGqVK9PYxYWDp04Vaf9JKSncjYykeaNG6oAmgIWZGfVq1+bq7duv1EchXtbrvH5kpGdgbGqCu1dzdUATwN4x53oQHRYJvNp1RojXLSsjk7Pzt3J3719YuzmgZ/7iB7QqlYr7525g6VhdHdAE0DM1wr6zB2Z2/07HVZj9Z6SmkRwVh5WLnTqgCaBnYoi5vQ2JYTGv2EshRGmQoKb4T+rUqRN6enocPnwYyMnezJsrEnLmpvz2229p27Ytzs7OeHl5MW3aNB49eqQuM2nSJNq3b8+5c+fo06cPDRs2pFOnTgQEBOR7v+PHjzNy5EiaNWtGgwYNaN26NVOmTCExMVFjf506dWLNmjV4eHjg4eHBoUOHClU/KCiIoUOHAjlD7h0dHdX7ffToEdOnT6d169Y4OzvTuXNnfvvtN43hSK8iKCgIR0dHrly5wrhx42jUqBHNmzfn+++/Jysri+DgYDp27IibmxsDBw7kypUr6rrz5s2jfv363Lp1C19fX1xdXfH29mbhwoVkZWVpvM+lS5cYO3YsLVq0oEGDBnh6evLxxx8THR2tUS4pKYmZM2fyxhtv4OrqSvfu3dmwYQMAJ0+epG3btgDMnz8fR0dHIiIiCt3XkydP4ujoSHBwMN27d8fFxYXJkycD8ODBA6ZNm6b+zDRp0oShQ4dy5swZjX2oVCp+//13unXrRsOGDfH29mb27Nmkpqaqy2RnZ+Pv70+nTp1wdnamdevWzJgxg6SkpEK3VRS/zMxM0lKVDPhgGH1H+qCtpf3COgmxcTyOf0TtBk5Azu8/XZkGQDPvVnh4tQBA39CA8TO/oEXHN/LtIyUpGS3tZ1+O9wZtR1dPl7a9u7xEr4QoHhkZGaQolUwYPpzRvr5oab34K2Rc7jW1RpUq+bbZWFnxOCmJh/Hxhd6/kYEBP331FV2fuJ7neZyUhHYh2iTE6/A6rx+6eroM++h9vLp10KgflRvMtLCyBF7tOiPE66bKzCYrLR2nQV449muNQkvxwjpp8UmkP0rBonbVnH2oVGSlZwBQtbkTVTz+vR8qzP519HVxn9iHai0b5NuWkaJEIdcQIcolGX4u/pP09fWxtbXVCLA96ZtvvmHbtm0MHTqUGjVqcP36ddasWcPdu3fx9/dXl0tISGDkyJF4eXnRp08fdu/ezdSpU0lMTOS9994D4MiRI7z77rs0btyYcePGoVAoOHr0KOvWrePRo0fMnTtXvb+oqCgWLVrEmDFjiImJwc3NrVD1PTw8eP/991m8eDEDBgygSZMmAKSkpDBkyBCioqIYPHgwNjY2nDhxgpkzZ3Lnzh3+97//FdsxHTVqFE2aNGHSpEns3r0bf39/rl27xtWrVxk2bBgqlYpFixYxbtw4QkJC0NHJ+fOiUqkYPnw4derU4dNPP+XkyZPMnTuX6OhovvkmZ0GUq1evMnjwYGrWrMmoUaMwNDTk7NmzbN68mbt377Jx40YgJxjt4+PD9evX6d+/P05OThw8eJCvvvqK1NRUunTpwuTJk/Hz86N9+/a0b98eS0vLIvf1m2++oU+fPvTr14+qVauiVCrx8fHh8ePH+Pj4ULlyZe7cuUNAQAAjR45k7969VKxYEYBp06YREBDAm2++yaBBg7h9+zb+/v7cuXOH+fPnA/Dll1+yefNmevXqxdtvv83NmzcJCAjg7NmzBAQEoK+v/7zmidfEwNCACd99ibb2i29G8zy8nzP/krGpCTvXbebPQ8dJS1ViaW1F54G9cHJzBkBLSwuryvknoI8Ov0fYjdvUcXYqcP/R4fe4+vclWnZ8EzOLF2f+CPG6GBka8suUKUU6P/RysylT09LybXuc+xAnITGRihUqFGr/WlpaVLG2zvf63chIrt2+jWu9eoVumxDF6XVeP54WHxvH7Ss32LluE9bVqlCvkQvw8tcZIUqCtoEu7h/1LVJwPfVhTnKHrrEBt3acJvr0NbKUGRhUNKVWl6ZUrFejSPtXaGlhaGWW7/Xk6DgS78ZQoY7MWS5EeSRBTfGfZWZmRlhYWIHbtm7dSt++ffnoo4/UrxkZGXH48GGSk5MxNjYGIDExkaFDh/Lll18CMGjQIIYNG8bChQsZOHAg5ubmrFy5kipVqrBixQr1DdzgwYMZMGCAOlM0j1KpxM/Pjy5d/s24Kkz9GjVq0KJFCxYvXoybmxs9e/YEYPny5dy+fZvAwEB19ubgwYP58ccfWbJkCQMGDMDJqXi+xLq5ufHTTz8B0KVLFzw9PTl27BhbtmxRrzSfnJzM4sWLiYiIwC53Fdrs7GycnZ2ZP38+CoWCIUOG8Mknn7B+/XqGDRuGg4MDf/zxBwqFgt9//x2L3CGHAwYMICMjg+3bt5OQkICFhQUbN27kypUrzJ49m+7du6vLDRkyhF9//ZUhQ4bQrl07/Pz8cHR0VB+nomrSpAlff/21+ueQkBDu3r3LsmXLaN26tfr1GjVq8L///Y8zZ87QoUMHbty4wdq1a+nfvz/Tp09XlzM2Nmbx4sXcuHGDhw8fEhQUxLRp0xg4cKC6jJeXFyNGjGDt2rUMGzbspdotXo1CoSjSDSmAMjcDd19wCNra2nQZ1ActLQVHdu5nzbzlDPvofWo3cCywbroyjcBlqwFo3aVtgWVO7T+CQkuLZm1bF7hdiJLyMudHDRsbDA0MOPX33/Rq3x6FIidzJj0jg/O5Dx3TMzJeev8AyrQ0FqxaBUDPdu2KXF+I4lBS14+UpGR+/CzngbCunh7dfPpoDEl/WmGuM0KUBIVCgUL7xdmZT8pUpgNwd+85FNpaOHRrBgoFEYcv8s/qfTgP70CF3CzOl9k/QFZ6Blc35NxvVfdyKXJ9IUTpkxxr8Z+VmZmpvoF6mo2NDSEhIQQFBamHeE+YMIHAwEB1QDNPXkYmgLa2NkOHDkWpVHIsd2XWJUuWEBgYqA5IAsTHx2NiYkJKASu7uru7a/xc1PpP2r17N3Xr1qVSpUrExcWp/7XLvbHbv3//c+sXRbsnbhZNTU2xtLTEzs5OHdAE1Is2PXiguXrgqFGjNH4Xw4cPR6VSqds3depUQkND1QFNyBlmnpexmHccDhw4gKWlJd26dVOXUygUzJo1izVr1jzz911UHh6aC7V06dKF48eP06pVK/Vr6enp6v9/sn0qlQpfX1+N+iNGjGDLli3Y2tqye/duFAoFXl5eGr+z+vXrU6lSJQ4cOFAsfRAlIzMjEwBlSirvfjGexq2a4tbCgxGTxmJoZMjewO0F1ktPS2f1L8uIDr9Hmy5tNeZTy5ORnsFfx//Eyc2ZClZFzzgWorTp6OjQzdubW2Fh/PLbb9yNjOR2RAQ/LV+OMvdv6MsEMvOkpacz69dfuRsZSc/27an/xPVIiLLuZa4fCoWC/u/nDHG3rmrDitmLuPTn3wXuvzDXGSHKsuzMbCAnuOn6XhcqN65N5UYOuL7bGR1Dfe7sPvOCPTxfVnoml1btIzkqnupeLhrzdgohyg/J1BT/WQkJCc8cejx16lQmTJjA5MmT+frrr3Fzc6N9+/b07dsXU1NTdTkLCwusrKw06tasWROAyMicuYy0tbUJDw9n7ty53Lhxg7CwMO7fv//MduUNU85T1PpPCgsLQ6lU4unpWeD2qKioQu2nMJ4+Djo6OgX2BXKyM5/k4KC5uMnTx1ChUBAfH8+SJUu4evUqYWFh3Lt3Tz0vaN7+IiMjsbW1zRe8rFateIeLFPS5USgU/Prrr5w7d46wsDDCwsLIyM0werJ9gDpLNY+ZmRlmZjnDXcLCwlCpVLzxxhsFvvfTQXVRtunmPoyo38RVY1VyQyNDnNycOXfsNOnKNPQM/p1SIDUlldU//0rYjds0bt2Mdn26FrjvW1euk5GWjrOH22vtgxCvU99OnUhOTWXHgQMcy52DuImzMz3atSNgyxZMjF68WERBklNS+G7JEq7dusWbzZsz8ImHXUKUBy9z/TA0NsKlaSMAGri7Me/r7whZG0wDd1eNfRf2OiNEWaatm3NfYdWgJrqG/54HOoZ6WDpVJ+bcTbLSM9B+Trbys2SmpnPp970k3o2hsnsd7No3LrZ2CyFKlgQ1xX9SUlIS4eHhzwwceXp6sn//fvW/o0eP4ufnx8qVKwkKClIHtXR1818k8wJYeQG85cuXM2vWLOzt7XF3d6dDhw64urqyatUqtm7dmq/+01kpRa3/pKysLJo0acKYMWMK3G5dwNxjL6ugbJrCZkY+fRyfPoYhISF88sknWFtb07x5c9q0aYOzszNHjhxhyZIl6npZWVnFlo35PE/39datWwwaNIiMjAxatWpFly5dqFevHiqVitGjR2u070Wys7MxNjZWz6/5NJlPs3wxy13h1tjUJN82YzMTUKlIS/v3pjQ58TErf1xMdFgk7l4t6DG03zM/09fO/4O2jg51G8o8gaL8UigUDOvTh57t2hH94AEVLSyoVLEia7duzZkD8CXmPX70+DEzFy7kTkQE7Vq2ZOSAASVybRCiOBX1+vE0XT1dHF0bcGLvIZIfJ6n3U5TrjBBlmZ5ZzoN+XWOD/NtMDEEFWWlFD2qmJ6VyceUeku/FYdO0LrV7eso5IkQ5JkFN8Z+0c+dOVCqVeiXsJ6Wnp3P58mVsbGzo2rUrXbt2JTs7mxUrVjBr1iy2b9+uHj4cGxurMccmwJ07d4CcbMO0tDTmzZtHs2bN8Pf3Vy+OA2gsEPQsr1q/WrVqJCcn06JFC43XHz16xPHjx9UZkaUtPDyc2rX/Hfb05DEEmDNnDjVr1iQwMBCjJ7J2ng7qVq1alatXr+bb/8GDBwkJCeHTTz99Da2HpUuXkpiYyI4dOzSyMAtqH+T098ns1Pv37+Pn58eQIUOoVq0aR44cwdnZWZ29mWfnzp3Y2tq+lj6I16NytSpo6+gQcy8637b42Dh0dHXVN5ppSqX6RtOzvRddBvV+7r7Dbtymml0NDAwNX0vbhSgJR8+cwcLMjAZ16mDxxN+8f27coFaNGugV8PDweVKVSnVAs8ubbzKsT5/ibrIQJaKw148HUff5/ccltOrsTTPvVhrl0pRKUCjQ0dVR/1yU64wQZZmxjQUKHS1SYhLybVPGJ6Glq11gwPN5MtMy1AHNqi3r49C1aTG1VghRWmROTfGfExMTwy+//ELlypXVi8k8KT4+ngEDBmhkAGppaeHi8u/qkXlUKhVr1qxR/5yZmclvv/2Gqakpnp6eKJVKUlNTsbOz0whIXr58mVOnTqnrPEtR6hc0tNvb25srV65w8OBBjf0uWrSI8ePHc/369We+d0lalbuIQ54VK1ago6ODt7c3kDNVQNWqVTUCmlFRUezevRv4NwOyTZs2xMbGsmfPHo39/fbbbxw4cIAKFSo8cwj8q0hISMDQ0FAdtISc4PjatWs12ufl5QVAQECARv2goCB27NiBiYmJus+LFi3SKBMaGsr48eNfmJ0ryhY9A32cGjlz7fwlYiL/ne4h/sFDrpy7iFMjZ/XflK2rNubeaLZ54Y1mVmYmD+5FU6Vm9dfafiFet+2hofhv2KCRyX7m4kWu3rpFh9ZFXwBr+fr13ImIoPMbb0hAU5Rrhb1+WFpboUxN5fSBY2Q98Z0yPjaOS3/+jZ2jA/oGOYGdolxnhCjrtPV0qVjPlrgrESTfj1e/rox7zMPLYVjWq4FCq2jhjJtbjucENFvUk4CmEP8RkqkpyrW9e/dSoUIFICfr8datW2zatIm0tDSWLl2KgUH+p3d5wc4//viD1NRUGjVqREJCAqtXr8bKyorOnTtrlF+4cCGRkZHUqVOHHTt2cO7cOb799lsMDQ0xNDTE1dWVoKAgTExMsLe35/r162zYsEEdyEhOTsbc3LzA9pubmxe6fl4/t2zZgkqlonfv3rz33nvs3r2b0aNHM3DgQOrUqcOZM2fYvHkzbdq0oU2bNsV2rF9FcHAwSUlJNG7cmMOHD7N//35Gjx6tnguzTZs2hISEMGXKFFxcXIiIiGD9+vWk5q4MmpycDMDAgQMJDAxk4sSJ+Pj4YG9vz4EDBzh69CgzZ85EW1sbCwsLtLS02LdvH1WrVqVDhw7PPP6F1aZNG0JDQ3nvvffo1KkTjx8/ZtOmTYSFhWm0r169evTr149Vq1YRExODp6enekX0Xr164eTkhKOjI23btsXf35/IyEg8PT2JjIxkzZo1VK1alREjRrxSW8XrFRcTS9iN29jWtsfSOmee2Y79enDnyg38Zy3As30btLR1OL73ILp6urTPnccs5l40fx//EwMjQ2xqVOevY6fz7dutxb8LVCU8jCcrMwtzywol0zEhisH92Fiu3rqFY61aVM6dh7ln+/b8uHw53y9ZQlNXVx7ExbEtNBTXevVo/dSibC8SER3N4dOnMTI0xK56dQ7lPvx7UpumcpMqyqaXvX5oa2vTdXAfApetYdl383DzdCclOYWT+w6jpaVFt8F9gaJfZ4Qoa1LjHpN4NwazmtYYWuascWDfyZ1Ht6O5sHwXVVvUQ0tLm8jj/6Clq41dhyZF2n9KTAIx526hbaiLSdWK3D93M1+Zyo0cCqgphCjLJKgpyjU/Pz/1/+vq6lK5cmW8vb159913sbe3f2a96dOnU6NGDbZv38727dsxNDTE09OTiRMn5lskZvny5UydOpXg4GBq167N/Pnzad++vXr73Llz8fPzIzAwkPT0dKpVq8aoUaNwcHBg7NixnDhxgo4dOz6zLYWt7+DggK+vL0FBQVy4cIFmzZpha2vLunXr+OWXX9i5cyfr1q2jatWqfPjhh4waNUoj67Q0zZ8/nwULFrB7925q1KjB9OnT6d+/v3r71KlTMTIyIjQ0lM2bN2NjY0OvXr1o3749gwYN4sSJE9SvXx8DAwNWrVrFzz//zPbt23n8+DEODg78/PPP6mC0oaEhEydOZPny5cyYMQNbW1uaNWv2Su0fOHAgiYmJbNiwgRkzZmBlZYWbmxvz589n4MCBnDhxgrfffhuAb775Bjs7OzZs2EBoaChVq1Zl9OjRjBw5EsiZX27u3LksW7aMTZs2ERoaiqWlJR06dGD8+PH5FmQSZcuda7cI9v+D3u8MVt+UVrCyZNSXE9i9cStHdu5HpVJRs24tOvbroS5z52rOF2dlSirB/n8UuO8nbzZTk1MAMDAs2rAqIUrT5Zs3WbR6NR8MGaIOajZzc2Pc22+zec8efgsKwtzUlB5t29KrQ4ciX6Mu37gBQEpqKotWry6wjAQ1RVn1stcPyLk+6OjqcChkHzvWbUJXXx+HenVo16crVjY586cX9TojRFmTeOc+1zYeoe5brdRBTYMKJri+35U7O/8k4vBFUIG5XWXsO7mryxTWo9s5Uz1kpWZwbeORAstIUFOI8kehylteWAihYdKkSQQHBxc4h6MonHnz5jF//nz27dtH9eoyjPZ12xt2trSbIESZ1TRBnuMK8TynLJ49XY4Q/98tu7m3tJsgRJm29s3PSrsJxaIs30+1s21c2k0ok8pGGpcQQgghhBBCCCGEEEIUkqQtCPEfFxcXp7FAw7MYGBhgalq0YRzlQUJCAhkZGS8sp6uri4WFxetvkBBCCCGEEEIIIV6ZBDWF+I976623iIyMfGG53r17891335VAi0rW2LFj1SvJP0/Tpk3zrdIuhBBCCCGEEEKIsknm1BTiP+7MmTOkpaW9sJy1tTW1a9cugRaVrIsXL5KYmPjCcmZmZjg7O5dAi16fsjwHjBClTebUFOL5ZE5NIZ5N5tQU4vlkTs3XT+bULJh8wxfiP65Jkyal3YRSVd4DlUIIIYQQQgghhMhPFgoSQgghhBBCCCGEEEKUKxLUFEIIIYQQQgghhBBClCsS1BRCCCGEEEIIIYQQQpQrEtQUQgghhBBCCCGEEEKUKxLUFEIIIYQQQgghhBBClCsS1BRCCCGEEEIIIYQQQpQrEtQUQgghhBBCCCGEEEKUKxLUFEIIIYQQQgghhBBClCsS1BRCCCGEEEIIIYQQQpQrEtQUQgghhBBCCCGEEEKUKxLUFEIIIYQQQgghhBBClCs6pd0AIYQQQojXLevg/tJughBlWlOvN0u7CUKUWctKuwFCCCEKJJmaQgghhBBCCCGEEEKIckWCmkIIIYQQQgghhBBCiHJFgppCCCGEEEIIIYQQQohyRYKaQgghhBBCCCGEEEKIckWCmkIIIYQQQgghhBBCiHJFgppCCCGEEEIIIYQQQohyRYKaQgghhBBCCCGEEEKIckWCmkIIIYQQQgghhBBCiHJFgppCCCGEEEIIIYQQQohyRYKaQgghhBBCCCGEEEKIckWCmkIIIYQQQgghhBBCiHJFgppCCCGEEEIIIYQQQohyRae0GyDKpkmTJhEcHKzxmq6uLhUrVqRp06aMGjWKOnXqqLf5+voSGRlJaGhoSTe1WKWnpxMfH0/lypVf23t4e3sDlOtjlZ2dzb1796hevXppN6XQ1q1bh7+/PzExMTg7O/P1119Tt27d0m6WKMM2rVzHw/sxjPh87AvLJic+Zk/gdq78dZGMjAyq1qxOh7e6U8PBDoD42Dh+/Oyb5+7jnc9GY++U83d17aKVXDr9V74yVe1q8MGUj4vcFyGK29JDh4lKSGBKj+4vLHslKpp1p09z88EDTPT1ca9Zk7fc3TEzNNAoF5P4mNUnTvDPvXsANLK1xdezOWaGhhrl/g4PJ/jsOW7FxqKlUFDH2pr+Hu7UeY3XbiGK4teAAO7FxDB1/Phnlnnw8CFjpk597n6mjBtHg9zv248eP2bN5s2cu3SJ9MxMnOvUYWifPlS2stKoczsigjWbNnEzLAxtbW0aN2jA4B49sDAze+V+CVFcrgcfIzX2EQ3f7fzCsucWbiUp4mG+1ys616T+4DfVPz+OjOXOrjMkhsWgUCgwt7fBvrMHRpXMNeol3Izi7t5zJEXFoWOgi5WzHXYdGqOtp/vqHRNClDgJaornmjx5MhUqVAAgNTWVsLAwAgMD2bVrF0uXLqVZs2YAvP/++6SmppZmU19ZZGQk77zzDu+99x59+vQp7eaUWUlJSbz99tt4eXkxduyLgz1lQVBQEFOmTKFv377Ur1+fZcuWMWLECHbs2IGJiUlpN0+UQWcOn+DMoePYOTq8sGyaUsmy7+fxOCGRFu29MDA24uS+w/jPWsD7X39E5epVMDYxpu9In3x1MzIy2L4mCGMzE2xqVFO/HhMRhW1tezzeaKFR3shUPq+i9O2/cpXQy1eoV8XmhWX/uXcPv5AdGOnp0auRG1oKLXZcuMCle/eY1qsnJvr6ADxWKpm+bRtZ2dl0d3UlW6Vi2/nzhMfFMaN3L3S0tXP3F8X3O3ZSvUIFBnp4kKXKZvelf/hm6zb+16M7ta2tX2vfhXiR0OPH2XfsGPVq135uOVMTE0b7+uZ7PT0jgxUbN2JuYkLNajnXhYyMDL5bvJh7MTF0e/NNDA0M2BYayrS5c/l+0iRMjY0BiIiOZspPP2Fpbk6/Ll1ISU1l+/79XL11i+8//xyD3PNNiNIU/ec1ok9fw9z+xQ+iVCoVKTGPqFjflooNampsM7AwVv9/yoNHnF+6E209HWzfdAUg8ug//P1rCI3H9kTfzAjICWhe8N+FSbWK2HdqQtqjFO4d+4ekyIc0HNUZhUJRjD0VQpQECWqK52rXrl2+bDxfX1/69u3LhAkT2Lt3L8bGxrRs2bKUWlh8IiIiuHPnTmk3o8xLSEjgwoULeHl5lXZTCm39+vXUrl2bmTNnAmBpacnEiRP5888/eeONN0q3caJMyc7O5uC2PYRu3lnoOodC9hEb/SAn09Ix5ybWpWkjfvxsOod37OOtd4egZ6CPWwuPfHVDAoLIysqi3yhfDI1zvnBnZWYS9yCWNh7tCqwjRGnJzs4m+NxfBJ45U+g6K48eQ6FQMK1nD2zMc7JlPOzsmBQYyKaz5xji2RyAkPMXiEtK5vt+fame+zC1tnUlZm7fwcFr12hbrx4Avx8/jqWxMdN79UJfN+drbJs6dfh4/QbWnf6TL7t2Kc4uC1Fo2dnZBO3axcYdOwpV3kBfnzZNm+Z7fWVgIFlZWYwdNgwTo5zrwsFTp7gVFsaXo0fT0MkJgEYNGvCpnx/bQ0MZ2D0nY3rd9u1oa2kxdcIEKuRmZtayteX7xYs5dOoUHVq3Lo6uCvFSVNnZhB84z919fxW6Tlp8EtnpmVSsb0vlRs9+0Bx57B+y0zNxHdUZk6oVAbBwqMpfC7cRefQStTrnfJ+6teM0+hbGNHy3M9q51xB9c2NubjlB/PVILOuWn1FoQogcMqemKLIqVarw+eefExcXR2BgYGk3R4gXUiqVxMXFqbOJlUolkDOlghB5MtIzWDh1NqGbduDm6Y5pBfMX1lGpVJw7eoq6DeupA5oApuZmdBrQk5p1az2zbnT4PY7vPUzjVk2xq/vvF/XY6AdkZWZRqeqLs+CEKCnpmZlMDgpm459naFWnDpa5QfjnefD4MeFx8bSpU0cd0ASoVsGCxra2HLp2Xf3asZs3qV+1ijqgCeBSvTpVLMw5fvMWAElpaYQ9fEjzWrXUAU0AcyMj6lWpwrXo+8XRVSGKLD0jg8+//54NISG09vDA0sLipfZzNzKSnQcP8kazZhqZnsfOnqVypUrqgCZAtcqVca5bl6Nnz6pf09HWprWHhzqgCVA/dz93c6d1EKI0ZGVkcnb+Vu7u/QtrNwf0zF98DQFIjkkAwNDq+d/JlHGP0THWVwc0AUyrW6FjpE/K/Xh1G/RMDLDxqKsOaALqjNHkqLiidEkIUUZIUFO8lE6dOqGnp8fhw4eBnOzNvLkiIWduym+//Za2bdvi7OyMl5cX06ZN49GjR+oykyZNon379pw7d44+ffrQsGFDOnXqREBAQL73O378OCNHjqRZs2Y0aNCA1q1bM2XKFBITEzX216lTJ9asWYOHhwceHh4cOnSoUPWDgoIYOnQokDPk3tHRUb3fR48eMX36dFq3bo2zszOdO3fmt99+Q6VSFcuxDAoKwtHRkStXrjBu3DgaNWpE8+bN+f7778nKyiI4OJiOHTvi5ubGwIEDuXLlirruvHnzqF+/Prdu3cLX1xdXV1e8vb1ZuHAhWVlZGu9z6dIlxo4dS4sWLWjQoAGenp58/PHHREdHa5RLSkpi5syZvPHGG7i6utK9e3c2bNgAwMmTJ2nbti0A8+fPx9HRkYiIiCL199SpU/j4+ODu7k6jRo0YOHBggfOLBgUF0atXL1xcXGjevDmTJk0iJiZGvX327Nk4OjqyZs0a9Wvp6el0796dZs2acf/+vze3nTt3Ji4uDj8/P86fP8+cOXOoVauWevqEPBERETg6OrJy5UoGDRqEs7Mzb7/9tvq4zJkzh06dOuHi4kKjRo3o378/+/bty9f2zZs307dvX9zc3GjTpg1TpkwhLk7zi9KL+idKXmZmJmmpSgZ8MIy+I33Q1tJ+YZ2E2Dgexz+idoOcG02VSkW6Mg2AZt6t8PBq8cy6e4O2o6unS9vempllMfdyzslKVXK+ZOftT4jSlJGVRUp6OuPbteXDN99AS+vFXyHjkpMBqGFpmW9bZXMzHiuVPExKIiktjZjEx9hXsspXzs7KituxsQAY6eoyZ0B/ujZ0yVfusVKJtpYMGxSlIyMjgxSlkgnDhzPa17dQ50dB1m3bhp6eHv27ddN4/XZ4OPYFzGNuX6MGMbGxJKWkADD+7bcZ0b+/Rpm7kZEAWD3xwECIkqbKzCYrLR2nQV449muNopB/r/MCkkbWOUHNrPSMAssZVjQjMyWN9KR/p0PLSEkjU5mOrknOvMzaujo4v90B2zdcNermBTP1LWSKHyHKIxl+Ll6Kvr4+tra2GgG2J33zzTds27aNoUOHUqNGDa5fv86aNWu4e/cu/v7+6nIJCQmMHDkSLy8v+vTpw+7du5k6dSqJiYm89957ABw5coR3332Xxo0bM27cOBQKBUePHmXdunU8evSIuXPnqvcXFRXFokWLGDNmDDExMbi5uRWqvoeHB++//z6LFy9mwIABNGnSBICUlBSGDBlCVFQUgwcPxsbGhhMnTjBz5kzu3LnD//73v2I7pqNGjaJJkyZMmjSJ3bt34+/vz7Vr17h69SrDhg1DpVKxaNEixo0bR0hICDo6OaevSqVi+PDh1KlTh08//ZSTJ08yd+5coqOj+eabnIVJrl69yuDBg6lZsyajRo3C0NCQs2fPsnnzZu7evcvGjRuBnKCgj48P169fp3///jg5OXHw4EG++uorUlNT6dKlC5MnT8bPz4/27dvTvn17LAu4WX2WW7du8d5771GvXj0mTpwI5AwN//DDD1m9ejXu7u5ATsB03rx5dOzYkf79+3P//n1Wr17NqVOn2LhxI5aWlowdO5a9e/fy888/07FjR6ysrFiwYAHXrl3jp59+0ljsafjw4ezatYt169axYcMG6tSpw6JFi9TH8Glz587F29ub7t27o6+vj0ql4r333uOff/5hyJAh2NraEh0dzdq1axkzZgybNm1SB8KXLl3K7NmzadKkCR999BEPHz7kt99+4/LlywQEBKCjo1Oo/omSZ2BowITvvkRb+8XBzDwP7z8AwNjUhJ3rNvPnoeOkpSqxtLai88BeOLk5F1gvOvweV/++RMuOb2JmoZl9cD8iCoDTB49x4eRZUpNTMDE3o03Xdni2a/OSvRPi1Rjp6fHzwAFoFyFYo5/7NzY1I/9N6OPcjPmElFT0dNIBsDQyzleugpERKWnpJKelYayvTxXz/Nk6YQ8fcu3+fRqWo8XrxH+LkaEhv0yZUqTrx9PuRkZy5uJFunl7Y/nE51yZlkZKamqB2Z8WpqYAxMbFqYeq54l79Ijrt2/ze3AwFczN8fb0fOm2CfGqtA10cf+oL1raRQv4p8QkoK2vw62Q0zw4f5vs9EwMLE2o2b4x1q7/joap3saZuCvhXF13iFpd84aa/4mWthbVWtQvcN/K+CQe3Y7mVshpjCpbULG+7ct3UAhRaiSoKV6amZkZYWFhBW7bunUrffv25aOPPlK/ZmRkxOHDh0lOTsY4d0LzxMREhg4dypdffgnAoEGDGDZsGAsXLmTgwIGYm5uzcuVKqlSpwooVK9DT0wNg8ODBDBgwQJ0pmkepVOLn50eXLv9mPhWmfo0aNWjRogWLFy/Gzc2Nnj17ArB8+XJu375NYGCgOmg1ePBgfvzxR5YsWcKAAQNwemIo0Ktwc3Pjp59+AqBLly54enpy7NgxtmzZol5pPjk5mcWLFxMREYGdnR2QM4eTs7Mz8+fPR6FQMGTIED755BPWr1/PsGHDcHBw4I8//kChUPD7779jkfuleMCAATmLlGzfTkJCAhYWFmzcuJErV64we/ZsuufOzzRgwACGDBnCr7/+ypAhQ2jXrh1+fn44Ojqqj1Nh7du3j5SUFObPn68O3HXp0oWBAwdy+fJl3N3dCQ8PZ8GCBYwaNYqPP/53leeuXbvSp08fFi9ezBdffIG+vj4zZ87Ex8eHWbNmMWzYMJYtW0bXrl01fv8AR48eJSEhAcgJAs+aNYtq1arxLFWqVGH27NnqycL//vtv/vzzT6ZNm8bAgQM1fmcjR47k2LFjODo68ujRI+bNm0fr1q1ZsmSJ+uamevXqfPXVVxw9epRatWoVqn+i5CkUiiLfkCpzpzTYFxyCtrY2XQb1QUtLwZGd+1kzbznDPnqf2g0c89U7tf8ICi0tmrXNP79ZXqbmg3v36e7bj6zMTM4eOUXIH0GkpSp5o3uHl+idEK9GoVCgXcQFFKpXqIChni6nbt+mp5ur+m9qemYm5yNyssfSszLJUmUDoFfAgya93HMyPTMT4wIWOVFmZLBw/wEAeri5Fal9QhSXl7l+PG33kSNoaWnRqY3mw6uU3AcA+gVMmZP3vTYtPT3ftokzZqBUKtHS0mLM0KGY5wZAhSgNCoUChXbRs+mT7yeQlZZJpjIdx36tyVSmc+/YP1xddwhVtko9z6aBhQk13mjIza0nOPvLlpzKWgrqDX5DY0h6noyUNE7/kJPUoaWnjUP3ZhpD0oUQ5YcMPxcvLTMz85krxNnY2BASEkJQUJB6iPeECRMIDAxUBzTz5GVkAmhrazN06FCUSiXHjh0DYMmSJQQGBqq/uAHEx8djYmJCSu5wmyflZfvlKWr9J+3evZu6detSqVIl4uLi1P/atWsHwP79+59bvyjy9glgamqKpaUldnZ26oAmoF606cGDBxp1R40apfG7GD58OCqVSt2+qVOnEhoaqg5oQs5wav3cG8S843DgwAEsLS3p9sSwJ4VCwaxZs1izZs0rrwhoY5MzR+D06dO5ePEiABUqVGDXrl345q4AumfPHrKzs/H29tY45lZWVtSrV48DBw6o99e4cWN8fX3ZsmUL48aNw9LSMl/27B9//MEHH3xAhQoV+OKLL1CpVHz66acolUru37/P2rVriYqK0qjj7u6u0VdXV1dOnz5Nnz591K9lZWWRnZ1zI56cO8Ty2LFjpKWl4ePjo3Fz06NHD4KCgmjatGmR+ifKvsyMTACUKam8+8V4GrdqilsLD0ZMGouhkSF7A7fnq5ORnsFfx//Eyc2ZClb5s3KdPdxo17crwz/9EJemjXBr4cHwTz/EtrY9B7buJvlx0mvvlxDFQUdbm64NXbj9IJZ5ofsJe/iQO7Gx/LxnL2m52ZvaWlrq6VyKeo1Jy8hk9q7d3H0YRw83V+pXrVLsfRCiJKRnZHD49GmauLhQqWL+AAw8//x4eltWVhYj+vVj/PDhONetyy8rV7K9GL+zClFSqnjUxaFHM+oPfhOrBjWxaVIH1/e7YmBpwu0dp1Hlfhe/s+csNzYdx8zWGscBbajbrzWm1a24EnCQh5fD8+9YAU4DvajbrzVG1hZc8N9N7MU7Jds5IUSxkMcR4qUlJCQ8c5js1KlTmTBhApMnT+brr7/Gzc2N9u3b07dvX0yfeFJsYWGBlZXmHFo1a9YEIDJ3DiBtbW3Cw8OZO3cuN27cICwsTGO+xKdVfOrLYFHrPyksLAylUonnM4bsPB0MexVPHwcdHZ0C+wKog2l5HBw0VwN8+hgqFAri4+NZsmQJV69eJSwsjHv37qlvJPP2FxkZia2tbb4vx8/LaiyKTp06sWfPHkJCQggJCaFSpUp4eXnRu3dvdTA6L/v3yYzIJz29uM/EiRPZtWsXERER/PTTT5g/MWQrPDycmTNn4uTkxKpVqzAyMiI8PJxVq1YxY8YMnJycmD59OgsWLKBKlX9vhgv6XOvo6LB27VpOnTrF3bt31Z8NQH0c84533vHPo6+vT4MGDV6qf6Js0819WFK/iat69XIAQyNDnNycOXfsNOnKNPQM/s0wu3XlOhlp6Th7uBW4z4bNGud7TaFQ0KSNJ2E3bhN+884zh7ULUdb0adyY5LR0dl68yPEbNwFoXNOW7q6urD11GhN9fTJz54BOz8zMVz89d5vhEw8mAZLT0pi1cxfXou/zhlNdBnh4vOaeCPH6XLx2jbS0NDwbNcq3zSD3s59ewDQO6bkZmoYGBhqva2trq1dW92zUiCk//8y67dvx9vTMV1aIsqxKs/wj4rR1dbBu5EDYvr9JiUlA39yEiMMXMaleEZcRHVHkTpNSqaEdfy3cxvXgo1So0w8tnX8TDnQN9anU0B4AK+eanJ27iZvbT2HlbFci/RJCFB8JaoqXkpSURHh4OG+88UaB2z09Pdm/f7/639GjR/Hz82PlypUEBQWpg0YFBXDyAmx5Abzly5cza9Ys7O3tcXd3p0OHDri6urJq1Sq2bt2ar/7Tw3+KWv9JWVlZNGnShDFjxhS43dra+rn1i6KgYUuFzVp5+jg+fQxDQkL45JNPsLa2pnnz5rRp0wZnZ2eOHDnCkiVL1PWysrJeORvzRe385ZdfuHr1Knv27OHQoUMEBQWxceNGPv74Y0aNGqVu+6JFizAoxBfvu3fv8vDhQyAns/bJoeeHDh0iIyODkSNHYpQ719Rnn33G+fPn2bBhAxYWFpiamtKyZUuNfT79u4iLi6Nfv37ExMTQsmVLvL29cXJyolq1avTr109dLq/tzzuGRe2fKNvMcldINzbNP7m8sZkJqFSkpWkGNa+d/wdtHR3qNqxXpPcyNst5j/S0/MMMhSirFAoFQ1t40tPNlahHiVQ0MaaSqSnrTp1GS6HAysSEjNzAZUIBoyfiU1Iw0tfD4InrXGJq6v+xd9/xNd3/A8df2VMSWSIIEcRIEFusitirqNijtqqqtmq2/fWLb9SuUasoUr5WgiL2KGpTq8QWGRJJJGTfm+T3R+TUdYNEEpL2/Xw8vo9v7zmf9zmfz8k97rnv+xn8d3cgD6KiaVGlMoObNC7Qzy4hCtrFa9fQ19fHo6r23H+mJiaYmpjw5IXFMbNkbSuezVyzWXR0dGhQsyY3794lLCICl5d+eBWiKDIwy1z8Jy1VTVL0UzLU6dhVL68kNAF09fSwr+HCvT3nSHwch3nJ7Dvj6BnoY125DGF/XEeVkIyBmTyfC1GUSFJTvJU9e/aQkZGhrIT9otTUVK5fv46DgwPt27enffv2pKens3r1ambOnMmuXbuUocZRUVEac2wC3L9/H8js7ZaSksLChQupX78+q1at0ljY5cUFgl4lr/GlSpUiISEBT0/NFYzj4uI4efKkVo+89+Xhw4dUqFBBef3iNQSYM2cOZcuWZevWrUpyD9BK6jo6OhIUFKR1/KNHj7J7927GjRuXp3qGhYURFhZGnTp1cHV15dNPP+XRo0cMGDCAlStXMmzYMKVXaMmSJalSRTPpc/ToUczN/04eqdVqJk2ahJWVFR9++CErVqygffv2tGzZUiPuxVVIDQ0NmT9/Pl26dCE2NpbBgwdjYmLy2nqvX7+ekJAQfvnlF41euxcuXNAol9XbMzg4GGdnZ2V7amoq48aNo2PHjrlqnyj8SpQqiZ6+vjIP5oueRMWgb2CglfAMvn2PUuXKYJzN+y5NrWbptHmUKufEhwN7aOyLCs/sYZ7dkHUhCqs/bt/BytSEqo6OWL7w+XM9PBxnO1sM9fUx1NfHrlgxZZXzF92PiqK8nZ3yOik1VUlotnV3o7+nLH4iir6b9+5R3skJ01c8jziXKcO9h9pDaO+HhFDCzg5zU1MSEhOZOHs2DWrWpHenThrlkp6PLDF8qcezEIVZSlwCV1bvw766M05eNTX2JUXFAWBc3BxVQub7m/QMrWNkPJ+zmYwMEh/HcvWX/ZRu4o5jA80eoGkpKtABHf28zY0rhHj3ZE5NkWuRkZEsWLCAEiVKKIvJvOjJkyf06NFDowegrq4u7u7uyn9nycjI4Ndff1Veq9Vq1qxZQ7FixWjYsCHJyckkJSVRrlw5jYTk9evXOXPmjBLzKrmJz25ot5eXFzdu3ODo0aMax12yZAljxozh1q1brzz3u7Ru3TqN16tXr0ZfXx8vLy8gc6oAR0dHjYRmeHg4+/btAzJ7aAI0bdqUqKgo9u/fr3G8NWvWcOTIEYoXL/7KIfA5sXTpUgYOHKgx/N/BwQF7e3vlfdG8eXMgcy7UrGHdkPk3GzlyJGvWrFG2rVy5kmvXrjFx4kTGjBmDi4sL33//vbIoUN26ddHV1WXjxo0a9Y2KiiIlJQWAwMBApafnq2Qd78XEcUZGBn5+fsDf7yFPT08MDAzYtGmTRt337NnDnj17ct0+UfgZGhtR2cONm5evERn693QUTx5Hc+PiVSp7uGn8m5emVvM47BEly2a/SrOevj6GhoZcPn2e2OgnyvakxCRO7v8da3tbSpcvHD+mCJETuy5fZvXxP0h74d/gCw+CCXoUQatqf/dKq+dcjquhoYQ+iVW2XQkJITw2Ds8XplhZdfwED6KiaSMJTfEPoVarCQkPx7l09p8LAPVr1CAsIoLLN24o20IjIrh68yaNamVOWWJmaoqBvj5HT58m/oVezwmJiRw+eRI7GxtKP5/bXIiiwMjSjLTkVMLP3kSd/PcoleTYeCLO38LSxQHDYqaY2lthaGHCowu3SFP9/b0wTaUm4uId9M2MMC1hhbG1BerkVMLPBJH+/LsPZK6CHnX1PpbODugbyTRQQhQ10lNTvNaBAwcoXrw4kNnr8e7du2zbto2UlBRWrFiR7fDZrGTn+vXrSUpKwsPDg9jYWPz8/LC1taVt27Ya5X/66SdCQ0OpWLEigYGBXLx4kenTp2NiYoKJiQk1atTA398fc3NznJ2duXXrFps3b1YSBQkJCRrzKL7I0tIyx/FZ7dyxYwcZGRl06dKF4cOHs2/fPkaNGkXPnj2pWLEi58+fZ/v27TRt2pSmL61Q+b4EBAQQHx9PrVq1OHbsGIcPH2bUqFFKr8CmTZuye/duvv32W9zd3QkJCWHTpk0kPV+5OWuhm549e7J161bGjh1Lnz59cHZ25siRI5w4cYL//ve/6OnpYWVlha6uLgcPHsTR0ZFWrVq98vq/rE+fPmzfvp0+ffrQo0cPLC0tOXXqFGfOnOGzzz4DoFKlSvTr149169YRGxuLt7e38v4xMzNjzJgxANy5c4dFixbRuHFj2rdvD8B3331H//79mT59OrNmzaJSpUr06dOHdevWMXToUFq0aMHdu3fZtGkT9vb2+Pj4MGfOHPr27csvv/zyyno3bdqUdevWMXz4cD766CNUKhWBgYFcvXoVXV1d5frZ2NgwatQo5s+fz6BBg/D29ubRo0f4+flRv359vLy80NXVzVH7ROEUExlF8O17OFVwxto+cx7c1t07cf/GbVbNXEzDlk3R1dPn5IGjGBga0LJre4342OgnpKnTsLQu/spztO3VhZ99f2SF7480aJH5b8y5o38Q//QZA74cIcNsRaEV8fQpNx9FUMmhBCUsLIDMFcnn7z/AzD17qVuuHFHxz9h9+SrVy5Sm8Qs/FHWqWYNjt24xfdcu2ld3J1Wdxs7Ll3G2s6VxxcxyIU+ecPzWbUyNDClnY8Oxm9o/LDapVFFrmxCFQURUFEF37+JavjwlXphHPerJE9RpadgWf/XnglfDhuz5/XfmrVpFxxYtMDI05LeDByluaUm75z+WAgzu3p2pixbx7bx5tPD0RJ2WxoETJ4h9+pQJI0fK54co1JJinvH0QSQWZe0xsc5cg8GlUwOu+x3m0rLdONSpRFqqirCT19HR1aVCxwYA6Ojq4tKxAdfXH+bPJbtwqF2RjIwMIs7fIulxHK7dm6D7vFOGS4cG3Nx8jMvLA7H3cEGdmELYqRugq4NLh/rvre1CiLcnSU3xWr6+vsp/GxgYUKJECby8vBg6dKjG8NqXTZ06lTJlyrBr1y527dqFiYkJDRs2ZOzYsVqLsKxcuZL/+7//IyAggAoVKrBo0SKN4cM//vgjvr6+bN26ldTUVEqVKsWwYcNwcXFh9OjRnDp1itatW7+yLjmNd3FxoV+/fvj7+3PlyhXq16+Pk5MTGzduZMGCBezZs4eNGzfi6OjIJ598wrBhwzR6YL1PixYtYvHixezbt48yZcowdepUfHx8lP3/93//h6mpKYcOHWL79u04ODjw4Ycf0rJlS3r16sWpU6eoWrUqxsbGrFu3jvnz57Nr1y6ePXuGi4sL8+fPV5LRJiYmjB07lpUrVzJt2jScnJyoXz9nDwGurq6sXr2axYsXs2rVKuLj4ylXrhzffPMNffr0UcpNnjyZ8uXL87///Y8ffviBYsWKUadOHaU3Znp6OpMnT0ZHR0djtfP69evTuXNntm/fTvv27fnggw+YNGkSjo6ObNy4kf/+97/Y2NjQo0cPPv30UywtLbG0tGTHjh1YWloSlc3QR8hMak6bNo1Vq1YxY8YMLC0tqVatGhs3buSbb77h9OnTStmRI0diZ2fH2rVrmTFjBnZ2dvj4+DB69Gjl/fKm9onC6/7NuwSsWk+XQb2VpGZxW2uGTf6cfVt+4/iew2RkZFC2Unlad++klMmSlJDZe8bY5NXzNZV2duLjr0ZxcFsgh7fvAR1wcinHR0P7UsalXIG1TYi8uhH+iKVHjjLig2ZKUrN+eWdGt/Bix59/su7kKSxNTOhQozqda9bU+Ay1MDHhu04dWfvHSTafO4+Rvj51ypalT4P6GDz/Mnr9+eJ8iSmpLD1yVLsCSFJTFF7X79xhiZ8fI/v21Uhqxj//YfRVQ88h8xn8m9GjWRcQwI4DB9DV1aVqxYr079KFYi9M4VS1YkUmffIJm3fvZsNvv6Grq0sVFxc+HzhQ5tIUhd7T+xHc3HKcSh81VpKatlXLUrWfF8FHLnNv7zl0DfSwci5Juda1MLWzUmJtq5XFfVBrgg/9yf395wEwd7Sh2gBvrCv93Qu6hIcLuvq6PDx6hbu7zqJnqI+VS0nKtqyFqV3OOmkIIQoXnYwXxz8K8Q5NmDCBgICAbOdwFDmzcOFCFi1axMGDByn9mmFL4vUyMjL+Eb0XDgRfeHMhIf6lam8/9r6rIEShptes+ZsLCfEvNSx6z/uughCF2v+af/2+q5AvCvP3KW+nWu+7CoVS4ehmJoQQ79E/IaEphBBCCCGEEEL8m8jwcyHyKCYmRllo53WMjY0pVqzYO6jRuxUbG4tKpXpjOQMDA6ysrAq+QkIIIYQQQgghhPjHk6SmEHn00UcfERoa+sZyXbp0YcaMGe+gRu/W6NGjlZXkX6devXpaq7QLIYQQQgghhBBCvA2ZU1OIPDp//jwpKSlvLGdvb0+FF1Z6/ae4evUqT58+fWM5CwsL3Nzc3kGN/r0K8xwwQrxvMqemEK8nc2oK8Woyp6YQrydzahY8mVMze9JTU4g8ql279vuuwnsliUohhBBCCCGEEEK8a7JQkBBCCCGEEEIIIYQQokiRpKYQQgghhBBCCCGEEKJIkaSmEEIIIYQQQgghhBCiSJGkphBCCCGEEEIIIYQQokiRpKYQQgghhBBCCCGEEKJIkaSmEEIIIYQQQgghhBCiSJGkphBCCCGEEEIIIYQQokiRpKYQQgghhBBCCCGEEKJIkaSmEEIIIYQQQgghhBCiSJGkphBCCCGEEEIIIYQQokiRpKYQQgghhBBCCCGEEKJI0X/fFRBCCCGEKGgj3VLedxWEKNyi97zvGghRaC23afO+qyCEeAfqxRbiFJnT+65A4SQ9NYUQQgghhBBCCCGEEEWKJDWFEEIIIYQQQgghhBBFiiQ1hRBCCCGEEEIIIYQQRYokNYUQQgghhBBCCCGEEEWKJDWFEEIIIYQQQgghhBBFiiQ1hRBCCCGEEEIIIYQQRYokNYUQQgghhBBCCCGEEEWKJDWFEEIIIYQQQgghhBBFiiQ1hRBCCCGEEEIIIYQQRYokNYUQQgghhBBCCCGEEEWKJDWFEEIIIYQQQgghhBBFiiQ1hRBCCCGEEEIIIYQQRYr++66AyJsJEyYQEBDAwYMHKV26dJ6O1a9fP0JDQzl06FC+1C2vx9u9ezcbNmzgxo0bpKSk4ODgQNOmTRk2bBj29vYaZdPT0wkLC8v1NfD392fixImsXbuW+vXrv7Lc6dOn6d+/P76+vnTt2lXrdUhICC1atODTTz9l9OjRStzDhw8pU6ZM7hqeQ1l/+xcZGBhgY2NDvXr1GDZsGBUrVtTYn93f5JdffuHnn3/m6dOn9O/fn6FDhzJhwgROnjyJgYEBa9asoWrVqgXSBiEKmyePowncuJ17QbcBcK1elbY9OmNmUSzf4x49DGPp1Dk0beeN14dt81xOiIKWHPOMu4Fnibv7CADryqVxblsXQ3OTfImLuRnKwyOXiA+NBh0dLMrYUbZlLSyc7DTKpcYncX/fBWJuPCRdpcbc0YZyretolRPiXZL7Q4jXi4yOZm1AAH/dugVArWrV6NelC5bFXv+MldO4SbNmcSc4WCu+Xs2afDl4cLbHXr5hA2GRkfzfmDFv0yQhRCEgSU1RKM2bN4+lS5fywQcfMGrUKIyNjbl16xZbtmxh165dbNy4EScnJwDi4+MZOHAgzZo100go5icXFxdmzpxJrVq1st1vbW3NzJkzcXV1Vbb99NNPBAQEsH///gKpU5aJEydSvHhxAJKSkggODmbr1q3s3buXFStWaCRrR4wYQVJSkvI6KCgIX19fatasyZgxY6hcuTJLly7l0KFDDBw4kPLly1OuXLkCrb8QhUVifAKrZi4mLU1NkzZeZGSkc3zPYSJCwhjxzRfo6Wf/kfk2cWlpaWxd+Stp6rTX1imn5YQoaKrEFC6v3ENGWjqlm7qRkZFByLGrJDx6Qs1POqCrp5enuNh7j7i2Zj+m9laUa1WLjLQMwk5f5/KKQGoMa0uxMpkJGXWKissr9pD6LJFSjaqib2xE2KnrXFm5h5ojO2DmUPydXRMhssj9IcTrPUtI4PsFC0hLS6OTtzfp6en8dvAgwWFh/Perr9B/xTNWTuMyMjIIiYigTvXq1K9RQ+MYdtbW2R770MmTHPzjD6pUqJC/jRVCvFOS1BSFTnh4OCtWrKBfv35MmTJFY1+HDh3o06cPc+fOZf78+QDExsZy5coVmjVrVmB1srW1pXPnzq/cb2pqqrX/5MmTpKUVfCLC29tbq4dqv3796NatG59//jkHDhzAzMwMgEaNGmmUu3nzJgDDhw/Hy8sLyEwoW1lZMXHixAKvuxCFyYl9R4h7Esun//kae0cHAEo5l2XNnCVcOHGGus088y3u910HeBz26I11ymk5IQpa6PFrpMQlUvuzzpjaWwFQrLQdV1ftI+LCbUrWdc1T3N1dZzCyNKPmyA7oGWY+ntrXcuH8vADu77+A+6DWAIQcvUJSVBzuQ9pg5Zx5v9lVL8fZ2VsJOXYF1+5NC/AqCJE9uT+EeL1dhw4RExvLrIkTKe2Q+d6sULYs0xcv5sjp03i/9B0lt3GPY2JISUmhbvXqNK1X77V1SU9Px3/vXrYEBuZjC4UQ74vMqSkKnUuXLpGWlqaVgAPw8PCgevXq/Pnnn+++YkVIyZIlGT9+PDExMWzduvWV5VQqFYCS9Mza9uJrIf4trpy+gLNrBSUxCVChmis2DvZcOX0x3+IePQzj6M59fNCx9Wvrk9NyQrwLjy/fxcrZQUm8ABSv4IiJnQWPL9/LU5wqKYWE8Bhs3cspCRsAQ3MTLJ0deBocCWT2xIm4eBtr19JKwgbAsJgpzm3rYlGuRD61VojckftDiNc7ceECVStWVBKTANUrV6akvT1/XLiQ57iH4eEAlCrx+vd5qkrF+B9+YPPu3TSpWxdrK6u3bJEQorCQpOa/RGBgIH379qV27dq4ubnh5eXFzJkzSU1N1Sp76NAh2rdvj7u7Ox07dmTHjh1aZW7fvs2oUaOoU6cONWrUoGfPnhw7dixf6pqVUAsICMi2fmvXruXIkSNA5lyXLVq0AGDRokW4uroSEhICwIMHDxg/fjxNmzbFzc2NevXqMWLECG49n4/lRZGRkYwaNYqaNWvi6enJ1KlTiY+PV/afPn0aV1dX/P39s61zSEgIrq6uLFy4EAAvLy/OnDlDaGiosv2LL77Azc2Np0+fasQ+e/YMd3d3fvjhh1xeqddr06YNhoaGGn+Xfv36KT0y+/Xrp/TG7N+/P66urri6umrUe8KECUqsv78/H374Ie7u7jRo0IAJEyYQGRmpdQ1++eUXevXqhZubGwMHDsx1/LZt25g3bx5NmzbF3d2d7t27c+rUKa32bd++nW7dulGzZk2aNm3Kt99+S0xMjEaZN50zN8LCwhg9ejSNGzfG3d2ddu3asWLFCtLT0zXKXbx4kY8//hgPDw88PDwYNGgQly9fVvb//vvvuLq6MualuXu++eYbXF1d+f3339+qfiJvkhISefI4Gsdy2vPyOjqVJjw4JF/i0tLSCFi9AZdqrtRoWOeV9clpOSHeBVVSCskx8ZiXstHaZ17Shviw6DzF6RsZUGdsV0o1qqZ9jMRkdHQzH1dTnsSTGpeIVQVHIDOJk5aa+eOcY4PKr+wNJ0RBkvtDiNeLT0wkMiqK8tmsM+Bcpgz3Hj7Mc9zLSc3klJRsj6lSqUhMTubzjz9mVL9+6OpKOkSIok6Gn/8LbN68mSlTpuDl5cVXX32FSqVi//79rFy5EoCvv/5aKfv48WM+++wzfHx86NmzJ9u3b2fcuHGo1Wq6du0KZM7D2Lt3b2xtbRk+fDgGBgbs3LmTYcOGMWfOHNq1a5en+tavX5/SpUuzd+9ezp8/T6tWrWjUqBF169bF0tISQ0NDpayLiwsTJ07E19eXli1b0rJlS6ytrYmKisLHxwdzc3P69u1L8eLFuX79Ops2beLatWscOnQIAwMD5TjffvstVapU4csvv+TmzZv8+uuv3Lp1izVr1qCjo5PrNkyaNIk5c+bw5MkTJk6ciKurK2FhYezatYsDBw4o1xJg3759pKam0rFjxzxdt5cZGRnh5OTEjRs3st0/YsQInJ2d2bhxIyNGjKBcuXLo6uqydOlSpd5Z85YuWrSIhQsX0rp1a3x8fIiIiMDPz48zZ86wZcsWrF+Yq+bHH3/Ey8uLjh07YmRk9FbxJiYmDBo0CJVKxapVqxg+fDhHjhxR5g5dsWIFs2fPpnbt2nzxxRdER0ezZs0arl+/zoYNG9DX18/VOd9EpVIxZMgQkpOTGThwIBYWFhw9epTZs2eTlpbGiBEjADhx4gTDhw+ncuXKjBkzhtTUVPz9/enTpw+rV6+mTp06NG3alC5duhAQEMCxY8do0qQJx48fZ9OmTfTs2ZOmTWVo2Pvw9EkcABbFrbT2FbOyIDkxiaTEJExMTfIUdzzwINERj+n96SDS0zNeWZ+clhPiXUiNSwTA0MJUa5+hhQlpSSrUSanomxi+dZyJrYVWmYRHMTx9EEnxiqUASIrO/FHQwMyYu4FneXT2JmnJKoxtilG+XT1sqhTMwnxCvI7cH0K8XkxsLADWlpZa+4pbWJCYlERCYiJmpqZvHRcSHo6xsTFr/f354+JFUlJSsLe1pWeHDjSqXVuJMzUxYcG336L3inluhRBFjyQ1/wVWrVqFh4cHP/30k5Kg6927Ny1atODYsWMaSc3U1FS+/fZb+vTpA0CPHj3o3Lkzc+bMoVOnTujr6zNt2jSsra0JCAjA9PmHT9++fRkwYADTp0/H29tbI/GYW4aGhvz888988cUX/PXXX6xfv57169ejp6dHnTp1GDZsGI0bNwYy57r09vbG19cXV1dXZV5LPz8/4uLiWL9+PS4uLsqxzczMWL58OTdv3qRatb9/8XZ1dWXt2rXKZNMlSpRg4cKFHD58WOnZmBve3t6sWbOGlJQUpU4uLi5YWVkRGBiokdTcvXs35cuXL5AVxi0sLAjOZhVAyJxfMyIigo0bN+Lp6aksKLRlyxaNej98+JDFixczbNgwvvzySyW+ffv2dO3alaVLlzJp0iRle8mSJZk9e7byXsttfEZGBlu2bFHeW6VKlWLs2LHs378fHx8f4uLiWLhwIU2aNGHZsmXKQ0np0qWZMmUKJ06coHz58rk655tcv36dO3fu8OOPP9KmTRsAunfvzpAhQ7h3L3N4WHp6Ot999x3u7u74+fkp9erbty8ffvgh06ZNY9u2bUDm4k7Hjx9n6tSpbNy4kW+++YayZcsyfvz4HNdJ5K+U5GQADAwNtPbpP9+mSk3VSmrmJi4yNJzDO/bSvk83LK2L8yQqRisGyHE5Id6VrN5eegbaj426zz8301RqraTN28ZlxQZtzhxpULqZOwDq5MzRGw8OXERHTxeXDvVBR4eQY1f5y+8gbh+3ovjzXmpCvCtyfwjxelm9JrP7fmj4vJNJikrFy5Nf5SbuYXg4ycnJJCQn82m/fiQkJRF45AgLfvmFtLQ0ZZ5NHR0dSWgK8Q8j/a3/BXbs2MHy5cs1ehxGR0djYWFBYmKiRlkLCwt69OihvDY0NKRHjx5ERUVx9epVnjx5wpkzZ2jWrBnJycnExMQQExPD06dPadmyJVFRUVy5ciXPdXZ2dsbf35+1a9fSv39/XFxcSEtL4/Tp0wwePJjly5e/Nn7YsGGcOHFCI6GZnJysDDF4ud0DBw7UWHWvX79+AMow9/xgYGBA69atOXnyJHFxmb27YmJiOHXqFO3bt8+387xIrVa/VU/TF+3fv5/09HS8vLyUv3dMTAy2trZUqVJF6xrVqVNH45y5jW/WrJmS0ASoXLkykNmLGOCPP/4gJSWFPn36aDyUdOrUCX9/f+rVq5frc76Jvb09Ojo6LFu2jGPHjpGamoqOjg4rV65Upg3466+/ePjwId7e3sTFxSnnTE5Opnnz5ly/fp2IiAgALC0t+b//+z8ePHhA9+7diYiIYMaMGRrtFu9WxvPOkLm9X3Ial56ejv/KDThVKP/KBYdyU06Id0p5o7+buLRUNdfWHSQh/Amlm7kr8wOmqzOn+1Anp1JjeDtK1KpACQ8Xagxti76JEff3nc9lBYXIB3J/CPFaGc/f67l/xsp5nHejRgzq3p0vBw+mXo0aNG/QgGlffom9rS1+27ZpTRclhPjnkJ6a/wIGBgacPXuWnTt3cvfuXYKDg4mOzpynp1SpUhply5Qpo5Hcy9oGEBoaqiQF161bx7p167I9X/jzOU3ySkdHh/r16ys9CMPCwti6dSvLli3jxx9/pHPnzpR4zWTQKpWKefPmce3aNYKDgwkJCVFWI3/5g618+fIary0tLbG0tCQ0NDRf2pKlU6dObNy4kQMHDtCtWzf27NmDWq3O96HnWWJjY3M1zDo7WT09e/bsme3+F4fxA1rny2t81q+zWX+zrL9J2bJlNcoZGRkpvW9ze843cXBwYNy4ccydO5chQ4ZgampKw4YNadeuHW3btkVPT08558yZM5k5c2a2xwkLC1Pes97e3rRq1Yp9+/bRq1cvatWqlas6ifxlZJw5VYIqm3l81c970xgbG7913PHAQzwKCWXIxDEkPMucrzf5+Y8rqakqEp7FY2puluNyef2xQojc0DPK/DczXZWmtS9drQZA31j739W3iVMnpXJt7QGePoikRJ2KlGv597+NegaZP2TZViuLgYmRsl3fxBDryqWJvHiHtFQVetn0nBaioMj9IcTrGT+fjiq7tRJSny9aaprNM1Zu4lo+H8X3IkMDA5rWrcuWwEAehodT9qXvvUKIfwZJav4LTJ06FT8/P6pWrUrNmjXp3LkzHh4eTJ06VSsBmd0X5axfyXR1dZWkYJ8+ffD29s72fBUqVMhTfdetW0dKSgpDhgzR2O7o6Mjo0aMxMjJizpw5/Pnnn7Runf2qwOfOnWPw4MGYmpri6elJt27dqFq1KsHBwfznP//RKv+qduf38ITatWvj6OhIYGAg3bp1IzAwEDc3N60EXX6Ij4/n4cOHfPDBB3k6TlYyccmSJdkmdV728jXLbfybJuzOOt7rkjq5PWdODB48mA4dOrB//36OHj3KiRMnOHjwINu2bePnn39WzjlmzBhq1qyZ7TFeTJ4nJiby119/AXD8+HESExOlp+Z7ZGmTOV/rs7hnWvuexT7F2NQEQ2MjrX05jbt19Tpp6jSWTZ2rVe7EnkOc2HOIL2Z+m+NyxW3z9mOFELlhZGkOQOqzJK19qU+T0DMxyDZRktu41Pgkrv6yn4SwGBzqVaJC54Ya/9YbWmQOTjQw0/533dDcBDIgLUWSNuLdkvtDiNezfT4nfuxLi6UCPHn6FFMTEyWBmR9xL7IsVgyAlGwSo0KIfwZJav7DhYaG4ufnR+fOnbV6j0VFRWmVDw8PJyMjQ+Mh6f79+wA4OTlhZ2cHZCauPD01h0bevn2bkJAQTEw055zLrQMHDnD58mV69+6dbZKnUqVKQPa9prIsWLAAY2Njdu3apdHzb+nSpdmWDw0NpWLFisrrrCH1WQvl5BcdHR3atWvHmjVrCAsL4/z58xpzmuanPXv2kJGRoawO/7ayevOWLFmSKlWqaOw7evQo5ubmBRr/spIlSwKZvTGdnZ2V7ampqYwbN46OHTvm+zljY2O5ceMGtWrVom/fvvTt25fExEQmTJjA3r17CQoKUs6ZlUh/0eXLl4mLi9N4z86dO5fQ0FC+/vprZs2axdy5c5kyZUqu6iXyj4mpCVa21oQ/0F7lPCw4hFLlsl9gIadxbXp8SFKC5rQXCU+fsWWFHzUa1qGmZ13MLYrluJwQ75K+iSFG1ubZruIcHx5NsVK2eY5Tp6iUhI1jo6q4tK+nFWPmYIWOvi6JkbFa+5KfxKNroJdtQkeIgiT3hxCvZ2Zqip2NDfdCtJ+V7j18iMsrvm/lNC4mNpZpixfjWasWH7Vtq1Eu9PnUT3Y2NnlthhCikJI5Nf/hsuZufLn35NGjR7l//z7q58NbskRHR3Pw4EHldWJiIhs2bKBUqVJUqVIFe3t73NzcCAgIUOYHhMyh3pMmTeKzzz7TOmZudezYkcTERGbMmKE1TDw9PZ3NmzdjYWFB3bp1gb97Br5YNmvY9YsJzWfPnhEQEACg9DjNsnnzZo3XWSvD5yUhqKurm+38LR07dkSlUjFr1iwyMjJo+9KHb36IjIxkwYIFlChRIs9D25s3bw7AsmXLlF67kLl4zsiRI1mzZk2Bxr/M09MTAwMDNm3apHG8PXv2sGfPngI554kTJxgwYACHDh1StpmamioJdj09Pdzc3LCzs2PdunUkJCQo5eLj4/n888+ZOHGi8l49f/48v/76Kz4+PgwePJhu3brx66+/cu7cuVzVS+SvarVrcOevIB6H//1v2+1rQUQ/isS9/qunB8hJXKlyZahQzVXjf04VM3vuWtvZUKGaKwaGBjkuJ8S7ZlutLLF3wkh8HKtse3I7jKTHT7Gr7pznuDs7TmYmbDyrZJuwAdAzNMCmihMxN0JIiHiibE+OeUb09WCsq5RB5w29/YUoCHJ/CPF69WvU4EpQkJJkBLh84wbhkZF4vrA6+dvEWVtZkZiUxKE//iAx6e+ez1ExMRw5fZpqlSpR3MKiAFolhCgMpKfmP8S8efMwM3t5zTho2bIljo6OLF26lJSUFBwcHLh8+TIBAQEYGRlpJF8gcy7Jr7/+mgEDBmBlZcXWrVsJDw9n8eLFyrDgKVOmMGDAALp160avXr2wsrJi165dXLp0iS+//JLiz4cKvK2uXbty7NgxNm7cyMWLF2nTpg0ODg5ER0cTGBhIUFAQc+bMUXpxWllZoaury8GDB3F0dKRVq1Y0bdqUFStWMGbMGBo3bszjx4/ZsmWL0jv15XafO3eOTz75hGbNmnHhwgW2bdtG27Ztadiw4Vu3w9ramrNnz7Jq1Spq165NjRo1gMyFbypWrMju3bupX7/+a+cFzYkDBw4o1zwlJYW7d++ybds2UlJSWLFiRZ6HX1eqVIl+/fqxbt06YmNj8fb2JjY2Fj8/P8zMzBgzZkyBxr/MxsaGUaNGMX/+fAYNGoS3tzePHj3Cz8+P+vXr4+Xlha6ubr6es3nz5jg7OzN58mSuXbuGk5MTd+/e5ddff6Vhw4bKjwZTpkxh7NixdO3alY8++ggjIyM2b95MWFgYs2fPRl9fn5SUFCZPnoy1tTVfffUVAF999RUHDhxg8uTJ7NixA6M3DKURBaNJWy/+/OMsq2ctplHr5qhVKo7vOYxjuTLUaJD54BwTGUXw7Xs4VXDG2t42x3FCFHWlm7gRefEOV1bupVRjN9LVakKOXcW8lA32NTMX5UuKecbTB5FYlLXHxLpYjuMSI2OJvHgXPRMDzB1tiLh4R+v8JTwyyzq3qUPcvUdcWbkXR88q6OrqEXryL3QN9CjXSu438X7I/SHE63Xy9ub3M2eYunAhHby8SFWp+O3gQco7OdGkTh0AIqKiCLp7F9fy5Slha5vjOIDBPj7MXrGCb+bNo4WnJ0nJyez9/Xf0dHUZ1L37e2mzEOLdkKTmP8TOnTuz3V6+fHmWL1/OjBkzWLt2LRkZGTg5OTFp0iTUajXTp0/n6tWruLm5AeDi4kLfvn358ccfCQ8Pp1KlSixbtowmTZoox/Tw8GDDhg0sXLiQ1atXo1arcXZ2ZsaMGXTp0iXPbdHV1WX+/Pls376d7du34+fnx7Nnz7C0tKR27dp8//33VK9eXSlvYmLC2LFjWblyJdOmTcPJyYnRo0eTlpbG7t27OXz4MPb29nh6ejJo0CDat2/PqVOnaNmypXKMefPmsXLlSqZPn46VlRUjR45k1KhReWrHkCFDCAoKYu7cuXTt2lVJakJmb825c+fSoUOHPJ0DwNfXV/lvAwMDSpQogZeXF0OHDtUYnp0XkydPpnz58vzvf//jhx9+oFixYtSpU4cxY8ZorDBfUPEvGzlyJHZ2dqxdu5YZM2ZgZ2eHj48Po0ePVpLv+XlOU1NTVq1axYIFC/jtt9+IiorCzs6O3r178+mnnyrl2rRpg6WlJUuWLOGnn35CV1eXihUrsmTJEqX36MKFC7l37x6zZs3C4vmvxsWLF2fcuHFMnjyZ+fPnM378+FxfE5F3ZhbFGDLxM3ZvCODgtkAMDQ2p4uFO6+4d0X++uNT9m3cJWLWeLoN6K0nNnMQJUdQZmptQfWhb7u46w4MDF9Ez1MemihPObeqgq5/ZC/3p/QhubjlOpY8aK0mbnMTF3XsEQFqSiptbjmd7/qykjXFxc2qMaM/9PecIOXYVMsCyXAmc29RRzinEuyb3hxCvZ1msGN9//jlr/P3ZtHs3RgYG1K1enT6dOysLeF6/c4clfn6M7NtXSWrmJA6gbvXqjBs6lIB9+/h1+3YMDQyoWrEivTt1olQeO5AIIQo3nYwXx2YKId6J5cuXs3DhQo4fP46lpeX7ro74hzgQfOF9V0GIQuvnOwfedxWEEEIUUctt2rzvKghRqFm80OmoKHt6+fL7rsIr/VOucX6TiVWEeMdSU1Px9/fH29tbEppCCCGEEEIIIYQQb0GGn4sCl5aWRkxMTI7KFitWLM9zQBZWERER+Pr6cvv2bR48eMCsWbM09icnJ/Ps2bMcHcva2lpZdEa8nYSEBBITE99cELCzsyvg2gghhBBCCCGEECI3JKkpClx4eHiOVxH39fWla9euBVyj98PS0pJz586hVqv57rvvcHd319i/e/duJk6cmKNjHTx4kNKlSxdENf81Vq1axaJFi3JUNigoqIBrI4QQQgghhBBCiNyQpKYocHZ2dqxevTpHZbNWkf4nMjY25vjx7Cd4B2jcuHGOr5P0HMy7Dz/8kNq1ZSVQIYQQQgghhBCiKJKkpihwRkZGeHp6vu9qFHr29vbY29u/72r8a5QpU4YyZcq872oIIYQQQgghhBDiLchCQUIIIYQQQgghhBBCiCJFkppCCCGEEEIIIYQQQogiRZKaQgghhBBCCCGEEEKIIkWSmkIIIYQQQgghhBBCiCJFkppCCCGEEEIIIYQQQogiRZKaQgghhBBCCCGEEEKIIkWSmkIIIYQQQgghhBBCiCJFkppCCCGEEEIIIYQQQogiRZKaQgghhBBCCCGEEEKIIkWSmkIIIYQQQgghhBBCiCJF/31XQAghRP74+c6B910FIYQQQoh/nDNW6vddBSEKNe/3XQHxryU9NYUQQgghhBBCCCGEEEWKJDWFEEIIIYQQQgghhBBFiiQ1hRBCCCGEEEIIIYQQRYokNYUQQgghhBBCCCGEEEWKJDWFEEIIIYQQQgghhBBFiiQ1hRBCCCGEEEIIIYQQRYokNYUQQgghhBBCCCGEEEWKJDWFEEIIIYQQQgghhBBFiiQ1hRBCCCGEEEIIIYQQRYokNYUQQgghhBBCCCGEEEWKJDWFEEIIIYQQQgghhBBFiiQ1hRBCCCGEEEIIIYQQRYokNYUQQgghhBBCCCGEEEWK/vuugHizCRMmEBAQwMGDByldunSejtWvXz9CQ0M5dOhQvtQtr8fbvXs3GzZs4MaNG6SkpODg4EDTpk0ZNmwY9vb2GmXT09MJCwvL9TXw9/dn4sSJrF27lvr167+y3OnTp+nfvz++vr507dpV63VISAgtWrTg008/ZfTo0Urcw4cPKVOmTO4ankNZf/sXGRgYYGNjQ7169Rg2bBgVK1bU2J/d3+SXX37h559/5unTp/Tv35+hQ4cyYcIETp48iYGBAWvWrKFq1aoF0gYhipLkmGfcDTxL3N1HAFhXLo1z27oYmpvkS1xOy1386TfiQ6K1zmPjVpaqvZu/dfuEyA+p8Unc23OOJzdDSVepsSxfkvLt62FiXSzfYnNaLj4smnt7zvEsNAodXV2sXUvj3KbOG+9ZIQpKYbo/kqKfci/wHLH3wslQp1OsjB3lWtXGwskuX9ssRE48eRxN4Mbt3Au6DYBr9aq07dEZM4vX3xtvE7ftl41ER0QyePxorX0Pbt5lv/9OQu89xMTMhCoe7nh92BazYuZ5aJ0Q4n2RpKZ4b+bNm8fSpUv54IMPGDVqFMbGxty6dYstW7awa9cuNm7ciJOTEwDx8fEMHDiQZs2aaSQU85OLiwszZ86kVq1a2e63trZm5syZuLq6Ktt++uknAgIC2L9/f4HUKcvEiRMpXrw4AElJSQQHB7N161b27t3LihUrNJK1I0aMICkpSXkdFBSEr68vNWvWZMyYMVSuXJmlS5dy6NAhBg4cSPny5SlXrlyB1l+IokCVmMLllXvISEundFM3MjIyCDl2lYRHT6j5SQd09fTyFJfTchkZGSRGxmFT1QmbamU1zmVsZVawF0GIN0hXp3FtzQGSouIo1bgaekaGhB6/yuUVgdQa3RkDU6M8x+a0XGJkLJeW78bQwpSyXh6kpaQScuIaT4MjqfVpJ/QMDd7JNREiS2G6P1QJyVxeEYg6WUWpxtUwMDEk9OR1rqzcQ82R7TFzsH4n10QIgMT4BFbNXExampombbzIyEjn+J7DRISEMeKbL9DTzz4t8TZx54+d4vzvJynn6qK1796NW6yZuxRjExOadWiJjq4OJ/cd5e6NWwyb9DkmZqb53nYhRMGSpKZ4L8LDw1mxYgX9+vVjypQpGvs6dOhAnz59mDt3LvPnzwcgNjaWK1eu0KxZswKrk62tLZ07d37lflNTU639J0+eJC0trcDqlMXb21urh2q/fv3o1q0bn3/+OQcOHMDMLDPZ0ahRI41yN2/eBGD48OF4eXkBmQllKysrJk6cWOB1F6KoCD1+jZS4RGp/1hlTeysAipW24+qqfURcuE3Juq55istpuZQn8aSnqrGp6kQJD+0HciHep4iLt4kPjcZtUCuKV3AEwNq1FBcWbCf0+DXKtcr+h8HcxOa03P0DF9HR1aXG0LYYFsv8ImpeypZraw4QceEOjg0qF9h1ECI7hen+eHTuJqlPk6jSpzm2z38gs6lWlvPzAgg+dIkq0utfvEMn9h0h7kksn/7na+wdHQAo5VyWNXOWcOHEGeo288xzXHp6Okd37ufQ9j2vrMfOX/3R0dFl6KQx2JTI7LFctVZ1Fn83k6M799Omx6u/CwohCieZU1O8F5cuXSItLU0rAQfg4eFB9erV+fPPP999xYqQkiVLMn78eGJiYti6desry6lUKgAl6Zm17cXXQgh4fPkuVs4OSsIRoHgFR0zsLHh8+V6e43JaLiEyFgATW8s8t0mI/Pb48j2MbYopyRQAUzsrrFxK8vjy3XyJzWk5XV1d7Gu6KAlNAEvnEgAkRDx5+0YK8ZYK0/2R/CQegOIV/y5nbGWOqb2V3B/inbty+gLOrhWUxCRAhWqu2DjYc+X0xTzHqVJV/PR/szm0LZCaDetQrLj2M9STqBgiQ8Op6VlXSWgC2JUsgWuNalw8cSavzRRCvAeS1PwHCQwMpG/fvtSuXRs3Nze8vLyYOXMmqampWmUPHTpE+/btcXd3p2PHjuzYsUOrzO3btxk1ahR16tShRo0a9OzZk2PHjuVLXbMSagEBAdnWb+3atRw5cgTInOuyRYsWACxatAhXV1dCQkIAePDgAePHj6dp06a4ublRr149RowYwa1bt7SOGRkZyahRo6hZsyaenp5MnTqV+Ph4Zf/p06dxdXXF398/2zqHhITg6urKwoULAfDy8uLMmTOEhoYq27/44gvc3Nx4+vSpRuyzZ89wd3fnhx9+yOWVer02bdpgaGio8Xfp16+f0iOzX79+Sm/M/v374+rqiqurq0a9J0yYoMT6+/vz4Ycf4u7uToMGDZgwYQKRkZFa1+CXX36hV69euLm5MXDgwFzHb9u2jXnz5tG0aVPc3d3p3r07p06d0mrf9u3b6datGzVr1qRp06Z8++23xMTEaJR50zlzw9XVlfnz5zNixAjc3Nxo3749arUalUrFsmXL6NSpEzVq1KB69ep06tSJLVu2aB3j6NGj9O3bFw8PDxo1asTYsWOV92uWw4cP07NnT2rUqEHdunUZPXo09+69OmkmCp4qKYXkmHjMS9lo7TMvaUN8mPb8lrmJy83xE59/2TS1z3wgT0tV5b5BQhSQ+LBozB2138dmjjYkx8SjSkrJc2xOy1Xu2YwKnRpolEkIz/yMMLaUH+7Eu1eY7g8TGwsAkh7//UyanpZGSlyCxg8BQhS0pIREnjyOxrGc9roIjk6lCQ8OySYqd3FqtZqUpGR6jBxAtyF90NPVnjLo6ZM4AEqUdtDaZ21vS2J8AnExkvAXoqiR4ef/EJs3b2bKlCl4eXnx1VdfoVKp2L9/PytXrgTg66+/Vso+fvyYzz77DB8fH3r27Mn27dsZN24carWarl27ApnzMPbu3RtbW1uGDx+OgYEBO3fuZNiwYcyZM4d27drlqb7169endOnS7N27l/Pnz9OqVSsaNWpE3bp1sbS0xNDQUCnr4uLCxIkT8fX1pWXLlrRs2RJra2uioqLw8fHB3Nycvn37Urx4ca5fv86mTZu4du0ahw4dwsDg7/m0vv32W6pUqcKXX37JzZs3+fXXX7l16xZr1qxBR0cn122YNGkSc+bM4cmTJ0ycOBFXV1fCwsLYtWsXBw4cUK4lwL59+0hNTaVjx455um4vMzIywsnJiRs3bmS7f8SIETg7O7Nx40ZGjBhBuXLl0NXVZenSpUq9s+YtXbRoEQsXLqR169b4+PgQERGBn58fZ86cYcuWLVhb/z330o8//oiXlxcdO3bEyMjoreJNTEwYNGgQKpWKVatWMXz4cI4cOaLMHbpixQpmz55N7dq1+eKLL4iOjmbNmjVcv36dDRs2oK+vn6tz5tSaNWuoVasWU6ZMITk5GX19fb766isCAwPp1asX/fr148mTJ2zatInJkydjZ2enTIuwa9cuvvzySypWrMjo0aOVtl25cgV/f38sLCzw9/dn0qRJNGzYkHHjxhEXF8eGDRvw8fFh06ZNODs757rOIu9S4xIBMLTQ/qJnaGFCWpIKdVIq+iaGbxWXm+MnRsaiZ6TP3d1neXz5HumpaoytzSnbshb2Ncrnua1CvK20VBVpSars38fPF+ZJiU3AwER73sCcxurq6b7VOVKeJvIsOJK7gWcxtDChRJ2KWvFCFKTCdn841KlE5J93uBlwggqdGqJvYsjDI5dQJSRTuolbntoqRG5kJRMtiltp7StmZUFyYhJJiUmYmJq8dZyxiTGfz5iM3ivmPwcwNMr8XpiSrP3jQmJ8AgDP4p5haV08R+0SQhQOktT8h1i1ahUeHh789NNPSoKud+/etGjRgmPHjmkkNVNTU/n222/p06cPAD169KBz587MmTOHTp06oa+vz7Rp07C2tiYgIABT08wHp759+zJgwACmT5+Ot7e3RuIxtwwNDfn555/54osv+Ouvv1i/fj3r169HT0+POnXqMGzYMBo3bgxkznXp7e2Nr68vrq6uyryWfn5+xMXFsX79elxc/p53zszMjOXLl3Pz5k2qVaumbHd1dWXt2rXoP59QukSJEixcuJDDhw8rPRtzw9vbmzVr1pCSkqLUycXFBSsrKwIDAzWSmrt376Z8+fIFssK4hYUFwcHB2e5r1KgRERERbNy4EU9PT2VBoS1btmjU++HDhyxevJhhw4bx5ZdfKvHt27ena9euLF26lEmTJinbS5YsyezZs5X3Wm7jMzIy2LJli/LeKlWqFGPHjmX//v34+PgQFxfHwoULadKkCcuWLVMeUEqXLs2UKVM4ceIE5cuXz9U5c0pfX5/FixdjbGwMZP4IsHPnToYOHapxHm9vb9q2bcuxY8do1qwZ6enp+Pr6UqlSJTZt2qTEu7u78/HHH/Pbb7/RuXNnpk+fTrt27Zg7d65yLB8fH9q3b8/s2bNZvHhxruss8i6rN6SegfbHou7zfzPSVGqtpGZO43Jz/ISIWNJS1KiTU3Ht3gR1ciphf/xF0MbfyUjPkHk2xXujTn71+zhrW/orehbnNPZtz3F+nj9pKWrQ1cG1exNZ/Vy8c4Xt/tA3MaSstwc3Nv7OpaW7lHIuHetj7ard802IgpKSnAyAQTaLt+k/36ZKTdVKauYmTkdH57UJTQB7RweMTIz56/xlmrbzVr7HqFJV3L4WBIBaJaNjhChqZPj5P8SOHTtYvny5Ro/D6OhoLCwsSExM1ChrYWFBjx49lNeGhob06NGDqKgorl69ypMnTzhz5gzNmjUjOTmZmJgYYmJiePr0KS1btiQqKoorV67kuc7Ozs74+/uzdu1a+vfvj4uLC2lpaZw+fZrBgwezfPny18YPGzaMEydOaCQ0k5OT0dXNfFu/3O6BAwcqCU3IHJoNKMPc84OBgQGtW7fm5MmTxMVl/roYExPDqVOnaN++fb6d50Vqtfqtepq+aP/+/aSnp+Pl5aX8vWNiYrC1taVKlSpa16hOnToa58xtfLNmzZSEJkDlypmLOTx+/BiAP/74g5SUFPr06aPxgNKpUyf8/f2pV69ers+ZU9WrV1cSkgB2dnacP3+eTz75RNmWkZGBWq0GICEh85fdq1ev8vjxY3x8fDTiPT092bx5M507d+bEiRPEx8fj7e2tUWc9PT0aNGjA8ePHleOKdywjI/P/c3sr5TQuF8cvWbcSLp3qU7V35uIODrUrUmNEe4ytzbkXeJaM9PRcVlKIfPa69/GbPo9yGpuLc6SnpePSqSGVezbDyqUkQRt/J/TEtdfXQ4iCUkjuj0fnbvLXukMYWxej0keNqdyzGdaVS3Nn52nCTmU/wkeIgqA8AuXy+8rbxr2Knr4+nq0+IOz+QzYvW8ejh2GEB4fwvyWrSU3JnA4t63ukEKLokJ6a/xAGBgacPXuWnTt3cvfuXYKDg4mOzpyjrVSpUhply5Qpo5Hcy9oGEBoaqvxjvm7dOtatW5ft+cLDw/Ol3jo6OtSvX1/pQRgWFsbWrVtZtmwZP/74I507d6ZEiRKvjFepVMybN49r164RHBxMSEiIshp5+ktf/MuX1xy2aWlpiaWlJaGhofnSliydOnVi48aNHDhwgG7durFnzx7UanW+Dz3PEhsb+1bDrF+U1dOzZ8+e2e5/cRg/oHW+vMZn9frN+ptl/U3Kli2rUc7IyEjpfZvbc+ZUdtfS0NCQHTt2cPz4ce7fv8+DBw+UZGbG8yeuV9UZMhOlL9Z57Nixrzx/TEwM9vb2b1V38fb0ng9JSlelae1Lf55o1jfWfk/lNE6di+OXrK+9YrOegT72Hi4EH7xEYmQsZg55u+eFeJM0lZq0ZM05r/UMn/cEU2u/j9NUme/jrHviZTmNfZtz6OrpKj2Ybd3LcXl5IPf3X6REnUrov6I+QuRFUbg/7u+/iKGlKTVHtEPvea82u+rOXF2zn3uBZ7F1Kys9msU7YWScOeWCKpt1FNTPexa/2CEgr3Gv07xTa5ITkzh54HeunLkAgGuNajRp48X+rTsxNZf5mIUoaiSp+Q8xdepU/Pz8qFq1KjVr1qRz5854eHgwdepUrQRkdr92ZSVmdHV1laRgnz598Pb2zvZ8FSpUyFN9161bR0pKCkOGDNHY7ujoyOjRozEyMmLOnDn8+eeftG7dOttjnDt3jsGDB2NqaoqnpyfdunWjatWqBAcH85///Eer/Kva/aahCrlVu3ZtHB0dCQwMpFu3bgQGBuLm5pZtsiuv4uPjefjwIR988EGejpOVTFyyZEmOHg5evma5jX/Tr6BZx3vdL7O5PWdOvdy2lJQUevfuzfXr16lfvz4NGzZk4MCB1KtXT+O656bOU6dOpXTp7Id+WVrKitfvg5GlOQCpz5K09qU+TULPxED5Uvg2cW97/BcZmGV++UxLld68ouBFXbnPzS3HNbY5taiBnokBqU8Ttcpnvbezm+sPQN/YMEexOS33Kjo6Oti6leXpg0iSHsdRrLTtK8sK8bYK+/2RGp+E6lkSjp5VtD5bStSqwJOgUJ49fIxNFacctFaIvLG0yZyj8lncM619z2KfYmxqgqGx9lyzbxv3Ojo6OrTr1YWm7byJjniMhbUVxW2t2e+/Cx1dXZlPU4giSJKa/wChoaH4+fnRuXNnZs6cqbEvKipKq3x4eDgZGRkayZf79+8D4OTkhJ2dHZCZ3PH09NSIvX37NiEhIZiY5O2X3QMHDnD58mV69+6tMQw5S6VKlYDX//q2YMECjI2N2bVrl0bvuqVLl2ZbPjQ0lIoV/144IGtIfdZCOflFR0eHdu3asWbNGsLCwjh//rzGnKb5ac+ePWRkZCirw7+trN68JUuWpEqVKhr7jh49irm5eYHGv6xkyZJAZs/GFxfOSU1NZdy4cXTs2DHfz/kqgYGBXL16lenTp/PRRx8p2yMiIl5Z55dNnDiRWrVqKXW2trbWurdOnz5Nenp6nuaqFW9P38QQI2vzbFc5jw+Pplip7BMjOY3LabmUuASurN6HfXVnnLxqapRLisqc0sK4eP68t4V4HasKjrgNaqWxzdi6GHH3I4gPi9EqnxAejbFNsWwXQcli7miTo9iclFMnpXLxp9+wdSuHc+vaGuXSUjJ78Oga5O+PlkJkKQr3B0BGmvZ0JRnpGRr/L0RBMzE1wcrWmvAH2quchwWHUKpcmXyNe53Lpy9QzLIYzpUrYm5ZTNl+P+gOjmVLZzt/pxCicJNJI/4BsuZufLn35NGjR7l//77WHH3R0dEcPHhQeZ2YmMiGDRsoVaoUVapUwd7eHjc3NwICAjQSNyqVikmTJvHZZ5/led6/jh07kpiYyIwZM7SGiaenp7N582YsLCyoW7cu8HfvuRfLZg27fjGh+ezZMwICAgCUHqdZNm/erPE6a2X4vCQEdXV1teoPme1TqVTMmjWLjIwM2rZt+9bneJXIyEgWLFhAiRIl8jy0vXnz5gAsW7ZM6bULcP36dUaOHMmaNWsKNP5lnp6eGBgYsGnTJo3j7dmzhz179hTIOV8lNjYW0L6/1q5dC6DcC25ublhbW+Pv70/qC8Nkzp8/j7+/P4mJiXh6emJkZMTPP/+M6oWJyCMiIvjkk080Fl8S755ttbLE3gkj8XGssu3J7TCSHj/FrvqrV6XPaVxOyhlZmpGWnEr42ZuoXxjamBwbT8T5W1i6OGBY7NW91ITIL0YWphSv4KjxPxPrYthWK0vS4zie3A5TyiY+jiX2Tvhr7xMgx7E5KadvYoiuvh4RF26jSvp7JVt1UiqPzt3CyNocU3urvF4GIbJVFO6PYmVsibr2AFVCslIuIyODR+duoqOni0VZmepGvDvVatfgzl9BPA7/+7vl7WtBRD+KxL1+rXyPe5U/9h7hN7+tGt8Tgy5dI/jWXep7Nc718YQQ75/01CxC5s2bh5mZ9jwfLVu2xNHRkaVLl5KSkoKDgwOXL18mICAAIyMjZe6/LJaWlnz99dcMGDAAKysrtm7dSnh4OIsXL1aGBU+ZMoUBAwbQrVs3evXqhZWVFbt27eLSpUt8+eWXFC+et675Xbt25dixY2zcuJGLFy/Spk0bHBwciI6OJjAwkKCgIObMmaP04rSyskJXV5eDBw/i6OhIq1ataNq0KStWrGDMmDE0btyYx48fs2XLFqV36svtPnfuHJ988gnNmjXjwoULbNu2jbZt29KwYcO3boe1tTVnz55l1apV1K5dmxo1agCZC99UrFiR3bt3U79+/dfOC5oTBw4cUK55SkoKd+/eZdu2baSkpLBixYo8D7+uVKkS/fr1Y926dcTGxuLt7U1sbCx+fn6YmZkxZsyYAo1/mY2NDaNGjWL+/PkMGjQIb29vHj16hJ+fH/Xr18fLywtdXd18PeereHp6oq+vz9dff02fPn3Q19fn8OHDHD9+HAMDA+V9ZmhoyIQJExg/fjy9evWiU6dOJCQksHbtWlxcXOjevTumpqZ88cUX+Pr60qNHDzp16oRarWb9+vWkpKQwfvz4fKmzeDulm7gRefEOV1bupVRjN9LVakKOXcW8lA32NTPn60uKecbTB5FYlLXHxLpYjuNyU86lUwOu+x3m0rLdONSpRFqqirCT19HR1aVCxwbv9qII8RKHOpUIO3mD6xsOU7qJG3oG+oQcu4qhhSmlGlVTyqXGJ/HkVhjmJYsrc8DmNDan5Vw6NeDKyr1cWrabknUrkZ6WzqMzQaQ+S6LaQG/5kUi8c4Xp/ijfvj5XVu7h4k+/UbKeK7oG+kRduc/TB5GUa1VL5tMU71STtl78+cdZVs9aTKPWzVGrVBzfcxjHcmWo0SCzt31MZBTBt+/hVMEZa3vbHMflqh7tWvC/n1bj9+MKqtaqTmx0DCf2HqGCW2VqNKyTr20WQrwbktQsQnbu3Jnt9vLly7N8+XJmzJjB2rVrycjIwMnJiUmTJqFWq5k+fTpXr17Fzc0NABcXF/r27cuPP/5IeHg4lSpVYtmyZTRp0kQ5poeHBxs2bGDhwoWsXr0atVqNs7MzM2bMoEuXLnlui66uLvPnz2f79u1s374dPz8/nj17hqWlJbVr1+b7779XFlcBMDExYezYsaxcuZJp06bh5OTE6NGjSUtLY/fu3Rw+fBh7e3s8PT0ZNGgQ7du359SpU7Rs2VI5xrx581i5ciXTp0/HysqKkSNHMmrUqDy1Y8iQIQQFBTF37ly6du2qJDUhs7fm3Llz6dChQ57OAeDr66v8t4GBASVKlMDLy4uhQ4dqDM/Oi8mTJ1O+fHn+97//8cMPP1CsWDHq1KnDmDFjNFaYL6j4l40cORI7OzvWrl3LjBkzsLOzw8fHh9GjRyvJ9/w+Z3YqVarEggULWLRoEXPnzsXMzIyKFSuyevVq1q9fz5kzZ1CpVBgYGNC5c2eKFSvG0qVLmTNnDhYWFjRv3pwvv/xSSdAPHDiQEiVKsHr1aubNm4exsTHVqlVj1qxZ1K6d+4czkX8MzU2oPrQtd3ed4cGBi+gZ6mNTxQnnNnXQ1c/sLf70fgQ3txyn0keNlaRmTuJyU862almq9vMi+Mhl7u09h66BHlbOJSnXuhamdlbv9JoI8TJdfT3cB7fm3u6zhPx+FR0dHSzLO1C+bV0MTP8eWpsYGcvNzcdwalFDSdrkNDan5aycHXD7uCXBB//k/r4LoKODZbkSVO75gcylKd6LwnR/WDjZUWN4O+7vv8DDI5dJT0vH1N4KV58mGj+kCfEumFkUY8jEz9i9IYCD2wIxNDSkioc7rbt3RP/54p73b94lYNV6ugzqrSQ1cxKXG9Xq1KD78P4c232AwP9tw8zCnMZtvGja3ltWPheiiNLJeHHcphAi3yxfvpyFCxdy/PhxWfxFvBM9D898cyEhhBBCCJErQ1yyXzxVCJHJ2yn30wEURk8vX37fVXglixc6fYm/yc8RQhSA1NRU/P398fb2loSmEEIIIYQQQgghRD6T4eciX6SlpRETo70SY3aKFSuW5zkgC6uIiAh8fX25ffs2Dx48YNasWRr7k5OTefbsWY6OZW1trSyQJN5OQkICiYmJOSprZ2dXwLURQgghhBBCCCFEfpGkpsgX4eHhOV5F3NfXl65duxZwjd4PS0tLzp07h1qt5rvvvsPd3V1j/+7du5k4cWKOjnXw4EFKly5dENX811i1ahWLFi3KUdmgoKACro0QQgghhBBCCCHyiyQ1Rb6ws7Nj9erVOSpboUKFAq7N+2NsbMzx48dfub9x48Y5vk7SczDvPvzwQ1l8RwghhBBCCCGE+AeSpKbIF0ZGRnh6er7vahR69vb22Nvbv+9q/GuUKVOGMmXKvO9qCCGEEEIIIYQQIp/JQkFCCCGEEEIIIYQQQogiRZKaQgghhBBCCCGEEEKIIkWSmkIIIYQQQgghhBBCiCJFkppCCCGEEEIIIYQQQogiRZKaQgghhBBCCCGEEEKIIkWSmkIIIYQQQgghhBBCiCJFkppCCCGEEEIIIYQQQogiRZKaQgghhBBCCCGEEEKIIkWSmkIIIYQQQgghhBBCiCJFkppCCCGEEEIIIYQQQogiRf99V0AIIUT+GOLi/b6rIESh9fOdA++7CkIIIYqoerHytVmI13J63xUQ/1bSU1MIIYQQQgghhBBCCFGkSFJTCCGEEEIIIYQQQghRpEhSUwghhBBCCCGEEEIIUaRIUlMIIYQQQgghhBBCCFGkSFJTCCGEEEIIIYQQQghRpEhSUwghhBBCCCGEEEIIUaRIUlMIIYQQQgghhBBCCFGkSFJTCCGEEEIIIYQQQghRpEhSUwghhBBCCCGEEEIIUaRIUlMIIYQQQgghhBBCCFGkSFJTCCGEEEIIIYQQQghRpEhSUwghhBBCCCGEEEIIUaRIUlMIIYQQQgghhBBCCFGk6L/vChQGEyZMICAggIMHD1K6dOk8Hatfv36EhoZy6NChfKlbXo+3e/duNmzYwI0bN0hJScHBwYGmTZsybNgw7O3tNcqmp6cTFhaW62vg7+/PxIkTWbt2LfXr139ludOnT9O/f398fX3p2rWr1uuQkBBatGjBp59+yujRo5W4hw8fUqZMmdw1PIey/vYvMjAwwMbGhnr16jFs2DAqVqyosT+7v8kvv/zCzz//zNOnT+nfvz9Dhw5lwoQJnDx5EgMDA9asWUPVqlULpA3izc6dO8esWbO4efMmpUqVYsyYMbRs2fJ9V0sUQk8eRxO4cTv3gm4D4Fq9Km17dMbMoli+x237ZSPREZEMHj9aa9+tK9c5snM/YfcfoqOrQ5ny5fDu2o4yLuXevnFC5FFyzDPuBp4l7u4jAKwrl8a5bV0MzU3yJS6n5eLuR3B/3wXiQ6PQNzHEpooTZb09MDAzzq+mCpFrheX+uPjTb8SHRGudx8atLFV7N3/r9gmRV5HR0awNCOCvW7cAqFWtGv26dMGy2OufsXIa9+f16/jv2cPdhw/R1dWlYrly9OzQgYrlyr3y2Ms3bCAsMpL/GzMmb40TQrw3ktT8B5s3bx5Lly7lgw8+YNSoURgbG3Pr1i22bNnCrl272LhxI05OTgDEx8czcOBAmjVrppFQzE8uLi7MnDmTWrVqZbvf2tqamTNn4urqqmz76aefCAgIYP/+/QVSpywTJ06kePHiACQlJREcHMzWrVvZu3cvK1as0EjWjhgxgqSkJOV1UFAQvr6+1KxZkzFjxlC5cmWWLl3KoUOHGDhwIOXLl6fcaz5MRcG6c+cOgwYNwt3dna+//ppdu3bx2WefsXHjRqpXr/6+qycKkcT4BFbNXExampombbzIyEjn+J7DRISEMeKbL9DTz/4j823izh87xfnfT1LO1UVr372g26ydvxx7RwdadmtPWlo6Zw4dZ+UPCxky4TNKly+b720X4k1UiSlcXrmHjLR0Sjd1IyMjg5BjV0l49ISan3RAV08vT3E5LRd7N5yrq/ejb2JImQ+qo6OjQ+gffxF79xE1RrTDwMTonV0TIbIUlvsjIyODxMg4bKo6YVNN87PC2MqsYC+CEK/xLCGB7xcsIC0tjU7e3qSnp/PbwYMEh4Xx36++Qv8Vz1g5jfvr1i1mLFlCaQcHenXsSFpaGnuPHeP/5s/n+88/p0I238UOnTzJwT/+oEqFCgXZdCFEAZOk5j9UeHg4K1asoF+/fkyZMkVjX4cOHejTpw9z585l/vz5AMTGxnLlyhWaNWtWYHWytbWlc+fOr9xvamqqtf/kyZOkpaUVWJ2yeHt7a/VQ7devH926dePzzz/nwIEDmJllPgw2atRIo9zNmzcBGD58OF5eXkBmQtnKyoqJEycWeN3F6+3YsYOUlBQWLlyItbU1LVu2pFGjRgQGBkpSU2g4se8IcU9i+fQ/X2Pv6ABAKeeyrJmzhAsnzlC3mWee49LT0zm6cz+Htu95ZT12bwjAsrgVw6eMxdDIEAAPz7r8OMWXA/67GPjVJ/nVZCFyLPT4NVLiEqn9WWdM7a0AKFbajqur9hFx4TYl67rmKS6n5e78dhodXR1qDG+HiY0FADbVnLiwYAcPj1ymfNu6BXcRhHiFwnJ/pDyJJz1VjU1VJ0p4aP9oJsT7suvQIWJiY5k1cSKlHTKflSqULcv0xYs5cvo03i99v8pt3Bp/f2ysrJj+1VcYGWY+OzWtV48vpk/nfzt3MuXTT5Vjpqen4793L1sCAwuyyUKId0Tm1PyHunTpEmlpaVoJOAAPDw+qV6/On3/++e4rVoSULFmS8ePHExMTw9atW19ZTqVSAShJz6xtL74W709Wr9rQ0FAAkpOTATB8/sAjRJYrpy/g7FpBSUwCVKjmio2DPVdOX8xznCpVxU//N5tD2wKp2bAOxYpbah0rKSGRRw/DcKtbU0loAphbFqNcJReCb9/PYyuFeDuPL9/FytlBSagAFK/giImdBY8v38tzXE7KJT+JJzEiFnsPFyWhCWBqZ4V1lTJEXLid94YK8RYKw/0BkBAZC4CJrfbnixDv04kLF6hasaKSmASoXrkyJe3t+ePChTzFxScm8iA0lAYeHkpCE8DKwoIqFSoQdO/veyRVpWL8Dz+wefdumtSti7WVVT62UgjxPkhSMxcCAwPp27cvtWvXxs3NDS8vL2bOnElqaqpW2UOHDtG+fXvc3d3p2LEjO3bs0Cpz+/ZtRo0aRZ06dahRowY9e/bk2LFj+VLXrIRaQEBAtvVbu3YtR44cATLnumzRogUAixYtwtXVlZCQEAAePHjA+PHjadq0KW5ubtSrV48RI0Zw6/mcJi+KjIxk1KhR1KxZE09PT6ZOnUp8fLyy//Tp07i6uuLv759tnUNCQnB1dWXhwoUAeHl5cebMGUJDQ5XtX3zxBW5ubjx9+lQj9tmzZ7i7u/PDDz/k8kq9Xps2bTA0NNT4u/Tr10/pkdmvXz+lN2b//v1xdXXF1dVVo94TJkxQYv39/fnwww9xd3enQYMGTJgwgcjISK1r8Msvv9CrVy/c3NwYOHBgruO3bdvGvHnzaNq0Ke7u7nTv3p1Tp05ptW/79u1069aNmjVr0rRpU7799ltiYmI0yrzpnLkRFhbG6NGjady4Me7u7rRr144VK1aQnp6uUe7ixYt8/PHHeHh44OHhwaBBg7h8+bKy//fff8fV1ZUxL81/88033+Dq6srvv/+ubGvbtq2y7+HDh3z11VcYGRnRpUsXrfp5eXkxZcoUJk2aRPXq1WnatCkxMTFkZGSwYcMGPvroIzw8PHB3d6dNmzYsX76cjIwMjWNcunSJoUOHUqdOHerXr8+wYcMICgrKVfvEu5eUkMiTx9E4ltOeU9jRqTThwSF5jlOr1aQkJdNj5AC6DemDnq72cEQjE2PG/HcSnq0/0NqXGJ+Arp58bIt3T5WUQnJMPOalbLT2mZe0IT5Me/6+3MTltFzq0wQAzEoU1ypnYl0MdUIKKXEJOW+YEPmgsNwfAIkRTwAwtc9MaqalqnLfICHyWXxiIpFRUZTPZo0E5zJluPfwYZ7iTI2NmTdlCu2ffz970bP4ePR0/352UqlUJCYn8/nHHzOqXz90deW5SoiiToaf59DmzZuZMmUKXl5efPXVV6hUKvbv38/KlSsB+Prrr5Wyjx8/5rPPPsPHx4eePXuyfft2xo0bh1qtpmvXrkDmPIy9e/fG1taW4cOHY2BgwM6dOxk2bBhz5syhXbt2eapv/fr1KV26NHv37uX8+fO0atWKRo0aUbduXSwtLTV6qbm4uDBx4kR8fX1p2bIlLVu2xNramqioKHx8fDA3N6dv374UL16c69evs2nTJq5du8ahQ4cwMDBQjvPtt99SpUoVvvzyS27evMmvv/7KrVu3WLNmDTo6Orluw6RJk5gzZw5Pnjxh4sSJuLq6EhYWxq5duzhw4IByLQH27dtHamoqHTt2zNN1e5mRkRFOTk7cuHEj2/0jRozA2dmZjRs3MmLECMqVK4euri5Lly5V6p01b+miRYtYuHAhrVu3xsfHh4iICPz8/Dhz5gxbtmzB2tpaOe6PP/6Il5cXHTt2xMjI6K3iTUxMGDRoECqVilWrVjF8+HCOHDmizB26YsUKZs+eTe3atfniiy+Ijo5mzZo1XL9+nQ0bNqCvr5+rc76JSqViyJAhJCcnM3DgQCwsLDh69CizZ88mLS2NESNGAHDixAmGDx9O5cqVGTNmDKmpqfj7+9OnTx9Wr15NnTp1aNq0KV26dCEgIIBjx47RpEkTjh8/zqZNm+jZsydNmzZVzuvh4UHfvn3x8/OjVatWWFpasmTJklfOc7pr1y7Kly/PpEmTiIqKwtraWpmftkuXLvj4+JCQkMC2bduYM2cOZmZm9OnTB8hckGjgwIHY29szZMgQjI2NWbt2Lf3792fr1q2ULl06R+0T797TJ3EAWBS30tpXzMqC5MQkkhKTMDE1ees4YxNjPp8xGb1XzK0GoKuri20JO63tjx6GEXz7HhXdKueiVULkj9S4RAAMLUy19hlamJCWpEKdlIq+ieFbxeW0nK5B5mNrWop2okaVmJJ5zmdJGFnKSAnx7hSW+0PfxJDEyFj0jPS5u/ssjy/fIz1VjbG1OWVb1sK+Rvk8t1WItxETGwuAtaV2D+LiFhYkJiWRkJiImanpW8eVfGkBXIAHoaHcvHePGlWqKNtMTUxY8O23r30WE0IULZLUzKFVq1bh4eHBTz/9pCToevfuTYsWLTh27JhGUjM1NZVvv/1WSXT06NGDzp07M2fOHDp16oS+vj7Tpk3D2tqagIAATJ//A963b18GDBjA9OnT8fb2ztPwWENDQ37++We++OIL/vrrL9avX8/69evR09OjTp06DBs2jMaNGwOZc116e3vj6+uLq6urMq+ln58fcXFxrF+/HheXv+flMTMzY/ny5dy8eZNq1aop211dXVm7dq0yYXOJEiVYuHAhhw8fVno25oa3tzdr1qwhJSVFqZOLiwtWVlYEBgZqJDV3795N+fLlC2SFcQsLC4KDg7Pd16hRIyIiIti4cSOenp7KgkJbtmzRqPfDhw9ZvHgxw4YN48svv1Ti27dvT9euXVm6dCmTJk1StpcsWZLZs2cr77XcxmdkZLBlyxblvVWqVCnGjh3L/v378fHxIS4ujoULF9KkSROWLVumfLCXLl2aKVOmcOLECcqXL5+rc77J9evXuXPnDj/++CNt2rQBoHv37gwZMoR7z4eFpKen89133+Hu7o6fn59Sr759+/Lhhx8ybdo0tm3bBmQu7nT8+HGmTp3Kxo0b+eabbyhbtizjx4/XOO/t27e5fv26cvxPPvkk22kZsiQnJ/PTTz9RokQJIDMZ6+fnR/v27ZkxY4ZSrnv37jRs2JBjx44p9/oPP/yAlZUVW7duVZLHzZo1o127dqxfv56vvvoqx+0T71bK82kJDAwNtPbpP9+mSk3VSmrmJk5HR+etHqJTk1PY+rMfAE3atch1vBB5ldXbS89A+7FR9/lnfppKrZW0yWlcTsuZlrBCz9iAqGsPKN3MXfmMTFOpeXIrc4qRdJU69w0UIg8Ky/2hb2JIQkQsaSlq1MmpuHZvgjo5lbA//iJo4+9kpGfIPJvivUhOyfzRKbvvtobPO8ikqFS8/HPU28ZlxS5etw6Azt7eyva3fRYTQhRe0t86h3bs2MHy5cs1ehxGR0djYWFBYmKiRlkLCwt69OihvDY0NKRHjx5ERUVx9epVnjx5wpkzZ2jWrBnJycnExMQQExPD06dPadmyJVFRUVy5ciXPdXZ2dsbf31/pKebi4kJaWhqnT59m8ODBLF++/LXxw4YN48SJExoJzeTkZKWb/svtHjhwoMbKdf369QNQhrnnBwMDA1q3bs3JkyeJi8vsIRUTE8OpU6do3759vp3nRWq1+q16mr5o//79pKen4+Xlpfy9Y2JisLW1pUqVKlrXqE6dOhrnzG18s2bNlIQmQOXKmb27Hj9+DMAff/xBSkoKffr00fhg79SpE/7+/tSrVy/X53wTe3t7dHR0WLZsGceOHSM1NRUdHR1WrlypTBvw119/8fDhQ7y9vYmLi1POmZycTPPmzbl+/ToREREAWFpa8n//9388ePCA7t27ExERwYwZMzTafenSJXr06MGDBw/473//S7FixZg3bx537twBYN26dfz1118a9XRyclISmpD5nvvjjz/4z3/+o1HuyZMnmJubK/dBdHQ0ly9fpmPHjkpCEzLvw61btzJ06NBctU+8W1mzCOT2Xn/buJxKTUnFb8HPPHoYRtN2LXB2lRU6xXugvNELKC6H5XT19CjVqBrxodEEbfydhEcxxIdFc2PDEdJTM5OZOjJFg3jXCsn9AVCybiVcOtWnau/m2FYri0PtitQY0R5ja3PuBZ4l46XpfoR4F7Kmasr9M9bbxaWkpjJz+XIehIbSuWVLqlasmKt4IUTRIj01c8jAwICzZ8+yc+dO7t69S3BwMNHRmXPYlCpVSqNsmTJlNJJ7Wdsgc7GSrKTgunXrWPf8F6SXhYeH50u9dXR0qF+/vtKDMCwsjK1bt7Js2TJ+/PFHOnfurJHAeZlKpWLevHlcu3aN4OBgQkJClNXIX54HsXx5zWEtlpaWWFpaKgu05JdOnTqxceNGDhw4QLdu3dizZw9qtTrfh55niY2NzdUw6+xk9fTs2bNntvtfHMYPaJ0vr/FZv3Bm/c2y/iZly5bVKGdkZKT0vs3tOd/EwcGBcePGMXfuXIYMGYKpqSkNGzakXbt2tG3bFj09PeWcM2fOZObMmdkeJywsTHnPent706pVK/bt20evXr2oVauWUi4tLY0JEyaQkZHB2rVrcXFxwcLCgk8//ZTPP/+c6dOnM23aNAYMGKDRw9fGRnvOKgMDA44cOcLBgwe5d+8eDx48UJLqWQ9cr7qmgHL8kydP5qp94t0xMs6c5kGVzRzE6ue9ZIyNjfMtLieSEpPwm7+c4Nv3qNWkPt5dC+aHGyHeRM8o89/7dFWa1r50dWYyUd9Y+zMhp3HqXBzfyauG0vssa4EU6yqlKd3Ujft7L6BvYpS7xgmRR4Xp/ihZX3uKEj0Dfew9XAg+eInEyFjMHPL2TCtEbhk/n0oru3UeUp8vuGqazbPS28QlJCYyY9kybt69S/MGDejZoUPeKi+EKPQkqZlDU6dOxc/Pj6pVq1KzZk06d+6Mh4cHU6dO1UpAZvdrUlbiQ1dXV0kK9unTB+8XusO/qEKFvPXGWbduHSkpKQwZMkRju6OjI6NHj8bIyIg5c+bw559/0rp162yPce7cOQYPHoypqSmenp5069aNqlWrEhwcrNVrDV7d7vzu4l+7dm0cHR0JDAykW7duBAYG4ubmlm0yKa/i4+N5+PAhH3zwQZ6Ok5VMXLJkSY4SHC9fs9zGv2nS66zjve6Xz9yeMycGDx5Mhw4d2L9/P0ePHuXEiRMcPHiQbdu28fPPPyvnHDNmDDVr1sz2GC8mzxMTE5WelsePHycxMVHpqXnv3j3u3r1Ljx49lN7GLVu2ZODAgfzyyy8MHToUQOv9//K1z8jI4JNPPuHw4cPUrl0bDw8PevToQd26dRkwYIBSLjfXNKftE++OpU1m79pncc+09j2LfYqxqQmGxtrJkreNe5OEp8/4Ze5SHgWHUqeZJ536dy+w3qBCvImRpTmQOV/ly1KfJqFnYoBeNlMw5DQuN8fX0dHBpX09yjRzJynqKUaWZhgXN+f+vgugq4ORlcynKd6twnR/vIqBWebUKWmpMj2DePdsn49gin1poVeAJ0+fYmpioiQw8xIX9+wZ//3pJ+6HhODdqBFDevSQZych/gUkqZkDoaGh+Pn50blzZ63eVVFRUVrlw8PDycjI0PhH9P79+0Dm0FY7u8xFIPT09PD09NSIvX37NiEhIZiYaM7bllsHDhzg8uXL9O7dW2M4bpZKlSoBr+9BtGDBAoyNjdm1a5dGz7+lS5dmWz40NJSKL3TvzxpSn7VQTn7R0dGhXbt2rFmzhrCwMM6fP68xp2l+2rNnDxkZGcrq8G8rqzdvyZIlqfLCZNUAR48exdzcvEDjX1ayZEkgszems7Ozsj01NZVx48bRsWPHfD9nbGwsN27coFatWvTt25e+ffuSmJjIhAkT2Lt3L0FBQco5sxLpL7p8+TJxcXEa79m5c+cSGhrK119/zaxZs5g7dy5TpkwBNH9IeNFXX33Fn3/+yZ9//ombmxu1a9d+bb3PnTvH4cOH+eSTTzRWW1er1cTGxiq9sF+8pi+bNWsWlpaW1K1bN1ftE++OiakJVrbWhD/QXuU8LDiEUuW0V97MS9zrpCQnKwnNhi2b0a5Xl1wfQ4j8pG9iiJG1ebarOMeHR1OslG2e4nJz/MhLdzEsZoJV+ZIYmv/9rBR3/xHmpWyynXdQiIJUWO6PlLgErqzeh311Z5y8amqUS4rKHF1iXDx3z25C5AczU1PsbGy4F6L9rHTv4UNcXvFdMTdxScnJSkKzXfPmDHhh7QUhxD+bTDyUA1nDTF/uPXn06FHu37+PWq35q2d0dDQHDx5UXicmJrJhwwZKlSpFlSpVsLe3x83NjYCAAI3581QqFZMmTeKzzz7TOmZudezYkcTERGbMmKE1TDw9PZ3NmzdjYWGhJFmyeqe9WDZr2PWLCc1nz54REBAAoPQ4zbJ582aN11krw+clIairq6tVf8hsn0qlYtasWWRkZNC2bdu3PserREZGsmDBAkqUKJHnoe3NmzcHYNmyZUqyDTIXzxk5ciRr1qwp0PiXeXp6YmBgwKZNmzSOt2fPHvbs2VMg5zxx4gQDBgzg0KFDyjZTU1Mlwa6np4ebmxt2dnasW7eOhIQEpVx8fDyff/45EydOVN6r58+f59dff8XHx4fBgwfTrVs3fv31V86dOwdkzmVpb29PYGAgsc9XT4TM93B8fDwAQUFBSvlXyYp9+f7ftGkTSUlJyr1aokQJKleuzK5du5TjQ+YiT2vXriUqKipX7RPvXrXaNbjzVxCPw//+d/n2tSCiH0XiXr9Wvse9ym/rtjxPaDaVhKYoNGyrlSX2ThiJj2OVbU9uh5H0+Cl21Z3zHJfTcqEnrnHnt9Okp/39bBB94yFP70fimM3QWyHehcJwfxhZmpGWnEr42Zuok/8erpscG0/E+VtYujhgWEy7o4MQ70L9GjW4EhRE6AvffS/fuEF4ZCSer+lgkNO4lZs2cT8khLYffCAJTSH+ZeTn7BfMmzcPMzPtYUstW7bE0dGRpUuXkpKSgoODA5cvXyYgIAAjIyON5ARkziX59ddfM2DAAGUl5PDwcBYvXqz0GpsyZQoDBgygW7du9OrVCysrK3bt2sWlS5f48ssvNRYaeRtdu3bl2LFjbNy4kYsXL9KmTRscHByIjo4mMDCQoKAg5syZo/TitLKyQldXl4MHD+Lo6EirVq1o2rQpK1asYMyYMTRu3JjHjx+zZcsWpXfqy+0+d+4cn3zyCc2aNePChQts27aNtm3b0rBhw7duh7W1NWfPnmXVqlXUrl2bGjVqAJkL31SsWJHdu3dTv379PM9BeODAAeWap6SkcPfuXbZt20ZKSgorVqzIc++5SpUq0a9fP9atW0dsbCze3t7Exsbi5+eHmZmZRg/Agoh/mY2NDaNGjWL+/PkMGjQIb29vHj16hJ+fH/Xr18fLywtdXd18PWfz5s1xdnZm8uTJXLt2DScnJ+7evcuvv/5Kw4YNlaThlClTGDt2LF27duWjjz7CyMiIzZs3ExYWxuzZs9HX1yclJYXJkydjbW3NV199BWT2wDxw4ACTJ09mx44dGBkZMWXKFMaMGUOvXr3o0aMHCQkJbNiwgWfPnjF58mQWLFjAsGHDWLJkiTLv7Ms8PDwwNzfH19eX0NBQLC0tOX36NLt379a6/ydOnMiQIUPo1q0b3bt3R1dXFz8/PywsLBg6dCgGBgY5ap94P5q09eLPP86yetZiGrVujlql4viewziWK0ONBpkPzjGRUQTfvodTBWes7W1zHJdTkWGPuHTyHMamJjiUKc2ff5zVKlPTs27eGytELpVu4kbkxTtcWbmXUo3dSFerCTl2FfNSNtjXzJziIynmGU8fRGJR1h4T62I5jstNuTJN3bm+/gh/rTuATdWyJMfGE3r8GsUrOWJfU6bvEO9HYbk/XDo14LrfYS4t241DnUqkpaoIO3kdHV1dKnRs8G4vihAv6OTtze9nzjB14UI6eHmRqlLx28GDlHdyokmdOgBEREURdPcuruXLU8LWNsdxIY8ecezsWUxNTChXujS/nzmjdf6m9eq9u8YKId4p+fb8gp07d2a7vXz58ixfvpwZM2awdu1aMjIycHJyYtKkSajVaqZPn87Vq1dxc3MDwMXFhb59+/Ljjz8SHh5OpUqVWLZsGU2aNFGO6eHhwYYNG1i4cCGrV69GrVbj7OzMjBkz6NIl7z1zdHV1mT9/Ptu3b2f79u34+fnx7NkzLC0tqV27Nt9//z3Vq1dXypuYmDB27FhWrlzJtGnTcHJyYvTo0aSlpbF7924OHz6Mvb09np6eDBo0iPbt23Pq1ClatmypHGPevHmsXLmS6dOnY2VlxciRIxk1alSe2jFkyBCCgoKYO3cuXbt2VZKakNlbc+7cuXTIhwmgfX19lf82MDCgRIkSeHl5MXToUI3h2XkxefJkypcvz//+9z9++OEHihUrRp06dRgzZozGCvMFFf+ykSNHYmdnx9q1a5kxYwZ2dnb4+PgwevRoJfmen+c0NTVl1apVLFiwgN9++42oqCjs7Ozo3bs3n376qVKuTZs2WFpasmTJEn766Sd0dXWpWLEiS5YsUXqPLly4kHv37jFr1iwsLCwAKF68OOPGjWPy5MnMnz+f8ePH07p1a5YsWcKSJUuYO3cuxsbGNGjQQKl/9erVmTx5Mg4ODq+st62tLcuXL2f27NksWbIEQ0NDnJ2dmTt3LpcvX1Z6Ydra2tKgQQPWrFnDggULWLx4MUZGRtStW5dx48Yp007kpH3i/TCzKMaQiZ+xe0MAB7cFYmhoSBUPd1p374j+84Wx7t+8S8Cq9XQZ1FtJauYkLqfuB90BIDkxiYBV67MtI0lN8T4YmptQfWhb7u46w4MDF9Ez1MemihPObeqgq5/Zw/zp/QhubjlOpY8aK0mbnMTlppytWzlcezQl5Pcr3N19BgNzE0o3caNMs+rovGE+aSEKSqG5P6qWpWo/L4KPXObe3nPoGuhh5VyScq1rYWpn9U6viRAvsixWjO8//5w1/v5s2r0bIwMD6lavTp/OnZXFR6/fucMSPz9G9u2rJDVzFHf7NgCJSUks8fPL9vyS1BTin0sn48VxpUIUIcuXL2fhwoUcP34cS0vL910dUUS9PP9tUXYg+ML7roIQhdbPdw687yoIIYQoopbbtHnfVRCiULN4ocNUUfb08uX3XYVX+qdc4/wmP2mLIik1NRV/f3+8vb0loSny5J+S0BRCCCGEEEIIIf5NZPh5EZGWlkZMTEyOyhYrVuwfu4JyREQEvr6+3L59mwcPHjBr1iyN/cnJyTx79ixHx7K2tpZFWfIoISGBxMTEHJXNGn4thBBCCCGEEEIIkVeS1CwiwsPDc7yKuK+vL13/oau+WVpacu7cOdRqNd999x3u7u4a+3fv3s3EiRNzdKyDBw9SunTpgqjmv8aqVatYtGhRjsoGBQUVcG2EEEIIIYQQQgjxbyFJzSLCzs6O1atX56hs1irS/0TGxsYcP378lfsbN26c4+skPQfz7sMPP6R27dyt7iyEEEIIIYQQQgiRV5LULCKMjIzw9PR839Uo9Ozt7bG3t3/f1fjXKFOmDGXKlHnf1RBCCCGEEEIIIcS/jCwUJIQQQgghhBBCCCGEKFIkqSmEEEIIIYQQQgghhChSJKkphBBCCCGEEEIIIYQoUiSpKYQQQgghhBBCCCGEKFIkqSmEEEIIIYQQQgghhChSJKkphBBCCCGEEEIIIYQoUiSpKYQQQgghhBBCCCGEKFIkqSmEEEIIIYQQQgghhChSJKkphBBCCCGEEEIIIYQoUvTfdwWEEEIIIYQQQgghhBDZa9GixWv3Hzx48B3VpHCRpKYQQvxD/HznwPuughBCCCHEP84ZK/X7roIQhZr3+66A+NeSpKYQQgghhBBCCCGEEIXUv7Un5pvInJpCCCGEEEIIIYQQQogiRZKaQgghhBBCCCGEEEKIIkWSmkIIIYQQQgghhBBCiCJFkppCCCGEEEIIIYQQQogiRZKaQgghhBBCCCGEEEKIIkWSmkIIIYQQQgghhBBCiCJFkppCCCGEEEIIIYQQQogiRZKaQgghhBBCCCGEEEKIIkWSmkIIIYQQQgghhBBCiCJFkppCCCGEEEIIIYQQQogiRZKaQgghhBBCCCGEEEKIIkWSmkIIIYQQQgghhBBCiCJF/31X4H05deoUAwYMwMrKimPHjmFoaKix38vLi1KlSrFu3boCq0N0dDQmJiaYmprmy/EmTJhAQEAAQUFB+XK8F50+fZr+/fvz6aefMnr06GzLeHl5AXDo0KF8P39+SE9PJywsjNKlS+cqLqvtvr6+dO3aNdfnffjwIWXKlMl1XE7069ePM2fOaGwzMjLCzs6Oxo0bM2LECEqWLKmx/+X3dkZGBrNnz2bLli2kpKQwbtw4PvjgAyZMmMClS5cwMTEhMDAQa2vrAmmDEIVNanwS9/ac48nNUNJVaizLl6R8+3qYWBfLt9iclkt49IR7e84Rdz8CPUN9rCo4Uq5lLYyLm+drm4XIq3dx37wo+MglHp29Sb1x3fOzGULkWWH6DEmKfsq9wHPE3gsnQ51OsTJ2lGtVGwsnu3xtsxA5lfD0GXs3/8bNy3+hUqkoX7kibXt+iLW9bb7Fhtx9wMFtgQTfvkd6WjoOZRz5oFNrXKtXVcp8M+jz156ry6De1Gpc763aKIR4t/61Sc3ffvsNU1NTYmNjOXToEG3atHmn5z969ChfffUVAQEB+ZbU7NGjBw0bNsyXY/3TxMfHM3DgQJo1a/bKpOyruLi4MHPmTGrVqpXr83777bfcu3evQJPjADNnzlT+OzExkVu3brF161YCAwPZsGEDLi4uyv5JkyZhYmKivD5y5Ag///wzH3zwAd7e3tSuXZsffviBc+fO8emnn2JnZycJTfGvka5O49qaAyRFxVGqcTX0jAwJPX6VyysCqTW6MwamRnmOzWm5xMexXFq+m4z0DEp5VkXfxJDwM0H8uXQXNYe3wzgHX5CFeBfexX3zopiboQQfvIShhUk2RxTi/SlMnyGqhGQurwhEnayiVONqGJgYEnryOldW7qHmyPaYOciznXi31CoVa+cvJ+pRJI1afYCRiTEn9h5m5cxFjPq/cZiam+U5NupRJCt/WIRZMXOatW+JvqEBF4+fxu/HFfT65GOq1q4OQLchfbI9T+D/tpGWloazq0u2+4UQhc+/MqmZmprKvn376Ny5Mzt37iQgIOCdJzUvX77M06dP8/WYHh4eeHh45Osx/yliY2O5cuUKzZo1y3Wsra0tnTt3fqvzHj9+nFKlSr1VbG5kV7/u3bvTs2dPxowZw44dO9DVzZxtwtvbW6NcVs/eL774AldXV2VblSpVGDVqVAHXXIjCJeLibeJDo3Eb1IriFRwBsHYtxYUF2wk9fo1yrV7940ZOY3Na7l7gOdJSVNQY1haLsiUAsPdw4fz8bdzdc46qvZsX2HUQIjfexX2TJfxMEHd+O01GWnrBNUiIt1SYPkMenbtJ6tMkqvRpjm21sgDYVCvL+XkBBB+6RBX5DBHv2MU/zhJ2/yEDvhxJhWqZ3zkqVa/Kom9/4MS+I7Ts2j7PsXs3/4auni7DvxlLMUsLAOo282TRtz+wd/MOJalZ07Ou1jn+2HeExPgEPhrWj+J2NvnadiFEwflXzql59OhRnj59Sv369WncuDHHjx/n8ePH77taQuSrKlWqMHz4cG7dusXhw4dfWU6lUgFgZmamse3F10L8Wzy+fA9jm2LKF0UAUzsrrFxK8vjy3XyJzUm59LQ0ntwKw6qCo5LQBDA0N6FELRei/wpGnZSa5/YKkR/exX0DcGXVXm5vO4mViwNmjtLLTBQ+heUzBCD5STwAxSv+Xc7YyhxTeysSIp68fSOFeEtXTl/E2t5WSUoC2JUsQfkqlbhy+kKeYzMyMrh/8w4V3SorCU0AA0MDXGtUIyYyioSnz7I9fnzcMw4E7KZ8lUrUaFA7L80UQrxj/8qk5m+//YaOjg5169alZcuWqNVqtm/f/sa4ixcv8vHHHys9IgcNGsTly5c1ymRkZLBhwwY++ugjPDw8cHd3p02bNixfvpyMjAwgc+7LRYsWAdCiRQv69eunxAcFBfHJJ59Qp04dqlevjo+PDwcOHNA4R79+/Rg8eDDz5s3Dw8ODhg0bEhQUxIQJE5SedlkiIiKYNGkSjRs3xsPDg27dumkdr6AsXLgQd3d37t+/z/Dhw/Hw8KBu3bqMHz+eJ080H6bi4+P573//ywcffECNGjXo2LEjmzdv1igTFxfH1KlTadKkCW5ubrRt25Y1a9Yo1/XFc+7fv59GjRrh4eHB5s2badGiBQCLFi3C1dWVkJAQAB48eMD48eNp2rQpbm5u1KtXjxEjRnDr1i3lmKdPn8bV1RV/f3+N1ydOnOD777+nYcOG1KhRgwEDBnDjxg0lztXVldDQUM6cOaPE9+jRg8aNG5OertnD5M6dO7i6uvLrr7/mw5X/W8eOHQE4duyYss3Ly0t5z3l5eWm8F728vLTqvXDhQiBzTtJVq1bRpk0b3NzcaNKkCdOmTSM+Pl7rWgUEBNCxY0fc3d2ZOHFiruPfdG0h815bu3YtHTp0oHr16nh5eTF79mySkpKUMjk5Z24EBQUxePBgGjRoQPXq1enSpQtbtmzRKnf48GF69uxJjRo1qFu3LqNHj+bevXvK/g0bNuDq6qoxbQDA4MGDcXNz02qreHfiw6Ixd9T+dd7M0YbkmHhUSSl5js1JOVV8Mhlp6Zg5FNcqZ2xtAekZJDyKyU3ThCgw7+K+AUiOjcelUwOqDWiJvpFB/lReiHxUWD5DAExsMpM6SY//HhmWnpZGSlwChsXyZ+orIXIjPDiEkmW11zZwLFuaJ4+jSUpIzFOsjo4On3z7Ja19tEewJcYnAKCrp5ft8Y/u2o8qVUWbHm83Ok8I8f7864afx8fHc+TIEWrWrImtrS3NmjXD0NCQbdu2MWTIkFfGnThxguHDh1O5cmXGjBlDamoq/v7+9OnTh9WrV1OnTh0A5s+fz9KlS+nSpQs+Pj4kJCSwbds25syZg5mZGX369KFHjx7Ex8ezf/9+Jk6cSMWKFYHMIen9+/fH3Nycjz/+GDMzM7Zv386oUaP49ttv6dPn77k/Lly4wMOHDxk3bhwhISFUqFBBq86xsbH4+PgQGxtLnz59KFOmDDt37uTTTz9l0aJFWsOQC0J6ejr9+/enTp06jB8/nitXrrBlyxaSk5P58ccfgczpAPr06cOtW7fw8fGhcuXKHD16lClTppCUlET//v1JTEykb9++hIeH07t3bxwcHDh16hT//e9/uX//Pt99951yTrVazbfffsvHH39MamoqlSpVYuLEifj6+tKyZUtatmyJtbU1UVFR+Pj4YG5uTt++fSlevDjXr19n06ZNXLt2jUOHDmFg8OovTVOmTMHe3p5PPvmEuLg4fv75Z4YOHcrhw4fR19dn5syZ+Pr6Urx4cUaMGEGtWrVISEhg2rRpnD17lvr16yvH2rVrF/r6+rRt2zZfr3+ZMmUwMTF5ZZJs0qRJbNu2TXkv2tvbo1KpNOqdlSifPHky27dv58MPP2TgwIHcuXOHDRs2cOHCBTZs2ICR0d/zRP3nP/+ha9eudO/eHUdHx1zHv+naAnz//fds2LCB5s2b06tXL+7du8eqVau4f/++kqjNzTnfJCYmhsGDB1O8eHFGjhyJkZERu3btYvLkyRgZGSkJZH9/fyZNmkTDhg0ZN24ccXFxbNiwAR8fHzZt2oSzszM9e/YkMDCQNWvW8OGHH1KpUiU2bdrE8ePH+fLLL6lcuXIu/soiv6SlqkhLUmFoof1lz9A8c+6+lNgEDEy03zc5jdXV081ROWOrzIWA0lJUWuXUz7+wpsYnae0T4l17F/dNVmztMR++8gupEO9bYfoMMTAxwqFOJSL/vMPNgBNU6NQQfRNDHh65hCohmdJN3PLUViFyKzU5heTEJCysLLX2mT/vVRkb/QQTM+33dm5isxs2Hh/3jL8uXMa2pH22x094+oyzR/6gai13SjoV/LRhQoj89a9Lau7du5eUlBRatWoFgLm5OZ6enhw5coTLly9TvXp1rZj09HS+++473N3d8fPzQ+/5A3Xfvn358MMPmTZtGtu2bUOlUuHn50f79u2ZMWOGEt+9e3caNmzIsWPH6NOnDx4eHri6uslmuskAALpkSURBVLJ//368vb2V1binTZuGjo4OW7ZswcHBAYBevXrRq1cvZs6cSdu2bZUFWxITE5k1axY1atR4ZVtXrFjBo0ePWL9+PbVrZ3aj79q1Kx06dGDp0qXvJKmpVqtp164dEyZMAKBnz55ERERw4MABkpKSMDExYcuWLdy4cYPZs2criaEePXrQt29fli9fTt++fVm5ciX37t1j69atSpKtd+/ezJ07l2XLltGjRw8lEZSens7HH3/MsGHDlHrY2Njg6+uLq6urMv+kn58fcXFxrF+/XmMhHTMzM5YvX87NmzepVq3aK9tmY2PD+vXrlfeDoaEhc+bM4fTp0zRq1IjOnTvz448/aszJ2a5dO3x9fQkMDNRIau7evZuGDRsWyII8FhYWxMbGZrvP29ub69eva70XX6736dOn8ff35/vvv6dnz55KfLNmzRg8eDD/+9//GDBggLK9du3afPPNN8rr3Ma/6drevn2b//3vf/j4+DB16lQlzszMjKVLl3L79m2io6Nzdc43OXXqFI8fP2bJkiW4u7sDmfdTz549uXnzJpD5o8n06dNp164dc+fOVWJ9fHxo3749s2fPZvHixejo6DB9+nQ6duzI999/z5w5c/jhhx+oVavWa39cEQVLnZyZQNQz0P5ozNqWnqqdZMxNbE7L6ZsYYmJnQUxQCGmpavQM/y4ffT04s5xa5hQU79+7uG+ySEJTFGaF6TMEQN/EkLLeHtzY+DuXlu5Syrl0rI+1q3aPNyEKUnJyMgAGRoZa+wwMMzuRpKZkP61OXmLT0tLY8rMfqpRUmrbL/rvv+WOnSVOr8Wwl88wKURT964af79y5E4CWLVsq27L+O2t48cv++usvHj58iLe3N3FxccTExBATE0NycjLNmzfn+vXrREREYGBgwB9//MF//vMfjfgnT55gbm5OYuKru9RHRUVx6dIlOnfurCQ0AYyMjBg8eDDJycn88ccfynZjY2MlsfIqR44coVq1akpCM+t4y5cvZ8GCBa+NzU8v9z6sUqUKarVaSbQdOXIEa2trOnTooJTR0dFh5syZ/Prrr+jo6LBv3z4qVaqEnZ2dcv1jYmKUxOzLc0bWras9+fPLhg0bxokTJzQSmsnJycqCOq/7ewG0atVKSbpltQt47fysNjY2NGzYkP3795OWlgZkvr/u3bun0f78pFar0dHRydMx9u3bh46ODs2aNdO4/lWrVsXOzo4jR45olH/5+uc2/k3X9siRI2RkZGhM3QCZw7d37NiBk5NTrs/5Jln35Zw5czh37hxpaWkYGhri7+/Pl19+CWT26I6Pj8fb21vjnHp6ejRo0IDjx4+jVquBzF60Y8eO5dy5c/Tt25f09HR++OEH5f0n3qPX3S5vupdyGpuDcmWaVSc1LpG//A7yLCSKxMhYbvqfIDk6cz4oHd283ddC5Kt3cd8IURQUks+QR+du8te6QxhbF6PSR42p3LMZ1pVLc2fnacJOyTQ34v3Qec2b9823R+5i09PT2briV+5cC8K9Xi08GtXLNvb8sVM4OJWibEXn11dACFEo/at6akZGRnLq1CnKlSuHjo6OMq9i5cqV0dHRYffu3UyaNAlDQ81fgYKDM3vFzJw5U2sOvCxhYWGUKFECAwMDjhw5wsGDB7l37x4PHjwgLi4OQGPux5eFhoYC4Oys/Y9pVtItLCxM2WZlZfXG5EdoaCheXl5a27M7x5tkDdPNSshkR61WZ7u4zMu9D7Oub1ZSLzQ0FCcnJ63E24urhgcHB5OcnEzDhg2zPXd4eLjGaxubnK1Yp1KpmDdvHteuXSM4OJiQkBClXi/Pe/myV7XrTXEdO3bk+PHjnD17lgYNGrBr1y6MjIwKpOdsWloaT58+fau/+YuCg4PJyMjggw8+yHb/y3/3l69NXuNfvrZZ90u5cuU0yllYWGBhYfFW53yTWrVq0b9/f9atW8fJkyexsrKicePGdOzYUTlH1r8VY8eOfeVxYmJisLe3BzLnx92xYwdXr17lq6++wsnJKVd1Em8vTaUmLVnzV/2s3pDp6rRsywPovWIev5zG5uYcJWpVIPVZIg8O/smfP2X+IGdR1h7nNnW4FfAH+tkMYRSiIL2v+0aIwqYofIbc338RQ0tTao5oh97z3mx21Z25umY/9wLPYutWVhmyLkR+UqWqSE7SnCLH8HkvS7VKu7ey6nnvYmMT42yP9zaxapWKzcvX8df5y1R0r0K3Ib2zPXZk2CNiIqPw7vbqldeFEIXbvyqpuXv3btLT07l//76ycMyL4uLiOHDgAO3atdPYnpVIGTNmDDVr1sz22OXLlycjI4NPPvmEw4cPU7t2bTw8POjRowd169Z94zDX1yU8s87/4vyOejkYgpWWlpbnHnpZshJFCQkJryzz7NkzSpYsqbX9TXXIST3T0tKoXbs2n376abb7s5JEWXLS2+3cuXMMHjwYU1NTPD096datG1WrViU4OFirt2123rZHXcuWLfnuu+8IDAykQYMGBAYG8sEHH2Bubv5Wx3ud27dvo1Kp8jxHY3p6OmZmZspclS97eW7Kl9+fuY1/07XNSjy/Tm7PmROTJ0+mX79+7N27l99//529e/eyc+dOevTowX/+8x/lXp069f/Zu++wKq6tgcM/ekekKSAoNlCxYA0WVERjiT22YI01lss1+ZKo8WqK0cRoEls0FowlYsUuVsTYjS2IsWBBmiIovR7K9wdy4vGAgoKCWe/z8ERm9p7ZM5lh5qyz9t7fKLvyP6tChX/GA4qJieHevXsAHDlyhJEjR0qm5msSeyWUm1tPqCxz6NAQLQMdMhPVs7Qzk/JezgsaxwxAW1+3SHWLWi6ffdsG2DR3JiU6Dh0jfQytKnD/zxsAGJibFOVQhSgxb+q+EaKsKevPkMzkNBRJadi2rKMMaOar1LgmcTciSQqPwaKOfJkqSt6Vc5fY7rNBZVn7Hu+ib2hAUnyCWvn8ZSYFjJkJoG9gUKy6mekZbFi8itt/36R2w7oMGj8CLe2Cwx43g/4GoF6Twod0E0KUbf+qoGb+rOffffedWgDp+vXrLFq0iO3bt6sFNfMzBvODX08LCgoiISEBfX19zp8/z9GjRxk/fjze3t7KMvldre3t7QttW/4+7ty5o7Yuf9bkp7ulF4Wtra0yc+xp27dv58KFC8yYMUMtK7UwVapUQV9fn1u3bhW4Pjw8nNTUVOWkR8Vt540bN9SWHzt2jH379vHpp59iZ2dHSkqK2vlPSEjg9OnTVK1atdj7XbhwIfr6+uzdu1clM3DZsmXF3lZxGBkZ0b59e44ePcqgQYOIjIxUzhBe0vbv3w9QYBC/OOzs7Dhx4gQuLi7KAPfT+3hRhuGr1n9W/uRD4eHhKsMHREdHM2fOHAYPHlzi+4yNjSUkJAQ3NzdGjx7N6NGjiYuLY8KECWzevFl5nUJepumz1+rZs2fJyclRuee+/PJLFAoFkydP5qeffmLNmjWMGDGiWO0SL8espi0uH3ZSWaZvbkJCaDTJUeqziqfcf4S+hUmBEzzkM7a1KFLdopZ7dD0cAAtneypUq6QslxgajY6xPvoWEtQUr9ebvG+EKEvK+jMkKy0vizQ3W733UG5Orsp/hShpNV2cGPbJRyrLzK0sCL15h6iwCLXy98MiMbe2LHASn3w2DlWKVDc7OxvfX1Zz+++b1GvWiH6jBxca0AS4F3IXk4oVsKxsXWgZIUTZ9q9JCbp79y7BwcE0b96cXr164enpqfIzduxYrKysOHnyJNHR0Sp1XVxcsLKyYt26dSqZisnJyfz3v/9l6tSpaGlpKceIfHYm8s2bN5OWlqbSdTs/Gys/Q9PKygoXFxd27drFgwcPlOUyMzNZvXo1urq6tGrVqljH7O7uzpUrVwgODlYuUygUrFq1iuDg4CIHNCGv+2+bNm04e/Ysly9fVlu/Zs0aQHWs0uK0MzY2lkOHDqltMzAwkIoVK+Lh4cH169c5duyYSpmlS5fi7e1NSEjIc/eRnzn4dNfw+Ph4zM3NVQKaSUlJbN++HShaNuCLaGpqFtgdvXv37kRHR/Prr79iYmJC27ZtX3lfz7p16xa//fYb9erVK7TbflHlD2OwdOlSleUBAQF4e3uze/fuUq3/rPzz5evrq7Lcz88Pf39/jI2NS3yffn5+DB8+nCtXriiXVaxYkapVq6KhoYGmpiYtW7ZET0+PlStXoniqi0x0dDTjx49n3rx5yqzkPXv2EBAQwIQJExg3bhxubm78/PPPysxNUbr0TA2pWNNW5cfA3ATLelVJi0kg7tY/w32kxsQTf/s+Vg2eP4xDUesWtdzDS7e5ue0EWU/NgJ4c+YiYK6HYvuNcYpn4QhTVm7xvhChLyvozRNtAFxN7S2Kv3kORkq4sl5uby4PzN9HQ0sS0qgRxROkwNatAzXpOKj/m1pbUa9KA2PsPuXX1n2SWmPvR3Ll2k/rNGz93m0WtG7jrALeCr1O3SQP6jx363IAmwIOwSJnxXIhy7l+TqZk/QdD7779f4HodHR369u3LsmXL2Llzp9q66dOnM3nyZPr06cP777+Pnp4eW7ZsISoqinnz5qGtrY2rqyvGxsbMmTOHyMhIKlSowNmzZ9m3bx96enoqAdH8QNrKlStxd3enQ4cOTJ8+nWHDhvH+++8zaNAgjIyM2LVrF1evXmX69Olq2WYvMm7cOA4cOMCwYcMYPHgw1tbW7N27l9u3b+Pj41OsbQF89tlnXL58mREjRtC3b1+cnJxIS0vjjz/+4Pjx4/Tp0+elgnMDBw5k27ZtTJ48GS8vLxwdHQkMDOTkyZPMnj0bLS0txo4dy8GDB5kwYQIDBw6kVq1aXLhwgZ07d+Lu7o67u/tz95E/BumRI0ewtbWlU6dOuLu7s2LFCry9vWndujUxMTFs3bqV2NhY4Pld7YvK3Nyc69evs2HDBpo3b64MeLdp0wYzMzP27dtHnz59ihVgLsjT12xqaio3btxg586dGBgY8MMPP7xy8KNt27Z06NABHx8fIiMjcXNzIzIykt9//x1bW1tGjhxZqvWfVadOHfr168e6det4+PAhbm5uyhnRe/XqhbOzM05OTiW6z169erF69WrGjRvHoEGDqFSpEsHBwezYsYPevXtjZGSEkZERH3/8MXPmzGHAgAH06NGDrKwsNmzYQEZGBp9//jmQN67mrFmzqFWrljIzc+bMmXTv3p0vvviCdevWScDqDanctDZRp69zzfcoVdq4oKWjTcTxYHRNDbFrVU9ZLjM5jbiQKIxtKmJU2bxYdYtazq5VPR79fY8rPgeo5FqTrLQMIk9cxdDaDNunygnxpr2O+0aI8qAsPUOqd2vBlVX7ufTLbmyaO6Gpo03slVAS7z2kWqfGMp6meO2auL/DmYDjbFr6G607t0dHV5cT+wMwNTOjZad/PkMmJyRx6+p1KtvbUdnetsh1U5NTOLH/KFraWlSvU5ugMxfU2lC3cQN09fOynrOzs4l/HEftBnVew9ELIUrLvyqoaWJiQqdOnQot079/f5YvX67M1Hta586dqVChAkuXLuWXX35BU1OTWrVqsXTpUtq3bw+ApaUly5cvZ968eSxduhRdXV0cHR358ccfCQoKYu3atcTGxmJpaUm3bt04ePAgfn5+nDt3jg4dOuDq6oqvry8LFy7Ex8eHnJwcnJ2dWbJkyUtNImNhYcGmTZuYP38+GzduJDMzE2dnZ3x8fF4qc8/BwYFt27axYsUK/vjjD7Zs2YK+vj6Ojo7MmTOH3r17F3ubkDeT+7p16/j555/Zu3cvSUlJ1KhRg59//lk5c7qZmRmbNm1i4cKF7N+/n02bNmFra8v48eMZM2bMC8chNDAwYPLkyaxatYpZs2bh4ODApEmTyM7OZt++fRw9ehRra2tatmzJhx9+SLdu3Thz5sxLZZ4+bdKkScycOZPZs2czYcIEZVBTV1eXd999l02bNpXIrOefffaZ8t96enrY2NjQt29fRo8eTaVKlZ5Ts2g0NDRYsGABK1euZMeOHQQEBGBubk6nTp3w9vbG0tKyVOsX5Ouvv6ZatWps2bKFgIAAbG1tmTBhAqNGjSqVfVpbW7N27VoWLlzIxo0biY+Px87OjokTJzJ69GhlueHDh1OpUiVWr17NTz/9hL6+PvXq1eOHH36gSZMmQN6Ym/Hx8SxevFg5Vq6joyOjR4/ml19+YcOGDXh5eRX7nIhXp6mtRf2R73J3359E/BGMhoYGFapXpnqXZugY/tNtMPVhPDe3HMehQ0PlB9Ki1i1qOVMHK+oN68i9Qxe5u/882ga6WDWqTtUOrmjL5CmiDHkd940Q5UFZe4Y0HNuV0EMXCQ8MIic7B0NrM5z6t8G60T9D9wjxumjr6DDi0wns37iT4/4BaGhq4uhUky4DemJo/M8EnjH3H7Bt5e+07/GuMqhZlLoRd8OUkwntWb+1wDZUnVtDGdRMT0mF3Fz0CpmgSAhRPmjkPm+GGiFEqZk5cyZHjhzh2LFjRZr4SYgXGXh07ptughBCCCHEW2dUjeInmAjxb+Lp8PwhBMqLxKCgN92EQpk2aPCmm1Am/WvG1BSiLImPj2f//v306tVLAppCCCGEEEIIIYQQxfSv6X4u1MXExBSpnKGhIUZGRi8uKF7o6tWrrFy5kqCgIDIyMtS6GKekpJCamlqkbVlZWZVGE/9VkpKSSE9Pf2E5LS0tlQmlhBBCCCGEEEII8WZJUPNfrHXr1kUqN3HiRCZNmlTKrfl3MDEx4fTp0+jp6TFv3jxsbGxU1vv4+LB48eIibevGjRsvLiSe69tvvy1wDN1n2dnZERAQ8BpaJIQQQgghhBBCiKKQoOa/2OrVq4tUzt7evpRb8u/h4ODAmTNnCl3fq1cv5WQyovSNGjWKHj16vLCcnp5MViGEEEIIIYQQQpQlEtT8F2vZsuWbboJ4hr29vQSRX6OaNWsqZ6QXQgghhBBCCCFE+SETBQkhhBBCCCGEEEIIIcoVCWoKIYQQQgghhBBCCCHKFQlqCiGEEEIIIYQQQgghyhUJagohhBBCCCGEEEIIIcoVCWoKIYQQQgghhBBCCCHKFQlqCiGEEEIIIYQQQgghyhUJagohhBBCCCGEEEIIIcoVCWoKIYQQQgghhBBCCCHKFQlqCiGEEEIIIYQQQgghyhUJagohhBBCCCGEEEIIIcoV7TfdACGEECVjVA3PN90EIcqslbcPv+kmCCGEKKfkGSLE83k6NH7TTRD/UpKpKYQQQgghhBBCCCGEKFckqCmEEEIIIYQQQgghhChXJKgphBBCCCGEEEIIIYQoVySoKYQQQgghhBBCCCGEKFckqCmEEEIIIYQQQgghhChXJKgphBBCCCGEEEIIIYQoVySoKYQQQgghhBBCCCGEKFckqCmEEEIIIYQQQgghhChXJKgphBBCCCGEEEIIIYQoVySoKYQQQgghhBBCCCGEKFckqCmEEEIIIYQQQgghhChXJKgphBBCCCGEEEIIIYQoVySoKYQQQgghhBBCCCGEKFe033QDStOZM2cYNmwYZmZmHD9+HF1dXZX1Hh4e2NnZsW7dulJrw6NHjzAwMMDQ0LBEtjdlyhS2b9/OjRs3SmR7Tzt79ixDhw5l4sSJTJo0qcAyHh4eAAQEBJT4/ktCTk4OUVFRVKlSpVj18o99zpw59OnTp9j7DQ8Px97evtj1imLIkCGcO3dOZZmenh5WVla0bt2acePGYWNjo7L+2Ws7NzeXefPmsXXrVjIyMvj0009p164dU6ZM4a+//sLAwAB/f3/Mzc1L5RiEKC/iYh7hv2knd2/cAsCpQV26DOiJkalJidfb8dsmHkU/ZOTnBf+9TUtJZcG02XTq14PGrZu/5BEJUfIyk9O4u/88cTcjyVFkUaG6DdW7NcfA/Pn3SXHqFrVcyoM47u4/T0JoNFq62pjVtKVax8boVzQu0WMW4kXSHydxx/9PEu48AMDcuQqOXZqha2xQIvWKWi4hNJrQgxdJjoxF20AXizoOVPV0RcdIv6QOVYiXVpaeH9d8A4m9Eqq2H2M7C1wndH+l4xRCvD5vdVBz9+7dGBoaEh8fT0BAAJ07d36t+z927Bj/93//x/bt20ssqDlgwADc3NxKZFtvm+TkZIYPH07btm0LDcoWpkaNGsydO5fGjRsXe78zZszg7t27pRocB5g7d67y36mpqYSEhLBt2zb8/f3x9fWlRo0ayvXTpk3DwOCfl9zAwEBWrlxJu3bt8PT0pEmTJnz//fecP3+eiRMnYmVlJQFN8a+XmpyCz9wlZGdn0aazB7m5OZzYf5ToiCjG/e9jtLQLfmS+TL0Lx89w4Y/TVHOqUcAWITsri01LfyMlKblEj1GIV5WTlc3VNYdJi03ArnU9tPR0iTwRTNAKfxpP6omOod4r1y1qudSYeP5avo/cnFzsWtZF20CX++ducHnZXhqN7Yp+ET4kC1ESFKkZBK3aT252DlXcXcjNzSXieDApD+JoNP49NLW0XqleUcvF37lP8OpDaBvoYt+uARoaGkSe+pv4Ow9oOK4rOgaF359ClLay9PwASImOw7SqNZWbO6nsS8dI7hMhypO3NqiZmZnJwYMH6dmzJ3v27GH79u2vPagZFBREYmJiiW7T1dUVV1fXEt3m2yI+Pp4rV67Qtm3bYte1tLSkZ8+eL7XfEydOYGdn91J1i6Og9vXr14+BAwfi7e3Nrl270NTMG1HC09NTpVx+Zu/HH3+Mk5OTclmdOnWYMGFCKbdciPLh5MFAEuLimfj1Z1jbVgbAzrEqa+Yv5eLJczRr2/KV6+Xk5HBszyECdu4vtB2JcfFsWrqGsFt3S/DohCgZ0ZdukRz5CJcPO1Gxpi0A5k52XFy4k8gTV6nWqfAvB4tat6jl7vqfJztDQcMxXTCtWgkAa9caXPh5B3f2n6fuB+1L7TwI8bTIE1fJSEilyX96YmhtBoBJFSuCfQ4SffEWNs2cXqleUcvd3n0WDU0NGo7tioGFKQAW9Ry4uHAX4YFBVO/SrPROghAvUJaeHznZ2aQ/SsKqXTUquRb8BbMQonx4a8fUPHbsGImJibRo0YLWrVtz4sQJYmJi3nSzhChRderUYezYsYSEhHD06NFCyykUCgCMjIxUlj39uxD/dlfOXsTRqaYyMAlQs54TFpWtuXL20ivXU2Qq+OXLeQTs8KeRW1NMKlZQ29at4Ov8PG0298MjecfTvYSOTIiSExN0F30LE+WHRQBDKzPMatgQE3SnROoWpVxOdjZxIVGY1bRVBjQBdI0NqNS4Bo/+DiMrLfOVj1eIoogJuoOZY2VlwBGgYk1bDKxMiQkq/AuqotYrSrn0uGRSo+Oxdq2hDGhC3r1jXsee6Iu3Xv1AhXgFZeX5AZAWk0hudg6GVmYlcGRCiDfprQ1q7t69Gw0NDZo1a0bHjh3Jyspi586dL6x36dIlRowYocyI/PDDDwkKClIpk5ubi6+vL++//z6urq7Ur1+fzp07s3z5cnJzc4G8sS8XL14MQIcOHRgyZIiy/o0bNxg/fjxNmzalQYMG9O/fn8OHD6vsY8iQIYwcOZKffvoJV1dX3NzcuHHjBlOmTFFm2uWLjo5m2rRptG7dGldXV/r27au2vdKyaNEi6tevT2hoKGPHjsXV1ZVmzZrx+eefExcXp1I2OTmZ2bNn065dOxo2bEj37t3ZsmWLSpmEhAS++eYb2rRpg4uLC126dGHNmjXK8/r0Pg8dOkSrVq1wdXVly5YtdOjQAYDFixfj5OREREQEAPfu3ePzzz/H3d0dFxcXmjdvzrhx4wgJCVFu8+zZszg5OeHn56fy+8mTJ/nqq69wc3OjYcOGDBs2jOvXryvrOTk5ERkZyblz55T1BwwYQOvWrcnJyVE5ttu3b+Pk5MTvv/9eAmf+H9275435cvz4ceUyDw8P5TXn4eGhci16eHiotXvRokVAXhaZj48PnTt3xsXFhTZt2jBr1iySk//pApt/brZv30737t2pX78+U6dOLXb9F51byLvX1q5dy3vvvUeDBg3w8PBg3rx5pKWlKcsUZZ9FFRERgZOTE7/99huDBg3CxcWF4cOHA3nX7/z58+ncuTP169fH1dWV/v37c+TIEbXt7Ny5k759+9KoUSPc3d2ZMWMGjx8/Vinj5+dHr169qF+/Pu+88w5Tpkzh4cOHxW6zKBlpKanExTzCtpr6eLy2DlW4HxbxyvWysrLISEtnwEfD6DvKCy1N9e6ID+9HU925FhO+/JS6jeu/whEJUTqSox5hbGuhttzI1oL0x8ko0jJeuW5RyimS08nNzsGockW1cvrmppCTS8qDx2rrhChpirQM0h8nY2ynfs0a21iQHPXoleoVtVxmYgoARpXU7wkDcxOyUjLISEgp+oEJUcLKyvMDIPVhPACG1nlfMGdnKop9PEKIsuGt7H6enJxMYGAgjRo1wtLSkrZt26Krq8uOHTsYNWpUofVOnjzJ2LFjcXZ2xtvbm8zMTPz8/PDy8mL16tU0bdoUgJ9//plly5bRu3dv+vfvT0pKCjt27GD+/PkYGRnh5eXFgAEDSE5O5tChQ0ydOpVatWoBeV3Shw4dirGxMSNGjMDIyIidO3cyYcIEZsyYgZeXl7I9Fy9eJDw8nE8//ZSIiAhq1qyp1ub4+Hj69+9PfHw8Xl5e2Nvbs2fPHiZOnMjixYvVuiGXhpycHIYOHUrTpk35/PPPuXLlClu3biU9PZ0FCxYAecMBeHl5ERISQv/+/XF2dubYsWNMnz6dtLQ0hg4dSmpqKoMHD+b+/ft88MEHVK5cmTNnzjB79mxCQ0OZOXOmcp9ZWVnMmDGDESNGkJmZSe3atZk6dSpz5syhY8eOdOzYEXNzc2JjY+nfvz/GxsYMHjyYihUrcu3aNTZv3szVq1cJCAhAR0en0GObPn061tbWjB8/noSEBFauXMno0aM5evQo2trazJ07lzlz5lCxYkXGjRtH48aNSUlJYdasWfz555+0aNFCua29e/eira1Nly5dSvT829vbY2BgoBYQzDdt2jR27NihvBatra1RKBQq7c4PlH/xxRfs3LmTXr16MXz4cG7fvo2vry8XL17E19cXPb1/xpj5+uuv6dOnD/369cPW1rbY9V90bgG++uorfH19ad++PYMGDeLu3bv4+PgQGhqqDNQWZ59FtWDBAjw8POjevTt6enrk5uYyduxY/v77bwYPHoyDgwMPHjxg48aNTJw4kR07dijP4YoVK5g3bx5NmjTh448/5tGjR6xZs4Zr167h6+uLtrY2ixcvZtGiRbz77rv079+f6Oho1q9fz7lz59i6dauMb/oGJMYlAGBa0UxtnYmZKempaaSlpmFgaPDS9fQN9Pnvd1+gVcjYagAt2reiZce2T7Yd/3IHI0Qpyc5UkJ2mQNdUfZzw/MlKMuJTChy3r6h1NbU0i1RO3yxvIqDsDPUPollPPrRmJqeprROipGUmpAIUfM2aGpCdpiArLRNtA92XqlfUcpo6ee9OBd0TitQn90RSGnoVpJeOeP3K0vNDx0CPlOi85Jv7524SE3SXrNQMdEwMsG9bH7uWdV/+QIUQr91bGdQ8cOAAGRkZdOrUCQBjY2NatmxJYGAgQUFBNGjQQK1OTk4OM2fOpH79+qxfv175oXPw4MH06tWLWbNmsWPHDhQKBevXr6dbt2589913yvr9+vXDzc2N48eP4+XlhaurK05OThw6dAhPT0/lbNyzZs1CQ0ODrVu3UrlyXlfFQYMGMWjQIObOnUuXLl2UAY3U1FR++OEHGjZsWOixrlixggcPHrBhwwaaNGkCQJ8+fXjvvfdYtmzZawlqZmVl0bVrV6ZMmQLAwIEDiY6O5vDhw6SlpWFgYMDWrVu5fv068+bNU2YWDhgwgMGDB7N8+XIGDx7MqlWruHv3Ltu2bVMGiD744AN+/PFHfv31VwYMGICzszOQ9/9rxIgRjBkzRtkOCwsL5syZg5OTk3L8yfXr15OQkMCGDRtUJtIxMjJi+fLl3Lx5k3r16hV6bBYWFmzYsEF5Pejq6jJ//nzOnj1Lq1at6NmzJwsWLFAZk7Nr167MmTMHf39/laDmvn37cHNzK5WAlampKfHx8QWu8/T05Nq1a2rX4rPtPnv2LH5+fnz11VcMHDhQWb9t27aMHDmSjRs3MmzYMOXyJk2a8L///U/5e3Hrv+jc3rp1i40bN9K/f3+++eYbZT0jIyOWLVvGrVu3ePToUbH2WVQ2NjbMmzcPDQ0NAP766y/Onz+vtp9GjRoxatQoTp06hZOTEwkJCSxatIg2bdrw66+/Ko+tSpUqTJ8+nZMnT1K9enWWLFnCmDFj+OSTT5Tb6tatG3369GHZsmVMmzat2G0WryYjPR0AHV31Lzm0nyxTZGaqBTWLU09DQ+O5AU2g0MmIhCgLstLzgiVaOurXaf6ynEKyXYpat6jltA10MbAy5fGNCLIzs9DS/af8o2theeWyctS2IURJy8/wKuia1XzyNz1bkaUW1CxqvaKWM6xkhpa+DrFX71GlbX3lO0y2Iou4kEgAchRZxT9AIUpAWXp+wD+Zmqkx8dTs8Q452TlEXwzhzp5zZGcocGhf+OdvIUTZ8lZ2P9+zZw8AHTt2VC7L/3d+9+Jn/f3334SHh+Pp6UlCQgKPHz/m8ePHpKen0759e65du0Z0dDQ6OjqcOnWKr7/+WqV+XFwcxsbGpKamFtqu2NhY/vrrL3r27KkMaALo6ekxcuRI0tPTOXXqlHK5vr4+9es/v/thYGAg9erVUwY087e3fPlyFi5c+Ny6JenZ7MM6deqQlZWlDLQFBgZibm7Oe++9pyyjoaHB3Llz+f3339HQ0ODgwYPUrl0bKysr5fl//PixMjD77JiRzZq9eLDzMWPGcPLkSZWAZnp6unJCnef9/wLo1KmTShCiTp06AM8dn9XCwgI3NzcOHTpEdnY2kHd93b17V+X4S1JWVpby5fVlHTx4EA0NDdq2baty/uvWrYuVlRWBgYEq5Z89/8Wt/6JzGxgYSG5ursrQDQAjR45k165dODg4FHufRdW0aVOV89mwYUP+/PNP+vTpo1yWnZ2tHGIgJSWvO9epU6fIyMjAy8tL5dh69OiBn58fzZs359ChQ+Tk5ODh4aHSZktLS+rUqfPSbRavJn+Ei+LeRy9bT4hy7XmX+4vuhaLWLUI5+7YNyExI5e/1R0iKiCX1YTw3/U6S/igpr5im3JfiNVA+CEqpXhHLaWppYdeqHsmRj7ix6Q9SHjwmOeoR130DycnMC2ZqaL2VH/1EeVJGnh+WLtWo1qkx9T98F6sGjlRyrUH9D9/FtKo1YUf/QpGS/vy2CCHKjLcuJeThw4ecOXOGatWqoaGhoRxX0dnZGQ0NDfbt28e0adPQ1VX9tjQsLO9b/blz5zJ37twCtx0VFUWlSpXQ0dEhMDCQI0eOcPfuXe7du0dCQl4XxKfHfnxWZGTet6SOjo5q6/KDblFRUcplZmZmyuDb87bp4eGhtrygfbxIfjfdrKzCv8XNysoqcHKZZ7MP889vflAvMjISBwcHtQ/+T88aHhYWRnp6Om5ubgXu+/79+yq/W1ioj5dSEIVCwU8//cTVq1cJCwsjIiJC2a5nx718VmHH9aJ63bt358SJE/z555+888477N27Fz09vVLJnM3OziYxMfGl/p8/LSwsjNzcXNq1a1fg+mf/vz97bl61/rPnNv9+qVatmko5U1NTTE1NX2qfRVVQNq22tjYbN27k3Llz3Lt3T3m9wj/3fX6bq1atqlJXT09PmRGc/7fm6YzPpz1vOARRevT08/7+KTLVJxbJevKtvr6+fonVE6Ksy1ZkkZ2uel3nZ0PmZGUXWB5AS6/gv2FFrVucfVRqXJPMpFTuHbnM5V/yvtA2rWqNY+emhGw/hXYB3RiFKGn512OOQv2azXnyTq2tr35fFLVeVjG27+DRkKz0TKJO/a2cQMi8ThWquLsQeuCi3BPitSgPzw/rhtXVymhoaFC5WW0S7z0kMSwGizr2BbZHvN2yjxU++e4bV0CPY/EWBjX37dtHTk4OoaGhyoljnpaQkMDhw4fp2rWryvL8QIq3tzeNGjUqcNvVq1cnNzeX8ePHc/ToUZo0aYKrqysDBgygWbNmL+zm+ryAZ/7+nw5ovKibIuQFtEoqQyg/UJSfdVaQpKQkbGxs1Ja/qA1FaWd2djZNmjRh4sSJBa63trZW+f1FAV+A8+fPM3LkSAwNDWnZsiV9+/albt26hIWFqWXbFqQo+yhIx44dmTlzJv7+/rzzzjv4+/vTrl07jI2NX2p7z3Pr1i0UCoWya/7LysnJwcjISDlW5bOeHZvy2euzuPVfdG7zA8/PU9x9FtWzx/b48WP69evHw4cPadWqFR4eHjg7O2NnZ0e/fv1U2gPPvx/yyyxdulSCXWVIBYu8iRWSEpLU1iXFJ6JvaICuvvr19LL1hCjrYq+EcnPrCZVlDh0aomWgQ2aiei+HzKS88SsLGssMQFtft0h1i1oun33bBtg0dyYlOg4dI30MrSpw/88bQN7kKEKUNr0Kee92+dfn0zIT09Ay0EGrgCFKilqvONvX0NCgRrfm2LetT1psInoVjNCvaEzowYugqYGemYynKUpfeXl+FETHKO/dXCYOEqL8eOuCmvmznn/33XdqAaTr16+zaNEitm/frhbUzM8YzA9+PS0oKIiEhAT09fU5f/48R48eZfz48Xh7eyvL5He1trcv/Bud/H3cuXNHbd3du3nfpj7dLb0obG1tlZlfT9u+fTsXLlxgxowZalmphalSpQr6+vrcunWrwPXh4eGkpqYqJz0qbjtv3LihtvzYsWPs27ePTz/9FDs7O1JSUtTOf0JCAqdPn1bLfiuKhQsXoq+vz969e1Wy75YtW1bsbRWHkZER7du35+jRowwaNIjIyEjlDOElbf/+/QAFBvGLw87OjhMnTuDi4qIMcD+9DwcHh1Kt/6z8yYfCw8NVhg+Ijo5mzpw5DB48uMT3WZgNGzYQERHBb7/9ppJJfPHiRZVy+QH/sLAwlczZzMxMPv30U7p37678O2BjY6Pscp/v2LFjpRL4Fi9mYGiAmaU59++pz3IeFRaBXbWC/7a/bD0hyjqzmra4fNhJZZm+uQkJodEkR6nPKp5y/xH6FiYFTvKQz9jWokh1i1ru0fVwACyc7alQrZKyXGJoNDrG+uhbSFBTlD5tA130zI0LnOU8+f4jTOwsX6lecbb/8K876JoYYFbdRjkxCkBC6AOM7SwKHGtQiJJW1p8fOdnZXF66FxM7S2r1Vv3cmRqT1/tSv6I8P4QoL96qgVXu3r1LcHAwzZs3p1evXnh6eqr8jB07FisrK06ePEl0dLRKXRcXF6ysrFi3bp1KpmJycjL//e9/mTp1KlpaWsoxIp+diXzz5s2kpaWpdN3Oz0TLz9C0srLCxcWFXbt28eDBA2W5zMxMVq9eja6uLq1atSrWMbu7u3PlyhWCg4OVyxQKBatWrSI4OLjIAU3I6/7bpk0bzp49y+XLl9XWr1mzBlAdq7Q47YyNjeXQoUNq2wwMDKRixYp4eHhw/fp1jh07plJm6dKleHt7ExIS8tx95GfXPd01PD4+HnNzc5WAZlJSEtu3bweKlg34IpqamgV2R+/evTvR0dH8+uuvmJiY0LZt21fe17Nu3brFb7/9Rr169Qrttl9U+cMYLF26VGV5QEAA3t7e7N69u1TrPyv/fPn6+qos9/Pzw9/fH2Nj4xLfZ2EKuu9zc3NZv3498M+QDS1btkRHR4fNmzerZGbv379fGXxu3749AL/++qtKmWvXrvHRRx8p7zPx+tVr0pDbf98g5v4/z4dbV2/w6MFD6rdoXOL1hCjL9EwNqVjTVuXHwNwEy3pVSYtJIO7WP8PlpMbEE3/7PlYNnj8MSlHrFrXcw0u3ubntBFlPzfacHPmImCuh2L7jLGPditfGsl5V4m9HkRoTr1wWdyuKtJjE594XRa1X1HKRJ69ye/dZcrL/eS99dD2cxNCH2LZ4tR49QhRVWX9+aGppoaWjzcO/7pAen6wsl5WWN3SDvoUJJvYFfxkhhCh73qqv6/InCHr//fcLXK+jo0Pfvn1ZtmwZO3fuVFs3ffp0Jk+eTJ8+fXj//ffR09Njy5YtREVFMW/ePLS1tXF1dcXY2Jg5c+YQGRlJhQoVOHv2LPv27UNPT08lIJofSFu5ciXu7u506NCB6dOnM2zYMN5//30GDRqEkZERu3bt4urVq0yfPl0t2+xFxo0bx4EDBxg2bBiDBw/G2tqavXv3cvv2bXx8fIq1LYDPPvuMy5cvM2LECPr27YuTkxNpaWn88ccfHD9+nD59+rxUcG7gwIFs27aNyZMn4+XlhaOjI4GBgZw8eZLZs2ejpaXF2LFjOXjwIBMmTGDgwIHUqlWLCxcusHPnTtzd3XF3d3/uPvLHID1y5Ai2trZ06tQJd3d3VqxYgbe3N61btyYmJoatW7cSGxsLPL+rfVGZm5tz/fp1NmzYQPPmzZWBrzZt2mBmZsa+ffvo06dPsQLMBXn6mk1NTeXGjRvs3LkTAwMDfvjhh1f+8Na2bVs6dOiAj48PkZGRuLm5ERkZye+//46trS0jR44s1frPqlOnDv369WPdunU8fPgQNzc35YzovXr1wtnZGScnpxLdZ2Hc3d1Zt24dY8eO5f3330ehUODv709wcDCamprK68jCwoIJEybw888/8+GHH+Lp6cmDBw9Yv349LVq0wMPDA01NTYYMGcK6deuIj4/H09OT+Ph41q9fj5GRkUoGuHi92nTx4PKpP1n9wxJavdueLIWCE/uPYlvNnobv5E3G9vhhLGG37uJQ0xFza8si1xPibVG5aW2iTl/nmu9RqrRxQUtHm4jjweiaGmLXqp6yXGZyGnEhURjbVMSosnmx6ha1nF2rejz6+x5XfA5QybUmWWkZRJ64iqG1GbZPlROitFVp48LDS7e5suoAdq1dyMnKIuJ4MMZ2Flg3yuttkvY4icR7DzGtaq0cGqEo9YpTzt69Ptc2BPL3usNY1K1KenwykSeuUrG2LdaN1McQFOJ1KkvPj+rdmvPXr/v469d92LnVBeD+nzfITE7DZUQn+VJMiHLkrQtqmpiY0KlTp0LL9O/fn+XLlysz9Z7WuXNnKlSowNKlS/nll1/Q1NSkVq1aLF26VJldZWlpyfLly5k3bx5Lly5FV1cXR0dHfvzxR4KCgli7di2xsbFYWlrSrVs3Dh48iJ+fH+fOnaNDhw64urri6+vLwoUL8fHxIScnB2dnZ5YsWfJSk8hYWFiwadMm5s+fz8aNG8nMzMTZ2RkfH5+XytxzcHBg27ZtrFixgj/++IMtW7agr6+Po6Mjc+bMoXfv3sXeJuRNlLFu3Tp+/vln9u7dS1JSEjVq1ODnn39WzpxuZmbGpk2bWLhwIfv372fTpk3Y2toyfvx4xowZ88IxGA0MDJg8eTKrVq1i1qxZODg4MGnSJLKzs9m3bx9Hjx7F2tqali1b8uGHH9KtWzfOnDnzUpmnT5s0aRIzZ85k9uzZTJgwQRnU1NXV5d1332XTpk0lMuv5Z599pvy3np4eNjY29O3bl9GjR1OpUqXn1CwaDQ0NFixYwMqVK9mxYwcBAQGYm5vTqVMnvL29sbR8/jeWr1q/IF9//TXVqlVjy5YtBAQEYGtry4QJExg1alSp7bMg7u7uzJo1Cx8fH7777jsqVKhAvXr12LRpE//73/84e/assuxHH32ElZUVa9eu5bvvvsPKyor+/fszadIk5TX8xRdfUL16dTZu3Mj333+PiYkJTZs2xdvbW6WrvXi9jExNGDX1P+zz3c6RHf7o6upSx7U+7/brjvaT8Y5Db95hu88Gen/4gTKoWZR6QrwtNLW1qD/yXe7u+5OIP4LR0NCgQvXKVO/SDB3Df7oOpj6M5+aW4zh0aKj8UFrUukUtZ+pgRb1hHbl36CJ3959H20AXq0bVqdrBFe1CJpwQojToGhvQYHQX7uw9x73Dl9DS1caijgOOnZuiqZ3XkygxNJqbW09Q+/3WyqBmUeoVp5ylSzWcBrgT8ccV7uw7h46xAVXauGDftgEaLzlOvBAlpSw9P0yqWFJ/5LvcO3KJewGXAA1MHaxw6ueOqYPVazsnQohXp5H7vNlrhBCvZObMmRw5coRjx44VaeInIV7F4bCLLy4kxL/UytuH33QThBBCCCHeShvbf/biQuVA3KIFb7oJhao4SXr0FUS+shOilMTHx7N//3569eolAU0hhBBCCCGEEEKIEvRWdT8X6mJiYopUztDQECMjo1Juzb/D1atXWblyJUFBQWRkZODl5aWyPiUlhdTU1CJty8pKuj+8qqSkJNLT019YTktLS2VCKSGEEEIIIYQQQpRdEtR8y7Vu3bpI5SZOnMikSZNKuTX/DiYmJpw+fRo9PT3mzZuHjY2NynofHx8WL15cpG3duHGjNJr4r/Ltt98WOIbus+zs7AgICHgNLRJCCCGEEEIIIcSrkqDmW2716tVFKmdvb1/KLfn3cHBw4MyZM4Wu79WrF02ayIzIr8uoUaPo0aPHC8vp6em9sIwQQgghhBBCCCHKBglqvuVatmz5ppsgnmFvby9B5NeoZs2ayhnphRBCCCGEEEII8XaQiYKEEEIIIYQQQgghhBDligQ1hRBCCCGEEEIIIYQQ5YoENYUQQgghhBBCCCGEEOWKBDWFEEIIIYQQQgghhBDligQ1hRBCCCGEEEIIIYQQ5YoENYUQQgghhBBCCCGEEOWKBDWFEEIIIYQQQgghhBDligQ1hRBCCCGEEEIIIYQQ5YoENYUQQgghhBBCCCGEEOWKBDWFEEIIIYQQQgghhBDlivabboAQQoiSsfL24TfdBCHKrFE1PN90E4Qo0+QZIkTh5BkihBBlk2RqCiGEEEIIIYQQQgghyhUJagohhBBCCCGEEEIIIcoVCWoKIYQQQgghhBBCCCHKFQlqCiGEEEIIIYQQQgghyhUJagohhBBCCCGEEEIIIcoVCWoKIYQQQgghhBBCCCHKFQlqCiGEEEIIIYQQQgghyhUJagohhBBCCCGEEEIIIcoVCWoKIYQQQgghhBBCCCHKFQlqCiGEEEIIIYQQQgghyhUJagohhBBCCCGEEEIIIcoVCWoKIYQQQgghhBBCCCHKFQlqCiGEEEIIIYQQQgghyhXtV6l85swZhg0bhpmZGcePH0dXV1dlvYeHB3Z2dqxbt+6VGvk8jx49wsDAAENDwxLZ3pQpU9i+fTs3btwoke097ezZswwdOpSJEycyadKkAst4eHgAEBAQUOL7Lwk5OTlERUVRpUqVYtXLP/Y5c+bQp0+fYu83PDwce3v7YtcriiFDhnDu3DmVZXp6elhZWdG6dWvGjRuHjY2Nyvpnr+3c3FzmzZvH1q1bycjI4NNPP6Vdu3ZMmTKFv/76CwMDA/z9/TE3Ny+VYxAvdvjwYRYuXEh4eDjVq1dn6tSpNG3a9E03S5Qx6Y+TuOP/Jwl3HgBg7lwFxy7N0DU2KJF6RS0Xf/s+9w5fIvn+Y7T1dbB0qUa1To3R0tUpqUMV4qWlJCZxYMtubgb9jUKhoLpzLboM7IW5tWWp1D225yDnj53hkx9mqK3buPQ3rv55WW25bTV7PprxSbGOS4hXUVaeH08L2X6KtNgEGozu8iqHJkSJKSvPj/99+N/n7qv3hx/QuHXzIh2TEOLNeqWg5u7duzE0NCQ+Pp6AgAA6d+5cUu0qkmPHjvF///d/bN++vcSCmgMGDMDNza1EtvW2SU5OZvjw4bRt27bQoGxhatSowdy5c2ncuHGx9ztjxgzu3r1bqsFxgLlz5yr/nZqaSkhICNu2bcPf3x9fX19q1KihXD9t2jQMDP55iQwMDGTlypW0a9cOT09PmjRpwvfff8/58+eZOHEiVlZWEtB8g86cOcPEiRPx8PBg0KBBbNiwgdGjR7Nnzx7s7OzedPNEGaFIzSBo1X5ys3Oo4u5Cbm4uEceDSXkQR6Px76GppfVK9YpaLv72fa74HMDYzgLHzk3ISEgl6tTfJEc+osGYLmhoaLy2cyLEs7IUCtb+vJzYBw9p1akdegb6nDxwlFVzFzPhy08xNDYq0bohV65xdNcBTCpUKHCbDyPu41DTkWbtWqosNzQxfrUDFaIYysrz42kPzt/kwZ83qeBYqVSPXYiiKkvPj76jvArcj//GHWRnZ+PoVKPA9UKIsuelg5qZmZkcPHiQnj17smfPHrZv3/7ag5pBQUEkJiaW6DZdXV1xdXUt0W2+LeLj47ly5Qpt27Ytdl1LS0t69uz5Uvs9ceLEawk8FdS+fv36MXDgQLy9vdm1axeamnkjNnh6eqqUy8/s/fjjj3FyclIuq1OnDhMmTCjllosX2bJlC0ZGRixcuBBtbW3q1q1L//79CQwMxMur4Jca8e8TeeIqGQmpNPlPTwytzQAwqWJFsM9Boi/ewqaZ0yvVK2q5O/5/omdmRIPRXdDSyXtM61Uw4vauM8SFRGJeu3iZ8kKUpEun/iQqNJxhn3xEzXp512ztBnVZPON7Th4MpGOfbiVW98/AU+zdsI3srOwCt5edlcXjmFjcm3nSqGWzEjpCIYqvrDw/AHJzcggPDOLekculdbhCvJSy9Pwo6Jlx6mAgqckpvD9mCBWtLF72MIUQr9lLj6l57NgxEhMTadGiBa1bt+bEiRPExMSUZNuEeOPq1KnD2LFjCQkJ4ejRo4WWUygUABgZGakse/p38eakp6eTnp5OXFyc8ncAHR3pyiv+ERN0BzPHysoPjAAVa9piYGVKTNDdV65XlHLZiix0jfWp3Ky2MqAJKDNtUu4/fsWjFOLVXDl7CXNrS+WHSgArm0pUr1ObK2cvlljd3+b9wq61m3F0roVN1YID+bEPYsjOysbKtvIrHJEQr64sPD8g7xlycfFu7h2+jHWjGuhWKJmebEKUhLL0/HhWckISh7fvo3qd2jR8p0kxjkoI8aa9dFBz9+7daGho0KxZMzp27EhWVhY7d+58Yb1Lly4xYsQIZUbkhx9+SFBQkEqZ3NxcfH19ef/993F1daV+/fp07tyZ5cuXk5ubC+SNfbl48WIAOnTowJAhQ5T1b9y4wfjx42natCkNGjSgf//+HD58WGUfQ4YMYeTIkfz000+4urri5ubGjRs3mDJlijLTLl90dDTTpk2jdevWuLq60rdvX7XtlZZFixZRv359QkNDGTt2LK6urjRr1ozPP/9cGaDJl5yczOzZs2nXrh0NGzake/fubNmyRaVMQkIC33zzDW3atMHFxYUuXbqwZs0a5Xl9ep+HDh2iVatWuLq6smXLFjp06ADA4sWLcXJyIiIiAoB79+7x+eef4+7ujouLC82bN2fcuHGEhIQot3n27FmcnJzw8/NT+f3kyZN89dVXuLm50bBhQ4YNG8b169eV9ZycnIiMjOTcuXPK+gMGDKB169bk5OSoHNvt27dxcnLi999/L4Ez/4/u3bsDcPz4ceUyDw8P5TXn4eGhci16eHiotXvRokVA3pikPj4+dO7cGRcXF9q0acOsWbNITk5WO1fbt2+ne/fu1K9fn6lTpxa7/ovOLeTda2vXruW9996jQYMGeHh4MG/ePNLS0pRlirLP4rhx4wYjR47knXfeoUGDBvTu3ZutW7eqlTt69CgDBw6kYcOGNGvWjEmTJnH37j8v7r6+vjg5OakMGwAwcuRIXFxcVI61S5cuZGVlMW3aNG7fvs3MmTMxNzfn3XffVduvk5MTP//8M+PGjcPFxYVu3bqRlZWFQqHg119/pUePHjRs2JAGDRrQo0ePAtt+7NgxBg8ejKurK61atWLy5MnK+6WoxydeL0VaBumPkzG2U/9m3tjGguSoR69Ur6jltHS0cRneCYd2DVXK5Acz9cykS614s+6HRRT4IdG2ahXiYh6RlpJaInXjH8Xx3uD3GTp5LHr6egVu72FU3tiCVjZ5Qf/M9IxiHYsQJaGsPD8AcrNyyM7IxHlQW5z6tUFDU4YrEWVHWXp+POvY3kMoMhV0HvByPQuFEG/OS3U/T05OJjAwkEaNGmFpaUnbtm3R1dVlx44djBo1qtB6J0+eZOzYsTg7O+Pt7U1mZiZ+fn54eXmxevVq5aQdP//8M8uWLaN3797079+flJQUduzYwfz58zEyMsLLy4sBAwaQnJzMoUOHmDp1KrVq1QLyuqQPHToUY2NjRowYgZGRETt37mTChAnMmDFDpavpxYsXCQ8P59NPPyUiIoKaNWuqtTk+Pp7+/fsTHx+Pl5cX9vb27Nmzh4kTJ7J48WK1bsilIScnh6FDh9K0aVM+//xzrly5wtatW0lPT2fBggVA3nAAXl5ehISE0L9/f5ydnTl27BjTp08nLS2NoUOHkpqayuDBg7l//z4ffPABlStX5syZM8yePZvQ0FBmzpyp3GdWVhYzZsxgxIgRZGZmUrt2baZOncqcOXPo2LEjHTt2xNzcnNjYWPr374+xsTGDBw+mYsWKXLt2jc2bN3P16lUCAgKemw03ffp0rK2tGT9+PAkJCaxcuZLRo0dz9OhRtLW1mTt3LnPmzKFixYqMGzeOxo0bk5KSwqxZs/jzzz9p0aKFclt79+5FW1ubLl1KdjB0e3t7DAwM1AKC+aZNm8aOHTuU16K1tTUKhUKl3fmB8i+++IKdO3fSq1cvhg8fzu3bt/H19eXixYv4+vqip/fPg/frr7+mT58+9OvXD1tb22LXf9G5Bfjqq6/w9fWlffv2DBo0iLt37+Lj40NoaKgyUFucfb7I48ePGTlyJBUrVuSjjz5CT0+PvXv38sUXX6Cnp6cMIPv5+TFt2jTc3Nz49NNPSUhIwNfXl/79+7N582YcHR0ZOHAg/v7+rFmzhl69elG7dm02b97MiRMn+OSTT3B2dlbut1u3buzZs4ejR49y4sQJbGxsWLVqFRUKGaNtzZo1NG7cmOnTp5Oeno62tjb/93//h7+/P4MGDWLIkCHExcWxefNmvvjiC6ysrJTDMuzdu5dPPvmEWrVqMWnSJBQKBT4+Ply5cgU/Pz9MTU2LdHzi9cpMyHsZ1jVVz2rRNTUgO01BVlom2ga6L1XvZbefHpdMwt0H3Nn3J4aVzLCo6/ByByhECchMzyA9NQ1TM/W/ncYVTIG8D5MGRurXeXHrTvrmc7S0n/+aGh1xH4A/j53iytmLpKWkYlzBFPdunrh5uhfv4IR4SWXp+aGlr0PTj/uiqfXSeStClIqy9vx4WkpiEn8GnqJu4/rYOMhY+0KUNy8V1Dxw4AAZGRl06tQJAGNjY1q2bElgYCBBQUE0aNBArU5OTg4zZ86kfv36rF+/Hq0nA1oPHjyYXr16MWvWLHbs2IFCoWD9+vV069aN7777Tlm/X79+uLm5cfz4cby8vHB1dcXJyYlDhw7h6empnI171qxZaGhosHXrVipXzuuONGjQIAYNGsTcuXPp0qWLcsKW1NRUfvjhBxo2bEhhVqxYwYMHD9iwYQNNmuSlovfp04f33nuPZcuWvZagZlZWFl27dmXKlCkADBw4kOjoaA4fPkxaWhoGBgZs3bqV69evM2/ePGVgaMCAAQwePJjly5czePBgVq1axd27d9m2bZsyyPbBBx/w448/8uuvvzJgwABlICgnJ4cRI0YwZswYZTssLCyYM2cOTk5OyvEn169fT0JCAhs2bFCZSMfIyIjly5dz8+ZN6tWrV+ixWVhYsGHDBuX1oKury/z58zl79iytWrWiZ8+eLFiwQGVMzq5duzJnzhz8/f1Vgpr79u3Dzc2tVCbkMTU1JT4+vsB1np6eXLt2Te1afLbdZ8+exc/Pj6+++oqBAwcq67dt25aRI0eyceNGhg0bplzepEkT/ve//yl/L279F53bW7dusXHjRvr3788333yjrGdkZMSyZcu4desWjx49KtY+X+TMmTPExMSwdOlS6tevD+TdTwMHDuTmzZtA3pcm3377LV27duXHH39U1u3fvz/dunVj3rx5LFmyBA0NDb799lu6d+/OV199xfz58/n+++9p3Lix2pcrly5dIjIyEsi7tr/44gvq1q1baDu1tbVZsmQJ+vr6AMTExLBnzx5Gjx7NJ5/8M5uup6cnXbp04fjx47Rt25acnBzmzJmjDLDm169fvz4jRoxg9+7d9OzZs0jHJ16v7My8ISSe7vKdT/PJi3G2IkvtQ2lR673M9hWpGfz5Q14msKauFjW6tyiwvhCvi3LoDj1dtXU6unlfYGZmZJZI3aJ8IM3P1IyJiqb7kH5kZ2Vx8cQ59m3wIyMtnXbdO71wG0K8qrL0/NDQ0EBDS7IzRdlT1p4fT7tw/CzZWVm07NS+WPWEEGXDS32Nt2fPHgA6duyoXJb/7/zuxc/6+++/CQ8Px9PTk4SEBB4/fszjx49JT0+nffv2XLt2jejoaHR0dDh16hRff/21Sv24uDiMjY1JTS08LT02Npa//vqLnj17KgOaAHp6eowcOZL09HROnTqlXK6vr68MrBQmMDCQevXqKQOa+dtbvnw5CxcufG7dkvRs9mGdOnXIyspSBtoCAwMxNzfnvffeU5bR0NBg7ty5/P7772hoaHDw4EFq166NlZWV8vw/fvxYGZh9dszIZs1ePOj+mDFjOHnypEpAMz09XTmhzvP+fwF06tRJGXTLPy7gueOzWlhY4ObmxqFDh8jOzhv8+e+//+bu3bsqx1+SsrKyXnnG4YMHD6KhoUHbtm1Vzn/dunWxsrIiMDBQpfyz57+49V90bgMDA8nNzVUZugHyum/v2rULBweHYu/zRfLvy/nz53P+/Hmys7PR1dXFz89PGSw8efIkycnJeHp6quxTS0uLd955hxMnTpCVlQXkZdFOnjyZ8+fPM3jwYHJycvj++++V1x/AkSNHGDp0KBkZGcyaNQsdHR1mzpzJo0ePSEtLY+3atWrdvhs0aKAMSAJYWVlx4cIFxo8fr1yWm5urbEdKSgoAwcHBxMTE0L9/f5X6LVu2ZMuWLfTs2bNYxydeo/whOIp7mxe13stsXwOcB7aldr82GFqbccXnILHBocVsoBAlT+M5F/KLHpWvUvdZLs0a4dm3GyM+HU/95q40atmMEZ+Ox6GmI4G7D5KS9HLDpAhRLGXx+SFEGVVWnh9Pu3D8DJUd7KhaS3pKCVEeFTvl4+HDh5w5c4Zq1aqhoaGhHCfO2dkZDQ0N9u3bx7Rp09DVVf0mJSwsDIC5c+eqjYGXLyoqikqVKqGjo0NgYCBHjhzh7t273Lt3j4SEBACVsR+flZ+JVVDXzfygW1RUlHKZmZmZSvCjsG16eHioLX+Z7qH53XSfF7DIysoqcHKZZ7MP889vflAvMjISBwcHtcDb07OGh4WFkZ6ejpubW4H7vn//vsrvFhZFm/VNoVDw008/cfXqVcLCwoiIiFC269lxL59V2HG9qF737t05ceIEf/75J++88w579+5FT0+vVDJns7OzSUxMfOUuwWFhYeTm5tKuXbsC1z/7//3Zc/Oq9Z89t/n3S7Vq1VTKmZqaYmpq+lL7fJHGjRszdOhQ1q1bx+nTpzEzM6N169Z0795duY/8vxWTJ08udDuPHz/G2toayBsfd9euXQQHB/N///d/ODj80z03OTmZadOmKbNWLS0tSUlJYc6cOXz22Wd88MEHfPvtt0ybNk3l/29B2b66urrs2rWLEydOEBoayr1795TBzPy/S/nntGrVqmr18zPYi3t84vXQ0sv7pj9HoT5LZs6Tv9na+upDaRS1XtZLbF/HQA+rBnnXpaVLVS4u2MHtveewdKlWpGMS4lUoMhWkPzW+MoDukyyZrCeT4z1bHkDfQF9t3avWLUyDFo3VlmloaNDE3Y2wW3cJvx2KcyOXYm1TiOIqi88PId6k8vD8yPcw6gGPH8bi2bfwmdeFEGVbsYOa+/btIycnh9DQUOXEMU9LSEjg8OHDdO3aVWV5fiDF29ubRo0aFbjt6tWrk5uby/jx4zl69ChNmjTB1dWVAQMG0KxZsxd2c31ewDN//0+P7/h0FlthsrOzXzlDL19+oCg/EFKQpKQkbGxs1Ja/qA1FaWd2djZNmjRh4sSJBa5/NojyooAvwPnz5xk5ciSGhoa0bNmSvn37UrduXcLCwtSybQtSlH0UpGPHjsycORN/f3/eeecd/P39adeuHcbGJT+Jxq1bt1AoFCpjNL6MnJwcjIyMlGNVPuvZsSmfvT6LW/9F5zY/8Pw8xd1nUXzxxRcMGTKEAwcO8Mcff3DgwAH27NnDgAED+Prrr5X36jfffKPsyv+sp8fCjImJ4d69e0BeVubIkSOVx37hwgXi4+P5+OOPsbS0BGD48OGcP3+eQ4cOERwcjJaWlkrWOaif+4yMDD744AOuXbtGixYtcHNzY/jw4TRv3lwl4Jvf9ufdi8U9PvF66FXI+9uRmZSmti4zMQ0tAx20dNU/NBa13stuP5+WjjbmzvZEnbqGIiUdHaOXe3kXoqiunLvEdp8NKsva93gXfUMDkuIT1MrnLzMpYMwzAH0Dg5euW1xGpk/ut0K6MgpRksr680OI1608PT9uBv0NQL0mhQ9HJ4Qo24od1Myf9fy7775TCyBdv36dRYsWsX37drWgZn7GYH7w62lBQUEkJCSgr6/P+fPnOXr0KOPHj8fb21tZJr+rtb29faFty9/HnTt31Nbldy99ult6Udja2iozq562fft2Lly4wIwZM9SyUgtTpUoV9PX1uXXrVoHrw8PDSU1NVU56VNx23rhxQ235sWPH2LdvH59++il2dnakpKSonf+EhAROnz5dYHbZiyxcuBB9fX327t2rkt22bNmyYm+rOIyMjGjfvj1Hjx5l0KBBREZGKmcIL2n79+8HKDCIXxx2dnacOHECFxcXZYD76X08nWFYGvWflT/5UHh4uMrwAdHR0cyZM4fBgweX+D5jY2MJCQnBzc2N0aNHM3r0aOLi4pgwYQKbN29WXqeQly357LV69uxZcnJyVO65L7/8EoVCweTJk/npp59Ys2YNI0aMAP75ouPZAO+cOXO4fv064eHhdO7cWXkuCuPv709wcDDffvst77//vsq5elr+FxIF/c2YOnUqjRs3LvbxiddD20AXPXPjAmepTb7/CBM7y1eqV9RyqTHxBP92iCpt6mP7juoXKdkZCtAADe0XfyEnxKuq6eLEsE8+UllmbmVB6M07RIVFqJW/HxaJubVlgZM85LNxqPLSdZ+VnZXFslk/YVfNgV7DB6isi72f97e5omXJj7EtxLPKyvNDiLKirD8/nnYv5C4mFStgWVl6SAlRXhUrTe7u3bsEBwfTvHlzevXqhaenp8rP2LFjsbKy4uTJk2of9l1cXLCysmLdunUqmYrJycn897//ZerUqWhpaSnHiHx2JvLNmzeTlpam0nU7P1CRH7iwsrLCxcWFXbt28eDBA2W5zMxMVq9eja6uLq1atSrOIePu7s6VK1cIDg5WLlMoFKxatYrg4OBiBR90dXVp06YNZ8+e5fLly2rr16xZA6CWNVbUdsbGxnLo0CG1bQYGBlKxYkU8PDy4fv06x44dUymzdOlSvL29CQkJee4+8rPXnu4aHh8fj7m5uUpAMykpie3btwNFywZ8EU1NzQK7o3fv3p3o6Gh+/fVXTExMlLNPl6Rbt27x22+/Ua9evUK77RdV/jAGS5cuVVkeEBCAt7c3u3fvLtX6z8o/X76+virL/fz88Pf3x9jYuMT36efnx/Dhw7ly5YpyWcWKFalatSoaGhpoamrSsmVL9PT0WLlyJYqnuplER0czfvx45s2bp8yE3LNnDwEBAUyYMIFx48bh5ubGzz//rMzcbNCgAQYGBvj5+ZGZ+U/GTnx8vHLQ8VOnThX4RcjTCvu7tHbtWuCfISVcXFwwNzdX29+FCxfw8/MjNTW1WMcnXi/LelWJvx1Faky8clncrSjSYhKV3cBfpV5Ryumbm5KVnsn9czfIeervZ3pcMrHBoVRwrIy2nmTkiNJnalaBmvWcVH7MrS2p16QBsfcfcuvqP1+kxtyP5s61m9Rvrt4d/GmvUvdZWtra6OrqEnT2AvGP4pTL01LTOH3oD8ytLalSvfhf1grxMsrC80OIsqKsPz+e9iAsUmY8F6KcK1amZv4EQU9nKj1NR0eHvn37smzZMnbu3Km2bvr06UyePJk+ffrw/vvvo6enx5YtW4iKimLevHloa2vj6uqKsbExc+bMITIykgoVKnD27Fn27duHnp6eSkA0P5C2cuVK3N3d6dChA9OnT2fYsGG8//77DBo0CCMjI3bt2sXVq1eZPn26WrbZi4wbN44DBw4wbNgwBg8ejLW1NXv37uX27dv4+PgUa1sAn332GZcvX2bEiBH07dsXJycn0tLS+OOPPzh+/Dh9+vR5qeDcwIED2bZtG5MnT8bLywtHR0cCAwM5efIks2fPRktLi7Fjx3Lw4EEmTJjAwIEDqVWrFhcuXGDnzp24u7vj7u7+3H3kj0F65MgRbG1t6dSpE+7u7qxYsQJvb29at25NTEwMW7duJTY2Fnh+V/uiMjc35/r162zYsIHmzZsrA0tt2rTBzMyMffv20adPn1fObnv6mk1NTeXGjRvs3LkTAwMDfvjhh1cONLVt25YOHTrg4+NDZGQkbm5uREZG8vvvv2Nra8vIkSNLtf6z6tSpQ79+/Vi3bh0PHz7Ezc1NOSN6r169cHZ2xsnJqUT32atXL1avXs24ceMYNGgQlSpVIjg4mB07dtC7d2+MjIwwMjLi448/Zs6cOQwYMIAePXqQlZXFhg0byMjI4PPPPwfyxp2cNWsWtWrVUmZmzpw5k+7du/PFF1+wbt06zM3N+e9//6vMPO3RowcPHz7E19cXTU1Npk2bxg8//MDQoUPx8fGhdu3aBba7ZcuWaGtr89lnn+Hl5YW2tjZHjx7lxIkT6OjoKK9zXV1dpkyZwueff86gQYPo0aMHKSkprF27lho1atCvXz8MDQ2LdHzi9avSxoWHl25zZdUB7Fq7kJOVRcTxYIztLLBulJfNnPY4icR7DzGtao2BuUmR6xW1nKaWJjXee4ebW44TtNwfa9caZKVmEHXmOmhqUOO9Fq//xAjxlCbu73Am4Diblv5G687t0dHV5cT+AEzNzGjZ6Z/3l+SEJG5dvU5lezsq29sWq25RdRnUm5VzFrBizgLe6ZD3DnP+2CmSE5MY9sk4+YJIvDZl4fkhRFlXlp4fkJd8E/84jtoN6pTI8Qkh3oxiBzVNTEzo1KlToWX69+/P8uXLlZl6T+vcuTMVKlRg6dKl/PLLL2hqalKrVi2WLl1K+/btAbC0tGT58uXMmzePpUuXoquri6OjIz/++CNBQUGsXbuW2NhYLC0t6datGwcPHsTPz49z587RoUMHXF1d8fX1ZeHChfj4+JCTk4OzszNLlix5qUlkLCws2LRpE/Pnz2fjxo1kZmbi7OyMj4/PS2XuOTg4sG3bNlasWMEff/zBli1b0NfXx9HRkTlz5tC7d+9ibxPyZnJft24dP//8M3v37iUpKYkaNWrw888/K2dONzMzY9OmTSxcuJD9+/ezadMmbG1tGT9+PGPGjHnhGIwGBgZMnjyZVatWMWvWLBwcHJg0aRLZ2dns27ePo0ePYm1tTcuWLfnwww/p1q0bZ86ceanM06dNmjSJmTNnMnv2bCZMmKAMaurq6vLuu++yadOmEpn1/LPPPlP+W09PDxsbG/r27cvo0aOpVKnSK29fQ0ODBQsWsHLlSnbs2EFAQADm5uZ06tQJb29v5ZiPpVW/IF9//TXVqlVjy5YtBAQEYGtry4QJExg1alSp7NPa2pq1a9eycOFCNm7cSHx8PHZ2dkycOJHRo0cryw0fPpxKlSqxevVqfvrpJ/T19alXrx4//PADTZo0AfLGpIyPj2fx4sXKsXIdHR0ZPXo0v/zyCxs2bMDLy4vhw4djamrKb7/9xvfff4+JiQmenp54e3tTuXJlqlSpwqJFi557LLVr12bhwoUsXryYH3/8ESMjI2rVqsXq1avZsGED586dQ6FQoKOjQ8+ePTExMWHZsmXMnz8fU1NT2rdvzyeffIKhoWGRj0+8frrGBjQY3YU7e89x7/AltHS1sajjgGPnpmg+6fKdGBrNza0nqP1+a+WH0qLUK065Sq410NTWJPzYFe7s/RMtXW3MathQtWNjDK1kvFXxZmnr6DDi0wns37iT4/4BaGhq4uhUky4DemJo/M/kcTH3H7Bt5e+07/Gu8kNpUesWVRVHB0b83wSO7PDn6M79oAEONarx/ujB2NeoVlKHLMQLlZXnhxBlWVl6fgCkp6RCbi56LznJkBCibNDIfd7sOkKUcTNnzuTIkSMcO3asSBM/CVGQ3NzctyKjZ+DRuW+6CUKUWaNqFP+LTSH+TVbePvymmyBEmSXPECGez9Ph5YcBKEviFi14000oVMVJ3i8u9C/0clNPC1EGxMfHs3//fnr16iUBTfFK3oaAphBCCCGEEEII8W9S7NnPhaqYmJgilTM0NMTI6OVS44Wqq1evsnLlSoKCgsjIyMDLy0tlfUpKCqmpqUXalpWVVWk08V8lKSlJOenO82hpaalMKCWEEEIIIYQQQgjxsiSo+Ypat25dpHITJ05k0qRJpdyafwcTExNOnz6Nnp4e8+bNw8bGRmW9j48PixcvLtK2bty48eJC4rm+/fbbAsfQfZadnR0BAQGvoUVCCCGEEEIIIYR420lQ8xWtXr26SOXs7e1LuSX/Hg4ODpw5c6bQ9b169ZLJVl6jUaNG0aNHjxeW09PTew2tEUIIIYQQQgghxL+BBDVfUcuWLd90E8Qz7O3tJYj8GtWsWVM5I70QQgghhBBCCCHE6yATBQkhhBBCCCGEEEIIIcoVCWoKIYQQQgghhBBCCCHKFQlqCiGEEEIIIYQQQgghyhUJagohhBBCCCGEEEIIIcoVCWoKIYQQQgghhBBCCCHKFQlqCiGEEEIIIYQQQgghyhUJagohhBBCCCGEEEIIIcoVCWoKIYQQQgghhBBCCCHKFQlqCiGEEEIIIYQQQgghyhUJagohhBBCCCGEEEIIIcoV7TfdACGEECVjuUXnN90EIcqsMbf3v+kmCFGmLQ3We9NNEKLMulDjTbdACCFEQSRTUwghhBBCCCGEEEIIUa5IUFMIIYQQQgghhBBCCFGuSFBTCCGEEEIIIYQQQghRrkhQUwghhBBCCCGEEEIIUa5IUFMIIYQQQgghhBBCCFGuSFBTCCGEEEIIIYQQQghRrkhQUwghhBBCCCGEEEIIUa5IUFMIIYQQQgghhBBCCFGuSFBTCCGEEEIIIYQQQghRrkhQUwghhBBCCCGEEEIIUa5IUFMIIYQQQgghhBBCCFGuSFBTCCGEEEIIIYQQQghRrkhQUwghhBBCCCGEEEIIUa5ov+kGCCFKTmZmJr/99ht79uwhLCwMTU1NqlWrRufOnRk2bBh6enrKssnJyWRmZmJubv7cbU6ZMoXt27dz48aNYrXl7NmzDB06VG25pqYmpqamODk5MXr0aNq0aVOs7ebLzMwkLi6OSpUqAeDn58fUqVNZu3YtLVq0eKltin+3h48esXb7dv4OCQGgcb16DOndmwomJs+td/32bXx37+Z2WBjGhoY0bdCA/l27YmpsXGide5GRTPvhB3p16kS/rl0BiHn0iIlffvncfc34z3+oV6tW8Q5MiDcoZPsp0mITaDC6ywvLpj9O4o7/nyTceQCAuXMVHLs0Q9fYoLSbKUSJWvHHce7HxzOjR/cXln2YmMT6M2f4OyoKAFcHB4a4vYOpQd51H5OUxH82bHzuNv7XvRt1bW0BWHDoMGfu3FUr42hlyew+vYt7KEKUmLiYR/hv2sndG7cAcGpQly4DemJk+vz3rHs373DIbw+Rd8MxMDKgjmt9PHp1wchE9T0rJTGJQ9v2cv1yMAqFAtuqVej0fnfsa1TL23/sY3787Ovn7uvDzybg6CzvWUKUJxLUFOItkZWVxciRI7l8+TK9evViwIABZGdnc/78eX788UcCAgJYu3Yturq6BAcH89FHHzFv3rxSDwB27NiRjh07Kn/Pzs7mzp07bNiwgbFjx7Ju3TqaNGlSrG1GRkby4YcfMnbsWPr06QNAs2bNmDt3LjVq1CjR9ot/h6SUFL5auJDs7Gx6eHqSk5PD7iNHCIuKYvb//R/a2gU/Lq+GhDB7yRIMDQzo3akTmpqa7Dt6lKs3b/LNxx9jbGioVic7O5tf1q8nKztbZbmJsTEThgxRK5+pULB661YqGBtT1c6uZA5YiNfgwfmbPPjzJhUcK72wrCI1g6BV+8nNzqGKuwu5ublEHA8m5UEcjca/h6aW1mtosRCv7uj1GwRcu04dm8ovLJuUns43e/aQnZND94YNycnNZU9QEOGPHzOrdy+0tbQw0ddnfPt2anUzs7NYc/I0Jgb6OFhYKJeHx8VRu3IlPOvUUSlvoq//qocmxEtLTU7BZ+4SsrOzaNPZg9zcHE7sP0p0RBTj/vcxWoW8Z929HsKaH5ehb2BA2/c6oqGpwemDx7hzPYQx0/6LgVHee1ZGejorv19EUnwiLTu2Rd/IkLNHjuMzdwnj/vcxlarYYGRsRN9RXmr7UCgU7P3dDyNTYyrby3uWEOWNBDWFeEv4+/tz7tw5Fi1aRKdOnZTLhw4dysqVK/nhhx/YunUrH3zwATdv3uThw4evpV1OTk707NlTbXnHjh0ZMGAAy5YtY8WKFcXaZkREBKGhoSrL7O3tsbe3f5Wmin+xvQEBPI6P54epU6lSOe+DaM2qVfl2yRICz57Fs1WrAuut3rIFDU1Nvvn4YypbWQHQvGFDPpszh+0HDjCkt3pWzPaDB4m4f19tub6eHu7Nm6st/23bNrKzs5k0bFiBQVIhyprcnBzCA4O4d+RyketEnrhKRkIqTf7TE0NrMwBMqlgR7HOQ6Iu3sGnmVDqNFaKE5OTksP3SZbZduFDkOvuCrvA4OYXv+/WlSsWKANS0tmL2Xn+O3bxJhzp10NfRoU1t9cyxNadOk5WTzUSP9hg/6YmTlZ1NdGIiPRs1KrCOEG/KyYOBJMTFM/Hrz7C2zXvPsnOsypr5S7l48hzN2rYssN6e3/3Q0NBk9DRvLCrlvWfVbdyAJTPncmzPIToPyPuM8ce+I8Q+iMnLtHSqCUD95q78+Nk3HPc/wvujB6Orr0ejls3U9rHP14/s7Gz6jRmiDJIKIcoPGVNTiLfEpUuXAGhVQPDlgw8+QEdHh8uXL7/mVhWuYcOGODo68tdff73ppgjByYsXqVurljKgCdDA2Rkba2tOXbxYYJ2YR48Iv3+fts2bKwOaAHaVKtG4fn2OnTunVudeZCTbDxygT+fORWrXvchI9h87RrsWLahTs2Yxj0qI1y9bkcXFxbu5d/gy1o1qoFuhaB8QY4LuYOZYWRnQBKhY0xYDK1NigtS70gpRlmRmZTHVbztbz1+gda1amBcxMHLq9m3q2tooA5oA9atUwcasAqdv3ym0XtijRxwIDqatU23q2Ngol99PSCArOwe7imYvfSxClIYrZy/i6FRTGdAEqFnPCYvK1lw5e6nAOnGxj3kYeZ9GLZspA5oAVjaVcGpYj0sn896zcnNzuXTyHLUb1FEGNAFMKpjSeUBPqtauXmi7HoRHcfrwcRq3bk612tLbS4jySIKaQrwljIyMANi0aZPaOkNDQy5evMjcuXNZtGgRU6dOBfKyOD08PJTlgoOD+fDDD3F1daVNmzb8+uuv5ObmllqbDQwM1LZ/+vRpRo0aRYsWLahXrx5t2rRhxowZJCYmAnljZ+aP1Tl16lScnJyUy52cnDh79qxyW2lpacyfPx8PDw9cXFzw8PBg3rx5pKWlvVR7z507h5eXF02bNsXV1ZWBAwcSEBCgVs7Pz49evXpRv3593nnnHaZMmaKSGTtv3jycnJz4/ffflcsyMzPp3r07LVq0IDo6+qXaJ15OcmoqD2NjqV5Apq+jvT13w8MLrPc4IQEA+6c+UOarbGlJUnIyj+LilMuys7NZtmEDDZydcW+mnilQkE179qCrq0v/994rUnkh3rTcrByyMzJxHtQWp35t0NDUeGEdRVoG6Y+TMbazUFtnbGNBctSj0miqECVGkZ1NamYm3p4dGN++HZqaL/6IlZyRwcPEJBytLNXWVbO05G5sbKF1N/15Hl1tbfo3baqyPOLJM8fOzAyAdIWi6AchRClJS0klLuYRttWqqK2zdajC/bCIAuslxuW9Z1Wqoj6Ug7m1JanJKSQ8jiM+9jFJcQnUrOcM5AU5M9MzAGjh0brQLFCAw3570dHVoUPvrsU+LiFE2SDdz4V4S/To0YPVq1fz/fff4+fnh6enJ25ubri6uqKrq4uuri6Q1+07JiaGTZs2MW7cOOrXrw9ASEgIQ4YMwdTUlPHjx6NQKPDx8SEzM7NU2hsdHc3Nmzdp3LixctmJEycYPXo0jRs35j//+Q8aGhqcPHmSTZs2kZCQwIIFC2jWrBnjxo1j2bJlDBgwoNDxODMzMxkxYgSXL1+mT58+uLi4EBQUxIoVK7hw4QJr165FR0enyO29c+cOY8eOpU6dOkyePBmAzZs3M378eNavX0/TJx8sFi9ezKJFi3j33Xfp378/0dHRrF+/nnPnzrF161bMzc2ZNGkShw8f5ueff+bdd9/F0tKSJUuWcPPmTX766Sfl5Efi9XgcHw+AeYUKausqmpqSmpZGSmoqRs90/c6/p9IyMtTqJSUnAxCfmIjFkwycnYcPc//hQ/5v1ChycnJe2K57kZFcCA7mPQ+PAtsmRFmkpa9D04/7oqlV9O/NMxNSAdA1Vc9u0zU1IDtNQVZaJtoGuiXWTiFKkqGuLj8PHIBWEYKZ+eJSUgAwNzRSW1fR0JDUjExSMjIwemqSR8jL0rx4L4xuDepT0Ui1bvjjvKDmkWvXOXX7NsnpGZgZGtCzUSM613cp7mEJUSLyg5OmBWQQm5iZkp6aRlpqGgaGqpPC6erlvadnpKu/Z6Um590/SQlJpKfkPUOMTIzZv2kn5/84TUZaOubWlnQZ2AvnRgVf+w/Co7jx11VavdseUzN5zxKivJJMTSHeErVq1WLx4sVYWFgQEhLC0qVLGTp0KC1atOCTTz7h7t287nvOzs40atQIgJYtW+Lp6QnAokWLANi4cSOjR49m/PjxbNiwgaysrFdqV1paGo8fP1b+REdHc+rUKT766CNycnKYOHGisuxvv/2GjY0Nq1evxsvLiw8++IAlS5bQqFEjjh8/DuSNndmyZd43ro0aNSpwvE6Abdu2cenSJaZMmcLs2bP54IMP+O677/j000+5ePEimzdvLtZxHDlyhNTUVBYvXoyXlxdeXl789ttvVK1alWvXrgEQHh7OkiVLGDNmDAsXLuSDDz5g8uTJ+Pr68vDhQ5YtWwaAnp4es2fPJjk5mblz53L16lVWrlxJt27d6NpVvil+3dKfBCXzg5RP030S+M4oINvFvnJlDPT1OffXXyoZx5kKBUHXryv/DRB+/z7b/P0Z3KuXMsj5IgdPnEBTU5PO7u7FOyAh3iANDY1iBTQBsjPz7hMtHfXv2jWfTB6RrXi1Z5EQpUlDQ6NYAU2AtCfPB90CJkjRfTIxVmYB72CH/r6GpoYG77rUU1uXn6kZGR/Ph61bMb59O+wqVmTNqdP4FTKUihClLSM9HQAdXfVkAu0nyxQFJFFY21ZGz0Cfvy8EqbxnKTIV3Lp6A4AshYL0Jz2wjmzfx82gv+k6qA99R3mho6vL74tWKcs+69zRE2hoatKiQ5tXO0AhxBslQU0h3iLt2rXj6NGj/PTTT/Ts2RMrKytSU1PZs2cPPXv25FwBY/xB3uD2x48fp23bttg81ZW2Ro0atG7d+pXatGrVKtzc3JQ/7u7ujBgxQrmu+VMTo/z6669s27ZNJbgUFxeHsbExqampxdpvQEAAxsbGeHmpznI4dOhQjI2NC+w2/jyVn4y1+M033xAcHAxAxYoVOXDgAEOezFh96NAhcnJy8PDwUAnkWlpaUqdOHQIDA5Xba9y4MUOGDGHXrl385z//wdzcnJkzZxarTaJk5L8oa2i8uJvs07S1tXnPw4M7YWEsXLOGe5GR3I2I4KdVq0h/8nKupaVFTk4OS9evx6lGjUInHHpWpkLB8T//pEn9+lhZqHfJFeKtkv9htXi3oBDl2ss8ezKzsjgeEkKTalWxMjFRW/9O9eoMaN6ML7p1xa1GDdrUrsUX3bpSu3Ildly8TGJaeom1X4iiUv6JL+Z7lpa2Ni07tSMqNJwtv67jQXgU98Mi2Lh0NZkZee9ZmpqaZD350is9NY3R07xp3Lo5jVo2Y+SUSRgYGnB42161bSsyFVw+fR7nRi5UtDR/tQMUQrxR0v1ciLeMnp4eXbt2VWb8Xb16FR8fH/bs2cPMmTPx9/dXqxMfH09qaioODg5q66pXr17sAODTevbsSa9evcjNzSU0NJTly5ejr6/P7NmzcXZ2VimrpaVFeHg4CxYs4NatW4SFhb30+JIRERHY29urdTHX1dXF3t6eyMjIYm2vc+fOHDp0iH379rFv3z6srKxo27YtvXv3VnY9DwsLA2DgwIEFbuPZtkyePJkDBw4QERHBTz/9RAXpYvxG6D/p2lfQUAv5mZaG+voF1u3buTMpaWn4BwZy6smMt01cXOjh6Ynvrl0YGxqy68gR7kVG8vXkySQ+6Zae/CSrICMzk8TkZEyMjFRe9oNv3iQjIwM3V9eSO1AhyiitJ10McxTZautynmSqaesXfbgQIcoDgyfvBAVlY2Zm590LBs/0ILgaFUWGIot3qhc88UnLmuoTnWhoaODh7MyyB8cIeRhNk6pVX7XpQhSLnn7ee1ZB2ZhZTzL19Qt5z2rf413SU9M4ffgPrpzLyzZ2aliPNp09OLRtD4bGRiTF5427X7dJQ5XZyw0MDXBu5MKlU3+SmZ6Brv4/QzncuR6CIiMTl2aNSuQYhRBvjgQ1hXgLpKam8uuvv1KvXj06deqksq5evXrMnz+fxMRE/vjjD+KemrjkWenp6t/gF2Xsv+d5urt4q1ataNu2LX379mXYsGFs2rSJatWqKcuuWrWKuXPn4ujoSNOmTenUqRMNGzZk3bp17N69u1j7fd4ERzk5OcUaTxPyApILFy7kxo0bHDp0iD/++AM/Pz+2bt3KJ598wpgxY5TnaunSpYW+nD3t3r17PHqUNwHGwYMHpev5G2L5pDt4/JPJqJ4Wl5iIoYGBMvD5LA0NDYb16UNPT08exMRgYWaGlYUFG3fvRlNTE0tzcy7//TdZ2dlMmzdPrf7uI0fYfeQIi7/8UiUj89LVq2hra+Nat24JHaUQZZdeBWMAMpPUJ3HLTExDy0AHrQK6LQpRnlkY51338QX0RIlLTcVQTxf9Z95VLoeFo6OlRSMH9YntnsfUIO+dJEOGcRBvQAWLvPespIQktXVJ8YnoGxqoBByfpqGhQddBvXHv6smj6BhMzc2oaGnOIb+9aGhqUsG8ImlPjan5LCNTY8jNJSNDNah5M+hvtLS1qd2gTkkcohDiDZKgphBvAT09PVatWoWrq6taUDNfzZo1OX78eIHBtooVK2JsbMy9e/fU1kVEFDwj4cuqUqUK3377LRMmTODjjz9m8+bNaGtrk5GRwaJFi2jRogU+Pj5oPzXG1IIFC4q9Hzs7Oy5fvoxCoVAJYGZmZhIREaHMriyqqKgooqKiaNq0KU5OTkycOJEHDx4wbNgwVq1axZgxY7CzswPAxsaGOnVUX5KOHTuGsfE/L1tZWVlMmzYNMzMzevXqxYoVK+jWrRsdO3Ys9rGKV2NkaIiVhQV3C7jW74aHU6OADOZ8Jy9cwMzUlHq1amFmaqpc/vetW1S3t0dXR4chvXuT8syH1oSkJBavXUubZs1wb96cCk/VBbh59y7VHRwwNFAdNF+It5G2gS565sYFznKefP8RJnbqs0MLUd4Z6elhZWJS4CznobGxVLeyUlt+IzoaRytLDAsYAzorO5vpO3ZSw8qK0e6qYwRGPZkQz6qAoI8Qpc3A0AAzS3Pu31N/z4oKi8CuWuFB+qCzFzGpYIKjcy2MK/wz5ELojdvYVq2Cjq4Olexs0NLW5mHUA7X6cbGP0dbRUQt4ht26i101e/TlPUuIck/G1BTiLaClpUXXrl05d+4cO3fuVFsfHx/PgQMHaNmyJQYGBmg+Gcw+P7NQQ0ODjh07cvz4cUJCQpT1IiIiVMaBLCmenp689957yq7xkJclmpaWRrVq1VQCmteuXVOOBZo/aZHWkwH0n5dF6uHhQXJyMr///rvK8g0bNpCSkkK7du2K1eZly5YxfPhwle7wlStXxtraWnk+27dvD+SNDfp0pui1a9f46KOPWLNmjXLZqlWruHr1KlOnTsXb25saNWrw1VdfEf/kg4d4vVo0bMiVGzeIfOr/b9D169x/+JCWTZoUWm9vQAA+W7aQnf1Pt9kLwcHcuHOHTm3yPlTWcHCggbOzyo/zk66DlSwtaeDsrJyQCPKu84j793GsUqWkD1OIMsuyXlXib0eRGhOvXBZ3K4q0mESsGji+uYYJUYqaO1YjODKSyLh45bIrERHcj0+gZQ3VruRZ2dlExsXhaFnwOMvaWlroaWtz8tYtYpOSlctTMjLwvxJMpQqm1LS2LpXjEOJF6jVpyO2/bxBz/5/3rFtXb/DowUPqt2hcaL1TBwLZvX6bynvWjb+uEhZyhxYeeeP+6+rr4ezqws2gqzyMvK8sFxfziOuXgnF2dVG+qwNkZ2URE/UAm6ryniXE20AyNYV4S0yZMoWgoCA+++wzdu3aRZs2bTA2NiYsLAw/Pz8UCgUzZswAwNw8b0BsX19fYmNj6d69O97e3gQGBjJ48GCGDx+OlpYW69atw8jIqMCxBl/V1KlTOX78OEuWLKFz5844ODjQsGFD/Pz8MDY2xtHRkZCQELZs2aJ8EUlJSaFChQpUfNJdeNeuXeTm5tK7d2+17ffr14/t27fz3XffcfPmTVxcXAgODsbPz49GjRrRr1+/YrXXy8uLnTt34uXlxYABA6hQoQJnzpzh3Llz/Oc//wGgdu3aDBkyhHXr1hEfH4+npyfx8fGsX78eIyMjvL29Abh9+zaLFy+mdevWdOvWDYCZM2cydOhQvv32W3744YeXPq/i5fTw9OSPc+f4ZtEi3vPwIFOhYPeRI1R3cKDNk6ze6NhYbty5g1P16lSyzMsc69mxIz+uWsX3v/5K84YNiXn8mD0BATSsU4c2zZq9VFti4+LIys5WdosX4m2T9jiJxHsPMa1qjYF5XuZNlTYuPLx0myurDmDX2oWcrCwijgdjbGeBdSP1cQKFKG+iExO5+SCa2pUrUelJdn6PRg05HhLCt3v30q1BfTKzstkTFISjlSWta9VUqR+bnExWdo6y23pBhrq58eWuXczctYvOT2ZHP3LtOolp6Uzp2qXYE7UIUVLadPHg8qk/Wf3DElq9254shYIT+49iW82ehu/kfXn8+GEsYbfu4lDTEXPrvPesNl07sPGX1axfsIK6jRsQ/+gxJw8EUtPFmYZu//S6erdfD0Kv38Jn7hLcOrqjqaXN6cPH0NHVoWOfbiptiX8UR3ZWNhXM5T1LiLeBZGoK8ZYwNzfHz88Pb29v4uPjWbJkCV9++SV79uyhU6dO7N69Wzl+pZubG126dOHYsWN88803ZGRkYGNjg6+vL40bN2blypWsXr2a3r17079//1Jpr6WlJZ9++inp6enKYOuCBQvw8PBg27ZtzJ49m1OnTjFmzBjmPRmL8MyZM0DerOxDhgwhODiY2bNnExUVpbZ9XV1dfvvtN0aMGMGpU6eYPXs2586dY+zYsaxZs6bYY2o6OTmxevVqqlatio+PD9988w0hISH873//Y/z48cpyX3zxBTNnzuTx48d8//33bNiwgaZNm7JhwwZq1KhBTk4OX3zxBRoaGiqznbdo0YKePXuya9euUsmOFc9XwcSEr/77X6ra2bF53z78AwNp1qABU8aNU14r127fZsm6dVy7fVtZr0WjRvxn+HDiExNZ4+fHyQsX6NGhA5+MGqWSFVAcySkpANL1XLy1EkOjubnlOImh/2Ts6Bob0GB0F4wqm3Pv8CWiTl3Doo4D9YZ5oqmt9QZbK0TJuH7/Ab8cDeT6/X+6yJoaGDCzR3cczM3Zcv4C+4ODaVq1KlO6dEZHS/W6T87IAMBAR73reb4a1lZ80a0bNhUqsPX8RbZduIiViQn/696NurY2pXNgQhSBkakJo6b+h8r2dhzZ4c/pQ39Qx7U+Q/87Bu0n71mhN++wbeXvhN68o6xXr2lD+o0dSnJCIv4bdxB09iKtO3swaMKHKu9ZFS3NGfPFf6nmVIMT+49ybM9BbBzsGD3NWxkgzZc/Bqe+wYvHvxdClH0auc+bTUMIIUS5kRgU9KabIESZNebR/jfdBCHKtKXBBU/UIYSACz3bvLiQEP9ing6FDyNQnsQtKv5cDq9LxUneb7oJZZJkagohhBBCCCGEEEIIIcoVGVNTCFFkMTExRSpnaGiIkZFRKbfm1cXHx6NQKF5YTkdHBzMzs9JvkBBCCCGEEEIIIYpEgppCiCJr3bp1kcpNnDiRSZMmlXJrXt2kSZOUM6s/T/PmzVm3bt1raJEQQgghhBBCCCGKQoKaQogiW716dZHK2dvbl3JLSsbnn39OYmLiC8uZPpmlVAghhBBCCCGEEGWDBDWFEEXWsmXLN92EEuXi4vKmmyCEEEIIIYQQQoiXIBMFCSGEEEIIIYQQQgghyhUJagohhBBCCCGEEEIIIcoVCWoKIYQQQgghhBBCCCHKFQlqCiGEEEIIIYQQQgghyhUJagohhBBCCCGEEEIIIcoVCWoKIYQQQgghhBBCCCHKFQlqCiGEEEIIIYQQQgghyhUJagohhBBCCCGEEEIIIcoVCWoKIYQQQgghhBBCCCHKFQlqCiGEEEIIIYQQQgghyhXtN90AIYQQJWPMo/1vuglCCCHKqQs927zpJghRZjWPl4/NQjyXw5tugPi3kkxNIYQQQgghhBBCCCFEuSJBTSGEEEIIIYQQQgghRLkiQU0hhBBCCCGEEEIIIUS5IkFNIYQQQgghhBBCCCFEuSJBTSGEEEIIIYQQQgghRLkiQU0hhBBCCCGEEEIIIUS5IkFNIYQQQgghhBBCCCFEuSJBTSGEEEIIIYQQQgghRLkiQU0hhBBCCCGEEEIIIUS5IkFNIYQQQgghhBBCCCFEuSJBTSGEEEIIIYQQQgghRLkiQU0hhBBCCCGEEEIIIUS5IkFNIYQQQgghhBBCCCFEuaL9phsghCiezMxMfvvtN/bs2UNYWBiamppUq1aNzp07M2zYMPT09JRlk5OTyczMxNzc/LnbnDJlCtu3b+fGjRvFasvZs2cZOnSo2nJNTU1MTU1xcnJi9OjRtGnTpljbzZeZmUlcXByVKlUCwM/Pj6lTp7J27VpatGjxUtsU4nnSHydxx/9PEu48AMDcuQqOXZqha2zw3HoJodGEHrxIcmQs2ga6WNRxoKqnKzpG+i9VLikyltADF0gMe4iGhgYVHCvj2KUZhlYVSvaAhSiGsnJ/ZCanEXrwIo+vh5OjyMLY1oJq7zbF1MGqZA9YiBK047dNPIp+yMjPJ72wbFzMI/w37eTujVsAODWoS5cBPTEyNVEpF3LlGoF7DhEVGo6Gpgb21avh2acr9jWqlcYhCFFilvv6EvXwIV96e7+w7MNHj1i7fTt/h4QA0LhePYb07k0FE5NC69yLjGTaDz/Qq1Mn+nXtqrIuISmJjbt3c/7KFTKzsnCsUgWvnj2pVa3aKx2TEOLNkExNIcqRrKwsRo4cyaJFi2jYsCGffvop//3vf6lSpQo//vgjw4YNIzMzE4Dg4GC6dOlCyJMXgNLUsWNH5s6dq/z59ttv6devH8HBwYwdO5YLFy4Ue5uRkZF0796dkydPKpc1a9aMuXPnUqNGjZJsvhAAKFIzCFq1n6TwGKq4u2DXph6ProcTvPogOdnZhdaLv3OfK6sOkBabgH27Bti+U4fYq/f4a7k/irSMYpdLjUkgaMV+Uh7E4dC+IfbtGpAUEctfy/eRkZhaqudAiMKUlfsjK0NB0Ir9xAaHYtPCiaqejclITOXKqrx7Roiy6MLxM1z443SRyqYmp+AzdwkRd0Jp09mD1u+248ZfV/lt/lKys7KU5e7euMXan5eTnppGx77daN+jM48fxrLq+0VE3LlXWocixCsLOH2aI6dOFalsUkoKXy1cyK3QUHp4evKehwcXgoP5dskSsp66H56WnZ3NL+vXk1XAsyktPZ0vFyzg9KVLdGrThgHduvE4IYGvFi4kLCrqlY5LCPFmSKamEOWIv78/586dY9GiRXTq1Em5fOjQoaxcuZIffviBrVu38sEHH3Dz5k0ePnz4Wtrl5OREz5491ZZ37NiRAQMGsGzZMlasWFGsbUZERBAaGqqyzN7eHnt7+1dpqhCFijxxlYyEVJr8pyeG1mYAmFSxItjnINEXb2HTzKnAerd3n0VDU4OGY7tiYGEKgEU9By4u3EV4YBDVuzQrVrnIU3+Tk5lFwzFdMLa1AMCshi2Xf9lD5MmrynJCvE5l5f6IOHaFtNgE6o/qjJljZQCsGlTjz3nbiDh+Bad+7qV5GoQolpycHI7tOUTAzv1FrnPyYCAJcfFM/PozrG3zrnE7x6qsmb+UiyfP0axtSwD2+W6nQkUzxk6fjK6eLgCuLZuxYPocDvvtZfj/jS/5AxLiFeTk5OB34ABb/f2LXGdvQACP4+P5YepUqlTOux9qVq3Kt0uWEHj2LJ6tWqnV2X7wIBH37xe4vZ2HDnH/4UNmTJpE3Vq1AHBr3JhJX37JrsOHmVhADzQhRNkmmZpClCOXLl0CoFUBD/APPvgAHR0dLl++/JpbVbiGDRvi6OjIX3/99aabIsQLxQTdwcyxsjJgA1Cxpi0GVqbEBN0tsE56XDKp0fFYu9ZQBmIADK3MMK9jT/TFW8UqB3ldfLWN9JQBTQCTKpZoG+qRGi2ZaOLNKAv3R25uLtGXbmHuVEUZ0ATQNTHEsUszTKtVKslDFuKVKDIV/PLlPAJ2+NPIrSkmFYs2fMiVsxdxdKqpDGgC1KznhEVla66czXsPTEtJ5UF4FC7NGikDmgDGFUyoVrsGYbdCS/RYhHhVmQoFn3//PVv27aNNs2aYm5kVqd7JixepW6uWMqAJ0MDZGRtra05dvKhW/l5kJNsPHKBP585q63Jzczl27hyudesqA5oAFU1NGdq7N87SE0yIckmCmkKUI0ZGRgBs2rRJbZ2hoSEXL15k7ty5LFq0iKlTpwJ5WZweHh7KcsHBwXz44Ye4urrSpk0bfv31V3Jzc0utzQYGBmrbP336NKNGjaJFixbUq1ePNm3aMGPGDBITE4G8sTPzx+qcOnUqTk5OyuVOTk6cPXtWua20tDTmz5+Ph4cHLi4ueHh4MG/ePNLS0ord1rNnz+Lk5MT27dvp3r079evXV57HmJgYvvrqKzp06ICLiwtNmjRh6NChal3rc3NzWbt2Le+99x4NGjQosD05OTn4+PjQuXNnXFxcaNOmDbNmzSI5ObnYbRYlQ5GWQfrjZIztLNTWGdtYkBz1qMB6mYkpABhVqqi2zsDchKyUDDISUopcDsDAwpSs1Awyk/+5ZhSpGWSlZ6LzgrELhSgNZeX+yIhLJjMhFbOatkDe39vsTAUAtu84F5otKsSbkJWVRUZaOgM+GkbfUV5oaWq9sE5aSipxMY+wrVZFbZ2tQxXuh0UAoGegj/fsabR8t51audTkFDS15COeKFsUCgWp6en8d8QIJgwZgqbmi6/R5NRUHsbGUr2AXlqO9vbcDQ9XWZadnc2yDRto4OyMezP1Xi0xjx/zOD6eBs7OQN4zJD0jb3iTTm3aFJj1KYQo+6T7uRDlSI8ePVi9ejXff/89fn5+eHp64ubmhqurK7q6uujq5n1b37FjR2JiYti0aRPjxo2jfv36AISEhDBkyBBMTU0ZP348CoUCHx8f5TicJS06OpqbN2/SuHFj5bITJ04wevRoGjduzH/+8x80NDQ4efIkmzZtIiEhgQULFtCsWTPGjRvHsmXLGDBgAE2aNClw+5mZmYwYMYLLly/Tp08fXFxcCAoKYsWKFVy4cIG1a9eio6NT7HZ//fXX9OnTh379+mFra0t6ejpeXl4kJSXh5eVFpUqVCA0NxdfXl1GjRnH48GEsLPI+7H/11Vf4+vrSvn17Bg0axN27d/Hx8SE0NJTFixcD8MUXX7Bz50569erF8OHDuX37Nr6+vly8eBFfX1+VyZ7E65GZkDdWpa6podo6XVMDstMUZKVlom2gq7JOUyfvMZqdoVCrp0jNe1HOTEorcjm9CkZUcXfh8fVwbmz6g+rd8l7K7/ifR1NLE7uWdV/2EIV4aWXl/sh6MramjpE+d/z/5MGfN8lOV6BvYUL1rs2xqCPDk4iyQ99An/9+9wVaWi8OZuZLjEsAwLSimdo6EzNT0lPTSEtNw8DQAMtK6hNjPQiPIuzWXWq5OL90u4UoDYYGBiycMaNY98Pj+HgAzCuoZzlXNDUlNS2NlNRUjAzznk07Dx/m/sOH/N+oUeTk5KjVuf9kWC5TExPWbd/OkVOnSEtPp5KVFcN696bJk89LQojyRYKaQpQjtWrVYvHixUybNo2QkBBCQkJYunQphoaGeHh4MHHiRBwdHXF2dqZRo0Zs2rSJli1bKmcKX7RoEQAbN27ExsYGgHfffZdevXq9UrvS0tJ4/Pix8neFQsHt27eZN28eOTk5TJw4Ubnut99+w8bGhtWrVyuDsB988AEDBgzg+PHjQN7YmS1btmTZsmU0atSowPE6AbZt28alS5eYOnUqw4cPV26rZs2a/PDDD2zevBkvL69iH0+TJk343//+p/x937593Lt3j5UrV6rM5G5vb8/MmTO5cOECnTp14tatW2zcuJH+/fvzzTffKMsZGRmxbNkybt26xaNHj/Dz8+Orr75i4MCByjJt27Zl5MiRbNy4kWHDhhW7zeLV5Gd7aemoPxY1tZ8EXBRZakEbw0pmaOnrEHv1HlXa1kdDQ0NZNi4kEoAcRRYmDlZFKgegb2aMfbsG3N59hosLdz1phAZ1Pmin0iVdiNelrNwfWel5X8DdO3wJDS1NarzXAjQ0iDgezN/rj+AyohMVn2RxCvGmaWhoFCuAA5CRng6Ajq76F7LaT5YpMjMxMFTP2s9Mz2DbyvUAtOnaobjNFaJUvcz9kJ9Fmf954Wm6T5IWMhQKjIDw+/fZ5u/PiH79sKhYkZhH6j0IUp/0mtq0dy/aWloMf/99NDU02H3kCD+sWMG08eOVWZxCiPJD+iYIUc60a9eOo0eP8tNPP9GzZ0+srKxITU1lz5499OzZk3PnzhVYLycnh+PHj9O2bVtlQBOgRo0atG7d+pXatGrVKtzc3JQ/7u7ujBgxQrmuefPmyrK//vor27ZtU3lBiYuLw9jYmNTU4s3sHBAQgLGxsVrgcujQoRgbGxMQEPBSx9PsmS4rXbt25fTp0yrn6ens1vx2BwYGkpuby5AhQ1Tqjxw5kl27duHg4MDBgwfR0NCgbdu2PH78WPlTt25drKysCAwMfKk2i1eUP0SCRvGqaWppYdeqHsmRj7ix6Q9SHjwmOeoR130DycnMC1JqaGkWuRxA6KGL3NpxGlMHa5wGuFO7XxtMqlhy3fcYj66FF9oWIUpNGbk/crLyMm+y0jNpOLYrlRrXpJJrDRqO7oK2gR6hBy8U2hYhygPlraZRvJstMyOT9QtX8iA8CveuHXB0qlkKrRPi9cofvupF90NOTg5L16/HqUaN53YhVzyZLT01LY2vJ0+mXYsWuDdvzpfe3hgZGrJx9+6Sa7wQ4rWRTE0hyiE9PT26du1K165dAbh69So+Pj7s2bOHmTNn4l/ArILx8fGkpqbi4OCgtq569eovHQAE6NmzJ7169SI3N5fQ0FCWL1+Ovr4+s2fPxvmZbzy1tLQIDw9nwYIF3Lp1i7CwMKKjo19qvxEREdjb26t1MdfV1cXe3p7IyMiX2q65ubnaMg0NDZYvX86lS5cICwsjLCwMhSIveym/i0v+/qpVq6ZS19TUFFPTvMkvwsLCyM3NpV27dgXuO3/cVPF6aenlXUM5imy1dTlPXoK19QseysDBoyFZ6ZlEnfpbOWGKeZ0qVHF3IfTARbQN9IpcListk4jjwRhXsaD+yHfReDLmlFWDalz+ZQ8h209SsVY/NLWLl+0gxKsoK/eHlk7eF0iW9aqiY/DPMB3aBrqYO1fh4aXbZGcq0Cogy02I8kBPP++6VhQwLFDWk4xpfX19leVpqWms/3k5Ybfu0rhNCzz7dCv9hgrxGug/GY6poGGyMp+8gxvq67PryBHuRUby9eTJJD4Znz75SVZmRmYmicnJmBgZofckoaJFw4YYG/4znIqRoSFNXFz449w50jMylPsVQpQPEtQUopxITU3l119/pV69enTq1EllXb169Zg/fz6JiYn88ccfxMUVPkNy+pOuTU8raNyZ4sjvLg55M7O3bduWvn37MmzYMDZt2qQS5Fu1ahVz587F0dGRpk2b0qlTJxo2bMi6devYXcxvSJ83wVFOTs5LjacJqHWPuXPnDoMGDUKhUNC6dWu6du1KnTp1yM3NZcKECcpy2dnqH/gLapeRkZFyfM1nyXiab4ZeBWMgb9y+Z2UmpqFloFNooERDQ4Ma3Zpj37Y+abGJ6FUwQr+iMaEHL4KmBnpmRkUulxodT25WDlYNqisDmpCX8WbdsAZ3958nNSYBYxv1wLsQpaWs3B9ZaXkfbHWM9NX2o2tsALl543JKUFOUVxUs8ibLSkpIUluXFJ+IvqEBuvr/vCekJCbx24/LeBAWSdO2LekxtF+xszyFKKssK+bdD/FPJhJ9WlxiIoYGBujr6XH577/Jys5m2rx5auV2HznC7iNHWPzll8oZ102NjdXKVTAxITc3lzQJagpR7khQU4hyQk9Pj1WrVuHq6qoW1MxXs2ZNjh8/rvYtPkDFihUxNjbm3r17ausiIiJKtK1VqlTh22+/ZcKECXz88cds3rwZbW1tMjIyWLRoES1atMDHxwdt7X/+BC1YsKDY+7Gzs+Py5csoFAqVAGZmZiYRERE0bdq0RI5nxYoVJCYm4u/vrxKgfTYIa2ubN5ZbeHg4NWrUUC6Pjo5mzpw5DB48GDs7O06cOIGLi4syezPf/v37C8ykFaVP20AXPXPjAmdxTr7/CBM7y0LrPvzrDromBphVt8kLrDyREPoAYzsL5TiERSmnqf0kkJmjHrDPzc3J/8fLHKIQL62s3B9Glc3Q0NYk9WG82n7S45LR1NEqMOApRHlhYGiAmaU59++pv5dFhUVgV+2fybAy0tOVAU23jm3pOqj362yqEKXOyNAQKwsL7hbwOeVueDg1nrwzD+ndm5RnhrBKSEpi8dq1tGnWDPfmzalgaoqJsTHa2tqEP3igtr2Hjx6ho6NDhQICnkKIsk3G1BSinNDS0qJr166cO3eOnTt3qq2Pj4/nwIEDtGzZEgMDAzSfZHnlZ2FqaGjQsWNHjh8/TkhIiLJeREREqYzj6OnpyXvvvafsGg95WaJpaWlUq1ZNJaB57do15VigWU+6MuZnSz4vi9TDw4Pk5GR+//13leUbNmwgJSWl0C7exRUfH4+BgYEyaAl5gdONGzcC/2Rotm3bFgBfX1+V+n5+fvj7+2NsbIyHhwcAS5cuVSkTEBCAt7d3sbNVRcmxrFeV+NtRpMbEK5fF3YoiLSYRqwaOhdb7//buPL6ma+/j+CfzKDKJECERxBBiCEFNjXmqaq9ypVRLi16q2ttBn1af2/mq3lZVS2uqKIJGqStUDQ81hRpiFiTNgAQRIfNwnj9OckiDShGJft+vl9er2XvtvdfaPSvZ57fX+q2kbYc59eMuCguufVYvHksgPS6FmsENy1TO3sMZayc7zu2NoaBo4SAwLpiSvO8Ulg422Fd3vgutFSmbitA/LKytcGtUm9RjiWQkX5uRkJ16hYtH43Ft5F1ihLNIZdSkVSCnjhzn/NlrqXlOHj7OxXMpNA1uadr2Y9jyooBmJwU05YEVHBjIwePHSbouVVX0sWOcTUmhfatWAPjVrk2zhg1L/GtYty4A1d3dadawIdZWVtja2BDUtCn7Dh0i4exZ0/lSLl5kz8GDBDVtavr+JCKVh0ZqilQir7/+OtHR0bz66qusWrWKjh074ujoSHx8PBEREeTl5TF58mTgWl7IxYsXc+HCBfr378+ECRPYvHkzTz75JCNGjMDCwoKwsDAcHBxumK/mTk2aNImtW7cyY8YMevXqRe3atQkMDCQiIgJHR0d8fX2JiYlh2bJlpoeIjIwMqlatikvRlJNVq1ZhMBgYOLD0A/ugQYNYsWIFH330ESdOnCAgIIBDhw4RERFB8+bNGTRo0F1pR6dOndi4cSOjR4+mV69eXLlyhR9++IH4+HhTnQEaNWrEoEGDCAsLIyUlhXbt2plWRH/00Udp2LAh/v7+dO3alblz55KUlES7du1ISkriu+++o2bNmowcOfKu1FnKrlbHAFL2neLgnHV4dQigMD/fmN/Syw2P5saRt1mpV0j/LQWnOh7YuVYBwLtTU44u2syRsJ9xa1yH7LSrJP1yGJcGNfFoXtd0/tspZ2Zujl//thxdtIn9X/0Xz1b1MRgMJP8aQ9b5y/gP6oh5GVcPFbkbKkL/APDtFcTl2HMcnLOOmu0bYW5uQdKOI5hbWeDTo1X53hSRO5SacoH4k7HUrueLq4dxxHPH3iHs376beR/P4KGeD5Ofl8cvazdR08ebwLbGz3jKmXMc2LEHW3s7PL1rsX/77lLnbt6+daltIhVZ8oULHD99Gv+6danubuwPj3TrxpaoKN6dPp1+ISHk5uXx44YN1K1dm45/YkbWkwMGcCQmhnc+/5zeXbpgaWFB5P/9H9ZWVvy9f/+73SQRKQcKaopUIq6urkRERDB//nw2bNjAjBkzyMrKwsPDgx49ejBmzBg8PDwAaNeuHb1792bTpk3s3LmTHj16UKNGDRYvXsyUKVOYPXs21tbWpsDfrFmz7np93d3deeWVV3jzzTeZPHky8+fPZ9q0aXz44Yd8//335Obm4uXlxXPPPYefnx/jx49n586d9OzZEz8/P4YNG0ZERAQHDx4kODi41Pmtra2ZP38+M2bMIDIyklWrVuHp6cno0aMZO3bsn86p+XtDhgwhPT2dZcuW8d577+Hu7k7z5s354osvGDJkCDt37mTEiBEAvPPOO/j4+LBs2TI2btxIzZo1+cc//sGoUaMA44jZadOmMXv2bH744Qc2btyIq6srPXr0YMKECbi733wap9xb1o52NHu2N6f/G8VvP+/DwtoSt0a18e0VZFqYJz0umRPLf6HB3zqYgjbuAT74D+5E4paDnF4ThZWjHbU6BuDduVmJUWO3Xa5JHZo+05P4jfuJW29czdmxphtNnuqGa4Na5XhHRK6pKP3D1sWRwDF9iVu7h8Sth8AAVX2q49sryHRNkcoi7sRpVsxdxMBnhpqCmg5OVRg16QXWLF7Bhh8isba2plGLpvQc1B/LoueauOOnAMjOzGLF3EU3PLeCmlLZHD11iq8WLmTsk0+agppVq1ThXy++yLcRESxdswYbKytaN2tG6IABf+o5v5qbG++9/DLfrVzJjxs2YDAYaOTnR+ijj5quKSKVi5nhVittiIhIpTFk05T7XQUREamkRvl1u99VEKmw2qRpLJDIrTg1a3a/q3BXXJpe9nUeyovL+An3uwoVkpJGiIiIiIiIiIiISKWiV04iUsL58+dvq5y9vT0ODg73uDZ3Li0tjby8vD8sZ2VlhbOz872vkIiIiIiIiIjcMQU1RaSEDh063Fa5cePGMX78+Htcmzs3fvx408rqt9KmTRvCwsLKoUYiIiIiIiIicqcU1BSREubNm3db5by9ve9xTe6O1157jfT09D8s5+TkVA61EREREREREZG7QUFNESmhffv297sKd1VAQMD9roKIiIiIiIiI3GVaKEhEREREREREREQqFQU1RUREREREREREpFJRUFNEREREREREREQqFQU1RUREREREREREpFJRUFNEREREREREREQqFQU1RUREREREREREpFJRUFNEREREREREREQqFQU1RUREREREREREpFJRUFNEREREREREREQqFQU1RUREREREREREpFKxvN8VEBERERGR+6tNmr4WiNxMlHP+/a6CSIXW7X5XQP6yNFJTREREREREREREKhUFNUVERERERERERKRSUVBTREREREREREREKhUFNUVERERERERERKRSUVBTREREREREREREKhUFNUVERERERERERKRSUVBTREREREREREREKhUFNUVERERERERERKRSUVBTREREREREREREKhUFNUVERERERERERKRSUVBTREREREREREREKhUFNUVERERERERERKRSUVBTREREREREREREKhXL+10BkYomNzeX+fPns3r1auLj4zE3N8fHx4devXrx1FNPYWNjYyp79epVcnNzcXV1veU5X3/9dVasWMHx48fLVJddu3YxfPjwUtvNzc1xcnLC39+fZ599lo4dO5bpvMVyc3O5dOkS1atXByAiIoJJkyaxYMECgoOD/9Q5K6rw8HDmzp1LSkoKAQEBvPXWWzRo0OB+V0sqmOzUK5yO3M3l0+cAcG1YC9/erbF2tLvlcZfjkon7aS9Xky5gaWeNW6Pa1OnWAisH2xLlriRdIG7dr6THp2BmZkZVX098e7fGvlrVEuVyr2YR99NeUo8lUJiXj2NNN3x6BuFUu9rdbbBIGVSU/rHvyx+5mnix1HXcAurQeOjDd9hKkTv39eLFnElJ4X8nTPjDsikXL7JgxQqOxMQA0LJJE4YNHEjVKlVKlHvj4485FR9f6vg2zZvz8siRpp/3Hz1KxNq1nE5IwNzcnPo+Pgzp14/6Pj531iiRu+iH+eFcTE5h5Gvj/7DspfMXiQxfSezxkwD4N2tM78EDcHAq2UdOH41hw4o1nE1IwtbOloDWzek2sC/WtjYlysUcPMrm1es5E5eAmbkZ3nV96PZYH7z9fO5a+0Sk/CioKXKd/Px8Ro4cyf79+3n00UcZPHgwBQUF7Nmzh//85z9s3LiRBQsWYG1tzaFDhxg7dixTp0695wHA7t270717d9PPBQUFnD59mkWLFjF69GjCwsJo1apVmc6ZlJTEM888w+jRo3nssccAaN26NVOmTMHPz++u1v9+i4iIYPLkyTz++OM0btyY2bNnM3LkSCIjI3F0dLzf1ZMKIi8zh+g5azEUFFKrUwAGg4HErYfIOHeJ5s/3w9zC4obHpZ0+y6F567G0s8a7SzPMzMxI2n6EtNPnCBzTBys748N05vnLRH+zFgtrS2o/HAhA0rYjHPh6DS3HD8DGyR6A/Jw8or9ZS+6VTLweaoylrQ1ndh7l4Jy1NB/bDwdPl/K5ISLXqSj9w2AwkJlyGbfGtXFrUqfEtWydHe7hHRC5PRt37GDD9u00qlfvD8teycjgX59/TkFBAY9060ZhYSE/bthA/JkzfPDPf2JpafyqZjAYSExOJqhZM4IDA0uco9p1L9aPxMTw0VdfUcvTk7/3709BQQHrtm7lfz/7jH+9+CL1FNiUCuDXrTv5dcsOfPz/+PtG5tUM5k6ZQUFBPh17hWAwFPLL2k0kJ55hzFsvYVHUR04fjWHe1C/xquNNz7/15/KlNHas30JSbAKjJr2AmZkZALHHT7Lgs6/xqOlJ98f7UlBQSNTGX5jz7+mMev0FatWtc6vqiEgFpKCmyHUiIyOJiopi+vTp9OjRw7R9+PDhzJ49m48//pjly5czdOhQTpw4QUpKSrnUy9/fnwEDBpTa3r17dwYPHszMmTP55ptvynTOxMRE4uLiSmzz9vbG29v7TqpaIS1dupR69erxwQcfAODq6srEiRPZs2cPXbp0ub+Vkwoj6ZfD5FzOpNULA7D3cAagSq1qHJr7E8l7T1Kjtf8Njzv14y7MzM0IHN0HOzcnANya1Gbv56tI2BxN3d6tjefffoTC3HwCn+uNY003AJz9arL/y9UkbTtsKpf4fwfJunCZpqN64ezrCUC1Zj7snvo9iVsP4j+o0728DSI3VFH6R86lqxTm5uPWuDbVWzxYL+CkcissLCRi3TqWR0be9jH/3biR1LQ0Pp40iVqext/39erU4f0ZM9i8axfdHnoIgPOpqeTk5NC6WTM6tWlz0/N9GxGBm7Mz7//zn9hYWwPQqU0bXnr/fZasXs2b48bdQQtF7kxhYSH/t3o9G1euve1jtv20mcuX0hj3zqt41DT2ES/fOnz7yVfs3RZF687tAVi7dCXOri6MfH08VtZWAFR1dWH1wuXEHDpGg6aNAFizeAVVXZwZ/eZErG2MfaRF+9ZMe/NDfo74LyP++fzdbLKIlAPl1BS5zr59+wB4qOgh8npDhw7FysqK/fv3l3Otbi4wMBBfX18OHDhwv6tSoWVnZ5OamkpWVpbpZwArK6v7WS2pYM5Hn8bZ19MUsAFwqVcTu2pOnI+OveEx2ZeukpmchkcLP1PABsC+mjOujbxJ3nvyWtnUK1g62JgCNgBVarljaW9DZvIlwDgaJ3nfSVz9a5kCmgDWVezx7d0aJ5/qd6u5ImVSEfoHQEZKGgB27iWnpIvcT7l5ebz273+zbM0aOrZujauz820dt23vXhrXr28KaAI0a9iQGh4ebN+717Qt4exZALyq3/xvwNXMTH5LSqJtixamgCaAs5MTjerV43jsjfupSHnIy83jy/+dysYfImneLogqLrf3O/zgrr34+tczBTQB6jXxx83Tg4O79pnO7VDFkaDObU0BTQDfopGg5+KTAMjKyORcwhkCWjc3BTQBHKtWwaeBH/En4+60mSJyHyioKXIdBwfj1LXw8PBS++zt7dm7dy9Tpkxh+vTpTJo0CTCO4gwJCTGVO3ToEM888wwtWrSgY8eOzJo1C4PBcM/qbGdnV+r8O3bsYNSoUQQHB9OkSRM6duzI5MmTSU9PB4zTsYtzdU6aNAl/f3/Tdn9/f3bt2mU6V1ZWFp988gkhISEEBAQQEhLC1KlTTQHCsoqKiiI0NJSgoCBatGjBkCFD2LhxY6lyERERPProozRt2pS2bdvy+uuvlxgZO3XqVPz9/fnuu+9M23Jzc+nfvz/BwcEkJyebtvfu3ZvU1FQ+/PBDoqOj+eSTT6hbt26ptAGJiYn4+/szf/58/v73vxMQEMCIESMAY/7UTz75hF69etG0aVNatGjBE088wYYNG0rVfeXKlTz++OM0b96cTp06MXnyZFJTU8vUPilfeVk5ZKdexdHLrdQ+xxpuXD1TOn8fQG56BgAO1UtPCbdzrUJ+Rg45l41l7NycyM/MIffqtb6Tl5lDfnYuVkU5CXMuXSX3cibO9WoCxiBnQW4eADXbNrzpaDiRe6mi9A/AFOC09zB+IS7uHyL3U15eHpnZ2bz49NP8Y9gwzM3/+CvW1cxMUi5coO4NZsj4ensTm5Bg+vn3Qc3snJxSx9jb2vLpm2/S97pn0mJXrl7F4jbqJHKv5Ofnk5OVzeCxT/H4qFAszG+csuR6WRmZXDp/kZo+tUrtq1m7FmfjEwGwsrbiqZfG0LlfjxJlzhYFM53djSkabOxsmfDBG7Tv2aXU+TKvZmBuoT4iUhlp+rnIdR555BHmzZvHv//9byIiIujWrRvt2rWjRYsWWFtbY1305rt79+6cP3+e8PBwxowZQ9OmTQGIiYlh2LBhODk58fzzz5OXl8fcuXPJzc29J/VNTk7mxIkTtGzZ0rTtl19+4dlnn6Vly5a88IIxh8y2bdsIDw/n8uXLTJs2jdatWzNmzBhmzpzJ4MGDb5qPMzc3l6effpr9+/fz2GOPERAQQHR0NN988w2//vorCxYsKNNox9OnTzN69GgaNWrExIkTAePU8Oeff56FCxcSFBQEwBdffMH06dPp2bMnTzzxBMnJySxcuJCoqCiWL1+Oq6sr48eP5+eff+azzz6jZ8+euLu7M2PGDE6cOMGnn35qWvwI4Omnn2bdunWEh4ezbNky6tevz1dffWXKVfV706ZNIyQkhP79+2NjY4PBYGD06NEcOXKEJ598ktq1a3Pu3DmWLFnCuHHj+OGHH0yB4W+++YapU6fSqlUrXnrpJS5evMi3337L0aNHWbx4MZaWlrfVPilfuZczAbAuytt3PWsnOwqy8sjPysXSzrrEPnMr42eoIKd0YCUv0/ilM/dKFjZVHajVKYDUYwkcD99C3b7GqbSnI/dgbmGOV/vGAGRdNL54sHKw5XTkbs7tPkFBdh62blWo26cNbo0evPQQUvFVlP4BkJmShoWNJafX7OZ8dCyFufnYujpSp3tLPALr3p0Gi5SRvZ0dn0+ejMVNcsveSGpaGgCuVUuPWHNxciIzK4uMzEwc7O1JPHsWW1tbFkREsH3fPnJycvBwd2dIv348VPQMZ25uTg0Pj1Ln+i0piROxsQQ2avTnGidyF9ja2fLiR/9Tpj6SfukyAE4uzqX2VXF2Ijszi6zMLOzsSy5Wd+lCKrHHTrI2/Ac8vGrQqIXxe5q5uTnu1UsvuHgu4QzxJ2OpH9CwDC0SkYpCQU2R69SvX58vvviCN954g5iYGGJiYvjqq6+wt7cnJCSEcePG4evrS8OGDWnevDnh4eG0b9/eNOJv+vTpACxZsoQaNWoA0LNnTx599NE7qldWVlaJkX55eXmcOnWKqVOnUlhYyLjrciTNnz+fGjVqMG/ePFMQdujQoQwePJitW7cCxtyZ7du3Z+bMmTRv3vyG+ToBvv/+e/bt28ekSZNMIxaHDh1KvXr1+Pjjj1m6dCmhoaG33Y4NGzaQmZnJF198YQrc9enThyFDhnD06FGCgoJISEhgxowZPPfcc7z88sumY/v27ctjjz3GzJkzeeONN7CxseGDDz4gNDSUKVOm8NRTTzF79mz69u1Lnz59Slx327ZtpBV9eTAYDEyZMgUvL6+b1rNGjRpMnTrVlFT8wIED7Nmzh3/9618MGTLEVK558+aMGjWK7du34+/vz+XLl5k+fbpphG7xg1utWrV488032bZtG3Xr1r2t9kn5Kh7tZWFV+s+ieVHwuyAvv1TQxr66Mxa2Vlw4/Bu1Ojc1fWYK8vK5FGMcIVCYlw+ArbMj3l2acerHnez9fFXRyc1oNLSLacptfrbxBchvP+/DzMIcv37BYGZG4tZDHFm4gYCne+BSNIpTpLxUlP4BkJGcRkFOPvnZufgP6kh+di5nth/hePgWDIUG5dmU+8LMzKxMwRq4NtrS2tq61D7rohfGOXl5OGAcqZmdnU1Gdjbjhg0jIyuLyM2b+Xz+fAoKCm6aZzM7J4cZYWEADOjWrUz1E7mb/kwfySlOF2VdegCFZdG2vNzcEkHNzKsZ/OfVd4qOs6Zf6GM3PL5YbnYO389eCEDHPl3LVD8RqRg0xlrkd7p06cKmTZv49NNPGTBgANWqVSMzM5PVq1czYMAAoqKibnhcYWEhW7dupXPnzqaAJoCfnx8dOnS4ozrNmTOHdu3amf516tSJp59+2rSvzXUPs7NmzeL7778v8ZB86dIlHB0dyczMLNN1N27ciKOjY6nA5fDhw3F0dLzhtPFb8SzKGfXuu+9y6NAhAFxcXFi3bh3Dhg0DYP369RQWFhISEkJqaqrpn7u7O40aNWLz5s2m87Vs2ZJhw4axatUqXnjhBVxdXXn77bdLXHPRokWMHTsWFxcX3njjDQwGA6+88grZ2dkkJyezZMkSzhZN6yoWFBRk+vINxtylu3fvNq0SD8YV6AsLCwHIyDBOn9y+fTs5OTmEhoaWeHB75JFHiIiIoE2bNmVqn5Sj4hQOZrcu9nvmFhZ4PdSEq0kXOR6+hYxzqVw9c5FjizdTmGsM1pgVTWeKW7+Xkz/swKm2B/6DO9FgUEeq1HLn2OL/4+JR4zTDwnzjZyo/O5fA0X2o3rIe1Vv4EfhsbyztbIj76de7016Rsqgg/QOgRusG+D0STOOhD+PepA6ereoTOKYvtq6OxEbuxlD0e1mkoitOHXT988bNdHvoIZ4ZNIiXR46kTWAgD7dty3svv4yHuzsLf/jB9DxyvZzcXKZ8/TW/JSUxoHt3Gtevf9fbIHIvmf703EYfKWZmZsYTY4xT3D1qejJv6lcc3nPjtQdyc3JZ+PlsziWcoVOfrvj617sb1RaRcqaRmiI3YGNjQ58+fUwj/g4fPszcuXNZvXo1b7/9NpE3WNkyLS2NzMxMateuXWpf3bp1yxwAvN6AAQN49NFHMRgMxMXF8fXXX2Nra8sHH3xAw4Ylp0pYWFiQkJDAtGnTOHnyJPHx8SXyS5ZFYmIi3t7epaaYW1tb4+3tTVJSUpnO16tXL9avX8+aNWtYs2YN1apVo3PnzgwcONA09Tw+Ph6gxIjI6/2+LhMnTmTdunUkJiby6aefUvW6aVwJCQmmexQWFoa9vT0JCQmEhYXx3nvv0bBhQ959911mzJhRIhB9o+nflpaWLFmyhKioKH777Tfi4+NNCw4VfzEpvh916tQpcayNjQ1NmjT5U+2T8mFhY7zvhXkFpfYV5huDL5a2N/5/Uzsk0DRarHjBFNdGtajVKYC4dXuxtLMhPyuXxK2HcKzlRtORPTErym1WrZkP+79cTcyKbbjUH4SFlTEY7t6kDlZ2NqZrWNpZ49qwFin7TlGQm4fFLUYdiNxtFaV/mFtaUCO49PRACytLPFr4Eb/hAJkpaTh4KoWHVHy2Nsbf8TdKUZSbZxwdbW9rC0D3G7wct7ayolPr1iyPjCTh7FnqXDcDJSMzk49mzeLE6dM83LYtQ/r1uxdNELmnbGyNfSTvBn0kv2gGgW1RHylm52BP0zYtAGgS1Jzpb33EmiUraBIUWKJcVmYWCz/7mviTsbTsGEy3x/reiyaISDlQUFOkSGZmJrNmzaJJkyb06FEy0XSTJk345JNPSE9PZ8uWLVy6dOkmZ7m2svb1bvQGvSyKp4uDcWX2zp078/jjj/PUU08RHh6Oj4+PqeycOXOYMmUKvr6+BAUF0aNHDwIDAwkLC+PHH38s03VvtcBRYWFhmQNwVlZWfP755xw/fpz169ezZcsWIiIiWL58OS+//DLPPfec6V599dVXpR5UbuS3337j4kXjIhU//fRTiannW7ZsIS8vj1GjRmFvb8wF9+qrrxIdHc2yZctwdnamSpUqpVa7//30mNTUVAYNGkRKSgoPPfQQISEhNGzYEC8vLwYNGlTinsCt3yiXtX1SPmyqOgLG/H6/l5uehYWd1U0DiWZmZvj1bYN356ZkXUjHpqoDti6OxP20F8zNsHF2IDM5DUN+IdWa1TUFbMA4ks0j0I/YtXvIPH8ZayfjYmVWDqU/G9aOdmAw5idUUFPKU0XpH441bh6stHIwTj8sKBoBKlLRubsYF9BKK1rE8XqX0tOxt7MzBT5vpmqVKoBxVGaxy1eu8MGXXxKXmEi3hx5i1ODBZRrpJlJRVHUz9pErl6+U2nclLR1bezusbW/eR6ysrfAPbMLOn7eQceUqDlWMf8sy0q8w/z8zORefRFDn9jwyfJD6iEglpunnIkVsbGyYM2cOYUW5h26kXr16mJmZ3TAY5eLigqOjI7/99lupfYmJiXe1rrVq1eL9998nLS2Nl156ifyikTI5OTlMnz6d4OBgVq9ezXvvvcfw4cMJDAwstfr27fDy8iIhIYG8vJKLPOTm5pKYmFhidOPtOHPmDHv27MHf359x48axdOlSNm3ahI+PD3PmzDFdE4x5Ldu3b1/iX15eHjbXPeDn5+fzxhtv4OzszLPPPktkZCTr168vdd3rVyG1trbms88+w9nZmbS0NJ544gns7OxKHXO9RYsWkZiYyNdff83MmTOZOHEivXv3Nt33YsX3o3g0ZrHc3FwmTJjAzz//XKb2SfmxtLPGxtXxhqs4Xz17kSpe7jc9NuXAadJOn8Xa0Y6qPtWxdTE+NF+OO4ejlxsWVpaYWxZ9BgtLvygwGAqL/wMHT2fMLM3JTEkrVS770lXMrSxuGPAUuZcqSv/IuZzBns9WEL9xf6lyWReMC0oUn1+konOwt6eamxuxN3hGjE1IwK9o5k9qWhovvf8+y28wSyipaCZONTdj3tms7GxTQLPPww/z7JAhCtZIpWVnb4ezuytnfyvdR87EJ+LlY1w88fzZZD555R12bfylVLmc7GwwM8OyKCd0Tna2KaDZrntnBjz1hPqISCWnoKZIEQsLC/r06UNUVBQrV64stT8tLY1169bRvn177OzsTIGy60fnde/ena1btxITE2M6LjEx8Z7kSezWrRv9+vUzTY0H4yjRrKwsfHx8SqzsffToUVMu0OJAXPFoxFuNIg0JCeHq1at89913JbYvWrSIjIwMunTpUqY6z5w5kxEjRpSYDu/p6YmHh4fpfj788MOAMTfo9SNFjx49ytixY/n2229N2+bMmcPhw4eZNGkSEyZMwM/Pj3/961+mRYFat26Nubk54eHhJdp54cIFcooS9EdGRppGet5M8fnq1buWa8dgMLBwoTGxePE9bd++PVZWVixdurRE3deuXcvatWvL3D4pX+5N6pB26gyZ59NM2y6dPEPW+XSqNfO96XFJ2w5z6sddFBZc+4xdPJZAelwKNYumytp7OGPtZMe5vTEU5F0Lhhfk5ZO87xSWDjbGRVWsrXBrVJvUY4lkJF8bEZ6deoWLR+NxbeRdYiSbSHmpCP3DpqoDBdm5nN19wrSoFkB22lWSf42hqp8n1lVKr9AuUlEFBwZy8PhxU3ASIPrYMc6mpNC+aFVzV2dnMrOy2Lh9O5lZ10ZLX0hNZfOuXTRp0AAXJycA5ixdSlxiIr27dOGp6/KAi1RWTVoFcurIcc6fvdZHTh4+zsVzKTQNbgmAq4c72VlZ7N68nYLrBhxcupDK4T0H8PH3w6ZoQMqPYcuLApqd6PP3geXbGBG5JzT9XOQ6r7/+OtHR0bz66qusWrWKjh074ujoSHx8PBEREeTl5TF58mTgWt7FxYsXc+HCBfr378+ECRPYvHkzTz75JCNGjMDCwoKwsDAcHBxumDPpTk2aNImtW7cyY8YMevXqRe3atQkMDCQiIgJHR0d8fX2JiYlh2bJlpqBhRkYGVatWxaVo2tOqVaswGAwMHFj6D/ugQYNYsWIFH330ESdOnCAgIIBDhw4RERFB8+bNS0y9vh2hoaGsXLmS0NBQBg8eTNWqVdm5cydRUVG88MILADRo0IBhw4YRFhZGWloa3bp1Iy0tjYULF+Lg4MCECRMAOHXqFF988QUdOnSgb19jHpy3336b4cOH8/777/Pxxx/ToEEDQkNDCQsL49lnn6Vr166cPn2apUuX4uHhwRNPPMEnn3zCk08+yfz5829a706dOhEWFsbo0aP529/+Rl5eHpGRkRw6dAhzc3PTQkFubm784x//4LPPPuOZZ56hW7dunDt3joULFxIcHExISAjm5ua31T4pf7U6BpCy7xQH56zDq0MAhfn5xjx/Xm54NDeuqJyVeoX031JwquOBnatx2p93p6YcXbSZI2E/49a4DtlpV0n65TAuDWri0bwuAGbm5vj1b8vRRZvY/9V/8WxVH4PBQPKvMWSdv4z/oI6YF71o8O0VxOXYcxycs46a7Rthbm5B0o4jmFtZ4NOj1f25OfKXV1H6h98jbTm6cBMHZq3BM6gBBbl5nNlxFDNzc+r1b3t/bo7IbUi+cIHjp0/jX7cu1d2No5sf6daNLVFRvDt9Ov1CQsjNy+PHDRuoW7s2HYtyjQOMfOIJpn7zDW99+ild27cnKzubdVu2YGFuzjNFz2KJ586xdfdu7O3s8KlViy03WNjyZquki1QEqSkXiD8ZS+16vrh6GPtIx94h7N++m3kfz+Chng+Tn5fHL2s3UdPHm8C2xmciCwsL+g59jO9nf8fsj6bTvF0QmRmZ7NqwFXNzc/oNfRyAlDPnOLBjD7b2dnh612L/9t2l6tC8fevya7CI3BVmhlslzRP5C8rMzGT+/Pls2LCB+Ph4srKy8PDwoEuXLowZMwYPDw8A8vLyeOWVV9i0aRM2NjZs3boVGxsbYmNjmTJlClFRUVhbW5sCf7NmzeL48eNlqsuuXbsYPnw448aNY/z48Tcss2zZMt58803atWvH/PnzOXv2LB9++CG7du0iNzcXLy8v+vbti5+fH+PHj+fzzz+nZ8+eALz33ntERERgMBhYuXIle/bsYdKkSSxYsIDg4GAArl69yowZM4iMjOTChQt4enrSt29fxo4d+6dyQu7du5cZM2Zw5MgRrl69io+PD4MHDyY0NNQ0/cNgMLB48WKWLFlCbGwsVapUoWXLlkyYMIH69etTWFjI0KFDOXLkCKtXry6xONOrr77KypUrmTVrFl26dKGwsJD58+cTHh5OUlISbm5u9OjRg3HjxlG1alXCw8NZtWoVc+bM4cKFC3Tt2vWG93vZsmXMnTuXpKQkqlatSpMmTRg/fjxvvfUWeXl5JfKVLl++nAULFhAbG0u1atXo3r0748ePx9HR8bba92cN2TTlTx8rRpnnL3P6v1FcjkvGwtoSlwZe+PYKMuazBJL3nuTE8l9o8LcOVG95beRuyoHTJG45SNbFdKwc7fAIrIt352ZYWJd8d5h26izxG/dzJekCAI413fDu0gzXBrVKlMtKvULc2j1cOnUGDFDVpzq+vYKw93C+tzdA5BYqSv+4eDSe+M3RZJxNxdzKAmffGvj0bIl9Ned7ewMecF+79brfVXhg/OPtt6nm6sr/XveicvOuXXy1cCFjn3ySLkXPWABnkpP5NiKCo6dOYWNlRYsmTQgdMMCUL7PYnuhoVvz0E3FJSVhbWdG4fn2GPvIIXtWrA7D+l1+YHR5+y3qFT59+F1v51xLlrHy9d9Mnr7yDs7sLI1+79ry995coVsxdxMBnhtKyw7UA/IVzKaxZvIK4E6ewtramQbPG9BzUHwenkn3k0O59bFmzgZSks1jZ2ODXqD7dHuuLu6fxu1vUpm38GLbslvV6d+5nd6+RfzHdare831W4Ky5Nn3a/q3BTLuM1+OVGFNQUkb88g8HwQOTTUVBTRET+LAU1RW5OQU2RW1NQ895TUPPGlJhLRP7yHoSApoiIiIiIiMhfiXJqipSz8+fP31Y5e3t7HBwc7nFt7lxaWlqp1dFvxMrKCmdn53tfIRERERERERF54CmoKVLOOnTocFvlbpVHsyIZP368aWX1W2nTpg1hYWHlUCMRERERERERedApqClSzubNm3db5by9ve9xTe6O1157jfT09D8s5+TkVA61EREREREREZG/AgU1RcpZ+/bt73cV7qqAgID7XQURERERERER+YvRQkEiIiIiIiIiIiJSqSioKSIiIiIiIiIiIpWKgpoiIiIiIiIiIiJSqSioKSIiIiIiIiIi8oB58cUX8ff359KlS6X2vfbaa/j7+zN27NhS+zIyMmjcuDEvvfRSeVQTgISEhDIfo6CmiIiIiIiIiIjIA6Z169YAREdHl9q3a9curKys2L17NwUFBSX2RUdHU1BQQHBwcLnU88svv+SZZ54p83EKaoqIiIiIiIiIiDxgbhbUjIuL4+zZs/Tr148rV65w+PDhEvv37t0LQJs2bcqlnjt27CgVWL0dCmqKiIiIiIiIiIg8YOrXr4+zszMHDhwosX3nzp2Ym5szZswYzMzM2LFjR4n9+/btw8PDA19f3/KsbpkpqCkiIiIiIiIiIvKAMTMzIygoiIMHD5bYvnPnTho2bIiPjw/+/v7s3LnTtM9gMBAdHW0apVlQUMDs2bPp2bMnAQEBdOjQgbfffpvU1FTTMbt27cLf358VK1bQv39/mjZtyqRJkwCIiooiNDSUoKAgWrRowZAhQ9i4caPp2JCQEKKiokhKSsLf35/p06ffdvsU1BQREREREREREXkAtW7dmrS0NOLi4gBj0DIqKsqUL7Nt27bs3buX3NxcAE6dOsXly5dp27YtABMnTuTjjz+mQYMGTJo0iV69erF8+XL+/ve/k56eXuJa77zzDm3atOGVV16ha9eunD59mtGjR2MwGJg4cSL//Oc/ycrK4vnnn2fPnj0AvPHGG9StWxcXFxemTJlC9+7db7ttlnd6c0REREREREREROTe6Nq16y33b9iw4ab7ikdcHjhwAB8fH06cOMHFixdNQcvg4GDmz5/P3r17adu2Lfv27TMdt2XLFtatW8fw4cP5n//5H9M5W7VqxYsvvsjMmTN59dVXS2x/6623TD9/8803ZGZm8sUXX+Dq6gpAnz59GDJkCEePHiUoKIhu3brx7bffkpOTw4ABA8p0XxTUFBF5QCx5+NU/LiQiIiIiZdLtfldARMqFy/gJ97sKN/fDqj99aMOGDalSpQrR0dEMGDCAnTt3YmFhQVBQEGAcyWlhYUFUVJRp1Kanpyd16tRh3rx5AIwePbrEOXv37s20adPYsGFDiaBm8cJExTw9PQF49913GTlyJAEBAbi4uLBu3bo/3Z7rKagpIiIiIiIiIiJSQd1qJOYfMTc3p1WrVqbFgnbu3ElAQACOjo4AVKlShUaNGvHrr78CsH//ftPU9MTERJycnHB3dy91Xj8/P7Zs2VJiW/FozGK9evVi/fr1rFmzhjVr1lCtWjU6d+7MwIEDTUHVO6GcmiIiIiIiIiIiIg+ooKAgjh07Rk5ODnv27DFNPS8WHBxMdHQ0qampxMbGmqasGwyGm56zsLAQKyurEtssLCxK/GxlZcXnn3/OqlWrGD9+PDVr1iQiIoLQ0FC+/vrrO26XgpoiIiIiIiIiIiIPqDZt2pCXl0dkZCTp6emmkZjF2rZtS2ZmJv/9738xGAym/V5eXqSnp3PhwoVS54yNjaVGjRq3vO6ZM2fYs2cP/v7+jBs3jqVLl7Jp0yZ8fHyYM2fOHbdLQU0REREREREREZEHVJMmTbC3t2fJkiVYWVnRqlWrEvtbtWqFpaUlK1aswMvLC29vbwBCQkIAmDVrVonyP//8M7GxsXTp0uWW1505cyYjRowgOTnZtM3T0xMPDw/Mza+FJM3NzSksLCxzu5RTU0RERERERERE5AFlaWlJixYt2LZtG0FBQdja2pbY7+DgQNOmTdm3bx8DBw40be/cuTNdu3ZlwYIFJCcnExwcTFxcHIsXL8bb27vUAkK/FxoaysqVKwkNDWXw4MFUrVqVnTt3EhUVxQsvvGAq5+rqyu7du5k7dy6tWrUiMDDwttqlkZoiIiIiIiIiIiIPsOKVyX+fT7NY8ZTz4nyaAGZmZkybNo0JEyZw7NgxPvzwQ3766ScGDx7M8uXLcXJyuuU1/f39mTdvHnXq1GHu3Lm8++67xMTE8NZbb/H888+byo0aNQofHx/+85//8P333992m8wMt8r6KSIiIiIiIiIiIlLBaKSmiIiIiIiIiIiIVCoKaoqIiIiIiIiIiEiloqCmiIiIiIiIiIiIVCoKaoqIiIiIiIiIiEiloqCmiIiIiIiIiIiIVCoKaoqIiIiIiIiIiEiloqCmiIiIiIiIiIiIVCoKaoqIiIiIiIiIiEiloqCmiIiIiIiIiIiIVCoKaoqIiIiIiIiIiEiloqCmiIiIiIiIiIiIVCoKaoqIiIiIiIiIiEiloqCmiIiIiIiIiIiIVCr/D/aCbUxkB8LZAAAAAElFTkSuQmCC" }, "metadata": {}, "output_type": "display_data" @@ -747,14 +755,14 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 42, "outputs": [], "source": [], "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-06-01T21:33:10.551684Z", - "start_time": "2024-06-01T21:33:10.526374Z" + "end_time": "2024-09-02T20:22:48.063127Z", + "start_time": "2024-09-02T20:22:48.057729Z" } }, "id": "a6ebe5c2fae387cb" diff --git a/docs/examples/Multiple_Models_Interface_With_Inprocessor.ipynb b/docs/examples/Multiple_Models_Interface_With_Inprocessor.ipynb index c7e553ab..5248516d 100644 --- a/docs/examples/Multiple_Models_Interface_With_Inprocessor.ipynb +++ b/docs/examples/Multiple_Models_Interface_With_Inprocessor.ipynb @@ -2,15 +2,24 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": 43, "id": "248cbed8", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:33:30.937709Z", - "start_time": "2024-06-01T21:33:30.565281Z" + "end_time": "2024-09-02T20:23:30.522896Z", + "start_time": "2024-09-02T20:23:30.368916Z" } }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The autoreload extension is already loaded. To reload it, use:\n", + " %reload_ext autoreload\n" + ] + } + ], "source": [ "%matplotlib inline\n", "%load_ext autoreload\n", @@ -19,12 +28,12 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 44, "id": "7ec6cd08", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:33:30.946427Z", - "start_time": "2024-06-01T21:33:30.938578Z" + "end_time": "2024-09-02T20:23:30.524378Z", + "start_time": "2024-09-02T20:23:30.422115Z" } }, "outputs": [], @@ -37,12 +46,12 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 45, "id": "b8cb69f2", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:33:30.956352Z", - "start_time": "2024-06-01T21:33:30.946839Z" + "end_time": "2024-09-02T20:23:30.524696Z", + "start_time": "2024-09-02T20:23:30.445845Z" } }, "outputs": [ @@ -96,24 +105,15 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 46, "id": "7a9241de", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:33:32.962108Z", - "start_time": "2024-06-01T21:33:30.957091Z" + "end_time": "2024-09-02T20:23:30.524757Z", + "start_time": "2024-09-02T20:23:30.469103Z" } }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "WARNING:root:No module named 'tempeh': LawSchoolGPADataset will be unavailable. To install, run:\n", - "pip install 'aif360[LawSchoolGPA]'\n" - ] - } - ], + "outputs": [], "source": [ "import os\n", "from pprint import pprint\n", @@ -156,7 +156,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 47, "outputs": [], "source": [ "DATASET_SPLIT_SEED = 42\n", @@ -166,8 +166,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-06-01T21:33:32.986634Z", - "start_time": "2024-06-01T21:33:32.962998Z" + "end_time": "2024-09-02T20:23:30.525485Z", + "start_time": "2024-09-02T20:23:30.492758Z" } }, "id": "ce359a052925eb3a" @@ -206,7 +206,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 48, "outputs": [], "source": [ "ROOT_DIR = os.path.join('docs', 'examples')\n", @@ -226,15 +226,15 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-06-01T21:33:33.013254Z", - "start_time": "2024-06-01T21:33:32.987966Z" + "end_time": "2024-09-02T20:23:30.535111Z", + "start_time": "2024-09-02T20:23:30.513357Z" } }, "id": "af22ee06f1e3eb1a" }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 49, "outputs": [], "source": [ "config = create_config_obj(config_yaml_path=config_yaml_path)\n", @@ -243,8 +243,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-06-01T21:33:33.037761Z", - "start_time": "2024-06-01T21:33:33.013366Z" + "end_time": "2024-09-02T20:23:30.574124Z", + "start_time": "2024-09-02T20:23:30.535629Z" } }, "id": "65181f72484bb92b" @@ -259,12 +259,12 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 50, "id": "6c55c6a0", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:33:33.104224Z", - "start_time": "2024-06-01T21:33:33.037836Z" + "end_time": "2024-09-02T20:23:30.629340Z", + "start_time": "2024-09-02T20:23:30.558957Z" } }, "outputs": [ @@ -273,7 +273,7 @@ "text/plain": " decile1b decile3 lsat ugpa zfygpa\n0 10.0 10.0 44.0 3.5 1.33\n1 5.0 4.0 29.0 3.5 -0.11\n2 8.0 7.0 37.0 3.4 0.63\n3 8.0 7.0 43.0 3.3 0.67\n4 3.0 2.0 41.0 3.3 -0.67", "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
decile1bdecile3lsatugpazfygpa
010.010.044.03.51.33
15.04.029.03.5-0.11
28.07.037.03.40.63
38.07.043.03.30.67
43.02.041.03.3-0.67
\n
" }, - "execution_count": 8, + "execution_count": 50, "metadata": {}, "output_type": "execute_result" } @@ -287,7 +287,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 51, "outputs": [], "source": [ "column_transformer = ColumnTransformer(transformers=[\n", @@ -298,15 +298,15 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-06-01T21:33:33.144708Z", - "start_time": "2024-06-01T21:33:33.105113Z" + "end_time": "2024-09-02T20:23:30.665380Z", + "start_time": "2024-09-02T20:23:30.627233Z" } }, "id": "ebbef5eaf9dc0943" }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 52, "outputs": [], "source": [ "# Create a binary race column for in-processing since aif360 inprocessors use a sensitive attribute during their learning.\n", @@ -323,8 +323,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-06-01T21:33:33.183437Z", - "start_time": "2024-06-01T21:33:33.128358Z" + "end_time": "2024-09-02T20:23:30.710200Z", + "start_time": "2024-09-02T20:23:30.649326Z" } }, "id": "97ed4609effbf53f" @@ -363,7 +363,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 53, "outputs": [], "source": [ "import copy\n", @@ -448,15 +448,15 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-06-01T21:33:45.201967Z", - "start_time": "2024-06-01T21:33:33.185198Z" + "end_time": "2024-09-02T20:23:30.736321Z", + "start_time": "2024-09-02T20:23:30.709989Z" } }, "id": "4535191384245578" }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 54, "outputs": [], "source": [ "# Define a name of a sensitive attribute for the in-processing intervention.\n", @@ -473,8 +473,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-06-01T21:33:45.241046Z", - "start_time": "2024-06-01T21:33:45.201718Z" + "end_time": "2024-09-02T20:23:30.755270Z", + "start_time": "2024-09-02T20:23:30.734486Z" } }, "id": "bd1ee45da7516769" @@ -497,12 +497,12 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 55, "id": "197eadaa", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:35:11.092550Z", - "start_time": "2024-06-01T21:33:45.240130Z" + "end_time": "2024-09-02T20:25:10.310280Z", + "start_time": "2024-09-02T20:23:30.755471Z" } }, "outputs": [ @@ -512,7 +512,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "a98934f403fd46c68235a0b22e113cfe" + "model_id": "e9825783cb784e5eaf57ecc1bf9c0378" } }, "metadata": {}, @@ -524,7 +524,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "c33b280794fb4e299167634e4514c58d" + "model_id": "83a4fbf07a9543e694cc941ad0ef798b" } }, "metadata": {}, @@ -549,21 +549,21 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 56, "id": "bea94683", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:35:11.141796Z", - "start_time": "2024-06-01T21:35:11.096365Z" + "end_time": "2024-09-02T20:25:10.330267Z", + "start_time": "2024-09-02T20:25:10.296606Z" } }, "outputs": [ { "data": { - "text/plain": " Metric overall male_priv male_priv_correct \\\n0 Aleatoric_Uncertainty 0.005905 0.004883 0.003296 \n1 IQR 0.010355 0.009922 0.008073 \n2 Mean_Prediction 0.024633 0.021842 0.015440 \n3 Overall_Uncertainty 0.020169 0.018285 0.012946 \n4 Statistical_Bias 0.098458 0.089847 0.004210 \n5 Std 0.009615 0.008868 0.006229 \n6 Epistemic_Uncertainty 0.014264 0.013402 0.009650 \n7 Label_Stability 0.989087 0.989696 0.992222 \n8 Jitter 0.008198 0.007553 0.005556 \n9 TPR 0.990612 0.991163 1.000000 \n10 TNR 0.141204 0.133028 1.000000 \n11 PPV 0.908711 0.918534 1.000000 \n12 FNR 0.009388 0.008837 0.000000 \n13 FPR 0.858796 0.866972 0.000000 \n14 Accuracy 0.902404 0.912162 1.000000 \n15 F1 0.947895 0.953468 1.000000 \n16 Selection-Rate 0.976923 0.979730 0.986574 \n17 Sample_Size 4160.000000 2368.000000 2160.000000 \n\n male_priv_incorrect male_dis \n0 0.021364 0.007256 \n1 0.029115 0.010926 \n2 0.088320 0.028322 \n3 0.073729 0.022659 \n4 0.979146 0.109838 \n5 0.036276 0.010603 \n6 0.052365 0.015403 \n7 0.963462 0.988281 \n8 0.028294 0.009050 \n9 0.000000 0.989861 \n10 0.000000 0.149533 \n11 0.000000 0.895642 \n12 1.000000 0.010139 \n13 1.000000 0.850467 \n14 0.000000 0.889509 \n15 0.000000 0.940397 \n16 0.908654 0.973214 \n17 208.000000 1792.000000 ", - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Metricoverallmale_privmale_priv_correctmale_priv_incorrectmale_dis
0Aleatoric_Uncertainty0.0059050.0048830.0032960.0213640.007256
1IQR0.0103550.0099220.0080730.0291150.010926
2Mean_Prediction0.0246330.0218420.0154400.0883200.028322
3Overall_Uncertainty0.0201690.0182850.0129460.0737290.022659
4Statistical_Bias0.0984580.0898470.0042100.9791460.109838
5Std0.0096150.0088680.0062290.0362760.010603
6Epistemic_Uncertainty0.0142640.0134020.0096500.0523650.015403
7Label_Stability0.9890870.9896960.9922220.9634620.988281
8Jitter0.0081980.0075530.0055560.0282940.009050
9TPR0.9906120.9911631.0000000.0000000.989861
10TNR0.1412040.1330281.0000000.0000000.149533
11PPV0.9087110.9185341.0000000.0000000.895642
12FNR0.0093880.0088370.0000001.0000000.010139
13FPR0.8587960.8669720.0000001.0000000.850467
14Accuracy0.9024040.9121621.0000000.0000000.889509
15F10.9478950.9534681.0000000.0000000.940397
16Selection-Rate0.9769230.9797300.9865740.9086540.973214
17Sample_Size4160.0000002368.0000002160.000000208.0000001792.000000
\n
" + "text/plain": " Metric overall male_priv male_priv_correct \\\n0 Overall_Uncertainty 0.020169 0.018285 0.012946 \n1 Aleatoric_Uncertainty 0.005905 0.004883 0.003296 \n2 Std 0.009615 0.008868 0.006229 \n3 Statistical_Bias 0.098458 0.089847 0.004210 \n4 IQR 0.010355 0.009922 0.008073 \n5 Mean_Prediction 0.024633 0.021842 0.015440 \n6 Epistemic_Uncertainty 0.014264 0.013402 0.009650 \n7 Jitter 0.008198 0.007553 0.005556 \n8 Label_Stability 0.989087 0.989696 0.992222 \n9 TPR 0.990612 0.991163 1.000000 \n10 TNR 0.141204 0.133028 1.000000 \n11 PPV 0.908711 0.918534 1.000000 \n12 FNR 0.009388 0.008837 0.000000 \n13 FPR 0.858796 0.866972 0.000000 \n14 Accuracy 0.902404 0.912162 1.000000 \n15 F1 0.947895 0.953468 1.000000 \n16 Selection-Rate 0.976923 0.979730 0.986574 \n17 Sample_Size 4160.000000 2368.000000 2160.000000 \n\n male_priv_incorrect male_dis \n0 0.073729 0.022659 \n1 0.021364 0.007256 \n2 0.036276 0.010603 \n3 0.979146 0.109838 \n4 0.029115 0.010926 \n5 0.088320 0.028322 \n6 0.052365 0.015403 \n7 0.028294 0.009050 \n8 0.963462 0.988281 \n9 0.000000 0.989861 \n10 0.000000 0.149533 \n11 0.000000 0.895642 \n12 1.000000 0.010139 \n13 1.000000 0.850467 \n14 0.000000 0.889509 \n15 0.000000 0.940397 \n16 0.908654 0.973214 \n17 208.000000 1792.000000 ", + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Metricoverallmale_privmale_priv_correctmale_priv_incorrectmale_dis
0Overall_Uncertainty0.0201690.0182850.0129460.0737290.022659
1Aleatoric_Uncertainty0.0059050.0048830.0032960.0213640.007256
2Std0.0096150.0088680.0062290.0362760.010603
3Statistical_Bias0.0984580.0898470.0042100.9791460.109838
4IQR0.0103550.0099220.0080730.0291150.010926
5Mean_Prediction0.0246330.0218420.0154400.0883200.028322
6Epistemic_Uncertainty0.0142640.0134020.0096500.0523650.015403
7Jitter0.0081980.0075530.0055560.0282940.009050
8Label_Stability0.9890870.9896960.9922220.9634620.988281
9TPR0.9906120.9911631.0000000.0000000.989861
10TNR0.1412040.1330281.0000000.0000000.149533
11PPV0.9087110.9185341.0000000.0000000.895642
12FNR0.0093880.0088370.0000001.0000000.010139
13FPR0.8587960.8669720.0000001.0000000.850467
14Accuracy0.9024040.9121621.0000000.0000000.889509
15F10.9478950.9534681.0000000.0000000.940397
16Selection-Rate0.9769230.9797300.9865740.9086540.973214
17Sample_Size4160.0000002368.0000002160.000000208.0000001792.000000
\n
" }, - "execution_count": 14, + "execution_count": 56, "metadata": {}, "output_type": "execute_result" } @@ -591,12 +591,12 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 57, "id": "f94a20dc", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:35:11.255086Z", - "start_time": "2024-06-01T21:35:11.142133Z" + "end_time": "2024-09-02T20:25:10.358433Z", + "start_time": "2024-09-02T20:25:10.326262Z" } }, "outputs": [], @@ -606,12 +606,12 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 58, "id": "b04d06cf", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:35:11.255329Z", - "start_time": "2024-06-01T21:35:11.179995Z" + "end_time": "2024-09-02T20:25:10.420526Z", + "start_time": "2024-09-02T20:25:10.350536Z" } }, "outputs": [], @@ -629,12 +629,12 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 59, "id": "be6ace22", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:35:11.278187Z", - "start_time": "2024-06-01T21:35:11.219033Z" + "end_time": "2024-09-02T20:25:10.462769Z", + "start_time": "2024-09-02T20:25:10.372614Z" } }, "outputs": [], @@ -644,14 +644,14 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 60, "outputs": [ { "data": { "text/plain": " Metric male race male&race \\\n0 Accuracy_Difference -0.022653 -0.178877 -0.157307 \n1 Aleatoric_Uncertainty_Difference 0.002373 0.018372 0.021097 \n2 Aleatoric_Uncertainty_Ratio 1.485922 6.916304 5.985519 \n3 Epistemic_Uncertainty_Difference 0.002001 0.009870 0.014769 \n4 Epistemic_Uncertainty_Ratio 1.149317 1.773535 2.128039 \n5 Equalized_Odds_FNR 0.001302 0.001559 0.003110 \n6 Equalized_Odds_FPR -0.016505 0.076428 0.045638 \n7 IQR_Difference 0.001005 0.010219 0.012572 \n8 Jitter_Difference 0.001498 0.009698 0.013220 \n9 Label_Stability_Ratio 0.998571 0.988954 0.984495 \n10 Label_Stability_Difference -0.001415 -0.010944 -0.015355 \n11 Overall_Uncertainty_Difference 0.004374 0.028242 0.035866 \n12 Overall_Uncertainty_Ratio 1.239210 2.780147 3.070293 \n13 Statistical_Parity_Difference -0.006515 -0.011852 -0.014432 \n14 Disparate_Impact 0.993350 0.987890 0.985245 \n15 Std_Difference 0.001734 0.009583 0.013289 \n16 Std_Ratio 1.195550 2.175074 2.552202 \n17 Equalized_Odds_TNR 0.016505 -0.076428 -0.045638 \n18 Equalized_Odds_TPR -0.001302 -0.001559 -0.003110 \n\n Model_Name \n0 ExponentiatedGradientReduction \n1 ExponentiatedGradientReduction \n2 ExponentiatedGradientReduction \n3 ExponentiatedGradientReduction \n4 ExponentiatedGradientReduction \n5 ExponentiatedGradientReduction \n6 ExponentiatedGradientReduction \n7 ExponentiatedGradientReduction \n8 ExponentiatedGradientReduction \n9 ExponentiatedGradientReduction \n10 ExponentiatedGradientReduction \n11 ExponentiatedGradientReduction \n12 ExponentiatedGradientReduction \n13 ExponentiatedGradientReduction \n14 ExponentiatedGradientReduction \n15 ExponentiatedGradientReduction \n16 ExponentiatedGradientReduction \n17 ExponentiatedGradientReduction \n18 ExponentiatedGradientReduction ", "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Metricmaleracemale&raceModel_Name
0Accuracy_Difference-0.022653-0.178877-0.157307ExponentiatedGradientReduction
1Aleatoric_Uncertainty_Difference0.0023730.0183720.021097ExponentiatedGradientReduction
2Aleatoric_Uncertainty_Ratio1.4859226.9163045.985519ExponentiatedGradientReduction
3Epistemic_Uncertainty_Difference0.0020010.0098700.014769ExponentiatedGradientReduction
4Epistemic_Uncertainty_Ratio1.1493171.7735352.128039ExponentiatedGradientReduction
5Equalized_Odds_FNR0.0013020.0015590.003110ExponentiatedGradientReduction
6Equalized_Odds_FPR-0.0165050.0764280.045638ExponentiatedGradientReduction
7IQR_Difference0.0010050.0102190.012572ExponentiatedGradientReduction
8Jitter_Difference0.0014980.0096980.013220ExponentiatedGradientReduction
9Label_Stability_Ratio0.9985710.9889540.984495ExponentiatedGradientReduction
10Label_Stability_Difference-0.001415-0.010944-0.015355ExponentiatedGradientReduction
11Overall_Uncertainty_Difference0.0043740.0282420.035866ExponentiatedGradientReduction
12Overall_Uncertainty_Ratio1.2392102.7801473.070293ExponentiatedGradientReduction
13Statistical_Parity_Difference-0.006515-0.011852-0.014432ExponentiatedGradientReduction
14Disparate_Impact0.9933500.9878900.985245ExponentiatedGradientReduction
15Std_Difference0.0017340.0095830.013289ExponentiatedGradientReduction
16Std_Ratio1.1955502.1750742.552202ExponentiatedGradientReduction
17Equalized_Odds_TNR0.016505-0.076428-0.045638ExponentiatedGradientReduction
18Equalized_Odds_TPR-0.001302-0.001559-0.003110ExponentiatedGradientReduction
\n
" }, - "execution_count": 18, + "execution_count": 60, "metadata": {}, "output_type": "execute_result" } @@ -662,8 +662,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-06-01T21:35:11.303850Z", - "start_time": "2024-06-01T21:35:11.262112Z" + "end_time": "2024-09-02T20:25:10.464134Z", + "start_time": "2024-09-02T20:25:10.397045Z" } }, "id": "a286da0406c6401d" @@ -686,12 +686,12 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 61, "id": "435b9d98", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:35:11.364635Z", - "start_time": "2024-06-01T21:35:11.304469Z" + "end_time": "2024-09-02T20:25:10.464496Z", + "start_time": "2024-09-02T20:25:10.422328Z" } }, "outputs": [], @@ -703,21 +703,21 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 62, "id": "5efb1bf2", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:35:11.415554Z", - "start_time": "2024-06-01T21:35:11.351668Z" + "end_time": "2024-09-02T20:25:10.549301Z", + "start_time": "2024-09-02T20:25:10.451428Z" } }, "outputs": [ { "data": { - "text/html": "\n
\n", + "text/html": "\n
\n", "text/plain": "alt.Chart(...)" }, - "execution_count": 20, + "execution_count": 62, "metadata": {}, "output_type": "execute_result" } @@ -731,21 +731,21 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 63, "id": "0eb8528e", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:35:11.482682Z", - "start_time": "2024-06-01T21:35:11.415968Z" + "end_time": "2024-09-02T20:25:10.567667Z", + "start_time": "2024-09-02T20:25:10.498599Z" } }, "outputs": [ { "data": { - "text/html": "\n
\n", + "text/html": "\n
\n", "text/plain": "alt.Chart(...)" }, - "execution_count": 21, + "execution_count": 63, "metadata": {}, "output_type": "execute_result" } @@ -759,14 +759,14 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 63, "outputs": [], "source": [], "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-06-01T21:35:11.482823Z", - "start_time": "2024-06-01T21:35:11.480109Z" + "end_time": "2024-09-02T20:25:10.569016Z", + "start_time": "2024-09-02T20:25:10.548460Z" } }, "id": "713fe55ec5bf095c" diff --git a/docs/examples/Multiple_Models_Interface_With_Multiple_Test_Sets.ipynb b/docs/examples/Multiple_Models_Interface_With_Multiple_Test_Sets.ipynb index 3c1e710e..687a9f73 100644 --- a/docs/examples/Multiple_Models_Interface_With_Multiple_Test_Sets.ipynb +++ b/docs/examples/Multiple_Models_Interface_With_Multiple_Test_Sets.ipynb @@ -6,8 +6,8 @@ "id": "68ae1475", "metadata": { "ExecuteTime": { - "end_time": "2024-01-29T12:52:42.959537Z", - "start_time": "2024-01-29T12:52:42.670342Z" + "end_time": "2024-09-02T20:26:19.371842Z", + "start_time": "2024-09-02T20:26:18.985913Z" } }, "outputs": [], @@ -23,8 +23,8 @@ "id": "9a1a7163", "metadata": { "ExecuteTime": { - "end_time": "2024-01-29T12:52:42.968782Z", - "start_time": "2024-01-29T12:52:42.958869Z" + "end_time": "2024-09-02T20:26:19.379991Z", + "start_time": "2024-09-02T20:26:19.372136Z" } }, "outputs": [], @@ -65,8 +65,8 @@ "id": "dec1f3f0", "metadata": { "ExecuteTime": { - "end_time": "2024-01-29T12:52:44.264678Z", - "start_time": "2024-01-29T12:52:42.968730Z" + "end_time": "2024-09-02T20:26:21.662332Z", + "start_time": "2024-09-02T20:26:19.380344Z" } }, "outputs": [ @@ -129,8 +129,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-01-29T12:52:44.285701Z", - "start_time": "2024-01-29T12:52:44.264810Z" + "end_time": "2024-09-02T20:26:21.667924Z", + "start_time": "2024-09-02T20:26:21.645617Z" } }, "id": "189c313d70be1af3" @@ -167,12 +167,12 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 5, "id": "79dcac74", "metadata": { "ExecuteTime": { - "end_time": "2024-01-29T12:52:44.392671Z", - "start_time": "2024-01-29T12:52:44.367898Z" + "end_time": "2024-09-02T20:26:21.698253Z", + "start_time": "2024-09-02T20:26:21.668285Z" } }, "outputs": [], @@ -194,12 +194,12 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 6, "id": "abc8bd6f", "metadata": { "ExecuteTime": { - "end_time": "2024-01-29T12:52:44.415396Z", - "start_time": "2024-01-29T12:52:44.391594Z" + "end_time": "2024-09-02T20:26:21.711528Z", + "start_time": "2024-09-02T20:26:21.690944Z" } }, "outputs": [], @@ -235,14 +235,14 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 7, "outputs": [ { "data": { "text/plain": " juv_fel_count juv_misd_count juv_other_count priors_count \\\n0 0.0 -2.340451 1.0 -15.010999 \n1 0.0 0.000000 0.0 0.000000 \n2 0.0 0.000000 0.0 0.000000 \n3 0.0 0.000000 0.0 6.000000 \n4 0.0 0.000000 0.0 7.513697 \n\n age_cat_25 - 45 \n0 1 \n1 1 \n2 0 \n3 1 \n4 1 ", "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
juv_fel_countjuv_misd_countjuv_other_countpriors_countage_cat_25 - 45
00.0-2.3404511.0-15.0109991
10.00.0000000.00.0000001
20.00.0000000.00.0000000
30.00.0000000.06.0000001
40.00.0000000.07.5136971
\n
" }, - "execution_count": 5, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -254,14 +254,15 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "start_time": "2024-01-29T12:52:44.286801Z" + "end_time": "2024-09-02T20:26:21.747513Z", + "start_time": "2024-09-02T20:26:21.712593Z" } }, "id": "30a74059" }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 8, "outputs": [], "source": [ "column_transformer = ColumnTransformer(transformers=[\n", @@ -272,14 +273,15 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "start_time": "2024-01-29T12:52:44.317039Z" + "end_time": "2024-09-02T20:26:21.774525Z", + "start_time": "2024-09-02T20:26:21.747643Z" } }, "id": "66d8d02378f28371" }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 9, "outputs": [], "source": [ "base_flow_dataset = preprocess_dataset(data_loader=data_loader,\n", @@ -291,7 +293,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "start_time": "2024-01-29T12:52:44.337332Z" + "end_time": "2024-09-02T20:26:21.814712Z", + "start_time": "2024-09-02T20:26:21.772089Z" } }, "id": "3737429ccf1869c" @@ -318,8 +321,8 @@ "id": "a711e1af", "metadata": { "ExecuteTime": { - "end_time": "2024-01-29T12:52:44.466527Z", - "start_time": "2024-01-29T12:52:44.414104Z" + "end_time": "2024-09-02T20:26:21.828222Z", + "start_time": "2024-09-02T20:26:21.803449Z" } }, "outputs": [], @@ -358,8 +361,8 @@ "id": "899e6ab4", "metadata": { "ExecuteTime": { - "end_time": "2024-01-29T12:52:44.553020Z", - "start_time": "2024-01-29T12:52:44.436965Z" + "end_time": "2024-09-02T20:26:22.068297Z", + "start_time": "2024-09-02T20:26:21.827751Z" } }, "outputs": [], @@ -389,8 +392,8 @@ "id": "db8df420", "metadata": { "ExecuteTime": { - "end_time": "2024-01-29T12:52:44.577601Z", - "start_time": "2024-01-29T12:52:44.554193Z" + "end_time": "2024-09-02T20:26:22.091693Z", + "start_time": "2024-09-02T20:26:22.068604Z" } }, "outputs": [ @@ -398,7 +401,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Current session uuid: 8d31eaab-5d6d-4830-9b23-c29355efa90b\n" + "Current session uuid: 63495db7-e074-4bb0-b19a-e66b35264d41\n" ] } ], @@ -418,8 +421,8 @@ "id": "46961cf7", "metadata": { "ExecuteTime": { - "end_time": "2024-01-29T12:53:04.256266Z", - "start_time": "2024-01-29T12:52:44.577900Z" + "end_time": "2024-09-02T20:26:50.405956Z", + "start_time": "2024-09-02T20:26:22.091953Z" } }, "outputs": [ @@ -428,10 +431,10 @@ "output_type": "stream", "text": [ "Analyze multiple models: 0%|\u001B[31m \u001B[0m| 0/2 [00:00\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
MetricModel_NameModel_ParamsDataset_NameNum_EstimatorsTest_Set_IndexTagRecord_Create_Date_TimeSession_UuidPreprocessing_Techniques...sex&race_dis_incorrectsex&race_privsex&race_priv_correctsex&race_priv_incorrectsex_dissex_dis_correctsex_dis_incorrectsex_privsex_priv_correctsex_priv_incorrect
2AccuracyRandomForestClassifier{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w...COMPAS_Without_Sensitive_Attributes500OK2024-01-29 12:53:00.7248d31eaab-5d6d-4830-9b23-c29355efa90bone hot encoder and scaler...0.0000000.7015211.0000000.0000000.7041421.0000000.0000000.6777251.0000000.000000
3AccuracyRandomForestClassifier{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w...COMPAS_Without_Sensitive_Attributes501OK2024-01-29 12:53:00.7288d31eaab-5d6d-4830-9b23-c29355efa90bone hot encoder and scaler...0.0000000.7015211.0000000.0000000.7041421.0000000.0000000.6777251.0000000.000000
6Aleatoric_UncertaintyRandomForestClassifier{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w...COMPAS_Without_Sensitive_Attributes500OK2024-01-29 12:53:00.7248d31eaab-5d6d-4830-9b23-c29355efa90bone hot encoder and scaler...0.9273440.9077140.8974440.9318510.9057280.8977310.9247620.9147130.8992450.947244
7Aleatoric_UncertaintyRandomForestClassifier{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w...COMPAS_Without_Sensitive_Attributes501OK2024-01-29 12:53:00.7288d31eaab-5d6d-4830-9b23-c29355efa90bone hot encoder and scaler...0.9273440.9077140.8974440.9318510.9057280.8977310.9247620.9147130.8992450.947244
10Epistemic_UncertaintyRandomForestClassifier{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w...COMPAS_Without_Sensitive_Attributes500OK2024-01-29 12:53:00.7248d31eaab-5d6d-4830-9b23-c29355efa90bone hot encoder and scaler...0.0056480.0058030.0054550.0066220.0061790.0062170.0060880.0052610.0047770.006279
11Epistemic_UncertaintyRandomForestClassifier{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w...COMPAS_Without_Sensitive_Attributes501OK2024-01-29 12:53:00.7288d31eaab-5d6d-4830-9b23-c29355efa90bone hot encoder and scaler...0.0056480.0058030.0054550.0066220.0061790.0062170.0060880.0052610.0047770.006279
14F1RandomForestClassifier{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w...COMPAS_Without_Sensitive_Attributes500OK2024-01-29 12:53:00.7248d31eaab-5d6d-4830-9b23-c29355efa90bone hot encoder and scaler...0.0000000.5602241.0000000.0000000.6859301.0000000.0000000.4925371.0000000.000000
15F1RandomForestClassifier{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w...COMPAS_Without_Sensitive_Attributes501OK2024-01-29 12:53:00.7288d31eaab-5d6d-4830-9b23-c29355efa90bone hot encoder and scaler...0.0000000.5602241.0000000.0000000.6859301.0000000.0000000.4925371.0000000.000000
18FNRRandomForestClassifier{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w...COMPAS_Without_Sensitive_Attributes500OK2024-01-29 12:53:00.7248d31eaab-5d6d-4830-9b23-c29355efa90bone hot encoder and scaler...1.0000000.4680850.0000001.0000000.3106060.0000001.0000000.5600000.0000001.000000
19FNRRandomForestClassifier{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w...COMPAS_Without_Sensitive_Attributes501OK2024-01-29 12:53:00.7288d31eaab-5d6d-4830-9b23-c29355efa90bone hot encoder and scaler...1.0000000.4680850.0000001.0000000.3106060.0000001.0000000.5600000.0000001.000000
22FPRRandomForestClassifier{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w...COMPAS_Without_Sensitive_Attributes500OK2024-01-29 12:53:00.7248d31eaab-5d6d-4830-9b23-c29355efa90bone hot encoder and scaler...1.0000000.2041420.0000001.0000000.2828510.0000001.0000000.1911760.0000001.000000
23FPRRandomForestClassifier{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w...COMPAS_Without_Sensitive_Attributes501OK2024-01-29 12:53:00.7288d31eaab-5d6d-4830-9b23-c29355efa90bone hot encoder and scaler...1.0000000.2041420.0000001.0000000.2828510.0000001.0000000.1911760.0000001.000000
26IQRRandomForestClassifier{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w...COMPAS_Without_Sensitive_Attributes500OK2024-01-29 12:53:00.7248d31eaab-5d6d-4830-9b23-c29355efa90bone hot encoder and scaler...0.0545530.0528410.0501800.0590940.0550710.0545800.0562400.0507160.0468550.058835
27IQRRandomForestClassifier{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w...COMPAS_Without_Sensitive_Attributes501OK2024-01-29 12:53:00.7288d31eaab-5d6d-4830-9b23-c29355efa90bone hot encoder and scaler...0.0545530.0528410.0501800.0590940.0550710.0545800.0562400.0507160.0468550.058835
30JitterRandomForestClassifier{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w...COMPAS_Without_Sensitive_Attributes500OK2024-01-29 12:53:00.7248d31eaab-5d6d-4830-9b23-c29355efa90bone hot encoder and scaler...0.0960730.0799470.0634060.1188250.0767790.0688730.0955950.0953050.0691250.150360
31JitterRandomForestClassifier{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w...COMPAS_Without_Sensitive_Attributes501OK2024-01-29 12:53:00.7288d31eaab-5d6d-4830-9b23-c29355efa90bone hot encoder and scaler...0.0960730.0799470.0634060.1188250.0767790.0688730.0955950.0953050.0691250.150360
34Label_StabilityRandomForestClassifier{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w...COMPAS_Without_Sensitive_Attributes500OK2024-01-29 12:53:00.7248d31eaab-5d6d-4830-9b23-c29355efa90bone hot encoder and scaler...0.8683230.8935360.9177240.8366880.8967100.9087060.8681600.8729860.9096500.795882
35Label_StabilityRandomForestClassifier{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w...COMPAS_Without_Sensitive_Attributes501OK2024-01-29 12:53:00.7288d31eaab-5d6d-4830-9b23-c29355efa90bone hot encoder and scaler...0.8683230.8935360.9177240.8366880.8967100.9087060.8681600.8729860.9096500.795882
38Mean_PredictionRandomForestClassifier{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w...COMPAS_Without_Sensitive_Attributes500OK2024-01-29 12:53:00.7248d31eaab-5d6d-4830-9b23-c29355efa90bone hot encoder and scaler...0.4942370.5736800.5906080.5338950.5107690.5120220.5077850.5754800.5942580.535992
39Mean_PredictionRandomForestClassifier{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w...COMPAS_Without_Sensitive_Attributes501OK2024-01-29 12:53:00.7288d31eaab-5d6d-4830-9b23-c29355efa90bone hot encoder and scaler...0.4942370.5736800.5906080.5338950.5107690.5120220.5077850.5754800.5942580.535992
\n

20 rows × 29 columns

\n" + "text/plain": " Metric Model_Name \\\n2 Accuracy RandomForestClassifier \n3 Accuracy RandomForestClassifier \n6 Aleatoric_Uncertainty RandomForestClassifier \n7 Aleatoric_Uncertainty RandomForestClassifier \n10 Epistemic_Uncertainty RandomForestClassifier \n11 Epistemic_Uncertainty RandomForestClassifier \n14 F1 RandomForestClassifier \n15 F1 RandomForestClassifier \n18 FNR RandomForestClassifier \n19 FNR RandomForestClassifier \n22 FPR RandomForestClassifier \n23 FPR RandomForestClassifier \n26 IQR RandomForestClassifier \n27 IQR RandomForestClassifier \n30 Jitter RandomForestClassifier \n31 Jitter RandomForestClassifier \n34 Label_Stability RandomForestClassifier \n35 Label_Stability RandomForestClassifier \n38 Mean_Prediction RandomForestClassifier \n39 Mean_Prediction RandomForestClassifier \n\n Model_Params Virny_Random_State \\\n2 {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... 42 \n3 {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... 42 \n6 {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... 42 \n7 {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... 42 \n10 {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... 42 \n11 {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... 42 \n14 {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... 42 \n15 {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... 42 \n18 {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... 42 \n19 {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... 42 \n22 {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... 42 \n23 {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... 42 \n26 {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... 42 \n27 {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... 42 \n30 {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... 42 \n31 {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... 42 \n34 {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... 42 \n35 {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... 42 \n38 {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... 42 \n39 {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... 42 \n\n Runtime_In_Mins Dataset_Name Num_Estimators \\\n2 0.229215 COMPAS_Without_Sensitive_Attributes 50 \n3 0.229215 COMPAS_Without_Sensitive_Attributes 50 \n6 0.229215 COMPAS_Without_Sensitive_Attributes 50 \n7 0.229215 COMPAS_Without_Sensitive_Attributes 50 \n10 0.229215 COMPAS_Without_Sensitive_Attributes 50 \n11 0.229215 COMPAS_Without_Sensitive_Attributes 50 \n14 0.229215 COMPAS_Without_Sensitive_Attributes 50 \n15 0.229215 COMPAS_Without_Sensitive_Attributes 50 \n18 0.229215 COMPAS_Without_Sensitive_Attributes 50 \n19 0.229215 COMPAS_Without_Sensitive_Attributes 50 \n22 0.229215 COMPAS_Without_Sensitive_Attributes 50 \n23 0.229215 COMPAS_Without_Sensitive_Attributes 50 \n26 0.229215 COMPAS_Without_Sensitive_Attributes 50 \n27 0.229215 COMPAS_Without_Sensitive_Attributes 50 \n30 0.229215 COMPAS_Without_Sensitive_Attributes 50 \n31 0.229215 COMPAS_Without_Sensitive_Attributes 50 \n34 0.229215 COMPAS_Without_Sensitive_Attributes 50 \n35 0.229215 COMPAS_Without_Sensitive_Attributes 50 \n38 0.229215 COMPAS_Without_Sensitive_Attributes 50 \n39 0.229215 COMPAS_Without_Sensitive_Attributes 50 \n\n Test_Set_Index Tag Record_Create_Date_Time ... sex&race_dis_incorrect \\\n2 0 OK 2024-09-02 20:26:47.054 ... 0.000000 \n3 1 OK 2024-09-02 20:26:47.059 ... 0.000000 \n6 0 OK 2024-09-02 20:26:47.054 ... 0.927137 \n7 1 OK 2024-09-02 20:26:47.059 ... 0.927137 \n10 0 OK 2024-09-02 20:26:47.054 ... 0.005608 \n11 1 OK 2024-09-02 20:26:47.059 ... 0.005608 \n14 0 OK 2024-09-02 20:26:47.054 ... 0.000000 \n15 1 OK 2024-09-02 20:26:47.059 ... 0.000000 \n18 0 OK 2024-09-02 20:26:47.054 ... 1.000000 \n19 1 OK 2024-09-02 20:26:47.059 ... 1.000000 \n22 0 OK 2024-09-02 20:26:47.054 ... 1.000000 \n23 1 OK 2024-09-02 20:26:47.059 ... 1.000000 \n26 0 OK 2024-09-02 20:26:47.054 ... 0.055292 \n27 1 OK 2024-09-02 20:26:47.059 ... 0.055292 \n30 0 OK 2024-09-02 20:26:47.054 ... 0.095809 \n31 1 OK 2024-09-02 20:26:47.059 ... 0.095809 \n34 0 OK 2024-09-02 20:26:47.054 ... 0.877267 \n35 1 OK 2024-09-02 20:26:47.059 ... 0.877267 \n38 0 OK 2024-09-02 20:26:47.054 ... 0.493096 \n39 1 OK 2024-09-02 20:26:47.059 ... 0.493096 \n\n sex&race_priv sex&race_priv_correct sex&race_priv_incorrect sex_dis \\\n2 0.701521 1.000000 0.000000 0.704142 \n3 0.701521 1.000000 0.000000 0.704142 \n6 0.907297 0.896741 0.932106 0.906422 \n7 0.907297 0.896741 0.932106 0.906422 \n10 0.005486 0.005082 0.006436 0.005881 \n11 0.005486 0.005082 0.006436 0.005881 \n14 0.560224 1.000000 0.000000 0.685930 \n15 0.560224 1.000000 0.000000 0.685930 \n18 0.468085 0.000000 1.000000 0.310606 \n19 0.468085 0.000000 1.000000 0.310606 \n22 0.204142 0.000000 1.000000 0.282851 \n23 0.204142 0.000000 1.000000 0.282851 \n26 0.051873 0.049507 0.057436 0.054702 \n27 0.051873 0.049507 0.057436 0.054702 \n30 0.079235 0.062503 0.118560 0.074361 \n31 0.079235 0.062503 0.118560 0.074361 \n34 0.897567 0.920542 0.843567 0.905373 \n35 0.897567 0.920542 0.843567 0.905373 \n38 0.574780 0.591516 0.535443 0.511084 \n39 0.574780 0.591516 0.535443 0.511084 \n\n sex_dis_correct sex_dis_incorrect sex_priv sex_priv_correct \\\n2 1.000000 0.000000 0.677725 1.000000 \n3 1.000000 0.000000 0.677725 1.000000 \n6 0.898581 0.925083 0.913934 0.898608 \n7 0.898581 0.925083 0.913934 0.898608 \n10 0.005852 0.005950 0.005107 0.004558 \n11 0.005852 0.005950 0.005107 0.004558 \n14 1.000000 0.000000 0.492537 1.000000 \n15 1.000000 0.000000 0.492537 1.000000 \n18 0.000000 1.000000 0.560000 0.000000 \n19 0.000000 1.000000 0.560000 0.000000 \n22 0.000000 1.000000 0.191176 0.000000 \n23 0.000000 1.000000 0.191176 0.000000 \n26 0.054079 0.056184 0.050123 0.046871 \n27 0.054079 0.056184 0.050123 0.046871 \n30 0.065388 0.095716 0.093305 0.066973 \n31 0.065388 0.095716 0.093305 0.066973 \n34 0.917983 0.875360 0.879242 0.913846 \n35 0.917983 0.875360 0.879242 0.913846 \n38 0.512497 0.507721 0.576223 0.594827 \n39 0.512497 0.507721 0.576223 0.594827 \n\n sex_priv_incorrect \n2 0.000000 \n3 0.000000 \n6 0.946163 \n7 0.946163 \n10 0.006262 \n11 0.006262 \n14 0.000000 \n15 0.000000 \n18 1.000000 \n19 1.000000 \n22 1.000000 \n23 1.000000 \n26 0.056962 \n27 0.056962 \n30 0.148679 \n31 0.148679 \n34 0.806471 \n35 0.806471 \n38 0.537099 \n39 0.537099 \n\n[20 rows x 31 columns]", + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
MetricModel_NameModel_ParamsVirny_Random_StateRuntime_In_MinsDataset_NameNum_EstimatorsTest_Set_IndexTagRecord_Create_Date_Time...sex&race_dis_incorrectsex&race_privsex&race_priv_correctsex&race_priv_incorrectsex_dissex_dis_correctsex_dis_incorrectsex_privsex_priv_correctsex_priv_incorrect
2AccuracyRandomForestClassifier{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w...420.229215COMPAS_Without_Sensitive_Attributes500OK2024-09-02 20:26:47.054...0.0000000.7015211.0000000.0000000.7041421.0000000.0000000.6777251.0000000.000000
3AccuracyRandomForestClassifier{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w...420.229215COMPAS_Without_Sensitive_Attributes501OK2024-09-02 20:26:47.059...0.0000000.7015211.0000000.0000000.7041421.0000000.0000000.6777251.0000000.000000
6Aleatoric_UncertaintyRandomForestClassifier{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w...420.229215COMPAS_Without_Sensitive_Attributes500OK2024-09-02 20:26:47.054...0.9271370.9072970.8967410.9321060.9064220.8985810.9250830.9139340.8986080.946163
7Aleatoric_UncertaintyRandomForestClassifier{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w...420.229215COMPAS_Without_Sensitive_Attributes501OK2024-09-02 20:26:47.059...0.9271370.9072970.8967410.9321060.9064220.8985810.9250830.9139340.8986080.946163
10Epistemic_UncertaintyRandomForestClassifier{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w...420.229215COMPAS_Without_Sensitive_Attributes500OK2024-09-02 20:26:47.054...0.0056080.0054860.0050820.0064360.0058810.0058520.0059500.0051070.0045580.006262
11Epistemic_UncertaintyRandomForestClassifier{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w...420.229215COMPAS_Without_Sensitive_Attributes501OK2024-09-02 20:26:47.059...0.0056080.0054860.0050820.0064360.0058810.0058520.0059500.0051070.0045580.006262
14F1RandomForestClassifier{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w...420.229215COMPAS_Without_Sensitive_Attributes500OK2024-09-02 20:26:47.054...0.0000000.5602241.0000000.0000000.6859301.0000000.0000000.4925371.0000000.000000
15F1RandomForestClassifier{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w...420.229215COMPAS_Without_Sensitive_Attributes501OK2024-09-02 20:26:47.059...0.0000000.5602241.0000000.0000000.6859301.0000000.0000000.4925371.0000000.000000
18FNRRandomForestClassifier{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w...420.229215COMPAS_Without_Sensitive_Attributes500OK2024-09-02 20:26:47.054...1.0000000.4680850.0000001.0000000.3106060.0000001.0000000.5600000.0000001.000000
19FNRRandomForestClassifier{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w...420.229215COMPAS_Without_Sensitive_Attributes501OK2024-09-02 20:26:47.059...1.0000000.4680850.0000001.0000000.3106060.0000001.0000000.5600000.0000001.000000
22FPRRandomForestClassifier{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w...420.229215COMPAS_Without_Sensitive_Attributes500OK2024-09-02 20:26:47.054...1.0000000.2041420.0000001.0000000.2828510.0000001.0000000.1911760.0000001.000000
23FPRRandomForestClassifier{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w...420.229215COMPAS_Without_Sensitive_Attributes501OK2024-09-02 20:26:47.059...1.0000000.2041420.0000001.0000000.2828510.0000001.0000000.1911760.0000001.000000
26IQRRandomForestClassifier{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w...420.229215COMPAS_Without_Sensitive_Attributes500OK2024-09-02 20:26:47.054...0.0552920.0518730.0495070.0574360.0547020.0540790.0561840.0501230.0468710.056962
27IQRRandomForestClassifier{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w...420.229215COMPAS_Without_Sensitive_Attributes501OK2024-09-02 20:26:47.059...0.0552920.0518730.0495070.0574360.0547020.0540790.0561840.0501230.0468710.056962
30JitterRandomForestClassifier{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w...420.229215COMPAS_Without_Sensitive_Attributes500OK2024-09-02 20:26:47.054...0.0958090.0792350.0625030.1185600.0743610.0653880.0957160.0933050.0669730.148679
31JitterRandomForestClassifier{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w...420.229215COMPAS_Without_Sensitive_Attributes501OK2024-09-02 20:26:47.059...0.0958090.0792350.0625030.1185600.0743610.0653880.0957160.0933050.0669730.148679
34Label_StabilityRandomForestClassifier{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w...420.229215COMPAS_Without_Sensitive_Attributes500OK2024-09-02 20:26:47.054...0.8772670.8975670.9205420.8435670.9053730.9179830.8753600.8792420.9138460.806471
35Label_StabilityRandomForestClassifier{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w...420.229215COMPAS_Without_Sensitive_Attributes501OK2024-09-02 20:26:47.059...0.8772670.8975670.9205420.8435670.9053730.9179830.8753600.8792420.9138460.806471
38Mean_PredictionRandomForestClassifier{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w...420.229215COMPAS_Without_Sensitive_Attributes500OK2024-09-02 20:26:47.054...0.4930960.5747800.5915160.5354430.5110840.5124970.5077210.5762230.5948270.537099
39Mean_PredictionRandomForestClassifier{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w...420.229215COMPAS_Without_Sensitive_Attributes501OK2024-09-02 20:26:47.059...0.4930960.5747800.5915160.5354430.5110840.5124970.5077210.5762230.5948270.537099
\n

20 rows × 31 columns

\n
" }, - "execution_count": 18, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" } @@ -512,20 +515,20 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-01-29T12:54:11.425034Z", - "start_time": "2024-01-29T12:54:11.370528Z" + "end_time": "2024-09-02T20:26:51.440836Z", + "start_time": "2024-09-02T20:26:51.397683Z" } }, "id": "6f89c610f695175d" }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 17, "id": "9e73354b", "metadata": { "ExecuteTime": { - "end_time": "2024-01-29T12:53:05.157006Z", - "start_time": "2024-01-29T12:53:05.026096Z" + "end_time": "2024-09-02T20:26:51.502266Z", + "start_time": "2024-09-02T20:26:51.437406Z" } }, "outputs": [], @@ -535,12 +538,12 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 17, "id": "a94b000c", "metadata": { "ExecuteTime": { - "end_time": "2024-01-29T12:53:05.157214Z", - "start_time": "2024-01-29T12:53:05.153617Z" + "end_time": "2024-09-02T20:26:51.502575Z", + "start_time": "2024-09-02T20:26:51.492394Z" } }, "outputs": [], diff --git a/docs/examples/Multiple_Models_Interface_With_Postprocessor.ipynb b/docs/examples/Multiple_Models_Interface_With_Postprocessor.ipynb index dcd510bb..0838ce55 100644 --- a/docs/examples/Multiple_Models_Interface_With_Postprocessor.ipynb +++ b/docs/examples/Multiple_Models_Interface_With_Postprocessor.ipynb @@ -2,15 +2,24 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": 27, "id": "248cbed8", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:35:47.510787Z", - "start_time": "2024-06-01T21:35:47.190962Z" + "end_time": "2024-09-02T20:27:53.238829Z", + "start_time": "2024-09-02T20:27:53.055864Z" } }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The autoreload extension is already loaded. To reload it, use:\n", + " %reload_ext autoreload\n" + ] + } + ], "source": [ "%matplotlib inline\n", "%load_ext autoreload\n", @@ -19,12 +28,12 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 28, "id": "7ec6cd08", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:35:47.520165Z", - "start_time": "2024-06-01T21:35:47.511371Z" + "end_time": "2024-09-02T20:27:53.268588Z", + "start_time": "2024-09-02T20:27:53.132048Z" } }, "outputs": [], @@ -37,12 +46,12 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 29, "id": "b8cb69f2", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:35:47.531855Z", - "start_time": "2024-06-01T21:35:47.520719Z" + "end_time": "2024-09-02T20:27:53.274696Z", + "start_time": "2024-09-02T20:27:53.153565Z" } }, "outputs": [ @@ -96,24 +105,15 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 30, "id": "7a9241de", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:35:52.044340Z", - "start_time": "2024-06-01T21:35:47.531374Z" + "end_time": "2024-09-02T20:27:53.274819Z", + "start_time": "2024-09-02T20:27:53.176131Z" } }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "WARNING:root:No module named 'tempeh': LawSchoolGPADataset will be unavailable. To install, run:\n", - "pip install 'aif360[LawSchoolGPA]'\n" - ] - } - ], + "outputs": [], "source": [ "import os\n", "from pprint import pprint\n", @@ -159,7 +159,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 31, "outputs": [], "source": [ "DATASET_SPLIT_SEED = 42\n", @@ -169,15 +169,15 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-06-01T21:35:52.084281Z", - "start_time": "2024-06-01T21:35:52.046426Z" + "end_time": "2024-09-02T20:27:53.274855Z", + "start_time": "2024-09-02T20:27:53.200686Z" } }, "id": "ce359a052925eb3a" }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 32, "outputs": [], "source": [ "models_params_for_tuning = {\n", @@ -204,8 +204,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-06-01T21:35:52.120875Z", - "start_time": "2024-06-01T21:35:52.085511Z" + "end_time": "2024-09-02T20:27:53.276655Z", + "start_time": "2024-09-02T20:27:53.224294Z" } }, "id": "2ece07ab7e3a9acc" @@ -248,7 +248,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 33, "outputs": [], "source": [ "ROOT_DIR = os.path.join('docs', 'examples')\n", @@ -269,15 +269,15 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-06-01T21:35:52.159950Z", - "start_time": "2024-06-01T21:35:52.122205Z" + "end_time": "2024-09-02T20:27:53.296982Z", + "start_time": "2024-09-02T20:27:53.247223Z" } }, "id": "af22ee06f1e3eb1a" }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 34, "outputs": [], "source": [ "config = create_config_obj(config_yaml_path=config_yaml_path)\n", @@ -286,8 +286,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-06-01T21:35:52.197532Z", - "start_time": "2024-06-01T21:35:52.160163Z" + "end_time": "2024-09-02T20:27:53.299354Z", + "start_time": "2024-09-02T20:27:53.268991Z" } }, "id": "65181f72484bb92b" @@ -302,12 +302,12 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 35, "id": "6c55c6a0", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:35:52.276147Z", - "start_time": "2024-06-01T21:35:52.198407Z" + "end_time": "2024-09-02T20:27:53.373425Z", + "start_time": "2024-09-02T20:27:53.289472Z" } }, "outputs": [ @@ -316,7 +316,7 @@ "text/plain": " decile1b decile3 lsat ugpa zfygpa\n0 10.0 10.0 44.0 3.5 1.33\n1 5.0 4.0 29.0 3.5 -0.11\n2 8.0 7.0 37.0 3.4 0.63\n3 8.0 7.0 43.0 3.3 0.67\n4 3.0 2.0 41.0 3.3 -0.67", "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
decile1bdecile3lsatugpazfygpa
010.010.044.03.51.33
15.04.029.03.5-0.11
28.07.037.03.40.63
38.07.043.03.30.67
43.02.041.03.3-0.67
\n
" }, - "execution_count": 9, + "execution_count": 35, "metadata": {}, "output_type": "execute_result" } @@ -330,7 +330,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 36, "outputs": [], "source": [ "column_transformer = ColumnTransformer(transformers=[\n", @@ -341,15 +341,15 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-06-01T21:35:52.333855Z", - "start_time": "2024-06-01T21:35:52.278478Z" + "end_time": "2024-09-02T20:27:53.413300Z", + "start_time": "2024-09-02T20:27:53.371357Z" } }, "id": "ebbef5eaf9dc0943" }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 37, "outputs": [], "source": [ "# Create a binary race column for postprocessing since aif360 postprocessors can postprocess a dataset only based on binary columns.\n", @@ -366,15 +366,15 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-06-01T21:35:52.383761Z", - "start_time": "2024-06-01T21:35:52.317897Z" + "end_time": "2024-09-02T20:27:53.456375Z", + "start_time": "2024-09-02T20:27:53.392922Z" } }, "id": "97ed4609effbf53f" }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 38, "outputs": [], "source": [ "# Define a postprocessor\n", @@ -389,8 +389,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-06-01T21:35:52.422160Z", - "start_time": "2024-06-01T21:35:52.384459Z" + "end_time": "2024-09-02T20:27:53.470641Z", + "start_time": "2024-09-02T20:27:53.448450Z" } }, "id": "4535191384245578" @@ -407,17 +407,17 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 39, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "2024/06/02, 00:35:52: Tuning LogisticRegression...\n", - "2024/06/02, 00:35:54: Tuning for LogisticRegression is finished [F1 score = 0.6563618630035558, Accuracy = 0.8987258083904316]\n", + "2024/09/02, 23:27:53: Tuning LogisticRegression...\n", + "2024/09/02, 23:27:55: Tuning for LogisticRegression is finished [F1 score = 0.6563618630035558, Accuracy = 0.8987258083904316]\n", "\n", - "2024/06/02, 00:35:54: Tuning RandomForestClassifier...\n", - "2024/06/02, 00:35:56: Tuning for RandomForestClassifier is finished [F1 score = 0.6538551003755212, Accuracy = 0.8980646712345234]\n" + "2024/09/02, 23:27:55: Tuning RandomForestClassifier...\n", + "2024/09/02, 23:27:57: Tuning for RandomForestClassifier is finished [F1 score = 0.6538551003755212, Accuracy = 0.8980646712345234]\n" ] }, { @@ -425,7 +425,7 @@ "text/plain": " Dataset_Name Model_Name F1_Score Accuracy_Score \\\n0 Law_School LogisticRegression 0.656362 0.898726 \n1 Law_School RandomForestClassifier 0.653855 0.898065 \n\n Model_Best_Params \n0 {'C': 100, 'max_iter': 250, 'penalty': 'l2', '... \n1 {'max_depth': 10, 'max_features': 0.6, 'min_sa... ", "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Dataset_NameModel_NameF1_ScoreAccuracy_ScoreModel_Best_Params
0Law_SchoolLogisticRegression0.6563620.898726{'C': 100, 'max_iter': 250, 'penalty': 'l2', '...
1Law_SchoolRandomForestClassifier0.6538550.898065{'max_depth': 10, 'max_features': 0.6, 'min_sa...
\n
" }, - "execution_count": 13, + "execution_count": 39, "metadata": {}, "output_type": "execute_result" } @@ -437,15 +437,15 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-06-01T21:35:56.634435Z", - "start_time": "2024-06-01T21:35:52.422277Z" + "end_time": "2024-09-02T20:27:57.444059Z", + "start_time": "2024-09-02T20:27:53.470799Z" } }, "id": "782741c190a4690b" }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 40, "outputs": [], "source": [ "now = datetime.now(timezone.utc)\n", @@ -456,8 +456,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-06-01T21:35:56.730690Z", - "start_time": "2024-06-01T21:35:56.631924Z" + "end_time": "2024-09-02T20:27:57.527788Z", + "start_time": "2024-09-02T20:27:57.447202Z" } }, "id": "21ccc879c5c3e215" @@ -474,7 +474,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 41, "outputs": [ { "name": "stdout", @@ -493,8 +493,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-06-01T21:35:56.735329Z", - "start_time": "2024-06-01T21:35:56.689735Z" + "end_time": "2024-09-02T20:27:57.588659Z", + "start_time": "2024-09-02T20:27:57.480303Z" } }, "id": "3b15f202741fa2ae" @@ -517,12 +517,12 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 42, "id": "197eadaa", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:36:57.946293Z", - "start_time": "2024-06-01T21:35:56.734563Z" + "end_time": "2024-09-02T20:28:58.542232Z", + "start_time": "2024-09-02T20:27:57.506320Z" } }, "outputs": [ @@ -532,7 +532,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "a0dd4bc7dcc241fcbb51971bb6340eb3" + "model_id": "47e6e065233d4cafbc4ec58b36ea5779" } }, "metadata": {}, @@ -551,7 +551,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "34bcf9f0427e4e8a861869a41ef342de" + "model_id": "b5803deadb3a4d7f97e4105851297e88" } }, "metadata": {}, @@ -570,7 +570,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "a8fe74f831624774bfed373be6f1f2df" + "model_id": "52916046802945fb857f3936e6333732" } }, "metadata": {}, @@ -596,21 +596,21 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 43, "id": "bea94683", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:36:57.995403Z", - "start_time": "2024-06-01T21:36:57.946765Z" + "end_time": "2024-09-02T20:28:58.571456Z", + "start_time": "2024-09-02T20:28:58.539691Z" } }, "outputs": [ { "data": { - "text/plain": " Metric overall male_priv male_priv_correct \\\n0 Jitter 0.044141 0.040939 0.035644 \n1 Label_Stability 0.949913 0.953970 0.961893 \n2 TPR 0.994903 0.994884 1.000000 \n3 TNR 0.078704 0.073394 1.000000 \n4 PPV 0.903092 0.913712 1.000000 \n5 FNR 0.005097 0.005116 0.000000 \n6 FPR 0.921296 0.926606 0.000000 \n7 Accuracy 0.899760 0.910051 1.000000 \n8 F1 0.946777 0.952572 1.000000 \n9 Selection-Rate 0.987260 0.988598 0.992575 \n10 Sample_Size 4160.000000 2368.000000 2155.000000 \n\n male_priv_incorrect male_dis \n0 0.094502 0.048374 \n1 0.873803 0.944554 \n2 0.000000 0.994930 \n3 0.000000 0.084112 \n4 0.000000 0.889015 \n5 1.000000 0.005070 \n6 1.000000 0.915888 \n7 0.000000 0.886161 \n8 0.000000 0.938995 \n9 0.948357 0.985491 \n10 213.000000 1792.000000 ", - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Metricoverallmale_privmale_priv_correctmale_priv_incorrectmale_dis
0Jitter0.0441410.0409390.0356440.0945020.048374
1Label_Stability0.9499130.9539700.9618930.8738030.944554
2TPR0.9949030.9948841.0000000.0000000.994930
3TNR0.0787040.0733941.0000000.0000000.084112
4PPV0.9030920.9137121.0000000.0000000.889015
5FNR0.0050970.0051160.0000001.0000000.005070
6FPR0.9212960.9266060.0000001.0000000.915888
7Accuracy0.8997600.9100511.0000000.0000000.886161
8F10.9467770.9525721.0000000.0000000.938995
9Selection-Rate0.9872600.9885980.9925750.9483570.985491
10Sample_Size4160.0000002368.0000002155.000000213.0000001792.000000
\n
" + "text/plain": " Metric overall male_priv male_priv_correct \\\n0 Jitter 0.044116 0.040637 0.034723 \n1 Label_Stability 0.949933 0.954493 0.963175 \n2 TPR 0.994903 0.994884 1.000000 \n3 TNR 0.076389 0.068807 1.000000 \n4 PPV 0.902872 0.913322 1.000000 \n5 FNR 0.005097 0.005116 0.000000 \n6 FPR 0.923611 0.931193 0.000000 \n7 Accuracy 0.899519 0.909628 1.000000 \n8 F1 0.946656 0.952360 1.000000 \n9 Selection-Rate 0.987500 0.989020 0.993036 \n10 Sample_Size 4160.000000 2368.000000 2154.000000 \n\n male_priv_incorrect male_dis \n0 0.100160 0.048714 \n1 0.867103 0.943906 \n2 0.000000 0.994930 \n3 0.000000 0.084112 \n4 0.000000 0.889015 \n5 1.000000 0.005070 \n6 1.000000 0.915888 \n7 0.000000 0.886161 \n8 0.000000 0.938995 \n9 0.948598 0.985491 \n10 214.000000 1792.000000 ", + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Metricoverallmale_privmale_priv_correctmale_priv_incorrectmale_dis
0Jitter0.0441160.0406370.0347230.1001600.048714
1Label_Stability0.9499330.9544930.9631750.8671030.943906
2TPR0.9949030.9948841.0000000.0000000.994930
3TNR0.0763890.0688071.0000000.0000000.084112
4PPV0.9028720.9133221.0000000.0000000.889015
5FNR0.0050970.0051160.0000001.0000000.005070
6FPR0.9236110.9311930.0000001.0000000.915888
7Accuracy0.8995190.9096281.0000000.0000000.886161
8F10.9466560.9523601.0000000.0000000.938995
9Selection-Rate0.9875000.9890200.9930360.9485980.985491
10Sample_Size4160.0000002368.0000002154.000000214.0000001792.000000
\n
" }, - "execution_count": 17, + "execution_count": 43, "metadata": {}, "output_type": "execute_result" } @@ -638,12 +638,12 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 44, "id": "f94a20dc", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:36:58.085792Z", - "start_time": "2024-06-01T21:36:57.992507Z" + "end_time": "2024-09-02T20:28:58.607926Z", + "start_time": "2024-09-02T20:28:58.569084Z" } }, "outputs": [], @@ -653,12 +653,12 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 45, "id": "b04d06cf", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:36:58.129262Z", - "start_time": "2024-06-01T21:36:58.036103Z" + "end_time": "2024-09-02T20:28:58.642593Z", + "start_time": "2024-09-02T20:28:58.595317Z" } }, "outputs": [], @@ -676,12 +676,12 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 46, "id": "be6ace22", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:36:58.132644Z", - "start_time": "2024-06-01T21:36:58.076545Z" + "end_time": "2024-09-02T20:28:58.676324Z", + "start_time": "2024-09-02T20:28:58.617727Z" } }, "outputs": [], @@ -691,14 +691,14 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 47, "outputs": [ { "data": { - "text/plain": " Metric male race male&race \\\n0 Accuracy_Difference -0.023890 -0.196227 -0.174183 \n1 Equalized_Odds_FNR -0.000047 -0.005823 -0.005454 \n2 Equalized_Odds_FPR -0.010718 0.129278 0.098266 \n3 Jitter_Difference 0.007435 0.034351 0.049795 \n4 Label_Stability_Ratio 0.990130 0.943974 0.924259 \n5 Label_Stability_Difference -0.009416 -0.053678 -0.072383 \n6 Statistical_Parity_Difference -0.003107 0.015031 0.013838 \n7 Disparate_Impact 0.996857 1.015261 1.014032 \n8 Equalized_Odds_TNR 0.010718 -0.129278 -0.098266 \n9 Equalized_Odds_TPR 0.000047 0.005823 0.005454 \n10 Accuracy_Difference -0.020693 -0.158407 -0.134267 \n11 Equalized_Odds_FNR 0.004134 0.020908 0.029136 \n12 Equalized_Odds_FPR -0.058218 -0.104439 -0.140207 \n13 Jitter_Difference 0.009800 0.093877 0.101423 \n14 Label_Stability_Ratio 0.981678 0.844858 0.825698 \n15 Label_Stability_Difference -0.017405 -0.149755 -0.166575 \n16 Statistical_Parity_Difference -0.013514 -0.061529 -0.076446 \n17 Disparate_Impact 0.986242 0.937586 0.922193 \n18 Equalized_Odds_TNR 0.058218 0.104439 0.140207 \n19 Equalized_Odds_TPR -0.004134 -0.020908 -0.029136 \n\n Model_Name \n0 LogisticRegression \n1 LogisticRegression \n2 LogisticRegression \n3 LogisticRegression \n4 LogisticRegression \n5 LogisticRegression \n6 LogisticRegression \n7 LogisticRegression \n8 LogisticRegression \n9 LogisticRegression \n10 RandomForestClassifier \n11 RandomForestClassifier \n12 RandomForestClassifier \n13 RandomForestClassifier \n14 RandomForestClassifier \n15 RandomForestClassifier \n16 RandomForestClassifier \n17 RandomForestClassifier \n18 RandomForestClassifier \n19 RandomForestClassifier ", - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Metricmaleracemale&raceModel_Name
0Accuracy_Difference-0.023890-0.196227-0.174183LogisticRegression
1Equalized_Odds_FNR-0.000047-0.005823-0.005454LogisticRegression
2Equalized_Odds_FPR-0.0107180.1292780.098266LogisticRegression
3Jitter_Difference0.0074350.0343510.049795LogisticRegression
4Label_Stability_Ratio0.9901300.9439740.924259LogisticRegression
5Label_Stability_Difference-0.009416-0.053678-0.072383LogisticRegression
6Statistical_Parity_Difference-0.0031070.0150310.013838LogisticRegression
7Disparate_Impact0.9968571.0152611.014032LogisticRegression
8Equalized_Odds_TNR0.010718-0.129278-0.098266LogisticRegression
9Equalized_Odds_TPR0.0000470.0058230.005454LogisticRegression
10Accuracy_Difference-0.020693-0.158407-0.134267RandomForestClassifier
11Equalized_Odds_FNR0.0041340.0209080.029136RandomForestClassifier
12Equalized_Odds_FPR-0.058218-0.104439-0.140207RandomForestClassifier
13Jitter_Difference0.0098000.0938770.101423RandomForestClassifier
14Label_Stability_Ratio0.9816780.8448580.825698RandomForestClassifier
15Label_Stability_Difference-0.017405-0.149755-0.166575RandomForestClassifier
16Statistical_Parity_Difference-0.013514-0.061529-0.076446RandomForestClassifier
17Disparate_Impact0.9862420.9375860.922193RandomForestClassifier
18Equalized_Odds_TNR0.0582180.1044390.140207RandomForestClassifier
19Equalized_Odds_TPR-0.004134-0.020908-0.029136RandomForestClassifier
\n
" + "text/plain": " Metric male race male&race \\\n0 Accuracy_Difference -0.023468 -0.195943 -0.173922 \n1 Equalized_Odds_FNR -0.000047 -0.005823 -0.005454 \n2 Equalized_Odds_FPR -0.015305 0.125475 0.095376 \n3 Jitter_Difference 0.008077 0.034356 0.050940 \n4 Label_Stability_Ratio 0.988908 0.943952 0.921227 \n5 Label_Stability_Difference -0.010587 -0.053700 -0.075300 \n6 Statistical_Parity_Difference -0.003529 0.014748 0.013577 \n7 Disparate_Impact 0.996432 1.014968 1.013764 \n8 Equalized_Odds_TNR 0.015305 -0.125475 -0.095376 \n9 Equalized_Odds_TPR 0.000047 0.005823 0.005454 \n10 Accuracy_Difference -0.019018 -0.155536 -0.128467 \n11 Equalized_Odds_FNR 0.004134 0.020908 0.029136 \n12 Equalized_Odds_FPR -0.072237 -0.112471 -0.160573 \n13 Jitter_Difference 0.010737 0.094719 0.103242 \n14 Label_Stability_Ratio 0.980755 0.841570 0.822054 \n15 Label_Stability_Difference -0.018280 -0.152932 -0.170023 \n16 Statistical_Parity_Difference -0.015188 -0.064400 -0.082245 \n17 Disparate_Impact 0.984538 0.934654 0.916268 \n18 Equalized_Odds_TNR 0.072237 0.112471 0.160573 \n19 Equalized_Odds_TPR -0.004134 -0.020908 -0.029136 \n\n Model_Name \n0 LogisticRegression \n1 LogisticRegression \n2 LogisticRegression \n3 LogisticRegression \n4 LogisticRegression \n5 LogisticRegression \n6 LogisticRegression \n7 LogisticRegression \n8 LogisticRegression \n9 LogisticRegression \n10 RandomForestClassifier \n11 RandomForestClassifier \n12 RandomForestClassifier \n13 RandomForestClassifier \n14 RandomForestClassifier \n15 RandomForestClassifier \n16 RandomForestClassifier \n17 RandomForestClassifier \n18 RandomForestClassifier \n19 RandomForestClassifier ", + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Metricmaleracemale&raceModel_Name
0Accuracy_Difference-0.023468-0.195943-0.173922LogisticRegression
1Equalized_Odds_FNR-0.000047-0.005823-0.005454LogisticRegression
2Equalized_Odds_FPR-0.0153050.1254750.095376LogisticRegression
3Jitter_Difference0.0080770.0343560.050940LogisticRegression
4Label_Stability_Ratio0.9889080.9439520.921227LogisticRegression
5Label_Stability_Difference-0.010587-0.053700-0.075300LogisticRegression
6Statistical_Parity_Difference-0.0035290.0147480.013577LogisticRegression
7Disparate_Impact0.9964321.0149681.013764LogisticRegression
8Equalized_Odds_TNR0.015305-0.125475-0.095376LogisticRegression
9Equalized_Odds_TPR0.0000470.0058230.005454LogisticRegression
10Accuracy_Difference-0.019018-0.155536-0.128467RandomForestClassifier
11Equalized_Odds_FNR0.0041340.0209080.029136RandomForestClassifier
12Equalized_Odds_FPR-0.072237-0.112471-0.160573RandomForestClassifier
13Jitter_Difference0.0107370.0947190.103242RandomForestClassifier
14Label_Stability_Ratio0.9807550.8415700.822054RandomForestClassifier
15Label_Stability_Difference-0.018280-0.152932-0.170023RandomForestClassifier
16Statistical_Parity_Difference-0.015188-0.064400-0.082245RandomForestClassifier
17Disparate_Impact0.9845380.9346540.916268RandomForestClassifier
18Equalized_Odds_TNR0.0722370.1124710.160573RandomForestClassifier
19Equalized_Odds_TPR-0.004134-0.020908-0.029136RandomForestClassifier
\n
" }, - "execution_count": 21, + "execution_count": 47, "metadata": {}, "output_type": "execute_result" } @@ -709,8 +709,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-06-01T21:36:58.167706Z", - "start_time": "2024-06-01T21:36:58.123737Z" + "end_time": "2024-09-02T20:28:58.676897Z", + "start_time": "2024-09-02T20:28:58.645138Z" } }, "id": "a286da0406c6401d" @@ -733,12 +733,12 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 48, "id": "435b9d98", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:36:58.227052Z", - "start_time": "2024-06-01T21:36:58.167Z" + "end_time": "2024-09-02T20:28:58.702311Z", + "start_time": "2024-09-02T20:28:58.671497Z" } }, "outputs": [], @@ -750,21 +750,21 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 49, "id": "5efb1bf2", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:36:58.278703Z", - "start_time": "2024-06-01T21:36:58.212297Z" + "end_time": "2024-09-02T20:28:58.782099Z", + "start_time": "2024-09-02T20:28:58.701001Z" } }, "outputs": [ { "data": { - "text/html": "\n
\n", + "text/html": "\n
\n", "text/plain": "alt.Chart(...)" }, - "execution_count": 23, + "execution_count": 49, "metadata": {}, "output_type": "execute_result" } @@ -778,21 +778,21 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 50, "id": "0eb8528e", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:36:58.351296Z", - "start_time": "2024-06-01T21:36:58.278923Z" + "end_time": "2024-09-02T20:28:58.812284Z", + "start_time": "2024-09-02T20:28:58.766486Z" } }, "outputs": [ { "data": { - "text/html": "\n
\n", + "text/html": "\n
\n", "text/plain": "alt.Chart(...)" }, - "execution_count": 24, + "execution_count": 50, "metadata": {}, "output_type": "execute_result" } @@ -806,12 +806,12 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 51, "outputs": [ { "data": { "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAABPkAAAGCCAYAAACSBBakAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACjDUlEQVR4nOzdd3hUVeLG8e+kTDLpPSGVhBpaQgcLSFEERERFFERR17L2taLrT7Gj6C4u6tqwA+JKUSmCKCpNOoReAoEkQArpdTLl90fMSExAEEKY8H6ex8fkzjl3zh2eJ2fue08x2O12OyIiIiIiIiIiIuK0XBq7ASIiIiIiIiIiInJ6FPKJiIiIiIiIiIg4OYV8IiIiIiIiIiIiTk4hn4iIiIiIiIiIiJNTyCciIiIiIiIiIuLkFPKJiIiIiIiIiIg4OYV8IiIiIiIiIiIiTk4hn4iIiIiIiIiIiJNTyCciIiIiIiIiIuLkFPKJiIiIiIiIiIg4OYV8IiIiIiIiIiIiTk4hn4iIiIiIiDRZdrv9lOvYbDYArFbrX6ovItIYDHb9xRIREREREREnZ7PZ2LlzJ+vXr8dgMODh4cGkSZP44osvSEhIOG4dg8GAwWA44bnNZjNGo7Ehmi0icsZoJJ+IiIiIiIg4laysLObNm4fZbHYcW7x4MaNHj2bq1Kns37+f1q1b88ADDxAUFFSr7rHjXFxcXOoEfJWVlSxevJjU1FTeeOMNunXrxqOPPkp2dnbDXpSIyGnSSD4RERERERFxKu+++y4ffvghX331FTExMQAMGjSI0tJS/v3vf9OqVSt8fHwwGAy4uro66tlsNlxcqse6ZGdnk5qaCkD37t1xc3MDYPfu3YwePRpvb29atWpFbGws3bp1o0+fPvj4+JzlKxUROXlujd0AERERERERkVNxzTXXcMkllxAWFobVasXV1RVPT0+ioqLo3r17rbI1U23tdjsuLi7s37+fiRMnsnLlStzd3TGZTLRt25a77rqL7t274+vry8UXX8zChQsZM2YMd9xxB3a7/U+n9IqINDaFfCIiIiIiInLOstvtjoCuRkhICCEhIbXKNW/enC1btvDvf/+bFi1a0LVrV1566SUKCgp499138fHxISsri8cff5zc3FyeeeYZoqOj2bJlC19++SXPP/887777LsHBwQQGBmIymejcuTOAAj4RcQpak09ERERERETOWQaDoVbAB9W73q5fv54lS5aQm5vLgw8+yKJFi8jJyeHdd99l3bp1AHh7e3PkyBFKS0sBWLFiBbt27eL111/n2muvpVevXtx+++1MmTKF3bt3M2vWLIxGIzExMZjNZoV7IuJUNJJPRESkHjWjBk5mxz0RERE5NXa7HZvNht1ux9XVtVZfe+zU2NLSUvbs2UN2djbx8fG0atUKgIKCAl555RUOHjzI999/z+WXX05ISAiff/45DzzwADfddBPu7u60bNmS7777joKCAkJCQli7di1+fn507tyZ9PR0du3axZYtW9izZw8Ay5cv56677iI2NhabzabNNkTEqSjkExGRJqWkpIScnBzi4+NrLa79Z6xWa62RAgr3REREju/nn39m+vTpjBs3jt69ex+3zz3eWnZ/3BDjj+XNZjOvvvoq8+fPp6ysDF9fXzw9PRk5ciR33nknvr6+dO7cmdTUVKqqqhg0aBBt27bl888/B6pH8AFER0djNptJT0+nTZs25ObmkpOTQ+fOnSkvL8fLy4tmzZoRGxvLY489RuvWrXFzcyMsLAwfHx/27dt3St8nREQak0I+ERFpMo4ePcro0aMJDQ3l888/r/OFvGbUAFDnxuKPv6emprJ//368vb3p3bt3wzZcRETkHHBsIJednc22bdtIS0sjMDCQiy66iJCQEEeZ3Nxcfv75Z3r16lWrn6zpa11cXGo9MPtj2Ldnzx5+/vln1q1bh9VqpWfPnlx33XX4+flht9uZPn06s2bN4o477qBLly6UlJTwzjvv8Nlnn3HdddcRGBhIs2bNKC0tJSMjg6CgIMLDwwkICGD//v0UFxfj6+tLWFgYJpOJ1NRUBg4cSHBwMEajkZtvvplLL70ULy8v/P39CQoKIj09nZycHKxWK8HBwYSFhbF3714sFgtGo/Hs/mOIiPwFCvlERKTJCA4O5sUXX8RkMtX7+vFGDQAsW7aMlStXcvnllzNjxgwWLFiA1WrFx8eHcePGMWbMGPz8/Bqy+SIiIo3KYDBQXFzMf/7zHxYuXEhVVRUmk4mysjL8/f25+eabufHGGwFo3749JpOJ9PT0Oueo6WtLSkrIysrCZDIRGRnpKJOZmcn48eMpKysjLi4Om83Gv/71L1auXMmUKVPw9vZm9uzZ9OzZk3Hjxjn69a5du5KZmekYpRcVFYWLiwt79uyhU6dOmEwm4uLiOHjwIEVFRfj6+hIYGEhYWJhjOm6nTp2YO3cuISEhtG/fvlbbP/nkE1avXs2UKVMIDQ0lPj6egwcPUlZWppBPRJyCQj4REWlSunXrVu9xi8XCrl27WLt2LdnZ2SQnJ3PhhRc6bhQ2b97M7Nmz+frrr2nZsiVTpkzBYDAwdepU3nrrLWJjYxk6dKim7IiISJNgtVrrPPjKzs7m3nvvZf/+/dxyyy306tULLy8v0tPTeffdd5k0aRIVFRX87W9/IyYmBm9vbw4ePAjg6BsPHDjAp59+yg8//EBOTg7u7u60a9eOe+65h549e+Lm5sYrr7xCfn4+L774Im3btsXLy4sPPviAjRs3kpubi7e3N+Hh4Sxfvpx//etfXHzxxdjtdnx9fenSpYujvaGhoQQGBrJjxw7HsVatWrFs2TLy8vKIiorCz8+P6Oho9u/fj9VqpVevXiQmJjJt2jQ6duxIYmIi5eXlLFmyhM8//5x+/frRvHlzysrKCA0NZcmSJRw9epSAgICG/0cRETlNCvlERMSp1GyIcaKgbd++fXh5eREREeGYNvTOO+/w6aef4uPjg8Fg4NNPP6V79+48+OCDJCUl0bFjR6B6NOBLL71EdHQ0AEFBQYwePZoVK1YwdOjQs3KNIiIiDenXX3/l008/5e2336718Ortt99m27ZtfP7553Tu3NlRvm3btnTt2pVhw4bxzTffMHr0aEcQd+TIEfLz8wkMDKSwsJBXX32VtLQ0hg8fTnx8PLt37+bzzz9n0qRJ/Pvf/yY+Pp7Dhw8TFhZGeHg4gYGBANxzzz212vjQQw/x6quv8tlnn/HZZ58B1evshYSEcPXVV3PnnXcSHBxMeHg4u3fvdtRLTExk7ty55OTkAODl5UXz5s357rvvyM7OJiEhgUceeYS7776bcePGcfHFF2Oz2di2bRs9e/bk//7v/xz1Lr/8cpo3b054eHjD/WOIiJxBCvlEROSccuy6eTXr+Rzr2PV9srKyKCkpITo6Gg8PDwCWLFnCvffey7hx4xg/fjwGg4EvvviCN998k+uvv54bbrgBT09PVqxYwXPPPUdZWRkzZ84kISEBV1dX3N3dHYt0G41GIiIiiImJYe/evY73FxERcVZ2u50VK1bw448/Ulpa6hjRnpWVxbfffsuVV15Jhw4dHGUNBgMWi4WgoCCmTZtG8+bNHedKSEhg+fLlZGRkEBgYyLRp0/jhhx+YMGEC119/vWO0oJeXF//973/Zs2cP8fHxXHrppfzrX//ipptuom3btri6upKQkEDXrl3p2LEj4eHhJCYm8uabb5KXl8eWLVvIyMggPz+fZcuW8eGHH5KUlESXLl2Ijo5m06ZNjn67devWWCwWsrKyADCZTMTHx3P06FEOHTpEs2bNuPDCC5k9ezZfffUVGzduxNPTkxtuuIHLLrus1rTinj170rNnz7P3jyMicpoU8omIyDnlROvmAaSnpzN58mRWrFjhmErTp08fxo4dS0JCAtHR0Y6RBVA99ejTTz+lXbt2TJgwwXGeuLg4SkpKeOONN1i8eDH9+vUjMjKSwsJCAMfaOyEhIURERLB7924qKysdYaKIiMi5rL7NpmpG7YWEhACQn5/vCPmWL19OaWkpl1xyCe7u7rVG+Lm5Vd821gR8VVVVuLu706pVKxYtWkRaWhodO3YkIiKCO++8kxEjRgA41svbuXMnLi4u7Nu3D4Drr7+ewMBAFi1aRH5+PkeOHOHnn3/mo48+Ijk5mQ8//BBPT0/Ky8vx9/dnyJAhjuvq06cPt9xyC9nZ2RiNRuLj4/npp584evSoY5dcgN27d2OxWHBzcyM8PBx/f38qKiocn02LFi147LHH9PBORJoUhXwiInJWnGhn22Olp6ezfv16du3ahZ+fH/369aNt27ZA9QLekyZNIiUlhTvvvJPQ0FDWrl3LjBkzcHV15amnniIyMpLAwEDHjYSrqysHDhzg5ptvdrQDqsPEgQMHMmXKFDZt2sRll11GdHQ0Bw8eJDc3l5CQEMcIhKioKNavX8/Bgwdp1apVQ35MIiIiZ0R9D81cXFw4cuQI69evB2DYsGGEhYXxwQcfUFZWBlSv1fdnasK/Nm3aYLPZHJtvXH311QBs27aN2bNns27dOjIyMggNDcXFxYUDBw4A4Ovry8iRIxk5ciSZmZlYrVaMRiMfffQRn376KcuXL6dr165cd911XHrppdx3333YbDZycnKYM2cOgGO0YUhICGazmd27d9OsWTOCgoK48MILad68ueN7R//+/Vm9enWtz+bY/4uINBUK+URE5Iw6Xpj3x5uNmmk1NVOBoHoUwdNPP43dbsfPz4/s7GymT5/Os88+S//+/cnKyuL777/npZde4qqrrsJgMHDFFVfQo0cPQkNDAfDz8yMiIoLNmzdTXFyMwWDAZDLh4uLieM8aISEhhISEOKb0xMfHs2TJEvbv318r5IuPj8disbB3715atWpVq80iIiJnk81mc/RDx1uf1mq1OjabOnDgALGxsfTv35/Y2Fi2bt3K/v37cXNzIyYmhscee4xmzZrh6ekJQGlp6Z+2oaY/T0hIwGg0OjbfAPj222+ZMmUKXl5e9OrVi0suuYTevXtzwQUXcOjQIQAqKipYsGABiYmJtGvXzlG3e/fufPLJJxiNRoKDg+nQoQOffPIJKSkpREZGkpmZSUZGBs8884xjxF7nzp25//77SUhIAMDd3Z2pU6fW214RkaZOIZ+IiPxl9e3Md7zpthkZGcyYMYNffvmFsrIykpKSGDlyJL179waguLiYxx9/nHbt2nHvvfcSFBREfn4+Dz74IGvWrKFv376OUHDhwoWEh4fTunVriouLueSSSxzTjQBiY2NZvnw5Bw4coHXr1oSFhXHgwAFKSkoICgpyTN+pqKjA29ubqqoqAGJiYoDqKT7du3d3nC8hIQFPT0927drF4MGDFfKJiEiDs9vtWK1WXFxcaoV5x/5st9uxWCy4u7vX6pumTZvGf//7X/z9/fH09OTrr79m7ty5vPjiiwwcOJDQ0FDGjx+Pm5sbF110EYBjw6maIO54/ZzVaiU3N5fAwEBiYmIIDAwkIyMDq9WKzWZjypQp+Pj4MGnSJFq0aOGoZzQaycjIIDc3Fzc3NyZOnEhISAh33nknzZs359ChQ7z55ps0b96cli1bAjBx4kQGDhzI4sWLycrKonXr1tx1111ccMEFjinEHTp0cIzqExE53ynkExGRk3LsZhg1/hjm7du3Dx8fHxYuXMjChQuJiIhg8uTJ5Ofn89JLL7F792569uyJn58f33//PQsWLOD1119nyJAhpKWlUVBQwIgRI0hKSgKqQ7dvv/3WEeDFxMRw++238/777/PLL78A4O/vT0xMDElJSYwaNYrWrVsTGxuL3W5n9+7ddOjQgY4dO7Js2TJ27dpF7969HTcGGRkZ7N27l169egHV4aCfnx979uypdV0RERGUl5ezbdu2BvhkRUSkqcjMzGTbtm1s2rSJHTt2sHHjRt566y0uvPDCWmvcnQyDweDor46VkpLCZ599xvr163Fzc+OCCy7gmmuucewSv3nzZl5++WXGjBnDDTfcgMlkYvv27Tz//PNs2rSJ9u3b065dO5o3b86aNWsc501MTARg586djvevzwcffMCCBQt49dVXadOmDZGRkRw+fJjc3FwsFgt5eXkMHTrUEfBZLBY+/PBDcnJy8PX1Zd++ffTo0YOnnnqKDz74gNdeew2LxUJZWRkdO3bkySefJDo6GqvVipeXF1deeSVXXnnlSX9uIiLnM4V8IiJNVEZGBtu3b2ffvn1YLBa6d+9+wh3i7Ha7YxTAH7/Y2+32WjcmBQUFBAQE8N577xEREcGwYcMoKChgyJAh9OvXj4yMDOLj42ndujU2m43PPvuMVatW8dxzz9G/f3+MRiOPP/44f/vb33j99ddp27YtzZs3JyEhgSeeeIIlS5YQGxuLq6sr7du3JykpicDAQFxcXPj73//OZZddRlpaGjt37iQ9PZ2MjAymTZtGUVGRY+SAh4cH27dv5+qrr+aKK65g/vz5TJ48GX9/f/z8/EhPT+fVV18lKCjIcfMQGRlJZWUlmzdvBn5faLxFixbMmjXLMcrhVG7SRESk6dq2bRszZ85kzZo1ZGZmUlVVhbe3N5GRkSQkJHDDDTcQEREB/N531PfQ7NhReFVVVaSmpuLt7c306dNZvnw5F198MY899hjbtm3jmWeewWazMWjQICoqKli4cCHffvst7733Hl27diU1NRUXFxeuvfZaR9AWGRnJhRdeiMlkAqqntEZFRVFaWkpeXh5BQUEEBASQnJzM8uXLyczMJCoqqla7apa82LZtG7t27XJM642Pj2f79u0cPnyYDh06kJCQwLRp03B3d6dly5asXr2an3/+mc6dO7N+/Xq+/PJLevTowfDhw+nVqxcbNmzAw8ODVq1aOUbU2+12TbEVEfkLFPKJiDQB5eXlzJ49m02bNrFx40aOHDmCxWLBx8cHf39/cnJymDZtGtdffz0PPPBAvec4Ntz743RUg8FASkoK77zzDqtXr8bPz4877riDf/3rXwwYMIA+ffoQGBhI+/btWbp0KY8++iijR48Gqm9iFi1axOWXX86wYcOA6huFgoICIiMjWb58OT/++CO33347jz76KFOnTmXdunX88ssvlJSUANU3J/fccw/XXHMNbm5utGrVio4dOzrOZ7fbueOOO1i7di12u53o6GgCAwMdC3xfcMEFvPLKKzz99NPceOONxMbGkp2dTUBAABMnTqRTp06O95k6dSqRkZGOtkN12Fez+YeIiEjNqLy0tDS+/PJL4uLieOWVV/D29iY8PJzAwEC8vb3x8PDA3d29Vt2avsVqtZKRkYGLi4sj3AJYv34948aNY9CgQezbt4+kpCTi4+Ox2+289dZbFBYWMnnyZFq1aoWnpyePPvooV111Fa+99hoff/wx7dq1w2Qyceutt3LJJZcQEBCAt7c3nTt3pmPHjnh7e9d6z927dztGtI8cOZKtW7fy2Wefce+99+Lj4+Nol9FoZOvWrfz6668MHDjQESC2b9+er7/+ml27dpGcnMy9997Lu+++y7vvvgtUj4YfO3YsQ4YMYe/evTRr1sxxzvDwcAYPHlzn89WSGCIif41CPhGRJsBisfD8888DcMsttxAXF0d0dLRjN7u8vDz+7//+j//+979cfvnltGnTBvj9JsVms7F37152796Nh4cHl1xySa2bkvT0dF588UVyc3O58847KS8vZ/r06QBUVlZSWFhIQEAAMTExbNu2jc6dOztGC+zbtw+73c7OnTt5+OGHHU/7KyoqCA4OJjk5mZCQEAD69OlDnz59KCgoYNeuXdhsNo4cOcLEiRN5//33ueaaa1i0aBH/+9//eP7554mLi6OyspK9e/dy5MgRAgMDMRgMhIeH4+PjQ0pKClB9Y3LllVfSpUsX5s+fT15eHm3atKFHjx6O0Xk1kpOTG/TfSkREnF9NCNW2bVsCAgIIDAxkyJAhJ1V348aNvPnmm6xZswZ3d3dCQ0O57LLLuOeee/D09CQ+Ph4vLy8WLVrEu+++S48ePXB3dyc/P5+ffvqJZ5991vFwqqSkhLy8PMLDw1m7di3btm2jS5cujB8/ni+//JKVK1dSWFhIeXk5AK1bt+bJJ5+kV69ejgdaW7ZscYR8V1xxBVu2bOHjjz/GYDBw6623OjauSklJ4Y033sBqtTJ8+HD8/f2B6qUuKisryczMBKr78g4dOpCVlUWzZs0ICAhwXHvNJlkiItIwFPKJiJyD0tPTsdlsxMXFnVR5X19fOnXqxIEDBxg3bhzh4eF1ytx7773885//ZMGCBcTHx2M0GnFxcWH79u1MnDiRTZs24e3tjdVqJTo6mvHjx9OjRw8A5s6dy7Zt23jllVcYOnQoUH0jMH78ePbt20deXh5xcXEkJCTg4eHhGIEH1ev2+fv7s3nzZiIjI+nbty9t27YlNjaW0NBQbDYbXl5eAOTm5rJ161YuueSSWlOLf/75Z1atWoXdbic8PJw1a9Ywbtw4hg4diouLC+vXr6e8vNwRdBqNRi6++GKKi4spLy93BI7R0dHceeedf+FfREREzmc1O9pCdb9WE/KFh4cTGhrKvn37gN+Xvqgp+8cdcHfu3MmECRMoLy/n4YcfJiAggB9++IH333+f3Nxcxo8f7zhnzSZVNX3Y9u3b8fLy4rvvvmPx4sXs2bOHnJwcbDYbsbGx9OrVyzHF9dprr+Xaa68lKyuL/fv34+7uzsaNG3nttdf48ssv6dWrF82aNSMkJMSx3mxFRQWenp488MADeHh48NFHHzFnzhw6dOhASUkJe/fuJTIyktdee41+/fo5NrHq1q0bP//8c63vHkFBQQQFBTXwv4qIiPyRQj4RkXPAsYtx5+XlMWTIEG666Sb+8Y9/1Fl0u+ZGo+bGoWaH25iYGFJSUsjKyiI8PNyxI5/NZsPV1ZW2bdsSHh5ORkaGYz2ggwcP8uSTT1JRUcHEiROJjo5m586dfPbZZzz77LOO9fK2bdtGQkKCI+CD6nXqxowZwxNPPEFOTg4Abdq0obKykoKCAke54OBgAgMD8fX1ZeLEiY6pSzU3SBMnTsRoNPLQQw8xb948Jk6cyDPPPEP37t0xGAysX7+epUuXMnToUKqqqujRowcfffQRM2fO5Pvvv8dsNtOxY0fuuOMOx069AI888ki9n7Xdbq+1HpKmBImIyLGsVqtjTbiaPuJ4a7H6+PgQHR3Nnj17HGvbnahf+eSTT0hNTeWDDz5wjJ676qqrePrpp/nyyy/p168fl112GdHR0WRmZnL06NFaI+ECAgJISUlhwIABJCUl0aZNG6KioggICKCqqspRNjU1lezsbHr37u0I31q1asXXX39NVlYWAGFhYSQkJLBixQreeecd4uPjGTRoEIGBgY4pwIsXLyYtLY2YmBhGjRpFjx49HGv11Xw/cXd3r/fhooiInH0K+UREGllWVharVq1yrJsTGBjIRx99RHh4eL2LTh/vRqNNmzbMnz+fnTt3Oqbx/PFGIy8vDwBPT08Ali1bRkZGBh9++KGjTqdOnWjXrh3XX3898+fPp1WrVuTk5DjOVRMqAnTv3h273c7hw4cBHOvzHDp0yPGePj4+9OnThx9//JG5c+cyduxYx2vr1q3j448/ZsyYMdhsNq677jp+/vlnXnrpJZo3b+4IDPv168cjjzyC0WjEZrPRu3dvkpKS8PDwOOHC3BaLpdZNWs1nosW8RUSantLSUt5//33atGnD4MGD66wveyLHlq2vj9i9ezeLFi0iPT2d5ORkrrzySsd6dc2bNwdgz549tG/fnrVr17J9+3Z27tzJ8uXLeemllxg8eDCFhYXs2LGDHj160KVLF6B6kw13d3euvPJKvvvuO5YuXcpll11G69at2bp1a62HZpGRkXh6ehIWFsbEiRMxm824ubnh4uJCbm4u//rXv+jSpQujR4/m/fff59tvv+Xf//43LVu2dGzQkZqayqOPPgpUT539+9//zj//+U/effddLr/8cgYNGgRUr0WbmJjo2HH3j/SATETk3KSQT0TkDKusrMTDw+NPy9WM3nv33Xf54YcfSEhIcDyB79atW711SktL2bhxI+vXr6eiooI+ffo4ptTWBGy7d+8Gfg8DXV1dKS0t5auvvqKsrMwxcqCiooLt27fj6elJ+/bt2bx5Mzt37mTbtm3s2LEDi8XCqlWrePjhh/Hx8eHgwYOO80H1DVFERASenp6kp6djNpuJjIzE19eXgwcP1pomO2LECObPn89LL73Ejh076N27N8XFxXzwwQckJCRw00034eLigpeXF2+//TY//fQT27dvJzAwkOTkZNq1a4enp2etXX5rpvgeOzLvjzdmfxwFKSIiTZe7uzvvvPMOl19+OYMHD64VRNlsNke/+8eHZTUBn9lsxmw288svv/DDDz9gNpsZPXo0UVFRTJkyxdG3ffPNN2RmZvL3v//dMZLPzc2N2267DavViqenJ+Hh4bRq1YqRI0c6lt44evQoFRUVeHl5OR5a1fRTkZGRxMfHO/rwNm3aUFhYSHZ2tqOdzZo146KLLuLTTz9l6dKl9OvXD6h++LZw4ULmzZvHRRddBFQv0ZGSksLjjz9OXFwcubm52O12br31Vm655RagOqjr3bs3s2fPrjVaUEREnJfufkREzpDVq1dz11138eCDD3LzzTfXW8Zmszl2sa1ZrycsLIycnByMRiNQfbNRVVXF9u3badasmWMKTHFxMZMmTWLBggWOnelmzJjB0KFDefHFF2nRogWurq6kpaUBcOTIEfbt20dqairr1q1j7dq13H777YwcORIADw8PCgsLyc3NJSkpCZvNRmBgILGxsbRu3Zrrr7+eqKgoABISElizZg0HDhxw3KwYDAYOHjyIp6cnhw8fpri4mODgYGJjY8nMzKS4uBiTyYTFYsHDw4Onn36a6dOns3z5cubNm4erqytdu3blgQceqLX2oMlkYvDgwSe9255G5omIiNVqxWg0EhkZSX5+PoWFhfj7+9da3qIm3KsJ/Nzc3Byv/+Mf/+Dw4cP06NGDlStXYjKZ2Lt3L5s2bcJut9OtWzfeeOMNXF1def3115kzZw4XXXQRvXv3JjY2Fnd3d1q2bMnEiROB6qUqvLy8cHNzc/RdPj4++Pr6OtbvO3ZXe39/fzw9PR2vtWzZEqg9Mt5kMnHTTTexaNEiHn74YUaNGkX79u3Zt28fH3/8MQMGDHCMxIuOjuaLL75g0aJFHD58mMjISDp37kxCQkKdz04Bn4hI06GQT0TkNNXcIDRv3pxnn322ztSWY6cA1TfV1tPTE5vNxpNPPkl0dDRPP/0069at48EHH+T5559n5MiRmM1m3n//fb788kvuv/9+hgwZgtVqZfr06UyfPp0RI0bQuXNnQkNDWbNmDd27d6e4uBij0YjZbAZg3Lhx3HfffcDvowj9/f1xc3PjiSeeoFevXphMJnx9ffH19WX37t0cPXoUgMsuu4w5c+bw0Ucf8cQTT+Dh4YHFYuGLL76goKCAoqIijh49SnBwMFFRUSxfvpysrCzCwsJwdXXFbrfTqlUrnn76aVJTUzEYDMTFxZ1wpJ3VagXqLlouIiJSo6Y/q3nYEx8fz/79+8nNzcXf39/R/65bt47p06ezceNGjEYjl1xyCcOHD6ddu3ZA9ci5hQsXkpOTwx133MHQoUNZvXo1zz33HAB33nmnY1ru1VdfzXfffUdqaiq9e/emefPmeHt7U1ZW5hhVX5/AwEBatWrF/PnzOXz4sOOBHYC3tzeHDh0iPDwcs9lMbGws3t7eHD58GLPZjNFoxG63ExkZyaRJk5g+fToLFizgs88+w8fHh8svv5wHHnjAMYIewM/Pz/FgT0REzg8K+URETlNNiBceHs6wYcPqjDar+T0zM5P9+/fj6elJt27dcHV1Zd26dUycOBFXV1eys7NJTk7GYDDQqlUrXF1da63F88UXXzBgwADuvvtux7FHHnmE4cOH07p1a1xdXYmOjiYrK4u7776b7t274+/vT1paGp988gnfffcdrq6u3HbbbY4d79q3b8+sWbMwGo11bkw++ugj1q9fz1tvvUXv3r256aabeO+999i1axcDBgwgNTWVXbt20a5dO/bv309RUREA/fr1IyAggJCQkFrXX/NzzeiEms/u2Cm4x9LoPBERqdls6ngbJR27aVVQUBBJSUmsXr2aI0eOOPq1devW8cwzz2CxWBgyZAg5OTlMnz6defPm8cILL9CvXz+Sk5MBSExMZNSoUQCO9V/Xr19PRESEYzfZmod5GRkZQPUOu5GRkWzfvv2E1+Lu7s6gQYOYPXs2r7/+Oi+//DLu7u4UFxfz9ddfk56ezm233YbRaMRoNOLn58emTZsoKCggLCwMg8GAzWajW7dutG/fnoyMDHx8fGqFhSIicn5TyCcicgqOt+NeTdBnMBgoLi7G29vbceOxZMkS/vOf/7Bv3z68vb1xdXWlW7duTJo0iY4dOzJz5kxuvPFGOnTowAMPPIC/vz8eHh54eXmRlpZGZWUlWVlZmM1mevTo4Zjya7fbMZlMjg0zoHpa7bp16+jQoQNdu3bFarXSsmVLunTpwpNPPsnUqVMpLS3l/vvvJygoiJ49e5KcnMx///tfQkND6dGjB6WlpSxcuJA5c+Zw1VVX0apVKwDuuOMOwsLCmDVrFm+99RahoaHcfffdeHl58dBDDzlGDI4YMYIRI0ac8HM89vPS4t0iIk2LxWLh6NGjjmDqVBy7+/mx/6+P3W5nxowZTJ06laysLC699FLHZhRpaWlceOGFjg0p8vPz+fDDD4mLi8NkMnH77bdzww038Morr9CvXz/HA6iazTTsdjuenp4kJCTw/fffU1ZWRmBgIFC9YYXJZCI9PZ2Kigo8PT0dO9xnZmY6lrqoT9++fRk1ahQzZ85k7969XHjhhRQWFvL9998zdOhQx3RbqO5Pa74P1Kj5zmEymRz9s4iISA2FfCLSpB27E+zJOtFufH88V2FhIb/88gvDhg0DYOrUqUyaNIlvv/2WVq1acfDgQV588UVatmzJfffdh6+vL4sXL2b69OkMGDCAIUOGkJSURHx8PNnZ2VRVVQE4FvI+cOAAFRUVlJWVYTQaKS4udtzw1AR9NcGir6+vY9rRnj17uOiiixzr+wUFBfHcc8/x6quv8sUXX2C1Wnn++edp0aIF999/P4899hgPPvggSUlJAKSmptKvXz8ee+wxx7X6+Phw4403MnToUPz8/Byfxdy5c7FYLI7RgVD/rrbHUrAnItI0ZGRksHXrVjZv3szWrVvZv38/ZrMZf39/BgwYwA033EBcXJxjWi38/sCsvjVVjw31SkpKWL16NTt27MDPz4/+/fsTHR3tqLtgwQJef/11unbtyj333MPu3buZNWsWFovFsZZdYWEhGzZs4K677qJt27aOc7dq1Ypx48bx5ptvsmnTJpKTkzGZTBQUFDg20DIYDERFRWG320lLSyMqKsrxvSIuLo6MjAxyc3OJjo52rC27a9cuoqKial1vjZp2P/zwwyQnJzNv3jy+/vprAgMDGTNmDDfccIMjSAS4//776/3M1YeKiMjxKOQTkSapqqqKu+++mwMHDrBw4cI/DfqO/TJe8+W5vrBvyZIlzJo1i/T0dC6++GKgelprhw4diI+PdyxefeDAAVq1asUvv/xCaWkp9913n2PEXa9evRg+fDjR0dGO87du3Zrly5dz6NAhxzTXVq1asXbtWvLz8/H39ycoKIhdu3Y52ma1WnFzc2Pt2rVMnTqVZ555xnEDU7M7n8FgcKx7FxYWxkMPPcShQ4f43//+R0VFBS+//DIXXHAB//vf/5g9ezabNm3C19eXK664gj59+tQK7lJSUvj888+57777CAwMxGw2k5OTwxdffEFERAShoaGOstrVVkSkaUtLS+P2228nPT0df39/wsLCSEhIoHv37ri4uLB27Vo+/vhjMjMzefnllx0j5ODEyzGkp6dz//33M27cODZu3MiPP/6Im5sbhw8fZubMmUydOpWIiAgqKip45513iI6O5l//+pfj/H369OG2224jMzMTq9VKRkYGLi4udOjQwdGv1/y/Q4cOGI1Gtm3bRnJyMvHx8WRmZpKXl+eYAhsREYGHhwe7du3iwgsvxGaz4erqSmJiIj/++CPZ2dlER0c7NrTYsmUL/fv3rzfkq3lvPz8/RowYwaBBg2qN0hMRETldugsTkSbJzc0NFxcXsrKyKCgoIDg4+ITla76IFxQUcOTIEYKDg2uFVgDff/89EyZMIDIykgsuuIDly5eTmZkJwMGDB4mPjyciIgIvLy+2b9/OwIEDMRqNVFVV8Z///IeRI0cSGBiIzWYjMTERf39/x7SkTp06MW/ePA4fPuwIAxMTE1m4cCGHDx+mW7dudO7cmWXLlrFr1y7atGnjCNI2bdrEmjVrcHFxITo6Gl9fXw4cOFDrumpERkbyn//8hzvvvJOioiIKCgoICQmhWbNm3HPPPSf8jLy8vPjmm29Yvnw51113HV5eXo51jx599NE//YxFRKTpqNm5NjExkddeew0fHx+8vb0d68lVVFTw3HPPMW/ePJYuXeoY8V5YWMiaNWtYtmwZqampeHt7c/nll3PFFVdgNBoJDQ1lx44dvPXWW7i7u/P8888TFxfHihUreP7555k6dSqPPvooZWVl7N+/n7vuussR8FVVVXHBBReQmJhIZmYmJSUlGI1Gx/eBPz648/Pzw2g0kp2dDVRvvrFkyRKysrIcIV9oaCghISGOh2w150hKSmLOnDkcPHiQLl26EB4eDsCGDRuA408zPrYNCvhERORMU8gnIk1SzRP6n3/+mYyMjD8NoObOnct7771HWloanp6etG7dmpEjRzJ48GC8vLzIy8tj8uTJhIeH8/rrrxMREQHA5MmT+fDDD9m8eTN9+/YlODiYsLAwx83AoEGDyMzM5N1332X58uUAGI1Gx3p4Dz30EOHh4Y5ptunp6Y42tWnThqqqKjIyMujduzc33HADc+bM4ZVXXuGhhx7Cx8eHlJQU3n//fXr16uW4wQDYuHGjY52gPwoJCWHWrFn1fg42m82x5t+xi5zbbDZatmzJJ598wqxZs5g/fz7l5eW0atWKxx57jMsvv/xk/2lERKQJ8PX1JTQ0lMOHDxMfH18n1PLw8OD6669n9uzZbN++nWHDhmE2m3n99df59ddfCQoKIigoiK1bt/LLL79QXFzMDTfcgKenJ5GRkRw8eJAFCxY4Rsg1b96cL774gvXr11NSUkJ2djZGoxFfX1/He9b0WZ06deKXX34hNzeXZs2aERwczNatWx3TcGtGwldVVVFSUuJYU7Z9+/bMmTOHw4cPOzbiCAoKIioqii1bttR6jzZt2gC/7wTfsWNH5syZQ0xMDHDitQRFREQaikI+EWmyana/27t3r2Otufp8++23PPPMM3Tp0oV77rmHgoICZs2axT//+U+OHj3KHXfcwbp160hNTeWZZ54hNjbWMdVn+PDhzJ8/n40bNwIQGBhIdHQ0+/fvx2634+/vz3333ccNN9zAnj172LNnD0ePHuXAgQN8/fXX+Pr68tRTTzluFmpGEwDExcU5pijZbDY6derEP//5T9555x3uvPNOvL29KS0tpUuXLrzwwguOeq+99hoBAQF4eHgc95prpvv+cd08FxeXem9Mao717NmTpKQkrFYr3t7eJ/PPICIiTZCbmxsxMTFs2rSJzMxMYmJiai1zYTAY8PPzw9PT0xGEvfXWW3z55Zc8/vjjXHbZZZhMJqqqqrj11lv55ptv6N+/PzExMcTHx5Ofn+8I32oeWiUmJvLTTz9x9OhRvL298fX1dSxPAdV9G1RvQjVz5kwyMjLo27cvvXr14rvvvuPyyy+nb9++jpHwK1asAOCiiy4CqLUubQ1fX19iYmIoLCys9fCsc+fO7Ny501Gupn0iIiKNSSGfiDRZzZs3x93dvdaX8D/Kzc3lgw8+IDY2lrfeeguTyYTBYGDQoEHce++9TJs2jWHDhmE0GgEcU3hr1uSJioqiS5curFmzBqievhQXF8e6desoKChwrF3n5ubGxRdf7FjHD+Diiy8mNTWVyspKfH19CQwM5JdffqFHjx60bduW4OBgjEYjmzdvpqSkBD8/P8aOHUvv3r356aefqKiooGPHjnTu3Bk/Pz+g+ganb9++f/rZHLtW36mqb3SgiIicf9q1a8c333zDwYMHHSFfDYPB4OirasKv1atXc+mll3LLLbfUOk9MTAzbtm3j8OHDxMTE0Lp1a9asWUNeXh7w+4OmTp068c033zhGuLds2ZKtW7eSlZVFeHg47u7uQHVfaLfb2bdvH3379uWmm27ip59+4pFHHuHmm2+mZcuWrF27lpkzZzJq1Ch69OgBQMuWLfHz86s1jdZkMvHCCy9oswsREXEKCvlEpMkKCQkhODi41lP+GjWjDY4cOcKuXbu488478fLyckxVDQoK4pZbbuGBBx5g5cqVREZGAtWjCeD3RcN9fHyIiori6NGjmM1mPD09iY6OpqKigoyMDAIDA3n++ecd6wuFhoaSn5/Pxo0bycnJ4cYbb3TcvIwZM4aPP/6Ye++9l+uvv55HH32UUaNG1bpxgeqbkJYtW9Z7zcdOr9VUIRERaUg1o9DT0tK48MILHf1OSUkJq1atYsaMGXTr1s0xUu6TTz7Bw8ODzMxM1q5dy8qVK1m5ciW5ubkEBQU51rnt2LEjVVVVjt9r+rb27ds73q9fv34MHz6cxx57jM8++4xHHnkEi8XC3r17mTFjBj4+Po767du3Z8qUKXz88cdMmzaN4uJi/P39GTduHPfee6+jjzWZTI6HdsdSwCciIs5CIZ+INFk+Pj5ERESQlpbmWIenRs0X9mN3noXfRwu4uLjQunVrx3TZjh07YjQaSU1NxWw2YzQaHdNdi4qKANi3bx9t27YlPDwcV1dX9uzZQ8eOHenSpQuLFy9m1KhR9OrVC7PZzPr167nsssu46qqrHDcX48aNo1evXkD1DYnJZOLxxx+v99rsdnuttfP+SAGfiIg0tJrNnpYsWUJZWRmbNm0iNTWV3NxcSkpK6NGjBy+99BKhoaHYbDY8PDzYtm0bU6ZM4dChQ4SGhnLfffcRHR3NbbfdRlZWFoBjndqMjAzg9766VatWQPVmVwBXXHEFP//8Mx988AFbt26lU6dObNy4kRYtWpCRkcHu3bspKyvDy8uLHj160K5dOzIyMggICHCsrSsiItKUKOQTkSbLzc2N2NhYNm/eTE5ODtHR0fWWMZlM5OTkOMK7mlF+np6e+Pv7U1xcTOvWrUlMTOSbb77h6quvJiYmBldXV0pKShwjBXfu3Enbtm0JCwvDZDKxadMmrr76akaOHEmLFi2YO3cuO3bsIDAwkNtuu43LL7+81mYZPj4+dOvWrU4bLRZLnam1BoPBMZpQRESkMQQGBhIXF8eqVas4cuQI8fHxXHTRRezYsYPt27fTvn17xxReFxcXcnNzue222/D19eWee+6hU6dOxMbGcvjwYeD3UK958+a4urqSkZHheKBmt9vx8fEhKCiItLQ0SkpK8PHxcayp+8033zB79mwSExOZMGEC6enphIWF1Zp66+PjQ9u2bc/+ByUiInKWKOQTkSbt2PWC6gv5IiIiiIiIYNOmTeTl5dV6sn/gwAGOHj2Kv78/ADfffDPPPvssf//73xk9ejRhYWHMmDGDjIwMXF1d2bhxI1dddRWBgYF06NCh1sYUXbp0oUuXLn/a3pqboWOnBv3VtfNEREQakpeXF/7+/vj4+PDee+8RFhaGm5sbFRUVzJ07l+eff55Fixbxxhtv0LFjRzZs2EBBQQGTJk2qtUbt0qVLcXFx4ciRI+Tn5xMYGEhMTAwHDx4kPz+fkJAQqqqqMBqNhIWFcfToUUfI5+fnx5gxYxg5cqRj/Vz4fQ1dERGR84nmc4lIk1azXlDNaDur1YrNZnO87uPjQ//+/fn111/5/vvvATCbzRw9epTPPvsMT09PRzg3ZMgQXnjhBYxGIy+//DL33nsvdrudp556ivbt2zumD8XFxfHxxx/XO9XWbrdjsViwWq21FiivYTAYtPaPiIg4BRcXF5o3b05JSQlVVVV4eHjg6uqKt7c3Y8aMYfz48WRlZXHfffeRkZGBu7s7bm5urF69mr1795KamsrUqVN56623cHV1ZdOmTY7d6sPCwjh06BCFhYXA7w+8Pv/8c7755ps6022PDfhERETOVxoeIiJNWnR0NF5eXuzZsweg1hTXiooKDAYDw4cPZ+/evbz44ov88MMPJCcns3HjRnbv3s0//vEPevXq5ZjCe+mll9KnTx+2bNlCVFQUzZo1w2az8e9//9sxJajmRqRmitGxTmdXWxERkXNNhw4dANizZw8JCQnA76PSx40bR3l5OW+88QaPPPIITz75JMOHD+eDDz5gwYIFeHh4UFRUxG233UZ8fDxfffWV40HXG2+8gb+/f621cqH64ZyIiIjUT3eaItKkBQUFERYWxo4dO0hNTeXIkSMcOnSIQ4cOsW/fPkpKShg3bhyvvvoqs2bNYv78+cyePZuEhAQef/xxBg8eDPw+ffabb77B29ubAQMGANU3Mjt27ODAgQNcd911td5ba+aJiEhT16JFC1xcXNi7dy+DBg0CqvvMmqDvtttuw2w289///pdJkybx6KOPcuGFF7J+/Xri4uLo0qULbdq0wd3dnUsvvRSo7lsDAwMb7ZpERESclcFe33wxEZEmwmazcccdd7B8+XIiIyPJzc3FbDYD4OHhQfPmzXn88ce54IILABybb/xRzUi+G264gY0bN3L77beTnJxMdnY2H3/8MUajkbfffpuYmJizen0iIiKNKTs7myFDhpCUlMTUqVNrvVbTd5aUlLB9+3bi4+O1Vp6IiEgD0kg+EWnSXFxciI2NpXnz5jRv3pyrr76ajh07kpiYSFhYWJ3yNbvr1qzb98fReM8//zwfffQRixYt4vPPPwege/fuPPTQQwr4RETkvOPv70/79u0JDQ11hHo1an728fGhR48ejdVEERGR84ZG8onIec1qtWIwGBxr/ZxIzc2L2WwmNTXVMRLwZOqKiIiIiIiINCSFfCJyXrDZbI7ReS4uLgrmREREREREpElRyCciIiIiIiIiIuLkNJRFRERERERERETEySnkExERERERERERcXIK+URERERERERERJycQj4REREREREREREnp5BPRERERERERETEySnkExERERERERERcXIK+UREhAEDBjBgwIDGboaIiIj8CfXZIiJyPAr5REREREREREREnJxbYzdARERERERERETkbBg/fjxz5sypdczd3Z2wsDD69evH/fffj7+/f4O8t9lsJj8/n/Dw8AY5v0I+ERERERERERE5rzzxxBMEBgYCUFlZyd69e5k5cyZbtmxhxowZuLq6ntH3y8zM5NZbb+XOO+/k6quvPqPnrqGQT0REREREREREzisDBw4kOjq61rHmzZvz7LPP8ssvv9CvX78z+n4ZGRmkpaWd0XP+kdbkExERERERERGR817Pnj0B2LNnTyO35K9RyCciIiIiIiIiIue9I0eOABAbG+s4tnfvXu655x66detGUlIS119/PcuWLatVz2w28+KLLzJgwAA6dOhA3759efbZZyksLARg9uzZ3HTTTUD1NOE2bdo0SPs1XVdERERERERERJzKgAEDTvj6Dz/8cMLXi4qKyMvLA6CqqorU1FReeOEF2rdvT//+/QHYtWsXo0ePJiQkhDvvvBN3d3fmzZvHHXfcweuvv86QIUMAeO6555g3bx433XQTMTEx7Nmzh2nTpnHgwAE+/PBDunfvzl133cU777zDqFGj6Nq16xn4BOoy2O12e4OcWZqs65e+2thNEBEREREREWkyvuj3WGM3oVGcTr6Q88KiE75+vJCvvt11a3h6evLpp5+SlJQEwNixYzly5Ahff/01Xl5eAFgsFm6++WbS0tJYunQpRqORpKQkrrnmGp5++mnHuSZPnsyyZcv49NNP8fb2ZvXq1dx00028/PLL2nhDREREREREREQE/nyk3p+ZNGkSISEhQPVIvszMTKZNm8aYMWN47733SExMZM2aNYwdO5aKigoqKiocdS+99FJefvlltmzZQteuXYmIiGDBggV06NCBgQMH4ufnx4MPPsiDDz54Wm08VQr5RERERERERETkvNKlS5c6u+sOHjyYyy67jOeff55XXnkFgM8++4zPPvus3nMcPnwYgAkTJvDggw/yxBNP8H//938kJydz6aWXcs011+Dr69uwF3IMhXwiIiIiIiIiInLeCwwMpGfPnnz//fdYrVYAxowZw8CBA+st37JlSwB69+7N0qVLHf+tWLGCl19+mY8//pjZs2cTFBR0VtqvkE9ERERERERERASw2WwAhIWFAeDq6soFF1xQq8zevXvJyMjAZDJhNpvZsWMHERERDB06lKFDh2Kz2fjoo4949dVXmT9/PmPHjj0rbXc5K+8iIiIiIiIiIiJyDsvNzeXXX38lMTGRqKgoOnTowJw5c8jKynKUqaqq4sknn+T+++/HYrGQn5/PqFGjePfddx1lXFxc6Nixo+NnqA4L4fcQsSFoJJ+IiIiIiIiIiJxXlixZQmBgIAB2u50jR47w5ZdfUl5ezj/+8Q8AnnrqKW6++WauueYabrjhBgICApg/fz6bN2/m4YcfdtQfNmwY06dPp7y8nM6dO1NQUMDnn39OSEgIgwcPBnCU/eabb7Db7YwYMQI3tzMbyynkExERERERERGR88rLL7/s+NnV1RV/f386duzIiy++SO/evQHo3LkzM2bMYMqUKXz00UdYLBbi4+OZOHEiI0aMcNR//vnniYmJYf78+cyfPx+TyUTv3r35xz/+4ViPr0WLFowdO5bZs2ezZcsWevbsSWxs7Bm9JoPdbref0TNKk3f90lcbuwkiIiIiIiIiTcYX/R5r7CY0itPJF87Xz+xEtCafiIiIiIiIiIiIkzuvpuv++uuv3HzzzQQEBLBs2TKMRmNjN0lEpMFV5BWzb+FaCvcdASCobTTxg7tj9DGdsF5hWhZpizdQkpmLm8lIcGIscQM74+7teTaaLSIi0mQ0dF98sufP251J+k+bKck8CgYDfjGhxF3aBb/Y0DN4tSIi0ljOq5F83377LV5eXhQUFPDjjz82dnNERBpcVVklKVO/ozg9h+g+HYi6uD1Hd6az9aPF2KzW49Yr2HeYLVMXUZ5bSMwlnYjslUjutgNsfm8hVeWVZ/EKREREnFtD98Une/6C/UfY9sn3WMrNNL+sC3H9kynPKyLl/YUUp+c06GcgIiJnx3kT8pnNZhYvXszw4cPx9fVlzpw5jd0kEZEGl7l8G5WFZXS8dRAxfTsRe0kSiTf0o/RwPlkb9h63Xuq3qzG4GEi6cwix/ZKIuaQTnW6/nIq8YtJ/SjmLVyAiIuLcGrovPtnz75u/Bg9/b5L/fgVRF7Ynuk8Hkv9+Ba5GN9K+39Cgn4GIiJwd503I9/PPP1NUVETPnj256KKLWL58OTk5emIlIk1bTso+AuIj8AoLcBwLbBmJKdSPnJT99dapyC+hLKuAsM4tMAX7OY57hQYQlBhzwhsSERERqa2h++KTOX9VeSWlh/MI6dgcV+PvKzYZfUz4x0dQdDD7DF2tiIg0pvMm5Pv2228xGAx0796dSy+9FIvFwtdff12n3ObNm7n99tvp1q0bPXv25I477mDXrl2nVKZ///6MHTu2zrn/eLx///489dRTPPnkk3Tq1Ik+ffqQl5eH3W5nxowZXHvttXTu3JmOHTty+eWX89577/HHzZBP1JbXX3+dNm3asHdv7Rtym83GxRdfzP3333/qH6SIOI2q8koq8krwiQqu85pPs2BKDh2tt565qBQA7/DAOq+ZgnyxlFZSWVh6ZhsrIiLSBDV0X3yy53fzcKfbP64m6sL2ddtYVoHB5by5LRQRadLOi7/mJSUl/PTTTyQnJxMSEkLfvn0xGo3MnTu3Vrl169YxZswYUlNT+dvf/sbf//539u7dy0033URGRsZJlzkV8+fPZ9euXTz55JNcd911BAUFMXnyZCZMmEDLli154okneOihh/Dw8OD1119n+vTpJ93eK664AoCFCxfWes81a9aQnZ3NsGHDTrm9IuI8zIVlABj9vOq8ZvQzYS2vwlJurvOai3v1E35rZVWd16rKqtcAMheXn8mmioiINEkN3Ref7PkNLi6YQvzw+EO50iN5FB3Ixi827BSvTEREzkXnxe66ixYtorKykssuuwwAHx8fLrjgAn766SdSUlLo1KkTAK+88goBAQHMmjWLwMDqp2Z9+/ZlyJAhTJ8+nccee+ykypyKiooK3n77bcLDwwGoqqri888/Z+jQoUycONFRbuTIkfTu3Ztly5YxZsyYk25v69at+e6777jvvvsc51qwYAG+vr707dv3r3ycIuIkrObqGwNX97p/6l3cfrt5qLLgZqq907hXeACunu7kbjtAdN+OGAwGR9n8PZkA2KosDdl0ERGRJqGh+2K7zfaXzl/Ttl3/WwZAdN+Of+n6RETk3HJehHzz5s0D4NJLL3Ucu/TSS/npp5+YPXs2nTp14ujRo6SkpHDrrbc6AjOA+Ph4Zs2aRbNmzU6qzKmKjY11BHwA7u7urFy5kqqq2k/t8vPz8fHxoays+mndybZl2LBhvP766+zevZvWrVtjsVhYtGgRl156KUZj3c5eRJqQmun9hlOr5uLqStSF7Tn4wyZ2zfyFmEs6YrfZObBkIzZzdbhncD0vBoKLiIicnobui//i+a1mC9s++4HSw/lEX9KRgPiIUzuBiIick5p8yJednc2vv/5K8+bNMRgMjim1bdu2xWAwsGDBAp588kkyM6ufiMXFxdU5R7t27QBISUn50zKnKji47voZ7u7u/PTTT/zwww/s37+fAwcOUFhYCOBYk+9k2gtwxRVX8K9//YvvvvuO1q1bs2LFCgoKCjRVV+Q84OrhDoCtylrnNZul+gbBzdO93rqx/ZOwVJg5tHK7Y9HuoMRoovt0IG3RBtxMHg3UahERkaajoftiu9V6yue3lJvZ9ukSig5kE96tFc0v7fIXr05ERM41TT7kW7BgATabjbS0NAYMGFDn9cLCQpYsWUJkZCSAYyh8fWy/DYc/UZkTsVrrdr6urq61frfb7dx9990sXbqUrl270rlzZ0aNGkX37t25+eabT7ktkZGRdOnShYULF3L//fezcOFCQkND6dmz51+6BhFxHh7+PkD96+eZi8pxNbnjaqz/xsJgMNBiaA9i+nakPLcID39vPAN9SFu8AVwMeAR4N2jbRUREmoKG7ovtFtspnd9cUs7Wj7+n9FAeET1a03J47798byMiIueeJh/y1eyqO3HiRHx8fGq9tnPnTqZMmcKcOXN44YUXADh48GCdc0yaNAl/f3+GDx/+p2XuuOMOXFxcMJtrL6BrsVjIz88nNjb2hO1dt24dS5cu5e677+aBBx6oVb+goICYmBgAx3TcP2sLVI/me/bZZ9m3bx9Lly5l2LBhdcJFEWl63ExGPIJ86t25r+TwUXyjQo5bN3vzPoy+JgISmmH0MTmOF6YdwScquN61f0RERKS2Bu+L3Tnp81sqqxwBX+SF7WgxtMdpXp2IiJxrmvSiSvv372fr1q306NGDq666ioEDB9b678477yQ0NJQVK1YA1VN458+fT0lJieMc6enpfPrpp+Tm5hIeHv6nZQBCQkLYv38/FRUVjjI//vgjlZWVf9rmgoICAFq2bFnr+Jdffkl5eTmW34bdn2xbAAYPHoy7uztTpkyhoKDAseuuiDR9Ie3jKEg9RFlOgeNY/t5DlOcUEdop/rj1MldsI/Xb1disNsexozvTKUrLJrJn24ZssoiISJPS0H3xyZ4/9ZtV1QHfBYkK+EREmqgmPRSjZsONa6+9tt7X3d3dueaaa3jnnXf4+uuveeKJJ/jb3/7GNddcw8iRI3FxceHzzz/Hz8+P22+/HeCkylxxxRU8//zz/O1vf+PKK6/kwIEDfPnll0RFRf1pmzt37oyPjw8vv/wymZmZ+Pv7s3r1ahYsWICHhwelpaWOsifTFoDAwEAuvPBCFixYQExMDMnJyX/1IxURJxN9cQeyN6ayZeoioi7qgM1iIWPZVnyigglLbgFAeV4xRQey8YsLwxTkC0BMn47smP4T2z9bQnC7OCoKSshcvo3A1pGEJSc05iWJiIg4lYbui0/m/GXZBWRv3IeryR2fyGCyNqbWaWd45xZn4dMQEZGGZLDX7OTQBA0aNIijR4+yfPlyPD096y2TmZnJwIEDad68OQsXLmT9+vX85z//ISUlBQ8PD7p3786jjz5aa5rtn5Wx2Wy8/fbbfPXVVxw9epS2bdvyyCOP8OGHH1JWVsZnn30GQP/+/YmKinL8fuz5X3vtNXbu3InRaCQ+Pp6bbrqJlJQUPv30U3755RdCQkJOqi015s2bx8MPP8xdd93FP/7xj9P6XK9f+upp1ReRs6ssp5B989dQmJaFq9GNwNZRxF/ezTH1J2vDXnZ/tZzW115EeJffRxFnb95Hxi9bKD9ahLuPibCkBGL6dsLV2KSfD4mIiJxxDd0X/9n5D6/eyd6vfz1hGy9+adyZvWgROSVf9HussZvQKE4nXzhfP7MTadIhn/xuwYIF/OMf/2DBggW0aHF6T+kU8omIiIiIiIicOedrYKWQ78xq0mvySTW73c4XX3xBUlLSaQd8IiIiIiIiIiJy7tGcqybMYrHw0EMPcfjwYVJSUpgyZUpjN0lERERERERERBqAQr4mzM3NjQMHDpCRkcG9997LZZdd1thNEhERERERERGRBqCQr4n7+uuvG7sJIiIiIiIiIiLSwLQmn4iIiIiIiIiIiJNTyCciIiIiIiIiIuLkFPKJiIiIiIiIiIg4OYV8IiIiIiIiIiIiTk4hn4iIiIiIiIiIiJNTyCciIiIiIiIiIuLkFPKJiIiIiIiIiIg4OYV8IiIiIiIiIiIiTk4hn4iIiIiIiIiIiJNTyCciIiIiIiIiIuLkFPKJiIiIiIiIiIg4OYV8IiIiIiIiIiIiTk4hn4iIiIiIiIiIiJNTyCciIiIiIiIiIuLkFPKJiIiIiIiIiIg4OYV8IiIiIiIiIiIiTk4hn4iIiIiIiIiIiJNza+wGyKmZMmUKb7755gnLzJ07l8TExFrH/u///o+0tDQ+++yzhmyeiJxFFXnF7Fu4lsJ9RwAIahtN/ODuGH1MJ6xXmJZF2uINlGTm4mYyEpwYS9zAzrh7ex63TumRPDa+NY+YSzoSN6Bz9fvnl7B20lcnfK+OfxtEQEKzU7wyERGRpqWx++waxZm5pC1aT9HBbAwGA/7xEcQP7o5XqP/pX6SIiDQ6hXxO6q677iIhIaHe1yIjI2v9/r///Y8vv/ySHj16nI2michZUFVWScrU77BbbUT36YDdbidj2VZKj+STfPcVuLi61luvYN9htn70PW4mIzGXdMJgMJC5cjsF+46QdNcQ3E0ederYrDZ2fbUcu9VW67i7twetR15ct7zFQuq3q3H39sS7WdCZuWAREREndS702QBlOYWkvP8drkY3YvslAZC5Yjub31tAl/uG4+HndWYvXEREzjqFfE7qggsuoGfPnicsY7Va+e9///unI/9ExPlkLt9GZWEZXe8fjldYAAC+0aFs/XAxWRv20qx7m3rrpX67GoOLgaQ7h2AK9gMguH0sG/7zDek/pZAwuHudOhk/p1CWVVDnuKvRnfDOLeq+x7zV2K022l7Xp94bEBERkfPJudBnA2Su3I7NbCHpjsH4RAYDENAikk1vzyNzxbZ6zyciIs5Fa/I1UZWVlYwYMYIpU6YwfPhwwsPDG7tJInIG5aTsIyA+wnGzABDYMhJTqB85KfvrrVORX0JZVgFhnVs4bhYAvEIDCEqMIWvD3jp1So/kcXBpCrH9k06qXaVH8ji0agfhXVvhHx9xahclIiLSBJ0rfXZFXjFu3h6OgA/ANzoENy8PyrLy/+LViYjIuUQhXxNVWVlJSUkJ//73v3nllVdwc9OgTZGmoqq8koq8Enyiguu85tMsmJJDR+utZy4qBcA7PLDOa6YgXyyllVQWljqO2aw2ds9aQWCrSMKS647Yq0/a9xtwcXcjbmDnPy8sIiLSxJ1LfbYp2A9LWSXmkvLf21dWiaXCjPufrA0oIiLOQcmPkyouLiYvL6/OcV9fX9zd3fHx8WHx4sUK90SaIHNhGQDGetbOMfqZsJZXYSk342Yy1nrNxb3674G1sqpOvaqyyupzF5fj4e8NQMayLZQfLaLdjf2x2+x/2q7SI3nk7cgg6uL2WtdHRESEc6vPju7Tgbyd6eya+QsJQ6un5u5buA4XVxeiLmj3F69QRETOJUqAnNQ999xT7/FPP/2Unj174uLigouLBmqKNEVWc/UXflf3un/CXX4L9q1Vljo3DF7hAbh6upO77QDRfTtiMBgcZfP3ZAJgq7IAUJqVz8EfNtPiyp54+HtTkV/yp+06tHoXuBiI7JX4p2VFRETOB+dSn+0Z4EPMJZ1I/fZXNvznm98aYSBx9CW1pvCKiIjzUsjnpB5//HHatm1b53h9x0SkibH/9oTecGrVXFxdibqwPQd/2MSumb8Qc0lH7DY7B5ZsxGauvlEwuLpgt9nYPWs5fs3DjrsY+B9Zqyxkb0wlODEGz0CfU2uYiIhIU3UO9dlp328gfWkK/vHhRPRog91m5/Dqneyc8TOJo/sRnBjzV65QRETOIQr5nFT79u3/dHddEWmaXD3cAbBVWeu8ZrNUf/F383Svt25s/yQsFWYOrdzuWOw7KDGa6D4dSFu0ATeTBxnLtlJ6OJ+kO4dQVVoBgKW8emqQ1WyhqrQCNy8Px6gCgMJ9R7CZLYR0aH7GrlNERMTZnSt9trWiioxlW/GJDqbjbYMw/DbjJ7RTcza9PY89c1YQ2GokLm6uZ/YDEBGRs0ohn4iIk/Hwrx4pZy4ur/OauagcV5M7rsb6bxgMBgMthvYgpm9HynOL8PD3xjPQh7TFG8DFgEeAN/m7M7FbbWx6e16d+pnLtpG5bBvdH7221oi9vF0ZGNxcCGoTfYauUkRExPmdK312VWkFdouN0E4JjoAPqkcMhiW1YP936yjLKcSnWdAZunIREWkMCvlERJyMm8mIR5BPvTvylRw+im9UyHHrZm/eh9HXREBCM4zH7KRXmHYEn6hgXN3diB/SHUu5uVa9qpJydn25jLDOCYR1bom7j2et14sOZuMbFYKbZ+01hURERM5n50qfba38rUw9m3LY7baaH/7CFYqIyLlEOzOIiDihkPZxFKQeoiynwHEsf+8hynOKCO0Uf9x6mSu2kfrtamxWm+PY0Z3pFKVlE9mzek1P36gQAltG1vrPLy4cAM8gXwJbRtZaQNxmtVKWVYB3pJ7+i4iI/NG50Gd7hQVg9DNxZMMerL9t2AHVa+pmbUzFzdsDr/CAM3vhIiJy1mkkn4iIE4q+uAPZG1PZMnURURd1wGaxVK+1ExVMWHILAMrziik6kI1fXBimIF8AYvp0ZMf0n9j+2RKC28VRUVBC5vJtBLaOJCw54S+1pbKgFLvVhqe/NtwQERH5o3Ohzza4uNBiWC92TF/Kpv/OJ6JrK+x2O1nr91CeU0ibkRfj4qr1+EREnJ1G8omIOCGjj4lOtw/GOyKIA0s2cmjlDoITY2l/80DHotlFaVns/t8yitKyHPVCOjSnzag+mIvL2bdgDTkp+4m+uAOJo/vXWqPnVFjKqhf4dj3OwuEiIiLns3Olzw5pH0fHWwfhbjKS9v16DizZgJvJSPubBzrCRhERcW4Gu12LL8ipuX7pq43dBBEREREREZEm44t+jzV2ExrF6eQL5+tndiIaySciIiIiIiIiIuLkFPKJiIiIiIiIiIg4OYV8IiIiIiIiIiIiTk4hn4iIiIiIiIiIiJNTyCciIiIiIiIiIuLkFPKJiIiIiIiIiIg4OYV8IiIiIiIiIiIiTk4hn4iIiIiIiIiIiJNTyCciIiIiIiIiIuLkFPKJiIiIiIiIiIg4OYV8IiIiIiIiIiIiTk4hn4iIiIiIiIiIiJNza+wGiPP571aPxm6CiIiInIS/d6hs7CaIiIiIyFmikXwiIiIiIiIiIiJOTiGfiIiIiIiIiIiIk1PIJyIiIiIiIiIi4uQU8omIiIiIiIiIiDg5hXwiIiIiIiIiIiJOTiGfiIiIiIiIiIiIk1PIJyIiIiIiIiIi4uQU8omIiIiIiIiIiDg5t8ZuwPlk/PjxzJkz50/LjRgxAoA5c+bw9NNPM2bMmDplMjIyGDBgAPfeey/33XffCc9vNBoJCQmhd+/ePPTQQ4SEhJzmlYjIuSC7qJjPf/2V7YcOAdA5NpaxvXvhZzKdVr2c4mLun/7FCc/xf8OG0i4yEoD0vDym/bqanUeO4OHmRsfoaEZ170aor+/pXqKIiEiTUJFXzL6FayncdwSAoLbRxA/ujtHnxH32sfbMWUl5biGdbh98wnKlR/LY+NY8Yi7pSNyAzqddTkREnIdCvrNo1KhR9O7d2/H7+vXrmTlzJqNGjaJr166O47GxscycOROAyZMnM2jQoFMK5p544gkCAwMdv5eUlLBq1SpmzZrF1q1b+eqrrzAajWfgikSksRRXVPD8vHlYbTaGJSVhs9uZl5JCel4eL4y4CjdX179cz9fTk7v7XVKnrtlq4ZMVq/A1eRIbHAxAZn4Bz3z9DTa7ncEdOuDt4cGSHTt4eu7XPDt8OGF+CvpEROT8VlVWScrU77BbbUT36YDdbidj2VZKj+STfPcVuBynzz7WkXW7ObJ2N/7x4ScsZ7Pa2PXVcuxW2xkpJyIizkUh31nUuXNnOnf+/SmZ1Wpl5syZJCcnM3z48Fpla0K+oqIiXn75ZV5//fWTfp+BAwcSHR1d69iYMWOYMGECM2bMYMmSJQwZMuQ0rkREGtuClC3klZTyyshriP4t1G8ZFspL8xfy8+7dDEhM/Mv1PN3dubh1qzp1P1m5CovNyr39++Hj4QHAtF9/paKqimeuHEabiAgA+rRuxcNf/o9pv/7KPy67tCEuX0RExGlkLt9GZWEZXe8fjldYAAC+0aFs/XAxWRv20qx7m+PWtdtspP+UwoEfNp3Ue2X8nEJZVsEZKyciIs5Fa/Kd4/r378+8efNYtWrVaZ+rZhrw5s2bT/tcItK4Vqam0i6ymSOoA+gYHU2zAH9Wpe474/UOHj3Koq1b6dumNYnNmgFgsVrZkplJh6goR8AH4Gcy0ad1a9alHaC0svJ0LlNERMTp5aTsIyA+whHwAQS2jMQU6kdOyv7j1rNWWdjw5rccWLKJsOQWGP29Tvg+pUfyOLg0hdj+SWeknIiIOB+FfOe4p556CpPJxIQJEzCbzad1LtNv623Z7fYz0TQRaSQllZVkFxUTH1p3Gn/zkBD25+ae0XoAM9euw+jmxnXdujmOFVVUYLHaiA0KqlM+ws8Pm93Owby8k7kkERGRJqmqvJKKvBJ8ooLrvObTLJiSQ0ePW9dusWGtNNP2hr60GXkxBhfDccvarDZ2z1pBYKtIwpJbnHY5ERFxTgr5znFRUVHcfffdpKWl8d57753WuZYtWwZAu3btzkTTRKSR5JeWAhDk5V3ntUAvL8oqzfWOoPur9Q4ePcqGAwcZmJhIoPfvdT3cqld8qKiqqlOnuLICgMKy8pO5JBERkSbJXFgGgNGv7ig8o58Ja3kVlvL6H+S7errT7aFrCO0Y/6fvk7FsC+VHi2g5vPcZKSciIs5JIZ8TuOWWW2jVqhXvvfceBw4c+NPyRUVF5OXlOf47ePAg06ZN480336RFixYMHTr0LLRaRBpK+W+hmtGt7rKqxt8W7zZbLGes3vfbd+BiMDCoQ/tax709PGgW4M/G9HQqq2rXW59W/beqymr90+sRERFpqqzm6r7X1b1u3+vyW39srarb9wIYDAZcXP/8dq00K5+DP2wmfnA3PPzrPsg71XIiIuK8tPGGE3B3d2fChAnceOONPPfcc0ydOvWE5WvW3juWyWRiwIABPPXUU7i7uzdUU0XkLKiZcm8wHH/azpmqZ7ZYWLZnD12bxxHqW3en3OHJybzz08+8tngx13fvjoe7G/NTUsgqKgLA1UXPkkRE5DxWs0zOqXXZJ396m43ds5bj1zzsTzfwOJlyIiLi3BTyOYlu3boxYsQIZs+ezfz580lKOv5CuZMmTSIkJISqqiqWLVvGtGnTGDx4MBMmTMDjtx0xRcR5mX4L6usbdWf+beScyWg8I/W2HTpEZZWFXgkJ9balb5vWFJSVMWv9Bp6aMxeA1hHhjO7Zk/d/WYa3R912iIiInC9cPar7XltV3ZHttt/6YzfPv/4APmPZVkoP55N05xCqSquXyrCUVy+9YTVbqCqtwM3L46TLneoDRBERObco5HMijz76KD/++CMvv/wyH3zwwXHLdenShejoaAD69u1LXFwcL7zwAgUFBbz99tvqvEWcXLCPDwAFZWV1XssvK8PLw4hnPSN2/0q9TQfTcXd1JTk25rjtGd45mYHtEknPy8fP5ElkQAA/7NgBQJif38lfmIiISBPj4V/d95qL665Ray4qx9Xkjqvxr4d8+bszsVttbHp7Xp3XMpdtI3PZNro/eu1Jl/MM9PnLbRERkcankM+JBAUF8cgjj/DUU08xefLkk643duxYVq1axQ8//MAnn3zCuHHjGqyNItLwvD08CPX1rXc33LTcXBJCQ89YvV1ZWcSHhuBVz8hAgA0HDgLQJS6Wts0iHMd3Hj6Cv8lEhEI+ERE5j7mZjHgE+dS7i27J4aP4RtXd8f5UxA/pXmfjjqqScnZ9uYywzgmEdW6Ju4/nSZcTERHnpsWSnMy1115Lly5dWLp06SnVe+655/D392fy5Mmkp6c3UOtE5GzpEd+crZmZZOYXOI5tycjgcEEhF7RocUbqWaxWMvPziQ8JPu75lu3ezTs//Uy5+fcbh/05uazet59L27fTyGERETnvhbSPoyD1EGU5BY5j+XsPUZ5TRGinP98590R8o0IIbBlZ6z+/uHAAPIN8CWwZiau720mXExER56aQz8kYDAYmTJiAWz27Y55ISEgIjzzyCOXl5UyYMKFhGiciZ82VyUl4e3jw4vz5zE9JYc6GjUxe8gPxoSFc1KolAFlFRSzbvcexCcbJ1quRW1KCxWpzTPOtz5BOHSkzV/Li/AV8v207szds4MX584kMDGBIxw4Nc/EiIiJOJPriDriZPNgydREZy7dx8KfN7JixFJ+oYMKSqx+wlecVk7UxlfK84kZurYiIODOFfE6oTZs23HTTTadcb+TIkXTt2pXly5czd+7cM98wETlr/EwmnrlyGLFBQfxv3Xq+27qVbnFxjB98Oe6urkD1lNm3l/7EzsNHTqlejZLK6gW5Te7H3zyjVXg4jw++HIPBwLTVq/lhx04uatWSfw4dUu/mHyIiIucbo4+JTrcPxjsiiANLNnJo5Q6CE2Npf/NAXNyq+96itCx2/28ZRWlZjdxaERFxZga7vWZfd5GTkz/ljcZugoiIiJyEv3eobOwmiIiIyEn4ot9jjd2ERnH90lf/ct3z9TM7EY3kExERERERERERcXIK+URERERERERERJycQj4REREREREREREnp5BPRERERERERETEySnkExERERERERERcXIK+URERERERERERJycQj4REREREREREREnp5BPRERERERERETEySnkExERERERERERcXIK+URERERERERERJycQj4REREREREREREnp5BPRERERERERETEybk1dgPE+fy9Q2VjN0FEREROwn+3ejR2E0RERORk9GvsBkhToJF8IiIiIiIiIiIiTk4hn4iIiIiIiIiIiJNTyCciIiIiIiIiIuLkFPKJiIiIiIiIiIg4OYV8IiIiIiIiIiIiTk4hn4iIiIiIiIiIiJNTyCciIiIiIiIiIuLkFPKJiIiIiIiIiIg4OYV8IiIiIiIiIiIiTs6tsRtwvhk/fjxz5sz503IjRowAqFPWxcUFk8lEixYtGD16tKPcic5tNBoJCQmhd+/ePPTQQ4SEhJzmVYjIuaAir5h9C9dSuO8IAEFto4kf3B2jj+mE9QrTskhbvIGSzFzcTEaCE2OJG9gZd2/Pv1Ru49vfUpJxtM77BHeIo93ofqd5lSIiIk1TdlExn//6K9sPHQKgc2wsY3v3ws904n585+EjzFy7ltScHHw8POgWF8e13brhZ/L8S+VERKTpUMh3lo0aNYrevXs7fl+/fj0zZ85k1KhRdO3a1XE8NjaWmTNnAvDEE08QGBgIgN1up6SkhG+++Ybx48eTn5/PrbfeWus9ji0PUFJSwqpVq5g1axZbt27lq6++wmg0NuRlikgDqyqrJGXqd9itNqL7dMBut5OxbCulR/JJvvsKXFxd661XsO8wWz/6HjeTkZhLOmEwGMhcuZ2CfUdIumsI7iaPUypnt9spyy4kuF0swe3jar2XZ4B3w34IIiIiTqq4ooLn583DarMxLCkJm93OvJQU0vPyeGHEVbgdpx/ffugQLy9YiJfRyFWdk3ExuLBwyxa2HTrEs1cNx8fD45TKiYhI06KQ7yzr3LkznTt3dvxutVqZOXMmycnJDB8+vFbZmpBv4MCBREdH13rt2muvZciQIbz11lvceOONtUK7+sqPGTOGCRMmMGPGDJYsWcKQIUPO9KWJyFmUuXwblYVldL1/OF5hAQD4Roey9cPFZG3YS7Pubeqtl/rtagwuBpLuHIIp2A+A4PaxbPjPN6T/lELC4O6nVK4yvwSb2UJwu1jCO7do4KsWERFpGhakbCGvpJRXRl5D9G8P51uGhfLS/IX8vHs3AxIT66338YqVGAwGnh1+JRH+/gB0b96c8bNmMXfDRm7s3euUyomISNOiNfmclKenJ/3796ekpIQ9e/acVJ2aqb2bN29uyKaJyFmQk7KPgPgIR8AHENgyElOoHzkp++utU5FfQllWAWGdWziCOwCv0ACCEmPI2rD3lMoBlGYXAGAK8T+DVyciItK0rUxNpV1kM0fAB9AxOppmAf6sSt1Xb52c4mLS8/Lp06qVI7gDiAoMoEtsLL/s3nNK5UREpOlRyOfEDAYDUD0a8GSYflvfw263N1ibRKThVZVXUpFXgk9UcJ3XfJoFU3Ko7vp4AOaiUgC8wwPrvGYK8sVSWkllYelJlwMoy8oHwCus+ibCaq76C1ckIiJy/iiprCS7qJj40LrrZDcPCWF/bm699fJKq/vemKCgOq+F+/tRXFHB0ZKSky4nIiJNj6brOimbzcaaNWswGo20aHFyU+SWLVsGQLt27RqyaSLSwMyFZQAY/bzqvGb0M2Etr8JSbsbNVHvtTRf36j/51sq6QVxVWWX1uYvLT7qch783ZdkFuHq4sW/BWnJS9mMzW/AM8iHu0i6EJSWcxlWKiIg0Tfm/hXBBXnXXrg308qKs0kxpZSXef1g3z8Otun8ur6rbPxdXVABQUFZ+0uWCfXxO4ypERORcpJF8TqCoqIi8vDzy8vLIyclh06ZNPPTQQ+zcuZPRo0fj7e193PJ5eXkcPHiQadOm8eabb9KiRQuGDh3aSFciImdCzWg5V/e6z2lcfvtib62y1HnNKzwAV093crcdqDWi11plIX9PJgC2KstJlwMozSrAWmnBUmGmzciLaXXNhbh6uLNr5i9kbUw9Q1csIiLSdNSEb0a3uv248bcNN8yWuv14dGAgJqM7a/bvr9U/my0WUjKq+2ez1XLS5UREpOnRSD4nULOW3rGMRiNjx47l4YcfPqnyJpOJAQMG8NRTT+Hu7t4g7RSRs6TmC7vh1Kq5uLoSdWF7Dv6wiV0zfyHmko7YbXYOLNmIzVz9Zd/g6nLS5QCadW+N3W4nstfvC4SHdopnwxtz2b9wLWFJ8Rhc9DxJRESkRk3wVrP0zslyc3VlaKeOfLVuA1N+XMpVydW78n65dh2VvwWHri4uJ11ORESaHoV8TmDSpEmEhFSv2eHi4oKfnx8tWrTA4w9D+P9YvqqqimXLljFt2jQGDx7MhAkTjltHRJyHq0d1UG+rqrsep+23J/9unvWH+bH9k7BUmDm0crtjg46gxGii+3QgbdEG3Ewep1SuWc+2ddvn7kZY5xYc/GEzZdkFeEfUXRNIRETkfGX67YF7faP1zL+ttW0yGuu8BnB1ly6UVpr5butWVu2tHjHfJS6WYUlJfLFmLT6/fdc/2XIiItK0KORzAl26dCE6Ovovle/bty9xcXG88MILFBQU8Pbbb5/yU0MRObd4+FevoWMuLq/zmrmoHFeTO67G+kM+g8FAi6E9iOnbkfLcIjz8vfEM9CFt8QZwMeAR4H1K5Y7H3bt6ox+rWdOBREREjlWzFl5BWVmd1/LLyvDyMOJ5nJk3BoOBmy7ozfDkJA4XFhHs402ory8z16zFxWAg5Ldzn2w5ERFpWhTynQfGjh3LqlWr+OGHH/jkk08YN25cYzdJRE6Dm8mIR5BPvbvolhw+im9U3d36amRv3ofR10RAQjOMPibH8cK0I/hEBTvW+TuZcpWFpWz5aDFhneKJ7Z9c633KcwsB8AzUTYSIiMixvD08CPX1rXcX3bTcXBJCQ49bd+XeVAK8TLSLjMTf6/cNuHYcPkx8aIhjnb+TLSciIk2LFmM4Tzz33HP4+/szefJk0tPTG7s5InKaQtrHUZB6iLKcAsex/L2HKM8pIrRT/HHrZa7YRuq3q7FZbY5jR3emU5SWTeQxU29PppyHvzfWCjOH1+7GUmF2lKsoKCFr/R78W0Rg9K27A7CIiMj5rkd8c7ZmZpKZX+A4tiUjg8MFhVzQosVx681PSeGj5Sux2n7vnzccOMiuI1lc1r7dKZcTEZGmRSHfeSIkJIRHHnmE8vJyJkyY0NjNEZHTFH1xB9xMHmyZuoiM5ds4+NNmdsxYik9UMGHJ1TcH5XnFZG1MpTyv2FEvpk9HyrIK2P7ZEg6v2cX+xevZMX0pga0jCUtOOOVyLa7shbmwjM3vLiBzxXYOLt3MprfnYXBxoeWwXmfvAxEREXEiVyYn4e3hwYvz5zM/JYU5GzYyeckPxIeGcFGrlgBkFRWxbPcesoqKjqmXTEZ+Pq9+t4gl23fwxZo1TP5+CZ1iormoZctTLiciIk2LQr7zyMiRI+natSvLly9n7ty5jd0cETkNRh8TnW4fjHdEEAeWbOTQyh0EJ8bS/uaBuLi5AlCUlsXu/y2jKC3LUS+kQ3PajOqDubicfQvWkJOyn+iLO5A4un+tXXBPuly7ONqN7Y+L0Y39i9aRsXwrfrFhJN01BK+wgLP2eYiIiDgTP5OJZ64cRmxQEP9bt57vtm6lW1wc4wdfjrtrdT++8/AR3l76EzsPH3HU65kQz30D+lNYVsZnq35l5d59XJHUiYcuvRSXY/rnky0nIiJNi8Fes4e7yEm6fumrjd0EEREROQn/3aodNEVERJxB4H0PNHYTGsXp5Atf9HvsDLakadBjHBERERERERERESenkE9ERERERERERMTJKeQTERERERERERFxcgr5REREREREREREnJxCPhERERERERERESenkE9ERERERERERMTJKeQTERERERERERFxcgr5REREREREREREnJxCPhERERERERERESenkE9ERERERERERMTJKeQTERERERERERFxcgr5REREREREREREnJxbYzdARERERBrG3ztUNnYTRERE5CR80dgNaCT/3erx1yv3O3PtaCo0kk9ERERERERERMTJKeQTERERERERERFxcgr5REREREREREREnJxCPhERERERERERESenkE9ERERERERERMTJKeQTERERERERERFxcgr5REREREREREREnJxCPhERERERERERESfn1tgNOB9NmTKFN99884Rl5s6dyyeffMKcOXN4+umnGTNmTJ0yGRkZDBgwgHvvvZf77rsPgPHjxzNnzpw6ZY1GIyEhIfTu3ZuHHnqIkJCQM3MxItJoKvKK2bdwLYX7jgAQ1Daa+MHdMfqYzki9ky238e1vKck4Wud9gjvE0W50v798fSIiIk1ZQ/fjx9ozZyXluYV0un3wmbsAERE55yjka0R33XUXCQkJ9b4WGRnp+Hny5MkMGjTolIK5J554gsDAQMfvJSUlrFq1ilmzZrF161a++uorjEbjX2+8iDSqqrJKUqZ+h91qI7pPB+x2OxnLtlJ6JJ/ku6/AxdX1tOqdbDm73U5ZdiHB7WIJbh9X6708A7wb9kMQERFxUg3djx/ryLrdHFm7G//48Ia+LBERaWQK+RrRBRdcQM+ePf+0XFFRES+//DKvv/76SZ974MCBREdH1zo2ZswYJkyYwIwZM1iyZAlDhgw55TaLyLkhc/k2KgvL6Hr/cLzCAgDwjQ5l64eLydqwl2bd25xWvZMtV5lfgs1sIbhdLOGdWzToNYuIiDQVDd2PA9htNtJ/SuHAD5sa+GpERORcoTX5nED//v2ZN28eq1atOu1zjRgxAoDNmzef9rlEpPHkpOwjID7C8QUfILBlJKZQP3JS9p92vZMtV5pdAIApxP+0r0lEROR80dD9uLXKwoY3v+XAkk2EJbfA6O/VEJchIiLnGIV8TuCpp57CZDIxYcIEzGbzaZ3LZKpeq8Nut5+JpolII6gqr6QirwSfqOA6r/k0C6bkUN318U6l3qmcvywrHwCvsOqQz2quOvULEhEROY80dD8OYLfYsFaaaXtDX9qMvBiDi+HMXYCIiJyzNF23ERUXF5OXl1fnuK+vL+7u7o7fo6KiuPvuu3n99dd57733uPfee//yey5btgyAdu3a/eVziEjjMheWAWD0q/tU3uhnwlpehaXcjJvJ+Jfqncr5y7ILcPVwY9+CteSk7MdmtuAZ5EPcpV0IS6p/zVEREZHzWUP3424mI66e7nR76BpcXDWmQ0TkfKKQrxHdc8899R7/9NNP66zVd8stt/DNN9/w3nvvMWzYMOLi4uqtW6OoqKhWgFhSUsKyZct48803adGiBUOHDj39CxCRRlEzWs7Vve6fcBe36mPWKkudm4OTrXcq5y/NKsBaacFSYabNyIuxVJg5tHI7u2b+gt1m1zp9IiIif9DQ/bibyYjBYMDgqtF7IiLnG4V8jejxxx+nbdu2dY7Xd8zd3Z0JEyZw44038txzzzF16tQTnrtm7b1jmUwmBgwYwFNPPVVrpKCIOJma6fan+t39ZOudwvmbdW+N3W4nslei41hop3g2vDGX/QvXEpYUj8FFowhEREQcGrofFxGR85ZCvkbUvn37k9pdt0a3bt0YMWIEs2fPZv78+SQlJR237KRJkwgJCaGqqoply5Yxbdo0Bg8ezIQJE/Dw8DgTzReRRuLqUR3S26qsdV6zWSwAuHnWDfJPtp7lFM7frGfdhxKu7m6EdW7BwR82U5ZdgHdE0J9flIiIyHmioftxERE5fynkczKPPvooP/74Iy+//DIffPDBcct16dKF6OhoAPr27UtcXBwvvPACBQUFvP322xgMegQo4qw8/H0AMBeX13nNXFSOq8kdV2PdL/knW++vnv9Y7t7Vm/xYzZY/uRoREZHzS0P34yIicv7SHConExQUxCOPPEJOTg6TJ08+6Xpjx45lwIAB/Pjjj3zyyScN10ARaXBuJiMeQT717r5XcvgovlEhp1XvZMtVFpaybvIcDv64qU658txCADwDfU76ukRERM4HDd2Pi4jI+UshnxO69tpr6dKlC0uXLj2les899xz+/v5MnjyZ9PT0BmqdiJwNIe3jKEg9RFlOgeNY/t5DlOcUEdop/rTrnUw5D39vrBVmDq/djaXC7ChXUVBC1vo9+LeIwOhbdwdAERGR811D9+MiInJ+UsjnhAwGAxMmTMDN7dRmW4eEhPDII49QXl7OhAkTGqZxInJWRF/cATeTB1umLiJj+TYO/rSZHTOW4hMVTFhy9Y625XnFZG1MpTyv+JTqnUq5Flf2wlxYxuZ3F5C5YjsHl25m09vzMLi40HJYr7P3gYiIiDiRhu7HRUTk/KSQz0m1adOGm2666ZTrjRw5kq5du7J8+XLmzp175hsmImeF0cdEp9sH4x0RxIElGzm0cgfBibG0v3kgLm6uABSlZbH7f8soSss6pXqnUi6kXRztxvbHxejG/kXryFi+Fb/YMJLuGoJXWMBZ+zxEREScSUP34yIicn4y2O01e7GLnJzrl77a2E0QERERERERaTK+6PdYYzehUeRPeeMv1w2874Ez2JKmQSP5REREREREREREnJxCPhERERERERERESenkE9ERERERERERMTJKeQTERERERERERFxcgr5REREREREREREnJxCPhERERERERERESenkE9ERERERERERMTJKeQTERERERERERFxcgr5REREREREREREnJxCPhERERERERERESenkE9ERERERERERMTJKeQTERERERERERFxcm6N3QBxPv/d6tHYTRAREZGT8PcOlY3dBBERERE5SzSST0RERERERERExMkp5BMREREREREREXFyCvlEREREREREREScnEI+ERERERERERERJ6eQT0RERERERERExMkp5BMREREREREREXFyCvlEREREREREREScnEI+ERERERERERERJ6eQT0RERERERERExMm5NXYDzldTpkzhzTffPGGZuXPn8sknnzBnzpxax11cXDCZTLRo0YLRo0czYsQIx2vjx4+vUx7AaDQSEhJC7969eeihhwgJCTkzFyIijSa7qJjPf/2V7YcOAdA5NpaxvXvhZzKdsN7Ow0eYuXYtqTk5+Hh40C0ujmu7dcPP5Fmr3Ob0dOZs2Mi+3FxcDAZahYVxXfdutAoPP+653/9lGYcLCnj6ymGnf4EiIiJNREVeMfsWrqVw3xEAgtpGEz+4O0afE/fZxZm5pC1aT9HBbAwGA/7xEcQP7o5XqH+tchvf/paSjKN16gd3iKPd6H6O380l5aQt3kDeznRsVRZ8IoNpPqgbfrGhZ+AqRUSksSnka2R33XUXCQkJ9b4WGRnp+PmJJ54gMDAQALvdTklJCd988w3jx48nPz+fW2+9tVbdY8sDlJSUsGrVKmbNmsXWrVv56quvMBqNDXBFInI2FFdU8Py8eVhtNoYlJWGz25mXkkJ6Xh4vjLgKN1fXeuttP3SIlxcsxMto5KrOybgYXFi4ZQvbDh3i2auG4+Ph8Vu5w7yy8DuiAwO5vnt3rHYbi7dt57lv5/HMlcNoGRZW59xLd+7ixx07SWwW0aDXLiIi4kyqyipJmfoddquN6D4dsNvtZCzbSumRfJLvvgKX4/TZZTmFpLz/Ha5GN2L7JQGQuWI7m99bQJf7huPh5wVU3xuUZRcS3C6W4PZxtc7hGeDt+NlSWUXK+99hLi4j6sJ2uHl6cOjXHWyZ+h3Jf78C74hARETEuSnka2QXXHABPXv2/NNyAwcOJDo6utaxa6+9liFDhvDWW29x44031grt6is/ZswYJkyYwIwZM1iyZAlDhgw5MxchImfdgpQt5JWU8srIa4j+LdBvGRbKS/MX8vPu3QxITKy33scrVmIwGHh2+JVE+FePAujevDnjZ81i7oaN3Ni7FwCfrlpFkLc3z191FR7u1V1Fn1atePjL/zFz7Tr+OfT3vx82m405Gzcxa/36hrxkERERp5S5fBuVhWV0vX84XmEBAPhGh7L1w8VkbdhLs+5t6q+3cjs2s4WkOwbjExkMQECLSDa9PY/MFdtIGNwdgMr8EmxmC8HtYgnv3OK47cj4eQvluYV0/NvlBMRXP5AL7dScta/NImPZFtqM7HMGr1pERBqD1uRzYp6envTv35+SkhL27NlzUnVqpvZu3ry5IZsmIg1sZWoq7SKbOQI+gI7R0TQL8GdV6r566+QUF5Oel0+fVq0cAR9AVGAAXWJj+WV39d+RkspKDh49Sq+EBEfAB+Dv5UVis2bsPpLlOGa2WHhi9hy+Wreei1q1Isjb60xfqoiIiFPLSdlHQHyEI+ADCGwZiSnUj5yU/cetV5FXjJu3hyPgA/CNDsHNy4OyrHzHsdLsAgBMIf5/PIWD3W4na+NegtpEOwI+AKOvF/GDu+PX/PhLcYiIiPNQyOfkDAYDAFar9aTKm35bq8tutzdYm0SkYZVUVpJdVEx8aN21NZuHhLA/N7feenmlpQDEBAXVeS3c34/iigqOlpTg5e7O66OuY2injnXKFVdU4OpicPxeZbVSZjbzwMAB3N3vElxc1K2IiIjUqCqvpCKvBJ+o4Dqv+TQLpuRQ3XX0apiC/bCUVWIuKf/9fGWVWCrMuB+zll9N4OcVVh3yWc1Vdc5VmV+CubCMgJbVywHZ7XZHuchebY87mlBERJyLpus2suLiYvLy8uoc9/X1xd3d/YR1bTYba9aswWg00qLF8YfmH2vZsmUAtGvX7tQbKyLnhPzfwrogL+86rwV6eVFWaaa0shLv39bXq+HhVv0nv7yq7pf/4ooKAArKygn28aGZf93RAAePHmV3VhadjlkKwMtoZPL1o3BVuCciIlKHubAMAKNf3ZHuRj8T1vIqLOVm3Ex118qO7tOBvJ3p7Jr5CwlDq6fm7lu4DhdXF6Iu+P27fFl2Aa4ebuxbsJaclP3YzBY8g3yIu7QLYUnVa3+XHy0CwN3bk30L13Jk7W6sFVV4BvuSMKQHwYkxZ/zaRUTk7FPI18juueeeeo9/+umntdbqKyoqcoSBVquVzMxMPv74Y3bu3Mm4cePw9q59s39seajeeGPZsmW8+eabtGjRgqFDhzbA1YjI2VAT0hnd6v4JN/62eLfZYqkT8kUHBmIyurNm/36GJyc5RgKbLRZSMjKrf7Za6n3Piqoq3l76EwBXJic7jhsMBlwNhnrriIiInO9qRsu5utfts11+68etVZZ6Qz7PAB9iLulE6re/suE/3/xWyUDi6EtqTeEtzSrAWmnBUmGmzciLsVSYObRyO7tm/oLdZie8cwssFWYADizZiMHVhRZX9ASDgYxlW9n++Q90uOUyAltG1mmDiIg4F4V8jezxxx+nbdu2dY7/8VjNWnrHMhqNjB07locffrjOa/WVN5lMDBgwgKeeeupPRwmKyLmrZrq94RTDNTdXV4Z26shX6zYw5celXJVcvSvvl2vXUflbcFjfiLzKKguvLVrMgaN5DO+cRLvIZqd/ESIiIueDmiVy/sLzsLTvN5C+NAX/+HAierTBbrNzePVOds74mcTR/Ryj75p1b43dbiey1++bboV2imfDG3PZv3AtYUnx2Cw2ACwVZro9dDXupuoHgcFtY1j7+izSFq9XyCci0gQo5Gtk7du3P6nddSdNmkRISPX6Wy4uLvj5+dGiRQs8/jBS54/lq6qqWLZsGdOmTWPw4MFMmDDhuHVExDmYfgvpzZa6o+7Mv63PaTLWHREAcHWXLpRWmvlu61ZW7U0FoEtcLMOSkvhizVp8/vD3obSykle/W8TuI1lc0rY1o7p3P5OXIiIi0qS5elT32baquutn237rx9086z58t5SbyVi2FZ/oYDreNgjDbw/hQjs1Z9Pb89gzZwWBrUbi4uZKs551Bwy4ursR1rkFB3/YXD2d1716pH9I+zhHwAfgZjIS1Daa7I2pWM1VuBo1EEBExJkp5HMSXbp0IfqYdbBOpXzfvn2Ji4vjhRdeoKCggLfffvuURwCJyLkj2McHgIKysjqv5ZeV4eVhxPM4o3UNBgM3XdCb4clJHC4sItjHm1BfX2auWYuLwUDIb+cGKCov56UFCzmQe5QBiW257eKL9LdDRETkFHj4V/er5uLyOq+Zi8pxNbnXG6yVHy3CbrER2inBEfABuLi6EpbUgv3fraMspxCfZnU306rh7l29OYfVbMHo5/3bMc865Yw+JrCDtVIhn4iIs9NK6eeJsWPHMmDAAH788Uc++eSTxm6OiJwGbw8PQn19691FNy03l4TQ0OPWXbk3le2HDuHv5UXbZhGE+voCsOPwYeJDQxzr/JWbzY6Ab3DHDvytz8UK+ERERE6Rm8mIR5BPvbvolhw+im9USL31XNx+u02z2eu8Zrfban6gsrCUdZPncPDHTXXKlecWAuAZ6IN3RAAGNxfKsgvqlKvIL8HF3bXeAFBERJyLQr7zyHPPPcf/t3fnYVWX+f/Hn+yC7JsIyCIKLqAQKEYuBVqaC2kzo5NLTfU1s2ybxhmbKaexsrFfqzONWWqpkzkulKOYW1pa4q6o5S4qiCg7yH7g9wdyig46qCQcfT2uq+vq3Mvn877PH9x+3uf+3LeLiwvvvPMOZ86cae5wROQ69AwO4kBGBhl5+cay/enpZOYXEHeF07ZXpaYyb8t3GKqrjWW7T53m8Lks7u7640l9c7d8y6nsHAZGhDMu7vZfZAwiIiK3As+ugeQfP0vJhXxjWd6xs5ReKMSrW3CDfRy8XbF1tufc7qMYKn/cnsNQWUXWnuNYt7bDoY0rdi6tMZRVkLnjiPFwDYCy/GKydh3FJcQHWycHrGxt8OgcQO6hdC5m5f3YLreInB9O4965Xb0VgyIiYp70uu4txNPTk+eff54XX3yRv/71r8yZM6e5QxKRazQssjubjx7l1VWrGNwtgooqAytTUwn28qR3xw4AZBUWcuRcFqE+bWjj7HypXyTvrFvPjC/X0CMoiOziIpJTD9CtnT+9O9T2S8/LY8vRYzjY2RLk4cHmI0dN7t8ntOONG6yIiIgZ8+8Tzvk9x9k/Zw1+vcOprqqq3W/PzwPvyNof5kpziyg8dR7nQG/s3Z2wsLQkZGgvfvh0I3v/tQqf6I7U1NSQtesopRcKCPt1HyytavfZCxnWix8WbmTfB8n4xIRiqKjk7NYfsLC0pMPQXsY4ggfGUHDyHPvnrME3rjOWllZkbP0eSxsrgu6ObpbvRkREmpaSfLeYX//613z++eds2bKFzz//nPvuu6+5QxKRa+Bsb8/UYUOZ/91WluzchZ21NTGBgYzuFYvNpX/0H8o8x6xNXzPhzn7GJF9s+2AmJcSzYu9eFmxNwcXeniHdu5EYGYnlpV/wf8jMBKCkvIJZm75u8P5K8omIiDSOraM93f5vECdWbefU+j1Y2Vrj0TmA4IExWFrXztmFaVkcWbqF0F/1xt69disNz66BRDx8D6e/2kvaul0AOPp60PXB/riH/rhXt2eXQLqMjef0plROrtmJpY0VrsFtCbrnNhy8XI3tWrk50n3CYNK+3En65gNQAy5BbQgeGGO8p4iImDeLmpoa040eRK4gb+a7zR2CiIiINMLj4eXNHYKIiIg0wmd3TW7uEJrF9eQX3CY93YSR3By08YKIiIiIiIiIiIiZU5JPRERERERERETEzCnJJyIiIiIiIiIiYuaU5BMRERERERERETFzSvKJiIiIiIiIiIiYOSX5REREREREREREzJySfCIiIiIiIiIiImZOST4REREREREREREzpySfiIiIiIiIiIiImVOST0RERERERERExMwpySciIiIiIiIiImLmrJs7ADE/j4eXN3cIIiIi0gj/OmDX3CGIiIhIY9zV3AHIzUAr+URERERERERERMycknwiIiIiIiIiIiJmTkk+ERERERERERERM6ckn4iIiIiIiIiIiJlTkk9ERERERERERMTMKcknIiIiIiIiIiJi5pTkExERERERERERMXNK8omIiIiIiIiIiJg5JflERERERERERETMnPXVNP7Tn/5EUlISGzZswN/f/7puPHbsWDIyMvjqq6+u6zpNdb3k5GQWLVrEoUOHKC8vx8fHh759+zJ+/Hi8vb3rta2urubs2bNX/R0sX76cKVOmMH/+fGJjYy/bbtu2bYwbN47p06czYsQIk8/p6ekkJCTw5JNPMmnSJGO/M2fO0K5du6sbuIjcVMpyizixegcFJ84B4N7Jn+BBPbB1tL9iv4K0LNLW7qY4Ixtre1s8OgcQ2D8Km9at6rXb8/5/KU7PMenvER5IlwfuarqBiIiI3ETOFxaxMCWF78+eBSAqIICxt/fC2f7K8/OhzHMs3rGD4xcu4GhnR0xgIL+KicHZvtVl+5zOyeHPSZ+TGBnJr2Ki69XtO3OGpN17OJGdjaWFBR29vflNjxg6tmlz/YMUEZFmd1VJvpvV22+/zaxZs7jzzjt54oknaNWqFUePHmXp0qWsWrWKxYsXExAQAEBxcTEPPfQQ/fr1q5dga0ohISHMmDGD2267rcF6d3d3ZsyYQVhYmLHs/fffJykpiXXr1v0iMYlIy1dZUk7qnC+pMVTj3zecmpoa0jcf4OK5PCInDsHSyqrBfvknMjkwbx3W9ra0u7MbFhYWZHz3PfknztF9wr3Y2NsBUFNTQ8n5Ajy6BODRNbDeNVq5tv7FxyciImKOisrKmLZyJYbqaoZ27051TQ0rU1M5k5vLK8Pvw/oy8/P3Z88yPXk1Dra23BcViaWFJav37+fg2bO8fF8ijnZ2Jn0M1dW8v+lrqgzVDVwvk7+v/hJ/NzdG9eiBoaaatQe/52//XcnUYUPp8LOFDSIiYn5u+SRfZmYmH374IWPHjuUvf/lLvbohQ4YwevRo3nrrLd555x0A8vPz2b9/P/369fvFYvL09CQxMfGy9Q4ODib1W7duxWAw/GIxiUjLl7HlIOUFJUQ/lYiDtysATv5eHJi7lqzdx2jbI6zBfsf/uw0LSwu6P3Yv9h7OAHh0DWD3eys4symV9oN6AFCeV0x1RRUeXQJoExVyQ8YkIiJi7pJT95NbfJG///p+/N3cAOjg7cVrq1bz9ZEjJHTu3GC/j7/9DgsLC15OHIaPiwsAPYKC+NOyZXy+ew9jbu9l0ufzPXvJyMtr8Hrzt27FvXVrpt13H3Y2tY+BfTt25Pf/WcLiHTv58+B7m2K4IiLSjG75Pfn27duHwWDgjjvuMKmLioqiW7du7N2798YHJiJylS6knsA12MeY4ANw6+CLvZczF1JPNtinLK+Ykqx8vKNCjAk+AAcvV9w7tyNr9zFj2cXz+QDYe7r8IvGLiIjcjL47fpwuvm2NCT6ACH9/2rq6sPX4iQb7XCgq4kxuHn07djQm+AD83Fy5LSCAb44cNelzOieHz/fsYfhtUSZ1xeXlnM7JoVf79sYEH4CLgwOd27blyLms6xmiiIi0EL9Ikm/16tWMGTOG6OhowsPDiY+PZ8aMGVRUVJi0/eqrrxg8eDAREREMHTqUFStWmLQ5duwYTzzxBDExMXTv3p1Ro0axefPmJom1devaV8ySkpIajG/+/Pls2rQJqN0rLyEhAYB//OMfhIWFkZ6eDsCpU6f44x//SN++fQkPD6dnz55MmDCBo0dNJ+Dz58/zxBNPEBkZSVxcHNOmTaO4uNhYv23bNsLCwli+fHmDMaenpxMWFsbMmTMBiI+PZ/v27WRkZBjLn3vuOcLDwyksLKzXt6ioiIiICP7+979f5TclIi1ZZWk5ZbnFOPp5mNQ5tvWg+KzpPnoAFYUXAWjdxs2kzt7diaqL5ZQX1LYpyapdGeDgXfuwYaiobJLYRUREblbF5eWcLywi2MvTpC7I05OT2dkN9su9WDv3tnN3N6lr4+JMUVkZOT95fjBUVzPr62+I8POjT8eOJn0cbGx4c+RvGNwtwqSuqKwMK0uLRo9JRERariZP8i1ZsoRnnnkGJycnnn/+eSZPnoyfnx9z5swxvvJa58KFCzz11FPExsYyefJk7Ozs+MMf/lAvuXX48GFGjhzJsWPHeOyxx3j22Wepqqpi/PjxJCcnX3e8sbGx+Pv7s2bNGu666y5efvll1q9fT0FBAQC2trbGtiEhIUyZMgWAAQMGMGPGDNzd3cnOzuY3v/kNO3fuZMyYMUydOpUhQ4awZcsWHn74YSor6z8Iv/TSS+Tl5fH73/+ehIQE/v3vfzNx4kRqamquaQwvvPAC7du3x83NjRkzZjBgwACGDBlCZWUl69evr9d27dq1VFRUMHTo0Gu6l4i0TBUFJQDYOjuY1Nk622MoraSq1PSHDMtLv+Ybyk0TdpUl5bXXLioFoOR8PlZ21pxI3sG3f13Id3/9Nzv+31LO72t4FYKIiMitLu9Sss7dwXTvWjcHB0rKK7hYXm5SZ2ddOz+XVprOz0VlZQDkl5Qay1bs3ce5ggIe6dO7wTgsLS1p6+KCW+v6cZzOyeFIVhahOnhDROSm0OR78s2dO5eoqCjef/99LCxqfxF64IEHSEhIYPPmzUyePNnYtqKigpdeeonRo0cDMHLkSBITE3nzzTcZNmwY1tbWvPLKK7i7u5OUlISDQ+3D65gxY3jwwQd59dVX6d+/f71E3NWytbXlo48+4rnnnuP777/n008/5dNPP8XKyoqYmBjGjx9P7961k6Wnpyf9+/dn+vTphIWFGffFW7hwIQUFBXz66aeEhPy4T1Xr1q2ZPXs2R44coWvXrsbysLAw5s+fj/WlybtNmzbMnDmTjRs3Eh8ff9Vj6N+/P5988gnl5eXGmEJCQnB1dWX16tWMGDHC2DY5OZn27dvTpUuXq/+yRKTFqltVZ2Vj+mfd8tLfGkNlFdb29f9eOrRxxaqVDdkHT+HfL8L4d9tQWUXe0QwAqiurALiYlY+hvIqqsgrCft2HqrIKzn73PYcXf0NNdY326RMREfmZuiSdrbXp/Gx76cCNiqoqWv/sEA1/NzfsbW3YfvIkiZHdjfNzRVUVqem183OFoXZ+Ts/NY/nu3Tx0Rxwejo5cKCpqVGxllZW8v3ETAMMiI696bCIi0vI0+Uq+FStWMHv2bONEBJCTk4OzszMlJSX12jo7OzNy5EjjZ1tbW0aOHEl2djYHDhwgLy+P7du3069fP8rKysjNzSU3N5fCwkIGDBhAdnY2+/fvv+6Yg4ODWb58OfPnz2fcuHGEhIRgMBjYtm0bjzzyCLNnz75i//Hjx/Ptt9/WS/CVlZVhaVn79f583A899JAxwQcwduxYAONrwU3BxsaGe+65h61btxpXJebm5pKSksLgwYOb7D4i0kLUrQS+yrdtLK2s8LujK8UZORxe/A0Xz+VSfDaHQ4s2UV1R+/BgYVX7t6xtj1BChsXS5YG78OwaiE90R7pPGEwrd0dOrt5BTbXpSX4iIiK3sro3dX76bNQY1lZWDO4WwckL2cz8aiOnc3JIy87mnXXrKb+UOLSytKS6upp/bdpEmI/PZQ/waEh5ZRX/b81aTuXkMiyyO118215VfCIi0jI1+Uo+GxsbduzYwcqVKzlx4gSnT58mJ6d2Lyg/P796bdu1a1cv2VVXBpCRkWFMki1YsIAFCxY0eL/MzMwmidvCwoLY2FhiY2MBOHv2LMuWLeODDz7g3XffJTExkTZXWMZeWVnJ22+/zcGDBzl9+jTp6enG026rf/bg2759+3qfXVxccHFxISMjo0nGUmfYsGEsXryY9evXc//99/Pll19SVVWlV3VFbkJWdjYAVFeanrJdXVWbrLNuZdNg34D47sZVeXUHdLh39se/bzhpa3ZjbV+7uqBtbCfT+9pY4x0VwukN+yg5n09rH9O9g0RERG5V9ja1c2/Fpbn4pyouPSvYX+atpBG33cbF8gq+PHCArceOA3BbYABDu3fns+07cLSz47/7Ujmdm8tfhw2jsLT2Nd6613/Lq6ooLC3DqZVdvSTjxfJyZny5hiPnsrizUygje/RougGLiEizavIk37Rp01i4cCFdunQhMjKSxMREoqKimDZtmklCrqFftOp+7bK0tDQmyUaPHk3//v0bvF+HDh2uK94FCxZQXl7Oo48+Wq/c19eXSZMmYWdnx5tvvsnevXu55557GrzGzp07eeSRR3BwcCAuLo7777+fLl26cPr0af72t7+ZtL/cuK0uLdlvKtHR0fj6+rJ69Wruv/9+Vq9eTXh4OIGBgU16HxFpfnYujsCP++f9VEVhKVb2NljZNpzks7CwIGRwT9r1i6A0uxA7l9a0cnMkbe1usLTAztV0H6GfsmltD4ChwvQBRkRE5Fbm4Vg7P+f/7M0egLySEhzsbGllc/n5eVzc7SRGdiezoBAPx9Z4OTmxePsOLC0s8HR0ZN+ZM1QZqvlL0ucm/VfuS2XlvlTee2AUXk5OABSWlvJa8mpOZeeQ0LkTj/TpfdWrDEVEpOVq0iRfRkYGCxcuJDExkRkzZtSry27g5KjMzExqamrqTSxpaWkABAQE4OXlBYCVlRVxcXH1+h47doz09HTs7e2vK+b169eTmprKAw88YNzz76dCQ0MBaNWq1WWv8d5779GqVStWrVqF+09OwJo1a1aD7TMyMuj4k1Ov6l5BDggIuNZhNMjCwoJ7772XTz75hLNnz7Jr1656eyKKyM3D2t4WO3fHBk/RLc7MwcnP9FS/Ouf3ncDWyR7X9m2xdfzxb2pB2jkc/TywsrGmvOAi++etxbtbMAHxkfX6l2bXbgnQys2xaQYjIiJyk2htZ4eXk1ODp+imZWfT/tLzTkO+O3YcVwd7uvj64vKT55QfMjMJ9vLE1tqaMbf3Mjm4o6C0lH9+tYneHTvQN7QjLpeel0orKowJvkER4YyLu72JRikiIi1Fk+7JV7f3289X13399dekpaVR9bNl6jk5OWzYsMH4uaSkhEWLFuHn50fnzp3x9vYmPDycpKQksrKyjO0qKyt54YUXeOqpp0yuebWGDh1KSUkJr7/+uslrtdXV1SxZsgRnZ2d6XFrGXrfa7qdt8/PzcXd3r5fgKyoqIikpCcC4IrHOkiVL6n2eM2cOAAkJCdc8DstLe3L83NChQ6msrOSNN96gpqaGQYMGXfM9RKRl8+waSP7xs5RcyDeW5R07S+mFQry6BV+2X8a3Bzn+321UG378G5Jz6AyFaefxvfSKrp1LawxlFWTuOEJV2Y+n9JblF5O16yguIT7YOpn+UCIiInKr6xkcxIGMDDLy8o1l+9PTycwvIC7k8odWrUpNZd6W7zD85N/4u0+d5vC5LO7uWnuIXnsvLyL8/ev9F+bjA0AbZ2ci/P2Nh37M3fItp7JzGKgEn4jITeuaVvK9/fbbtG5t+vrWgAED8PX1ZdasWZSXl+Pj40NqaipJSUnY2dlx8dIR8nVcXFyYPHkyDz74IK6urixbtozMzEz++c9/Gvfj+8tf/sKDDz7I/fffz29/+1tcXV1ZtWoV+/bt4/e//z1ubm7XMgSjESNGsHnzZhYvXsyePXsYOHAgPj4+5OTksHr1ag4fPsybb75pXOXn6uqKpaUlGzZswNfXl7vvvpu+ffvy4Ycf8vTTT9O7d28uXLjA0qVLjasXfz7unTt3MnHiRPr168fu3bv5/PPPGTRoELfffu2Trbu7Ozt27GDu3LlER0fTvXt3ADp16kTHjh1JTk4mNjb2ivsKioh58+8Tzvk9x9k/Zw1+vcOprqoiffMBHP088I6sfYgozS2i8NR5nAO9sXevfXWnXd8Ifvh0E98vWI9Hl0DK8ovJ2HIQt1BfvCN/3EM0ZFgvfli4kX0fJOMTE4qhopKzW3/AwtKSDkN7NcuYRUREWrphkd3ZfPQor65axeBuEVRUGViZmkqwlye9O9YujsgqLOTIuSxCfdrQxtn5Ur9I3lm3nhlfrqFHUBDZxUUkpx6gWzt/el/llkXpeXlsOXoMBztbgjw82HzkqEmbPqEdG+gpIiLm5JqSfCtXrmywvH379syePZvXX3+d+fPnU1NTQ0BAAC+88AJVVVW8+uqrHDhwgPDwcABCQkIYM2YM7777LpmZmYSGhvLBBx/Qp08f4zWjoqJYtGgRM2fOZN68eVRVVREcHMzrr7/O8OHDryX8eiwtLXnnnXf44osv+OKLL1i4cCFFRUW4uLgQHR3Nyy+/TLdu3Yzt7e3tefbZZ5kzZw6vvPIKAQEBTJo0CYPBQHJyMhs3bsTb25u4uDgefvhhBg8eTEpKCgMGDDBe4+2332bOnDm8+uqruLq68vjjj/PEE09c1zgeffRRDh8+zFtvvcWIESOMST6oXc331ltvMWTIkOu6h4i0bLaO9nT7v0GcWLWdU+v3YGVrjUfnAIIHxmBpXbsKuTAtiyNLtxD6q97GJJ9neBBhI/uS/s1+TiRvx8bRHv8+4bTr1w0Lyx8XfHt2CaTL2HhOb0rl5JqdWNpY4RrclqB7bsPBy7U5hiwiItLiOdvbM3XYUOZ/t5UlO3dhZ21NTGAgo3vFYnPpLaFDmeeYtelrJtzZz5jki20fzKSEeFbs3cuCrSm42NszpHs3EiMjjQsiGuuHS3ujl5RXMGvT1w22UZJPRMT8WdTUnXQhN63Zs2czc+ZMtmzZgouLy3Vfb9TGGf+7kYiIiDS7fx2wa+4QREREpBHcJj3d3CE0i7yZ715z31v1O7uSJt2TT1qeiooKli9fTv/+/ZskwSciIiIiIiIiIi1Pk56u2xIYDAZyc3Mb1dbJyemKp+aas6ysLKZPn86xY8c4deoUb7zxRnOHJCIiIiIiIiIiv5CbLsmXmZnZ6FNqp0+fzogRI37hiJqHi4sLO3fupKqqiqlTpxIREdHcIYmIiIiIiIiIyC/kpkvyeXl5MW/evEa17XCVp1KZk1atWrFly5bmDkNERERERERERG6Amy7JZ2dnR1xcXHOHISIiIiIiIiIicsPo4A0REREREREREREzpySfiIiIiIiIiIiImVOST0RERERERERExMwpySciIiIiIiIiImLmlOQTERERERERERExc0ryiYiIiIiIiIiImDkl+URERERERERERMycdXMHICIiIiK/jMfDy5s7BBEREWmEz5o7ALkpaCWfiIiIiIiIiIiImVOST0RERERERERExMwpySciIiIiIiIiImLmlOQTERERERERERExc0ryiYiIiIiIiIiImDkl+URERERERERERMycknwiIiIiIiIiIiJmTkk+ERERERERERERM2fd3AHcqtLT00lISGD48OG8/vrrjB07loyMDL766itjm+LiYioqKnB3dzeWVVRUkJeXR5s2bZojbBFpQcpyizixegcFJ84B4N7Jn+BBPbB1tG/yfhfP5bLnnytpd2cEgQlR191ORETkVtJS5uzcIxmc2bSP4owcsLDAuZ0XgQNuwznA6zpHKCIiLYFW8rUQEyZM4IUXXjB+PnDgAIMGDeLo0aPGsoyMDIYOHcq3337bHCGKSAtSWVJO6pwvKTpzAf++4fj16UrOoTMcmLeWaoOhSftVG6o5vHQLNYbqK8bU2HYiIiK3kpYyZ+efPMfBT9ZRVVpB0N23ERgfSWluIakfrqbozIUmG6+IiDQfreRrIe644456n48cOcL58+frlaWnp5OWlnYDoxKRlipjy0HKC0qIfioRB29XAJz8vTgwdy1Zu4/RtkdYk/VL/zqVkqz8/xlTY9uJiIjcSlrKnH1i1XbsXFoT+fgQrGxrHwO9bwth19tJpK3bTcTD91z3WEVEpHlpJZ+IiBm6kHoC12Af4z/6Adw6+GLv5cyF1JNN1u/iuVxOb0wlIL77FeNpbDsREZFbTUuYsytLy7mYmYtnRJAxwQdg62iPS7APhafPm/QRERHzoyRfCzF27Fji4+MBmDlzJlOmTAFg3LhxxMfHs3z5csaNGwfAlClTCAv78Ze7goICpk2bRp8+fQgPD2fQoEF88skn1NTUGNvMnDmTiIgI1q1bxx133EFUVBRLliy5gSMUkaZSWVpOWW4xjn4eJnWObT0oPpvTJP2qDdUcWfYtbh198Y4MuWw8jW0nIiJyq2kpc7a1nQ0xz47A746upvcqKcPCUo+FIiI3A72u2wINGDCACxcusHjxYiZMmEBERARhYWFMmDCBWbNmMXLkSKKjowEoKSlhzJgxZGZm8sADD+Dj40NKSgqvvfYaaWlpTJ061XjdqqoqXnrpJX73u99RUVFhvIaImJeKghIAbJ0dTOpsne0xlFZSVVqBtb3tdfVL37yf0pxCuoyJp6a6xqRPnca2ExERudW0lDnbwtISe09nk/KL53IpPHUet45+Vz84ERFpcZTka4E6depEZGQkixcvJi4ujtjYWADi4uKYNWsWkZGRJCYmAjBnzhxOnjzJsmXLjKv7HnjgAd566y0++OADRo4cSadOnQCorq7md7/7HePHj2+egYlIkzBUVAJgZWP6J9zSurbMUFll8sBwNf0uZuVxesM+QobFYufSmrK84gZjaWw7ERGRW1FLmrMbiu3wks0A+PeLaOSIRESkJdO6bDO3du1aQkND8fLyIjc31/hf//79Adi4cWO99j169GiOMEWkKdW9im/xy/Srqa7myLItOAd5X3Yz8KtpJyIicstqIXP2zxkqqji4YAMXM/Pw7xeBa7DPVQYoIiItkVbymbnTp09TVlbG7bff3mB9ZmZmvc8eHqb7eoiIebGyswGgutJgUlddVQWAdSuba+6XvvkAFzPz6P7YvVReLAOgqrQcqH0oqLxYhrWDXaPbWVhc7ZONiIjIzaGlzNk/nYurSis4OH89hafO0yamI0EDbrueIYqISAuiJN8Nkp+fj6OjI9bW9b9yKyur67quwWAgOjqaJ598ssF6b2/vep8ttamuiNmzc3EEoKKo1KSuorAUK3sbrGxNHxga2y/vSAY1hmr2vr/SpF3G5oNkbD5Ijz/8qtHtWrk5XvUYRUREbgYtZc6um4sriks58PE6Lp7NxadnKB0Sb9ePcSIiNxEl+W6ABQsW8Morr5CcnExISO1pV2Vltb+0OTubboB7Nfz8/Lh48SJxcXH1ygsKCti6dSuBgYHXdX0RaXms7W2xc3ds8ES+4swcnPw8r6tf8L09qCqtqFdfWVzK4f9sxjuqPd5RHbBxbNXodiIiIreqljJnA1SVVxoTfL53dCFkcM/rHZ6IiLQwWtZ1A/j51Z5W9f333xvL6v4/NDS0wT51K+6qq6uNZXWr/n5aFh8fz6FDh/j666/r9f/Xv/7F008/zdGjR5tgBCLS0nh2DST/+FlKLuQby/KOnaX0QiFe3YKvq5+TnyduHXzr/ecc2AaAVu5OuHXwxcrGutHtREREbmUtYc4GOL5ia22CL66zEnwiIjcpPX3dAL1798bf359XXnmFrKwsqqurmTNnDl5eXgwYMKDBPu7u7gAsWrSI7Oxshg4dipubGwArVqygpqaG4cOH89hjj7F27VqeeOIJRo0aRceOHdm1axdffPEFffv2pW/fvjdsnCJy4/j3Cef8nuPsn7MGv97hVFdVkb75AI5+HnhH1q4YLs0tovDUeZwDvbF3d2p0PxEREWk6LWHOLjmfz/k9J7Cyt8HR14OsPcdN2rSJ0r8DRETMnZJ8N4CtrS0ff/wxr732Gh999BGVlZX06NGDKVOm4OjY8F5Vt99+O4MGDWLjxo2kpKRw9913ExISwtixY1m+fDn79+8nNjaWgIAAFi9ezHvvvceXX37J4sWL8fX1ZeLEiYwfP1578IncpGwd7en2f4M4sWo7p9bvwcrWGo/OAQQPjMHSunbVb2FaFkeWbiH0V72NDwyN6SciIiJNpyXM2QUnzwFgKK3kyNItDbZRkk9ExPxZ1NTUnc8u0jijNs5o7hBEREREREREbhqf3TW5uUNoFnkz373mvm6Tnm7CSG4OWuYlIiIiIiIiIiJi5pTkExERERERERERMXNK8omIiIiIiIiIiJg5JflERERERERERETMnJJ8IiIiIiIiIiIiZk5JPhERERERERERuek988wzhIWFkZeXZ1L3xz/+kbCwMB5//HGTuosXL9KlSxeee+65GxEmAGfOnLnqPkryiYiIiIiIiIjITa9Hjx4ApKammtRt27YNGxsbduzYgcFgqFeXmpqKwWAgNjb2hsT5/vvv8/DDD191PyX5RERERERERETkpne5JF9aWhqZmZkMGTKEoqIiDh48WK9+9+7dAPTs2fOGxLl161aTRGNjKMknIiIiIiIiIiI3vY4dO+Lq6sq+ffvqlaekpGBpacmECROwsLBg69at9er37NmDt7c3wcHBNzLcq6Ykn4iIiIiIiIiI3PQsLCyIiYlh//799cpTUlLo1KkTQUFBhIWFkZKSYqyrqakhNTXVuIrPYDDw0Ucfcc899xAeHk7v3r2ZOnUqubm5xj7btm0jLCyMpKQkhg4dSkREBFOmTAFg+/btjB49mpiYGKKiohg1ahRfffWVsW98fDzbt28nIyODsLAwZs6c2ejxKcknIiIiIiIiIiK3hB49epCfn09aWhpQm8Tbvn27cb+9Xr16sXv3bioqKgA4fvw4BQUF9OrVC4Bnn32WN954g9DQUKZMmcLAgQNZunQpv/3tbyksLKx3r7/97W/07NmTP/zhDyQkJHDixAkee+wxampqePbZZ3n++ecpLS1l4sSJ7Ny5E4AXXniB9u3b4+bmxowZMxgwYECjx2Z9vV+OiIiIiIiIiIjIjZSQkHDF+g0bNjRYXrcib9++fQQFBXHkyBFycnKMSbzY2Fg+/vhjdu/eTa9evdizZ4+x3zfffMOaNWsYN24cf/7zn43XjI6O5plnnmHWrFlMnjy5XvmLL75o/Pzhhx9SUlLCP/7xD9zd3QG49957GTVqFD/88AMxMTH079+fTz75hPLychITE6/qO1GST67aZ3dN/t+NRERERERERESuwG3S09fe+fMV19StU6dOODk5kZqaSmJiIikpKVhZWRETEwPUrvSzsrJi+/btxlV9Pj4+BAYGMm/ePAAee+yxetccNGgQ7777Lhs2bKiX5Ks76KOOj48PANOmTeORRx4hPDwcNzc31qxZc01j+Tkl+URERERERERExKxcbqXe/2JpaUl0dLTx8I2UlBTCw8NxdHQEwMnJic6dO7Nr1y4A9u7da3yVNz09HWdnZzw9PU2uGxISwjfffFOvrG61Xp2BAweybt06kpOTSU5OxsvLi379+jF8+HBjkvF6aE8+ERERERERERG5ZcTExHDo0CHKy8vZuXOn8VXdOrGxsaSmppKbm8vJkyeNr/jW1NRc9prV1dXY2NjUK7Oysqr32cbGhvfee48VK1YwadIkfH19Wb58OaNHj2b27NnXPS4l+URERERERERE5JbRs2dPKisrWb16NYWFhcaVenV69epFSUkJq1atoqamxljv5+dHYWEh2dnZJtc8efIkbdu2veJ9z549y86dOwkLC+PJJ5/kP//5Dxs3biQoKIg5c+Zc97iU5BMRERERERERkVtG165dcXBw4LPPPsPGxobo6Oh69dHR0VhbW5OUlISfnx/t2rUDID4+HoAPPvigXvv169dz8uRJ7rzzzived9asWTz00ENkZWUZy3x8fPD29sbS8scUnaWlJdXV1Vc9Lu3JJyIiIiIiIiIitwxra2uioqL49ttviYmJoVWrVvXqW7duTUREBHv27GH48OHG8n79+pGQkMD8+fPJysoiNjaWtLQ0Fi1aRLt27UwO5Pi50aNH88UXXzB69GhGjhyJi4sLKSkpbN++naeeesrYzt3dnR07djB37lyio6Pp3r17o8allXwiIiIiIiIiInJLqTv59uf78dWpe0W3bj8+AAsLC959912efvppDh06xPTp01m7di0jR45k6dKlODs7X/GeYWFhzJs3j8DAQObOncu0adM4evQoL774IhMnTjS2e/TRRwkKCuKtt95i2bJljR6TRc2Vdg0UERERERERERGRFk8r+URERERERERERMycknwiIiIiIiIiIiJmTkk+ERERERERERERM6ckn4iIiIiIiIiIiJlTkk9ERERERERERMTMKcknIiIiIiIiIiJi5pTkExERERERERERMXNK8omIiIiIiIiIiJg5JflERERERERERETMnJJ8IiIiIiIiIiIiZk5JPhERERERERERETOnJJ+IiIiIiIiIiIiZU5JPRERERERERETEzP1/+UWwfdLwHsoAAAAASUVORK5CYII=" + "image/png": "iVBORw0KGgoAAAANSUhEUgAABPkAAAGCCAYAAACSBBakAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACir0lEQVR4nOzdd3hUVf7H8fekTDLpPZBKEnpLQgcVpFgAEVERBVFc17L2taLrT7GjrLu42FfsgrhSRIooikpTOqGXhEASIIX0Opny+yNkJCYgCCFM+Lyex8fk3nPunHN5npy533vO9xjsdrsdERERERERERERcVouTd0AEREREREREREROT0K8omIiIiIiIiIiDg5BflEREREREREREScnIJ8IiIiIiIiIiIiTk5BPhERERERERERESenIJ+IiIiIiIiIiIiTU5BPRERERERERETEySnIJyIiIiIiIiIi4uQU5BMREREREREREXFyCvKJiIiIiIiIiIg4OQX5REREREREREREnJyCfCIiIiIiItJs2e32U65js9kAsFqtf6q+iEhTMNj1F0tEREREREScnM1mY+fOnaxfvx6DwYCHhwdTpkzh888/Jz4+/rh1DAYDBoPhhNc2m80YjcbGaLaIyBmjmXwiIiIiIiLiVLKzs1mwYAFms9lx7Ntvv2Xs2LFMnz6dffv20bZtW+6//36CgoLq1D12nouLi0u9AF9VVRXffvstqampvPbaa/To0YNHHnmEnJycxu2UiMhp0kw+ERERERERcSrvvPMO77//Pl9++SXR0dEAXHbZZZSVlfHvf/+bNm3a4OPjg8FgwNXV1VHPZrPh4lIz1yUnJ4fU1FQAevbsiZubGwC7d+9m7NixeHt706ZNG2JiYujRowf9+/fHx8fnLPdUROTkuTV1A0REREREREROxTXXXMPFF19MWFgYVqsVV1dXPD09iYyMpGfPnnXK1i61tdvtuLi4sG/fPiZPnsyqVatwd3fHZDLRvn177rzzTnr27Imvry8XXXQRixcvZty4cdx+++3Y7fY/XNIrItLUFOQTERERERGRc5bdbncE6GqFhIQQEhJSp1yrVq3YsmUL//73v0lISKB79+68+OKLFBYW8s477+Dj40N2djaPPfYYeXl5PP3000RFRbFlyxa++OILnnvuOd555x2Cg4MJDAzEZDKRnJwMoACfiDgF5eQTERERERGRc5bBYKgT4IOaXW/Xr1/P0qVLycvL44EHHmDJkiXk5ubyzjvvsG7dOgC8vb05fPgwZWVlAKxcuZJdu3bx6quvcu2119KnTx9uu+02pk2bxu7du5k9ezZGo5Ho6GjMZrOCeyLiVDSTT0REpAG1swZOZsc9EREROTV2ux2bzYbdbsfV1bXOWHvs0tiysjL27NlDTk4OcXFxtGnTBoDCwkJefvllDhw4wHfffcfll19OSEgIn376Kffffz833XQT7u7utG7dmm+++YbCwkJCQkJYu3Ytfn5+JCcnk5GRwa5du9iyZQt79uwBYMWKFdx5553ExMRgs9m02YaIOBUF+UREpFkpLS0lNzeXuLi4Osm1/4jVaq0zU0DBPRERkeP76aefmDFjBhMmTKBv377HHXOPl8vu9xti/L682WzmlVdeYeHChZSXl+Pr64unpyejR4/mjjvuwNfXl+TkZFJTU6muruayyy6jffv2fPrpp0DNDD6AqKgozGYzGRkZtGvXjry8PHJzc0lOTqaiogIvLy9atmxJTEwMjz76KG3btsXNzY2wsDB8fHxIS0s7pe8TIiJNSUE+ERFpNo4cOcLYsWMJDQ3l008/rfeFvHbWAFDvweL3v6emprJv3z68vb3p27dv4zZcRETkHHBsQC4nJ4dt27aRnp5OYGAgF154ISEhIY4yeXl5/PTTT/Tp06fOOFk71rq4uNR5Yfb7YN+ePXv46aefWLduHVarld69e3Pdddfh5+eH3W5nxowZzJ49m9tvv51u3bpRWlrK22+/zSeffMJ1111HYGAgLVu2pKysjMzMTIKCgggPDycgIIB9+/ZRUlKCr68vYWFhmEwmUlNTGTJkCMHBwRiNRm6++WYuueQSvLy88Pf3JygoiIyMDHJzc7FarQQHBxMWFsbevXuxWCwYjcaz+48hIvInKMgnIiLNRnBwMC+88AImk6nB88ebNQCwfPlyVq1axeWXX87MmTNZtGgRVqsVHx8fJkyYwLhx4/Dz82vM5ouIiDQpg8FASUkJ//nPf1i8eDHV1dWYTCbKy8vx9/fn5ptv5sYbbwSgU6dOmEwmMjIy6l2jdqwtLS0lOzsbk8lERESEo0xWVhYTJ06kvLyc2NhYbDYb//rXv1i1ahXTpk3D29ubOXPm0Lt3byZMmOAY17t3705WVpZjll5kZCQuLi7s2bOHrl27YjKZiI2N5cCBAxQXF+Pr60tgYCBhYWGO5bhdu3Zl3rx5hISE0KlTpzpt/+ijj/j111+ZNm0aoaGhxMXFceDAAcrLyxXkExGnoCCfiIg0Kz169GjwuMViYdeuXaxdu5acnBySkpK44IILHA8KmzdvZs6cOXz11Ve0bt2aadOmYTAYmD59Om+88QYxMTEMHz5cS3ZERKRZsFqt9V585eTkcM8997Bv3z5uueUW+vTpg5eXFxkZGbzzzjtMmTKFyspK/vrXvxIdHY23tzcHDhwAcIyN+/fv5+OPP+b7778nNzcXd3d3OnbsyN13303v3r1xc3Pj5ZdfpqCggBdeeIH27dvj5eXFe++9x8aNG8nLy8Pb25vw8HBWrFjBv/71Ly666CLsdju+vr5069bN0d7Q0FACAwPZsWOH41ibNm1Yvnw5+fn5REZG4ufnR1RUFPv27cNqtdKnTx86dOjAZ599RpcuXejQoQMVFRUsXbqUTz/9lIEDB9KqVSvKy8sJDQ1l6dKlHDlyhICAgMb/RxEROU0K8omIiFOp3RDjRIG2tLQ0vLy8aNGihWPZ0Ntvv83HH3+Mj48PBoOBjz/+mJ49e/LAAw+QmJhIly5dgJrZgC+++CJRUVEABAUFMXbsWFauXMnw4cPPSh9FREQa0y+//MLHH3/Mm2++Wefl1Ztvvsm2bdv49NNPSU5OdpRv37493bt3Z8SIEcyfP5+xY8c6AnGHDx+moKCAwMBAioqKeOWVV0hPT2fkyJHExcWxe/duPv30U6ZMmcK///1v4uLiOHToEGFhYYSHhxMYGAjA3XffXaeNDz74IK+88gqffPIJn3zyCVCTZy8kJISrr76aO+64g+DgYMLDw9m9e7ejXocOHZg3bx65ubkAeHl50apVK7755htycnKIj4/n4Ycf5q677mLChAlcdNFF2Gw2tm3bRu/evfm///s/R73LL7+cVq1aER4e3nj/GCIiZ5CCfCIick45Nm9ebT6fYx2b3yc7O5vS0lKioqLw8PAAYOnSpdxzzz1MmDCBiRMnYjAY+Pzzz3n99de5/vrrueGGG/D09GTlypU8++yzlJeXM2vWLOLj43F1dcXd3d2RpNtoNNKiRQuio6PZu3ev4/NFREScld1uZ+XKlfzwww+UlZU5ZrRnZ2fz9ddfc+WVV9K5c2dHWYPBgMViISgoiM8++4xWrVo5rhUfH8+KFSvIzMwkMDCQzz77jO+//55JkyZx/fXXO2YLenl58dZbb7Fnzx7i4uK45JJL+Ne//sVNN91E+/btcXV1JT4+nu7du9OlSxfCw8Pp0KEDr7/+Ovn5+WzZsoXMzEwKCgpYvnw577//PomJiXTr1o2oqCg2bdrkGLfbtm2LxWIhOzsbAJPJRFxcHEeOHOHgwYO0bNmSCy64gDlz5vDll1+yceNGPD09ueGGG7j00kvrLCvu3bs3vXv3Pnv/OCIip0lBPhEROaecKG8eQEZGBlOnTmXlypWOpTT9+/dn/PjxxMfHExUV5ZhZADVLjz7++GM6duzIpEmTHNeJjY2ltLSU1157jW+//ZaBAwcSERFBUVERgCP3TkhICC1atGD37t1UVVU5gokiIiLnsoY2m6qdtRcSEgJAQUGBI8i3YsUKysrKuPjii3F3d68zw8/NreaxsTbAV11djbu7O23atGHJkiWkp6fTpUsXWrRowR133MGoUaMAHPnydu7ciYuLC2lpaQBcf/31BAYGsmTJEgoKCjh8+DA//fQTH3zwAUlJSbz//vt4enpSUVGBv78/w4YNc/Srf//+3HLLLeTk5GA0GomLi+PHH3/kyJEjjl1yAXbv3o3FYsHNzY3w8HD8/f2prKx03JuEhAQeffRRvbwTkWZFQT4RETkrTrSz7bEyMjJYv349u3btws/Pj4EDB9K+fXugJoH3lClTSElJ4Y477iA0NJS1a9cyc+ZMXF1defLJJ4mIiCAwMNDxIOHq6sr+/fu5+eabHe2AmmDikCFDmDZtGps2beLSSy8lKiqKAwcOkJeXR0hIiGMGQmRkJOvXr+fAgQO0adOmMW+TiIjIGdHQSzMXFxcOHz7M+vXrARgxYgRhYWG89957lJeXAzW5+v5IbfCvXbt22Gw2x+YbV199NQDbtm1jzpw5rFu3jszMTEJDQ3FxcWH//v0A+Pr6Mnr0aEaPHk1WVhZWqxWj0cgHH3zAxx9/zIoVK+jevTvXXXcdl1xyCffeey82m43c3Fzmzp0L4JhtGBISgtlsZvfu3bRs2ZKgoCAuuOACWrVq5fjeMWjQIH799dc69+bY/4uINBcK8omIyBl1vGDe7x82apfV1C4FgppZBE899RR2ux0/Pz9ycnKYMWMGzzzzDIMGDSI7O5vvvvuOF198kauuugqDwcAVV1xBr169CA0NBcDPz48WLVqwefNmSkpKMBgMmEwmXFxcHJ9ZKyQkhJCQEMeSnri4OJYuXcq+ffvqBPni4uKwWCzs3buXNm3a1GmziIjI2WSz2Rzj0PHy01qtVsdmU/v37ycmJoZBgwYRExPD1q1b2bdvH25ubkRHR/Poo4/SsmVLPD09ASgrK/vDNtSO5/Hx8RiNRsfmGwBff/0106ZNw8vLiz59+nDxxRfTt29f+vXrx8GDBwGorKxk0aJFdOjQgY4dOzrq9uzZk48++gij0UhwcDCdO3fmo48+IiUlhYiICLKyssjMzOTpp592zNhLTk7mvvvuIz4+HgB3d3emT5/eYHtFRJo7BflERORPa2hnvuMtt83MzGTmzJn8/PPPlJeXk5iYyOjRo+nbty8AJSUlPPbYY3Ts2JF77rmHoKAgCgoKeOCBB1izZg0DBgxwBAUXL15MeHg4bdu2paSkhIsvvtix3AggJiaGFStWsH//ftq2bUtYWBj79++ntLSUoKAgx/KdyspKvL29qa6uBiA6OhqoWeLTs2dPx/Xi4+Px9PRk165dDB06VEE+ERFpdHa7HavViouLS51g3rE/2+12LBYL7u7udcamzz77jLfeegt/f388PT356quvmDdvHi+88AJDhgwhNDSUiRMn4ubmxoUXXgjg2HCqNhB3vHHOarWSl5dHYGAg0dHRBAYGkpmZidVqxWazMW3aNHx8fJgyZQoJCQmOekajkczMTPLy8nBzc2Py5MmEhIRwxx130KpVKw4ePMjrr79Oq1ataN26NQCTJ09myJAhfPvtt2RnZ9O2bVvuvPNO+vXr51hC3LlzZ8esPhGR852CfCIiclKO3Qyj1u+DeWlpafj4+LB48WIWL15MixYtmDp1KgUFBbz44ovs3r2b3r174+fnx3fffceiRYt49dVXGTZsGOnp6RQWFjJq1CgSExOBmqDb119/7QjgRUdHc9ttt/Hf//6Xn3/+GQB/f3+io6NJTExkzJgxtG3blpiYGOx2O7t376Zz58506dKF5cuXs2vXLvr27et4MMjMzGTv3r306dMHqAkO+vn5sWfPnjr9atGiBRUVFWzbtq0R7qyIiDQXWVlZbNu2jU2bNrFjxw42btzIG2+8wQUXXFAnx93JMBgMjvHqWCkpKXzyySesX78eNzc3+vXrxzXXXOPYJX7z5s289NJLjBs3jhtuuAGTycT27dt57rnn2LRpE506daJjx460atWKNWvWOK7boUMHAHbu3On4/Ia89957LFq0iFdeeYV27doRERHBoUOHyMvLw2KxkJ+fz/Dhwx0BPovFwvvvv09ubi6+vr6kpaXRq1cvnnzySd577z3++c9/YrFYKC8vp0uXLjzxxBNERUVhtVrx8vLiyiuv5Morrzzp+yYicj5TkE9EpJnKzMxk+/btpKWlYbFY6Nmz5wl3iLPb7Y5ZAL//Ym+32+s8mBQWFhIQEMC7775LixYtGDFiBIWFhQwbNoyBAweSmZlJXFwcbdu2xWaz8cknn7B69WqeffZZBg0ahNFo5LHHHuOvf/0rr776Ku3bt6dVq1bEx8fz+OOPs3TpUmJiYnB1daVTp04kJiYSGBiIi4sLf/vb37j00ktJT09n586dZGRkkJmZyWeffUZxcbFj5oCHhwfbt2/n6quv5oorrmDhwoVMnToVf39//Pz8yMjI4JVXXiEoKMjx8BAREUFVVRWbN28Gfks0npCQwOzZsx2zHE7lIU1ERJqvbdu2MWvWLNasWUNWVhbV1dV4e3sTERFBfHw8N9xwAy1atAB+Gzsaeml27Cy86upqUlNT8fb2ZsaMGaxYsYKLLrqIRx99lG3btvH0009js9m47LLLqKysZPHixXz99de8++67dO/endTUVFxcXLj22msdgbaIiAguuOACTCYTULOkNTIykrKyMvLz8wkKCiIgIICkpCRWrFhBVlYWkZGRddpVm/Ji27Zt7Nq1y7GsNy4uju3bt3Po0CE6d+5MfHw8n332Ge7u7rRu3Zpff/2Vn376ieTkZNavX88XX3xBr169GDlyJH369GHDhg14eHjQpk0bx4x6u92uJbYiIn+CgnwiIs1ARUUFc+bMYdOmTWzcuJHDhw9jsVjw8fHB39+f3NxcPvvsM66//nruv//+Bq9xbHDv98tRDQYDKSkpvP322/z666/4+flx++23869//YvBgwfTv39/AgMD6dSpE8uWLeORRx5h7NixQM1DzJIlS7j88ssZMWIEUPOgUFhYSEREBCtWrOCHH37gtttu45FHHmH69OmsW7eOn3/+mdLSUqDm4eTuu+/mmmuuwc3NjTZt2tClSxfH9ex2O7fffjtr167FbrcTFRVFYGCgI8F3v379ePnll3nqqae48cYbiYmJIScnh4CAACZPnkzXrl0dnzN9+nQiIiIcbYeaYF/t5h8iIiK1s/LS09P54osviI2N5eWXX8bb25vw8HACAwPx9vbGw8MDd3f3OnVrxxar1UpmZiYuLi6O4BbA+vXrmTBhApdddhlpaWkkJiYSFxeH3W7njTfeoKioiKlTp9KmTRs8PT155JFHuOqqq/jnP//Jhx9+SMeOHTGZTPzlL3/h4osvJiAgAG9vb5KTk+nSpQve3t51PnP37t2OGe2jR49m69atfPLJJ9xzzz34+Pg42mU0Gtm6dSu//PILQ4YMcQQQO3XqxFdffcWuXbtISkrinnvu4Z133uGdd94BambDjx8/nmHDhrF3715atmzpuGZ4eDhDhw6td3+VEkNE5M9RkE9EpBmwWCw899xzANxyyy3ExsYSFRXl2M0uPz+f//u//+Ott97i8ssvp127dsBvDyk2m429e/eye/duPDw8uPjii+s8lGRkZPDCCy+Ql5fHHXfcQUVFBTNmzACgqqqKoqIiAgICiI6OZtu2bSQnJztmC6SlpWG329m5cycPPfSQ421/ZWUlwcHBJCUlERISAkD//v3p378/hYWF7Nq1C5vNxuHDh5k8eTL//e9/ueaaa1iyZAn/+9//eO6554iNjaWqqoq9e/dy+PBhAgMDMRgMhIeH4+PjQ0pKClDzYHLllVfSrVs3Fi5cSH5+Pu3ataNXr16O2Xm1kpKSGvXfSkREnF9tEKp9+/YEBAQQGBjIsGHDTqruxo0bef3111mzZg3u7u6EhoZy6aWXcvfdd+Pp6UlcXBxeXl4sWbKEd955h169euHu7k5BQQE//vgjzzzzjOPlVGlpKfn5+YSHh7N27Vq2bdtGt27dmDhxIl988QWrVq2iqKiIiooKANq2bcsTTzxBnz59HC+0tmzZ4gjyXXHFFWzZsoUPP/wQg8HAX/7yF8fGVSkpKbz22mtYrVZGjhyJv78/UJPqoqqqiqysLKBmLO/cuTPZ2dm0bNmSgIAAR99rN8kSEZHGoSCfiMg5KCMjA5vNRmxs7EmV9/X1pWvXruzfv58JEyYQHh5er8w999zDP/7xDxYtWkRcXBxGoxEXFxe2b9/O5MmT2bRpE97e3litVqKiopg4cSK9evUCYN68eWzbto2XX36Z4cOHAzUPAhMnTiQtLY38/HxiY2OJj4/Hw8PDMQMPavL2+fv7s3nzZiIiIhgwYADt27cnJiaG0NBQbDYbXl5eAOTl5bF161YuvvjiOkuLf/rpJ1avXo3dbic8PJw1a9YwYcIEhg8fjouLC+vXr6eiosIR6DQajVx00UWUlJRQUVHhCDhGRUVxxx13/Il/EREROZ/V7mgLNeNabZAvPDyc0NBQ0tLSgN9SX9SW/f0OuDt37mTSpElUVFTw0EMPERAQwPfff89///tf8vLymDhxouOatZtU1Y5h27dvx8vLi2+++YZvv/2WPXv2kJubi81mIyYmhj59+jiWuF577bVce+21ZGdns2/fPtzd3dm4cSP//Oc/+eKLL+jTpw8tW7YkJCTEkW+2srIST09P7r//fjw8PPjggw+YO3cunTt3prS0lL179xIREcE///lPBg4c6NjEqkePHvz00091vnsEBQURFBTUyP8qIiLyewryiYicA45Nxp2fn8+wYcO46aab+Pvf/14v6Xbtg0btg0PtDrfR0dGkpKSQnZ1NeHi4Y0c+m82Gq6sr7du3Jzw8nMzMTEc+oAMHDvDEE09QWVnJ5MmTiYqKYufOnXzyySc888wzjnx527ZtIz4+3hHgg5o8dePGjePxxx8nNzcXgHbt2lFVVUVhYaGjXHBwMIGBgfj6+jJ58mTH0qXaB6TJkydjNBp58MEHWbBgAZMnT+bpp5+mZ8+eGAwG1q9fz7Jlyxg+fDjV1dX06tWLDz74gFmzZvHdd99hNpvp0qULt99+u2OnXoCHH364wXttt9vr5EPSkiARETmW1Wp15ISrHSOOl4vVx8eHqKgo9uzZ48htd6Jx5aOPPiI1NZX33nvPMXvuqquu4qmnnuKLL75g4MCBXHrppURFRZGVlcWRI0fqzIQLCAggJSWFwYMHk5iYSLt27YiMjCQgIIDq6mpH2dTUVHJycujbt68j+NamTRu++uorsrOzAQgLCyM+Pp6VK1fy9ttvExcXx2WXXUZgYKBjCfC3335Leno60dHRjBkzhl69ejly9dV+P3F3d2/w5aKIiJx9CvKJiDSx7OxsVq9e7cibExgYyAcffEB4eHiDSaeP96DRrl07Fi5cyM6dOx3LeH7/oJGfnw+Ap6cnAMuXLyczM5P333/fUadr16507NiR66+/noULF9KmTRtyc3Md16oNKgL07NkTu93OoUOHABz5eQ4ePOj4TB8fH/r3788PP/zAvHnzGD9+vOPcunXr+PDDDxk3bhw2m43rrruOn376iRdffJFWrVo5AoYDBw7k4Ycfxmg0YrPZ6Nu3L4mJiXh4eJwwMbfFYqnzkFZ7T5TMW0Sk+SkrK+O///0v7dq1Y+jQofXyy57IsWUbGiN2797NkiVLyMjIICkpiSuvvNKRr65Vq1YA7Nmzh06dOrF27Vq2b9/Ozp07WbFiBS+++CJDhw6lqKiIHTt20KtXL7p16wbUbLLh7u7OlVdeyTfffMOyZcu49NJLadu2LVu3bq3z0iwiIgJPT0/CwsKYPHkyZrMZNzc3XFxcyMvL41//+hfdunVj7Nix/Pe//+Xrr7/m3//+N61bt3Zs0JGamsojjzwC1Cyd/dvf/sY//vEP3nnnHS6//HIuu+wyoCYXbYcOHRw77v6eXpCJiJybFOQTETnDqqqq8PDw+MNytbP33nnnHb7//nvi4+Mdb+B79OjRYJ2ysjI2btzI+vXrqayspH///o4ltbUBtt27dwO/BQNdXV0pKyvjyy+/pLy83DFzoLKyku3bt+Pp6UmnTp3YvHkzO3fuZNu2bezYsQOLxcLq1at56KGH8PHx4cCBA47rQc0DUYsWLfD09CQjIwOz2UxERAS+vr4cOHCgzjLZUaNGsXDhQl588UV27NhB3759KSkp4b333iM+Pp6bbroJFxcXvLy8ePPNN/nxxx/Zvn07gYGBJCUl0bFjRzw9Pevs8lu7xPfYmXm/fzD7/SxIERFpvtzd3Xn77be5/PLLGTp0aJ1AlM1mc4y7v39ZVhvgM5vNmM1mfv75Z77//nvMZjNjx44lMjKSadOmOca2+fPnk5WVxd/+9jfHTD43NzduvfVWrFYrnp6ehIeH06ZNG0aPHu1IvXHkyBEqKyvx8vJyvLSqHaciIiKIi4tzjOHt2rWjqKiInJwcRztbtmzJhRdeyMcff8yyZcsYOHAgUPPybfHixSxYsIALL7wQqEnRkZKSwmOPPUZsbCx5eXnY7Xb+8pe/cMsttwA1gbq+ffsyZ86cOrMFRUTEeenpR0TkDPn111+58847eeCBB7j55psbLGOz2Ry72Nbm6wkLCyM3Nxej0QjUPGxUV1ezfft2WrZs6VgCU1JSwpQpU1i0aJFjZ7qZM2cyfPhwXnjhBRISEnB1dSU9PR2Aw4cPk5aWRmpqKuvWrWPt2rXcdtttjB49GgAPDw+KiorIy8sjMTERm81GYGAgMTExtG3bluuvv57IyEgA4uPjWbNmDfv373c8rBgMBg4cOICnpyeHDh2ipKSE4OBgYmJiyMrKoqSkBJPJhMViwcPDg6eeeooZM2awYsUKFixYgKurK927d+f++++vk3vQZDIxdOjQk95tTzPzRETEarViNBqJiIigoKCAoqIi/P3966S3qA3u1Qb83NzcHOf//ve/c+jQIXr16sWqVaswmUzs3buXTZs2Ybfb6dGjB6+99hqurq68+uqrzJ07lwsvvJC+ffsSExODu7s7rVu3ZvLkyUBNqgovLy/c3NwcY5ePjw++vr6O/H3H7mrv7++Pp6en41zr1q2BujPjTSYTN910E0uWLOGhhx5izJgxdOrUibS0ND788EMGDx7smIkXFRXF559/zpIlSzh06BAREREkJycTHx9f794pwCci0nwoyCcicppqHxBatWrFM888U29py7FLgBpaauvp6YnNZuOJJ54gKiqKp556inXr1vHAAw/w3HPPMXr0aMxmM//973/54osvuO+++xg2bBhWq5UZM2YwY8YMRo0aRXJyMqGhoaxZs4aePXtSUlKC0WjEbDYDMGHCBO69917gt1mE/v7+uLm58fjjj9OnTx9MJhO+vr74+vqye/dujhw5AsCll17K3Llz+eCDD3j88cfx8PDAYrHw+eefU1hYSHFxMUeOHCE4OJjIyEhWrFhBdnY2YWFhuLq6YrfbadOmDU899RSpqakYDAZiY2NPONPOarUC9ZOWi4iI1Kodz2pf9sTFxbFv3z7y8vLw9/d3jL/r1q1jxowZbNy4EaPRyMUXX8zIkSPp2LEjUDNzbvHixeTm5nL77bczfPhwfv31V5599lkA7rjjDsey3KuvvppvvvmG1NRU+vbtS6tWrfD29qa8vNwxq74hgYGBtGnThoULF3Lo0CHHCzsAb29vDh48SHh4OGazmZiYGLy9vTl06BBmsxmj0YjdbiciIoIpU6YwY8YMFi1axCeffIKPjw+XX345999/v2MGPYCfn5/jxZ6IiJwfFOQTETlNtUG88PBwRowYUW+2We3vWVlZ7Nu3D09PT3r06IGrqyvr1q1j8uTJuLq6kpOTQ1JSEgaDgTZt2uDq6lonF8/nn3/O4MGDueuuuxzHHn74YUaOHEnbtm1xdXUlKiqK7Oxs7rrrLnr27Im/vz/p6el89NFHfPPNN7i6unLrrbc6drzr1KkTs2fPxmg01nsw+eCDD1i/fj1vvPEGffv25aabbuLdd99l165dDB48mNTUVHbt2kXHjh3Zt28fxcXFAAwcOJCAgABCQkLq9L/259rZCbX37tgluMfS7DwREandbOp4GyUdu2lVUFAQiYmJ/Prrrxw+fNgxrq1bt46nn34ai8XCsGHDyM3NZcaMGSxYsIDnn3+egQMHkpSUBECHDh0YM2YMgCP/6/r162nRooVjN9nal3mZmZlAzQ67ERERbN++/YR9cXd357LLLmPOnDm8+uqrvPTSS7i7u1NSUsJXX31FRkYGt956K0ajEaPRiJ+fH5s2baKwsJCwsDAMBgM2m40ePXrQqVMnMjMz8fHxqRMsFBGR85uCfCIip+B4O+7VBvoMBgMlJSV4e3s7HjyWLl3Kf/7zH9LS0vD29sbV1ZUePXowZcoUunTpwqxZs7jxxhvp3Lkz999/P/7+/nh4eODl5UV6ejpVVVVkZ2djNpvp1auXY8mv3W7HZDI5NsyAmmW169ato3PnznTv3h2r1Urr1q3p1q0bTzzxBNOnT6esrIz77ruPoKAgevfuTVJSEm+99RahoaH06tWLsrIyFi9ezNy5c7nqqqto06YNALfffjthYWHMnj2bN954g9DQUO666y68vLx48MEHHTMGR40axahRo054H4+9X0reLSLSvFgsFo4cOeIITJ2KY3c/P/b/DbHb7cycOZPp06eTnZ3NJZdc4tiMIj09nQsuuMCxIUVBQQHvv/8+sbGxmEwmbrvtNm644QZefvllBg4c6HgBVbuZht1ux9PTk/j4eL777jvKy8sJDAwEajasMJlMZGRkUFlZiaenp2OH+6ysLEeqi4YMGDCAMWPGMGvWLPbu3csFF1xAUVER3333HcOHD3cst4Wa8bT2+0Ct2u8cJpPJMT6LiIjUUpBPRJq1Y3eCPVkn2o3v99cqKiri559/ZsSIEQBMnz6dKVOm8PXXX9OmTRsOHDjACy+8QOvWrbn33nvx9fXl22+/ZcaMGQwePJhhw4aRmJhIXFwcOTk5VFdXAzgSee/fv5/KykrKy8sxGo2UlJQ4HnhqA321gUVfX1/HsqM9e/Zw4YUXOvL7BQUF8eyzz/LKK6/w+eefY7Vaee6550hISOC+++7j0Ucf5YEHHiAxMRGA1NRUBg4cyKOPPuroq4+PDzfeeCPDhw/Hz8/PcS/mzZuHxWJxzA6Ehne1PZYCeyIizUNmZiZbt25l8+bNbN26lX379mE2m/H392fw4MHccMMNxMbGOpbVwm8vzBrKqXpsUK+0tJRff/2VHTt24Ofnx6BBg4iKinLUXbRoEa+++irdu3fn7rvvZvfu3cyePRuLxeLIZVdUVMSGDRu48847ad++vePabdq0YcKECbz++uts2rSJpKQkTCYThYWFjg20DAYDkZGR2O120tPTiYyMdHyviI2NJTMzk7y8PKKiohy5ZXft2kVkZGSd/taqbfdDDz1EUlISCxYs4KuvviIwMJBx48Zxww03OAKJAPfdd1+D91xjqIiIHI+CfCLSLFVXV3PXXXexf/9+Fi9e/IeBvmO/jNd+eW4o2Ld06VJmz55NRkYGF110EVCzrLVz587ExcU5klfv37+fNm3a8PPPP1NWVsa9997rmHHXp08fRo4cSVRUlOP6bdu2ZcWKFRw8eNCxzLVNmzasXbuWgoIC/P39CQoKYteuXY62Wa1W3NzcWLt2LdOnT+fpp592PMDU7s5nMBgcee/CwsJ48MEHOXjwIP/73/+orKzkpZdeol+/fvzvf/9jzpw5bNq0CV9fX6644gr69+9fJ3CXkpLCp59+yr333ktgYCBms5nc3Fw+//xzWrRoQWhoqKOsdrUVEWne0tPTue2228jIyMDf35+wsDDi4+Pp2bMnLi4urF27lg8//JCsrCxeeuklxww5OHE6hoyMDO677z4mTJjAxo0b+eGHH3Bzc+PQoUPMmjWL6dOn06JFCyorK3n77beJioriX//6l+P6/fv359ZbbyUrKwur1UpmZiYuLi507tzZMa7X/r9z584YjUa2bdtGUlIScXFxZGVlkZ+f71gC26JFCzw8PNi1axcXXHABNpsNV1dXOnTowA8//EBOTg5RUVGODS22bNnCoEGDGgzy1X62n58fo0aN4rLLLqszS09EROR06SlMRJolNzc3XFxcyM7OprCwkODg4BOWr/0iXlhYyOHDhwkODq4TtAL47rvvmDRpEhEREfTr148VK1aQlZUFwIEDB4iLi6NFixZ4eXmxfft2hgwZgtFopLq6mv/85z+MHj2awMBAbDYbHTp0wN/f37EsqWvXrixYsIBDhw45goEdOnRg8eLFHDp0iB49epCcnMzy5cvZtWsX7dq1cwTSNm3axJo1a3BxcSEqKgpfX1/2799fp1+1IiIi+M9//sMdd9xBcXExhYWFhISE0LJlS+6+++4T3iMvLy/mz5/PihUruO666/Dy8nLkPXrkkUf+8B6LiEjzUbtzbYcOHfjnP/+Jj48P3t7ejnxylZWVPPvssyxYsIBly5Y5ZrwXFRWxZs0ali9fTmpqKt7e3lx++eVcccUVGI1GQkND2bFjB2+88Qbu7u4899xzxMbGsnLlSp577jmmT5/OI488Qnl5Ofv27ePOO+90BPiqq6vp168fHTp0ICsri9LSUoxGo+P7wO9f3Pn5+WE0GsnJyQFqNt9YunQp2dnZjiBfaGgoISEhjpdstddITExk7ty5HDhwgG7duhEeHg7Ahg0bgOMvMz62DQrwiYjImaYgn4g0S7Vv6H/66ScyMzP/MAA1b9483n33XdLT0/H09KRt27aMHj2aoUOH4uXlRX5+PlOnTiU8PJxXX32VFi1aADB16lTef/99Nm/ezIABAwgODiYsLMzxMHDZZZeRlZXFO++8w4oVKwAwGo2OfHgPPvgg4eHhjmW2GRkZjja1a9eO6upqMjMz6du3LzfccANz587l5Zdf5sEHH8THx4eUlBT++9//0qdPH8cDBsDGjRsdeYJ+LyQkhNmzZzd4H2w2myPn37FJzm02G61bt+ajjz5i9uzZLFy4kIqKCtq0acOjjz7K5ZdffrL/NCIi0gz4+voSGhrKoUOHiIuLqxfU8vDw4Prrr2fOnDls376dESNGYDabefXVV/nll18ICgoiKCiIrVu38vPPP1NSUsINN9yAp6cnERERHDhwgEWLFjlmyLVq1YrPP/+c9evXU1paSk5ODkajEV9fX8dn1o5ZXbt25eeffyYvL4+WLVsSHBzM1q1bHctwa2fCV1dXU1pa6sgp26lTJ+bOncuhQ4ccG3EEBQURGRnJli1b6nxGu3btgN92gu/SpQtz584lOjoaOHEuQRERkcaiIJ+INFu1u9/t3bvXkWuuIV9//TVPP/003bp14+6776awsJDZs2fzj3/8gyNHjnD77bezbt06UlNTefrpp4mJiXEs9Rk5ciQLFy5k48aNAAQGBhIVFcW+ffuw2+34+/tz7733csMNN7Bnzx727NnDkSNH2L9/P1999RW+vr48+eSTjoeF2tkEALGxsY4lSjabja5du/KPf/yDt99+mzvuuANvb2/Kysro1q0bzz//vKPeP//5TwICAvDw8Dhun2uX+/4+b56Li0uDDya1x3r37k1iYiJWqxVvb++T+WcQEZFmyM3NjejoaDZt2kRWVhbR0dF10lwYDAb8/Pzw9PR0BMLeeOMNvvjiCx577DEuvfRSTCYT1dXV/OUvf2H+/PkMGjSI6Oho4uLiKCgocATfal9adejQgR9//JEjR47g7e2Nr6+vIz0F1IxtULMJ1axZs8jMzGTAgAH06dOHb775hssvv5wBAwY4ZsKvXLkSgAsvvBCgTl7aWr6+vkRHR1NUVFTn5VlycjI7d+50lKttn4iISFNSkE9Emq1WrVrh7u5e50v47+Xl5fHee+8RExPDG2+8gclkwmAwcNlll3HPPffw2WefMWLECIxGI4BjCW9tTp7IyEi6devGmjVrgJrlS7Gxsaxbt47CwkJH7jo3NzcuuugiRx4/gIsuuojU1FSqqqrw9fUlMDCQn3/+mV69etG+fXuCg4MxGo1s3ryZ0tJS/Pz8GD9+PH379uXHH3+ksrKSLl26kJycjJ+fH1DzgDNgwIA/vDfH5uo7VQ3NDhQRkfNPx44dmT9/PgcOHHAE+WoZDAbHWFUb/Pr111+55JJLuOWWW+pcJzo6mm3btnHo0CGio6Np27Yta9asIT8/H/jtRVPXrl2ZP3++Y4Z769at2bp1K9nZ2YSHh+Pu7g7UjIV2u520tDQGDBjATTfdxI8//sjDDz/MzTffTOvWrVm7di2zZs1izJgx9OrVC4DWrVvj5+dXZxmtyWTi+eef12YXIiLiFBTkE5FmKyQkhODg4Dpv+WvVzjY4fPgwu3bt4o477sDLy8uxVDUoKIhbbrmF+++/n1WrVhEREQHUzCaA35KG+/j4EBkZyZEjRzCbzXh6ehIVFUVlZSWZmZkEBgby3HPPOfILhYaGUlBQwMaNG8nNzeXGG290PLyMGzeODz/8kHvuuYfrr7+eRx55hDFjxtR5cIGah5DWrVs32Odjl9dqqZCIiDSm2lno6enpXHDBBY5xp7S0lNWrVzNz5kx69OjhmCn30Ucf4eHhQVZWFmvXrmXVqlWsWrWKvLw8goKCHHluu3TpQnV1teP32rGtU6dOjs8bOHAgI0eO5NFHH+WTTz7h4YcfxmKxsHfvXmbOnImPj4+jfqdOnZg2bRoffvghn332GSUlJfj7+zNhwgTuuecexxhrMpkcL+2OpQCfiIg4CwX5RKTZ8vHxoUWLFqSnpzvy8NSq/cJ+7M6z8NtsARcXF9q2betYLtulSxeMRiOpqamYzWaMRqNjuWtxcTEAaWlptG/fnvDwcFxdXdmzZw9dunShW7dufPvtt4wZM4Y+ffpgNptZv349l156KVdddZXj4WLChAn06dMHqHkgMZlMPPbYYw32zW6318md93sK8ImISGOr3exp6dKllJeXs2nTJlJTU8nLy6O0tJRevXrx4osvEhoais1mw8PDg23btjFt2jQOHjxIaGgo9957L1FRUdx6661kZ2cDOPLUZmZmAr+N1W3atAFqNrsCuOKKK/jpp59477332Lp1K127dmXjxo0kJCSQmZnJ7t27KS8vx8vLi169etGxY0cyMzMJCAhw5NYVERFpThTkE5Fmy83NjZiYGDZv3kxubi5RUVENljGZTOTm5jqCd7Wz/Dw9PfH396ekpIS2bdvSoUMH5s+fz9VXX010dDSurq6UlpY6Zgru3LmT9u3bExYWhslkYtOmTVx99dWMHj2ahIQE5s2bx44dOwgMDOTWW2/l8ssvr7NZho+PDz169KjXRovFUm9prcFgcMwmFBERaQqBgYHExsayevVqDh8+TFxcHBdeeCE7duxg+/btdOrUybGE18XFhby8PG699VZ8fX25++676dq1KzExMRw6dAj4LajXqlUrXF1dyczMdLxQs9vt+Pj4EBQURHp6OqWlpfj4+Dhy6s6fP585c+bQoUMHJk2aREZGBmFhYXWW3vr4+NC+ffuzf6NERETOEgX5RKRZOzZfUENBvhYtWtCiRQs2bdpEfn5+nTf7+/fv58iRI/j7+wNw880388wzz/C3v/2NsWPHEhYWxsyZM8nMzMTV1ZWNGzdy1VVXERgYSOfOnetsTNGtWze6dev2h+2tfRg6dmnQn82dJyIi0pi8vLzw9/fHx8eHd999l7CwMNzc3KisrGTevHk899xzLFmyhNdee40uXbqwYcMGCgsLmTJlSp0ctcuWLcPFxYXDhw9TUFBAYGAg0dHRHDhwgIKCAkJCQqiursZoNBIWFsaRI0ccQT4/Pz/GjRvH6NGjHflz4bccuiIiIucTrecSkWatNl9Q7Ww7q9WKzWZznPfx8WHQoEH88ssvfPfddwCYzWaOHDnCJ598gqenpyM4N2zYMJ5//nmMRiMvvfQS99xzD3a7nSeffJJOnTo5lg/Fxsby4YcfNrjU1m63Y7FYsFqtdRKU1zIYDMr9IyIiTsHFxYVWrVpRWlpKdXU1Hh4euLq64u3tzbhx45g4cSLZ2dnce++9ZGZm4u7ujpubG7/++it79+4lNTWV6dOn88Ybb+Dq6sqmTZscu9WHhYVx8OBBioqKgN9eeH366afMnz+/3nLbYwN8IiIi5ytNDxGRZi0qKgovLy/27NkDUGeJa2VlJQaDgZEjR7J3715eeOEFvv/+e5KSkti4cSO7d+/m73//O3369HEs4b3kkkvo378/W7ZsITIykpYtW2Kz2fj3v//tWBJU+yBSu8ToWKezq62IiMi5pnPnzgDs2bOH+Ph44LdZ6RMmTKCiooLXXnuNhx9+mCeeeIKRI0fy3nvvsWjRIjw8PCguLubWW28lLi6OL7/80vGi67XXXsPf379OrlyoeTknIiIiDdOTpog0a0FBQYSFhbFjxw5SU1M5fPgwBw8e5ODBg6SlpVFaWsqECRN45ZVXmD17NgsXLmTOnDnEx8fz2GOPMXToUOC35bPz58/H29ubwYMHAzUPMjt27GD//v1cd911dT5bOfNERKS5S0hIwMXFhb1793LZZZcBNWNmbaDv1ltvxWw289ZbbzFlyhQeeeQRLrjgAtavX09sbCzdunWjXbt2uLu7c8kllwA1Y2tgYGCT9UlERMRZGewNrRcTEWkmbDYbt99+OytWrCAiIoK8vDzMZjMAHh4etGrViscee4x+/foBODbf+L3amXw33HADGzdu5LbbbiMpKYmcnBw+/PBDjEYjb775JtHR0We1fyIiIk0pJyeHYcOGkZiYyPTp0+ucqx07S0tL2b59O3FxccqVJyIi0og0k09EmjUXFxdiYmJo1aoVrVq14uqrr6ZLly506NCBsLCweuVrd9etzdv3+9l4zz33HB988AFLlizh008/BaBnz548+OCDCvCJiMh5x9/fn06dOhEaGuoI6tWq/dnHx4devXo1VRNFRETOG5rJJyLnNavVisFgcOT6OZHahxez2UxqaqpjJuDJ1BURERERERFpTAryich5wWazOWbnubi4KDAnIiIiIiIizYqCfCIiIiIiIiIiIk5OU1lEREREREREREScnIJ8IiIiIiIiIiIiTk5BPhERERERERERESenIJ+IiIiIiIiIiIiTU5BPRERERERERETEySnIJyIiIiIiIiIi4uQU5BMREQYPHszgwYObuhkiIiLyBzRmi4jI8SjIJyIiIiIiIiIi4uTcmroBIiIiIiIiIiIiZ8PEiROZO3dunWPu7u6EhYUxcOBA7rvvPvz9/Rvls81mMwUFBYSHhzfK9RXkExERERERERGR88rjjz9OYGAgAFVVVezdu5dZs2axZcsWZs6ciaur6xn9vKysLP7yl79wxx13cPXVV5/Ra9dSkE9ERERERERERM4rQ4YMISoqqs6xVq1a8cwzz/Dzzz8zcODAM/p5mZmZpKenn9Fr/p5y8omIiIiIiIiIyHmvd+/eAOzZs6eJW/LnKMgnIiIiIiIiIiLnvcOHDwMQExPjOLZ3717uvvtuevToQWJiItdffz3Lly+vU89sNvPCCy8wePBgOnfuzIABA3jmmWcoKioCYM6cOdx0001AzTLhdu3aNUr7tVxXREREREREREScyuDBg094/vvvvz/h+eLiYvLz8wGorq4mNTWV559/nk6dOjFo0CAAdu3axdixYwkJCeGOO+7A3d2dBQsWcPvtt/Pqq68ybNgwAJ599lkWLFjATTfdRHR0NHv27OGzzz5j//79vP/++/Ts2ZM777yTt99+mzFjxtC9e/czcAfqM9jtdnujXFmareuXvdLUTRARERERERFpNj4f+GhTN6FJnE58Iff5JSc8f7wgX0O769by9PTk448/JjExEYDx48dz+PBhvvrqK7y8vACwWCzcfPPNpKens2zZMoxGI4mJiVxzzTU89dRTjmtNnTqV5cuX8/HHH+Pt7c2vv/7KTTfdxEsvvaSNN0REREREREREROCPZ+r9kSlTphASEgLUzOTLysris88+Y9y4cbz77rt06NCBNWvWMH78eCorK6msrHTUveSSS3jppZfYsmUL3bt3p0WLFixatIjOnTszZMgQ/Pz8eOCBB3jggQdOq42nSkE+ERERERERERE5r3Tr1q3e7rpDhw7l0ksv5bnnnuPll18G4JNPPuGTTz5p8BqHDh0CYNKkSTzwwAM8/vjj/N///R9JSUlccsklXHPNNfj6+jZuR46hIJ+IiIiIiIiIiJz3AgMD6d27N9999x1WqxWAcePGMWTIkAbLt27dGoC+ffuybNkyx38rV67kpZde4sMPP2TOnDkEBQWdlfYryCciIiIiIiIiIgLYbDYAwsLCAHB1daVfv351yuzdu5fMzExMJhNms5kdO3bQokULhg8fzvDhw7HZbHzwwQe88sorLFy4kPHjx5+VtruclU8RERERERERERE5h+Xl5fHLL7/QoUMHIiMj6dy5M3PnziU7O9tRprq6mieeeIL77rsPi8VCQUEBY8aM4Z133nGUcXFxoUuXLo6foSZYCL8FERuDZvKJiIiIiIiIiMh5ZenSpQQGBgJgt9s5fPgwX3zxBRUVFfz9738H4Mknn+Tmm2/mmmuu4YYbbiAgIICFCxeyefNmHnroIUf9ESNGMGPGDCoqKkhOTqawsJBPP/2UkJAQhg4dCuAoO3/+fOx2O6NGjcLN7cyG5RTkExERERERERGR88pLL73k+NnV1RV/f3+6dOnCCy+8QN++fQFITk5m5syZTJs2jQ8++ACLxUJcXByTJ09m1KhRjvrPPfcc0dHRLFy4kIULF2Iymejbty9///vfHfn4EhISGD9+PHPmzGHLli307t2bmJiYM9ong91ut5/RK0qzd/2yV5q6CSIiIiIiIiLNxucDH23qJjSJ04kvnK/37ESUk09ERERERERERMTJnVfLdX/55RduvvlmAgICWL58OUajsambJCLS6CrzS0hbvJaitMMABLWPIm5oT4w+phPWK0rPJv3bDZRm5eFmMhLcIYbYIcm4e3uejWaLiIg0G409Fp/s9QtTD7F/6UZKD+Xj5ulOSOdWtLq0G65G9zPYWxERaSrnVZDv66+/xsvLi8LCQn744Qcuv/zypm6SiEijqi6vImX6N9itNqL6d8Zut5O5fCtlhwtIuusKXI7u8PR7hWmH2PrBd7iZjERf3BWDwUDWqu0Uph0m8c5huJs8znJPREREnFNjj8Une/3C1ENseX8JPpHBxF3enaqicg6u2k5p1hG63j4Ug8Fw1u6JiIg0jvMmyGc2m/n2228ZOXIkCxYsYO7cuQryiUizl7ViG1VF5XS/byReYQEA+EaFsvX9b8nesJeWPds1WC/1618xuBhIvGMYpmA/AII7xbDhP/PJ+DGF+KE9z1YXREREnFpjj8Une/20xWvxCPCm621DcXWveQz08Pcmdf4vFOzJIqhtVCPeBRERORvOm5x8P/30E8XFxfTu3ZsLL7yQFStWkJub29TNEhFpVLkpaQTEtXB86QcIbB2BKdSP3JR9DdapLCilPLuQsOQEx0MFgFdoAEEdosnesLexmy0iItJsNPZYfDLXt1ZbMPp40qJnW0eAD8A/LhyAskP5Z6KrIiLSxM6bIN/XX3+NwWCgZ8+eXHLJJVgsFr766qt65TZv3sxtt91Gjx496N27N7fffju7du06pTKDBg1i/Pjx9a79++ODBg3iySef5IknnqBr167079+f/Px87HY7M2fO5NprryU5OZkuXbpw+eWX8+677/L7zZBP1JZXX32Vdu3asXdv3Qdym83GRRddxH333XfqN1JEnEZ1RRWV+aX4RAbXO+fTMpjSg0carGcuLgPAOzyw3jlTkC+WsiqqisrObGNFRESaocYei0/2+q7ubnSecCkxFyfWKVMb3PMI8Dm1jomIyDnpvAjylZaW8uOPP5KUlERISAgDBgzAaDQyb968OuXWrVvHuHHjSE1N5a9//St/+9vf2Lt3LzfddBOZmZknXeZULFy4kF27dvHEE09w3XXXERQUxNSpU5k0aRKtW7fm8ccf58EHH8TDw4NXX32VGTNmnHR7r7jiCgAWL15c5zPXrFlDTk4OI0aMOOX2iojzMBeVA2D086p3zuhnwlpRjaXCXO+cy9E3/Naq6nrnqsuraq5dUnEmmyoiItIsNfZY/GevX1lQSvaGvaQuWINXeADBHWNOoVciInKuOi9y8i1ZsoSqqiouvfRSAHx8fOjXrx8//vgjKSkpdO3aFYCXX36ZgIAAZs+eTWBgzVuzAQMGMGzYMGbMmMGjjz56UmVORWVlJW+++Sbh4TVT5aurq/n0008ZPnw4kydPdpQbPXo0ffv2Zfny5YwbN+6k29u2bVu++eYb7r33Xse1Fi1ahK+vLwMGDPgzt1NEnITVXPNgcOyynFoubkcfHqotuJnq7jTuFR6Aq6c7edv2EzWgiyMRt7XaQsGeLABs1ZbGbLqIiEiz0Nhjsd1mO+XrV5dXsXbKlzVljK4kjOjdYH0REXE+58VMvgULFgBwySWXOI7V/jxnzhwAjhw5QkpKCiNGjHAEzADi4uKYPXs2t91220mVOVUxMTGOAB+Au7s7q1at4tlnn61TrqCgAB8fH8rLy0+6vQAjRoxg79697N69GwCLxcKSJUu45JJLMBrrfpkQkWamdnn/KW6W5+LqSuQFnSjNOsKuWT9Tdjif0oNH2DnzR2zmmuCewfW8GD5EREROT2OPxX/m+gZof/0A2o6+CK+wALa8/y15W9NPrYEiInJOavavbHJycvjll19o1aoVBoPBsaS2ffv2GAwGFi1axBNPPEFWVs0bsdjY2HrX6NixIwApKSl/WOZUBQfXz5/h7u7Ojz/+yPfff8++ffvYv38/RUVFAI6cfCfTXoArrriCf/3rX3zzzTe0bduWlStXUlhYqKW6IucBVw93AGzV1nrnbJaaBwQ3T/cG68YMSsRSaebgqu2OpN1BHaKI6t+Z9CUbcDN5NFKrRUREmo/GHovtVuspX9/d5EFo1zgAQjrHsuG1eaQuXENI51Z/oociInIuafZBvkWLFmGz2UhPT2fw4MH1zhcVFbF06VIiIiIAHFPhG2I7Oh3+RGVOxGqtP/i6urrW+d1ut3PXXXexbNkyunfvTnJyMmPGjKFnz57cfPPNp9yWiIgIunXrxuLFi7nvvvtYvHgxoaGh9O7d+0/1QUSch4d/TRLthvLnmYsrcDW542ps+MHCYDCQMLwX0QO6UJFXjIe/N56BPqR/uwFcDHgEeDdq20VERJqDxh6L7Rbbn74+1CzzDWofzcFVO6guq8Td2/PPdFNERM4RzT7IV7ur7uTJk/Hxqbtr1M6dO5k2bRpz587l+eefB+DAgQP1rjFlyhT8/f0ZOXLkH5a5/fbbcXFxwWyum+DWYrFQUFBATMyJk9quW7eOZcuWcdddd3H//ffXqV9YWEh0dDQALVu2PKm2QM1svmeeeYa0tDSWLVvGiBEj6gUXRaT5cTMZ8QjyaXDnvtJDR/CNDDlu3ZzNaRh9TQTEt8ToY3IcL0o/jE9ksHL3iIiInIRGH4vdOanrl+cWsvXD74i6qAsRfdrXKWetqgYDGNz0fCAi4uyadVKlffv2sXXrVnr16sVVV13FkCFD6vx3xx13EBoaysqVK4GaJbwLFy6ktLTUcY2MjAw+/vhj8vLyCA8P/8MyACEhIezbt4/KykpHmR9++IGqqqo/bHNhYSEArVu3rnP8iy++oKKiAsvRafcn2xaAoUOH4u7uzrRp0ygsLHTsuisizV9Ip1gKUw9SnlvoOFaw9yAVucWOpToNyVq5jdSvf8VmtTmOHdmZQXF6DhG92x+3noiIiNTV2GPxyVzfM8gPS6WZQ2t2YTtmdVFlQSl5W9Pxj2uBm8fxZ/yJiIhzaNZTMWo33Lj22msbPO/u7s4111zD22+/zVdffcXjjz/OX//6V6655hpGjx6Ni4sLn376KX5+fo6NLE6mzBVXXMFzzz3HX//6V6688kr279/PF198QWRk5B+2OTk5GR8fH1566SWysrLw9/fn119/ZdGiRXh4eFBWVuYoezJtAQgMDOSCCy5g0aJFREdHk5SU9GdvqYg4maiLOpOzMZUt05cQeWFnbBYLmcu34hMZTFhSAgAV+SUU78/BLzYMU5AvANH9u7Bjxo9s/2QpwR1jqSwsJWvFNgLbRhCWFN+UXRIREXEqjT0Wn8z1XVxdSLiiD7v/t5yUdxcTlpyApbyKg7/sBBcDCVcolY+ISHNgsNfu5NAMXXbZZRw5coQVK1bg6dlwfomsrCyGDBlCq1atWLx4MevXr+c///kPKSkpeHh40LNnTx555JE6y2z/qIzNZuPNN9/kyy+/5MiRI7Rv356HH36Y999/n/Lycj755BMABg0aRGRkpOP3Y6//z3/+k507d2I0GomLi+Omm24iJSWFjz/+mJ9//pmQkJCTakutBQsW8NBDD3HnnXfy97///bTu6/XLXjmt+iJydpXnFpG2cA1F6dm4Gt0IbBtJ3OU9HEt/sjfsZfeXK2h77YWEd/ttFnHO5jQyf95CxZFi3H1MhCXGEz2gK67GZv1+SERE5Ixr7LH4j65fK3fLPjJ+2kJ5diGuRjcCEloSe0k3vEL9G/8miMgJfT7w0aZuQpM4nfjC+XrPTqRZB/nkN4sWLeLvf/87ixYtIiEh4bSupSCfiIiIiIiIyJlzvgasFOQ7s5p1Tj6pYbfb+fzzz0lMTDztAJ+IiIiIiIiIiJx7tOaqGbNYLDz44IMcOnSIlJQUpk2b1tRNEhERERERERGRRqAgXzPm5ubG/v37yczM5J577uHSSy9t6iaJiIiIiIiIiEgjUJCvmfvqq6+augkiIiIiIiIiItLIlJNPRERERERERETEySnIJyIiIiIiIiIi4uQU5BMREREREREREXFyCvKJiIiIiIiIiIg4OQX5REREREREREREnJyCfCIiIiIiIiIiIk5OQT4REREREREREREnpyCfiIiIiIiIiIiIk1OQT0RERERERERExMkpyCciIiIiIiIiIuLkFOQTERERERERERFxcgryiYiIiIiIiIiIODkF+URERERERERERJycgnwiIiIiIiIiIiJOTkE+ERERERERERERJ6cgn4iIiIiIiIiIiJNTkE9ERERERERERMTJuTV1A+TUTJs2jddff/2EZebNm0eHDh3qHPu///s/0tPT+eSTTxqzeSJyFlXml5C2eC1FaYcBCGofRdzQnhh9TCesV5SeTfq3GyjNysPNZCS4QwyxQ5Jx9/Y8bp2yw/lsfGMB0Rd3IXZwcs3nF5SydsqXJ/ysLn+9jID4lqfYMxERkealqcfsWiVZeaQvWU/xgRwMBgP+cS2IG9oTr1D/0++kiIg0OQX5nNSdd95JfHx8g+ciIiLq/P6///2PL774gl69ep2NponIWVBdXkXK9G+wW21E9e+M3W4nc/lWyg4XkHTXFbi4ujZYrzDtEFs/+A43k5Hoi7tiMBjIWrWdwrTDJN45DHeTR706NquNXV+uwG611Tnu7u1B29EX1S9vsZD69a+4e3vi3TLozHRYRETESZ0LYzZAeW4RKf/9BlejGzEDEwHIWrmdze8uotu9I/Hw8zqzHRcRkbNOQT4n1a9fP3r37n3CMlarlbfeeusPZ/6JiPPJWrGNqqJyut83Eq+wAAB8o0LZ+v63ZG/YS8ue7Rqsl/r1rxhcDCTeMQxTsB8AwZ1i2PCf+WT8mEL80J716mT+lEJ5dmG9465Gd8KTE+p/xoJfsVtttL+uf4MPICIiIueTc2HMBshatR2b2ULi7UPxiQgGICAhgk1vLiBr5bYGryciIs5FOfmaqaqqKkaNGsW0adMYOXIk4eHhTd0kETmDclPSCIhr4XhYAAhsHYEp1I/clH0N1qksKKU8u5Cw5ATHwwKAV2gAQR2iyd6wt16dssP5HFiWQsygxJNqV9nhfA6u3kF49zb4x7U4tU6JiIg0Q+fKmF2ZX4Kbt4cjwAfgGxWCm5cH5dkFf7J3IiJyLlGQr5mqqqqitLSUf//737z88su4uWnSpkhzUV1RRWV+KT6RwfXO+bQMpvTgkQbrmYvLAPAOD6x3zhTki6WsiqqiMscxm9XG7tkrCWwTQVhS/Rl7DUn/bgMu7m7EDkn+48IiIiLN3Lk0ZpuC/bCUV2EurfitfeVVWCrNuP9BbkAREXEOivw4qZKSEvLz8+sd9/X1xd3dHR8fH7799lsF90SaIXNROQDGBnLnGP1MWCuqsVSYcTMZ65xzca/5e2Ctqq5Xr7q8qubaJRV4+HsDkLl8CxVHiul44yDsNvsftqvscD75OzKJvKiT8vqIiIhwbo3ZUf07k78zg12zfiZ+eM3S3LTF63BxdSGyX8c/2UMRETmXKALkpO6+++4Gj3/88cf07t0bFxcXXFw0UVOkObKaa77wu7rX/xPucjSwb6221Htg8AoPwNXTnbxt+4ka0AWDweAoW7AnCwBbtQWAsuwCDny/mYQre+Ph701lQekftuvgr7vAxUBEnw5/WFZEROR8cC6N2Z4BPkRf3JXUr39hw3/mH22EgQ5jL66zhFdERJyXgnxO6rHHHqN9+/b1jjd0TESaGfvRN/SGU6vm4upK5AWdOPD9JnbN+pnoi7tgt9nZv3QjNnPNg4LB1QW7zcbu2SvwaxV23GTgv2ettpCzMZXgDtF4BvqcWsNERESaq3NozE7/bgMZy1LwjwunRa922G12Dv26k50zf6LD2IEEd4j+Mz0UEZFziIJ8TqpTp05/uLuuiDRPrh7uANiqrfXO2Sw1X/zdPN0brBszKBFLpZmDq7Y7kn0HdYgiqn9n0pdswM3kQebyrZQdKiDxjmFUl1UCYKmoWRpkNVuoLqvEzcvDMasAoCjtMDazhZDOrc5YP0VERJzduTJmWyuryVy+FZ+oYLrcehmGoyt+Qru2YtObC9gzdyWBbUbj4uZ6Zm+AiIicVQryiYg4GQ//mply5pKKeufMxRW4mtxxNTb8wGAwGEgY3ovoAV2oyCvGw98bz0Af0r/dAC4GPAK8Kdidhd1qY9ObC+rVz1q+jazl2+j5yLV1Zuzl78rE4OZCULuoM9RLERER53eujNnVZZXYLTZCu8Y7AnxQM2MwLDGBfd+sozy3CJ+WQWeo5yIi0hQU5BMRcTJuJiMeQT4N7shXeugIvpEhx62bszkNo6+JgPiWGI/ZSa8o/TA+kcG4ursRN6wnlgpznXrVpRXs+mI5YcnxhCW3xt3Hs8754gM5+EaG4OZZN6eQiIjI+excGbOtVUfLNLAph91uq/3hT/RQRETOJdqZQUTECYV0iqUw9SDluYWOYwV7D1KRW0xo17jj1stauY3Ur3/FZrU5jh3ZmUFxeg4RvWtyevpGhhDYOqLOf36x4QB4BvkS2DqiTgJxm9VKeXYh3hF6+y8iIvJ758KY7RUWgNHPxOENe7Ae3bADanLqZm9Mxc3bA6/wgDPbcREROes0k09ExAlFXdSZnI2pbJm+hMgLO2OzWGpy7UQGE5aUAEBFfgnF+3Pwiw3DFOQLQHT/LuyY8SPbP1lKcMdYKgtLyVqxjcC2EYQlxf+ptlQVlmG32vD014YbIiIiv3cujNkGFxcSRvRhx4xlbHprIS26t8Fut5O9fg8VuUW0G30RLq7Kxyci4uw0k09ExAkZfUx0vW0o3i2C2L90IwdX7SC4Qwydbh7iSJpdnJ7N7v8tpzg921EvpHMr2o3pj7mkgrRFa8hN2UfURZ3pMHZQnRw9p8JSXpPg2/U4icNFRETOZ+fKmB3SKZYuf7kMd5OR9O/Ws3/pBtxMRjrdPMQRbBQREedmsNuVfEFOzfXLXmnqJoiIiIiIiIg0G58PfLSpm9AkTie+cL7esxPRTD4REREREREREREnpyCfiIiIiIiIiIiIk1OQT0RERERERERExMkpyCciIiIiIiIiIuLkFOQTERERERERERFxcgryiYiIiIiIiIiIODkF+URERERERERERJycgnwiIiIiIiIiIiJOTkE+ERERERERERERJ6cgn4iIiIiIiIiIiJNTkE9ERERERERERMTJKcgnIiIiIiIiIiLi5NyaugHifN7a6tHUTRAREZGT8LfOVU3dBBERERE5SzSTT0RERERERERExMkpyCciIiIiIiIiIuLkFOQTERERERERERFxcgryiYiIiIiIiIiIODkF+URERERERERERJycgnwiIiIiIiIiIiJOTkE+ERERERERERERJ6cgn4iIiIiIiIiIiJNza+oGnE8mTpzI3Llz/7DcqFGjAJg7dy5PPfUU48aNq1cmMzOTwYMHc88993Dvvfee8PpGo5GQkBD69u3Lgw8+SEhIyGn2RETOBTnFJXz6yy9sP3gQgOSYGMb37YOfyXRa9XJLSrhvxucnvMb/jRhOx4gIACqrq/ly3XpWp6VRWllFVGAA1/boTnJMzOl2UUREpNmqzC8hbfFaitIOAxDUPoq4oT0x+px4HD/WnrmrqMgrouttQ+ud2/jm15RmHql3PLhzLB3HDvzzDRcRkXOWgnxn0ZgxY+jbt6/j9/Xr1zNr1izGjBlD9+7dHcdjYmKYNWsWAFOnTuWyyy47pcDc448/TmBgoOP30tJSVq9ezezZs9m6dStffvklRqPxDPRIRJpKSWUlzy1YgNVmY0RiIja7nQUpKWTk5/P8qKtwc3X90/V8PT25a+DF9eqarRY+WrkaX5MnMcHBANhsNl5Z/A17cnK4rFMnQn19+Wn3bqZ8s4THhw2lS1RUI94FERER51RdXkXK9G+wW21E9e+M3W4nc/lWyg4XkHTXFbgcZxw/1uF1uzm8djf+ceH1ztntdspzigjuGENwp9g65zwDvM9YP0RE5NyiIN9ZlJycTHJysuN3q9XKrFmzSEpKYuTIkXXK1gb5iouLeemll3j11VdP+nOGDBlC1O8erMeNG8ekSZOYOXMmS5cuZdiwYafRExFpaotStpBfWsbLo68h6mhQv3VYKC8uXMxPu3czuEOHP13P092di9q2qVf3o1Wrsdis3DNoID4eHgD8uGs3Ow4d5q6BFzvqDGzfjgc+n8WcDRsV5BMREWlA1optVBWV0/2+kXiFBQDgGxXK1ve/JXvDXlr2bHfcunabjYwfU9j//abjlqkqKMVmthDcMYbw5IQz3HoRETlXKSffOW7QoEEsWLCA1atXn/a1apcBb968+bSvJSJNa1VqKh0jWjoCdQBdoqJoGeDP6tS0M17vwJEjLNm6lQHt2tKhZUvH8Z927yYmOKhOUNDo5saNffrQLVbLdUVERBqSm5JGQFwLR4APILB1BKZQP3JT9h23nrXawobXv2b/0k2EJSVg9PdqsFxZTiEAphD/M9lsERE5xynId4578sknMZlMTJo0CbPZfFrXMh3Nt2W3289E00SkiZRWVZFTXEJcaP1l/K1CQtiXl3dG6wHMWrsOo5sb1/Xo4ThmsVpJzcmh09HcfFCTnw+gX+sERiQmnnSfREREzhfVFVVU5pfiExlc75xPy2BKD9bPo1fLbrFhrTLT/oYBtBt9EQYXQ4PlyrMLAPAKqwnyWc3VZ6DlIiJyrtNy3XNcZGQkd911F6+++irvvvsu99xzz5++1vLlywHo2LHjmWqeiDSBgrIyAIK86ufUCfTyorzKTFlVFd5Hl9Sebr0DR46wYf8BhnftQqD3b3VzSkqw2uwE+3gzb+MmFm/ZQnFFJYHeXozu0YOB7Y+/1EhEROR8ZS4qB8DoV38WntHPhLWiGkuFGTdT/Rzarp7u9HjwGlxcTzxXozynEFcPN9IWrSU3ZR82swXPIB9iL+lGWGL8memIiIiccxTkcwK33HIL8+fP591332XEiBHExsaesHxxcTH5+fmO30tLS1m+fDmvv/46CQkJDB8+vLGbLCKNqOLobDmjW/0/4cajibrNFku9YN2frffd9h24GAxc1rlTnePlR2cXf7d9B9UWC9d27463hwdLt2/n3Z9+BlCgT0RE5HdqZ9W5utcfj12OjtHWakuDQT6DwYDBteHZe8cqyy7EWmXBUmmm3eiLsFSaObhqO7tm/YzdZleePhGRZkpBPifg7u7OpEmTuPHGG3n22WeZPn36CcvX5t47lslkYvDgwTz55JO4u7s3VlNF5CyoXXJvMPzxl/zTrWe2WFi+Zw/dW8US6utb51y11QrAkdJSpoy+lhb+NUuCesfH8cj/vmTWmrVc3K7tKbdTRESkWatNndOIw2PLnm2x2+1E9PltI67QrnFseG0e+xavJSwxDoOLMjeJiDQ3+svuJHr06MGoUaNYsWIFCxcuPGHZKVOm8MEHH/Duu+8yfvx4XFxcGDp0KC+++CKBxyTbFxHnZDoaqDdbLPXOmY8G3kzG+m///0y9bQcPUlVtoU98/aU9nm411+vQsqUjwAfg6uLCBa0TKKqoIKug8GS6JCIict5w9agZP23V1nrnbEfHaDfP03sp37J3+zoBPqiZORiWnEB1aSXlRzfmEBGR5kUz+ZzII488wg8//MBLL73Ee++9d9xy3bp1IyoqCoABAwYQGxvL888/T2FhIW+++aZm1Yg4uWAfHwAKy8vrnSsoL8fLw4hnAzN2/0y9TQcycHd1JSkmul6dIO+aXEL+Rzf1OZafZ82xiurT2zBIRESkufHwrxmPzSUV9c6ZiytwNbnjamyclTfu3jXjs9Vc/4WfiIg4P83kcyJBQUE8/PDD5ObmMnXq1JOuN378eAYPHswPP/zARx991HgNFJGzwtvDg1Bf3wZ3w03PyyM+NPSM1duVnU1caAheDcwM9PfyIsjbi4yCgnrnckpKAAg5GlgUERGRGm4mIx5BPg3uolt66Ai+kSGndf2qojLWTZ3LgR821TtXkVcEgGegxmcRkeZIQT4nc+2119KtWzeWLVt2SvWeffZZ/P39mTp1KhkZGY3UOhE5W3rFtWJrVlad5bBbMjM5VFhEv4TjJ9M+lXoWq5WsggLiQoKPe71+rVuzP+8IKRmZjmNlVVX8vHs3rcPD6uzGKyIiIjVCOsVSmHqQ8txCx7GCvQepyC0mtGvcaV3bw98ba6WZQ2t3Y6n8bUZ9ZWEp2ev34J/QAqNv/Z19RUTE+SnI52QMBgOTJk3CrYHdMU8kJCSEhx9+mIqKCiZNmtQ4jRORs+bKpES8PTx4YeFCFqakMHfDRqYu/Z640BAubNMagOziYpbv3kN2cfEp1auVV1qKxWpzLPNtyFXJSbTw9+Nf333HrDVrWbxlK09/NZ8KczXj+/ZpnM6LiIg4uaiLOuNm8mDL9CVkrtjGgR83s2PmMnwigwlLqnnpVpFfQvbGVCryS075+glX9sFcVM7mdxaRtXI7B5ZtZtObCzC4uNB6hMZnEZHmSkE+J9SuXTtuuummU643evRounfvzooVK5g3b96Zb5iInDV+JhNPXzmCmKAg/rduPd9s3UqP2FgmDr0cd1dXAHYeOsyby35k56HDp1SvVmlVFQAm9/pLdWt5e3jwzMgr6ZsQz/c7djJr7Vr8PD35xxXDaBse3gg9FxERcX5GHxNdbxuKd4sg9i/dyMFVOwjuEEOnm4fg4lYzHhenZ7P7f8spTs8+5euHdIyl4/hBuBjd2LdkHZkrtuIXE0bincPwCgs4w70REZFzhcFur93DXeTkFEx7rambICIiIifhb52rmroJIiIichI+H/hoUzehSVy/7JU/Xfd8vWcnopl8IiIiIiIiIiIiTk5BPhERERERERERESenIJ+IiIiIiIiIiIiTU5BPRERERERERETEySnIJyIiIiIiIiIi4uQU5BMREREREREREXFyCvKJiIiIiIiIiIg4OQX5REREREREREREnJyCfCIiIiIiIiIiIk5OQT4REREREREREREnpyCfiIiIiIiIiIiIk1OQT0RERERERERExMm5NXUDxPn8rXNVUzdBRERETsJbWz2augkiIiJyMgY2dQOkOdBMPhERERERERERESenIJ+IiIiIiIiIiIiTU5BPRERERERERETEySnIJyIiIiIiIiIi4uQU5BMREREREREREXFyCvKJiIiIiIiIiIg4OQX5REREREREREREnJyCfCIiIiIiIiIiIk5OQT4REREREREREREn59bUDTjfTJw4kblz5/5huVGjRgHUK+vi4oLJZCIhIYGxY8c6yp3o2kajkZCQEPr27cuDDz5ISEjIafZCRM4FlfklpC1eS1HaYQCC2kcRN7QnRh/TCesVpWeT/u0GSrPycDMZCe4QQ+yQZNy9Pf9UuY1vfk1p5pF6nxPcOZaOYweeZi9FRESap5ziEj795Re2HzwIQHJMDOP79sHPdOJxfOehw8xau5bU3Fx8PDzoERvLtT164Gfy/FPlRESk+VCQ7ywbM2YMffv2dfy+fv16Zs2axZgxY+jevbvjeExMDLNmzQLg8ccfJzAwEAC73U5paSnz589n4sSJFBQU8Je//KXOZxxbHqC0tJTVq1cze/Zstm7dypdffonRaGzMbopII6suryJl+jfYrTai+nfGbreTuXwrZYcLSLrrClxcXRusV5h2iK0ffIebyUj0xV0xGAxkrdpOYdphEu8chrvJ45TK2e12ynOKCO4YQ3Cn2Dqf5Rng3bg3QURExEmVVFby3IIFWG02RiQmYrPbWZCSQkZ+Ps+Pugq344zj2w8e5KVFi/EyGrkqOQkXgwuLt2xh28GDPHPVSHw8PE6pnIiINC8K8p1lycnJJCcnO363Wq3MmjWLpKQkRo4cWadsbZBvyJAhREVF1Tl37bXXMmzYMN544w1uvPHGOkG7hsqPGzeOSZMmMXPmTJYuXcqwYcPOdNdE5CzKWrGNqqJyut83Eq+wAAB8o0LZ+v63ZG/YS8ue7Rqsl/r1rxhcDCTeMQxTsB8AwZ1i2PCf+WT8mEL80J6nVK6qoBSb2UJwxxjCkxMaudciIiLNw6KULeSXlvHy6GuIOvpyvnVYKC8uXMxPu3czuEOHBut9uHIVBoOBZ0ZeSQt/fwB6tmrFxNmzmbdhIzf27XNK5UREpHlRTj4n5enpyaBBgygtLWXPnj0nVad2ae/mzZsbs2kichbkpqQRENfCEeADCGwdgSnUj9yUfQ3WqSwopTy7kLDkBEfgDsArNICgDtFkb9h7SuUAynIKATCF+J/B3omIiDRvq1JT6RjR0hHgA+gSFUXLAH9Wp6Y1WCe3pISM/AL6t2njCNwBRAYG0C0mhp937zmlciIi0vwoyOfEDAYDUDMb8GSYjub3sNvtjdYmEWl81RVVVOaX4hMZXO+cT8tgSg/Wz48HYC4uA8A7PLDeOVOQL5ayKqqKyk66HEB5dgEAXmE1DxFWc/Wf6JGIiMj5o7SqipziEuJC6+fJbhUSwr68vAbr5ZfVjL3RQUH1zoX7+1FSWcmR0tKTLiciIs2Plus6KZvNxpo1azAajSQknNwSueXLlwPQsWPHxmyaiDQyc1E5AEY/r3rnjH4mrBXVWCrMuJnq5t50ca/5k2+tqh+Iqy6vqrl2ScVJl/Pw96Y8pxBXDzfSFq0lN2UfNrMFzyAfYi/pRlhi/Gn0UkREpHkqOBqEC/Kqn7s20MuL8iozZVVVeP8ub56HW834XFFdf3wuqawEoLC84qTLBfv4nEYvRETkXKSZfE6guLiY/Px88vPzyc3NZdOmTTz44IPs3LmTsWPH4u3tfdzy+fn5HDhwgM8++4zXX3+dhIQEhg8f3kQ9EZEzoXa2nKt7/fc0Lke/2FurLfXOeYUH4OrpTt62/XVm9FqrLRTsyQLAVm056XIAZdmFWKssWCrNtBt9EW2uuQBXD3d2zfqZ7I2pZ6jHIiIizUdt8M3oVn8cNx7dcMNsqT+ORwUGYjK6s2bfvjrjs9liISWzZnw2Wy0nXU5ERJofzeRzArW59I5lNBoZP348Dz300EmVN5lMDB48mCeffBJ3d/dGaaeInCW1X9gNp1bNxdWVyAs6ceD7Teya9TPRF3fBbrOzf+lGbOaaL/sGV5eTLgfQsmdb7HY7EX1+SxAe2jWODa/NY9/itYQlxmFw0fskERGRWrWBt9rUOyfLzdWV4V278OW6DUz7YRlXJdXsyvvF2nVUHQ0curq4nHQ5ERFpfhTkcwJTpkwhJKQmZ4eLiwt+fn4kJCTg8bsp/L8vX11dzfLly/nss88YOnQokyZNOm4dEXEerh41gXpbdf18nLajb/7dPBsO5scMSsRSaebgqu2ODTqCOkQR1b8z6Us24GbyOKVyLXu3r98+dzfCkhM48P1mynMK8W5RPyeQiIjI+cp09IV7Q7P1zEdzbZuMxnrnAK7u1o2yKjPfbN3K6r01M+a7xcYwIjGRz9esxefod/2TLSciIs2LgnxOoFu3bkRFRf2p8gMGDCA2Npbnn3+ewsJC3nzzzVN+aygi5xYP/5ocOuaSinrnzMUVuJrccTU2HOQzGAwkDO9F9IAuVOQV4+HvjWegD+nfbgAXAx4B3qdU7njcvWs2+rGatRxIRETkWLW58ArLy+udKygvx8vDiOdxVt4YDAZu6teXkUmJHCoqJtjHm1BfX2atWYuLwUDI0WufbDkREWleFOQ7D4wfP57Vq1fz/fff89FHHzFhwoSmbpKInAY3kxGPIJ8Gd9EtPXQE38j6u/XVytmchtHXREB8S4w+JsfxovTD+EQGO/L8nUy5qqIytnzwLWFd44gZlFTncyryigDwDNRDhIiIyLG8PTwI9fVtcBfd9Lw84kNDj1t31d5UArxMdIyIwN/rtw24dhw6RFxoiCPP38mWExGR5kXJGM4Tzz77LP7+/kydOpWMjIymbo6InKaQTrEUph6kPLfQcaxg70EqcosJ7Rp33HpZK7eR+vWv2Kw2x7EjOzMoTs8h4piltydTzsPfG2ulmUNrd2OpNDvKVRaWkr1+D/4JLTD61t8BWERE5HzXK64VW7OyyCoodBzbkpnJocIi+iUkHLfewpQUPlixCqvtt/F5w/4D7DqczaWdOp5yORERaV4U5DtPhISE8PDDD1NRUcGkSZOaujkicpqiLuqMm8mDLdOXkLliGwd+3MyOmcvwiQwmLKnm4aAiv4TsjalU5Jc46kX370J5diHbP1nKoTW72PftenbMWEZg2wjCkuJPuVzClX0wF5Wz+Z1FZK3czoFlm9n05gIMLi60HtHn7N0QERERJ3JlUiLeHh68sHAhC1NSmLthI1OXfk9caAgXtmkNQHZxMct37yG7uPiYeklkFhTwyjdLWLp9B5+vWcPU75bSNTqKC1u3PuVyIiLSvCjIdx4ZPXo03bt3Z8WKFcybN6+pmyMip8HoY6LrbUPxbhHE/qUbObhqB8EdYuh08xBc3FwBKE7PZvf/llOcnu2oF9K5Fe3G9MdcUkHaojXkpuwj6qLOdBg7qM4uuCddrmMsHccPwsXoxr4l68hcsRW/mDAS7xyGV1jAWbsfIiIizsTPZOLpK0cQExTE/9at55utW+kRG8vEoZfj7lozju88dJg3l/3IzkOHHfV6x8dx7+BBFJWX88nqX1i1N40rErvy4CWX4HLM+Hyy5UREpHkx2Gv3cBc5Sdcve6WpmyAiIiIn4a2t2kFTRETEGQTee39TN6FJnE584fOBj57BljQPeo0jIiIiIiIiIiLi5BTkExERERERERERcXIK8omIiIiIiIiIiDg5BflEREREREREREScnIJ8IiIiIiIiIiIiTk5BPhERERERERERESenIJ+IiIiIiIiIiIiTU5BPRERERERERETEySnIJyIiIiIiIiIi4uQU5BMREREREREREXFyCvKJiIiIiIiIiIg4OQX5REREREREREREnJxbUzdARERERBrH3zpXNXUTRERE5CR83tQNaCJvbfX485UHnrl2NBeaySciIiIiIiIiIuLkFOQTERERERERERFxcgryiYiIiIiIiIiIODkF+URERERERERERJycgnwiIiIiIiIiIiJOTkE+ERERERERERERJ6cgn4iIiIiIiIiIiJNTkE9ERERERERERMTJuTV1A85H06ZN4/XXXz9hmXnz5vHRRx8xd+5cnnrqKcaNG1evTGZmJoMHD+aee+7h3nvvBWDixInMnTu3Xlmj0UhISAh9+/blwQcfJCQk5Mx0RkSaTGV+CWmL11KUdhiAoPZRxA3tidHHdEbqnWy5jW9+TWnmkXqfE9w5lo5jB/7p/omIiDRnjT2OH2vP3FVU5BXR9bahZ64DIiJyzlGQrwndeeedxMfHN3guIiLC8fPUqVO57LLLTikw9/jjjxMYGOj4vbS0lNWrVzN79my2bt3Kl19+idFo/PONF5EmVV1eRcr0b7BbbUT174zdbidz+VbKDheQdNcVuLi6nla9ky1nt9spzykiuGMMwZ1i63yWZ4B3494EERERJ9XY4/ixDq/bzeG1u/GPC2/sbomISBNTkK8J9evXj969e/9hueLiYl566SVeffXVk772kCFDiIqKqnNs3LhxTJo0iZkzZ7J06VKGDRt2ym0WkXND1optVBWV0/2+kXiFBQDgGxXK1ve/JXvDXlr2bHda9U62XFVBKTazheCOMYQnJzRqn0VERJqLxh7HAew2Gxk/prD/+02N3BsRETlXKCefExg0aBALFixg9erVp32tUaNGAbB58+bTvpaINJ3clDQC4lo4vuADBLaOwBTqR27KvtOud7LlynIKATCF+J92n0RERM4XjT2OW6stbHj9a/Yv3URYUgJGf6/G6IaIiJxjFORzAk8++SQmk4lJkyZhNptP61omU02uDrvdfiaaJiJNoLqiisr8Unwig+ud82kZTOnB+vnxTqXeqVy/PLsAAK+wmiCf1Vx96h0SERE5jzT2OA5gt9iwVplpf8MA2o2+CIOL4cx1QEREzllartuESkpKyM/Pr3fc19cXd3d3x++RkZHcddddvPrqq7z77rvcc889f/ozly9fDkDHjh3/9DVEpGmZi8oBMPrVfytv9DNhrajGUmHGzWT8U/VO5frlOYW4eriRtmgtuSn7sJkteAb5EHtJN8ISG845KiIicj5r7HHczWTE1dOdHg9eg4ur5nSIiJxPFORrQnfffXeDxz/++ON6ufpuueUW5s+fz7vvvsuIESOIjY1tsG6t4uLiOgHE0tJSli9fzuuvv05CQgLDhw8//Q6ISJOonS3n6l7/T7iLW80xa7Wl3sPBydY7leuXZRdirbJgqTTTbvRFWCrNHFy1nV2zfsZusytPn4iIyO809jjuZjJiMBgwuGr2nojI+UZBvib02GOP0b59+3rHGzrm7u7OpEmTuPHGG3n22WeZPn36Ca9dm3vvWCaTicGDB/Pkk0/WmSkoIk6mdrn9qX53P9l6p3D9lj3bYrfbiejTwXEstGscG16bx77FawlLjMPgolkEIiIiDo09jouIyHlLQb4m1KlTp5PaXbdWjx49GDVqFHPmzGHhwoUkJiYet+yUKVMICQmhurqa5cuX89lnnzF06FAmTZqEh4fHmWi+iDQRV4+aIL2t2lrvnM1iAcDNs34g/2TrWU7h+i17138p4eruRlhyAge+30x5TiHeLYL+uFMiIiLnicYex0VE5PylIJ+TeeSRR/jhhx946aWXeO+9945brlu3bkRFRQEwYMAAYmNjef755yksLOTNN9/EYNArQBFn5eHvA4C5pKLeOXNxBa4md1yN9b/kn2y9P3v9Y7l712zyYzVb/qA3IiIi55fGHsdFROT8pTVUTiYoKIiHH36Y3Nxcpk6detL1xo8fz+DBg/nhhx/46KOPGq+BItLo3ExGPIJ8Gtx9r/TQEXwjQ06r3smWqyoqY93UuRz4YVO9chV5RQB4BvqcdL9ERETOB409jouIyPlLQT4ndO2119KtWzeWLVt2SvWeffZZ/P39mTp1KhkZGY3UOhE5G0I6xVKYepDy3ELHsYK9B6nILSa0a9xp1zuZch7+3lgrzRxauxtLpdlRrrKwlOz1e/BPaIHRt/4OgCIiIue7xh7HRUTk/KQgnxMyGAxMmjQJN7dTW20dEhLCww8/TEVFBZMmTWqcxonIWRF1UWfcTB5smb6EzBXbOPDjZnbMXIZPZDBhSTU72lbkl5C9MZWK/JJTqncq5RKu7IO5qJzN7ywia+V2DizbzKY3F2BwcaH1iD5n74aIiIg4kcYex0VE5PykIJ+TateuHTfddNMp1xs9ejTdu3dnxYoVzJs378w3TETOCqOPia63DcW7RRD7l27k4KodBHeIodPNQ3BxcwWgOD2b3f9bTnF69inVO5VyIR1j6Th+EC5GN/YtWUfmiq34xYSReOcwvMICztr9EBERcSaNPY6LiMj5yWC31+7FLnJyrl/2SlM3QURERERERKTZ+Hzgo03dhCZRMO21P1038N77z2BLmgfN5BMREREREREREXFyCvKJiIiIiIiIiIg4OQX5REREREREREREnJyCfCIiIiIiIiIiIk5OQT4REREREREREREnpyCfiIiIiIiIiIiIk1OQT0RERERERERExMkpyCciIiIiIiIiIuLkFOQTERERERERERFxcgryiYiIiIiIiIiIODkF+URERERERERERJycgnwiIiIiIiIiIiJOzq2pGyDO562tHk3dBBERETkJf+tc1dRNEBEREZGzRDP5REREREREREREnJyCfCIiIiIiIiIiIk5OQT4REREREREREREnpyCfiIiIiIiIiIiIk1OQT0RERERERERExMkpyCciIiIiIiIiIuLkFOQTERERERERERFxcgryiYiIiIiIiIiIODkF+URERERERERERJycW1M34Hw1bdo0Xn/99ROWmTdvHh999BFz586tc9zFxQWTyURCQgJjx45l1KhRjnMTJ06sVx7AaDQSEhJC3759efDBBwkJCTkzHRGRJpNTXMKnv/zC9oMHAUiOiWF83z74mUwnrLfz0GFmrV1Lam4uPh4e9IiN5doePfAzedYptzkjg7kbNpKWl4eLwUCbsDCu69mDNuHhx732gSNH+MfceYxMSuLaHt1Pv5MiIiLNVGV+CWmL11KUdhiAoPZRxA3tidHnxON4SVYe6UvWU3wgB4PBgH9cC+KG9sQr1L9OuY1vfk1p5pF69YM7x9Jx7MAz1xERETlnKMjXxO68807i4+MbPBcREeH4+fHHHycwMBAAu91OaWkp8+fPZ+LEiRQUFPCXv/ylTt1jywOUlpayevVqZs+ezdatW/nyyy8xGo2N0CMRORtKKit5bsECrDYbIxITsdntLEhJISM/n+dHXYWbq2uD9bYfPMhLixbjZTRyVXISLgYXFm/ZwraDB3nmqpH4eHgcLXeIlxd/Q1RgINf37InVbuPbbdt59usFPH3lCFqHhdW7ttVm480ff8JitTVq30VERJxddXkVKdO/wW61EdW/M3a7nczlWyk7XEDSXVfgcpxxvDy3iJT/foOr0Y2YgYkAZK3czuZ3F9Ht3pF4+HkBNc8L5TlFBHeMIbhTbJ1reAZ4N27nRESkySjI18T69etH7969/7DckCFDiIqKqnPs2muvZdiwYbzxxhvceOONdYJ2DZUfN24ckyZNYubMmSxdupRhw4admU6IyFm3KGUL+aVlvDz6GqKOBvRbh4Xy4sLF/LR7N4M7dGiw3ocrV2EwGHhm5JW08K9549+zVSsmzp7NvA0bubFvHwA+Xr2aIG9vnrvqKjzca4aK/m3a8NAX/2PW2nX8Y3j9vx/zNm4iq6CgMborIiLSrGSt2EZVUTnd7xuJV1gAAL5RoWx9/1uyN+ylZc92DddbtR2b2ULi7UPxiQgGICAhgk1vLiBr5Tbih/YEoKqgFJvZQnDHGMKTE85Kn0REpOkpJ58T8/T0ZNCgQZSWlrJnz56TqlO7tHfz5s2N2TQRaWSrUlPpGNHSEeAD6BIVRcsAf1anpjVYJ7ekhIz8Avq3aeMI8AFEBgbQLSaGn3fX/B0prariwJEj9ImPdwT4APy9vOjQsiW7D2fXu/aBI0eYt3Ejo7oln6kuioiINFu5KWkExLVwBPgAAltHYAr1Izdl33HrVeaX4Obt4QjwAfhGheDm5UF59m8v2spyCgEwhfj//hIiItKMKcjn5AwGAwBWq/WkypuO5uqy2+2N1iYRaVylVVXkFJcQF1o/t2arkBD25eU1WC+/rAyA6KCgeufC/f0oqazkSGkpXu7uvDrmOoZ37VKvXEllJa4uhjrHrDYbb//0M10iI7moTZs/0yUREZHzRnVFFZX5pfhEBtc759MymNKD9fPo1TIF+2Epr8JcWvHb9cqrsFSacT8ml19twM8rrCbIZzVXn6nmi4jIOUzLdZtYSUkJ+fn59Y77+vri7u5+wro2m401a9ZgNBpJSDi5afjLly8HoGPHjqfeWBE5JxQcDdYFedXPqRPo5UV5lZmyqiq8j+bXq+XhVvMnv6K6/hf9kspKAArLKwj28aGlf/03/weOHGF3djZdf5cKYP6mzRwuKuKhSy/BphcIIiIiJ2QuKgfAeDR/3rGMfiasFdVYKsy4mernz47q35n8nRnsmvUz8cNrluamLV6Hi6sLkf1++35fnlOIq4cbaYvWkpuyD5vZgmeQD7GXdCMsseF84CIi4vwU5Gtid999d4PHP/744zq5+oqLix3BQKvVSlZWFh9++CE7d+5kwoQJeHvXfdg/tjzUbLyxfPlyXn/9dRISEhg+fHgj9EZEzobaIJ3Rrf6fcOPRRN1mi6VekC8qMBCT0Z01+/YxMinRMRPYbLGQkplV87PV0uBnVlZX8+ayHwG4MinJcTwzv4A5GzYw4YJ+BPv4kFtSclp9ExERae5qZ9W5utcfx12Oju3WakuDQT7PAB+iL+5K6te/sOE/849WMtBh7MV1lvCWZRdirbJgqTTTbvRFWCrNHFy1nV2zfsZusytPn4hIM6UgXxN77LHHaN++fb3jvz9Wm0vvWEajkfHjx/PQQw/VO9dQeZPJxODBg3nyySf/cJagiJy7apfb1wbpTpabqyvDu3bhy3UbmPbDMq5KqtmV94u166g6Gjh0damfxaGq2sI/l3zL/iP5jExOpGNES6BmNvFbP/5IuxYtjrvRh4iIiPxO7az3UxvGAUj/bgMZy1LwjwunRa922G12Dv26k50zf6LD2IEEd4gGoGXPttjtdiL6/DY+h3aNY8Nr89i3eC1hiXEYGhjzRUTEuSnI18Q6dep0UrvrTpkyhZCQmvxbLi4u+Pn5kZCQgMfvZur8vnx1dTXLly/ns88+Y+jQoUyaNOm4dUTEOZiOBunNlvqz7sxH83OajPXf/gNc3a0bZVVmvtm6ldV7UwHoFhvDiMREPl+zFp/f/X0oq6rilW+WsPtwNhe3b8uYnj0d577enMKB/HwmXXklxRWVjvIAVRYLxRWV+Hp6nHIwUkREpDlz9agZx23V9XNq246O7W6e9V/IWyrMZC7fik9UMF1uvcwRpAvt2opNby5gz9yVBLYZjYubKy17159E4OruRlhyAge+30x5TiHeLern6BUREeemIJ+T6NatG1G/y4N1suUHDBhAbGwszz//PIWFhbz55pt66BZxYsE+PgAUlpfXO1dQXo6XhxHP48zWNRgM3NSvLyOTEjlUVEywjzehvr7MWrMWF4OBkKPXBiiuqODFRYvZn3eEwR3ac+tFF9b527E5IwOL1caTc+fV+5wFm1NYsDmF/4y9nlBf39PssYiISPPh4V8z1ppLKuqdMxdX4Gpyx9VYfxyvOFKM3WIjtGt8nVl4Lq6uhCUmsO+bdZTnFuHT8vjBO3fvms05rOaG03OIiIhzU5DvPDF+/HhWr17N999/z0cffcSECROaukki8id5e3gQ6uvb4C666Xl5xIeGHrfuqr2pBHiZ6BgRgb/Xbwm/dxw6RFxoiCPPX4XZ7AjwDe3SmZv69a13rRv79nHM3KtVVFHBGz/8yIVtWtO/bRv8TaZ69URERM5nbiYjHkE+De6iW3roCL6RIQ3Wc3E7Gtiz1d/kym631f5AVVEZWz74lrCuccQMSqpTriKvCADPQB9ERKT5USKG88izzz6Lv78/U6dOJSMjo6mbIyKnoVdcK7ZmZZFVUOg4tiUzk0OFRfQ7wW7bC/+/vTsPq7rM/z/+ZBdkFxABQUTBBRQCxcylQCtzIW1mdHKpqb5mlm3TOGMz1TRWNvZrdaYxSy11MseFchRzS0tL3BW13EVlEWUHWQ4c+P2BnKKDDioJB1+P6/K6PPfyOe/7/HFuPu9zf+47JYX5W7/DWFVlKttz+gxHzmVxZ/cfT+Wbt/VbTmfncPdlEnwAHb29iQgIqPMvzNcXgLaurkQEBNR7OIiIiMjNzqt7EPknMii5kG8qyzueQemFQrx7BNfbx8nHHXtXR87tOYax4seVeMaKSrL2nsC2tQNObd1xcGuNscxA5s6jVJYZTO3K8ovJ2n0MtxBf7F3MT/YVERHLp7uvm4iXlxfPPfccL7zwAn/961+ZO3duU4ckItdoRGRPthw7xqurVzO0RwSGSiOrUlII9vaiX+dOAGQVFnL0XBahvm1p6+p6qV8k76zfwMwv19KrQweyi4tISjlIj/YB9OtU0y8tL4+tx47j5GBPhzZt2HL0mNn79w/tfOMGKyIi0sIE9A/n/N4THJi7Fv9+4VRVVtbst+ffBp/Imh/rSnOLKDx9HtcgHxw9XbCytiZkeB9++HQT+/61Gt/ozlRXV5O1+xilFwoI+3V/rG1sAAgZ0YcfFm1i/wdJ+MaEYjRUkLHtB6ysrek0vE9TDl1ERH5BSvLdZH7961/z+eefs3XrVj7//HPuvffepg5JRK6Bq6MjL40YzoLvtrF0124cbG2JCQpibJ9Y7C79gX848xyzN3/NpNsHmpJ8sR2DmRIfx8p9+1i4LRk3R0eG9exBQmQk1pf29/khMxOAknIDszd/Xe/7K8knIiJy7eydHenxf0M4uXoHpzfsxcbeljZdAwm+OwZr25p5vDA1i6PLthL6q344etbsb+vVPYiIh+7izFf7SF2/GwBnvzZ0f2AQnqE/7t/t1S2IbuPjOLM5hVNrd2FtZ4N7cDs63HULTt7uN3y8IiJyY1hVV1ebb+ogcgV5s95t6hBERESkAR4LL//fjURERKTJfXbH1KYOoUlcT37BY8pTjRhJy6A9+URERERERERERCycknwiIiIiIiIiIiIWTkk+ERERERERERERC6ckn4iIiIiIiIiIiIVTkk9ERERERERERMTCKcknIiIiIiIiIiJi4ZTkExERERERERERsXBK8omIiIiIiIiIiFg4JflEREREREREREQsnJJ8IiIiIiIiIiIiFk5JPhEREREREREREQtn29QBiOV5LLy8qUMQERGRBvjXQYemDkFEREQa4o6mDkBaAq3kExERERERERERsXBK8omIiIiIiIiIiFg4JflEREREREREREQsnJJ8IiIiIiIiIiIiFk5JPhEREREREREREQunJJ+IiIiIiIiIiIiFU5JPRERERERERETEwinJJyIiIiIiIiIiYuGU5BMREREREREREbFwtlfT+E9/+hOJiYls3LiRgICA63rj8ePHk56ezldffXVd12ms6yUlJbF48WIOHz5MeXk5vr6+DBgwgIkTJ+Lj41OnbVVVFRkZGVf9GaxYsYJp06axYMECYmNjL9tu+/btTJgwgRkzZjBq1Ciz12lpacTHx/PEE08wZcoUU7+zZ8/Svn37qxu4iLQoZblFnFyzk4KT5wDw7BJA8JBe2Ds7XrFfQWoWqev2UJyeja2jPW26BhI0KAq71q3qtNv7/n8pTssx698mPIhu99/ReAMRERFpQc4XFrEoOZnvMzIAiAoMZPytfXB1vPL8fDjzHEt27uTEhQs4OzgQExTEr2JicHVsddk+Z3Jy+HPi5yRERvKrmOg6dfvPniVxz15OZmdjbWVFZx8fftMrhs5t217/IEVEpMldVZKvpXr77beZPXs2t99+O48//jitWrXi2LFjLFu2jNWrV7NkyRICAwMBKC4u5sEHH2TgwIF1EmyNKSQkhJkzZ3LLLbfUW+/p6cnMmTMJCwszlb3//vskJiayfv36XyQmEWn+KkrKSZn7JdXGKgIGhFNdXU3aloNcPJdH5ORhWNvY1Nsv/2QmB+evx9bRnva398DKyor0774n/+Q5ek66BztHBwCqq6spOV9Am26BtOkeVOcardxb/+LjExERsURFZWVMX7UKY1UVw3v2pKq6mlUpKZzNzeWVkfdie5n5+fuMDGYkrcHJ3p57oyKxtrJmzYEDHMrI4OV7E3B2cDDrY6yq4v3NX1NprKrnepn8fc2XBHh4MKZXL4zVVaw79D1/++8qXhoxnE4/W9ggIiKW56ZP8mVmZvLhhx8yfvx4/vKXv9SpGzZsGGPHjuWtt97inXfeASA/P58DBw4wcODAXywmLy8vEhISLlvv5ORkVr9t2zaMRuMvFpOINH/pWw9RXlBC9JMJOPm4A+AS4M3BeevI2nOcdr3C6u134r/bsbK2ouej9+DYxhWANt0D2fPeSs5uTqHjkF4AlOcVU2WopE23QNpGhdyQMYmIiFi6pJQD5BZf5O+/vo8ADw8AOvl489rqNXx99CjxXbvW2+/jb7/DysqKlxNG4OvmBkCvDh340/LlfL5nL+Nu7WPW5/O9+0jPy6v3egu2bcOzdWum33svDnY1t4EDOnfm9/9ZypKdu/jz0HsaY7giItKEbvo9+fbv34/RaOS2224zq4uKiqJHjx7s27fvxgcmInKVLqScxD3Y15TgA/Do5IejtysXUk7V26csr5iSrHx8okJMCT4AJ293PLu2J2vPcVPZxfP5ADh6uf0i8YuIiLRE3504QTe/dqYEH0BEQADt3N3YduJkvX0uFBVxNjePAZ07mxJ8AP4e7twSGMg3R4+Z9TmTk8Pne/cy8pYos7ri8nLO5OTQp2NHU4IPwM3Jia7t2nH0XNb1DFFERJqJXyTJt2bNGsaNG0d0dDTh4eHExcUxc+ZMDAaDWduvvvqKoUOHEhERwfDhw1m5cqVZm+PHj/P4448TExNDz549GTNmDFu2bGmUWFu3rnnELDExsd74FixYwObNm4GavfLi4+MB+Mc//kFYWBhpaWkAnD59mj/+8Y8MGDCA8PBwevfuzaRJkzh2zHwCPn/+PI8//jiRkZH07duX6dOnU1xcbKrfvn07YWFhrFixot6Y09LSCAsLY9asWQDExcWxY8cO0tPTTeXPPvss4eHhFBYW1ulbVFREREQEf//736/ykxKR5qyitJyy3GKc/duY1Tm3a0Nxhvk+egCGwosAtG7rYVbn6OlC5cVyygtq2pRk1awMcPKpudkwGioaJXYREZGWqri8nPOFRQR7e5nVdfDy4lR2dr39ci/WzL3tPT3N6tq6uVJUVkbOT+4fjFVVzP76GyL8/enfubNZHyc7O94c/RuG9ogwqysqK8PG2qrBYxIRkear0ZN8S5cu5emnn8bFxYXnnnuOqVOn4u/vz9y5c02PvNa6cOECTz75JLGxsUydOhUHBwf+8Ic/1EluHTlyhNGjR3P8+HEeffRRnnnmGSorK5k4cSJJSUnXHW9sbCwBAQGsXbuWO+64g5dffpkNGzZQUFAAgL29valtSEgI06ZNA2Dw4MHMnDkTT09PsrOz+c1vfsOuXbsYN24cL730EsOGDWPr1q089NBDVFTUvRF+8cUXycvL4/e//z3x8fH8+9//ZvLkyVRXV1/TGJ5//nk6duyIh4cHM2fOZPDgwQwbNoyKigo2bNhQp+26deswGAwMHz78mt5LRJonQ0EJAPauTmZ19q6OGEsrqCw1/yHD+tKv+cZy84RdRUl5zbWLSgEoOZ+PjYMtJ5N28u1fF/HdX//Nzv+3jPP761+FICIicrPLu5Ss83Qy37vWw8mJknIDF8vLzeocbGvm59IK8/m5qKwMgPySUlPZyn37OVdQwMP9+9Ubh7W1Ne3c3PBoXTeOMzk5HM3KIlQHb4iItAiNviffvHnziIqK4v3338fKquYXofvvv5/4+Hi2bNnC1KlTTW0NBgMvvvgiY8eOBWD06NEkJCTw5ptvMmLECGxtbXnllVfw9PQkMTERJ6eam9dx48bxwAMP8OqrrzJo0KA6ibirZW9vz0cffcSzzz7L999/z6effsqnn36KjY0NMTExTJw4kX79aiZLLy8vBg0axIwZMwgLCzPti7do0SIKCgr49NNPCQn5cZ+q1q1bM2fOHI4ePUr37t1N5WFhYSxYsADbS5N327ZtmTVrFps2bSIuLu6qxzBo0CA++eQTysvLTTGFhITg7u7OmjVrGDVqlKltUlISHTt2pFu3blf/YYlIs1W7qs7Gzvxr3frSd42xohJbx7rfl05t3bFpZUf2odMEDIwwfW8bKyrJO5YOQFVFJQAXs/IxlldSWWYg7Nf9qSwzkPHd9xxZ8g3VVdXap09ERORnapN09rbm87P9pQM3DJWVtP7ZIRoBHh442tux49QpEiJ7muZnQ2UlKWk187PBWDM/p+XmsWLPHh68rS9tnJ25UFTUoNjKKip4f9NmAEZERl712EREpPlp9JV8K1euZM6cOaaJCCAnJwdXV1dKSkrqtHV1dWX06NGm1/b29owePZrs7GwOHjxIXl4eO3bsYODAgZSVlZGbm0tubi6FhYUMHjyY7OxsDhw4cN0xBwcHs2LFChYsWMCECRMICQnBaDSyfft2Hn74YebMmXPF/hMnTuTbb7+tk+ArKyvD2rrm4/35uB988EFTgg9g/PjxAKbHghuDnZ0dd911F9u2bTOtSszNzSU5OZmhQ4c22vuISDNRuxL4Kp+2sbaxwf+27hSn53BkyTdcPJdLcUYOhxdvpspQc/NgZVPzXdauVyghI2Lpdv8deHUPwje6Mz0nDaWVpzOn1uykusr8JD8REZGbWe2TOj+9N2oIWxsbhvaI4NSFbGZ9tYkzOTmkZmfzzvoNlF9KHNpYW1NVVcW/Nm8mzNf3sgd41Ke8opL/t3Ydp3NyGRHZk25+7a4qPhERaZ4afSWfnZ0dO3fuZNWqVZw8eZIzZ86Qk1OzF5S/v3+dtu3bt6+T7KotA0hPTzclyRYuXMjChQvrfb/MzMxGidvKyorY2FhiY2MByMjIYPny5XzwwQe8++67JCQk0PYKy9grKip4++23OXToEGfOnCEtLc102m3Vz258O3bsWOe1m5sbbm5upKenN8pYao0YMYIlS5awYcMG7rvvPr788ksqKyv1qK5IC2TjYAdAVYX5KdtVlTXJOttWdvX2DYzraVqVV3tAh2fXAAIGhJO6dg+2jjWrC9rFdjF/XztbfKJCOLNxPyXn82nta753kIiIyM3K0a5m7jVcmot/ynDpXsHxMk8ljbrlFi6WG/jy4EG2HT8BwC1BgQzv2ZPPduzE2cGB/+5P4UxuLn8dMYLC0prHeGsf/y2vrKSwtAyXVg51kowXy8uZ+eVajp7L4vYuoYzu1avxBiwiIk2q0ZN806dPZ9GiRXTr1o3IyEgSEhKIiopi+vTpZgm5+n7Rqv21y9ra2pQkGzt2LIMGDar3/Tp16nRd8S5cuJDy8nIeeeSROuV+fn5MmTIFBwcH3nzzTfbt28ddd91V7zV27drFww8/jJOTE3379uW+++6jW7dunDlzhr/97W9m7S83bptLS/YbS3R0NH5+fqxZs4b77ruPNWvWEB4eTlBQUKO+j4g0PQc3Z+DH/fN+ylBYio2jHTb29Sf5rKysCBnam/YDIyjNLsTBrTWtPJxJXbcHrK1wcDffR+in7Fo7AmA0mN/AiIiI3MzaONfMz/k/e7IHIK+kBCcHe1rZXX5+ntD3VhIie5JZUEgb59Z4u7iwZMdOrK2s8HJ2Zv/Zs1Qaq/hL4udm/VftT2HV/hTeu38M3i4uABSWlvJa0hpOZ+cQ37ULD/fvd9WrDEVEpPlq1CRfeno6ixYtIiEhgZkzZ9apy67n5KjMzEyqq6vrTCypqakABAYG4u3tDYCNjQ19+/at0/f48eOkpaXh6Oh4XTFv2LCBlJQU7r//ftOefz8VGhoKQKtWrS57jffee49WrVqxevVqPH9yAtbs2bPrbZ+enk7nn5x6VfsIcmBg4LUOo15WVlbcc889fPLJJ2RkZLB79+46eyKKSMth62iPg6dzvafoFmfm4OJvfqpfrfP7T2Lv4oh7x3bYO//4nVqQeg5n/zbY2NlSXnCRA/PX4dMjmMC4yDr9S7NrtgRo5eHcOIMRERFpIVo7OODt4lLvKbqp2dl0vHS/U5/vjp/A3cmRbn5+uP3kPuWHzEyCvb2wt7Vl3K19zA7uKCgt5Z9fbaZf504MCO2M26X7pVKDwZTgGxIRzoS+tzbSKEVEpLlo1D35avd++/nquq+//prU1FQqf7ZMPScnh40bN5pel5SUsHjxYvz9/enatSs+Pj6Eh4eTmJhIVlaWqV1FRQXPP/88Tz75pNk1r9bw4cMpKSnh9ddfN3ustqqqiqVLl+Lq6kqvS8vYa1fb/bRtfn4+np6edRJ8RUVFJCYmAphWJNZaunRpnddz584FID4+/prHYX1pT46fGz58OBUVFbzxxhtUV1czZMiQa34PEWnevLoHkX8ig5IL+aayvOMZlF4oxLtH8GX7pX97iBP/3U6V8cfvkJzDZylMPY/fpUd0HdxaYywzkLnzKJVlP57SW5ZfTNbuY7iF+GLvYv5DiYiIyM2ud3AHDqank56Xbyo7kJZGZn4BfUMuf2jV6pQU5m/9DuNP/sbfc/oMR85lcWf3mkP0Onp7ExEQUOdfmK8vAG1dXYkICDAd+jFv67eczs7hbiX4RERarGtayff222/TurX541uDBw/Gz8+P2bNnU15ejq+vLykpKSQmJuLg4MDFS0fI13Jzc2Pq1Kk88MADuLu7s3z5cjIzM/nnP/9p2o/vL3/5Cw888AD33Xcfv/3tb3F3d2f16tXs37+f3//+93h4eFzLEExGjRrFli1bWLJkCXv37uXuu+/G19eXnJwc1qxZw5EjR3jzzTdNq/zc3d2xtrZm48aN+Pn5ceeddzJgwAA+/PBDnnrqKfr168eFCxdYtmyZafXiz8e9a9cuJk+ezMCBA9mzZw+ff/45Q4YM4dZbr32y9fT0ZOfOncybN4/o6Gh69uwJQJcuXejcuTNJSUnExsZecV9BEbFsAf3DOb/3BAfmrsW/XzhVlZWkbTmIs38bfCJrbiJKc4soPH0e1yAfHD1rHt1pPyCCHz7dzPcLN9CmWxBl+cWkbz2ER6gfPpE/7iEaMqIPPyzaxP4PkvCNCcVoqCBj2w9YWVvTaXifJhmziIhIczcisidbjh3j1dWrGdojAkOlkVUpKQR7e9Gvc83iiKzCQo6eyyLUty1tXV0v9YvknfUbmPnlWnp16EB2cRFJKQfp0T6Afle5ZVFaXh5bjx3HycGeDm3asOXoMbM2/UM719NTREQsyTUl+VatWlVveceOHZkzZw6vv/46CxYsoLq6msDAQJ5//nkqKyt59dVXOXjwIOHh4QCEhIQwbtw43n33XTIzMwkNDeWDDz6gf//+pmtGRUWxePFiZs2axfz586msrCQ4OJjXX3+dkSNHXkv4dVhbW/POO+/wxRdf8MUXX7Bo0SKKiopwc3MjOjqal19+mR49epjaOzo68swzzzB37lxeeeUVAgMDmTJlCkajkaSkJDZt2oSPjw99+/bloYceYujQoSQnJzN48GDTNd5++23mzp3Lq6++iru7O4899hiPP/74dY3jkUce4ciRI7z11luMGjXKlOSDmtV8b731FsOGDbuu9xCR5s3e2ZEe/zeEk6t3cHrDXmzsbWnTNZDgu2Owtq1ZhVyYmsXRZVsJ/VU/U5LPK7wDYaMHkPbNAU4m7cDO2ZGA/uG0H9gDK+sfF3x7dQui2/g4zmxO4dTaXVjb2eAe3I4Od92Ck7d7UwxZRESk2XN1dOSlEcNZ8N02lu7ajYOtLTFBQYztE4vdpaeEDmeeY/bmr5l0+0BTki+2YzBT4uNYuW8fC7cl4+boyLCePUiIjDQtiGioHy7tjV5SbmD25q/rbaMkn4iI5bOqrj3pQlqsOXPmMGvWLLZu3Yqbm9t1X2/Mppn/u5GIiIg0uX8ddGjqEERERKQBPKY81dQhNIm8We9ec9+b9TO7kkbdk0+aH4PBwIoVKxg0aFCjJPhERERERERERKT5adTTdZsDo9FIbm5ug9q6uLhc8dRcS5aVlcWMGTM4fvw4p0+f5o033mjqkERERERERERE5BfS4pJ8mZmZDT6ldsaMGYwaNeoXjqhpuLm5sWvXLiorK3nppZeIiIho6pBEREREREREROQX0uKSfN7e3syfP79BbTtd5alUlqRVq1Zs3bq1qcMQEREREREREZEboMUl+RwcHOjbt29ThyEiIiIiIiIiInLD6OANERERERERERERC6ckn4iIiIiIiIiIiIVTkk9ERERERERERMTCKcknIiIiIiIiIiJi4ZTkExERERERERERsXBK8omIiIiIiIiIiFg4JflEREREREREREQsnG1TByAiIiIiv4zHwsubOgQRERFpgM+aOgBpEbSST0RERERERERExMIpySciIiIiIiIiImLhlOQTERERERERERGxcEryiYiIiIiIiIiIWDgl+URERERERERERCycknwiIiIiIiIiIiIWTkk+ERERERERERERC6ckn4iIiIiIiIiIiIWzbeoAblZpaWnEx8czcuRIXn/9dcaPH096ejpfffWVqU1xcTEGgwFPT09TmcFgIC8vj7Zt2zZF2CLSjJTlFnFyzU4KTp4DwLNLAMFDemHv7Njo/S6ey2XvP1fR/vYIguKjrrudiIjIzaS5zNm5R9M5u3k/xek5YGWFa3tvggbfgmug93WOUEREmgOt5GsmJk2axPPPP296ffDgQYYMGcKxY8dMZenp6QwfPpxvv/22KUIUkWakoqSclLlfUnT2AgEDwvHv352cw2c5OH8dVUZjo/arMlZxZNlWqo1VV4ypoe1ERERuJs1lzs4/dY5Dn6ynstRAhztvISguktLcQlI+XEPR2QuNNl4REWk6WsnXTNx22211Xh89epTz58/XKUtLSyM1NfUGRiUizVX61kOUF5QQ/WQCTj7uALgEeHNw3jqy9hynXa+wRuuX9nUKJVn5/zOmhrYTERG5mTSXOfvk6h04uLUm8rFh2NjX3Ab63BLC7rcTSV2/h4iH7rrusYqISNPSSj4REQt0IeUk7sG+pj/6ATw6+eHo7cqFlFON1u/iuVzObEohMK7nFeNpaDsREZGbTXOYsytKy7mYmYtXRAdTgg/A3tkRt2BfCs+cN+sjIiKWR0m+ZmL8+PHExcUBMGvWLKZNmwbAhAkTiIuLY8WKFUyYMAGAadOmERb24y93BQUFTJ8+nf79+xMeHs6QIUP45JNPqK6uNrWZNWsWERERrF+/nttuu42oqCiWLl16A0coIo2lorScstxinP3bmNU5t2tDcUZOo/SrMlZxdPm3eHT2wycy5LLxNLSdiIjIzaa5zNm2DnbEPDMK/9u6m79XSRlW1rotFBFpCfS4bjM0ePBgLly4wJIlS5g0aRIRERGEhYUxadIkZs+ezejRo4mOjgagpKSEcePGkZmZyf3334+vry/Jycm89tprpKam8tJLL5muW1lZyYsvvsjvfvc7DAaD6RoiYlkMBSUA2Ls6mdXZuzpiLK2gstSAraP9dfVL23KA0pxCuo2Lo7qq2qxPrYa2ExERudk0lznbytoaRy9Xs/KL53IpPH0ej87+Vz84ERFpdpTka4a6dOlCZGQkS5YsoW/fvsTGxgLQt29fZs+eTWRkJAkJCQDMnTuXU6dOsXz5ctPqvvvvv5+33nqLDz74gNGjR9OlSxcAqqqq+N3vfsfEiRObZmAi0iiMhgoAbOzMv8KtbWvKjBWVZjcMV9PvYlYeZzbuJ2RELA5urSnLK643loa2ExERuRk1pzm7vtiOLN0CQMDAiAaOSEREmjOty7Zw69atIzQ0FG9vb3Jzc03/Bg0aBMCmTZvqtO/Vq1dThCkijan2UXyrX6ZfdVUVR5dvxbWDz2U3A7+adiIiIjetZjJn/5zRUMmhhRu5mJlHwMAI3IN9rzJAERFpjrSSz8KdOXOGsrIybr311nrrMzMz67xu08Z8Xw8RsSw2DnYAVFUYzeqqKisBsG1ld8390rYc5GJmHj0fvYeKi2UAVJaWAzU3BRUXy7B1cmhwOyurq72zERERaRmay5z907m4stTAoQUbKDx9nrYxnekw+JbrGaKIiDQjSvLdIPn5+Tg7O2NrW/cjt7Gxua7rGo1GoqOjeeKJJ+qt9/HxqfPaWpvqilg8BzdnAAxFpWZ1hsJSbBztsLE3v2FoaL+8o+lUG6vY9/4qs3bpWw6RvuUQvf7wqwa3a+XhfNVjFBERaQmay5xdOxcbiks5+PF6Lmbk4ts7lE4Jt+rHOBGRFkRJvhtg4cKFvPLKKyQlJRESUnPaVVlZzS9trq7mG+BeDX9/fy5evEjfvn3rlBcUFLBt2zaCgoKu6/oi0vzYOtrj4Olc74l8xZk5uPh7XVe/4Ht6UVlqqFNfUVzKkf9swSeqIz5RnbBzbtXgdiIiIjer5jJnA1SWV5gSfH63dSNkaO/rHZ6IiDQzWtZ1A/j715xW9f3335vKav8fGhpab5/aFXdVVVWmstpVfz8ti4uL4/Dhw3z99dd1+v/rX//iqaee4tixY40wAhFpbry6B5F/IoOSC/mmsrzjGZReKMS7R/B19XPx98Kjk1+df65BbQFo5emCRyc/bOxsG9xORETkZtYc5myAEyu31ST4+nZVgk9EpIXS3dcN0K9fPwICAnjllVfIysqiqqqKuXPn4u3tzeDBg+vt4+npCcDixYvJzs5m+PDheHh4ALBy5Uqqq6sZOXIkjz76KOvWrePxxx9nzJgxdO7cmd27d/PFF18wYMAABgwYcMPGKSI3TkD/cM7vPcGBuWvx7xdOVWUlaVsO4uzfBp/ImhXDpblFFJ4+j2uQD46eLg3uJyIiIo2nOczZJefzOb/3JDaOdjj7tSFr7wmzNm2j9HeAiIilU5LvBrC3t+fjjz/mtdde46OPPqKiooJevXoxbdo0nJ3r36vq1ltvZciQIWzatInk5GTuvPNOQkJCGD9+PCtWrODAgQPExsYSGBjIkiVLeO+99/jyyy9ZsmQJfn5+TJ48mYkTJ2oPPpEWyt7ZkR7/N4STq3dwesNebOxtadM1kOC7Y7C2rVn1W5iaxdFlWwn9VT/TDUND+omIiEjjaQ5zdsGpcwAYSys4umxrvW2U5BMRsXxW1dW157OLNMyYTTObOgQRERERERGRFuOzO6Y2dQhNIm/Wu9fc12PKU40YScugZV4iIiIiIiIiIiIWTkk+ERERERERERERC6ckn4iIiIiIiIiIiIVTkk9ERERERERERMTCKcknIiIiIiIiIiJi4ZTkExERERERERGRFu/pp58mLCyMvLw8s7o//vGPhIWF8dhjj5nVXbx4kW7duvHss8/eiDABOHv27FX3UZJPRERERERERERavF69egGQkpJiVrd9+3bs7OzYuXMnRqOxTl1KSgpGo5HY2NgbEuf777/PQw89dNX9lOQTEREREREREZEW73JJvtTUVDIzMxk2bBhFRUUcOnSoTv2ePXsA6N279w2Jc9u2bWaJxoZQkk9ERERERERERFq8zp074+7uzv79++uUJycnY21tzaRJk7CysmLbtm116vfu3YuPjw/BwcE3MtyrpiSfiIiIiIiIiIi0eFZWVsTExHDgwIE65cnJyXTp0oUOHToQFhZGcnKyqa66upqUlBTTKj6j0chHH33EXXfdRXh4OP369eOll14iNzfX1Gf79u2EhYWRmJjI8OHDiYiIYNq0aQDs2LGDsWPHEhMTQ1RUFGPGjOGrr74y9Y2Li2PHjh2kp6cTFhbGrFmzGjw+JflEREREREREROSm0KtXL/Lz80lNTQVqkng7duww7bfXp08f9uzZg8FgAODEiRMUFBTQp08fAJ555hneeOMNQkNDmTZtGnfffTfLli3jt7/9LYWFhXXe629/+xu9e/fmD3/4A/Hx8Zw8eZJHH32U6upqnnnmGZ577jlKS0uZPHkyu3btAuD555+nY8eOeHh4MHPmTAYPHtzgsdle74cjIiIiIiIiIiJyI8XHx1+xfuPGjfWW167I279/Px06dODo0aPk5OSYknixsbF8/PHH7Nmzhz59+rB3715Tv2+++Ya1a9cyYcIE/vznP5uuGR0dzdNPP83s2bOZOnVqnfIXXnjB9PrDDz+kpKSEf/zjH3h6egJwzz33MGbMGH744QdiYmIYNGgQn3zyCeXl5SQkJFzVZ6Ikn1y1z+6Y+r8biYiIiIiIiIhcgceUp6698+crr6lbly5dcHFxISUlhYSEBJKTk7GxsSEmJgaoWelnY2PDjh07TKv6fH19CQoKYv78+QA8+uijda45ZMgQ3n33XTZu3FgnyVd70EctX19fAKZPn87DDz9MeHg4Hh4erF279prG8nNK8omIiIiIiIiIiEW53Eq9/8Xa2pro6GjT4RvJycmEh4fj7OwMgIuLC127dmX37t0A7Nu3z/Qob1paGq6urnh5eZldNyQkhG+++aZOWe1qvVp3330369evJykpiaSkJLy9vRk4cCAjR440JRmvh/bkExERERERERGRm0ZMTAyHDx+mvLycXbt2mR7VrRUbG0tKSgq5ubmcOnXK9IhvdXX1Za9ZVVWFnZ1dnTIbG5s6r+3s7HjvvfdYuXIlU6ZMwc/PjxUrVjB27FjmzJlz3eNSkk9ERERERERERG4avXv3pqKigjVr1lBYWGhaqVerT58+lJSUsHr1aqqrq031/v7+FBYWkp2dbXbNU6dO0a5duyu+b0ZGBrt27SIsLIwnnniC//znP2zatIkOHTowd+7c6x6XknwiIiIiIiIiInLT6N69O05OTnz22WfY2dkRHR1dpz46OhpbW1sSExPx9/enffv2AMTFxQHwwQcf1Gm/YcMGTp06xe23337F9509ezYPPvggWVlZpjJfX198fHywtv4xRWdtbU1VVdVVj0t78omIiIiIiIiIyE3D1taWqKgovv32W2JiYmjVqlWd+tatWxMREcHevXsZOXKkqXzgwIHEx8ezYMECsrKyiI2NJTU1lcWLF9O+fXuzAzl+buzYsXzxxReMHTuW0aNH4+bmRnJyMjt27ODJJ580tfP09GTnzp3MmzeP6Ohoevbs2aBxaSWfiIiIiIiIiIjcVGpPvv35fny1ah/Rrd2PD8DKyop3332Xp556isOHDzNjxgzWrVvH6NGjWbZsGa6urld8z7CwMObPn09QUBDz5s1j+vTpHDt2jBdeeIHJkyeb2j3yyCN06NCBt956i+XLlzd4TFbVV9o1UERERERERERERJo9reQTERERERERERGxcEryiYiIiIiIiIiIWDgl+URERERERERERCycknwiIiIiIiIiIiIWTkk+ERERERERERERC6ckn4iIiIiIiIiIiIVTkk9ERERERERERMTCKcknIiIiIiIiIiJi4ZTkExERERERERERsXBK8omIiIiIiIiIiFg4JflEREREREREREQsnJJ8IiIiIiIiIiIiFk5JPhEREREREREREQv3/wERFBSw1zfE+QAAAABJRU5ErkJggg==" }, "metadata": {}, "output_type": "display_data" @@ -827,27 +827,27 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-06-01T21:36:58.531441Z", - "start_time": "2024-06-01T21:36:58.348051Z" + "end_time": "2024-09-02T20:28:58.968206Z", + "start_time": "2024-09-02T20:28:58.810934Z" } }, "id": "eeb7c1e88b43163b" }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 52, "id": "df024aed", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:36:58.785143Z", - "start_time": "2024-06-01T21:36:58.532044Z" + "end_time": "2024-09-02T20:28:59.303614Z", + "start_time": "2024-09-02T20:28:58.968553Z" } }, "outputs": [ { "data": { "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAABScAAALgCAYAAABmhsJSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1xW5f/H8RfrZoMgILIE3Aoq7m2uNLXMyq1pWVpq2jKtX8PS1Fxlamo5KnOWM3euwjRXmiMnLkBQUUARkHX//iDOVwQNJ1nv5+PRozjnus59nZu7+3A+53N9Lguz2WxGRERERERERERE5AGzLOwBiIiIiIiIiIiIyH+TgpMiIiIiIiIiIiJSKBScFBERERERERERkUKh4KSIiIiIiIiIiIgUCgUnRUREREREREREpFAoOCkiIiIiIiIiIiKFQsFJERERERERERERKRQKToqIiIiIiIiIiEihUHBSRERERERERERECoWCkyIiIiIiIiIiIlIoFJwUERERERERERGRQqHgpIiIiIiIiIhgNptvu09WVhYAmZmZd9RfRMTCrG8PERERERERkf+MrKwsDh8+zO7du7GwsMDW1pYxY8Ywf/58goODb9rHwsICCwuLWx47LS0Nk8l0P4YtIv9SypwUERERERER+Zc6d+4cK1asIC0tzdi2bt06unTpwowZMzh58iRlypRh4MCBuLu75+p7fS6TpaVlnsDktWvXWLduHREREUyYMIHq1aszaNAgzp8/f39PSkT+VZQ5KSIiIiIiIvIvNW3aNGbOnMkPP/yAv78/AC1atODq1at8+umnlC5dGicnJywsLLCysjL6ZWVlYWmZnc90/vx5IiIiAKhRowbW1tYAHD16lC5duuDo6Ejp0qUJCAigevXqNGzYECcnpwd8piLysLIu7AGIiIiIiIiIyP3x9NNP88gjj+Dl5UVmZiZWVlbY2dnh6+tLjRo1crXNmZJtNpuxtLTk5MmTjBo1iq1bt2JjY4O9vT3lypXjpZdeokaNGjg7O9OgQQNWr15N165d6d27N2az+W+nfouIXE/BSREREREREZF/AbPZbAQWc3h4eODh4ZGrXWBgIPv37+fTTz+lZMmSVKtWjREjRpCQkMC0adNwcnLi3LlzDB48mLi4OD744AP8/PzYv38/CxcuZNiwYUybNo2iRYvi5uaGvb09YWFhAApMishtU81JERERERERkX8BCwuLXIFJyF5Fe/fu3axfv564uDheffVV1q5dy4ULF5g2bRq7du0CwNHRkdjYWK5evQrAr7/+ypEjRxg3bhzPPPMMtWvX5sUXX2TixIkcPXqURYsWYTKZ8Pf3Jy0tTUFJEbljypwUEREReUByMloKstqpiIgIZF87srKyMJvNWFlZ5bp+XD+F+urVqxw7dozz588TFBRE6dKlAUhISOCTTz7hzJkz/PTTT7Rs2RIPDw++++47Bg4cyLPPPouNjQ2lSpVizZo1JCQk4OHhwc6dO3FxcSEsLIzIyEiOHDnC/v37OXbsGABbtmzhpZdeIiAggKysLC2CIyJ3TMFJERERkb+RlJTEhQsXCAoKyrVAwN/JzMzMlcWioKSIyH/Pzz//zNy5c+nZsyd16tS56XXkZrUab1yo5sb2aWlpjB49mpUrV5KcnIyzszN2dna0b9+ePn364OzsTFhYGBEREaSnp9OiRQvKlSvHd999B2RnTAL4+fmRlpZGZGQkZcuWJS4ujgsXLhAWFkZKSgoODg4UL16cgIAA3nrrLcqUKYO1tTVeXl44OTlx4sSJ27pGiojkUHBSRERE5BYuXrxIly5d8PT05Lvvvstz05WT0QLkuXm88eeIiAhOnjyJo6MjderUub8DFxGR++b6QOL58+c5ePAgp06dws3Njfr16+Ph4WG0iYuL4+eff6Z27dq5vvtzrh+Wlpa5Hl7dGKQ8duwYP//8M7t27SIzM5NatWrRoUMHXFxcMJvNzJ07l0WLFtG7d2+qVq1KUlISU6dOZfbs2XTo0AE3NzeKFy/O1atXiYqKwt3dnWLFilGkSBFOnjzJlStXcHZ2xsvLC3t7eyIiImjWrBlFixbFZDLRo0cPmjdvjoODA66urri7uxMZGcmFCxfIzMykaNGieHl5cfz4cTIyMjCZTA/2lyEiDz0FJ0VERERuoWjRonz88cfY29vnu/9mGS0A4eHhbN26lZYtWzJv3jxWrVpFZmYmTk5O9OzZk65du+Li4nI/hy8iIveBhYUFV65c4fPPP2f16tWkp6djb29PcnIyrq6u9OjRg27dugFQsWJF7O3tiYyMzHOMnOtHUlIS586dw97eHh8fH6NNdHQ0Q4YMITk5mRIlSpCVlcX48ePZunUrEydOxNHRkcWLF1OrVi169uxpXKuqVatGdHS0kRXp6+uLpaUlx44do1KlStjb21OiRAnOnDnD5cuXcXZ2xs3NDS8vL2PadqVKlVi6dCkeHh5UrFgx19i/+eYbtm/fzsSJE/H09CQoKIgzZ86QnJys4KSI3DYFJ0VERET+RvXq1fPdnpGRwZEjR9i5cyfnz5+nSpUq1KtXz7gZ/OOPP1i8eDHLli2jVKlSTJw4EQsLC2bMmMHkyZMJCAigdevWmgYnIvIPlpmZmech1Pnz5+nfvz8nT57kueeeo3bt2jg4OBAZGcm0adMYM2YMqampvPDCC/j7++Po6MiZM2cAjO/706dP8+2337JhwwYuXLiAjY0NFSpUoF+/ftSqVQtra2s++eQT4uPj+fjjjylXrhwODg5Mnz6dPXv2EBcXh6OjI8WKFWPLli2MHz+eBg0aYDabcXZ2pmrVqsZ4PT09cXNz49ChQ8a20qVLEx4ezqVLl/D19cXFxQU/Pz9OnjxJZmYmtWvXpnz58syZM4fQ0FDKly9PSkoK69ev57vvvqNx48YEBgaSnJyMp6cn69ev5+LFixQpUuT+/1JE5F9FwUkRERH5z8tZqOZWAcITJ07g4OCAt7e3MRVv6tSpfPvttzg5OWFhYcG3335LjRo1ePXVV6lcuTKhoaFAdvbliBEj8PPzA8Dd3Z0uXbrw66+/0rp16wdyjiIicvt+++03vv32W7744otcD5K++OILDh48yHfffUdYWJjRvly5clSrVo3HH3+c5cuX06VLFyOAGBsbS3x8PG5ubiQmJjJ69GhOnTpF27ZtCQoK4ujRo3z33XeMGTOGTz/9lKCgIGJiYvDy8qJYsWK4ubkB0K9fv1xjfP311xk9ejSzZ89m9uzZQHYdSQ8PD5566in69OlD0aJFKVasGEePHjX6lS9fnqVLl3LhwgUAHBwcCAwMZM2aNZw/f57g4GDefPNN+vbtS8+ePWnQoAFZWVkcPHiQWrVq8d577xn9WrZsSWBgIMWKFbt/vwwR+ddScFJERET+9a6vC5lT2+t619f6OnfuHElJSfj5+WFrawvA+vXr6d+/Pz179mTIkCFYWFgwf/58Jk2aRKdOnejcuTN2dnb8+uuvfPTRRyQnJ7NgwQKCg4OxsrLCxsbGWGjAZDLh7e2Nv78/x48fN15fRET+WcxmM7/++isbN27k6tWrRlb8uXPn+PHHH3niiScICQkx2lpYWJCRkYG7uztz5swhMDDQOFZwcDBbtmwhKioKNzc35syZw4YNGxg6dCidOnUysjMdHByYMmUKx44dIygoiObNmzN+/HieffZZypUrh5WVFcHBwVSrVo3Q0FCKFStG+fLlmTRpEpcuXWL//v1ERUURHx9PeHg4M2fOpHLlylStWhU/Pz/27t1rXIvKlClDRkYG586dA8De3p6goCAuXrzI2bNnKV68OPXq1WPx4sX88MMP7NmzBzs7Ozp37syjjz6aa/p5rVq1qFWr1oP75YjIv4qCkyIiIvKvd6u6kACRkZF89tln/Prrr8b0tIYNG9K9e3eCg4Px8/Mzsl4gezrft99+S4UKFRg6dKhxnBIlSpCUlMSECRNYt24djRs3xsfHh8TERACjDpeHhwfe3t4cPXqUa9euGUFQERF58PJb2CwnS9LDwwOA+Ph4Izi5ZcsWrl69yiOPPIKNjU2ujEpr6+xb7JzAZHp6OjY2NpQuXZq1a9dy6tQpQkND8fb2pk+fPrRr1w7AqAd5+PBhLC0tOXHiBACdOnXCzc2NtWvXEh8fT2xsLD///DOzZs2iSpUqzJw5Ezs7O1JSUnB1daVVq1bGeTVs2JDnnnuO8+fPYzKZCAoKYvPmzVy8eNFYdRvg6NGjZGRkYG1tTbFixXB1dSU1NdV4b0qWLMlbb72lB2kict8oOCkiIiIPrVutlH29yMhIdu/ezZEjR3BxcaFx48aUK1cOyF6EYMyYMezbt48+ffrg6enJzp07mTdvHlZWVrz77rv4+Pjg5uZm3CxaWVlx+vRpevToYYwDsoOgzZo1Y+LEiezdu5dHH30UPz8/zpw5Q1xcHB4eHkZ2jK+vL7t37+bMmTOULl36fr5NIiJyC/k9wLK0tCQ2Npbdu3cD8Pjjj+Pl5cX06dNJTk4GsmtR/p2coGXZsmXJysoyFsV56qmnADh48CCLFy9m165dREVF4enpiaWlJadPnwbA2dmZ9u3b0759e6Kjo8nMzMRkMjFr1iy+/fZbtmzZQrVq1ejQoQPNmzfnlVdeISsriwsXLrBkyRIAI7vTw8ODtLQ0jh49SvHixXF3d6devXoEBgYa19ImTZqwffv2XO/N9f8WEbkfFJwUERGRf7ybBSFvvKHMmaqWM70OsjNc3n//fcxmMy4uLpw/f565c+fy4Ycf0qRJE86dO8dPP/3EiBEjePLJJ7GwsKBNmzbUrFkTT09PAFxcXPD29uaPP/7gypUrWFhYYG9vj6WlpfGaOTw8PPDw8DCmyQUFBbF+/XpOnjyZKzgZFBRERkYGx48fp3Tp0rnGLCIidy8rK8v4br1ZTeHMzExjYbPTp08TEBBAkyZNCAgI4MCBA5w8eRJra2v8/f156623KF68OHZ2dgBcvXr1b8eQc40KDg7GZDIZi+IA/Pjjj0ycOBEHBwdq167NI488Qp06dahbty5nz54FIDU1lVWrVlG+fHkqVKhg9K1RowbffPMNJpOJokWLEhISwjfffMO+ffvw8fEhOjqaqKgoPvjgAyNDMiwsjAEDBhAcHAyAjY0NM2bMyHe8IiIPkoKTIiIi8o+S36qoN5uWHRUVxbx58/jll19ITk6mcuXKtG/fnjp16gBw5coVBg8eTIUKFejfvz/u7u7Ex8fz6quvsmPHDho1amQEM1evXk2xYsUoU6YMV65c4ZFHHjGm8AEEBASwZcsWTp8+TZkyZfDy8uL06dMkJSXh7u5uTIlLTU3F0dGR9PR0APz9/YHsaXM1atQwjhccHIydnR1HjhzhscceU3BSROQOmc1mMjMzsbS0zBWEvP6/zWYzGRkZ2NjY5Pq+nTNnDlOmTMHV1RU7OzuWLVvG0qVL+fjjj2nWrBmenp4MGTIEa2tr6tevD2AsbpYTQLzZd3dmZiZxcXG4ubnh7++Pm5sbUVFRZGZmkpWVxcSJE3FycmLMmDGULFnS6GcymYiKiiIuLg5ra2tGjRqFh4cHffr0ITAwkLNnzzJp0iQCAwMpVaoUAKNGjaJZs2asW7eOc+fOUaZMGV566SXq1q1rTDUPCQkxsihFRP5JFJwUERGRQnP9IjU5bgxCnjhxAicnJ1avXs3q1avx9vbms88+Iz4+nhEjRnD06FFq1aqFi4sLP/30E6tWrWLcuHG0atWKU6dOkZCQQLt27ahcuTKQHSz88ccfjcCjv78/L774Il999RW//PILAK6urvj7+1O5cmU6duxImTJlCAgIwGw2c/ToUUJCQggNDSU8PJwjR45Qp04d4+YvKiqK48ePU7t2bSA7qOni4sKxY8dynZe3tzcpKSkcPHjwPryzIiL/bNHR0Rw8eJC9e/dy6NAh9uzZw+TJk6lXr16uGo4FYWFhYXwHX2/fvn3Mnj2b3bt3Y21tTd26dXn66acJDQ0F4I8//mDkyJF07dqVzp07Y29vz59//smwYcPYu3cvFStWpEKFCgQGBrJjxw7juOXLlwfg8OHDxuvnZ/r06axatYrRo0dTtmxZfHx8iImJIS4ujoyMDC5dukTr1q2NwGRGRgYzZ87kwoULODs7c+LECWrWrMm7777L9OnTGTt2LBkZGSQnJxMaGso777yDn58fmZmZODg48MQTT/DEE08U+H0TEfmnUHBSRERECiwqKoo///yTEydOkJGRQY0aNW65OqfZbDYyVG68eTObzbluPhMSEihSpAhffvkl3t7ePP744yQkJNCqVSsaN25MVFQUQUFBlClThqysLGbPns22bdv46KOPaNKkCSaTicGDB/PCCy8wbtw4ypUrR2BgIMHBwbz99tusX7+egIAArKysqFixIpUrV8bNzQ1LS0tefvllHn30UU6dOsXhw4eJjIwkKiqKOXPmcPnyZSOrxdbWlj///JOnnnqKNm3asHLlSj777DNcXV1xcXEhMjKS0aNH4+7ubtwg+vj4cO3aNf744w/gf4sllCxZkkWLFhkZOLdzIy4i8rA5ePAgCxYsYMeOHURHR5Oeno6joyM+Pj4EBwfTuXNnvL29gf99H+b3AOv6rMf09HQiIiJwdHRk7ty5bNmyhQYNGvDWW29x8OBBPvjgA7KysmjRogWpqamsXr2aH3/8kS+//JJq1aoRERGBpaUlzzzzjBEg9PHxoV69etjb2wPZU599fX25evUqly5dwt3dnSJFilClShW2bNlCdHQ0vr6+ucaVU+7j4MGDHDlyxJj+HRQUxJ9//klMTAwhISEEBwczZ84cbGxsKFWqFNu3b+fnn38mLCyM3bt3s3DhQmrWrEnbtm2pXbs2v//+O7a2tpQuXdrIyjebzZqKLSIPPQUnRUREJF8pKSksXryYvXv3smfPHmJjY8nIyMDJyQlXV1cuXLjAnDlz6NSpEwMHDsz3GNcHJW+ctmxhYcG+ffuYOnUq27dvx8XFhd69ezN+/HiaNm1Kw4YNcXNzo2LFimzatIlBgwbRpUsXIPtGde3atbRs2ZLHH38cyL4ZTEhIwMfHhy1btrBx40ZefPFFBg0axIwZM9i1axe//PILSUlJQPYNaL9+/Xj66aextramdOnShIaGGsczm8307t2bnTt3Yjab8fPzw83NzVikoG7dunzyySe8//77dOvWjYCAAM6fP0+RIkUYNWoUlSpVMl5nxowZ+Pj4GGOH7CBlzqI8IiL/VjlZkKdOnWLhwoWUKFGCTz75BEdHR4oVK4abmxuOjo7Y2tpiY2OTq2/O92VmZiZRUVFYWloaQTmA3bt307NnT1q0aMGJEyeoXLkyQUFBmM1mJk+eTGJiIp999hmlS5fGzs6OQYMG8eSTTzJ27Fi+/vprKlSogL29Pc8//zyPPPIIRYoUwdHRkbCwMEJDQ3F0dMz1mkePHjWy4tu3b8+BAweYPXs2/fv3x8nJyRiXyWTiwIED/PbbbzRr1swIfFasWJFly5Zx5MgRqlSpQv/+/Zk2bRrTpk0DsjPqu3fvTqtWrTh+/DjFixc3jlmsWDEee+yxPO+vyoGIyL+BgpMiIiKSr4yMDIYNGwbAc889R4kSJfDz8zNWEr106RLvvfceU6ZMoWXLlpQtWxb4341oVlYWx48f5+jRo9ja2vLII4/kuvGMjIzk448/Ji4ujj59+pCSksLcuXMBuHbtGomJiRQpUgR/f38OHjxIWFiYkcly4sQJzGYzhw8f5o033jAyUVJTUylatChVqlTBw8MDgIYNG9KwYUMSEhI4cuQIWVlZxMbGMmrUKL766iuefvpp1q5dy/fff8+wYcMoUaIE165d4/jx48TGxuLm5oaFhQXFihXDycmJffv2Adk3n0888QRVq1Zl5cqVXLp0ibJly1KzZk0jGzJHlSpV7uvvSkTknyoneFauXDmKFCmCm5sbrVq1KlDfPXv2MGnSJHbs2IGNjQ2enp48+uij9OvXDzs7O4KCgnBwcGDt2rVMmzaNmjVrYmNjQ3x8PJs3b+bDDz80HhQlJSVx6dIlihUrxs6dOzl48CBVq1ZlyJAhLFy4kK1bt5KYmEhKSgoAZcqU4Z133qF27drGw6X9+/cbwck2bdqwf/9+vv76aywsLHj++eeNRdL27dvHhAkTyMzMpG3btri6ugLZZT6uXbtGdHQ0kH19CgkJ4dy5cxQvXpwiRYoY556zIJuIyH+BgpMiIiL/EZGRkWRlZVGiRIkCtXd2dqZSpUqcPn2anj17UqxYsTxt+vfvz//93/+xatUqgoKCMJlMWFpa8ueffzJq1Cj27t2Lo6MjmZmZ+Pn5MWTIEGrWrAnA0qVLOXjwIJ988gmtW7cGsm/2hgwZwokTJ7h06RIlSpQgODgYW1tbI+MRsutSurq68scff+Dj40OjRo0oV64cAQEBeHp6kpWVhYODAwBxcXEcOHCARx55JNcU9J9//plt27ZhNpspVqwYO3bsoGfPnrRu3RpLS0t2795NSkqKEaA1mUw0aNCAK1eukJKSYgRK/fz86NOnzx38RkRE/n1yVsiG7O/qnOBksWLF8PT05MSJE8D/yn7ktL1xRe3Dhw8zdOhQUlJSeOONNyhSpAgbNmzgq6++Ii4ujiFDhhjHzFkQLed7+c8//8TBwYE1a9awbt06jh07xoULF8jKyiIgIIDatWsbU6GfeeYZnnnmGc6dO8fJkyexsbFhz549jB07loULF1K7dm2KFy+Oh4eHUSM4NTUVOzs7Bg4ciK2tLbNmzWLJkiWEhISQlJTE8ePH8fHxYezYsTRu3NhYMK169er8/PPPua6n7u7uuLu73+ffiojIP5uCkyIiIv9S1y8ocOnSJVq1asWzzz7La6+9lmfhgJybyZybw5wVs/39/dm3bx/nzp2jWLFixmqoWVlZWFlZUa5cOYoVK0ZUVJRRG+zMmTO88847pKamMmrUKPz8/Dh8+DCzZ8/mww8/NOpBHjx4kODgYCMwCdl1GLt27crbb7/NhQsXAChbtizXrl0jISHBaFe0aFHc3NxwdnZm1KhRxnTAnJvgUaNGYTKZeP3111mxYgWjRo3igw8+oEaNGlhYWLB79242bdpE69atSU9Pp2bNmsyaNYsFCxbw008/kZaWRmhoKL179zZW/gZ48803832vzWZzrtpommYnIv8FmZmZRs3DnO+9m9XPdXJyws/Pj2PHjhm1G2/1XfnNN98QERHB9OnTjWzFJ598kvfff5+FCxfSuHFjHn30Ufz8/IiOjubixYu5Mg+LFCnCvn37aNq0KZUrV6Zs2bL4+vpSpEgR0tPTjbYRERGcP3+eOnXqGEHD0qVLs2zZMs6dOweAl5cXwcHB/Prrr0ydOpWgoCBatGiBm5ubMVV83bp1nDp1Cn9/fzp27EjNmjWNWpQ511wbG5t8H/SJiPzXKTgpIiLyL3Tu3Dm2bdtm1NByc3Nj1qxZFCtWLN/C+Te7mSxbtiwrV67k8OHDxtS4G28mL126BICdnR0A4eHhREVFMXPmTKNPpUqVqFChAp06dWLlypWULl2aCxcuGMfKCYYC1KhRA7PZTExMDIBRq+vs2bPGazo5OdGwYUM2btzI0qVL6d69u7Fv165dfP3113Tt2pWsrCw6dOjAzz//zIgRIwgMDDQCnY0bN+bNN9/EZDKRlZVFnTp1qFy5Mra2trdcXCAjIyPXjXjOe6IFCUTkYXH16lW++uorypYty2OPPZanJvCtXN82v++9o0ePsnbtWiIjI6lSpQpPPPGEUY8xMDAQgGPHjlGxYkV27tzJn3/+yeHDh9myZQsjRozgscceIzExkUOHDlGzZk2qVq0KZC9+Y2NjwxNPPMGaNWvYtGkTjz76KGXKlOHAgQO5HmD5+PhgZ2eHl5cXo0aNIi0tDWtraywtLYmLi2P8+PFUrVqVLl268NVXX/Hjjz/y6aefUqpUKWPhnIiICAYNGgRkT7F++eWX+b//+z+mTZtGy5YtadGiBZBdP7h8+fLGCt430sMqEZG/p+CkiIjIQ+DatWvY2tr+bbucbMlp06axYcMGgoODjeyQ6tWr59vn6tWr7Nmzh927d5OamkrDhg2Nqdc5gcGjR48C/wtiWllZcfXqVX744QeSk5ONrJbU1FT+/PNP7OzsqFixIn/88QeHDx/m4MGDHDp0iIyMDLZt28Ybb7yBk5MTZ86cMY4H2Te93t7e2NnZERkZSVpaGj4+Pjg7O3PmzJlc06nbtWvHypUrGTFiBIcOHaJOnTpcuXKF6dOnExwczLPPPoulpSUODg588cUXbN68mT///BM3NzeqVKlChQoVsLOzy7VqeM5U8OszIW+8+b4x61RE5GFjY2PD1KlTadmyJY899liuAFpWVpZxLbnxwVVOYDItLY20tDR++eUXNmzYQFpaGl26dMHX15eJEyca39fLly8nOjqal19+2cictLa2plevXmRmZmJnZ0exYsUoXbo07du3N8qOXLx4kdTUVBwcHIwHSDnfvT4+PgQFBRnXpbJly5KYmMj58+eNcRYvXpz69evz7bffsmnTJho3bgxkPwhbvXo1K1asoH79+kB2eZJ9+/YxePBgSpQoQVxcHGazmeeff57nnnsOyA4w1qlTh8WLF+fKzhQRkXtDf12LiIj8g23fvp2XXnqJV199lR49euTbJisry1gVO6d2l5eXFxcuXMBkMgHZN5Tp6en8+eefFC9e3JhWduXKFcaMGcOqVauMVUHnzZtH69at+fjjjylZsiRWVlacOnUKgNjYWE6cOEFERAS7du1i586dvPjii7Rv3x4AW1tbEhMTiYuLo3LlymRlZeHm5kZAQABlypShU6dO+Pr6AhAcHMyOHTs4ffq0cUNqYWHBmTNnsLOzIyYmhitXrlC0aFECAgKIjo7mypUr2Nvbk5GRga2tLe+//z5z585ly5YtrFixAisrK6pVq8bAgQNz1da0t7fnscceK/BKp8qEFJF/q8zMTEwmEz4+PsTHx5OYmIirq2uu0h45QcmcQKW1tbWx/7XXXiMmJoaaNWuydetW7O3tOX78OHv37sVsNlO9enUmTJiAlZUV48aNY8mSJdSvX586deoQEBCAjY0NpUqVYtSoUUB2mQ4HBwesra2N72MnJyecnZ2N+pQ51zgAV1dX7OzsjH2lSpUCcmfX29vb8+yzz7J27VreeOMNOnbsSMWKFTlx4gRff/01TZs2NTIf/fz8mD9/PmvXriUmJgYfHx/CwsIIDg7O894pMCkicn8oOCkiIvIPlHMTGBgYyIcffphnutj10+rym5JtZ2dHVlYW77zzDn5+frz//vvs2rWLV199lWHDhtG+fXvS0tL46quvWLhwIQMGDKBVq1ZkZmYyd+5c5s6dS7t27QgLC8PT05MdO3ZQo0YNrly5gslkIi0tDYCePXvyyiuvAP/L2nR1dcXa2pq3336b2rVrY29vj7OzM87Ozhw9epSLFy8C8Oijj7JkyRJmzZrF22+/ja2tLRkZGcyfP5+EhAQuX77MxYsXKVq0KL6+vmzZsoVz587h5eWFlZUVZrOZ0qVL8/777xMREYGFhQUlSpS4ZWZjZmYmkHfhBRGRf7uc7+icBy9BQUGcPHmSuLg4XF1djWvKrl27mDt3Lnv27MFkMvHII4/Qtm1bKlSoAGRnKq5evZoLFy7Qu3dvWrduzfbt2/noo48A6NOnjzF9+6mnnmLNmjVERERQp04dAgMDcXR0JDk52cjMz4+bmxulS5dm5cqVxMTEGA/PABwdHTl79izFihUjLS2NgIAAHB0diYmJIS0tDZPJhNlsxsfHhzFjxjB37lxWrVrF7NmzcXJyomXLlgwcONDIwgdwcXExHrKJiMiDp+CkiIjIP1BO8LFYsWI8/vjjebL7cn6Ojo7m5MmT2NnZUb16daysrNi1axejRo3CysqK8+fPU6VKFSwsLChdujRWVla56nLNnz+fpk2b0rdvX2Pbm2++Sdu2bSlTpgxWVlb4+flx7tw5+vbtS40aNXB1deXUqVN88803rFmzBisrK3r16mWsNlqxYkUWLVqEyWTKc/M5a9Ysdu/ezeTJk6lTpw7PPvssX375JUeOHKFp06ZERERw5MgRKlSowMmTJ7l8+TIAjRs3pkiRInh4eOQ6/5z/zsmcyXnvrp+qfT1lQ4rIv1XOwmY3W5Tr+gXS3N3dqVy5Mtu3byc2Ntb4rt61axcffPABGRkZtGrVigsXLjB37lxWrFjB8OHDady4MVWqVAGgfPnydOzYEcCo2bt79268vb2N1alzHqxFRUUB2St2+/j48Oeff97yXGxsbGjRogWLFy9m3LhxjBw5EhsbG65cucKyZcuIjIykV69emEwmTCYTLi4u7N27l4SEBLy8vLCwsCArK4vq1atTsWJFoqKicHJyyhXkFBGRfw4FJ0VERArZzVY7zQlQWlhYcOXKFRwdHY2by/Xr1/P5559z4sQJHB0dsbKyonr16owZM4bQ0FAWLFhAt27dCAkJYeDAgbi6umJra4uDgwOnTp3i2rVrnDt3jrS0NGrWrGlMDTebzdjb2xsL2UD29Otdu3YREhJCtWrVyMzMpFSpUlStWpV33nmHGTNmcPXqVQYMGIC7uzu1atWiSpUqTJkyBU9PT2rWrMnVq1dZvXo1S5Ys4cknn6R06dIA9O7dGy8vLxYtWsTkyZPx9PSkb9++ODg48PrrrxsZmu3ataNdu3a3fB+vf7+0AIGIPAwyMjK4ePGiEVC7HTl1cXOuC7fKBjebzcybN48ZM2Zw7tw5mjdvbiwSc+rUKerVq2csFBMfH8/MmTMpUaIE9vb2vPjii3Tu3JlPPvmExo0bGw+Dcha5MZvN2NnZERwczE8//URycjJubm5A9kIy9vb2REZGkpqaip2dHf7+/uzbt4/o6GijzEd+GjVqRMeOHVmwYAHHjx+nXr16JCYm8tNPP9G6dWtjWjZkXyNyrnE5cq6j9vb2xjVHRET+mRScFBERuU3XryxdULdaCfXGYyUmJvLLL7/w+OOPAzBjxgzGjBnDjz/+SOnSpTlz5gwff/wxpUqV4pVXXsHZ2Zl169Yxd+5cmjZtSqtWrahcuTJBQUGcP3+e9PR0AGMxgtOnT5OamkpycjImk4krV64YN7U5AcqcgKizs7Mxle/YsWPUr1/fqF/p7u7ORx99xOjRo5k/fz6ZmZkMGzaMkiVLMmDAAN566y1effVVKleuDEBERASNGzfmrbfeMs7VycmJbt260bp1a1xcXIz3YunSpWRkZBjZmJD/KtnXU0BSRP7JoqKiOHDgAH/88QcHDhzg5MmTpKWl4erqStOmTencuTMlSpQwpl/D/x5e5VcH9/pgZFJSEtu3b+fQoUO4uLjQpEkT/Pz8jL6rVq1i3LhxVKtWjX79+nH06FEWLVpERkaGUasxMTGR33//nZdeeoly5coZxy5dujQ9e/Zk0qRJ7N27lypVqmBvb09CQoKxWJuFhQW+vr6YzWZOnTqFr6+vca0sUaIEUVFRxMXF4efnZ9QDPnLkCL6+vrnON0fOuN944w2qVKnCihUrWLZsGW5ubnTt2pXOnTsbAVCAAQMG5Pue67ogIvJwUHBSRESkgNLT0+nbty+nT59m9erVfxugvP6GK+cGKb8g5fr161m0aBGRkZE0aNAAyJ7+HBISQlBQkFGA//Tp05QuXZpffvmFq1ev8sorrxgZjrVr16Zt27b4+fkZxy9Tpgxbtmzh7NmzxnTo0qVLs3PnTuLj43F1dcXd3Z0jR44YY8vMzMTa2pqdO3cyY8YMPvjgA+MmNWdlVAsLC6Ouo5eXF6+//jpnz57l+++/JzU1lZEjR1K3bl2+//57Fi9ezN69e3F2dqZNmzY0bNgwV8Bx3759fPfdd7zyyiu4ubmRlpbGhQsXmD9/Pt7e3nh6ehpttUq2iDyMTp06xYsvvkhkZCSurq54eXkRHBxMjRo1sLS0ZOfOnXz99ddER0czcuRIIyMRbl2KIjIykgEDBtCzZ0/27NnDxo0bsba2JiYmhgULFjBjxgy8vb1JTU1l6tSp+Pn5MX78eOP4DRs2pFevXkRHR5OZmUlUVBSWlpaEhIQY16qcf4eEhGAymTh48CBVqlQhKCiI6OhoLl26ZEyV9vb2xtbWliNHjlCvXj2ysrKwsrKifPnybNy4kfPnz+Pn52csNLN//36aNGmSb3Ay57VdXFxo164dLVq0yJUVKSIi/y76K19ERKSArK2tsbS05Ny5cyQkJFC0aNFbts+52UpISCA2NpaiRYvmCrYB/PTTTwwdOhQfHx/q1q3Lli1biI6OBuDMmTMEBQXh7e2Ng4MDf/75J82aNcNkMpGens7nn39O+/btcXNzIysri/Lly+Pq6mpM9atUqRIrVqwgJibGCGKWL1+e1atXExMTQ/Xq1QkLCyM8PJwjR45QtmxZIwC4d+9eduzYgaWlJX5+fjg7O3P69Olc55XDx8eHzz//nD59+nD58mUSEhLw8PCgePHi9OvX75bvkYODA8uXL2fLli106NABBwcHowbaoEGD/vY9FhH5p8tZCbt8+fKMHTsWJycnHB0djXqJqampfPTRR6xYsYJNmzYZWfOJiYns2LGD8PBwIiIicHR0pGXLlrRp0waTyYSnpyeHDh1i8uTJ2NjYMGzYMEqUKMGvv/7KsGHDmDFjBoMGDSI5OZmTJ0/y0ksvGYHJ9PR06tatS/ny5YmOjiYpKQmTyWRc4258iObi4oLJZOL8+fNA9qI469ev59y5c0Zw0tPTEw8PD+OBV84xKleuzJIlSzhz5gxVq1alWLFiAPz+++/AzaejXz8GBSZFRP7dFJwUEREpoJzskZ9//pmoqKi/DZwtXbqUL7/8klOnTmFnZ0eZMmVo3749jz32GA4ODly6dInPPvuMYsWKMW7cOLy9vQH47LPPmDlzJn/88QeNGjWiaNGieHl5GTd8LVq0IDo6mmnTprFlyxYATCaTUe/x9ddfp1ixYsZ07MjISGNMZcuWJT09naioKOrUqUPnzp1ZsmQJn3zyCa+//jpOTk7s27ePr776itq1axs3kQB79uwxaobdyMPDg0WLFuX7PmRlZRk1La9fqCErK4tSpUrxzTffsGjRIlauXElKSgqlS5fmrbfeomXLlgX91YiI/GM5Ozvj6elJTEwMQUFBeYJxtra2dOrUicWLF/Pnn3/y+OOPk5aWxrhx4/jtt99wd3fH3d2dAwcO8Msvv3DlyhU6d+6MnZ0dPj4+nDlzhlWrVhkZiYGBgcyfP5/du3eTlJTE+fPnMZlMODs7G6+Z8z1cqVIlfvnlF+Li4ihevDhFixblwIEDxnTtnGz69PR0kpKSjDrAFStWZMmSJcTExBgL5Li7u+Pr68v+/ftzvUbZsmWB7CnqAKGhoSxZsgR/f3/g1rUyRUTkv0HBSRERkduQs/Lo8ePHjVqK+fnxxx/54IMPqFq1Kv369SMhIYFFixbxf//3f1y8eJHevXuza9cuIiIi+OCDDwgICDCmz7Vt25aVK1eyZ88eANzc3PDz8+PkyZOYzWZcXV155ZVX6Ny5M8eOHePYsWNcvHiR06dPs2zZMpydnXn33XeNG8KcTBeAEiVKGNP+srKyqFSpEv/3f//H1KlT6dOnD46Ojly9epWqVasyfPhwo9/YsWMpUqQItra2Nz3nnGnhN9aFtLS0zPfmM2dbrVq1qFy5MpmZmTg6Ohbk1yAi8tCwtrbG39+fvXv3Eh0djb+/f64SHxYWFri4uGBnZ2cE8CZPnszChQsZPHgwjz76KPb29qSnp/P888+zfPlymjRpgr+/P0FBQcTHxxtBw5wHSOXLl2fz5s1cvHgRR0dHnJ2djdIckP19DdkLni1YsICoqCgaNWpE7dq1WbNmDS1btqRRo0ZGNv2vv/4KQP369QFy1RLO4ezsjL+/P4mJibkeZIWFhXH48GGjXc74REREcig4KSIichsCAwOxsbHJdaN1o7i4OKZPn05AQACTJ0/G3t4eCwsLWrRoQf/+/ZkzZw6PP/44JpMJwJjqnVOfy9fXl6pVq7Jjxw4ge0pgiRIl2LVrFwkJCUZtRmtraxo0aGDUqQRo0KABERERXLt2DWdnZ9zc3Pjll1+oWbMm5cqVo2jRophMJv744w+SkpJwcXGhe/fu1KlTh82bN5OamkpoaChhYWG4uLgA2TexjRo1+tv35vpalLcrv2xMEZF/iwoVKrB8+XLOnDljBCdzWFhYGN+/OUG77du307x5c5577rlcx/H39+fgwYPExMTg7+9PmTJl2LFjB5cuXQL+99CnUqVKLF++3MiSL1WqFAcOHODcuXMUK1YMGxsbIPv73Ww2c+LECRo1asSzzz7L5s2befPNN+nRowelSpVi586dLFiwgI4dO1KzZk0ASpUqhYuLS67p1vb29gwfPlyL0IiIyG1TcFJEROQ2eHh4ULRo0VwZKDlyMmFiY2M5cuQIffr0wcHBwZjS7O7uznPPPcfAgQPZunUrPj4+QHamC/xv4QMnJyd8fX25ePEiaWlp2NnZ4efnR2pqKlFRUbi5uTFs2DCj1pinpyfx8fHs2bOHCxcu0K1bN+MGtWvXrnz99df079+fTp06MWjQIDp27Jjr5hSybzRLlSqV7zlfPw1b0+9ERG5fTib7qVOnqFevnvFdmpSUxLZt25g3bx7Vq1c3MhO/+eYbbG1tiY6OZufOnWzdupWtW7cSFxeHu7u7UZs4NDSU9PR04+ec7+uKFSsar9e4cWPatm3LW2+9xezZs3nzzTfJyMjg+PHjzJs3DycnJ6N/xYoVmThxIl9//TVz5szhypUruLq60rNnT/r3729cN+zt7Y0HaNdTYFJERO6EgpMiIiK3wcnJCW9vb06dOmXU5MqRc1N2/UrW8L9MFktLS8qUKWNMqw4NDcVkMhEREUFaWhomk8mYFn358mUATpw4Qbly5ShWrBhWVlYcO3aM0NBQqlatyrp16+jYsSO1a9cmLS2N3bt38+ijj/Lkk08aN5A9e/akdu3aQPZNp729PYMHD8733Mxmc67akDdSYFJE5M7kLCy2fv16kpOT2bt3LxEREcTFxZGUlETNmjUZMWIEnp6eZGVlYWtry8GDB5k4cSJnz57F09OTV155BT8/P3r16sW5c+cAjNrCUVFRwP+uP6VLlwayF1YDaNOmDT///DPTp0/nwIEDVKpUiT179lCyZEmioqI4evQoycnJODg4ULNmTSpUqEBUVBRFihQx6iGLiIjcLwpOioiI3AZra2sCAgL4448/uHDhAn5+fvm2sbe358KFC0bQMSer0s7ODldXV65cuUKZMmUoX748y5cv56mnnsLf3x8rKyuSkpKMzMzDhw9Trlw5vLy8sLe3Z+/evTz11FO0b9+ekiVLsnTpUg4dOoSbmxu9evWiZcuWuRaxcXJyonr16nnGmJGRkWcKtoWFhZG9KSIi946bmxslSpRg27ZtxMbGEhQURP369Tl06BB//vknFStWNKZ6W1paEhcXR69evXB2dqZfv35UqlSJgIAAYmJigP8FIwMDA7GysiIqKsp4uGU2m3FycsLd3Z1Tp06RlJSEk5OTUQd5+fLlLF68mPLlyzN06FAiIyPx8vLKNUXbycmJcuXKPfg3SkRE/pMUnBQREblN19cOyy846e3tjbe3N3v37uXSpUu5sk5Onz7NxYsXcXV1BaBHjx58+OGHvPzyy3Tp0gUvLy/mzZtHVFQUVlZW7NmzhyeffBI3NzdCQkJyLRhTtWpVqlat+rfjzbnhvX663Z3WhhQRkdvn4OCAq6srTk5OfPnll3h5eWFtbU1qaipLly5l2LBhrF27lgkTJhAaGsrvv/9OQkICY8aMyVVXeNOmTVhaWhIbG0t8fDxubm74+/tz5swZ4uPj8fDwID09HZPJhJeXFxcvXjSCky4uLnTt2pX27dsbNY/hf3WPRURECovmZ4mIiNymnNphOdmNmZmZZGVlGfudnJxo0qQJv/32Gz/99BMAaWlpXLx4kdmzZ2NnZ2cEFVu1asXw4cMxmUyMHDmS/v37Yzabeffdd6lYsaIxJa9EiRJ8/fXX+U7JNpvNZGRkkJmZmWuRhRwWFhaqAyYiUogsLS0JDAwkKSmJ9PR0bG1tsbKywtHRka5duzJkyBDOnTvHK6+8QlRUFDY2NlhbW7N9+3aOHz9OREQEM2bMYPLkyVhZWbF371727NkDZJcQOXv2LImJicD/Hj599913LF++PM+07OsDkyIiIv8ESpsQERG5TX5+fjg4OHDs2DGAXFOhU1NTsbCwoG3bthw/fpyPP/6YDRs2UKVKFfbs2cPRo0d57bXXqF27tjHVu3nz5jRs2JD9+/fj6+tL8eLFycrK4tNPPzWm2eXcbOZM27ve3aySLSIiD0ZISAgAx44dIzg4GPhfZnvPnj1JSUlhwoQJvPnmm7zzzju0bduW6dOns2rVKmxtbbl8+TK9evUiKCiIH374wXjoNGHCBFxdXXPVN4bsB2UiIiIPA93JiIiI3CZ3d3e8vLw4dOgQERERxMbGcvbsWc6ePcuJEydISkqiZ8+ejB49mkWLFrFy5UoWL15McHAwgwcP5rHHHgP+N816+fLlODo60rRpUyD7ZvXQoUOcPn2aDh065Hpt1YQUEXk4lSxZEktLS44fP06LFi2A7OtAToCyV69epKWlMWXKFMaMGcOgQYOoV68eu3fvpkSJElStWpWyZctiY2ND8+bNgezrhZubW6Gdk4iIyL1gYc5v/peIiIjcVFZWFr1792bLli34+PgQFxdHWloaALa2tgQGBjJ48GDq1q0LYCyKc6OczMnOnTuzZ88eXnzxRapUqcL58+f5+uuvMZlMfPHFF/j7+z/Q8xMRkXvv/PnztGrVisqVKzNjxoxc+3KuB0lJSfz5558EBQWpFqSIiPxnKHNSRETkNllaWhIQEEBgYCCBgYE89dRThIaGUr58eby8vPK0z1mtO6cu5Y3Zj8OGDWPWrFmsXbuW7777DoAaNWrw+uuvKzApIvIv4erqSsWKFfH09DSCkTly/tvJyYmaNWsW1hBFREQKhTInRURE7rHMzEwsLCyMul+3knODmpaWRkREhJF5WZC+IiIiIiIiDzsFJ0VERO5QVlaWkQ1paWmpgKKIiIiIiMhtUnBSRERERERERERECoVSPERERERERERERKRQKDgpIiIiIiIiIiIihULBSRERERERERERESkUCk6KiIiIiIiIiIhIoVBwUkRERERERERERAqFgpMiIiIiIiIiIiJSKBScFBERkfuiadOmNG3atLCHISIi/1G6DomIPBwUnBQREREREREREZFCYV3YAxAREREREREREZGbGzJkCEuWLMm1zcbGBi8vLxo3bsyAAQNwdXW9L6+dlpZGfHw8xYoVuy/HV3BSRERERERERETkIfD222/j5uYGwLVr1zh+/DgLFixg//79zJs3Dysrq3v6etHR0Tz//PP06dOHp5566p4eO4eCkyIiIiIiIiIiIg+BZs2a4efnl2tbYGAgH374Ib/88guNGze+p68XFRXFqVOn7ukxb6SakyIiIiIiIiIiIg+pWrVqAXDs2LFCHsmdUXBSRERERERERETkIRUbGwtAQECAse348eP069eP6tWrU7lyZTp16kR4eHiufmlpaXz88cc0bdqUkJAQGjVqxIcffkhiYiIAixcv5tlnnwWyp5OXLVv2voxf07pFRERERERERETus6ZNm95y/4YNG/72GJcvX+bSpUsApKenExERwfDhw6lYsSJNmjQB4MiRI3Tp0gUPDw/69OmDjY0NK1asoHfv3owbN45WrVoB8NFHH7FixQqeffZZ/P39OXbsGHPmzOH06dPMnDmTGjVq8NJLLzF16lQ6duxItWrV7vIdyJ+F2Ww235cji4j8C3TaNLqwhyAiIiIiIlIo5jd+q7CHcE8V9v3dheFrb7n/VsHJ/FbrzmFnZ8e3335L5cqVAejevTuxsbEsW7YMBwcHADIyMujRowenTp1i06ZNmEwmKleuzNNPP837779vHOuzzz4jPDycb7/9FkdHR7Zv386zzz7LyJEjtSCOiIiIiIiIiIjIw6ogmZF/Z8yYMXh4eADZmZPR0dHMmTOHrl278uWXX1K+fHl27NhB9+7dSU1NJTU11ejbvHlzRo4cyf79+6lWrRre3t6sWrWKkJAQmjVrhouLC6+++iqvvvrqXY/zdig4KSIiIiIiIiIi8hCoWrVqntW6H3vsMR599FGGDRvGJ598AsDs2bOZPXt2vseIiYkBYOjQobz66qu8/fbbvPfee1SpUoXmzZvz9NNP4+zsfH9P5DoKToqIiIiIiIiIiDyk3NzcqFWrFj/99BOZmZkAdO3alWbNmuXbvlSpUgDUqVOHTZs2Gf/8+uuvjBw5kq+//prFixfj7u7+QMav4KSIiIiIiIiIiMhDLCsrCwAvLy8ArKysqFu3bq42x48fJyoqCnt7e9LS0jh06BDe3t60bt2a1q1bk5WVxaxZsxg9ejQrV66ke/fuD2Tslg/kVUREREREREREROSei4uL47fffqN8+fL4+voSEhLCkiVLOHfunNEmPT2dd955hwEDBpCRkUF8fDwdO3Zk2rRpRhtLS0tCQ0ON/4bsICf8L/h5PyhzUkRERERERERE5CGwfv163NzcADCbzcTGxrJw4UJSUlJ47bXXAHj33Xfp0aMHTz/9NJ07d6ZIkSKsXLmSP/74gzfeeMPo//jjjzN37lxSUlIICwsjISGB7777Dg8PDx577DEAo+3y5csxm820a9cOa+t7G05UcFJEREREREREROQhMHLkSOO/rayscHV1JTQ0lI8//pg6deoAEBYWxrx585g4cSKzZs0iIyODoKAgRo0aRbt27Yz+w4YNw9/fn5UrV7Jy5Urs7e2pU6cOr732mlFvsmTJknTv3p3Fixezf/9+atWqRUBAwD09Jwuz2Wy+p0cUEfkX6bRpdGEPQUREREREpFDMb/xWYQ/hnirs+7t/2/t5r6jmpIiIiIiIiIiIiBQKBSdFRERERERERESkUCg4KSIiIiIiIiIiIoVCwUkREREREREREREpFFqt+wEZMmQIS5YsuWWbpk2b8sUXXzygEeXVpEkTfH19mT17NgDdu3cnOjqajRs3PrAx3IvXXLt2LQsXLuTAgQOkpqZSvHhx6tevT48ePfD39y/QMXJ+X0eOHLkn7W5XVFQUTZs2LVDbDRs2AOTb3sbGBnd3d+rVq8fAgQPx9va+5fEtLCxwdnYmODiYrl278sQTT9zFWdw/EydOZNKkSWzYsAE/P7/CHo7If1LqpSucWL2TxBOxALiX8yPosRqYnOzvSz8REflvSUtK4eSaXcQfjSYrPQPX4OIEt66JvbvzPet7J69x7XIyv09Yint5f8o+0+Cuz1NERBScfODefvtt3Nzc8t1XvHjxBzyaW3vppZdISUkp7GEUWFpaGoMHD2bVqlVUqlSJF154AVdXV44dO8aSJUtYtGgRY8aMoVmzZoU91L/l7u7O6NG5VxEbOXIkkP0ZurHtpUuXAKhevTodOnQw9mVkZHD8+HHmzJnDtm3bWL58OS4uLsb+G9ubzWYiIyOZP38+gwYNwsrKitatW9/z8xORh1t68jX2zViDOTMLv4YhmM1mosIPcDU2nip922BpZXVP+4mIyH9LVkYmB79ZT0pcIr71K2JlayJ6ywH2fbWaqq+0xcbB9q773ulrHF+2lYyUtPty3iIi/1UKTj5gzZo1e2gyverVq1fYQ7gto0ePZtWqVQwaNIgXXngh176XXnqJF154gVdffZVFixZRtmzZQhplwTg4ONC2bdtc2yZMmACQZztgBCf9/f3z3e/v78+HH37I/Pnz6d27d67t+bV/6qmnaNWqFZMnT1ZwUkTyiN5ykGuJyVQb0BYHryIAOPt5cmDmOs79fpziNfL/jr3TfiIi8t9ybs9xkqIvEvL8o7iV8gHAvawvv3++jOgtBwl8tOpd972T1zi3J4L4o2fv9emKiPznqeak/CucPHmS7777jtatW+cJTAIULVqUCRMmYGFhwfDhwwthhIWrVatWAPz+++8Fau/r60uNGjWIiIggKSnpfg5NRB5CF/adoEiQtxFgBHAr5YO9pwsX9p285/1EROS/5cK+k9gVdTaChgAOnkUoUrI4F/aduCd9b/c10q4kc2LFdgKaVL6bUxMRkXwoOPkPtXr1ap588kkqVapEmzZt2LRpE7169aJ79+5GmyZNmuT6+WbbzWYz8+bN45lnniEsLIzQ0FBatmzJl19+idlsvukYunfvTpMmTYDsGoVly5a96T8TJ040+h0/fpx+/fpRvXp1KleuTKdOnQgPD89z/K1bt9KpUyeqVKlCs2bN+P777+/ovQJYtmwZZrOZrl273rRNQEAAzZo1Y+fOncTGxhrbDxw4wPPPP09YWBgNGjRg2rRp+b4vBWlnNpuZNGkSLVq0IDQ0lLp16zJo0CBiYmLu+NzuBUvL7P/VMzMzC9zHwcEB4JafkfwsXryYsmXLcvjwYQYMGEBYWBi1a9fmk08+ITMzkyVLltCiRQuqVKlCp06dOHz4cK7+Bw8e5JVXXqFu3bpUrFiROnXq8MYbb+T6neUnMTGRYcOG0aBBA0JCQnjsscf45ptvbnv8InJr6SnXSL2UhJNv0Tz7nIoXJensxXvaT0RE/nuSzl7EySfv9cLRpyipl5JIT7l2131v9zWOLd2GbRFH/BqG3O7piIjI39C07gfs8uXLxhTcG7m6umJlZcXSpUsZPHgwoaGhDBo0iBMnTjBgwADc3d0JCAi47df87LPPmDp1Ku3ataNDhw5cvXqVpUuXMm7cOBwdHW8Z0MuRXw1EyF6YJDY2lgYNsotBHzlyhC5duuDh4UGfPn2wsbFhxYoV9O7dm3HjxhkZfFu3buXFF18kMDCQV199lUuXLvHxxx9jYWFx05qct7J3716sra0JDQ29ZbvatWuzatUqdu/eTevWrTl27Bjdu3fHxcWFvn37kp6ezsyZM0lLy11HpqDtpk6dyuTJk+natStly5YlKiqKb7/9lgMHDrBixQqsCqme2rZt2wCoUKFCgdqnpKSwc+dO/Pz8cHb++6Lj+enduzfVqlVjyJAhrFu3jpkzZ3L06FGOHDlCjx49MJvNTJkyhQEDBrBq1Sqsra2Nz0+JEiXo3bs39vb2/P777yxbtozTp0/zww8/5PtaycnJdOvWjZiYGLp06YK3tze//fYbI0aM4NSpU3zwwQd3dA4ikldaYjIAJheHPPtMLvZkpqSTkZKGtb3pnvQTEZH/lsy0dDJT0vO/Xvy1eNq1hKvY2OetCVnQvpZWlrf1Guf3RhB/NIoqL6s+sojI/aDg5APWrl27m+5bunQpZcqUYfTo0QQHBzN37lxMpuybtODgYIYPH37bwcn09HRjuvOoUaOM7e3bt6dOnTqEh4cXKDiZXw3E6dOnExkZyfvvv0+VKlUAGD58OO7u7ixZssTIvOvWrRs9evTg448/plmzZphMJsaOHYunpycLFizAyckJgLp169KjR487Ck5euHABV1dX4/26GS8vLwDOnz8PYGR8zp8/31iQqEWLFjz55JO5+hW03Y8//kjDhg159913jW3Fixdn3rx5REdH31Fw+XakpaXlCn4nJiayZ88exo4di6OjI507d75l+4yMDCIjI/niiy+4dOkSQ4YMueOxVKlShU8//RTInlZep04dtm7dyvLlyyldujQAV69eZerUqURFRREYGMjcuXOxsLDg22+/pUiRIgB07NiR9PR0Vq5cSUJCgrH9ejNmzODkyZO56ol26dKF8ePHM23aNDp27Ei5cuXu+FxE5H8y09IBsLLJ+yeEpXX2tsz0jDxBxjvtJyIi/y0ZqTe/XuRsy/rrmnKnfW/nNdKSUohYsQO/BqH5ZlqKiMjdU3DyARszZgweHh757gsICGD//v1cvHiR3r175wq0dezYMdfU6YKysbFh69atpKfnvoDHx8fj5OREcnLybR8TIDw8nPHjx9O2bVsjuBkfH8+OHTvo3r07qamppKamGu2bN2/OyJEj2b9/P4GBgRw8eJAXXnjBCExCdlZj2bJl76jGodlsLlBWovVfN8Bms5msrCzCw8Np1KhRrpXSS5YsSf369dm4cSNAgdsBeHt7s337dr755htat26Nh4cHnTp1olOnTrd9Tndi5cqVrFy5Ms/20qVLM3ToULy9vQvUPjg4mPHjx9/VYjjXr4ru7OyMu7s7jo6ORmASMBaHunDhAoGBgQwdOpSBAwfmCkAmJSVha5v91Do5OTnf4OS6desoU6YMnp6euYKtzZo1Y9q0aWzatEnBSZF7JadUgsUD6iciIv9Nt7peWPzNxaSgfQvQ7viybdg42anWpIjIfaTg5ANWtWrVW67WffZs9upv/v7+ubabTKY82wrKxsaGzZs3s2HDBk6ePMnp06dJTEwEbr+eIMCpU6d4/fXXKV26NB999JGxPTIyEoDZs2cze/bsfPvGxMRgY2MDkG8WYXBwMPv27bvtMXl5eREZGUlGRoYRgMxPTsakl5cXCQkJJCcn33QcOUHHgrYDeOutt3j55ZcZMWIEI0eOpGLFijRp0oQOHTrg6el52+d1u+rXr0+vXr0AsLCwwGQyUbx4cXx8fP62fWxsLNOnT+fy5csMHTqUWrVq3dVYbgzCW1tbU7Ro7qfNOQHlrKwsY8zx8fFMmzaNI0eOcObMGc6ePWt8TnPa3ejMmTOkpqZSp06dfPcXds1PkX8TK9vs7/Cs9Lw1bLMyMgCwtrO5Z/1EROTfKzM9g8zU3GWSrEx/ZS5m5L1eZKZnXy9yrik3KmjfgrY7/8cJLh48Q4XuTcm8lk7mtf8lfJgzski/moqVnY2meouI3CUFJ/+h8gsa5mSP/Z3rFz0xm8307duXTZs2Ua1aNcLCwujYsSM1atSgR48etz2upKQk+vXrh4WFBZMmTcLOzi7P63bt2jVX1tz1SpUqxblz5wByZVbmuFnw6e9Ur16dbdu2sW/fPqpWrXrTdrt27cLCwoKwsDBjW0HHUZB25cqVY+3atYSHh7Np0ybCw8P5/PPPmTVrFgsWLKBkyZK3c1q3zdPTk7p1695x+6ZNm9K+fXtefPFFZs2aRbVq1e54LPllslr8zVPuVatW8eabb+Ll5UXt2rVp2LAhISEhbNmyhWnTpt20X2ZmJtWqVaN///757s+Zzi8id8/WNTvjPe1KSp59aZdTsLK3wcqU96bxTvuJiMi/V9z+Uxz9YUuubQFNK2Nlb0Pa5bwzvHKuIfnVigSwtjMVqG9B20WFHwDgz9kb8rS7sO8kF/adJPSFFhQJLp5nv4iIFJyCk/8wgYGBQHZ24o0iIyON/ZC9AvONC7JkZGQQHx9vZPnt2rWLTZs20bdvXwYOHJirXUJCwm1lY5rNZgYNGkRERATTpk3L09fX1xfIDkrdGCA7fvw4UVFR2Nvb4+vri4WFBadPn87zGlFRUQUez/XatGnDF198wcyZM28anIyNjWXNmjVUq1YNX19fzGYzTk5OfzsONze3ArXLzMzk8OHDODk50bRpU5o2bQpkB9xee+01vv/++7uq4fgguLq6Mm7cODp16sQbb7zBihUrck29v9/GjRtHiRIlWLRokVGzFLJred6Kr68vV69ezfO5S0xMZNu2bZQoUeK+jFfkv8ja3oStu1O+q2snxVzE2Tf/0iV32k9ERP69ipTyIeT5R3Nts3N3JvHUOZLO5l1E9GrMReyKOue7GE4OJ5+iBepbkHb+DUPxqpI3ueDAzHUUKe2DX4MQHIu7/+15iojIrVkW9gAkt3LlyhEQEMD8+fNz1YNcs2aNMSU5h4eHBydPnsyV0bdx40auXbtm/JyQkABkZyxeb+HChaSkpJDx11S6gpgwYQIbN26kf//+NGrUKM9+Ly8vQkJCWLJkiZEdCdmL8rzzzjsMGDCAjIwM3N3dqVGjBsuXLycuLs5ot2fPHg4ePFjg8VwvMDCQ5557jp9++okpU6bk2Z+QkMCAAQNIT0/nvffeA7Kz+Jo3b054eDjHjh0z2kZFRbF582bj54K2y8zM5Nlnn2XEiBG5Xrty5ez6NJaWD8f/bqGhofTq1YuYmBjGjBnzQF87ISEBHx+fXIHJmJgY1q1bB+TOCr5ekyZNOHz4MD///HOu7VOmTGHgwIG5fm8icvc8KpYgIeIsyRcSjG3xx8+ScuEynpWC7nk/ERH5d7J1ccCtlE+uf+zdnfGoWIKUC4nEHz9rtE2+kEBCRMzfXi8K2rcg7Ry8iuQZn1up7HJJJmd73Er53DJQKiIiBaPMyQds/fr1t1yNum3btgwdOpTevXvTsWNHnn76aeLi4pg9e7ZRqzFHmzZtGDZsGC+88AJPPPEEp0+fZuHChUYGI0BYWBhOTk6MHDmS6OhoXF1d2b59O6tWrcLW1parV68WaNybN29m6tSplCxZkjJlyvDjjz/mmtLs4eFBvXr1ePfdd+nRowdPP/00nTt3pkiRIqxcuZI//viDN954wzj3wYMH07VrVzp06EDXrl1JSUnh66+/vqOVunO89tprJCYm8tlnn7Fp0yZatGiBi4sLJ06cYOnSpaSmpjJu3LhcC6MMHDiQzZs3061bN3r27ImVlRWzZ8/G0dExV1ZqQdqZTCa6d+/OlClT6NevHw0aNCA1NZUFCxZgb2/P008/fcfn9qD17duX1atXs2DBAp544om7mt59Oxo2bMiqVat4//33CQ0NJSoqygikAzf9vPbp04d169bRr18/OnXqROnSpdm9ezfLli2jYcOGNGzY8IGMX+S/wq9BCOf3RLB/xlp864eQlZFBVPgBnHyLGhkmKZeucPn0eVxKeGHv7lzgfiIiIt7Vy3B222EOzduEX4MQrGysiQo/gMnFAd96FY12aUkpxB87i1NxNxy93W+rb0HbiYjI/afg5AM2cuTIW+5v27Yt9erVY+bMmYwfP55x48bh4+PDyJEjGTt2bK62Xbp0ISEhgR9++IFhw4ZRrlw5Jk2axMyZM42sSw8PD7788kvGjh3LlClTMJlMBAUFMX78ePbt28e3335LXFzcTVcQz7F//37MZjMRERG88sorefbXrFmTevXqERYWxrx585g4cSKzZs0iIyODoKAgRo0aRbt27Yz2ISEhzJ49m3HjxjFp0iRcXFzo378/Bw4c4Pfffy/o25mLtbU1w4cP59FHH2XOnDl8/fXXXL58GW9vb9q0aUP37t3zLGpTvHhx5s2bx+jRo5k+fTomk4n27dsD5KpxWNB2AwYMoEiRIixatIhPPvkEKysrqlatypgxY+57vcl7yc7Ojg8//JDnnnuO9957j6VLl+ZaPf5+GTp0KA4ODmzcuJFly5bh7e3Nk08+SfPmzencuTO//fYbFSpUyNOvSJEiLFiwgM8//5w1a9awYMECfHx86Nu3L717935oslZFHhYmJ3sqvfgYJ1bu4PT6PViZrClaPoCgltWxtM6uN3v51DmO/rCFMs/UN4KTBeknIiJiaW1FaK8WnFy1k6hfDmBhYYFrsDfBj9XAxuF/mYrJ5xM4+n04AU0rG8HJgvYtaDsREbn/LMx3slyzFIomTZrg6+t705WwReTe67RpdGEPQUREREREpFDMb/xWYQ/hnirs+7t/2/t5ryidSERERERERERERAqFpnXLP1JmZiaXLuVdPS8/zs7O2NnZ3ecR3RuXLl266aIu17Ozs8PZ2fkBjKhgHtZxi4iIiIiIiMg/m4KT8o8UExND06ZNC9R25MiRPPXUU/d5RPfGM888Q3R09N+2a9euHaNGjXoAIyqYh3XcIiIiIiIiIvLPpuDkQ2Tjxo2FPYQHxtPTk1mzZhWobalSpe7zaO6dMWPGcO3atb9t5+Xl9QBGU3AP67hFRERERERE5J9NwUn5R7K1taVu3bqFPYx7rlq1aoU9hDvysI5bRERERERERP7ZtCCOiIiIiIiIiIiIFAoFJ0VERERERERERKRQKDgpIiIiIiIiIiIihULBSRERERERERERESkUCk6KiIiIiIiIiIhIoVBwUkRERERERERERAqFgpMiIiIiIiIiIiJSKBScFBERERERERERkUKh4KSIiIiIiIiIiIgUCgUnRUREREREREREpFBYF/YAREREREQkf1MO2Bb2EERE5L+scWEPQP4LlDkpIiIiIiIiIiIihULBSRERERERERERESkUCk6KiIiIiIiIiIhIoVBwUkRERERERERERAqFgpMiIiIiIiIiIiJSKBScFBERERERERERkUKh4KSIiIiIiIiIiIgUCgUnRUREREREREREpFAoOCkiIiIiIiIiIiKFQsFJERERERERERERKRQKToqIiIiIiIiIiEihUHBSRERERERERERECoV1YQ/gv2rIkCEsWbLklm2aNm3KF1988YBGlFeTJk3w9fVl9uzZAHTv3p3o6Gg2btz4wMZwL15z7dq1LFy4kAMHDpCamkrx4sWpX78+PXr0wN/fv0DHyPl9HTly5J60u11RUVE0bdq0QG03bNgAkG97Gxsb3N3dqVevHgMHDsTb2/uWx7ewsMDZ2Zng4GC6du3KE088cRdnISIPg9RLVzixeieJJ2IBcC/nR9BjNTA52d+TfgVtl5aUwql1v3PpcCRZ6Rk4+RQlsEV1XAI879WpiojIP9jllBTm/LadvZGRpGVkUtHXh+51alPMxeWe9T1+/jzf79rN0dhzZJqzKFG0KE9VDSMsIOCmx17y+x42Hj7MxC6d7/ocRUQkm4KTheztt9/Gzc0t333Fixd/wKO5tZdeeomUlJTCHkaBpaWlMXjwYFatWkWlSpV44YUXcHV15dixYyxZsoRFixYxZswYmjVrVthD/Vvu7u6MHj0617aRI0cC2Z+hG9teunQJgOrVq9OhQwdjX0ZGBsePH2fOnDls27aN5cuX43LdH2k3tjebzURGRjJ//nwGDRqElZUVrVu3vufnJyL/DOnJ19g3Yw3mzCz8GoZgNpuJCj/A1dh4qvRtg6WV1V31K2i7jGvp7PtqDWlXkvGtVwFrO1vO/naI/TPWUOXlNjh653/dFBGRf4f0zExGrV5DTEIirSuFYm+yYeW+/Xz04wpGPf0UznZ2d933bEICH/24Ahc7O54Mq4LJ2pqfjxxhzJq1vNq8GTWDgvIc+4/ISBb//jtFHBzu27mLiPwXKThZyJo1a4afn19hD6NA6tWrV9hDuC2jR49m1apVDBo0iBdeeCHXvpdeeokXXniBV199lUWLFlG2bNlCGmXBODg40LZt21zbJkyYAJBnO2AEJ/39/fPd7+/vz4cffsj8+fPp3bt3ru35tX/qqado1aoVkydPVnBS5F8sestBriUmU21AWxy8igDg7OfJgZnrOPf7cYrXyP+7sqD9Ctou6uf9pMQlEvpCS4oEZWd4e1YKZOfYRUSF76ds+4b3700QEZFC98vRo5y8EMc7rR8j9K97pSr+AQz+4QdW7dtPx5o17rrvvO07sLKwZHi7J41gY9Py5Xjrh0XM3b4jT3By/Z+H+GbrVjIys+7HKYuI/Kep5qT8K508eZLvvvuO1q1b5wlMAhQtWpQJEyZgYWHB8OHDC2GEhatVq1YA/P777wVq7+vrS40aNYiIiCApKel+Dk1ECtGFfScoEuRtBA4B3Er5YO/pwoV9J++6X0Hamc1mzu05jntZPyMwCWBydiDosRq4BBa7+xMVEZF/tG0RJyjm6mIEFwF83YpQ0deXrRERd93XbDZzKCaGyv5+ubIgTdbWVA0I4FziZS5fN2Ps45WrmBG+hQo+PgR6FL1XpykiIn9RcPIhsXr1ap588kkqVapEmzZt2LRpE7169aJ79+5GmyZNmuT6+WbbzWYz8+bN45lnniEsLIzQ0FBatmzJl19+idlsvukYunfvTpMmTYDsGoVly5a96T8TJ040+h0/fpx+/fpRvXp1KleuTKdOnQgPD89z/K1bt9KpUyeqVKlCs2bN+P777+/ovQJYtmwZZrOZrl273rRNQEAAzZo1Y+fOncTGxhrbDxw4wPPPP09YWBgNGjRg2rRp+b4vBWlnNpuZNGkSLVq0IDQ0lLp16zJo0CBiYmLu+NzuBUvL7P/1MzMzC9zH4a8/3G71GcnP4sWLKVu2LGvXrqVJkyZUrlzZ+HycPn2awYMH07BhQ0JCQqhZsyYvvfQSx44dy3WMtLQ0Jk6cyKOPPkqlSpVo0aIFX375Za7xX7t2jU8//ZQmTZoQEhJC06ZNmTBhAmlpabc1XpH/qvSUa6ReSsLJN+9Nl1PxoiSdvXhX/Qra7lp8EmmJyRQp5QNkf+dkpqUD4FO73E2zN0VE5N/jZFwcQUXzXi+CPIpy/vIVkq5du6u+FhYWjHjqKbrWrpWn3ZXUVOB/fy8DxF25wvP16zHksZbY29jcySmJiMgtaFp3Ibt8+bIxBfdGrq6uWFlZsXTpUgYPHkxoaCiDBg3ixIkTDBgwAHd3dwJuUaz5Zj777DOmTp1Ku3bt6NChA1evXmXp0qWMGzcOR0fHWwb0cuRXAxFg4sSJxMbG0qBBAwCOHDlCly5d8PDwoE+fPtjY2LBixQp69+7NuHHjjAy+rVu38uKLLxIYGMirr77KpUuX+Pjjj7GwsLhpTc5b2bt3L9bW1oSGht6yXe3atVm1ahW7d++mdevWHDt2jO7du+Pi4kLfvn1JT09n5syZeQJcBW03depUJk+eTNeuXSlbtixRUVF8++23HDhwgBUrVmB1k/pt99u2bdsAqFChQoHap6SksHPnTvz8/HB2dr6j1/y///s/unXrhpOTE1WqVCEuLo4OHTrg5OREt27dcHNz49ChQyxcuJCDBw+yceNGbP76469fv3788ssvPP744zz33HPs27ePcePGcfHiRd5++20yMzPp06cPv//+Ox06dKBkyZIcOHCAqVOncujQIaZMmYKFhcUdjVvkvyItMRkAk0veOlomF3syU9LJSEnD2t50R/0K2i7l4mUAbBztOLF6J7E7j5KZmo5dUWeCW9WkaPmCLWQmIiIPp9T0dJKvpeHm6JhnXxH77GvIxaQknGxt76qvl0vev2kTk5PZeeoUPkVccx1/TPtnsC6kv9tFRP4LFJwsZO3atbvpvqVLl1KmTBlGjx5NcHAwc+fOxWTKvikMDg5m+PDhtx2cTE9PN6Y7jxo1ytjevn176tSpQ3h4eIGCk/nVQJw+fTqRkZG8//77VKlSBYDhw4fj7u7OkiVLjMy7bt260aNHDz7++GOaNWuGyWRi7NixeHp6smDBApycnACoW7cuPXr0uKPg5IULF3B1dTXer5vx8vIC4Pz58wBGRt/8+fONBYlatGjBk08+matfQdv9+OOPNGzYkHfffdfYVrx4cebNm0d0dPQdBZdvR1paWq7gd2JiInv27GHs2LE4OjrSuXPnW7bPyMggMjKSL774gkuXLjFkyJA7Hkvr1q159dVXjZ+//PJLEhMTmTt3LiVLljS2Ozo68uWXX3L06FEqVqzIzz//zC+//MJrr73GSy+9BEDnzp1JT09nzpw59OvXj/Xr17Nt2zamT59uBMYBKlWqxPvvv8+GDRseioWPRApTTnailU3ePw0srbO3ZaZn5AlOFrRfQdtlpGY/5Dm9fg8WVpaUbFMLLCyICj/An99tIOS5R3H7K6tSRET+fVL+ethva533emH6a1tqevo975uZlcXkTZu5lp5B27AqufYpMCkicn8pOFnIxowZg4eHR777AgIC2L9/PxcvXqR37965Am0dO3bMNXW6oGxsbNi6dSvpN1yU4+PjcXJyIjk5+baPCRAeHs748eNp27atEdyMj49nx44ddO/endTUVFL/miIB0Lx5c0aOHMn+/fsJDAzk4MGDvPDCC0ZgErKzGsuWLXtHNQ7NZnOBshKt//ojxWw2k5WVRXh4OI0aNcq1UnrJkiWpX78+GzduBChwOwBvb2+2b9/ON998Q+vWrfHw8KBTp0506tTpts/pTqxcuZKVK1fm2V66dGmGDh2Kt7d3gdoHBwczfvz4u1oMp0aN3IXLe/fuzdNPP03R66bdpKamGlNocj6LmzdvxtLSkm7duuXqP3jwYF5++WUcHR1Zt24d7u7uVKxYMVdwtVGjRlhZWbF582YFJ0X+Tk7JhttNMi5ovwK2y8rIXmggIzWN6q8/hY19duZK0XL+7By3iFPrdis4KSLyH3CrWS9/NyPmdvtm/RWY3B8VTZ1SJWlYpkzBByoiIndNwclCVrVq1Vuu1n327FkgexXl65lMpjzbCsrGxobNmzezYcMGTp48yenTp0lMTARuv54gwKlTp3j99dcpXbo0H330kbE9MjISgNmzZzN79ux8+8bExBhTd/PLIgwODmbfvn23PSYvLy8iIyPJyMgwApD5ycmY9PLyIiEhgeTk5JuOIyfoWNB2AG+99RYvv/wyI0aMYOTIkVSsWJEmTZrQoUMHPD09b/u8blf9+vXp1asXkP2HmMlkonjx4vj45H9jf3372NhYpk+fzuXLlxk6dCi1auWtyXM7iuZT+yc9PZ1PP/2UgwcPcubMGaKioow6kllZ2QGK6OhoihYtmitwDeDp6Wm8h2fOnOHSpUvUqVMn39cu7BqfIg8DK9vs7+Ks9Ly1aLMyMgCwtstbZ6ug/TIK2M7KJvvBkkfFEkZgEsDa3oR7OT/O74kgMy0dK5NqfomIPOzSMjJIvqEsku1f9wZpf10bbmwP4GCT/+yoO+mbnpnJpA0b2XHyFJX9/ej7SKPbPAsREblbCk4+JPILGtrmU2clP9cvGmI2m+nbty+bNm2iWrVqhIWF0bFjR2rUqEGPHj1ue1xJSUn069cPCwsLJk2ahJ2dXZ7X7dq1602z1kqVKsW5c+cAcmVW5sgJUN2u6tWrs23bNvbt20fVqlVv2m7Xrl1YWFgQFhZmbCvoOArSrly5cqxdu5bw8HA2bdpEeHg4n3/+ObNmzWLBggW5pjPfD56entStW/eO2zdt2pT27dvz4osvMmvWLKpVq3bHY7m+qDhkv/e9evXCwcGBunXr8vTTT1OhQgXOnDmTK8hdkEV7MjMzCQwM5IMPPsh3v4uLyx2PW+S/wtY1+wFA2pWUPPvSLqdgZW+Tb0CwoP0K2s7kkl0nzMbRLk87k5M9mCHzmoKTIiL/BtsiTjB188+5tj1drSoOtibi85nRlbOtiGPe+sUADibTbfVNTU9n3LqfOBAVTViAP6892lxTuEVECoGCk/9wgYGBQHZ24o0iIyON/ZAd/LlxQZaMjAzi4+ONLL9du3axadMm+vbty8CBA3O1S0hIuK1sTLPZzKBBg4iIiGDatGl5+vr6+gJgZWWVJ0B2/PhxoqKisLe3x9fXFwsLC06fPp3nNaKiogo8nuu1adOGL774gpkzZ940OBkbG8uaNWuoVq0avr6+mM1mnJyc/nYcbm5uBWqXmZnJ4cOHcXJyomnTpjRt2hSAVatW8dprr/H999/fVQ3HB8HV1ZVx48bRqVMn3njjDVasWJEng/FOff7559jZ2bFy5Urc3d2N7VOnTs3VzsfHh61bt3L16lUcrytufvDgQWbOnMnLL7+Mn58fBw4coHbt2rmCoOnp6fz00095pq+LSF7W9iZs3Z3yXZU7KeYizr75lyApaL+CtnP0LoKFtSXJ5xPytEuNT8LSxirfwKWIiDx8Kvn58k7rx3Jt83Jx4XBsLKfi4vK0P3XxIsVcXfJdDCdHkIdHgfpmZmXx6U/rORAVTe3gIPo1aazApIhIIbH8+yZSmMqVK0dAQADz58/PVQ9yzZo1xpTkHB4eHpw8eTJXRt/GjRu5du2a8XNCQgKQnbF4vYULF5KSkkJGPlMgbmbChAls3LiR/v3706hR3ukPXl5ehISEsGTJEiM7ErIDRu+88w4DBgwgIyMDd3d3atSowfLly4m77g+JPXv2cPDgwQKP53qBgYE899xz/PTTT0yZMiXP/oSEBAYMGEB6ejrvvfcekD3tuXnz5oSHh3Ps2DGjbVRUFJs3bzZ+Lmi7zMxMnn32WUaMGJHrtStXrgzkzST8pwoNDaVXr17ExMQwZsyYe3bchIQE3N3dcwUmr1y5wpIlS4D/ZUw2atSIrKwsvv/++1z9582bx+rVq/Hw8KBJkyYkJCQwb968XG3mz5/Pa6+9ZqxOLiK35lGxBAkRZ0m+kGBsiz9+lpQLl/GsFHTX/QrSzspkQ9HyAVw6HMXVc/FGu9RLV7h46Azu5f2xeEi+P0VE5NbcHB0J9fPL9U8xFxdqBgVyNiGR/dc9+I+OT+BgdDR1/2bmUUH7Lt79O/sio6gZFMgrTZsoMCkiUoiUOVnI1q9ff8vVqNu2bcvQoUPp3bs3HTt25OmnnyYuLo7Zs2cbtRpztGnThmHDhvHCCy/wxBNPcPr0aRYuXGhkMAKEhYXh5OTEyJEjiY6OxtXVle3bt7Nq1SpsbW25evVqgca9efNmpk6dSsmSJSlTpgw//vhjrinNHh4e1KtXj3fffZcePXrw9NNP07lzZ4oUKcLKlSv5448/eOONN4xzHzx4MF27dqVDhw507dqVlJQUvv766ztaqTvHa6+9RmJiIp999hmbNm2iRYsWuLi4cOLECZYuXUpqairjxo2jXLlyRp+BAweyefNmunXrRs+ePbGysmL27Nk4OjrmykotSDuTyUT37t2ZMmUK/fr1o0GDBqSmprJgwQLs7e15+umn7/jcHrS+ffuyevVqFixYwBNPPHFX07tzNGzYkK+++oqBAwdSv359Lly4wA8//GAEqHM+i02aNKF+/fqMGjWKY8eOERoayp49e1i6dCn9+vWjSJEitG/fniVLljBs2DAOHjxIpUqVOHr0KAsWLKBixYo89dRTdz1ekf8CvwYhnN8Twf4Za/GtH0JWRgZR4Qdw8i2KV5XsG7qUS1e4fPo8LiW8sHd3LnC/22kX1LI6iSdj2T9jLT51y2NpaUX0tj+xtLEi8NG7//4REZF/tsblyrH2wEE+W7+BNpUqYWttzYp9+3BzdOSx0BCjXWJyMvuioilR1J2Av+qbF6TvldRUfty3D2srS0J8ffn1eESeMdQICsTORiVEREQeBAUnC9nIkSNvub9t27bUq1ePmTNnMn78eMaNG4ePjw8jR45k7Nixudp26dKFhIQEfvjhB4YNG0a5cuWYNGkSM2fONLIuPTw8+PLLLxk7dixTpkzBZDIRFBTE+PHj2bdvH99++y1xcXE3XUE8x/79+zGbzURERPDKK6/k2V+zZk3q1atHWFgY8+bNY+LEicyaNYuMjAyCgoIYNWoU7dq1M9qHhIQwe/Zsxo0bx6RJk3BxcaF///4cOHCA33//vaBvZy7W1tYMHz6cRx99lDlz5vD1119z+fJlvL29adOmDd27d8+zqE3x4sWZN28eo0ePZvr06ZhMJtq3bw/AtGnTbrvdgAEDKFKkCIsWLeKTTz7BysqKqlWrMmbMmPteb/JesrOz48MPP+S5557jvffeY+nSpblWj78Tr7zyCpmZmaxatYpNmzbh5eVF3bp1ef7552ndujW//fYbzZs3x9LSki+++ILJkyfz448/snz5cgICAnj//ffp3LkzkB0I/vrrr5k8eTJr165l+fLleHl50blzZ/r164e9vf29eBtE/vVMTvZUevExTqzcwen1e7AyWVO0fABBLatjaZ2dUXL51DmO/rCFMs/UN4KTBel3O+3s3Jyo/FJrTq3ZRVT4ATCDa2AxglpWN15TRET+vWysrHi3TWtm/7adH//4A0sLCyr4+NCtdm2cr6txH52QwBebNvN0tapGcLIgfSPOXyA9I3uWzswtv+Y7hs+Ld1JwUkTkAbEw38nyzPKP0KRJE3x9fW+6EraI3L1Om0YX9hBEROQ/bMqBgi2AKCIicj+4vTLw7xs9RAr7/m5+47cK9fX/qVS0SURERERERERERAqFpnXLQyEzM5NLly4VqK2zszN2dg/HSq6XLl0yFn65FTs7O5yd/zlTGR/WcYuIiIiIiIjIP4uCk/JQiImJoWnTpgVqO3LkyIdmAZRnnnmG6Ojov23Xrl07Ro0a9QBGVDAP67hFRERERERE5J9FwcmH2MaNGwt7CA+Mp6cns2bNKlDbUqVK3efR3Dtjxozh2rVrf9vOy8vrAYym4B7WcYuIiIiIiIjIP4uCk/JQsLW1pW7duoU9jHuuWrVqhT2EO/KwjltERERERERE/lm0II6IiIiIiIiIiIgUCgUnRUREREREREREpFAoOCkiIiIiIiIiIiKFQsFJERERERERERERKRQKToqIiIiIiIiIiEihUHBSRERERERERERECoWCkyIiIiIiIiIiIlIoFJwUERERERERERGRQqHgpIiIiIiIiIiIiBQKBSdFRERERERERESkUCg4KSIiIiIiIiIiIoVCwUkREREREREREREpFApOioiIiIiIiIiISKFQcFJEREREREREREQKhYKTIiIiIiIiIiIiUigUnBQREREREREREZFCoeCkiIiIiIiIiIiIFAoFJ0VERERERERERKRQKDgpIiIiIiIiIiIihULBSRERERERERERESkUCk6KiIiIiIiIiIhIoVBwUkRERERERERERAqFdWEP4HYMGTKEJUuW3LJN06ZN+eKLLx7QiPJq0qQJvr6+zJ49G4Du3bsTHR3Nxo0bH9gY7sVrrl27loULF3LgwAFSU1MpXrw49evXp0ePHvj7+xfoGDm/ryNHjtyTdrcrKiqKpk2bFqjthg0bAPJtb2Njg7u7O/Xq1WPgwIF4e3vf8vgWFhY4OzsTHBxM165deeKJJ+7iLO6fiRMnMmnSJDZs2ICfn99t909ISOCTTz5h8+bNWFlZ0bJlS958803s7Ozuw2hF5EFJvXSFE6t3kngiFgD3cn4EPVYDk5P9PelX0HZ7vviRpKiLeV6naEgJKnRpfMfnJyIiD4fLKSnM+W07eyMjScvIpKKvD93r1KaYi8s963v8/Hm+37Wbo7HnyDRnUaJoUZ6qGkZYQECudpGXLjHnt+0cjo3F1tqaUD8/Otaojqez8z09ZxGR/6qHKjiZ4+2338bNzS3ffcWLF3/Ao7m1l156iZSUlMIeRoGlpaUxePBgVq1aRaVKlXjhhRdwdXXl2LFjLFmyhEWLFjFmzBiaNWtW2EP9W+7u7owePTrXtpEjRwLZn6Eb2166dAmA6tWr06FDB2NfRkYGx48fZ86cOWzbto3ly5fjct0fNje2N5vNREZGMn/+fAYNGoSVlRWtW7e+5+dXmMxmMwMGDODw4cP06dOHuLg4Zs2ahdls5r333ivs4YnIHUpPvsa+GWswZ2bh1zAEs9lMVPgBrsbGU6VvGyytrO6qX0Hbmc1mks8nUrRCAEUrlsj1WnZFHO/vmyAiIoUuPTOTUavXEJOQSOtKodibbFi5bz8f/biCUU8/hfMtHoYXtO/ZhAQ++nEFLnZ2PBlWBZO1NT8fOcKYNWt5tXkzagYFARAdn8AHy5aTZTbzWEgIjra2rD90iPeXLuPDtm3xclGAUkTkbj2UwclmzZrdUaZXYahXr15hD+G2jB49mlWrVjFo0CBeeOGFXPteeuklXnjhBV599VUWLVpE2bJlC2mUBePg4EDbtm1zbZswYQJAnu2AEZz09/fPd7+/vz8ffvgh8+fPp3fv3rm259f+qaeeolWrVkyePPlfF5w8ffo027dvZ9CgQfTq1QuAY8eOsXLlSgUnRR5i0VsOci0xmWoD2uLgVQQAZz9PDsxcx7nfj1O8Rv7f+wXtV9B21+KTyErLoGiFAIqFlbyv5ywiIv88vxw9yskLcbzT+jFC/7rvq+IfwOAffmDVvv10rFnjrvvO274DKwtLhrd7kiIODgA0LV+Ot35YxNztO4zg5JzffiM1PZ0Pnnicsn/NoGpYpjRvLPyeOb/9xmuPNr9v74OIyH+Fak6K4eTJk3z33Xe0bt06T2ASoGjRokyYMAELCwuGDx9eCCMsXK1atQLg999/L1B7X19fatSoQUREBElJSfdzaA9camoqAGfPnjW2Xbt2DRsbm8IakojcAxf2naBIkLcROARwK+WDvacLF/advOt+BW139XwCAPYernd9TiIi8vDZFnGCYq4uRnARwNetCBV9fdkaEXHXfc1mM4diYqjs72cEJgFM1tZUDQjgXOJlLqekkJGZyf7oaEJ8fY3AJICLvT0Ny5Rh16nTXL127V6dtojIf9a/Oji5evVqnnzySSpVqkSbNm3YtGkTvXr1onv37kabJk2a5Pr5ZtvNZjPz5s3jmWeeISwsjNDQUFq2bMmXX36J2Wy+6Ri6d+9OkyZNgOwahWXLlr3pPxMnTjT6HT9+nH79+lG9enUqV65Mp06dCA8Pz3P8rVu30qlTJ6pUqUKzZs34/vvv7+i9Ali2bBlms5muXbvetE1AQADNmjVj586dxMbGGtsPHDjA888/T1hYGA0aNGDatGn5vi8FaWc2m5k0aRItWrQgNDSUunXrMmjQIGJiYu743O4FS8vs/10yMzML3Mfhrz92bvUZyc/ixYspW7Yshw8fZsCAAYSFhVG7dm0++eQTMjMzWbJkCS1atKBKlSp06tSJw4cP5+p/8OBBXnnlFerWrUvFihWpU6cOb7zxRq7fWX4SExMZNmwYDRo0ICQkhMcee4xvvvkmz/jLlClDcHAwCxYsYPv27XzxxRfs2LGDzp075znmxIkTCQ0N5aeffqJevXqEhYUZn9OCjjMpKYkRI0bwyCOPULlyZR5//PE8n/WCjl1E8peeco3US0k4+RbNs8+peFGSzuat/3g7/W7n+Mnn4gFw8MoOTmampd/+CYmIyEPrZFwcQUXzXi+CPIpy/vIVkm4RECxIXwsLC0Y89RRda9fK0+7KXw/hLS0tuZyaSkZmFgHu7nnaebu4kGU2c+av2VciInLnHspp3ZcvXzam4N7I1dUVKysrli5dyuDBgwkNDWXQoEGcOHGCAQMG4O7uTsANBY4L4rPPPmPq1Km0a9eODh06cPXqVZYuXcq4ceNwdHS8ZUAvR341ECE7eBMbG0uDBg0AOHLkCF26dMHDw4M+ffpgY2PDihUr6N27N+PGjTMy+LZu3cqLL75IYGAgr776KpcuXeLjjz/GwsLipjU5b2Xv3r1YW1sTGhp6y3a1a9dm1apV7N69m9atW3Ps2DG6d++Oi4sLffv2JT09nZkzZ5KWlparX0HbTZ06lcmTJ9O1a1fKli1LVFQU3377LQcOHGDFihVY3aTm2f22bds2ACpUqFCg9ikpKezcuRM/Pz+c77BYdu/evalWrRpDhgxh3bp1zJw5k6NHj3LkyBF69OiB2WxmypQpDBgwgFWrVmFtbW18fkqUKEHv3r2xt7fn999/Z9myZZw+fZoffvgh39dKTk6mW7duxMTE0KVLF7y9vfntt98YMWIEp06d4oMPPjDaWlpaMmLECLp3707Pnj3Jysri2Wef5eWXX8732BkZGbz//vs899xzpKWlUa1atQKPMy0tja5du3Ls2DE6dOhAuXLl+Pnnn3n33XdJSUnh2Wefva2xi0j+0hKTATC5OOTZZ3KxJzMlnYyUNKztTXfU73aOn3w+AStba06s2smFfSfJSsvAzt2JEs2r4lU5+K7PVURE/rlS09NJvpaGm2PeGsNF7LOvIReTknCytb2rvvnVikxMTmbnqVP4FHHFydaWq9cd90ZXrqX+1efhWV9AROSf6qEMTrZr1+6m+5YuXUqZMmUYPXo0wcHBzJ07F5Mp+0YqODiY4cOH33ZwMj093ZjuPGrUKGN7+/btqVOnDuHh4QUKTuZXA3H69OlERkby/vvvU6VKFQCGDx+Ou7s7S5YsMTLvunXrRo8ePfj4449p1qwZJpOJsWPH4unpyYIFC3BycgKgbt269OjR446CkxcuXMDV1dV4v27Gy8sLgPPnzwMYGZ/z5883FiRq0aIFTz75ZK5+BW33448/0rBhQ959911jW/HixZk3bx7R0dF3FFy+HWlpabmC34mJiezZs4exY8fi6OiYJzvwxvYZGRlERkbyxRdfcOnSJYYMGXLHY6lSpQqffvopkD2tvE6dOmzdupXly5dTunRpAK5evcrUqVOJiooiMDCQuXPnYmFhwbfffkuRIkUA6NixI+np6axcuZKEhARj+/VmzJjByZMnc9UT7dKlC+PHj2fatGl07NiRcuXKAdnTujds2IDZbCYrK4uQkBDefvttLCws8j2PrKwsnnvuuVy1Oj/44IMCjfOHH37g8OHDjB07lscff9xo161bN7788ku6det2W2MXkfzlZCda2eT908DSOntbZnpGnuBkQfvdzvGvnksg81oGGalplG3fgIzUNM5u/ZMjC37BnGVWHUoRkX+xlL8SF2yt814vTH9tyy9YeLd9M7OymLxpM9fSM2gbVgUAR1tbihdxZU9kJNfSM7C97hq2+9RpIHsBHhERuTsPZXByzJgxeHh45LsvICCA/fv3c/HiRXr37p0r0NaxY8dcU6cLysbGhq1bt5J+w4UsPj4eJycnkpOTb/uYAOHh4YwfP562bdsawc34+Hh27NhB9+7dSU1NNWr7ATRv3pyRI0eyf/9+AgMDOXjwIC+88IIRmITsrMayZcveUY1Ds9lcoKxE678u7DmBqfDwcBo1apRrpfSSJUtSv359Nm7cCFDgdgDe3t5s376db775htatW+Ph4UGnTp3o1KnTbZ/TnVi5ciUrV67Ms7106dIMHToU7+vqzdyqfXBwMOPHj7+rxXCuXxXd2dkZd3d3HB0djcAkYCwOdeHCBQIDAxk6dCgDBw7MFYBMSkrC9q+ny8nJyfkGJ9etW0eZMmXw9PTMFWxt1qwZ06ZNY9OmTZQrV47U1FRefPFFdu7cyfPPP8/JkyfZuHEjU6ZMoV+/fvzyyy9cu3aNRx55JFcNyho1chcuL+g4N2/ejLu7O23atDHaWVhYMHr0aDIyMrCwsCjw2EXkFnJKIOT/jOHu+93G8YvXKIPZbMandnljm2elIH6fsJSTq3fiVTkIC8t/dWUaEZH/vJs99P67fXfSN+uvwOT+qGjqlCpJwzJljH1tq1Rh6uafGbtuHZ1q1MDWxpqV+/Zx7vJlAKx0PRIRuWsPZXCyatWqt1ytO2eRDn9//1zbTSZTnm0FZWNjw+bNm9mwYQMnT57k9OnTJCYmArdfTxDg1KlTvP7665QuXZqPPvrI2B4ZGQnA7NmzmT17dr59Y2JijKBPflmEwcHB7Nu377bH5OXlRWRkJBkZGUYAMj85GZNeXl4kJCSQnJx803HkBB0L2g7grbfe4uWXX2bEiBGMHDmSihUr0qRJEzp06ICnp+dtn9ftql+/vrECtYWFBSaTieLFi+Pj4/O37WNjY5k+fTqXL19m6NCh1KqVt47N7bgxCG9tbU3RG2ro5ASUs7KyjDHHx8czbdo0jhw5wpkzZzh79qzxOc1pd6MzZ86QmppKnTp18t2fU/Nz1qxZ7Nixg9dee42XXnqJxMRE2rVrx+TJk6lZsyafffYZ0dHRbN26NVf/G8dd0HHmZMve+Iekr6/vbY9dRG7Oyjb7upKVnjcDJCsjAwBru7yLXhW0X8ZtHL94rbwPE6xsrPEKK8mZDX+QfD4BR++89b9EROThkpaRQfINJZ5s/7rPSfvr2nBjewAHm/xnet1J3/TMTCZt2MiOk6eo7O9H30ca5drfqGwZEpKTWbT7d95dshSAMt7F6FKrFl/9Eo6j7a1nnYmIyN97KIOTBZVf0NA2n9ok+bl+0ROz2Uzfvn3ZtGkT1apVIywsjI4dO1KjRg169Ohx2+NKSkqiX79+WFhYMGnSJOzs7PK8bteuXXNlzV2vVKlSnDt3DiBXZmWOmwWf/k716tXZtm0b+/bto2rVqjdtt2vXLiwsLAgLCzO2FXQcBWlXrlw51q5dS3h4OJs2bSI8PJzPP/+cWbNmsWDBAkqWvL/T+Tw9Palbt+4dt2/atCnt27fnxRdfZNasWVSrVu2Ox5JfJuvfPSletWoVb775Jl5eXtSuXZuGDRsSEhLCli1bmDZt2k37ZWZmUq1aNfr375/v/pzp/Bs2bMDBwcEIyLq6uvLZZ5/RpUsX+vfvT0JCAu3bt88zdssbnioXdJyZmZl/e84FHbuI3Jyta3YWftqVvLWz0i6nYGVvg5Upb3CyoP3u9PjXs3G0ByAzLe9Np4iIPHy2RZxg6uafc217ulpVHGxNxOczOy1nWxHHvPWLARxMptvqm5qezrh1P3EgKpqwAH9ee7Q51vn8/d02rArNKpQn8lI8LvZ2+BQpwoZDhwDwcnEp4NmKiMjN/CuDk4GBgUB2duKNIiMjjf2QHTC5cUGWjIwM4uPjjSy/Xbt2sWnTJvr27cvAgQNztUtISLitbEyz2cygQYOIiIhg2rRpefrmZINZWVnlCZAdP36cqKgo7O3t8fX1xcLCgtOnT+d5jaioqAKP53pt2rThiy++YObMmTcNTsbGxrJmzRqqVauGr68vZrMZJyenvx2Hm5tbgdplZmZy+PBhnJycaNq0KU2bNgWyA1mvvfYa33///V3VcHwQXF1dGTduHJ06deKNN95gxYoVuabe32/jxo2jRIkSLFq0yKhZCtm1PG/F19eXq1ev5vncJSYmsm3bNkqUKAH8L+h/ffCxUqVKDBkyhGHDhgHQs2fPezZOHx8fjhw5kqf/zz//zKpVqxg0aFCBxy4iN2dtb8LW3SnfVbmTYi7i7Jt/OZWC9itou2uJV9k/ax1elYIIaFIlV7uUuOwZC3ZuD+47VURE7p9Kfr680/qxXNu8XFw4HBvLqbi4PO1PXbxIMVeXfBfDyRHk4VGgvplZWXz603oOREVTOziIfk0a5xuY/P30GQCqlgigXPH/lXc6HBOLq7093gpOiojctX9lgYxy5coREBDA/Pnzc9WDXLNmjTElOYeHhwcnT57MldG3ceNGrl27ZvyckJAAZGcsXm/hwoWkpKSQkc+0gZuZMGECGzdupH///jRq1CjPfi8vL0JCQliyZImRHQnZi/K88847DBgwgIyMDNzd3alRowbLly8n7rqL7549ezh48GCBx3O9wMBAnnvuOX766SemTJmSZ39CQgIDBgwgPT2d9957D8jO4mvevDnh4eEcO3bMaBsVFcXmzZuNnwvaLjMzk2effZYRI0bkeu3KlSsDebPv/qlCQ0Pp1asXMTExjBkz5oG+dkJCAj4+PrkCfjExMaxbtw7InRV8vSZNmnD48GF+/jn30+spU6YwcOBA4/dWq1YtkpOTWbZsWa5210+dvllJgjsZZ8OGDYmLi+Onn37K1f+bb75h8+bNuLn9P3v3HR5VmfZx/DvpvZGEkEAIHSGBQADpaABRQKp0IhZEFgR0XVZ8V10UBaUtClIsoLJIkV5CUQGNUkRBA6z0mhBqGult3j9CRoYkMKEN6O9zXbku5pz7Oec+kyFn5p6neFucu4hcn2/dyiQfPUPGhWTTtqQjZ8i8kIpfvSq33M6SOEdPV/KzckjYdYi8rD++PMxKTuPcL4fxrBaAg3vJPWZEROT+4u3qSljFimY/5T08aFIlhDPJKey9qhNDfFIy++PjaX6DUVSWtl3+y25iT8fRpEoII9pGlliYBIg5dIjZW78zLbYDcPzCRXYeO077unVuOMJHRERu7L7sOfnNN99cdzXqrl27MnbsWIYMGUKfPn3o2bMnFy9eZP78+WYLdEBhb8Fx48YxePBgunTpwsmTJ1myZInZfHYNGjTAzc2NCRMmEB8fj6enJzt37iQ6OhpHR0fS09Mtynvr1q3Mnj2batWqUbNmTdasWWM2pNnX15cWLVrw2muvMWjQIHr27Em/fv3w8vJi3bp1/Pbbb7z88suma3/llVcYMGAAvXv3ZsCAAWRmZvLZZ5/d1ErdRV566SVSUlKYNm0aW7ZsoUOHDnh4eHDs2DFWrlxJVlYWU6ZMMVtcZNSoUWzdupWBAwfy1FNPYWtry/z583F1dTXrlWpJnIODA1FRUabFVVq1akVWVhaLFy/G2dmZnj173vS13W3Dhg1j/fr1LF68mC5dutzS8O6yaN26NdHR0bzxxhuEhYURFxdnKqQDpb5en3/+eTZt2sTw4cPp27cvNWrU4JdffmHVqlW0bt2a1q1bAzB06FDWr1/P66+/zuHDh6lYsSIbNmxg586d9OrVizNnzrBo0SLs7e3NVly/2Tz79u3LsmXLeOmllxgwYABVqlRh69at/Pjjj4wfPx5bW1uLcxeR66vYKpTze46y99ONBLUMpSAvj7iYfbgFlcM/vPADXWbiZVJPnsejsj/OPu4WtytLXLUuTfn9v1v4bU40AY1qkp+Ty5ntv2OwsaH6403v7pMiIiJ33cO1a7Nx336mffMtnevVw9HOjrWxsXi7uvJYWKgpLiUjg9i4eCqX8yH4yvzmlrS9nJXFmthY7GxtCA0K4scjR4vl0LhKCE729nSsF8auEyd4Z100bWrW5HJ2FtGxewn09qLjVbmIiMjNuy+LkxMmTLju/q5du9KiRQvmzp3L1KlTmTJlCoGBgUyYMIHJkyebxfbv35/k5GSWLl3KuHHjqF27NjNmzGDu3LmmXpe+vr589NFHTJ48mVmzZuHg4ECVKlWYOnUqsbGxfPHFF1y8eLHUFcSL7N27F6PRyNGjRxkxYkSx/U2aNKFFixY0aNCAhQsXMn36dObNm0deXh5VqlTh3XffpXv37qb40NBQ5s+fz5QpU5gxYwYeHh688MIL7Nu3j927d1v6dJqxs7Pj7bff5pFHHmHBggV89tlnpKamEhAQQOfOnYmKiiq2qE2FChVYuHAhEydO5JNPPsHBwYFevXoBmM0daGncyJEj8fLyYtmyZbz33nvY2trSsGFDJk2adMfnm7ydnJycePPNN3n66ad5/fXXWblypdnq8XfK2LFjcXFxYfPmzaxatYqAgAC6detG+/bt6devHzt27KBOnTrF2nl5ebF48WI++OADNmzYwOLFiwkMDGTYsGEMGTLE1GvVw8ODhQsXMmXKFJYtW0ZmZibVq1fnvffeo1u3bmRkZDBq1KjrLlpVljydnJyYP38+06ZNY926dVy+fJlq1aoxbdo0HnvssTLlLiLX5+DmTL3nHuPYup84+c0ebB3sKPdAMFUebYSNXWGPktQT5zi09AdqPtHSVJy0pF1Z4nzrVKZOVCSntsZyfOPP2Njb4lWlAiEdGuLi53VXnxMREbn77G1tea1zJ+bv2Mma337DxmCgTmAgA5s2xf2q+frjk5OZuWUrPSMamoqTlrQ9ev4CuXmFo3Tm/vBjiTl8UKEvTvb21Chfnlcee5QlP//Cgp07cXV0pGWN6vSMiMD5Lry3FxH5KzAYb2ap6ftYZGQkQUFBFg07FZGbYzQa/zRDXPpumWjtFERE5C9s1j7LFnMUERG5E7xHjLpx0H3E2p/vFj38T6ue/16l7kQictv9WQqTIiIiIiIiInJn3ZfDusUy+fn5JCYmWhTr7u6O01VDJO5liYmJpS7qcjUnJyfc3d3vQkaWuV/zFhERERERERG5U1Sc/BNLSEigbdu2FsVOmDCBHj163OGMbo8nnniC+Pj4G8Z1796dd9999y5kZJn7NW8RERERERERkTvlL1ec3Lx5s7VTuGv8/PyYN2+eRbHVq1e/w9ncPpMmTSI7O/uGcf7+/nchG8vdr3mLiIiIiIiIiNwpf7ni5F+Jo6MjzZs3t3Yat11ERIS1U7gp92veIiIiIiIiIiJ3ihbEEREREREREREREatQcVJERERERERERESsQsVJERERERERERERsQoVJ0VERERERERERMQqVJwUERERERERERERq1BxUkRERERERERERKxCxUkRERERERERERGxChUnRURERERERERExCpUnBQRERERERERERGrUHFSRERERERERERErELFSREREREREREREbEKFSdFRERERERERETEKlScFBEREREREREREatQcVJERERERERERESsQsVJERERERERERERsQoVJ0VERERERERERMQqVJwUERERERERERERq1BxUkRERERERERERKxCxUkRERERERERERGxChUnRURERERERERExCpUnBQRERERERERERGrUHFSRERERERERERErELFSREREREREREREbEKO2sn8FcxZswYVqxYcd2Ytm3bMnPmzLuUUXGRkZEEBQUxf/58AKKiooiPj2fz5s13LYfbcc6NGzeyZMkS9u3bR1ZWFhUqVKBly5YMGjSISpUqWXSMot/XwYMHb0vczapVq9Z19xe9ZuLi4mjbtm2x/fb29vj4+NCiRQtGjRpFQEAAQKnxBoMBd3d3qlatyoABA+jSpcvtuZDbbPr06cyYMYNvv/2WihUrWjsdkT+tnLRMjm/4maRD8RTk5uFZtQJVOzXB2cf9jrQ9tfU3zu46RJPRvUrcX5Cfz+7pq/ELC6Fy2wY3fV0iInLvS83MZMGOnfx6+jQ5efnUDQokqllTynt43La273/9DTuOHS/WvoqfL+N7dDc9PpuSwoIdO/lfQgK5+fnU8Penb5PG1Chf/tYvVEREVJy821599VW8vb1L3FehQoW7nM31DR06lMzMTGunYbGcnBxeeeUVoqOjqVevHoMHD8bT05PDhw+zYsUKli1bxqRJk2jXrp21Uy2TqlWrMnTo0BL3XfuaadSoEb179zY9zsvL48iRIyxYsIDt27ezevVqPK56U3ZtvNFo5PTp0yxatIjRo0dja2tLp06dbvMVicj9oCAvn/2ff0PmxRSCWtbF1tGB+B/2EfvxehqO6Iq9i+NtbZt4KJ5T3/6Gg4dzicc0Go0cXrGNzPMpt+0aRUTk3pSbn8+76zeQkJxCp3phODvYsy52L2+tWcu7PXvg7uR0W9qeTkqiZkB52j3wgNkxro5JzczirTVrycjJoVNYGK6OjmzYt59xa9fxdreuBJcrd/ufABGRvxgVJ++ydu3a3Tc9vVq0aGHtFMpk4sSJREdHM3r0aAYPHmy2b+jQoQwePJgXX3yRZcuW3bBH4r3E19eXrl27WhRbqVKlEmMrVarEm2++yaJFixgyZMgN43v06EHHjh358MMPVZwU+Ys6t+cIafGXCH3mEbyrBwLgUyuI3R+sIv6H/YQ80vC2tU346SBH1+zEmF9Q4vHyMnM4tOwHLv3v1G26OhERuZd9f+gQxy9c5P86PUbYlc9O4ZWCeWXpUqJj99KnSeNbbpuXn8+51FS6hofTqmaNUo+35cABktIzeOmRdjSpUgWAJlWq8PclS1i+ew8vtr+/Oj6IiNyLNOek/CkcP36c//73v3Tq1KlYYRKgXLlyvP/++xgMBt5++20rZGhdHTt2BGD37t0WxQcFBdG4cWOOHj1KWlranUxNRO5RF2KP41TO3VRcBHDx88KrWgUuxB67bW33zt3IkZXb8aoWgGugT7FjpSUk8vN/lpN4MI6gVnVv8apEROR+sP3oMcp7epiKiwBB3l7UDQpi29Gjt6VtQkoKefkFBHl7Xfd4Fy5fBqDeVcfzdXejorc3pxITy3JZIiJSChUn71Hr16+nW7du1KtXj86dO7NlyxaeffZZoqKiTDGRkZFmj0vbbjQaWbhwIU888QQNGjQgLCyMRx99lI8++gij0VhqDlFRUURGRgKFcxTWqlWr1J/p06eb2h05coThw4fTqFEj6tevT9++fYmJiSl2/G3bttG3b1/Cw8Np164dX3311U09VwCrVq3CaDQyYMCAUmOCg4Np164du3bt4uzZs6bt+/bt45lnnqFBgwa0atWKOXPmlPi8WBJnNBqZMWMGHTp0ICwsjObNmzN69GgSEhJu+tpuBxubwv/q+fn5FrdxcXEBuO5rpCTLly+nVq1aHDhwgJEjR9KgQQOaNm3Ke++9R35+PitWrKBDhw6Eh4fTt29fDhw4YNZ+//79jBgxgubNm1O3bl2aNWvGyy+/bPY7K0lKSgrjxo2jVatWhIaG8thjj/H555+XOX8RKZR25hJugcWHqrkGliMrMY3czOzb0jYrOY1qXZpSd1B77Bzti7XJSrqMs68H4X/rRGDTB4rtFxGRP5/jFy9SpYTh0lV8y3E+9TJp2aXfgyxtG5eUBECQlxcAWbm5JR4vwNMTgITkP6YVycvPJzEtHe8r75dFROTWaFj3XZaamkpiKd+weXp6Ymtry8qVK3nllVcICwtj9OjRHDt2jJEjR+Lj40NwcHCZzzlt2jRmz55N9+7d6d27N+np6axcuZIpU6bg6up63YJeER8fHyZOnFhs+/Tp0zl79iytWrUC4ODBg/Tv3x9fX1+ef/557O3tWbt2LUOGDGHKlCmmHnzbtm3jueeeIyQkhBdffJHExETeeecdDAZDqXNyXs+vv/6KnZ0dYWFh141r2rQp0dHR/PLLL3Tq1InDhw8TFRWFh4cHw4YNIzc3l7lz55KTk2PWztK42bNn8+GHHzJgwABq1apFXFwcX3zxBfv27WPt2rXY2tqW+dpyc3NLfM3Y29vj7n7jRSkAtm/fDkCdOnUsis/MzGTXrl1UrFjR4nNca8iQIURERDBmzBg2bdrE3LlzOXToEAcPHmTQoEEYjUZmzZrFyJEjiY6Oxs7OzvT6qVy5MkOGDMHZ2Zndu3ezatUqTp48ydKlS0s8V0ZGBgMHDiQhIYH+/fsTEBDAjh07GD9+PCdOnODf//73TV2DyF9Vfk4u+Zm5OHgU/9Dl4FY4J2R2cjr2zsXnjixr24hR3bC5zt9Gn1oV8a1TGYCsJPXkFhH5s8vKzSUjOwdvV9di+7ycC+8tl9LScHMsfg8qS9vTiYXFyW9/P8C2o0dJy8rGy8WZruHhPBoWamr3cO1a/HD4MHO+/55nW7bA1dGRFbv3kJqVyfP1W9+WaxYR+atTcfIu6969e6n7Vq5cSc2aNZk4cSJVq1blyy+/xMHBAShcFOXtt98uc3EyNzfXNNz53XffNW3v1asXzZo1IyYmxqLipIuLS7G5CT/55BNOnz7NG2+8QXh4OABvv/02Pj4+rFixwtTzbuDAgQwaNIh33nmHdu3a4eDgwOTJk/Hz82Px4sW4ubkB0Lx5cwYNGnRTxckLFy7g6elper5K4+/vD8D58+cBTD0+Fy1aZFpcpkOHDnTr1s2snaVxa9asoXXr1rz22mumbRUqVGDhwoXEx8ffVHF5z549NGvWrNj2Jk2amFZWL5KTk2NWyExJSWHPnj1MnjwZV1dX+vXrd934vLw8Tp8+zcyZM0lMTGTMmDFlzrdIeHg4//nPf4DCYeXNmjVj27ZtrF69mho1Cuf1SU9PZ/bs2cTFxRESEsKXX36JwWDgiy++wOvKt9h9+vQhNzeXdevWkZycbNp+tU8//ZTjx4+bzSfav39/pk6dypw5c+jTpw+1a9e+6WsR+avJyyrsPWJrX/xtQtG2gpySe5iUte31CpOW7BcRkT+XzCtf/jvaFb+POFzZVlovx7K0Leo5GZ+czDMtW5CXX8B3hw7x+bbtZOTm0KNh4fzIro6OPNEoghmbt/DGytWm4z3VojkNbuK9vYiIFKfi5F02adIkfH19S9wXHBzM3r17uXTpEkOGDDErtPXp08ds6LSl7O3t2bZtG7nX3MCTkpJwc3MjIyOjzMcEiImJYerUqXTt2tVU3ExKSuKnn34iKiqKrKwssrKyTPHt27dnwoQJ7N27l5CQEPbv38/gwYNNhUko7NVYq1atm5rj0Gg0WtQr0e7KmxKj0UhBQQExMTG0adPGbNXratWq0bJlSzZv3gxgcRxAQEAAO3fu5PPPP6dTp074+vrSt29f+vbtW+ZrKlKrVq0Si4RXr7pdZN26daxbt67Y9ho1ajB27FgCAgIsiq9atSpTp069pcVwrl4V3d3dHR8fH1xdXU2FScC0ONSFCxcICQlh7NixjBo1yqwAmZaWhuOVb8YzMjJKLE5u2rSJmjVr4ufnZ1ZsbdeuHXPmzGHLli0qTorcDMP19l1v5y22FRGRvzzDde4V19tnadumVatS1c+PruH1Tdta1qjO2NVrWLn7V9o9UAcPZye2HDjIR999T3A5HzqGheFgZ0vMocN8vm0bNgYD7etaNjJJRERKp+LkXdawYcPrrtZ95swZoHAV5as5ODgU22Ype3t7tm7dyrfffsvx48c5efIkKSmFc6bczHx8J06c4O9//zs1atTgrbfeMm0/ffo0APPnzy/Wo69IQkIC9vaFc4qV1IuwatWqxMbGljknf39/Tp8+TV5enqkAWZKiHpP+/v4kJyeTkZFRah5FRUdL4wD++c9/8re//Y3x48czYcIE6tatS2RkJL1798bPz6/M1wWFw/2bN29uUWzLli159tlngcI3Xg4ODlSoUIHAwMAbxp89e5ZPPvmE1NRUxo4dy4MPPnhT+Ra5tghvZ2dHuWvm/ykqKBcUFJhyTkpKYs6cORw8eJBTp05x5swZ0+u0KO5ap06dIisrq8QepoDV5/wUuZfl5+aRn2U+RYWtw5UejnnF56nNz80rjClhfshbbSsiIn8tOXl5ZFwzTZLjlc8KOXl5JcYDuNiXPFqqLG2bV69WLMZgMBBZuzazz37H4fPniKhcmSW7duHj5sqbXbvgdOX4zapV4731G5i/YwdNqoTgqbknRURuiYqT96iSioaOJcyrUpKrFz0xGo0MGzaMLVu2EBERQYMGDejTpw+NGzdm0KBBZc4rLS2N4cOHYzAYmDFjBk5OTsXOO2DAALNec1erXr06586dAzDrWVmktOLTjTRq1Ijt27cTGxtLwytDMEry888/YzAYaNCggWmbpXlYEle7dm02btxITEwMW7ZsISYmhg8++IB58+axePFiqlUr/ibodvLz87O4kFlSfNu2benVqxfPPfcc8+bNIyIi4qZzKakn642+5Y6OjuYf//gH/v7+NG3alNatWxMaGsoPP/zAnDlzSm2Xn59PREQEL7zwQon7i4bzi0hxF/ee4NDSH8y2Bbetj62zPTmpxXvX51zOBChxTkkAOyeHm24rIiJ/LduPHmP21u/MtvWMaIiLowNJJYzwKtrm5VryfcTFweGm2xbxcC78fJOdm0dqZibJGZl0CK1rKkwWaVOzJr+eOs3h8+dpFBJy3WOKiMj1qTh5jwm5cmM7ceJEsX2nT5827YfCFZivXZAlLy+PpKQkUy+/n3/+mS1btjBs2DBGjRplFpecnFym3phGo5HRo0dz9OhR5syZU6xtUFAQUFiUurZAduTIEeLi4nB2diYoKAiDwcDJkyeLnSMuLs7ifK7WuXNnZs6cydy5c0stTp49e5YNGzYQERFBUFAQRqMRNze3G+bh7e1tUVx+fj4HDhzAzc2Ntm3b0rZtW6Cw4PbSSy/x1Vdf3dIcjneDp6cnU6ZMoW/fvrz88susXbvWbOj9nTZlyhQqV67MsmXLTHOWQuFcntcTFBREenp6sdddSkoK27dvp3LlynckX5E/A6/qgYQ+84jZNicfd1JOnCPtTPHFuNITLuFUzr3ExXCKuAWWu+m2IiLy11GvYhD/1+kxs23+Hh4cOHuWExcvFos/cekS5T09SlwMp0gVX98bts3Lz+e1lauo5ufHc61bmcWdSU4GwM/dDVsbG6DkjgsFRSN7bmIkmoiImLOxdgJirnbt2gQHB7No0SKz+SA3bNhgGpJcxNfXl+PHj5v16Nu8eTPZ2dmmx8lXbq7Vq1c3a7tkyRIyMzPJK2HIQ2nef/99Nm/ezAsvvECbNm2K7ff39yc0NJQVK1aYekdC4aI8//d//8fIkSPJy8vDx8eHxo0bs3r1ai5e9cZhz5497N+/3+J8rhYSEsLTTz/N119/zaxZs4rtT05OZuTIkeTm5vL6668Dhb342rdvT0xMDIcPHzbFxsXFsXXrVtNjS+Py8/N58sknGT9+vNm569evDxQWk+8HYWFhPPvssyQkJDBp0qS7eu7k5GQCAwPNCpMJCQls2rQJMO8VfLXIyEgOHDjAd9+Zf/M+a9YsRo0aZfZ7ExFzjh4ueFcPNPtx9nHHt25lMi+kkHTkjCk240IyyUcT8KtX5brHvJW2IiLy1+Ht6kpYxYpmP+U9PGhSJYQzySnsvaojQHxSMvvj42l+g5FIlrS1s7XF0c6OH48c4eLlP+a7T8/OZv3efZT39KC6vz+ujo5UL+/PzuPHSc384zOX0Whk84ED2NnaUKt8+dv1dIiI/GWp5+Rd9s0331x3NequXbsyduxYhgwZQp8+fejZsycXL15k/vz5prkai3Tu3Jlx48YxePBgunTpwsmTJ1myZImpByNAgwYNcHNzY8KECcTHx+Pp6cnOnTuJjo7G0dGR9PR0i/LeunUrs2fPplq1atSsWZM1a9aYfYPo6+tLixYteO211xg0aBA9e/akX79+eHl5sW7dOn777Tdefvll07W/8sorDBgwgN69ezNgwAAyMzP57LPPbmql7iIvvfQSKSkpTJs2jS1bttChQwc8PDw4duwYK1euJCsriylTppgtjDJq1Ci2bt3KwIEDeeqpp7C1tWX+/Pm4urqa9Uq1JM7BwYGoqChmzZrF8OHDadWqFVlZWSxevBhnZ2d69ux509d2tw0bNoz169ezePFiunTpckvDu8uidevWREdH88YbbxAWFkZcXJypkA6U+np9/vnn2bRpE8OHD6dv377UqFGDX375hVWrVtG6dWtat259V/IX+TMJaFSTM9sP8PvCLVRsFYqtvR1xMftw8HAhqEVdU1xOWiZJh8/gVsEb1wCfMrUVEREpycO1a7Nx336mffMtnevVw9HOjrWxsXi7uvJYWKgpLiUjg9i4eCqX8yH4ytzmlrZ9slkzxq5ezb9Xr+bR0MJ707e/HyA1M4sxHR8zTUf0ZLOmjFu7jn+tWEG7Bx7A0c6O7ceOcejsOfo0aaz5JkVEbgMVJ++yCRMmXHd/165dadGiBXPnzmXq1KlMmTKFwMBAJkyYwOTJk81i+/fvT3JyMkuXLmXcuHHUrl2bGTNmMHfuXFOvS19fXz766CMmT57MrFmzcHBwoEqVKkydOpXY2Fi++OILLl68WOoK4kX27t2L0Wjk6NGjjBgxotj+Jk2a0KJFCxo0aMDChQuZPn068+bNIy8vjypVqvDuu+/SvXt3U3xoaCjz589nypQpzJgxAw8PD1544QX27dvH7t27LX06zdjZ2fH222/zyCOPsGDBAj777DNSU1MJCAigc+fOREVFFVvUpkKFCixcuJCJEyfyySef4ODgQK9evQDM5ji0NG7kyJF4eXmxbNky3nvvPWxtbWnYsCGTJk264/NN3k5OTk68+eabPP3007z++uusXLnSbPX4O2Xs2LG4uLiwefNmVq1aRUBAAN26daN9+/b069ePHTt2UKdO8RURvby8WLx4MR988AEbNmxg8eLFBAYGMmzYMIYMGXLf9FoVuZfY2NkS9mwHjkfvIu77fRgMBjyrBlD1scbYu/wxnC7jfDKHvoohuG19U3HS0rYiIiIlsbe15bXOnZi/YydrfvsNG4OBOoGBDGzaFPer5ryPT05m5pat9IxoaCpOWtq2mr8f/+rUiaW//MLSn3djMECN8uUZ/vBD1LiqN2SN8uV5q2sXFu/6mZV7fiW/oIAgby+GRz5Eyxo17tpzIiLyZ2Yw3sxyzWIVkZGRBAUFlboStojcfn23TLR2CiIi8hc2a58K+iIiYj3eI0bdOOg+Yu3Pd4se/qdVz3+vUnciERERERERERERsQoN65Z7Un5+PomJxVd6LYm7uztOVw3RuJclJiaWuqjL1ZycnHB3d78LGVnmfs1bRERERERERO5tKk7KPSkhIYG2bdtaFDthwgR69OhxhzO6PZ544gni4+NvGNe9e3fefffdu5CRZe7XvEVERERERETk3qbi5H1k8+bN1k7hrvHz82PevHkWxVavXv0OZ3P7TJo0iezs7BvG+fv734VsLHe/5i0iIiIiIiIi9zYVJ+We5OjoSPPmza2dxm0XERFh7RRuyv2at4iIiIiIiIjc27QgjoiIiIiIiIiIiFiFipMiIiIiIiIiIiJiFSpOioiIiIiIiIiIiFWoOCkiIiIiIiIiIiJWoeKkiIiIiIiIiIiIWIWKkyIiIiIiIiIiImIVKk6KiIiIiIiIiIiIVag4KSIiIiIiIiIiIlah4qSIiIiIiIiIiIhYhYqTIiIiIiIiIiIiYhV21k5AROReNmufo7VTEBGRv7C/hWZbOwUREfkLW2TtBOQvQT0nRURERERERERExCpUnBQRERERERERERGrUHFSRERERERERERErELFSREREREREREREbEKFSdFRERERERERETEKlScFBEREREREREREatQcVJERERERERERESsQsVJERERERERERERsQoVJ0VERERERERERMQqVJwUERERERERERERq1BxUkRERERERERERKxCxUkRERERERERERGxCjtrJ/BXNWbMGFasWHHdmLZt2zJz5sy7lFFxkZGRBAUFMX/+fACioqKIj49n8+bNdy2H23HOjRs3smTJEvbt20dWVhYVKlSgZcuWDBo0iEqVKll0jKLf18GDB29L3M2qVavWdfcXvWbi4uJo27Ztsf329vb4+PjQokULRo0aRUBAAECp8QaDAXd3d6pWrcqAAQPo0qXL7bkQEblnnU+9zH937OB/Z84A0CA4mKhmTfFwdrb4GB9/H0NCcjJvdHm82L7fTp9mxe49HLt4ERuDgRr+/vRu3Iga5cubxR1IOMviXbs4euECbo6ONKpcmScaNcLD2enWLlBERO4LOWmZHN/wM0mH4inIzcOzagWqdmqCs497mY5zautvnN11iCaje92Wc2SnZrD7/ZX4PFCJWk+0KvN1iYhIcSpOWtmrr76Kt7d3ifsqVKhwl7O5vqFDh5KZmWntNCyWk5PDK6+8QnR0NPXq1WPw4MF4enpy+PBhVqxYwbJly5g0aRLt2rWzdqplUrVqVYYOHVrivmtfM40aNaJ3796mx3l5eRw5coQFCxawfft2Vq9ejYeHR6nxRqOR06dPs2jRIkaPHo2trS2dOnW6zVckIveKy1lZjFu7lvyCAh6vX58Co5G1sbGcTkzk7e7dsLO1veExthw4yObfD/BAhYBi+/53JoH31m+gorc3fRs3Jt9YwKb9/+OtNWv5d5fHqe7vfyXuDBOi1+Pi4EC3BuHYGGxYv3cv+8+c4c1uXXFzdLzt1y4iIveOgrx89n/+DZkXUwhqWRdbRwfif9hH7MfraTiiK/Yult0HEg/Fc+rb33DwKP4F282e48iqbeRl5tzS9YmIiDkVJ62sXbt2VKxY0dppWKRFixbWTqFMJk6cSHR0NKNHj2bw4MFm+4YOHcrgwYN58cUXWbZs2Q17JN5LfH196dq1q0WxlSpVKjG2UqVKvPnmmyxatIghQ4bcML5Hjx507NiRDz/8UMVJkT+x6Ni9JKal816vnlS88sVZdX8/xq9bz3eHDtH2gQdKbVtQUMCKPb+y7JdfSo35Yvt2fFxdGdetG472hW9BWteowctLvmLxrp/5V6eOAHz24zYMBgNvdu1CgKcnAI1DQhizbBkrd+9hYLOmt+uSRUTkHnRuzxHS4i8R+swjeFcPBMCnVhC7P1hF/A/7CXmk4Q2PkfDTQY6u2Ykxv+C2nePcnqMkHTpzC1cmIiIl0ZyT8qd0/Phx/vvf/9KpU6dihUmAcuXK8f7772MwGHj77betkKF1dexYWADYvXu3RfFBQUE0btyYo0ePkpaWdidTExEr2nb0KHUCK5gKkwBhFStSwcuT7UePldouJy+PV5evYOnPv9CyRg18XF2KxaRlZ3Pq0iWaVq1qKkwCeLq48ECFChw6ew6AC5cvczoxidY1apgKkwBB3l40DA7m+0OHb8eliojIPexC7HGcyrmbioYALn5eeFWrwIXY0u9HRfbO3ciRldvxqhaAa6DPbTlHzuUMjq3dSXBk/Zu4IhERuR4VJ+8T69evp1u3btSrV4/OnTuzZcsWnn32WaKiokwxkZGRZo9L2240Glm4cCFPPPEEDRo0ICwsjEcffZSPPvoIo9FYag5RUVFERkYChXMU1qpVq9Sf6dOnm9odOXKE4cOH06hRI+rXr0/fvn2JiYkpdvxt27bRt29fwsPDadeuHV999dVNPVcAq1atwmg0MmDAgFJjgoODadeuHbt27eLs2bOm7fv27eOZZ56hQYMGtGrVijlz5pT4vFgSZzQamTFjBh06dCAsLIzmzZszevRoEhISbvrabgcbm8L/+vn5+Ra3cXEpLDZc7zVSkuXLl1OrVi02btxIZGQk9evXN70+Tp48ySuvvELr1q0JDQ2lSZMmDB06lMOHzYsPOTk5TJ8+nUceeYR69erRoUMHPvroI7P8s7Oz+c9//kNkZCShoaG0bduW999/n5wcDbsRsURadjbnUy9Txc+32L4QX1+OX7xYatvc/HwycnIY1a4twx5+yPQ35mou9vZM6dObTvXCiu27nJWFrY0BgMT0dAAq+RT/MFne04PLWVlc0pckIiJ/amlnLuEWWK7YdtfAcmQlppGbmX3d9lnJaVTr0pS6g9pj52h/W85xeOV2HL1cqdg6tAxXIiIiltCwbitLTU0lMTGxxH2enp7Y2tqycuVKXnnlFcLCwhg9ejTHjh1j5MiR+Pj4EBwcXOZzTps2jdmzZ9O9e3d69+5Neno6K1euZMqUKbi6ul63oFfEx8eHiRMnFts+ffp0zp49S6tWhZNDHzx4kP79++Pr68vzzz+Pvb09a9euZciQIUyZMsXUg2/btm0899xzhISE8OKLL5KYmMg777yDwWAodU7O6/n111+xs7MjLKz4h+CrNW3alOjoaH755Rc6derE4cOHiYqKwsPDg2HDhpGbm8vcuXOLFbgsjZs9ezYffvghAwYMoFatWsTFxfHFF1+wb98+1q5di60F87ddKzc3t8TXjL29Pe7ulk0Qvn37dgDq1KljUXxmZia7du2iYsWKFp/jWv/6178YOHAgbm5uhIeHc/HiRXr37o2bmxsDBw7E29ub33//nSVLlrB//342b96MvX3hm8nhw4fz/fff8/jjj/P0008TGxvLlClTuHTpEq+++ir5+fk8//zz7N69m969e1OtWjX27dvH7Nmz+f3335k1axYGg+Gm8hb5q0i6UhT0cXEtts/bxYWM7BzSs7NxLWG+RxcHB6b17YNtCUXJIjY2NlS4qidkkVOXLnHo3DnqXZnixNGu8K1JZm5usdjLWVkAJGdkUs7NzYKrEhGR+01+Ti75mbk4eBTvhe/gVjh3ZHZyOvbOpc87GTGqGzbXeZ9d1nOc//UoSYfiCP9b5+seV0REbo6Kk1bWvXv3UvetXLmSmjVrMnHiRKpWrcqXX36Jg4MDULgoyttvv13m4mRubq5puPO7775r2t6rVy+aNWtGTEyMRcVJFxeXYnMTfvLJJ5w+fZo33niD8PBwAN5++218fHxYsWKFqefdwIEDGTRoEO+88w7t2rXDwcGByZMn4+fnx+LFi3G78oGzefPmDBo06KaKkxcuXMDT09P0fJXG/8riC+fPnwcw9ehbtGiRaXGZDh060K1bN7N2lsatWbOG1q1b89prr5m2VahQgYULFxIfH39TxeU9e/bQrFmzYtubNGliWlm9SE5OjlkhMyUlhT179jB58mRcXV3p16/fdePz8vI4ffo0M2fOJDExkTFjxpQ53yKdOnXixRdfND3+6KOPSElJ4csvv6RatWqm7a6urnz00UccOnSIunXr8t133/H999/z0ksvmRYC6tevH7m5uSxYsIDhw4fzzTffsH37dj755BNTYRygXr16vPHGG3z77bf33cJHIndbUTHQwa74WwOHKx/EcvLySixOGgwGbG/iC4Cs3FxmbtkKQJcr942K3t44O9jz0/HjdA2vb/piIScvj9i4+MJ/5+eV+VwiInJ/yMsqvB/Z2he/HxVtK8gp/gXW1W5UQCzLOXLSMjm69icqtgorsaeliIjcOhUnrWzSpEn4+hYfQgeFw4737t3LpUuXGDJkiFmhrU+fPmZDpy1lb2/Ptm3byL2mR0pSUhJubm5kZGSU+ZgAMTExTJ06la5du5qKm0lJSfz0009ERUWRlZVF1pUeLwDt27dnwoQJ7N27l5CQEPbv38/gwYNNhUko7NVYq1atm5rj0Gg0WtQr0e7Kh3Cj0UhBQQExMTG0adPGbNXratWq0bJlSzZv3gxgcRxAQEAAO3fu5PPPP6dTp074+vrSt29f+vbtW+ZrKlKrVq0Si4RXr7pdZN26daxbt67Y9ho1ajB27FgCAgIsiq9atSpTp069pcVwGjdubPZ4yJAh9OzZk3Ll/niTl5WVZRoOWvRa3Lp1KzY2NgwcONCs/SuvvMLf/vY3XF1d2bRpEz4+PtStW9esuNqmTRtsbW3ZunWripMiN1A0ZcPd6mWcnZvH5I2bOHkpka4N6lMnsPDvqZ2tLZ3qhbH0591M37yFbuGFq4Yv2fUz2VfuXdfroSkiIn8S17sd3a57lQXnOLJqO/ZuTpprUkTkDlJx0soaNmx43dW6z5wpXA2uUqVKZtsdHByKbbOUvb09W7du5dtvv+X48eOcPHmSlJQUoOzzCQKcOHGCv//979SoUYO33nrLtP306dMAzJ8/v1iPviIJCQmmobsl9SKsWrUqsbGxZc7J39+f06dPk5eXZypAlqSox6S/vz/JyclkZGSUmkdR0dHSOIB//vOf/O1vf2P8+PFMmDCBunXrEhkZSe/evfHz8yvzdUHhcP/mzZtbFNuyZUueffZZoLDg4ODgQIUKFQgMDLxh/NmzZ/nkk09ITU1l7NixPPjggzeVb5Gri5BFcnNz+c9//sP+/fs5deoUcXFxpnkkCwoKV1aMj4+nXLlyZoVrAD8/P9NzeOrUKRITE0vsUQpYfY5PkfuB85W/xTl5xXsl5lz5f+l8g97olkrPzmbiho0cOnuOh2rXpM81X170aNiQ9OwcNuzbx/YjRwFoWDmYx+vXZ9FPu3ArofemiIjcf/Jz88jPMp8WydbhSs/FvOJzo+fnFt6jbEuZR9JSlp7j/G/HuLT/FHWi2pKfnUt+9h8dPIx5BeSmZ2HrZK+h3iIit0jFyftESUVDRws/nF29aIjRaGTYsGFs2bKFiIgIGjRoQJ8+fWjcuDGDBg0qc15paWkMHz4cg8HAjBkzcHJyKnbeAQMGlNprrXr16pw7V7hC69U9K4sUFajKqlGjRmzfvp3Y2FgaNmxYatzPP/+MwWCgQYMGpm2W5mFJXO3atdm4cSMxMTFs2bKFmJgYPvjgA+bNm8fixYvNhjPfCX5+fhYXMkuKb9u2Lb169eK5555j3rx5RERE3HQu1y6Q8fPPP/Pss8/i4uJC8+bN6dmzJ3Xq1OHUqVNmRW5LFu3Jz88nJCSEf//73yXuL6lXqYiYK5rDMbmEHvRJGRm4ODrgZH9rHwYBUjMzGR+9npMXL9H2gdo826plsd6aBoOBJ5s3o2t4fRJSUinn5oqfuzuLf9qFjcGAr+abFBH5U7i49wSHlv5gti24bX1sne3JSS1+P8q5nAlQ4lyRZWHn5GDROeJi9gHwv/nfFou7EHucC7HHCRvcAa+qFYrtFxERy6k4eY8LCQkBCnsnXuv06dOm/VBY/Ll2QZa8vDySkpJMvfx+/vlntmzZwrBhwxg1apRZXHJycpl6YxqNRkaPHs3Ro0eZM2dOsbZBQUEA2NraFiuQHTlyhLi4OJydnQkKCsJgMHDy5Mli54iLi7M4n6t17tyZmTNnMnfu3FKLk2fPnmXDhg1EREQQFBSE0WjEzc3thnl4e3tbFJefn8+BAwdwc3Ojbdu2tG3bFoDo6Gheeuklvvrqq1uaw/Fu8PT0ZMqUKfTt25eXX36ZtWvXFuvBeLM++OADnJycWLduHT5Xrco7e/Zss7jAwEC2bdtGeno6rq5/LNSxf/9+5s6dy9/+9jcqVqzIvn37aNq0qVkRNDc3l6+//rrY8HURKc7V0RE/d/cSV+U+cfEiVW+yt/fVMnNyTIXJx8JCebJ5yb2dtx05ipeLM3UCA/F0+eMD6O8JCVTx8y1xXkwREbn/eFUPJPSZR8y2Ofm4k3LiHGlnii8AmZ5wCady7tddDMdSboHlbniOSq3D8A8v3plg39xNeNUIpGKrUFwr+BTbLyIiZaNJm+5xtWvXJjg4mEWLFpnNB7lhwwbTkOQivr6+HD9+3KxH3+bNm8nOzjY9Tk5OBgp7LF5tyZIlZGZmklfCcL7SvP/++2zevJkXXniBNm3aFNvv7+9PaGgoK1asMPWOhMKC0f/93/8xcuRI8vLy8PHxoXHjxqxevZqLV30o3rNnD/v377c4n6uFhITw9NNP8/XXXzNr1qxi+5OTkxk5ciS5ubm8/vrrQGFPnfbt2xMTE8Phw4dNsXFxcWzdutX02NK4/Px8nnzyScaPH2927vr1C+erubYn4b0qLCyMZ599loSEBCZNmnTbjpucnIyPj49ZYfLy5cusWLEC+KPHZJs2bSgoKOCrr74ya79w4ULWr1+Pr68vkZGRJCcns3DhQrOYRYsW8dJLL5lWJxeR62tSJYR98fHEJyWbtu2NiyMhOYXmt6Gn99wffuTkxUs8ep3CJMC62Fjm/bCN/Kt6o+8+eYqDZ8/xSN06t5yHiIjcGxw9XPCuHmj24+zjjm/dymReSCHpyBlTbMaFZJKPJuBXr8ptObcl53Dx9yqWn3f1wumRHNyd8a4eeFsKpSIif3XqemBl33zzzXVXo+7atStjx45lyJAh9OnTh549e3Lx4kXmz59vmquxSOfOnRk3bhyDBw+mS5cunDx5kiVLlph6MAI0aNAANzc3JkyYQHx8PJ6enuzcuZPo6GgcHR1JT0+3KO+tW7cye/ZsqlWrRs2aNVmzZo3ZkGZfX19atGjBa6+9xqBBg+jZsyf9+vXDy8uLdevW8dtvv/Hyyy+brv2VV15hwIAB9O7dmwEDBpCZmclnn312Uyt1F3nppZdISUlh2rRpbNmyhQ4dOuDh4cGxY8dYuXIlWVlZTJkyhdq1a5vajBo1iq1btzJw4ECeeuopbG1tmT9/Pq6urma9Ui2Jc3BwICoqilmzZjF8+HBatWpFVlYWixcvxtnZmZ49e970td1tw4YNY/369SxevJguXbrc0vDuIq1bt+bjjz9m1KhRtGzZkgsXLrB06VJTgbrotRgZGUnLli159913OXz4MGFhYezZs4eVK1cyfPhwvLy86NWrFytWrGDcuHHs37+fevXqcejQIRYvXkzdunXp0aPHLecr8lfQJbw+MYcP8866dXSqF0ZOXj5rY2Op4udLyxqFX2qdS03l0Nlz1AwoT/kyTJkQl5TED4eP4OLoQEi5csQcOlwsplXNGlfyCGfa198wccNGGoeEcDHtMtGx+6hXqSItr/lyTURE/nwCGtXkzPYD/L5wCxVbhWJrb0dczD4cPFwIalHXFJeTlknS4TO4VfDGNaBsPRgtPYeIiNx5Kk5a2YQJE667v2vXrrRo0YK5c+cydepUpkyZQmBgIBMmTGDy5Mlmsf379yc5OZmlS5cybtw4ateuzYwZM5g7d66p16Wvry8fffQRkydPZtasWTg4OFClShWmTp1KbGwsX3zxBRcvXix1BfEie/fuxWg0cvToUUaMGFFsf5MmTWjRogUNGjRg4cKFTJ8+nXnz5pGXl0eVKlV499136d69uyk+NDSU+fPnM2XKFGbMmIGHhwcvvPAC+/btY/fu3ZY+nWbs7Ox4++23eeSRR1iwYAGfffYZqampBAQE0LlzZ6KioootalOhQgUWLlzIxIkT+eSTT3BwcKBXr14AzJkzp8xxI0eOxMvLi2XLlvHee+9ha2tLw4YNmTRp0h2fb/J2cnJy4s033+Tpp5/m9ddfZ+XKlWarx9+MESNGkJ+fT3R0NFu2bMHf35/mzZvzzDPP0KlTJ3bs2EH79u2xsbFh5syZfPjhh6xZs4bVq1cTHBzMG2+8Qb9+/YDCQvBnn33Ghx9+yMaNG1m9ejX+/v7069eP4cOH4+zsfDueBpE/PQ9nZ/7d5XG+2Ladr37+BUc7OxpVrsyApg9if2Wy/wMJZ5m99TuGPtSmTMXJ368sTJWRncPsrd+VGFNUnHywahVGtI1k9a+/Mn/7Djydnelcvx5dw8Pvm17nIiJy82zsbAl7tgPHo3cR9/0+DAYDnlUDqPpYY+xd/uipmHE+mUNfxRDctn6Zi5OWnkNERO48g/FmlmeWe0JkZCRBQUGlroQtIrcuafr71k5BRET+wv4Wmn3jIBERkTtk0cP/tHYKt1XfLROtev4/2/N5u6j7gYiIiIiIiIiIiFiFhnXLfSE/P5/ExOKr6ZXE3d0dJyenO5zR7ZGYmGha+OV6nJyccHd3vwsZWeZ+zVtERERERERE7i0qTsp9ISEhgbZt21oUO2HChPtmAZQnnniC+Pj4G8Z1796dd9999y5kZJn7NW8RERERERERubeoOHkf27x5s7VTuGv8/PyYN2+eRbHV76OVXCdNmkR29o3nkvL3978L2Vjufs1bRERERERERO4tKk7KfcHR0ZHmzZtbO43bLiIiwtop3JT7NW8RERERERERubdoQRwRERERERERERGxChUnRURERERERERExCpUnBQRERERERERERGrUHFSRERERERERERErELFSREREREREREREbEKFSdFRERERERERETEKlScFBEREREREREREatQcVJERERERERERESsQsVJERERERERERERsQoVJ0VERERERERERMQq7KydgIjIvexvodnWTkFERP7CZu1ztHYKIiLyV/awtROQvwL1nBQRERERERERERGrUHFSRERERERERERErELFSREREREREREREbEKFSdFRERERERERETEKlScFBEREREREREREatQcVJERERERERERESsQsVJERERERERERERsQoVJ0VERERERERERMQqVJwUERERERERERERq1BxUkRERERERERERKxCxUkRERERERERERGxChUnRURERERERERExCrsrJ1AWYwZM4YVK1ZcN6Zt27bMnDnzLmVUXGRkJEFBQcyfPx+AqKgo4uPj2bx5813L4Xacc+PGjSxZsoR9+/aRlZVFhQoVaNmyJYMGDaJSpUoWHaPo93Xw4MHbEnezatWqdd39Ra+ZuLg42rZtW2y/vb09Pj4+tGjRglGjRhEQEABQarzBYMDd3Z2qVasyYMAAunTpcnsu5DabPn06M2bM4Ntvv6VixYplbp+cnMx7773H1q1bsbW15dFHH+Uf//gHTk5OdyBbEblbshIvc2z9LlKOnQXAp3ZFqjzWGAc359vSLuXEOU5s2k1a/EXsnB0o90Awlds1wN7V/G/H5fiLnNj4C6mnzmMwGPCsEkCVxxrj4ud5G69WRETuJ6mZmSzYsZNfT58mJy+fukGBRDVrSnkPjzIdZ8XuPWw+cIDp/ftdNy4pPZ3RXy0lonJl/vbwQzefuIiIXNd9VZws8uqrr+Lt7V3ivgoVKtzlbK5v6NChZGZmWjsNi+Xk5PDKK68QHR1NvXr1GDx4MJ6enhw+fJgVK1awbNkyJk2aRLt27aydaplUrVqVoUOHlrjv2tdMo0aN6N27t+lxXl4eR44cYcGCBWzfvp3Vq1fjcdUboGvjjUYjp0+fZtGiRYwePRpbW1s6dep0m6/IuoxGIyNHjuTAgQM8//zzXLx4kXnz5mE0Gnn99detnZ6I3KTcjGxiP92AMb+Aiq1DMRqNxMXsI/1sEuHDOmNja3tL7ZKPJbBv3tfYOTtQ6aF6GAwG4rf9j+RjZ6k/tCP2zo4AZFxIIfbjDdg62BH8cH0A4n/8H799FE3DEV1x9HC5O0+IiIjcM3Lz83l3/QYSklPoVC8MZwd71sXu5a01a3m3Zw/cLfyC/LfTp1m+ezdeLje+l3wS8wPp2Tm3mrqIiNzAfVmcbNeu3U319LKGFi1aWDuFMpk4cSLR0dGMHj2awYMHm+0bOnQogwcP5sUXX2TZsmU37JF4L/H19aVr164WxVaqVKnE2EqVKvHmm2+yaNEihgwZcsP4Hj160LFjRz788MM/XXHy5MmT7Ny5k9GjR/Pss88CcPjwYdatW6fipMh9LP6H/WSnZBAxsisu/l4AuFf0Y9/cTZzbfYQKjUv+u29pu6NrdmKwMVD/+Y44lyv8kqdc3WB2f7Ca01tjqfpY48LjbfsfBTl51B/yGG6B5QDwqhbIrzPXEv/jflOciIj8dXx/6BDHL1zk/zo9RtiVz4LhlYJ5ZelSomP30qfJje8N3/zvdz7fto28/IIbxsYcOkxsXNwt5y0iIjemOSfF5Pjx4/z3v/+lU6dOxQqTAOXKleP999/HYDDw9ttvWyFD6+rYsSMAu3fvtig+KCiIxo0bc/ToUdLS0u5kanddVlYWAGfOnDFty87Oxt7e3lopichtcCH2GF5VAkwFRgDv6oE4+3lwIfb4LbXLSkoj41wy/g2qmQqTAC5+Xvg8UIlzu4+YtmUlXsbO1dFUmARwr+iLnYsjGeeSbsOViojI/Wb70WOU9/QwFSYBgry9qBsUxLajR2/Y/p110Xwa8wN1AgMJ8S133djkjAw+37aN7g0b3HLeIiJyY3/q4uT69evp1q0b9erVo3PnzmzZsoVnn32WqKgoU0xkZKTZ49K2G41GFi5cyBNPPEGDBg0ICwvj0Ucf5aOPPsJoNJaaQ1RUFJGRkUDhHIW1atUq9Wf69OmmdkeOHGH48OE0atSI+vXr07dvX2JiYoodf9u2bfTt25fw8HDatWvHV199dVPPFcCqVaswGo0MGDCg1Jjg4GDatWvHrl27OHv2rGn7vn37eOaZZ2jQoAGtWrVizpw5JT4vlsQZjUZmzJhBhw4dCAsLo3nz5owePZqEhISbvrbbwcam8L9Lfn6+xW1crgwXud5rpCTLly+nVq1aHDhwgJEjR9KgQQOaNm3Ke++9R35+PitWrKBDhw6Eh4fTt29fDhw4YNZ+//79jBgxgubNm1O3bl2aNWvGyy+/bPY7K0lKSgrjxo2jVatWhIaG8thjj/H5558Xy79mzZpUrVqVxYsXs3PnTmbOnMlPP/1Ev37F5+2ZPn06YWFhfP3117Ro0YIGDRqYXqeW5pmWlsb48eN56KGHqF+/Po8//nix17qluYtIyXIzs8lKTMMtqPgHNrcK5Ug7c+mW2uWkpgPgWr74tCzOPu7kpWeTnVIY41zOg7yMbHLS/pgWJTcjm7ysHOxvMPeliIj8OR2/eJEq5Yrfa6r4luN86mXSsrOv2/7i5cs807IFYx57FOcbfKH+ScwP+Lq50aV+/VvKWURELHNfDutOTU0lMTGxxH2enp7Y2tqycuVKXnnlFcLCwhg9ejTHjh1j5MiR+Pj4EBwcXOZzTps2jdmzZ9O9e3d69+5Neno6K1euZMqUKbi6ul63oFfEx8eHiRMnFts+ffp0zp49S6tWrQA4ePAg/fv3x9fXl+effx57e3vWrl3LkCFDmDJliqkH37Zt23juuecICQnhxRdfJDExkXfeeQeDwVDqnJzX8+uvv2JnZ0dYWNh145o2bUp0dDS//PILnTp14vDhw0RFReHh4cGwYcPIzc1l7ty55OSYz89iadzs2bP58MMPGTBgALVq1SIuLo4vvviCffv2sXbtWmxLmfPsenJzc0t8zdjb2+Pu7m7RMbZv3w5AnTp1LIrPzMxk165dVKxY0eJzXGvIkCFEREQwZswYNm3axNy5czl06BAHDx5k0KBBGI1GZs2axciRI4mOjsbOzs70+qlcuTJDhgzB2dmZ3bt3s2rVKk6ePMnSpUtLPFdGRgYDBw4kISGB/v37ExAQwI4dOxg/fjwnTpzg3//+tynWxsaG8ePHExUVxVNPPUVBQQFPPvkkf/vb30o8dl5eHm+88QZPP/00OTk5REREWJxnTk4OAwYM4PDhw/Tu3ZvatWvz3Xff8dprr5GZmcmTTz5ZptxFpGQ5KRkAOJQwn6ODhzP5mbnkZeZg5+xwU+1s7AvfcuRn5xaLy80o/ECZczkTR09XKrYOJfHAaQ4u/p6qnQqH6R1b/zM2tjYENbfsb7CIiPx5ZOXmkpGdg7era7F9Xs6F959LaWm4OTqWeoxJvZ7AzoLPET8cPsyvp07xdvduFsWLiMituy+Lk927dy9138qVK6lZsyYTJ06katWqfPnllzg4FH6Qqlq1Km+//XaZi5O5ubmm4c7vvvuuaXuvXr1o1qwZMTExFhUnXVxcis1N+Mknn3D69GneeOMNwsPDAXj77bfx8fFhxYoVpp53AwcOZNCgQbzzzju0a9cOBwcHJk+ejJ+fH4sXL8bNzQ2A5s2bM2jQoJsqTl64cAFPT0/T81Uaf39/AM6fPw9g6vG5aNEi0+IyHTp0oFu3bmbtLI1bs2YNrVu35rXXXjNtq1ChAgsXLiQ+Pv6mist79uyhWbNmxbY3adLEtLJ6kZycHLNCZkpKCnv27GHy5Mm4uroW6x14bXxeXh6nT59m5syZJCYmMmbMmDLnWyQ8PJz//Oc/QOGw8mbNmrFt2zZWr15NjRo1AEhPT2f27NnExcUREhLCl19+icFg4IsvvsDLywuAPn36kJuby7p160hOTjZtv9qnn37K8ePHzeYT7d+/P1OnTmXOnDn06dOH2rVrA4XDur/99luMRiMFBQWEhoby6quvYjAYSryOgoICnn76abO5Ov/9739blOfSpUs5cOAAkydP5vHHHzfFDRw4kI8++oiBAweWKXcRKVl+TmHR0Na++FsDG7srhcXcvGLFSUvbuZT3wtbJnov7T1KxTZjp70V+bh5Jh+MBKMjNA8DJy41KD9Xj6Jod7P5g9ZWDGXig/0NmQ71FROSvIfNKZwZHu+L3Gocr27Jyi3/5dTVLCo0pGRl8vm07j9evT4iv701kKiIiN+O+LE5OmjQJ31JuFsHBwezdu5dLly4xZMgQs0Jbnz59zIZOW8re3p5t27aRe80NLykpCTc3NzIyMsp8TICYmBimTp1K165dTcXNpKQkfvrpJ6KiosjKyjLN7QfQvn17JkyYwN69ewkJCWH//v0MHjzYVJiEwl6NtWrVuqk5Do1Go0W9Eu2uvAEoKkzFxMTQpk0bs1Wvq1WrRsuWLdm8eTOAxXEAAQEB7Ny5k88//5xOnTrh6+tL37596du3b5mvqUitWrVKLBJevep2kXXr1rFu3bpi22vUqMHYsWMJCAiwKL5q1apMnTr1lhbDuXpVdHd3d3x8fHB1dTUVJgHT4lAXLlwgJCSEsWPHMmrUKLMCZFpaGo5XvknOyMgosTi5adMmatasiZ+fn1mxtV27dsyZM4ctW7ZQu3ZtsrKyeO6559i1axfPPPMMx48fZ/PmzcyaNYvhw4fz/fffk52dzUMPPWQ2B2XjxuaTlFua59atW/Hx8aFz586mOIPBwMSJE8nLy8NgMFicu4hcR9EUCCV/x3DL7WxsbQlqUZdT3/7KwcXfU+mhMIwFRk5+s4eCnMKipMG2cPqME1/v5vSWWDyrlCegSS2MBUYSdh7gwMLveKD/w5R7oFIZkxQRkT+D0r4Iv9E+S336w494OjvTI6LhLR9LREQsd18WJxs2bHjd1bqLFumoVMn8w4uDg0OxbZayt7dn69atfPvttxw/fpyTJ0+SkpIClH0+QYATJ07w97//nRo1avDWW2+Ztp8+fRqA+fPnF+vRVyQhIcFU9CmpF2HVqlWJjY0tc07+/v6cPn2avLw8UwGyJEU9Jv39/UlOTiYjI6PUPIqKjpbGAfzzn//kb3/7G+PHj2fChAnUrVuXyMhIevfujZ+fX5mvCwqH+zdv3tyi2JYtW5pWoDYYDDg4OFChQgUCAwNvGH/27Fk++eQTUlNTGTt2LA8++OBN5Vvk2iK8nZ0d5a6Za6eooFxQUGDKOSkpiTlz5nDw4EFOnTrFmTNnTK/TorhrnTp1iqysrBJ7mAKmOT/nzZvHTz/9xEsvvcTQoUNJSUmhe/fufPjhhzRp0oRp06YRHx/Ptm3bzNpfm7eleRb1lr32DWdQUFCZcxeR0tk6Ft5XCnKLz6tbkFdYPLRzKj5HV1naBUfWJy8rhzPb/mdaKMfngYpUbB3KiY27sXN2JC8zh7iYfbhVLEfYsx0wXJnv169eCL/OXMvhFT/iXaMXNnYaaici8meUk5dHxjXTPjle+eyTc+W+cm08gIv99Ud/3ci2I0fZdfwE/3j0ETJzcsnkj44puQUFpGZm4eJgr6HeIiJ3wH1ZnLRUSUVDx+vMQ3K1qxc9MRqNDBs2jC1bthAREUGDBg3o06cPjRs3ZtCgQWXOKy0tjeHDh2MwGJgxYwZOTk7FzjtgwACzXnNXq169OufOnQMw61lZpLTi0400atSI7du3ExsbS8OGpX9b+PPPP2MwGGjQ4I/V6yzNw5K42rVrs3HjRmJiYtiyZQsxMTF88MEHzJs3j8WLF1OtWrWyXFaZ+fn5WVzILCm+bdu29OrVi+eee4558+YRERFx07mU1JP1Rt8KR0dH849//AN/f3+aNm1K69atCQ0N5YcffmDOnDmltsvPzyciIoIXXnihxP1Fw/m//fZbXFxcTAVZT09Ppk2bRv/+/XnhhRdITk6mV69exXIvWlCorHnm5+ff8JotzV1ESufoWdgLP+dyZrF9OamZ2DrbY+tQvDhZlnYGg4FqnZpQqU0YmRdTcfR0xcnbjRObdoONAUcvVzLOJWPMK8CvXlVTYRIKe17616/G8Q0/k3EhBbcKPrflukVE5N6y/egxZm/9zmxbz4iGuDg6kFTCiLWibV6uxec+LovfrnQSmbxhU/Gcjhxl+5GjvP54J+qU0mFBRERu3p+yOBkSEgIU9k681unTp037obBgcu2CLHl5eSQlJZl6+f38889s2bKFYcOGMWrUKLO45OTkMvXGNBqNjB49mqNHjzJnzpxibYt6g9na2hYrkB05coS4uDicnZ0JCgrCYDBw8uTJYueIi4uzOJ+rde7cmZkzZzJ37txSi5Nnz55lw4YNREREEBQUhNFoxM3N7YZ5eHt7WxSXn5/PgQMHcHNzo23btrRt2xYoLGS99NJLfPXVV7c0h+Pd4OnpyZQpU+jbty8vv/wya9euNRt6f6dNmTKFypUrs2zZMtOcpVA4l+f1BAUFkZ6eXux1l5KSwvbt26lcuTLwR9H/6uJjvXr1GDNmDOPGjQPgqaeeum15BgYGcvDgwWLtv/vuO6Kjoxk9erTFuYtI6eycHXD0cStxVe60hEu4B5U8nUpZ2p3/7RgO7s54Va2Aw1WrbqecOItbUDls7e2wsbtSkCwo/gWj0VhQ9I+yXJqIiNxH6lUM4v86PWa2zd/DgwNnz3Li4sVi8ScuXaK8p8d1F8OxxOPh9WlZo3qx7ePXrSesYhCP169HcAmrhYuIyK2zuXHI/ad27doEBwezaNEis/kgN2zYYBqSXMTX15fjx4+b9ejbvHkz2dnZpsfJyclAYY/Fqy1ZsoTMzEzyShheUJr333+fzZs388ILL9CmTZti+/39/QkNDWXFihWm3pFQuCjP//3f/zFy5Ejy8vLw8fGhcePGrF69motX3aT37NnD/v37Lc7naiEhITz99NN8/fXXzJo1q9j+5ORkRo4cSW5uLq+//jpQ2Aumffv2xMTEcPjwYVNsXFwcW7duNT22NC4/P58nn3yS8ePHm527fv36QPHed/eqsLAwnn32WRISEpg0adJdPXdycjKBgYFmBb+EhAQ2bSr8FvjqXsFXi4yM5MCBA3z3nfk31bNmzWLUqFGm39uDDz5IRkYGq1atMou7euh0aVMS3EyerVu35uLFi3z99ddm7T///HO2bt2Kt7e3xbmLyPX51q1M8tEzZFxINm1LOnKGzAup+NWrcsvt4n/cz9E1OynI/6PH/KUDp0k9cZ7ABwvnhXXx98LBw5mzuw+Tn/vH/TU/N49ze45i5+qIS3mvW79YERG5J3m7uhJWsaLZT3kPD5pUCeFMcgp7r+rYEJ+UzP74eJrfhpFVFb29i5037MpUYt4uLoRVrHjLBVARESnZfdlz8ptvvrnuatRdu3Zl7NixDBkyhD59+tCzZ08uXrzI/PnzzRbogMLeguPGjWPw4MF06dKFkydPsmTJErP57Bo0aICbmxsTJkwgPj4eT09Pdu7cSXR0NI6OjqSnp1uU99atW5k9ezbVqlWjZs2arFmzxmxIs6+vLy1atOC1115j0KBB9OzZk379+uHl5cW6dev47bffePnll03X/sorrzBgwAB69+7NgAEDyMzM5LPPPruplbqLvPTSS6SkpDBt2jS2bNlChw4d8PDw4NixY6xcuZKsrCymTJlitrjIqFGj2Lp1KwMHDuSpp57C1taW+fPn4+rqatYr1ZI4BwcHoqKiTIurtGrViqysLBYvXoyzszM9e/a86Wu724YNG8b69etZvHgxXbp0uaXh3WXRunVroqOjeeONNwgLCyMuLs5USAdKfb0+//zzbNq0ieHDh9O3b19q1KjBL7/8wqpVq2jdujWtW7cGYOjQoaxfv57XX3+dw4cPU7FiRTZs2MDOnTvp1asXZ86cYdGiRdjb25utuH6zefbt25dly5bx0ksvMWDAAKpUqcLWrVv58ccfGT9+PLa2thbnLiLXV7FVKOf3HGXvpxsJahlKQV5e4fyPQeXwDy/84JeZeJnUk+fxqOyPs4+7xe0AKrUO4/cvt/K/+d9Qrk5lspLTiP9hP941A/EPrwqAwcaGao835fcvt/DrrHUERNTAaDRy7pfDZF5IoVavVthovi8Rkb+ch2vXZuO+/Uz75ls616uHo50da2Nj8XZ15bGwUFNcSkYGsXHxVC7no56OIiL3ifuyODlhwoTr7u/atSstWrRg7ty5TJ06lSlTphAYGMiECROYPHmyWWz//v1JTk5m6dKljBs3jtq1azNjxgzmzp1r6nXp6+vLRx99xOTJk5k1axYODg5UqVKFqVOnEhsbyxdffMHFixdLXUG8yN69ezEajRw9epQRI0YU29+kSRNatGhBgwYNWLhwIdOnT2fevHnk5eVRpUoV3n33Xbp3726KDw0NZf78+UyZMoUZM2bg4eHBCy+8wL59+9i9e7elT6cZOzs73n77bR555BEWLFjAZ599RmpqKgEBAXTu3JmoqKhii9pUqFCBhQsXMnHiRD755BMcHBzo1asXgNncgZbGjRw5Ei8vL5YtW8Z7772Hra0tDRs2ZNKkSXd8vsnbycnJiTfffJOnn36a119/nZUrV5qtHn+njB07FhcXFzZv3syqVasICAigW7dutG/fnn79+rFjxw7q1KlTrJ2XlxeLFy/mgw8+YMOGDSxevJjAwECGDRvGkCFDTL1WPTw8WLhwIVOmTGHZsmVkZmZSvXp13nvvPbp160ZGRgajRo267qJVZcnTycmJ+fPnM23aNNatW8fly5epVq0a06ZN47HHHitT7iJyfQ5uztR77jGOrfuJk9/swdbBjnIPBFPl0UamBWhST5zj0NIfqPlES1Nx0pJ2AL6hIdTq05q47/dyLPon7N2cqdgqlEpt6pnNL+lbtzJhz3Tg1OZfOfH1LwC4BZaj7qB2+NS8/t8WERH5c7K3teW1zp2Yv2Mna377DRuDgTqBgQxs2hT3q+bwj09OZuaWrfSMaKjipIjIfcJgvJmlpu9jkZGRBAUFWTTsVERujtFovOEiNveLvlsmWjsFERH5C5u1T8NIRUTEerxHjLpx0H3E2p/vFj38T6ue/16l7kQictv9WQqTIiIiIiIiInJn3ZfDusUy+fn5JCYmWhTr7u6O01XDIe5liYmJpS7qcjUnJyfc3d3vQkaWuV/zFhERERERERG5U1Sc/BNLSEigbdu2FsVOmDCBHj163OGMbo8nnniC+Pj4G8Z1796dd9999y5kZJn7NW8RERERERERkTvlL1ec3Lx5s7VTuGv8/PyYN2+eRbHVq1e/w9ncPpMmTSI7O/uGcf7+/nchG8vdr3mLiIiIiIiIiNwpf7ni5F+Jo6MjzZs3t3Yat11ERIS1U7gp92veIiIiIiIiIiJ3ihbEEREREREREREREatQcVJERERERERERESsQsVJERERERERERERsQoVJ0VERERERERERMQqVJwUERERERERERERq1BxUkRERERERERERKxCxUkRERERERERERGxChUnRURERERERERExCpUnBQRERERERERERGrUHFSRERERERERERErELFSREREREREREREbEKFSdFRERERERERETEKlScFBEREREREREREatQcVJERERERERERESsQsVJERERERERERERsQoVJ0VERERERERERMQqVJwUERERERERERERq1BxUkRERERERERERKxCxUkRERERERERERGxChUnRURERERERERExCpUnBQRERERERERERGrUHFSRERERERERERErMLO2gmI9YwZM4YVK1aYbbO3t6dcuXI0adKEIUOGUKNGDdO+qKgo4uPj2bx5891O9bbKyckhKSmJ8uXL37FzREZGAtzXz1VBQQFnzpyhYsWK1k6lmOXLl/Pqq6/yxRdf8OCDD1o7HZE/lazEyxxbv4uUY2cB8KldkSqPNcbBzfm67VJOnOPEpt2kxV/EztmBcg8EU7ldA+xdncoUl5WUxq5JS697rrDBHfCqWuEWrlJERO5V51Mv898dO/jfmTMANAgOJqpZUzycr38fOpBwlsW7dnH0wgXcHB1pVLkyTzRqhIez+X3o2IULLPxpF4fOnsPGYOCBCgEMbNaUQC8vs7jUzEwW/bSLX06eJCcvnyq+5ej3YBNq3MHPECIif1UqTgqvvvoq3t7eAGRmZnLq1CmWLVvGxo0b+fjjj03Fn6FDh5KZmWnNVG9ZfHw8zzzzDM8//zw9evSwdjr3rLS0NJ566inatGnDiBEjrJ2OiNwluRnZxH66AWN+ARVbh2I0GomL2Uf62STCh3XGxta2xHbJxxLYN+9r7JwdqPRQPQwGA/Hb/kfysbPUH9oRe2dHi+PsXR2p2atVsXMU5OVxdM1O7F2dcK3gc0efBxERsY7LWVmMW7uW/IICHq9fnwKjkbWxsZxOTOTt7t2wK+U+9L8zZ5gQvR4XBwe6NQjHxmDD+r172X/mDG9264qbY+F96ExyMm+tWYujnR09GjYAIHrvXsauWsN7T/TA29UVgMycHN5cvYakjAw6hoXh6ujIxv37Gbd2He9070YlH92HRERuJxUnhXbt2hXrHRcVFUXPnj158cUX+eabb3B1daVFixZWyvD2iYuL48SJE9ZO456XnJzM3r17adOmjbVTEZG7KP6H/WSnZBAxsisu/l4AuFf0Y9/cTZzbfYQKjWuV2O7omp0YbAzUf74jzuU8AChXN5jdH6zm9NZYqj7W2OI4Wwd7yjeoVvwca3dizC+gdu/WpmKniIj8uUTH7iUxLZ33evWk4pXOE9X9/Ri/bj3fHTpE2wceKLHdZz9uw2Aw8GbXLgR4egLQOCSEMcuWsXL3HgY2awrA+r37yM7NY2yXxwnx9QUgNCiI11asZF3sXlPc6l9/IyElhdc6d6ZOYGFP/WbVqjJy4SJW//obwyMfvqPPg4jIX43mnJQSVahQgVdeeYXExESWLVtm7XREROQuuBB7DK8qAabCJIB39UCc/Ty4EHu8xDZZSWlknEvGv0E1U8ERwMXPC58HKnFu95EyxZUk/WwiZ7b/TvmIGnhWCbjFqxQRkXvVtqNHqRNYwVSYBAirWJEKXp5sP3qsxDYXLl/mdGISrWvUMBUmAYK8vWgYHMz3hw6btp1LTcXdyclUmASo5u+Hm5Mjp5OSADAajXx/6BDhlSqZCpMAXi4uRDVtSu0Kug+JiNxuKk5KqR599FEcHByIiYkBCntTFs2lCIVzN77zzju0bduW0NBQ2rRpw5tvvklKSoopZsyYMbRv3549e/bQo0cP6tWrx6OPPsrChQuLnW/79u0MHjyYBx98kLp169KqVSveeOMNUlNTzY736KOPsmDBAho3bkzjxo35/vvvLWq/fPlynnzySaBwKHutWn/0AEpJSWHcuHG0atWK0NBQHnvsMT7//HOMRuNteS6XL19OrVq1OHDgACNHjqRBgwY0bdqU9957j/z8fFasWEGHDh0IDw+nb9++HDhwwNR2+vTp1KlTh2PHjhEVFUX9+vWJjIxk5syZ5Ofnm51n//79jBgxgubNm1O3bl2aNWvGyy+/zNmzZ83i0tLSGD9+PA899BD169fn8ccf56uvvgJg586dtG3bFoAZM2ZQq1Yt4uLiLL7WnTt3UqtWLbZt28a//vUvGjduTEREBK+++ioZGRl89913dO3alfr169O1a1e2b99u1v7kyZO88sortG7dmtDQUJo0acLQoUM5fPhwKWcslJ2dzX/+8x8iIyMJDQ2lbdu2vP/+++Tk5Ficu8hfWW5mNlmJabgFlSu2z61COdLOXCqxXU5qOgCu5b2L7XP2cScvPZvslHSL40py4uvd2NjbUbldA4uvR0RE7i9p2dmcT71MFT/fYvtCfH05fvFiie0S0wvvHSUNtS7v6cHlrCwupaUBUMHTk7TsLFKvmqrqclYWGdk5eF2Z0/LC5TQS0zOod2VkmdFoJCs3F4D2deuU2ntTRERunoZ1S6kcHR0JDg42K5Rd7a233mLt2rU8+eSTVKpUicOHD7NgwQJOnjzJ3LlzTXHJyckMHjyYNm3a0KNHDzZt2sTYsWNJTU3l+eefB+CHH37gueeeo2HDhowcORKDwcCPP/7I4sWLSUlJ4f333zcdLyEhgVmzZvHCCy9w/vx5wsPDLWrfuHFjhg4dyuzZs+nTpw8REREAZGRkMHDgQBISEujfvz8BAQHs2LGD8ePHc+LECf7973/ftud0yJAhREREMGbMGDZt2sTcuXM5dOgQBw8eZNCgQRiNRmbNmsXIkSOJjo7Gzq7wv6jRaOTpp5+mRo0ajB49mp07d/L+++9z9uxZ3nrrLQAOHjxI//79qVy5MkOGDMHZ2Zndu3ezatUqTp48ydKlhQtM5OTkMGDAAA4fPkzv3r2pXbs23333Ha+99hqZmZl07NiRV199lQkTJtC+fXvat2+Pz03MqzNmzBiqV6/Oyy+/zE8//cTy5cs5e/Ys//vf/4iKisLd3Z2PPvqIUaNG8c033+Dh4cHFixfp3bs3bm5uDBw4EG9vb37//XeWLFnC/v372bx5M/b29sXOlZ+fz/PPP8/u3bvp3bs31apVY9++fcyePZvff/+dWbNmYTAYbuE3J/Lnl5OSAYCDh0uxfQ4ezuRn5pKXmYOds4PZPhv7wr9T+dm5xdrlZmQXHvtypsVxjp6uZvvSzyaS+HscQa3q4lhCbiIi8ueQdKXI6OPiWmyft4sLGdk5pGdn4+poPrWH45X3y5m5xe8vl7OyAEjOyKScmxuP16/PLydPMv3bzURdGcL93x07sbW14bGwUADOXulo4eHszH+372DzgQNk5uRS3tODqGZNiahc+TZdsYiIFFFxUq7Lw8ODU6dOlbhvzZo19OzZk7///e+mbS4uLsTExJCeno7rlQmlU1NTefLJJ/nXv/4FQL9+/Rg0aBAzZ86kb9++eHp68tlnn1GhQgXmzZuHg0PhB9/+/fvTp08fU8/NIllZWUyYMIGOHTuatlnSvlKlSjRv3pzZs2cTHh5O165dAfj00085fvw4y5YtM/Wm7N+/P1OnTmXOnDn06dOH2rVr3/JzCRAeHs5//vMfADp27EizZs3Ytm0bq1evNq2Mnp6ezuzZs4mLiyMkJAQoXDk7NDSUGTNmYDAYGDhwIP/4xz9YsmQJgwYNolq1anz55ZcYDAa++OILvK6sNtinTx9yc3NZt24dycnJeHl5sXTpUg4cOMDkyZN5/PHHTXEDBw7ko48+YuDAgbRr144JEyZQq1Yt0/NUVv7+/nzyySfY2NjQu3dvfvrpJ7Zt28bHH39M69atgcLXy2uvvcbevXtp0aIFy5cvJyUlhS+//JJq1f6Yc87V1ZWPPvqIQ4cOUbdu3WLnWrVqFdu3b+eTTz6hVas/FtKoV68eb7zxBt9++y3t2rW7qesQ+avIzyn8UGdrX/ytgc2VD375uXnFipMu5b2wdbLn4v6TVGwTZvoiID83j6TD8QAU5ObhHuxnUdy1zuw8CDYGApuqp4qIyJ9ZUXHRwa74fcjhykI4OXl5xYqTFb29cXaw56fjx+kaXt90f8nJyyM2rvD+kpNfeH/xdXejW4MGfPbjj7yydDkANgYDL7ZvZxrqnXFl1M2Sn3/GzsaGQc2bY2MwsDY2likbN/Fqx8cIu2a+fhERuTUa1i3XlZeXV2qPs4CAAKKjo1m+fLlp6PSLL77IsmXLTIXJIkU9JAFsbW158sknycrKYtu2bQDMmTOHZcuWmQqLAElJSbi5uZGRkVHs3I0aNTJ7XNb2V9u0aRM1a9bEz8+PxMRE009RMWvLli3XbV8WVxfI3N3d8fHxISQkxFSYBEyLE124cMGs7ZAhQ8x+F08//TRGo9GU39ixY9m8ebOpMAmFw7cdr7yBK3oetm7dio+PD507dzbFGQwGJk6cyIIFC25bD8O2bdtiY1P4J8bGxoZKlSrh5ORkKkyWdK1Dhgzhxx9/NCtMZmVlmY5T2u9y06ZN+Pj4ULduXbPfYZs2bbC1tWXr1q235ZpE/tSKprEo458AG1tbglrUJS3+EgcXf0/62UTSzlziwMKtFOQUfhg02NpYHHe1/Nw8zu85SrkHKuHk7XbLlygiIveuoumUyvpe1M7Wlk71wjh+4SLTN2/h1KVLnLh4kWlff0P2lYKn7ZX3kkt2/cynMT9Qs3x5Xoh8mGEPP0Q1fz8++PZbfjl5EoDcK9MmZWTnMLZrF9rUqkmrmjV44/HOuDo6suinXbfpikVEpIh6Tsp1JScnlzqkd+zYsbz44ou8+uqrvP7664SHh9O+fXt69uyJu7u7Kc7LywtfX/O5YypfGQ4RH1/4baatrS2nT5/m/fff58iRI5w6dYpz586Vmle5cuZzopW1/dVOnTpFVlYWzZo1K3F/QkKCRcexxLXPg52dXYnXAoW9Ja92dcEOij+HBoOBpKQk5syZw8GDBzl16hRnzpwxvdErOl58fDzBwcHF3vgFBQXdyqUVU9K1XvtaKio6Xn2tubm5/Oc//2H//v2cOnWKuLg409ya1z4nRU6dOkViYuJd+R2K/FnZOhZOmVCQm19sX0FeYfHQzqn4tAoAwZH1ycvK4cy2/5kWzvF5oCIVW4dyYuNu7K6srm1pXJGUY2cpyMnDNzTktlyjiIjcu5yvTN2Tk1e8F33OlfeCzg4OxfYB9GjYkPTsHDbs28f2I0cBaFg5mMfr12fRT7twc3QkPTubtb/FUtXPl9c6dzK9D21WrSqvrVjJx9/FUG9ARVPPzSZVQnC7qpemq6MjDYODiTl8mKzcXJxKmGpIRERujoqTUqq0tDROnz7NQw89VOL+Zs2asWXLFtPPjz/+yIQJE/jss89Yvny5qRBV0hyBRUWmokLcp59+ysSJE6lSpQqNGjXikUceoX79+syfP581a9YUa1/UrkhZ218tPz+fiIgIXnjhhRL3+/v7X7d9WVybN1j+7fC1z+O1z2F0dDT/+Mc/8Pf3p2nTpqYFZX744QfmzJljapefn39X5l+8mWv9+eefefbZZ3FxcaF58+b07NmTOnXqcOrUKdPcmiXJz88nJCSk1PlBPTw8StwuIn9w9CzsmZhzObPYvpzUTGyd7bF1KPmDmMFgoFqnJlRqE0bmxVQcPV1x8nbjxKbdYGPA0cu1THFFEg/GYbCzwaeWhs+JiPzZlXMrvA8llzBSJikjAxdHh1ILggaDgSebN6NreH0SUlIp5+aKn7s7i3/ahY3BgK+bG6cTk8jNz6d59WqmwiQU9rxsUaM6X+74iTPJyfi4Fs5v7HFlgZyrebo4YzSi4qSIyG2m4qSUasOGDRiNRtPKzVfLycnh999/JyAggE6dOtGpUycKCgqYN28eEydOZN26dURFRQFw8eJFszkoAU6cOAEU9v7Lzs5m+vTpPPjgg8ydO9e0CAxgthBOaW61fVBQEOnp6TRv3txse0pKCtu3bzf1ULS206dPU716ddPjq59DgClTplC5cmWWLVuGi8sfi0ZcW5wNDAzk4MGDxY7/3XffER0dzejRo+9A9pb54IMPcHJyYt26dWa9LGfPnn3ddhUrVmTfvn00bdrU7M1mbm4uX3/9NQEBAXcsZ5E/CztnBxx93EpclTst4RLuQcVXTy1y/rdjOLg741W1Ag5uf3yYSzlxFregcqZ5LC2NK5J66jzuQb7YOZXcU0ZERP48XB0d8XN3L3FV7hMXL1LVz6/UttuOHMXLxZk6gYF4XvU++PeEBKr4+eJgZ4f9lalDCoqmMblKQUHhNqPRSCUfH+xtbYlLSioWdyH1MvZ2tng4OZX5+kREpHSac1JKdP78eT744APKly9vWjTlaklJSfTp08esR56NjQ1hYWGmfxcxGo0sWLDA9DgvL4/PP/8cd3d3mjVrRlZWFpmZmYSEhJgVFn///Xd++uknU5vSlKV9SUOmIyMjOXDgAN99953ZcWfNmsWoUaM4fPhwqee+m+bPn2/2eN68edjZ2REZGQkUDsEPDAw0K0wmJCSwadMmANPQ6NatW3Px4kW+/vprs+N9/vnnbN26FW9v71KHlt9pRdMIXF2YvHz5MitWrAD+uIZrRUZGkpyczMKFC822L1q0iJdeeont27ffuaRF/kR861Ym+egZMi4km7YlHTlD5oVU/OpVKbVd/I/7ObpmJwX5f/zNuHTgNKknzhP4YO0yxwEU5OeTcS4Z18CSpxYREZE/nyZVQtgXH098UrJp2964OBKSU2h+zRRHV1sXG8u8H7aRf9V7190nT3Hw7DkeqVsHKFw4x9vVhe8OHjIbOp6Tl0fM4cO4OzlR0dsbJ3t7IioHs+fUKeIS/yhQnk+9zC8nT9GocmWzzzoiInLr1HNS+Oabb/D29gYKeyEeO3aMlStXkp2dzccff4xTCd8MFhUtv/zySzIzM2nQoAHJycn897//xdfXl8cee8wsfubMmcTHx1OjRg3Wr1/Pnj17eOedd3B2dsbZ2Zn69euzfPly3NzcqFKlCocPH+arr74y3fjT09Px9PQsMX9PT0+L2xdd5+rVqzEajXTv3p3nn3+eTZs2MXz4cPr27UuNGjX45ZdfWLVqFa1btzZbwMWaVqxYQVpaGg0bNiQmJoYtW7YwfPhw01yRrVu3Jjo6mjfeeIOwsDDi4uJYsmQJmZmFQzTT09MB6Nu3L8uWLeOll15iwIABVKlSha1bt/Ljjz8yfvx4bG1t8fLywsbGhm+//ZbAwEAeeeSRUp//26l169Z8/PHHjBo1ipYtW3LhwgWWLl3KxSvfoBddw7V69erFihUrGDduHPv376devXocOnSIxYsXU7duXXr06HHHcxf5M6jYKpTze46y99ONBLUMpSAvj7iYfbgFlcM/vPBDYWbiZVJPnsejsj/OPoXzC1dqHcbvX27lf/O/oVydymQlpxH/w368awbiH17VdHxL4wCyk9Mx5hfg5KmFcERE/iq6hNcn5vBh3lm3jk71wsjJy2dtbCxV/HxpWaNwBNG51FQOnT1HzYDylL8ydU+X8HCmff0NEzdspHFICBfTLhMdu496lSrS8srIIxsbG55q0ZxpX3/D6ytX8VCtWhQYC9h64BBnkpMZ9vBD2F35gr5/0wf5X0IC49au5dHQUOxsbdiwdx/2drb0adLYKs+NiMifmYqTwoQJE0z/tre3p3z58kRGRvLcc89RpUrpPWXGjRtHpUqVWLduHevWrcPZ2ZlmzZrx0ksvFVv45NNPP2Xs2LGsWLGC6tWrM2PGDNq3b2/a//777zNhwgSWLVtGTk4OQUFBDBkyhGrVqjFixAh27NhBhw4dSs3F0vbVqlUjKiqK5cuXs3fvXh588EGCg4NZvHgxH3zwARs2bGDx4sUEBgYybNgwhgwZcs98Mzpjxgw+/PBDNm3aRKVKlRg3bhy9e/c27R87diwuLi5s3ryZVatWERAQQLdu3Wjfvj39+vVjx44d1KlTBycnJ+bPn8+0adNYt24dly9fplq1akybNs1UVHZ2duall17i008/5e233yY4OJgHH3zwjl/jiBEjyM/PJzo6mi1btuDv70/z5s155pln6NSpEzt27DB73RRxcHDgs88+48MPP2Tjxo2sXr0af39/+vXrx/Dhw3EuYc4gESnOwc2Zes89xrF1P3Hymz3YOthR7oFgqjzaCBu7wg9sqSfOcWjpD9R8oqWpOOkbGkKtPq2J+34vx6J/wt7NmYqtQqnUph6Gq/6GWhoHkJeRDYBtKYvwiIjIn4+HszP/7vI4X2zbzlc//4KjnR2NKldmQNMHsb9SODyQcJbZW79j6ENtTMXJB6tWYUTbSFb/+ivzt+/A09mZzvXr0TU83Oy9fJMqVfhXp04s++UX06rbVXzL8c9HHyU8uJIpzs/dnbe6dWXhzp9YGxuL0WikdkAA/Zs+aDqniIjcPgajsYRJN0RukzFjxrBixYoS5zgUy0yfPp0ZM2bw7bffUrGiFoW42/pumWjtFERE5C9s1j7HGweJiIjcId4jRlk7hdvK2p/vFj38T6ue/151b3QJExERERERERERkb8cDesWsUBiYmKpi7FczcnJCXd397uQ0d2VnJxMbm7uDePs7e3x8vK68wmJiIiIiIiIyJ+CipMiFnjiiSeIj4+/YVz37t15991370JGd9eIESNMK59fT5MmTYqtKi4iIiIiIiIiUhrNOSligV9++YXs7Owbxvn7+1P9yoqAfyb79u0jNTX1hnEeHh6EhobehYzuHmvPSSIiIn9tmnNSRESsSXNO3l6ac7Jk6jkpYoGIiAhrp2BVf7aCo4iIiIiIiIjcG7QgjoiIiIiIiIiIiFiFipMiIiIiIiIiIiJiFSpOioiIiIiIiIiIiFWoOCkiIiIiIiIiIiJWoeKkiIiIiIiIiIiIWIWKkyIiIiIiIiIiImIVKk6KiIiIiIiIiIiIVag4KSIiIiIiIiIiIlah4qSIiIiIiIiIiIhYhYqTIiIiIiIiIiIiYhUqToqIiIiIiIiIiIhVqDgpIiIiIiIiIiIiVqHipIiIiIiIiIiIiFiFipMiIiIiIiIiIiJiFSpOioiIiIiIiIiIiFWoOCkiIiIiIiIiIiJWoeKkiIiIiIiIiIiIWIWKkyIiIiIiIiIiImIVKk6KiIiIiIiIiIiIVag4KSIiIiIiIiIiIlah4qSIiIiIiIiIiIhYhYqTIiIiIiIiIiIiYhUqToqIiIiIiIiIiIhV2Fk7Abk3jBkzhhUrVphts7e3p1y5cjRp0oQhQ4ZQo0YN076oqCji4+PZvHnz3U71tsrJySEpKYny5cvfsXNERkYC3NfPVUFBAWfOnKFixYrWTkVE7qLDK7aReTGFes89dsPYrMTLHFu/i5RjZwHwqV2RKo81xsHN+aaOv2fmGtLiLhXbXi60MnX6P1yGqxARkfvJ+dTL/HfHDv535gwADYKDiWrWFA/n0u8nAAcSzrJ41y6OXriAm6MjjSpX5olGjfBwdjKL2x9/hiU//8zJS5dwcXDgwapV6dO4EU729mZxxy5cYOFPuzh09hw2BgMPVAhgYLOmBHp53dbrFRERFSflGq+++ire3t4AZGZmcurUKZYtW8bGjRv5+OOPefDBBwEYOnQomZmZ1kz1lsXHx/PMM8/w/PPP06NHD2unc89KS0vjqaeeok2bNowYMcLa6YjIXXL250Oc3XUIzyo3/vImNyOb2E83YMwvoGLrUIxGI3Ex+0g/m0T4sM7Y2NqW6fhGo5GM8ymUqxNMubqVzfY5ebne/EWJiMg97XJWFuPWriW/oIDH69enwGhkbWwspxMTebt7N+xKuJ8A/O/MGSZEr8fFwYFuDcKxMdiwfu9e9p85w5vduuLm6AgUFibfWbeOKr6+9H+wCZfS0lm/bx/HLlxgbJfHMRgMAJxJTuatNWtxtLOjR8MGAETv3cvYVWt474keeLvqXiQicjupOClm2rVrV6x3XFRUFD179uTFF1/km2++wdXVlRYtWlgpw9snLi6OEydOWDuNe15ycjJ79+6lTZs21k5FRO4CY0EBp7fGcvLbXy1uE//DfrJTMogY2RUXfy8A3Cv6sW/uJs7tPkKFxrXKdPzspDQKcvIoVyeY8g2q3eSViIjI/SY6di+Jaem816snFa90mKju78f4dev57tAh2j7wQIntPvtxGwaDgTe7diHA0xOAxiEhjFm2jJW79zCwWVMA/rtjB+Xc3Ph3l8dxsCv8KOzr5sbcH37kt9NxhAdXAmD93n1k5+YxtsvjhPj6AhAaFMRrK1ayLnav6XgiInJ7aM5JuaEKFSrwyiuvkJiYyLJly6ydjoiI3CH5uXnsnrGGk9/8in94NRw8XSxqdyH2GF5VAkyFSQDv6oE4+3lwIfZ4mY+ffj4ZAGdfz5u+FhERuf9sO3qUOoEVTIVJgLCKFang5cn2o8dKbHPh8mVOJybRukYNU2ESIMjbi4bBwXx/6DAAOXl5eDg7E1m7tqkwCfBAhQoAnLz0x1Qi51JTcXdyMhUmAar5++Hm5MjppKTbc7EiImKi4qRY5NFHH8XBwYGYmBigsDdl0VyKUDh34zvvvEPbtm0JDQ2lTZs2vPnmm6SkpJhixowZQ/v27dmzZw89evSgXr16PProoyxcuLDY+bZv387gwYN58MEHqVu3Lq1ateKNN94gNTXV7HiPPvooCxYsoHHjxjRu3Jjvv//eovbLly/nySefBAqHsteq9UevnpSUFMaNG0erVq0IDQ3lscce4/PPP8doNN6W53L58uXUqlWLAwcOMHLkSBo0aEDTpk157733yM/PZ8WKFXTo0IHw8HD69u3LgQMHTG2nT59OnTp1OHbsGFFRUdSvX5/IyEhmzpxJfn6+2Xn279/PiBEjaN68OXXr1qVZs2a8/PLLnD171iwuLS2N8ePH89BDD1G/fn0ef/xxvvrqKwB27txJ27ZtAZgxYwa1atUiLi7O4mvduXMntWrVYsWKFTz++OOEhYXx6quvAnDhwgXefPNN02smIiKCJ598kl9++cXsGEajkS+++ILOnTtTr149IiMjmTx5stm0AgUFBcydO5dHH32U0NBQWrVqxdtvv01aWprFuYoIGPMKyM/OoXa/NtTq1QqDjeGGbXIzs8lKTMMtqFyxfW4VypF25o8Pe5YeP+Nc4Qc/F//CD5n5Obk3czkiInIfScvO5nzqZar4+RbbF+Lry/GLF0tsl5ieDkAlH59i+8p7enA5K4tLaWk42NnxasfH6H5lmHaRE5cKj+vn7m7aVsHTk7TsLFKver95OSuLjOwcvG4w96WIiJSdhnWLRRwdHQkODjYrlF3trbfeYu3atTz55JNUqlSJw4cPs2DBAk6ePMncuXNNccnJyQwePJg2bdrQo0cPNm3axNixY0lNTeX5558H4IcffuC5556jYcOGjBw5EoPBwI8//sjixYtJSUnh/fffNx0vISGBWbNm8cILL3D+/HnCw8Mtat+4cWOGDh3K7Nmz6dOnDxEREQBkZGQwcOBAEhIS6N+/PwEBAezYsYPx48dz4sQJ/v3vf9+253TIkCFEREQwZswYNm3axNy5czl06BAHDx5k0KBBGI1GZs2axciRI4mOjsbuyje8RqORp59+mho1ajB69Gh27tzJ+++/z9mzZ3nrrbcAOHjwIP3796dy5coMGTIEZ2dndu/ezapVqzh58iRLly4FCovKAwYM4PDhw/Tu3ZvatWvz3Xff8dprr5GZmUnHjh159dVXmTBhAu3bt6d9+/b4lPDG70beeustevToQa9evQgMDCQrK4sBAwZw+fJlBgwYQPny5Tlx4gQLFy5k8ODBfPPNN5QrV1joePPNN1m4cCEPP/ww/fr14/jx48ydO5cTJ04wY8YMAP71r3+xatUqunXrxlNPPcXRo0dZuHAhu3fvZuHChThemWdIRK7P1smeRn/viY2t5d9d5qRkAODgUbwXpIOHM/mZueRl5mDn7GDx8TPOJ2PraMex6F1ciD1OQU4eTj5uVG7fEP/6Vct2USIicl9IulJk9HEpPp+jt4sLGdk5pGdn43rN+zrHK++RM3OLf5F1OSsLgOSMTMq5uZntu3D5Mv87k8B/d+ygko83jUL+mOP48fr1+eXkSaZ/u5ko05Dwndja2vBYWOgtXKWIiJRExUmxmIeHB6dOnSpx35o1a+jZsyd///vfTdtcXFyIiYkhPT0d1yuTRqempvLkk0/yr3/9C4B+/foxaNAgZs6cSd++ffH09OSzzz6jQoUKzJs3DwcHBwD69+9Pnz59TD03i2RlZTFhwgQ6duxo2mZJ+0qVKtG8eXNmz55NeHg4Xbt2BeDTTz/l+PHjLFu2zNSbsn///kydOpU5c+bQp08fateufcvPJUB4eDj/+c9/AOjYsSPNmjVj27ZtrF692rQyenp6OrNnzyYuLo6QkBCgsJdgaGgoM2bMwGAwMHDgQP7xj3+wZMkSBg0aRLVq1fjyyy8xGAx88cUXeF1ZUbBPnz7k5uaybt06kpOT8fLyYunSpRw4cIDJkyfz+OOPm+IGDhzIRx99xMCBA2nXrh0TJkygVq1apueprCIiInj99ddNj6Ojozl58iSffPIJrVq1Mm2vVKkS//73v/nll1945JFHOHLkCIsWLaJ3796MGzfOFOfq6srs2bM5cuQIly5dYvny5bz55pv07dvXFNOmTRueffZZFi1axKBBg24qb5G/GoPBgMH2xr0lr1bUq9HWvvhbCpsrHxjzc/Owc3aw+Pjp55LJz84jLyuHWr1akZeVw5lt/+Pg4u8xFhg1D6WIyJ9QUXHx6iHXRRyuLISTk5dXrDhZ0dsbZwd7fjp+nK7h9U2L2uTk5REbF1/47/w8szaXs7IY+eUi0/meatHc7Ly+7m50a9CAz378kVeWLgfAxmDgxfbtzIZ6i4jI7aFh3WKxvLw8083+WgEBAURHR7N8+XLT0OkXX3yRZcuWmQqTRYp6SALY2try5JNPkpWVxbZt2wCYM2cOy5YtMxUWAZKSknBzcyMjI6PYuRs1amT2uKztr7Zp0yZq1qyJn58fiYmJpp927doBsGXLluu2L4uiYwK4u7vj4+NDSEiIqTAJmBYnunDhglnbIUOGmP0unn76aYxGoym/sWPHsnnzZlNhEgqHbxf1ICx6HrZu3YqPjw+dO3c2xRkMBiZOnMiCBQtK/X2XVePGjc0ed+zYke3bt9OyZUvTtpycHNO/r87PaDQSFRVl1v7ZZ59l9erVBAcHs2nTJgwGA23atDH7ndWpUwc/Pz+2bt16W65BREpRNOXF7flzAUCFxjWp1uVB6vR/GN+6lQmIqEH9oZ1w8nHj+PpdGAsKbt/JRETknlA0hVJZ33/a2drSqV4Yxy9cZPrmLZy6dIkTFy8y7etvyL5S8LS1Mf/YazAYGNkukmEPP0RFby/eWRvNzmN/zJG8ZNfPfBrzAzXLl+eFyIcZ9vBDVPP344Nvv+WXkydv6TpFRKQ49ZwUiyUnJ5c6pHfs2LG8+OKLvPrqq7z++uuEh4fTvn17evbsiftV87d4eXnhe823jZUrFw6hiI8v/GbT1taW06dP8/7773PkyBFOnTrFuXPnSs2raPhvkbK2v9qpU6fIysqiWbNmJe5PSEiw6DiWuPZ5sLOzK/FaoLC35NWqVTPvNXTtc2gwGEhKSmLOnDkcPHiQU6dOcebMGdObvqLjxcfHExwcXOxNYFBQ0K1cWjElvW4MBgMfffQRe/bs4dSpU5w6dYrcK28gr84PMPUaLeLh4YGHhwdQ+DszGo089NBDJZ772uK4iNxeto72ABTk5hfbV5BX2FPFzsm+TMes8GDxHuq29nb4N6jGqW9/I+N8Mq4BZZ9iQkRE7l3O9oX3ipy8vGL7cq7Mre58VeeDq/Vo2JD07Bw27NvH9iNHAWhYOZjH69dn0U+7cLumt6WboyPNrryffrBqFUZ/tZQvtm/nwapVSM/OZu1vsVT18+W1zp2wuVLYbFatKq+tWMnH38VQb0BF7K+8TxcRkVun4qRYJC0tjdOnT5daAGrWrBlbtmwx/fz4449MmDCBzz77jOXLl5uKU/b2xT+gFhWiigpxn376KRMnTqRKlSo0atSIRx55hPr16zN//nzWrFlTrL3tNW8Mytr+avn5+URERPDCCy+UuN/f3/+67cvi2rzB8m+Kr30er30Oo6Oj+cc//oG/vz9NmzaldevWhIaG8sMPPzBnzhxTu/z8/NvWO/J6rr3WY8eO0a9fP3Jzc2nZsiUdO3bkgQcewGg0Mnz4cLP8bqSgoABXV1fT/JPX0nyTIneWo2fhHF45lzOL7ctJzcTW2R5bh7IVJ0tj71q4CEF+TvEPriIicn8rmhMyuYSRTkkZGbg4OuBUwmcJKHwP/WTzZnQNr09CSirl3Fzxc3dn8U+7sDEY8L1mvsmrOdjZ0SA4mI379pOamcWFy5fJzc+nefVqpsIkFPbQbFGjOl/u+IkzyclULld8ITgRuffN2mflz4cPW/f09yoVJ8UiGzZswGg0mlZuvlpOTg6///47AQEBdOrUiU6dOlFQUMC8efOYOHEi69atMw3LvXjxotkclAAnTpwACnv/ZWdnM336dB588EHmzp1rWgQGMFsIpzS32j4oKIj09HSaN29utj0lJYXt27ebeiha2+nTp6levbrp8dXPIcCUKVOoXLkyy5Ytw8Xlj0Uqri3OBgYGcvDgwWLH/+6774iOjmb06NF3IHv4+OOPSU1NZf369Wa9IkvKDwqv9+reoufOnWPChAkMHDiQoKAgfvjhB0JDQ029KYts2LCB4ODgO3INIlLIztkBRx83s1W5i6QlXMI9qGxzc2WnpLN33ib861UhODLcbF/mxRQAnLxL/5ApIiL3J1dHR/zc3UtclfvExYtU9fMrte22I0fxcnGmTmAgnle99/09IYEqfr442NkRn5TMu+vX06V+fdrXrWPWPis3F4MB7G1tsL+yaFtB0bQlVykoKNxmLGGfiIjcPM05KTd0/vx5PvjgA8qXL29aNOVqSUlJ9OnTx6xHno2NDWFhYaZ/FzEajSxYsMD0OC8vj88//xx3d3eaNWtGVlYWmZmZhISEmBUWf//9d3766SdTm9KUpX1JQ6YjIyM5cOAA3333ndlxZ82axahRozh8+HCp576b5s+fb/Z43rx52NnZ/T979x1f4/n/cfyVvchCEIQIYiTEJgiNWFW0tKGI6kKr6tuN+vkONKpVlLZGaY3SGAlq1VZbjdaoWSUSsTIQ2eP3R+TUkSCRpDHez8cjj4dz39d1X5/rPolzzudcA39/fyBrCr6rq6tRYjIqKop169YBf49I9PPz4+rVq6xfv97oenPmzGHLli04OTnddWp5QcTFxWFjY2NIPkJWkvvHH380iq9169YALFy40Kh+aGgoa9asoUSJEoY+f/PNN0ZlNm3axNChQ+87WlZECq50ncrE/XmBhCtx6k0I1gAAsB5JREFUhmOxpy+QeOU6Zeq65+taVg52pCelEPXrSdKS/l6LNikunkv7T+HgUQ7Lkjl3BhcRkUdfE/cqHImMJDI2znDscEQEUXHX8PW4+2Zoqw4d4rvtO0m/7f3qgXPhnLh4ifa3EpHlHOxJSElhw7FjpN02O+fKjRvsOfMXtcqXx8bSkopOTjjZ2bL1xEmjKeYpaWlsO3WKktbWVHRyKsRei4iIRk6KkQ0bNuB068U2OTmZM2fOsGzZMpKTk5k5cybW1tY56mQnLRcsWEBiYiL169cnLi6O+fPnU7p0aTp16mRU/uuvvyYyMpLq1auzZs0aDh48yNixY7GxscHGxoZ69eoRGhpKiRIlcHd359SpUyxevNiQ5Lx58yYODg65xu/g4JDn+tn9XLFiBZmZmTz33HMMHDiQdevWMXjwYHr16kX16tXZv38/y5cvx8/PDz8/v0K71wURFhZGfHw8DRo0YNu2bWzevJnBgwcb1or08/Nj9erVjBo1Cm9vbyIiIli0aBGJiVnTLm/evAlAr169WLp0Ke+88w59+vTB3d2dLVu2sGPHDj755BPMzMxwdHTE1NSUjRs34urqSvv27e96//PKz8+PTZs2MXDgQDp27MiNGzdYtmyZYTf47Phq1arFCy+8wLx587h8+TLNmzc37OD97LPPUrNmTTw9PWnbti2zZ88mMjKS5s2bExkZyQ8//ICrqyuvvvpqgWIVEWOJMTe4fu4y9pVdsHHOWlO4YisvLh/8k8OzfqZCSy8y0tKI2HaEEhVK4eKT/521Pbo249j8zfw+fTXlGtUgPSWVC7uOYWJqSrUuzQq7SyIi8pDo6lOPbadOMXbVKjrX9SYlLZ2Vhw7hXqY0LatnzRq6dP06Jy9eoka5spS9NWumq48Pk9ZvYPzan2lcpQpX42+w+tAR6laqSMtbs43MTE3p7+vL15u38N+fVtKqejVuJCWz7uhRTE1N6N8ia+aUqakp/Vv4Mmn9Bv5v2XLaeHqSkZnBluMnuRAXx5tPtcFc602KiBQqJSfFSHBwsOHfFhYWlC1bFn9/f15//XXc3e8++mX06NFUqlSJVatWsWrVKmxsbGjevDnvvPNOjs1QZs2axX/+8x/CwsKoVq0aU6dOpV27dobzkydPJjg4mKVLl5KSkkKFChUYMGAAHh4eDBkyhN27d9OhQ4e7xpLX+h4eHgQFBREaGsrhw4dp2rQpbm5uhISE8OWXX7J27VpCQkJwdXXlzTffZMCAAUajQIvT1KlT+eqrr1i3bh2VKlVi9OjRBAYGGs7/5z//wdbWlk2bNrF8+XLKlSvHs88+S7t27XjxxRfZvXs3tWvXxtramnnz5jFp0iRWrVrFjRs38PDwYNKkSYakso2NDe+88w6zZs1izJgxuLm50bRp0wLF36tXL65fv87ixYsZM2YMpUuXxsfHh6lTp9KrVy92795N//79Afjf//5HlSpVWLx4MZs2bcLV1ZXBgwfz2muvAVlrDE2ePJlvv/2WZcuWsWnTJpydnWnfvj1Dhw7NsfGQiBTM9bOXOLlkOzWeb2lITlqWsKHu6504s2ov5zYcxMzSnFK13HDv2AhT8/x/gCtduzK1g/wJ33KIv37eh6mFGY7u5anSoQG2ZRwLuUciIvKwsLex4d9duzB35y4W79uPlbk5jSpXpk+zpoYNaI5HXWTalq0MatPakJxsWtWdIW39WfHbb8zbtRsHGxueqVeXbj4+Ru/fW9WojoWZGctvlbMyN8erQgUCGzfC1dHRUK6Juzsfd+7M0v37+XHvrwC4ly7Fhx074uNW6Z+7ISIiTwiTTC2YIf+QYcOGERYWlusah5I3U6ZMYerUqWzcuJGKFSsWdzhPhF6bxxd3CCIi8gQr9oX7RUTkieY0ZGhxh1CoYqfcfy+KovS43c/C8nAMAxMREREREREREZEnjqZ1i+RTTEyMYcOWe7G2tqZkyZL/QET/rLi4OFJTU+9bzsLCAsfbpseIiIiIiIiIiNxJyUmRfHr++eeJjIy8b7nnnnuOcePG/QMR/bOGDBli2Pn8Xpo0aZJjV3ERERERERERkdtpzUmRfNq/fz/Jycn3Lefi4kK1W7sDPk6OHDnC9evX71vO3t4eLy+vfyCioqU1J0VEpDhpzUkRESlOj9saiVpz8uGkkZMi+dSwYcPiDqFYPQ4JRxERERERERF5OGhDHBERERERERERESkWSk6KiIiIiIiIiIhIsVByUkRERERERERERIqFkpMiIiIiIiIiIiJSLJScFBERERERERERkWKh5KSIiIiIiIiIiIgUCyUnRUREREREREREpFgoOSkiIiIiIiIiIiLFQslJERERERERERERKRZKToqIiIiIiIiIiEixUHJSREREREREREREioWSkyIiIiIiIiIiIlIslJwUERERERERERGRYqHkpIiIiIiIiIiIiBQLJSdFRERERERERESkWCg5KSIiIiIiIiIiIsVCyUkREREREREREREpFkpOioiIiIiIiIiISLFQclJERERERERERESKhZKTIiIiIiIiIiIiUiyUnBQREREREREREZFioeSkiIiIiIiIiIiIFAslJ0VERERERERERKRYmBd3AI+6YcOGERYWZnTMwsKCUqVK0aRJEwYMGED16tUN54KCgoiMjGTTpk3/dKiFKiUlhdjYWMqWLVtkbfj7+wM80vcqIyODCxcuULFixeIOJYfQ0FCGDx/O3Llzadq0ab7rJyUlMXHiRNasWUNycjKtW7dmxIgRODo6Fn6wIlIsToXtJPHqNeq+3um+ZZNibnBmza9cO3MRAOeaFXHv1BjLEjYFvv7NizEc/Golldp4U7lt/fx1QkREHimXr99g/u7d/HHhAgD13dwIat4Me5u7v54AHI+6SMivv/LnlSuUsLKiUeXKPN+oEfY21kblfj9/nrADBzlz9SqmJiZUd3EhsHEjqt/xuSav5UREpOCUnCwkw4cPx8nJCYDExETCw8NZunQpP//8MzNnzjQkfwYNGkRiYmJxhlpgkZGRvPLKKwwcOJDu3bsXdzgPrfj4ePr370/r1q0ZMmRIcYdT6P7zn/+wevVqBgwYgImJCdOmTeP69etMmzatuEMTkUJwcd9JLv56Egf3+38IS01I5tCstWSmZ1DRz4vMzEwith3h5sVYfN58BlMzswe+fkZ6BieWbCczPeOB+yIiIo+GG0lJjF65kvSMDLrUq0dGZiYrDx3ifEwMY557FvNcXk8A/rhwgeDVa7C1tOTZ+j6Ympiy5vBhjl64wH+f7UYJK6tb5aL4dM1aKjo50atxY9IzM1h39A/+99NK/t21C9VcXPJVTkRECoeSk4UkICAgx+i4oKAgevTowb/+9S82bNiAnZ0dLVq0KKYIC09ERARnz54t7jAeenFxcRw+fJjWrVsXdyiFLjk5mZ9++onAwEDeeustAC5fvkxISAg3b97Ezs6umCMUkQeVmZHB+S2HOLfxtzzXidx+lORrCTR8uxu2Lo4AlKxYhiOz13HpwGnKN/Z84OtHbD1EwqW4vHdAREQeWasPHSYm/iafvtCDircGflRzKcMnq9aw9eRJ2taqlWu973fsxMTEhP9260o5BwcAGlepwrClS1l24CB9mzcDYO6uXTjb2TH62Wexssj6KOxXvTrvLVpMyK/7+Ljz0/kqJyIihUNrThah8uXL89FHHxETE8PSpUuLOxyRQpOcnEx6ejoXbk23yT5mamqK2V2+0RaRh196ahoHpv7EuQ2/4eLjgaWDbZ7qXTl0Bkf3cobEJIBTNVdsythz5dBfD3z9mxdjCN98CDf/eg/UHxERebTs/PNParuWNyQmAbwrVqS8owO7/jyTa50rN25wPiYWv+rVDYlJgApOjjRwc+OXk6cAiE9OJjw6mmZVqxoSjgAOtrbUKl+ekxcv5auciIgUHiUni1jHjh2xtLRk27ZtQNZoyuy1FCFr7caxY8fStm1bvLy8aN26Nf/973+5du2aocywYcNo164dBw8epHv37tStW5eOHTuycOHCHO3t2rWL1157jaZNm1KnTh1atWrFqFGjuH79utH1OnbsyA8//EDjxo1p3Lgxv/zyS57qh4aG0q9fPyBrKrun59+jYa5du8bo0aNp1aoVXl5edOrUiTlz5pCZmVko9zI0NBRPT0+OHz/O22+/Tf369WnWrBmffvop6enphIWF0aFDB3x8fOjVqxfHjx831J0yZQq1a9fmzJkzBAUFUa9ePfz9/fn6669JT083aufo0aMMGTIEX19f6tSpQ/PmzXnvvfe4ePGiUbn4+Hg++eQT2rRpQ7169ejSpQuLFy8GYM+ePbRt2xaAqVOn4unpSURERJ77umfPHjw9Pdm5cycff/wxjRs3pmHDhgwfPpyEhAS2bt1Kt27dqFevHt26dWPXrl1G9c+dO8dHH32En58fXl5eNGnShEGDBnHq1Kl7tpucnMzEiRPx9/fHy8uLtm3bMnnyZFJSUozK2dvb06JFC7Zs2cJPP/3E0qVLWbFiBc899xzW1sbr+mQ/bz///DP+/v7Uq1ePKVOm5CvOlJQUpkyZQvv27albty4dOnRgxowZRs9dXmMXkbvLTMsgPTmFmi+2xvOFVpiYmty3TmpiMkkx8ZSoUCrHuRLlSxF/IfqBrp+RnsHJpTtwqu6Ki4/Hg3VIREQeGfHJyVy+fgP3MqVznKtSujR/Xb2aa72YmzcBqOTsnONcWQd7biQlER0fj62FBRN6BtK5rneOcjeSkjC79ZqU13IiIlJ4NK27iFlZWeHm5maUKLvd//73P1auXEm/fv2oVKkSp06d4ocffuDcuXPMnj3bUC4uLo7XXnuN1q1b0717d9atW8d//vMfrl+/zsCBAwHYvn07r7/+Og0aNODtt9/GxMSEHTt2EBISwrVr15g8ebLhelFRUXzzzTe89dZbXL58GR8fnzzVb9y4MYMGDWLatGn07NmThg0bApCQkEDfvn2Jioqid+/elCtXjt27d/PJJ59w9uxZ/v3vfxfaPR0wYAANGzZk2LBhrFu3jtmzZ3Py5ElOnDjBSy+9RGZmJt988w1vv/02q1evxtw869c8MzOTl19+merVq/PBBx+wZ88eJk+ezMWLF/nf//4HwIkTJ+jduzeVK1dmwIAB2NjYcODAAZYvX865c+dYsmQJkJUs69OnD6dOnSIwMJCaNWuydetWRo4cSWJiIk8//TTDhw8nODiYdu3a0a5dO5xzecN0P8OGDaNatWq899577N27l9DQUC5evMgff/xBUFAQJUuWZMaMGQwdOpQNGzZgb2/P1atXCQwMpESJEvTt2xcnJyeOHTvGokWLOHr0KJs2bcLCwiJHW+np6QwcOJADBw4QGBiIh4cHR44cYdq0aRw7doxvvvkGE5O/34z9+9//pnv37nz44YdkZGTQqVOnez7PH3/8MX379qVEiRL4+PjkK87Bgwfzyy+/0KVLF15++WUOHTrEhAkTiI6OZvjw4fmOXURyZ2ZtQaN3e2BqlvfvLlOuJQBgaZ9zFKSlvQ3piamkJaZgbmOZr+tHbDtMYvR1avf1JzOjcL7kEhGRh1fsrSSjs23O5YGcbG1JSE7hZnIydrfWj8xmdeu9fmJqao56N5KSAIhLSKRUiRKUv21kZbbw6GhOXrpE3VtLdJmamuapnIiIFB4lJ/8B9vb2hIeH53rup59+okePHrz77ruGY7a2tmzbts1o7b7r16/Tr18/Pv74YwBefPFFXnrpJb7++mt69eqFg4MD33//PeXLl+e7777D0tISgN69e9OzZ0/DyM1sSUlJBAcH8/TTf6+Xkpf6lSpVwtfXl2nTpuHj40O3bt0AmDVrFn/99RdLly41jKbs3bs3X3zxBdOnT6dnz57UrFmzwPcSwMfHh4kTJwLw9NNP07x5c3bu3MmKFSsMO6PfvHmTadOmERERQZUqVYCsnbO9vLyYOnUqJiYm9O3bl/fff59Fixbx0ksv4eHhwYIFCzAxMWHu3LmGXad79uxJamoqq1atIi4uDkdHR5YsWcLx48f5/PPP6dKli6Fc3759mTFjBn379iUgIIDg4GA8PT0N9ym/XFxc+PbbbzE1NSUwMJC9e/eyc+dOZs6ciZ+fH5D1+zJy5EgOHz5MixYtCA0N5dq1ayxYsAAPj79HG9nZ2TFjxgxOnjxJnTp1crS1fPlydu3axbfffkurVq0Mx+vWrcuoUaPYuHEjAQEBQFYic926daSnp5ORkUHZsmUJDg42/N7kpnPnzvzrX/8yPJ4xY0ae4ty6dSu//PIL77zzDoMGDQKyfv9TU1P54YcfGDx4MBs2bMhz7CJydyYmJpiY5S+Rn56S9WHQzCLnWwrTWx8Y01PTMLexzPP1b16KJXzj73h0bYqVgx1JsfH5iklERB492clFS/OcryeWt5YNSklLy5GcrOjkhI2lBXv/+otuPvUMX0inpKVxKCIy69/pabm2mZSaytebtwDQ1cfnrrHltZyIiDwYTev+B6Slpd111Fa5cuVYvXo1oaGhhqnT//rXv1i6dGmOTUWyR0gCmJmZ0a9fP5KSkti5cycA06dPZ+nSpUYJotjYWEqUKEFCQkKOths1amT0OL/1b7du3Tpq1KhBmTJliImJMfxkJ4Q2b958z/r5cXuSqWTJkjg7O1OlShVDYhIwbE505coVo7rZO0tne/nll8nMzDTE95///IdNmzYZEpOQNX3b6taboOz7sGXLFpydnXnmmWcM5UxMTBg/fjw//PBDoY3Sa9u2LaamWX+mpqamVKpUCWtra0NiMre+DhgwgB07dhgl/JKSkgzXudtzuW7dOpydnalTp47Rc9i6dWvMzMzYsmULkDUC9cMPP+Szzz6jffv29OzZk0uXLjF69GgADhw4wKpVq7h569vvbI0bNzZ6nNc4t2zZgqmpKX379jWq/9FHH7F8+XLs7OzyHLuIFIHspTsKaXByZkYGJ5dux76Ki9FGOiIi8njLXgoqv++jzc3M6FzXm7+uXGXKps2ER0dz9upVJq3fQPKthKeZac6PvcmpaXz+8zrORcfQ1acetV3L53r9vJYTEZEHp5GT/4C4uLi7Tun9z3/+w7/+9S+GDx/O//3f/+Hj40O7du3o0aMHJUuWNJRzdHSkdGnj9VcqV64MQGRk1jeCZmZmnD9/nsmTJ3P69GnCw8O5dOnuCzaXKmW8Plh+698uPDycpKQkmjdvnuv5qKioPF0nL+68D+bm5rn2BbJGS97u9kQY5LyHJiYmxMbGMn36dE6cOEF4eDgXLlwwvFnKvl5kZCRubm453jxVqFChIF3LIbe+3vm7lJ3Mu72vqampTJw4kaNHjxIeHk5ERIRhfcY770m28PBwYmJi7vsc/vTTT6xcuZLAwEBGjx5NSkoKf/zxB0uXLqVZs2Zs2LCBDRs2GJLm2e58jvIaZ2RkJKVKlaJEiRJGdcuUKUOZMmXyFbuIFD4zq6zlFzJS03Ocy0jLGqlibp1zKYm7idh2hJtRsdQb+DSpN7Om46UlJgOQnpJG6s0kzG2ttFSDiMhjxubWcj4paTlHOabcen9oc5dZOt0bNOBmcgprjxxh1+k/AWhQ2Y0u9erx495fKXHHaMubycmMX/szJy9eok3NGvS840v0/JYTEZGCUXKyiMXHx3P+/HnatGmT6/nmzZuzefNmw8+OHTsIDg7m+++/JzQ01JCIym2NwOzkTXYibtasWYwfPx53d3caNWpE+/btqVevHvPmzeOnn37KUf/OXZXzW/926enpNGzYkLfeeivX8y4uLvesnx+57Qad1w+pd97HO+/h6tWref/993FxcaFZs2aGjVq2b9/O9OnTDfXS09P/kQ/GD9LXffv28eqrr2Jra4uvry89evSgdu3ahIeHG9bWzE16ejpVqlS567qR9vb2AGzcuBGAIUOGAGBpacmkSZPo3r07//73v0lNTaVp06ZGo0/h7yRqfuO8c8OigsQuIoXPyiHri4OUG4k5zqVcT8TMxgIzy7wnJ2NPRpKZnsFvX6/McS5y21Eitx2l8QfPY+1UIpfaIiLyqCp164vouFxm+cQmJGBrZYl1Lp+JIOv9cT/f5nTzqUfUteuUKmFHmZIlCdn7K6YmJpS+7Uvu64mJfLJ6DeeuRtO2Vk1ebdUy1/fXeS0nIiIFp+RkEVu7di2ZmZmGnZtvl5KSwrFjxyhXrhydO3emc+fOZGRk8N133zF+/HhWrVpFUFAQAFevXjVagxLg7NmzQNbov+TkZKZMmULTpk2ZPXu2YRMYwGgjnLspaP0KFSpw8+ZNfH19jY5fu3aNXbt2GUYoFrfz589TrVo1w+Pb7yHAhAkTqFy5MkuXLsXW9u/NHe5Mzrq6unLixIkc19+6dSurV6/mgw8+KILo8+bLL7/E2tqaVatWGY2ynDZt2j3rVaxYkSNHjtCsWTOjRGJqairr16+nXLlywN9Tbm5PnFasWJFx48bxxhtvANC/f/9Ci9PV1ZWdO3fm+P0/evQos2fP5o033shz7CJS+MxtLLFyLmG0K3e2+KhoSlbIuevqvbg/3Zi0xBSjY6nxiZxYtA2X+lVxqV8NixLWBYpZREQePnZWVpQpWTLXXbnPXr1K1VszZnKz8/SfONraUNvVFYfb3sMfi4rCvUxpwzqWiSkphoRjJ28v+vnmPusmr+VERKRwaM3JInT58mW+/PJLypYta9g05XaxsbH07NnTaESeqakp3t7ehn9ny8zM5IcffjA8TktLY86cOZQsWZLmzZuTlJREYmIiVapUMUosHjt2jL179xrq3E1+6uc2Zdrf35/jx4+zdetWo+t+8803DB06lFOnTt217X/SvHnzjB5/9913mJub4+/vD2RNwXd1dTVKTEZFRbFu3Trg71F8fn5+XL16lfXr1xtdb86cOWzZsgUnJ6e7Ti0vatnLCNye8Ltx4wZhYWHA3Uci+vv7ExcXx8KFC42O//jjj7zzzjvs2rULgKZNmwLkKHf71OkFCxbct995jbN169ZkZGSwePFio/oLFy5kzZo1lC5dOs+xi0jRKF2nMnF/XiDhSpzhWOzpCyReuU6Zuu75ulbJCqVxquZq9GNfuSwA1s4lcarmmuvmOyIi8uhr4l6FI5GRRMbGGY4djoggKu4avncsz3S7VYcO8d32naTf9v7zwLlwTly8RPs6tQ3HZm/fwbmr0XS8T8Ixr+VERKRw6N19IdmwYQNOTk5A1ijEM2fOsGzZMpKTk5k5cybW1jlHeWQnLRcsWEBiYiL169cnLi6O+fPnU7p0aTp16mRU/uuvvyYyMpLq1auzZs0aDh48yNixY7GxscHGxoZ69eoRGhpKiRIlcHd359SpUyxevNiQ5Lx58yYODg65xu/g4JDn+tn9XLFiBZmZmTz33HMMHDiQdevWMXjwYHr16kX16tXZv38/y5cvx8/Pz2gDl+IUFhZGfHw8DRo0YNu2bWzevJnBgwcb1or08/Nj9erVjBo1Cm9vbyIiIli0aBGJiVnTFbM3eenVqxdLly7lnXfeoU+fPri7u7NlyxZ27NjBJ598gpmZGY6OjpiamrJx40ZcXV1p3779Xe9/YfLz82PmzJkMHTqUli1bcuXKFZYsWcLVW99C37lRTbYXXniBsLAwRo8ezdGjR6lbty4nT54kJCSEOnXq0L17dwACAwNZunQpU6dO5cqVK9SqVYsdO3awbt06WrdujbOzM2FhYbz99ttMmjSpwHH6+/vTsmVLxo0bx6lTp/D29ubgwYMsW7aMwYMH4+jomOfYRaTgEmNucP3cZewru2DjnLU2csVWXlw++CeHZ/1MhZZeZKSlEbHtCCUqlMLF5+4fJkVERG7X1ace206dYuyqVXSu601KWjorDx3CvUxpWlbPmv106fp1Tl68RI1yZSl7a+merj4+TFq/gfFrf6ZxlSpcjb/B6kNHqFupIi1vzZqKiI1l+6nT2FpZUqVUKbadzDl4olWN6nkuJyIihUfJyUISHBxs+LeFhQVly5bF39+f119/HXf3u48aGT16NJUqVWLVqlWsWrUKGxsbmjdvzjvvvJNj45NZs2bxn//8h7CwMKpVq8bUqVNp166d4fzkyZMJDg5m6dKlpKSkUKFCBQYMGICHhwdDhgxh9+7ddOjQ4a6x5LW+h4cHQUFBhIaGcvjwYZo2bYqbmxshISF8+eWXrF27lpCQEFxdXXnzzTcZMGBAjvUGi8vUqVP56quvWLduHZUqVWL06NEEBgYazv/nP//B1taWTZs2sXz5csqVK8ezzz5Lu3btePHFF9m9eze1a9fG2tqaefPmMWnSJFatWsWNGzfw8PBg0qRJhqSyjY0N77zzDrNmzWLMmDG4ubkZRh0WpSFDhpCens7q1avZvHkzLi4u+Pr68sorr9C5c2d2795t9HuTzdLSku+//56vvvqKn3/+mRUrVuDi4sKLL77I4MGDsbGxAbJ+v7/77jsmT57MunXrWLp0KZUrV2b48OGGZQhMTU2xs7MzGoX7oHGampry9ddf89VXX/HTTz+xYsUK3NzcGDVqFC+++GK+YheRgrt+9hInl2ynxvMtDclJyxI21H29E2dW7eXchoOYWZpTqpYb7h0bYWqec+1cERGR3Njb2PDvrl2Yu3MXi/ftx8rcnEaVK9OnWVMsbs1KOh51kWlbtjKoTWtDcrJpVXeGtPVnxW+/MW/XbhxsbHimXl26+fgYPoccuzXLJyE5hWlbtubafqsa1fNcTkRECo9JZvYCcvLQGjZsGGFhYbmucSh5M2XKFKZOncrGjRupWLFicYfzRMjMzHwsFg3vtXl8cYcgIiJPsG+OWN2/kIiISBFxGjK0uEMoVLFT7r+nRlF63O5nYXk4hrOJyGPncUhMioiIiIiIiEjR0rRu+cfExMTcdTOW21lbW1OyZMl/IKJ/VlxcHKmpqfctZ2FhgaOjY9EHJCIiIiIiIiJSzJSclH/M888/T2Rk5H3LPffcc4wbN+4fiOifNWTIEMPO5/fSpEmTHLuKi4iIiIiIiIg8jrTmpPxj9u/fT3Jy8n3Lubi4UO3WrnqPkyNHjnD9+vX7lrO3t8fLy+sfiEjyQmtOiohIcdKakyIiUpwetzUStebkw0kjJ+Uf07Bhw+IOoVgp4SgiIiIiIiIiYkwb4oiIiIiIiIiIiEixUHJSREREREREREREioWSkyIiIiIiIiIiIlIslJwUERERERERERGRYqHkpIiIiIiIiIiIiBQLJSdFRERERERERESkWCg5KSIiIiIiIiIiIsVCyUkREREREREREREpFkpOioiIiIiIiIiISLFQclJERERERERERESKhZKTIiIiIiIiIiIiUiyUnBQREREREREREZFioeSkiIiIiIiIiIiIFAslJ0VERERERERERKRYKDkpIiIiIiIiIiIixULJSRERERERERERESkWSk6KiIiIiIiIiIhIsVByUkRERERERERERIqFkpMiIiIiIiIiIiJSLJScFBERERERERERkWKh5KSIiIiIiIiIiIgUCyUnRUREREREREREpFiYF3cAIiIi8vBJiU/kr7X7iD0ZSUZqGg5Vy1O1cxNsnEsWWt28lrt5MZa/1u7j2tlLmFma41jNlSrtGmDtVKJQ+ywiIg+P64mJ/LB7D7+dP09KWjp1KrgS1LwZZe3ti6Ru2IGDbDp+nCm9XzQ6/uL0mfdsa1Cb1rT2rJG3TomISK6emJGTw4YNw9PTk4iIiAJfKygoCH9//0KIqnCut3r1aoKCgmjcuDF169alffv2jBkzhsuXL+com5GR8UD3IDQ0FE9PT/bs2XPPcnv27MHT05PQ0NBcH0dERODp6cmUKVOM6p0/fz7fMeVV9nN/+4+XlxetW7fmgw8+4NSpUznq5PacfP/997Rs2ZK6devy+eefc+3aNd544w18fHxo3Lgxf/zxR5H1Qf52t98hESk8GWnpHJ2zgeij5yjf1BO3tvWJj7zKoZlrSE1ILpS6eS2XcCWO32es5trZS1TwrU3FVl7cOH+F36atIinmRpHdAxERKT6p6emMW7OWvX+dpV3t2jzfqAFnrlzhfz+t5EZSUqHX/f38eUIPHMj13JtPtcn1p6S1NTaWFtQqX74APRUREdDIyUfexIkTmTZtGm3atGHw4MFYW1tz6tQplixZwqpVqwgJCcHNzQ2A+Ph4+vfvT+vWrRkyZEiRxOPh4cH48eNp0KBBruednZ0ZP348np6ehmNff/01YWFhrF+/vkhiyjZ8+HCcnJwASExMJDw8nKVLl/Lzzz8zc+ZMmjZtaig7aNAgEhMTDY9PnDhBcHAwPj4+DB06lJo1azJt2jQ2bdpE//79qVq1KlWqVCnS+EVE/imXDp4mPjIar1fa41TNFQBnzwoc+HI5kduPUqV97v/H56duXsv9tWYf6cmp1BvQCfvKZQFwqe/B/knLOLN2H7V7P1Vk90FERIrHLydP8teVq4zo3AnvihUB8KnkxkdLlrD60GF6NmlcaHU3/HGMOTt3kpaekev1WtWonuPY6kOHuZGUxFv+T+Fif/8ZBSIicm9KTj7CoqKimDlzJkFBQYwcOdLo3DPPPEOfPn344osvmDRpEgBxcXEcPnyY1q1bF1lMpUuXplu3bnc9b2trm+P8rl27SE9PL7KYsgUEBFDx1huUbEFBQfTo0YN//etfbNiwATs7OwBatGhhVO7kyZMADBw40DCicuLEiTg6OjJ8+PAij11E5J905dBfWJcqaUgaAtiWccTRozxXDp25Z3Iyr3XzUi4jPZ3YUxdwrOZqSEwCWJawoWwDDyJ3HiMtMQVzG8vC7L6IiBSzXX+eoayDvSG5CFDByZE6FSqw888/75mczE/dsatWcyQikrqVKnI9MZH45HvPDgC4lpDAon378KrgSovq1R6whyIicrsnZlr34+j3338nPT09RyINoH79+tStW5fffvvtnw/sEVK+fHk++ugjYmJiWLp06V3LpaamAhiSl9nHbn8sIvK4iL8QTQnXUjmO27mWIikmntTEu394y2vdvJRLjU8iMz0Du3JOOcpZO9tDRiY3L8bkp2siIvII+OvqVdxL5XyNcC9disvXb9wziZifuldv3OCVli0Y1qkjNhYWeYot7OBvpKSl0bd5szyVFxGR+1Ny8g5r1qyhb9++NGzYEC8vL/z9/Rk/fjwpKSk5ym7atInOnTvj7e1Nly5dWLFiRY4yp0+fZvDgwTRq1Ih69erRq1cvtm3bViixZifGwsLCco1v7ty5bNmyBcha+7Ft27YATJ061Wj9zXPnzvHRRx/h5+eHl5cXTZo0YdCgQbmuxXj58mUGDx6Mj48Pvr6+jB49mvj4eMP5O9eYvNOd6wX6+/uzd+9eIiMjDcffffddvLy8uH79ulHdGzdu4O3tzaeffprPO3VvHTt2xNLS0uh5uX3NyaCgIMPoyH79+hnWrbw97mHDhhnqhoaG8uyzz+Lt7U2zZs0YNmyY0fqf2ffg+++/58UXX8TLy4v+/fvnu/6yZcuYOHEifn5+eHt788ILL7B79+4c/Vu+fDk9evTAx8cHPz8/Ro0aRUyM8Yf5+7WZH56ensycOZMZM2bQpk0b6tWrR1BQEOfOneOvv/7i1VdfxcfHB39/f+bOnWtUNz4+ngkTJtCxY0e8vb2pX78+gYGBbNy48b7tFmYfRJ5k6SmppCemYmlvm+OcZQkbAJLjbhaobl7LmVlmfVBMT07NUS7tVpIzJT4xxzkREXl0JaWmkpCcglMugwAcbbJeN6Jv+/xRkLqfvfA87erUxsTEJE+xXU9MZNOx4zSuUoXKuSRARUTkwWha920WL17MyJEj8ff35/333yc1NZX169cza9YsAD788END2StXrvD2228TGBhIr169WL58OR988AFpaWl0794dyFqnsHfv3pQuXZqBAwdiYWHBypUrGTBgABMmTODpp58uULxNmzalYsWK/Pzzz+zfv5/27dvTokULGjdujIODA5aWf09z8/DwYPjw4QQHB9OuXTvatWuHs7MzV69eJTAwkBIlStC3b1+cnJw4duwYixYt4ujRo2zatAmL275FHDVqFLVq1eK9997j5MmT/PDDD5w6dYo5c+bk+UX9diNGjGDChAnExsYyfPhwPD09uXDhAqtWrWLDhg2Gewmwbt06UlJS6NKlS4Hu252srKxwc3Pj+PHjuZ4fNGgQ7u7uhISEMGjQIKpUqYKpqSnTpk0zxJ29rufUqVOZMmUKHTp0IDAwkEuXLjF//nz27t3LkiVLcHZ2Nlx38uTJ+Pv706VLF6ysrB6ovo2NDa+88gqpqanMnj2bgQMHsmXLFsPamjNnzuTzzz+nYcOGvPvuu0RHRzNnzhyOHTvGwoULMTc3z1ebeTVv3jxDbNHR0Xz77bcMGTKEuLg42rRpQ7t27Vi8eDFjx46lZs2aNGnShMzMTAYOHMgff/xB3759cXNz4+LFi/z444+89dZbLFu2zGit0tsVRR9EnlRpSVmJQDOLnG8Rso9lpORMFuanbl7LmdtYYlPGnpgTEaSnpGFm+Xf56GPhWeXScl8jTEREHk2JtwZdWJnnfI2wvHUsKTX316H81jU3M8tXbJuPnyA1PZ2n63rnq56IiNybkpO3mT17NvXr1+frr782JNp69+5N27Zt2bZtm1FyMiUlhVGjRtGnTx8AevbsSbdu3ZgwYQJdu3bF3NycMWPG4OzsTFhYGLa2Wd/U9e3bl5deeomxY8cSEBBglEDML0tLS7799lveffdd/vjjDxYsWMCCBQswMzOjUaNGDBgwgJYtWwJZa0EGBAQQHByMp6enYd3H+fPnc+3aNRYsWICHh4fh2nZ2dsyYMYOTJ09Sp04dw3FPT0/mzp2L+a0X97JlyzJlyhQ2b978QDuOBwQEMGfOHJKTkw0xeXh44OjoyJo1a4ySk6tXr6Zq1arUrl07/zfrPuzt7QkPD8/1XIsWLbh06RIhISH4+voaNs5ZsmSJUdznz5/nq6++YsCAAbz33nuG+p07d6Z79+5MmzaNESNGGI6XL1+ezz//3PC7lt/6mZmZLFmyxPC7VaFCBd555x3Wr19PYGAg165dY8qUKbRq1Yrp06djduvNV8WKFRk5ciQ7duygatWq+Wozr65fv05oaCilS5cG4OzZs6xdu5bXX3+d999/H4DmzZvTvn17duzYQZMmTTh06BD79u3jv//9L7169TJcy8fHh9dee42dO3fmmpzM730TkTy61/dN9/syKq9181CuUuu6nFyynT/mb6RK+4aYWZoTsf0oSdFZO3WbmOb/izEREXn43Wvgw/0GRRSk7r1sPnGCyqVL4Vmu3ANfQ0REctK07tusWLGCGTNmGL1gRUdHY29vT0JCglFZe3t7evbsaXhsaWlJz549uXr1KkeOHCE2Npa9e/fSunVrkpKSiImJISYmhuvXr9OuXTuuXr3K4cOHCxyzu7s7oaGhzJ07l379+uHh4UF6ejp79uzh1VdfZcaMGfesP2DAAHbs2GGUmExKSsLUNOtX485+9+/f35CYhKwpz4Bh+nhhsLCwoEOHDuzatYtr164BEBMTw+7du+ncuXOhtXO7tLS0Ar1RAVi/fj0ZGRn4+/sbnu+YmBhKly5NrVq1ctyjRo0aGbWZ3/qtW7c2JCYBatasCWSN6gXYuXMnycnJ9OnTx5CYBOjatSuhoaE0adIk323mVf369Q2JScCwk3m7du0Mx7I3J8qeel2vXj1+/fVXo4R0eno6GRlZo6Ju3sx9GmlR9UHkSZCemkbKjQSjn+zRiRlpOTcqS09NA8DMKvd1ufJaNz9tlG1QjSodGnDt7CV++3ol+yctI/HKNdw7NgLA3MYq7x0WEZGHSkpaGnEJCUY/VrdmbaWkpeVaHsDWIvcBHgWpez8RsbFcunadZlWrPlB9ERG5O42cvI2FhQW//vorK1eu5MyZM4SHhxMdHQ1kjUq7XaVKlYySdNnHACIjIw3JvXnz5jFv3rxc24uKiiqUuE1MTGjatKlhRN+FCxdYunQp06dPZ/LkyXTr1o2yZcvetX5qaioTJ07k6NGjhIeHExERYdg9OzsxlK3qHS/GDg4OODg4EBkZWSh9yda1a1dCQkLYsGEDPXr0YO3ataSlpRX6lO5scXFxBZ76mz3y8vZRf7ezuGOR7TvbK2j97FG42c9Z9nNSuXJlo3JWVlaG0bD5bTOvSt2xBk/238rtMWcnTDMzM43K/fjjj+zdu5dz584RHh5OUlJSjnK3K6o+iDwJrh4+y8kl242OubWth5mNBSnXE3KUT7mRtb5jbmtFAphbW+apbl7LZavUui7lm9Tk5qVYLOyssS3jQNSvJwCwcS6Zl66KiMhDaNefZ5i2ZavRsR4NG2BrZUlsQs7XiOxjjna5vw7ZWlo+cN37+S38PABN3Ks8UH0REbk7JSdvM3r0aObPn0/t2rXx8fGhW7du1K9fn9GjR+dIJOY2yi47eWJqampI7vXp04eAgIBc26tWrVqB4p03bx7Jycm89tprRsddXV0ZMmQIVlZWTJgwgd9++40OHTrkeo19+/bx6quvYmtri6+vLz169KB27dqEh4fzv//9L0f5u/XbLJ/rtdxPw4YNcXV1Zc2aNfTo0YM1a9bg5eWVI9FWGOLj4zl//jxt2rQp0HWyk4LffPMN1tbW9y1/5z3Lb/3sBPj94rnXiND8tplXdybus90rlpiYGF544QUuX75MixYt8Pf3p2bNmlSoUIEXXnjhrvWKqg8iTwLHaq54vdLe6Ji1c0munb1E/IWcu2DfjIrGulRJLO4xWrGEa6k81c1ruejjWR8GS9WshEOVv79ou372EhYlrLEupeSkiMijqm7FCozo3MnomIu9PccvXuTs1as5yp+Njqasgz0lrO7+OuReuvQD172XExcv4mxni6uj4wPVFxGRu1Ny8pbIyEjmz59Pt27dGD9+vNG5q7m8uEVFRZGZmWmUbDl79iwAbm5ulClTBshKQPn6+hrVPX36NBEREdjY2BQo5g0bNnDo0CF69+5tNL03W40aNQDumbD58ssvsba2ZtWqVUaj2qZNm5Zr+cjISKpXr254nD1VPXtDmMJiYmLC008/zZw5c7hw4QL79+83WvOzMK1du5bMzEzDbuYPKnt0bfny5alVq5bRua1bt1KiRIkirX+n8uXLA1kjC93d3Q3HU1JS+OCDD+jSpUuht1kQCxYsICIigu+//57mzZsbjh84cOCe9R6mPog8aqzsbbHKZRRk6TqV+XPFHmJPX8CpmisACVfiiPsziop+994EIK9181ru8sE/iTsTReP3n8f81lTv+Mhorhw+i1ubugVekkNERIqPk51drjtrN3Gvwnfbd3I4IgLvW0sBRcbGcTQykq4+Pve8ZkHq3svZ6Gjt0C0iUkS05uQt2Wsb3jmacevWrZw9e5a0O9YtiY6OZuPGjYbHCQkJLFy4kAoVKlCrVi1cXFzw8vIiLCyMS5cuGcqlpqYyYsQI3n777RzXzK8uXbqQkJDAuHHjcky/zsjIYPHixdjb29O4cWPg75F6t5fNns58e2Lyxo0bhIWFARhGgGZbvHix0ePsncwLktgzNTXNET9k9S81NZXPPvuMzMxMOnXqlEvtgrl8+TJffvklZcuWLfCU8aeeegqA6dOnG01BPnbsGG+88QZz5swp0vp38vX1xcLCgkWLFhldb+3ataxdu7ZI2iyIuLg4wPhvMDMzk/nz5wPc9e/lYeqDyOOiXKMa2JRx4NjCzYRv+Z3IHUc5POtnLO1tqdDi703SUuITuXTwT25ejMl33byWq9CiDulJKRye/TMXdh8nfPPvHJ79M7YujrjeVk5ERB4fT9WsiaujA5M2bCTswEFWHzrM2FWrcLKzo5O3l6HctYQEtp08RfitpbjyUzc/0jMyiI6Pp7S+9BYRKRJP3MjJiRMnYpfLt3Pt2rXD1dWVadOmkZycTLly5Th06BBhYWFYWVnl2IzDwcGBDz/8kJdeeglHR0eWLl1KVFQUX331lWG67ciRI3nppZfo0aMHL774Io6OjqxatYrff/+d9957DycnpwL1pXv37mzbto2QkBAOHjxIx44dKVeuHNHR0axZs4YTJ04wYcIEw6hKR0dHTE1N2bhxI66urrRv3x4/Pz9mzpzJ0KFDadmyJVeuXGHJkiWG0aJ39nvfvn28+eabtG7dmgMHDrBs2TI6depkNNItv5ydnfn111+ZPXs2DRs2pF69ekDWBi/Vq1dn9erVNG3a9J7rZubFhg0bDPc8OTmZM2fOsGzZMpKTk5k5c2aBpwTXqFGDoKAg5s2bR1xcHAEBAcTFxTF//nzs7OwYOnRokda/U6lSpRg8eDCTJk3ilVdeISAggIsXLzJ//nyaNm2Kv78/pqamhdpmQfj5+TFv3jwGDhzI888/T2pqKmvWrOHIkSOYmpredUOcwr5vIgKm5mZ4v9qBv1b/SsQvRzAxMcGhajmqdmqMhe3f0+ESLsdxcvE23NrWw66cc77q5rWcvVsZ6rzUjnPrD/DX2n2Y21hSxqcqldvWN4ykFBGRx4uFmRkjn+nMvN17+On33zE1MaG2qyt9mzWj5G3v2SPj4vh68xZ6NGyA261RjXmtmx83k5PJzAQbywfbTEdERO7tiUtOrly5MtfjVatWZcaMGYwbN465c+eSmZmJm5sbI0aMIC0tjbFjx3LkyBG8vLK+bfPw8KBv375MnjyZqKgoatSowfTp02nVqpXhmvXr12fhwoVMmTKF7777jrS0NNzd3Rk3bhzPPfdcgftiamrKpEmTWL58OcuXL2f+/PncuHEDBwcHGjZsyH//+1/q1q1rKG9jY8M777zDrFmzGDNmDG5ubgwZMoT09HRWr17N5s2bcXFxwdfXl1deeYXOnTuze/duox2WJ06cyKxZsxg7diyOjo688cYbDB48uED9eO211zhx4gRffPEF3bt3NyQnIWv05BdffMEzzzxToDYAgoODDf+2sLCgbNmy+Pv78/rrrxtNey6Ijz/+mKpVq/Ljjz/y6aefUrJkSRo1asTQoUONdkQvqvp3euONNyhTpgxz585l3LhxlClThsDAQIYMGWJIohd2mw/Kz8+PMWPGMHv2bMaNG4eDgwN16tQhJCSE//u//2PPnj13rfuw9EHkcWJlb0vNXq3vWcaxanlafdL/germp5xTNVfD1G8REXkyONnZ8XZb/3uWqe3qysKBrz9Q3TuN6nr3WVT2Nja5tiMiIoXDJPNuW+CKPARmzJjBlClT2L59Ow4ODsUdjjyBem0ef/9CIiIiReSbIw+2eYeIiEhhcBryeM1Ei50yuVjbf9zuZ2HRmpPy0EpJSSE0NJSAgAAlJkVEREREREREHkNP3LTuh1l6ejoxMTH3LwiULFmywGskPqwuXbpEcHAwp0+f5ty5c3z22WdG55OSkrhx40aeruXs7GzYCEgezM2bN0lISMhT2exd6kVERERERERE8kLJyYdIVFRUnne9Dg4Opnv37kUcUfFwcHBg3759pKWl8e9//xtvb2+j86tXr2b48OF5utbGjRupWLFiUYT5xJg9ezZTp07NU9kTJ04UcTQiIiIiIiIi8jhRcvIhUqZMGb777rs8la1WrVoRR1N8rK2t2b59+13Pt2zZMs/3SSP5Cu7ZZ5+lYcOGxR2GiIiIiIiIiDyGlJx8iFhZWeHr61vcYTz0XFxccHFxKe4wnhiVKlWiUqVKxR2GiIiIiIiIiDyGtCGOiIiIiIiIiIiIFAslJ0VERERERERERKRYKDkpIiIiIiIiIiIixULJSRERERERERERESkWSk6KiIiIiIiIiIhIsVByUkRERERERERERIqFkpMiIiIiIiIiIiJSLJScFBERERERERERkWKh5KSIiIiIiIiIiIgUCyUnRUREREREREREpFgoOSkiIiIiIiIiIiLFQslJERERERERERERKRZKToqIiIiIiIiIiEixUHJSREREREREREREioWSkyIiIiIiIiIiIlIslJwUERERERERERGRYqHkpIiIiIiIiIiIiBQLJSdFRERERERERESkWCg5KSIiIiIiIiIiIsVCyUkREREREREREREpFkpOioiIiIiIiIiISLFQclJERERERERERESKhXlxB1Bchg0bRlhYGBs3bqRixYoFulZQUBCRkZFs2rSpUGIr6PVWr17NwoULOX78OMnJyZQrVw4/Pz8GDBiAi4uLUdmMjAwuXLiQ73sQGhrK8OHDmTt3Lk2bNr1ruT179tCvXz+Cg4Pp3r17jscRERG0bduWt956iyFDhhjqnT9/nkqVKuWv43mU/dzfzsLCglKlStGkSRMGDBhA9erVjc7n9px8//33fPvtt1y/fp1+/frx+uuvM2zYMHbt2oWFhQVz5syhdu3aRdIHEZGilhKfyF9r9xF7MpKM1DQcqpanaucm2DiXLLS6xxZu4erhsznql6hQivqDu+R67eTrCRyYvAznWpXwfL7VA/VNREQeTdcTE/lh9x5+O3+elLR06lRwJah5M8ra2+frOmEHDrLp+HGm9H4xx7nJ6zew+8xfOY67lynNJ92fe+DYRUTk7p7Y5OTjauLEiUybNo02bdowePBgrK2tOXXqFEuWLGHVqlWEhITg5uYGQHx8PP3796d169ZGicHC5OHhwfjx42nQoEGu552dnRk/fjyenp6GY19//TVhYWGsX7++SGLKNnz4cJycnABITEwkPDycpUuX8vPPPzNz5kyjpOugQYNITEw0PD5x4gTBwcH4+PgwdOhQatasybRp09i0aRP9+/enatWqVKlSpUjjFxEpKhlp6Ryds4HEq9eo0LIOZlaWRG4/wqGZa2gwpBsWtlaFUvfmpVjsK7tQromn0TUs7O5+/dPLd5KWmFLwToqIyCMlNT2dcWvWEhV3jc51vbGxtGDVocP876eVjOvRnZLW1nm6zu/nzxN64ACOtra5nj8fG0uNcmUJqFXL6Hhery8iIvmn5ORjJCoqipkzZxIUFMTIkSONzj3zzDP06dOHL774gkmTJgEQFxfH4cOHad26dZHFVLp0abp163bX87a2tjnO79q1i/T09CKLKVtAQECOEaNBQUH06NGDf/3rX2zYsAE7OzsAWrRoYVTu5MmTAAwcOBB/f38gKzHs6OjI8OHDizx2EZGidOngaeIjo/F6pT1O1VwBcPaswIEvlxO5/ShV2uf+hVN+6makp5MUfYMybapQtr5HHuP6k9iTFwrYOxEReRT9cvIkf125yojOnfC+9R7ep5IbHy1ZwupDh+nZpPF9r7Hhj2PM2bmTtPSMXM+npadz6fp1uvn40KpG9VzLiIhI4dOak4+R33//nfT09ByJNID69etTt25dfvvtt38+sEdI+fLl+eijj4iJiWHp0qV3LZeamgpgSF5mH7v9sYjIo+rKob+wLlXSkFwEsC3jiKNHea4cOlModROvXCczPQPbMo55iinlRgJnVu7Bzb9e/jojIiKPhV1/nqGsg70hMQlQwcmROhUqsPPPP+9bf+yq1czatp3arq5UKV0q1zJR166Rlp5BBSfHwgpbRETyQMnJ+1izZg19+/alYcOGeHl54e/vz/jx40lJyTmlbNOmTXTu3Blvb2+6dOnCihUrcpQ5ffo0gwcPplGjRtSrV49evXqxbdu2Qok1OzEWFhaWa3xz585ly5YtQNZakG3btgVg6tSpeHp6EhERAcC5c+f46KOP8PPzw8vLiyZNmjBo0CBOnTqV45qXL19m8ODB+Pj44Ovry+jRo4mPjzec37NnD56enoSGhuYac0REBJ6enkyZMgUAf39/9u7dS2RkpOH4u+++i5eXF9evXzeqe+PGDby9vfn000/zeafurWPHjlhaWho9L0FBQYYRkkFBQYbRkf369cPT0xNPT0+juIcNG2aoGxoayrPPPou3tzfNmjVj2LBhXL58Occ9+P7773nxxRfx8vKif//++a6/bNkyJk6ciJ+fH97e3rzwwgvs3r07R/+WL19Ojx498PHxwc/Pj1GjRhETE2NU5n5t5oenpyeTJk1i0KBBeHl50blzZ9LS0khNTWX69Ol07dqVevXqUbduXbp27cqSJUtyXGPr1q307duX+vXr06JFC9555x3D72u2zZs306tXL+rVq0fjxo0ZMmQIf/2Vc70gEbm/+AvRlHDN+cHNzrUUSTHxpCYmF7huwuU4AGxdHABIT0m9Z0ynlu3CytGOin5eee2GiIg8Rv66ehX3UjlfX9xLl+Ly9RvEJ9/9tQng6o0bvNKyBcM6dcTGwiLXMhGxsQBUcHQEICn13q9NIiJSODSt+x4WL17MyJEj8ff35/333yc1NZX169cza9YsAD788END2StXrvD2228TGBhIr169WL58OR988AFpaWl0794dyFqnsHfv3pQuXZqBAwdiYWHBypUrGTBgABMmTODpp58uULxNmzalYsWK/Pzzz+zfv5/27dvTokULGjdujIODA5aWloayHh4eDB8+nODgYNq1a0e7du1wdnbm6tWrBAYGUqJECfr27YuTkxPHjh1j0aJFHD16lE2bNmFx24v5qFGjqFWrFu+99x4nT57khx9+4NSpU8yZMwcTE5N892HEiBFMmDCB2NhYhg8fjqenJxcuXGDVqlVs2LDBcC8B1q1bR0pKCl265L5pwoOysrLCzc2N48eP53p+0KBBuLu7ExISwqBBg6hSpQqmpqZMmzbNEHf2up5Tp05lypQpdOjQgcDAQC5dusT8+fPZu3cvS5YswdnZ2XDdyZMn4+/vT5cuXbCysnqg+jY2NrzyyiukpqYye/ZsBg4cyJYtWwxra86cOZPPP/+chg0b8u677xIdHc2cOXM4duwYCxcuxNzcPF9t5tWcOXNo0KABI0eOJCkpCXNzc95//33WrFnDiy++SFBQELGxsSxatIiPP/6YMmXKGJYbWLVqFe+99x7Vq1dnyJAhhr4dPnyY0NBQ7O3tCQ0NZcSIETRv3pwPPviAa9eusXDhQgIDA1m0aBHu7u75jlnkSZWekkp6YiqW9jnX4rIsYQNActxNLGxyrguZn7o3L2V9AIzae5Irh/4iLSEZi5I2VGrtTQVf483ELv/2J7EnI/B54xlMzcwK3EcREXm0JKWmkpCcglMus5QcbbJec6Lj4ylhdfc1iz974XnM7/Macj4m67Vp47Hj7PzzT+KTknG0taGbjw8dvfXlmIhIUVFy8h5mz55N/fr1+frrrw2Jtt69e9O2bVu2bdtmlJxMSUlh1KhR9OnTB4CePXvSrVs3JkyYQNeuXTE3N2fMmDE4OzsTFhaG7a0FmPv27ctLL73E2LFjCQgIMEog5pelpSXffvst7777Ln/88QcLFixgwYIFmJmZ0ahRIwYMGEDLli2BrLUgAwICCA4OxtPT07Du4/z587l27RoLFizAw+PvNcDs7OyYMWMGJ0+epE6dOobjnp6ezJ07F3PzrF+lsmXLMmXKFDZv3mwYaZgfAQEBzJkzh+TkZENMHh4eODo6smbNGqPk5OrVq6latWqR7Ihtb29PeHh4rudatGjBpUuXCAkJwdfX17BxzpIlS4ziPn/+PF999RUDBgzgvffeM9Tv3Lkz3bt3Z9q0aYwYMcJwvHz58nz++eeG37X81s/MzGTJkiWG360KFSrwzjvvsH79egIDA7l27RpTpkyhVatWTJ8+HbNbb84qVqzIyJEj2bFjB1WrVs1Xm3llbm7OV199hfWthcSvXLnCypUref31143aCQgIoFOnTmzbto3WrVuTkZFBcHAwNWrUYNGiRYb63t7evPzyy/z0009069aNsWPH8vTTT/PFF18YrhUYGEjnzp35/PPP+eqrr/Ids8iTKi0pa5SImUXOtwjZxzLuMsoxP3WzR04mXImjWtdmZKRncOnAKc6s3Et6cipuT2VN306JT+TPlXup2Mo71xGZIiLy+Eu8NSvMyjzn64vlrWP3G+V4v8Qk/D1yMjIujldatiAtPYOtJ08yZ+cuElJT6H6XTT5FRKRgNK37HlasWMGMGTOMRgBGR0djb29PQkKCUVl7e3t69uxpeGxpaUnPnj25evUqR44cITY2lr1799K6dWuSkpKIiYkhJiaG69ev065dO65evcrhw4cLHLO7uzuhoaHMnTuXfv364eHhQXp6Onv27OHVV19lxowZ96w/YMAAduzYYZSYTEpKwtQ061flzn7379/fkJiErCnPgGH6eGGwsLCgQ4cO7Nq1i2vXrgEQExPD7t276dy5c6G1c7u0tLQHGvl5u/Xr15ORkYG/v7/h+Y6JiaF06dLUqlUrxz1q1KiRUZv5rd+6dWtDYhKgZs2aQFYiEGDnzp0kJyfTp08fQ2ISoGvXroSGhtKkSZN8t5lXdevWNSQWAcqUKcP+/ft58803DccyMzNJS0sD4ObNmwAcOXKEK1euEBgYaFTf19eXxYsX061bN3bs2EF8fDwBAQFGMZuZmdGsWTO2b99uuK6I5MO9/gu83/+Peahb2qsKVdo3wPuVDpSp607Z+h54v9IB+8ouhG/+ndSbSQCcXr4LixLWWmtSRETu+f68oO/dAZpVrUrPJo35uPPTNPfwoFWN6nzc+WlqlCvLsgO/cT0xqcBtiIhITho5eQ8WFhb8+uuvrFy5kjNnzhAeHk50dDSQNSrtdpUqVTJK0mUfA4iMjDQk9+bNm8e8efNybS8qKqpQ4jYxMaFp06aGEX0XLlxg6dKlTJ8+ncmTJ9OtWzfKli171/qpqalMnDiRo0ePEh4eTkREhGH37IwM453tqlatavTYwcEBBwcHIiMjC6Uv2bp27UpISAgbNmygR48erF27lrS0tEKf0p0tLi7ugaYv3y575GWvXr1yPW9xx1o3d7ZX0PrZo3Czn7Ps56Ry5cpG5aysrAyjYfPbZl7ldi8tLS1ZsWIF27dv5+zZs5w7d86QlMzMzLxnzJCV8Lw95nfeeeeu7cfExODi4vJAsYs8ztJT00hPMl6j2Mzy1gjHtPRcywOYWeX+f0F+6rrUq5qjjImJCeUa1+D6uctcD79Cekoq0UfDqR3UlvTkVNKT/x4Vk5mWQerNJMysLTTVW0TkMZKSlkbCHevnW916D5qSyxfO2cdsLR58Blo232oeOY6ZmJjgX7Mm0y5u5dTlSzTM5X2piIgUjJKT9zB69Gjmz59P7dq18fHxoVu3btSvX5/Ro0fnSCTm9k1ddoLF1NTUkNzr06cPAQEBubZXrVq1AsU7b948kpOTee2114yOu7q6MmTIEKysrJgwYQK//fYbHTp0yPUa+/bt49VXX8XW1hZfX1969OhB7dq1CQ8P53//+1+O8nfrt1khf1Bs2LAhrq6urFmzhh49erBmzRq8vLxyTVoVVHx8POfPn6dNmzYFuk52UvCbb74xGvV3N3fes/zWz06A3y+ee32rnN828+rOviUnJ9O7d2+OHTtG06ZNad68Of3796dJkyZG9z0/MY8ePZqKt+3eeDsHB4cC9kDk8XT18FlOLtludMytbT3MbCxIuZ6Qo3zKjUSAXNeUBDC3tnzgutks7LL+70lPSSX2VNYXFH/M25ij3JVDf3Hl0F94v9YBx6rl73lNERF5dOz68wzTtmw1OtajYQNsrSyJTcj5+pJ9zNHu3q8vBWFvk/XalJyq2TgiIkVBycm7iIyMZP78+XTr1o3x48cbnbt69WqO8lFRUWRmZholUc6ePQuAm5sbZcqUAbKSNL6+vkZ1T58+TUREBDY2NgWKecOGDRw6dIjevXsbTe/NVqNGDYB7Jp2+/PJLrK2tWbVqldFot2nTpuVaPjIykurVqxseZ09Vz94QprCYmJjw9NNPM2fOHC5cuMD+/fuN1vwsTGvXriUzM9Owm/mDyh5dW758eWrVqmV0buvWrZQoUaJI69+pfPmsD+/h4eFGG8SkpKTwwQcf0KVLl0Jv827WrFnDkSNHGDt2LM8//7zh+KVLl+4a852GDx9OgwYNDDE7Ozvn+Nvas2cPGRkZBVrLVeRx5ljNFa9X2hsds3YuybWzl4i/EJOj/M2oaKxLlcx1M5xsJVxL3bduRno6v32zipIVSlP9OeO/24QrWct3WDuVpJKfNy4+OUexHJm9DsfqrlRs5YVd+YKNchcRkYdL3YoVGNG5k9ExF3t7jl+8yNlcPoedjY6mrIP9PTfDyYu09HRGLluOR5kyvO7Xyujchbg4AMqULJz3wiIiYkxrTt5F9tqGd45m3Lp1K2fPns2xhl10dDQbN/49siMhIYGFCxdSoUIFatWqhYuLC15eXoSFhRklYFJTUxkxYgRvv/12gdfF69KlCwkJCYwbNy7H9OuMjAwWL16Mvb09jRs3Bv4ezXZ72ezpzLcnJm/cuEFYWBiAYQRotsWLFxs9zt7JvCCJPVNT0xzxQ1b/UlNT+eyzz8jMzKRTp0651C6Yy5cv8+WXX1K2bNkCTxl/6qmnAJg+fbphFC3AsWPHeOONN5gzZ06R1r+Tr68vFhYWLFq0yOh6a9euZe3atUXS5t3E3XqDd+ff19y5cwEMfwteXl44OzsTGhpKym3Te/bv309oaCgJCQn4+vpiZWXFt99+S+ptC6FfunSJN99802iTIRExZmVvi1M1V6MfG+eSlK5TmcQr14g9fcFQNuFKHHF/RlGmrvs9rkie6pqamWFmYc7l38+QFBdvKJeWmMKFnX9gXaokJSuVxtbFMUd8TtVcAbAsaYNTNdd7JkpFROTR42Rnh3fFikY/Ze3taeJehQtx1zgcEWEoGxkbx9HISHw9cn6RlV/mZmZYmZuz4/Rprt74+7XpZnIyaw4foayDPdW0TJCISJF44kdOTpw4ETs7uxzH27Vrh6urK9OmTSM5OZly5cpx6NAhwsLCsLKyMqyNl83BwYEPP/yQl156CUdHR5YuXUpUVBRfffWVYbrtyJEjeemll+jRowcvvvgijo6OrFq1it9//5333nsPJyenAvWle/fubNu2jZCQEA4ePEjHjh0pV64c0dHRrFmzhhMnTjBhwgTDqEpHR0dMTU3ZuHEjrq6utG/fHj8/P2bOnMnQoUNp2bIlV65cYcmSJYbRonf2e9++fbz55pu0bt2aAwcOsGzZMjp16kTz5s0fuB/Ozs78+uuvzJ49m4YNG1KvXtYmCDVr1qR69eqsXr2apk2b3nPdzLzYsGGD4Z4nJydz5swZli1bRnJyMjNnzizwtOYaNWoQFBTEvHnziIuLIyAggLi4OObPn4+dnR1Dhw4t0vp3KlWqFIMHD2bSpEm88sorBAQEcPHiRebPn0/Tpk3x9/fH1NS0UNu8G19fX8zNzfnwww/p06cP5ubmbN68me3bt2NhYWH4PbO0tGTYsGF89NFHvPjii3Tt2pWbN28yd+5cPDw8eOGFF7C1teXdd98lODiYnj170rVrV9LS0liwYAHJycl89NFHhRKzyJOkXKMaXNh1nGMLN1OxlRdmFuZEbDuCpb0tFVrUMZRLiU8k9tQFSpR3wq6cc77qVu3chN+nr+b36aup0Lw2AFG/niAlPhGvl9vrSwURETHyVM2a/HzkKJM2bOSZunWxMjdn5aFDONnZ0cnby1DuWkIChyIiqVzKGbdSpfLVRr/mzfnPihX8e8UKOnplvWZtPHac64lJDHu6k16bRESKyBOfnFy5cmWux6tWrcqMGTMYN24cc+fOJTMzEzc3N0aMGEFaWhpjx47lyJEjeHllvRB6eHjQt29fJk+eTFRUFDVq1GD69Om0avX3lID69euzcOFCpkyZwnfffUdaWhru7u6MGzeO5557rsB9MTU1ZdKkSSxfvpzly5czf/58bty4gYODAw0bNuS///2vYRMRABsbG9555x1mzZrFmDFjcHNzY8iQIaSnp7N69Wo2b96Mi4sLvr6+vPLKK3Tu3Jndu3fTrl07wzUmTpzIrFmzGDt2LI6OjrzxxhsMHjy4QP147bXXOHHiBF988QXdu3c3JCcha/TkF198wTPPPFOgNgCCg4MN/7awsKBs2bL4+/vz+uuvG017LoiPP/6YqlWr8uOPP/Lpp59SsmRJGjVqxNChQ412RC+q+nd64403KFOmDHPnzmXcuHGUKVOGwMBAhgwZYkiiF3abualRowZffvklU6dO5YsvvsDOzo7q1avz3XffsWDBAvbu3UtqaioWFhZ069aNkiVLMm3aNCZMmIC9vT1PPfUU7733niHR3r9/f8qWLct3333HxIkTsba2pk6dOnz22Wc0bNiwUGIWeZKYmpvh/WoH/lr9KxG/HMHExASHquWo2qkxFrZ/j1RMuBzHycXbcGtbz5CczGvdkhVL4/1qB85tPMi5TQcBE+zdyuD5gh/2bmX+6S6LiMhDzsLMjJHPdGbe7j389PvvmJqYUNvVlb7NmlHytkEFkXFxfL15Cz0aNsh3ctLDpQwfd+7Mkv37WbLvACYmUL1sWQY/1YbqBRwYISIid2eSefvcTZGH3IwZM5gyZQrbt2/XJifyj+i1efz9C4mIiBSRb45o6QIRESk+TkMKZ/bcwyJ2yuRibf9xu5+FRWtOyiMjJSWF0NBQAgIClJgUEREREREREXkMPPHTuh9m6enpxMTk3PE0NyVLlizwGokPq0uXLhEcHMzp06c5d+4cn332mdH5pKQkbty4kadrOTs7GzYCkgdz8+ZNEhIS8lQ2e5d6EREREREREZHcKDn5EIuKisrzrtfBwcF07969iCMqHg4ODuzbt4+0tDT+/e9/4+3tbXR+9erVDB8+PE/X2rhxIxUrViyKMJ8Ys2fPZurUqXkqe+LEiSKORkREREREREQeZUpOPsTKlCnDd999l6ey1apVK+Joio+1tTXbt2+/6/mWLVvm+T5pJF/BPfvss9pkRkREREREREQKhZKTDzErKyt8fX2LO4yHnouLCy4uLsUdxhOjUqVKVKpUqbjDEBEREREREZHHgDbEERERERERERERkWKh5KSIiIiIiIiIiIgUCyUnRUREREREREREpFgoOSkiIiIiIiIiIiLFQslJERERERERERERKRZKToqIiIiIiIiIiEixUHJSREREREREREREioWSkyIiIiIiIiIiIlIslJwUERERERERERGRYqHkpIiIiIiIiIiIiBQLJSdFRERERERERESkWCg5KSIiIiIiIiIiIsVCyUkREREREREREREpFkpOioiIiIiIiIiISLFQclJERERERERERESKhZKTIiIiIiIiIiIiUiyUnBQREREREREREZFioeSkiIiIiIiIiIiIFAslJ0VERERERERERKRYKDkpIiIiIiIiIiIixULJSRERERERERERESkWSk6KiIiIiIiIiIhIsVByUkRERERERERERIqFeX4KDxs2jLCwMDZu3EjFihUL1HBQUBCRkZFs2rSpQNcprOutXr2ahQsXcvz4cZKTkylXrhx+fn4MGDAAFxcXo7IZGRlcuHAh3/cgNDSU4cOHM3fuXJo2bXrXcnv27KFfv34EBwfTvXv3HI8jIiJo27Ytb731FkOGDDHUO3/+PJUqVcpfx/Mo+7m/nYWFBaVKlaJJkyYMGDCA6tWrG53P7Tn5/vvv+fbbb7l+/Tr9+vXj9ddfZ9iwYezatQsLCwvmzJlD7dq1i6QP8re7/Q7lR0hICLNnz+by5ct4eXnxf//3f9SoUaOQIxWR4pISn8hfa/cRezKSjNQ0HKqWp2rnJtg4lyyUuttGfH/Pa9R4viVlG1QDIOHKNc6uP8C1P6NIT03DprQDFVvWMZwXEZHHz/XERH7YvYffzp8nJS2dOhVcCWrejLL29vm6TtiBg2w6fpwpvV/McS4pNZUl+/az68wZ4pOSqejkyPONGlLfzc1Q5sXpM+95/UFtWtPaU++BRUQKIl/JycfVxIkTmTZtGm3atGHw4MFYW1tz6tQplixZwqpVqwgJCcHt1gtUfHw8/fv3p3Xr1g+c1LkfDw8Pxo8fT4MGDXI97+zszPjx4/H09DQc+/rrrwkLC2P9+vVFElO24cOH4+TkBEBiYiLh4eEsXbqUn3/+mZkzZxolXQcNGkRiYqLh8YkTJwgODsbHx4ehQ4dSs2ZNpk2bxqZNm+jfvz9Vq1alSpUqRRq/FI7Q0FBGjRpFjx49qF27Nt9++y2vvvoqa9asoUSJEsUdnogUUEZaOkfnbCDx6jUqtKyDmZUlkduPcGjmGhoM6YaFrVWB69Z4oVWu9c+s3ktmegYOVcoCkHoziUMz15CZkYmrb20s7Ky4evgsJ5dsJy0xhQot9IWWiMjjJjU9nXFr1hIVd43Odb2xsbRg1aHD/O+nlYzr0Z2S1tZ5us7v588TeuAAjra2Oc5lZGQwfs1aTl2+TIc6dShTsiRbT57ks7U/M/zpTnjfGojy5lNtcr32vF27SctIp1b58g/aTRERueWJT05GRUUxc+ZMgoKCGDlypNG5Z555hj59+vDFF18wadIkAOLi4jh8+DCtW7cusphKly5Nt27d7nre1tY2x/ldu3aRnp5eZDFlCwgIyDFiNCgoiB49evCvf/2LDRs2YGdnB0CLFi2Myp08eRKAgQMH4u/vD2Qlhh0dHRk+fHiRxy6FZ9GiRVSrVo1PPvkEyEqYv/POO+zbt482bdoUb3AiUmCXDp4mPjIar1fa41TNFQBnzwoc+HI5kduPUqV97l+e5adu2foeOepG7jhK2s1kPHv6YX1rlGX4lkOkJiTT4K0u2JVzBqB805ocmrGGcxsOUK5JDcwsnvi3MyIij5VfTp7krytXGdH57yShTyU3PlqyhNWHDtOzSeP7XmPDH8eYs3MnaekZuZ7fcuIkx6Iu8uZTbWhVI2sG2FM1PfnXjyGEHjhoaDf73O1WHzrMjaQk3vJ/Chf7+88oEBGRe3vi15z8/fffSU9Pz5FIA6hfvz5169blt99+++cDe4SUL1+ejz76iJiYGJYuXXrXcqmpqQCG5GX2sdsfy6MhKSmJmJgYw8jYpKQkIGuqv4g8+q4c+gvrUiUNyUUA2zKOOHqU58qhM0VSNyU+kbPrD+LoUR6XelUNx6/9dZESrs6GxCSAiYkJpb2qkJ6cRsKluAfooYiIPMx2/XmGsg72hgQhQAUnR+pUqMDOP/+8b/2xq1Yza9t2aru6UqV0qVzLbD15ErdSzkbJR0tzc/o2a0aDym651gG4lpDAon378KrgSovqWl5ERKQwFElycs2aNfTt25eGDRvi5eWFv78/48ePJyUlJUfZTZs20blzZ7y9venSpQsrVqzIUeb06dMMHjyYRo0aUa9ePXr16sW2bdsKJdbsxFhYWFiu8c2dO5ctW7YAWWtBtm3bFoCpU6fi6elJREQEAOfOneOjjz7Cz88PLy8vmjRpwqBBgzh16lSOa16+fJnBgwfj4+ODr68vo0ePJj4+3nB+z549eHp6EhoammvMEREReHp6MmXKFAD8/f3Zu3cvkZGRhuPvvvsuXl5eXL9+3ajujRs38Pb25tNPP83nnbq3jh07YmlpafS8BAUFGUZIBgUFGUZH9uvXD09PTzw9PY3iHjZsmKFuaGgozz77LN7e3jRr1oxhw4Zx+fLlHPfg+++/58UXX8TLy4v+/fvnu/6yZcuYOHEifn5+eHt788ILL7B79+4c/Vu+fDk9evTAx8cHPz8/Ro0aRUxMjFGZ+7WZH56ensycOZMZM2bQpk0b6tWrR1BQEOfOneOvv/7i1VdfxcfHB39/f+bOnWtUNz4+ngkTJtCxY0e8vb2pX78+gYGBbNy48b7t5rUPnTp1IiYmhuDgYA4dOsSECROoWrVqjrVU7/U85SfOf/r+izzp4i9EU8I154c5O9dSJMXEk5qYXOh1z285REZqGu5PG4+GqRPUFs8X/HKUT03I+lLExNTknn0REZFHz19Xr+JeKudriXvpUly+foP45Lu/DgFcvXGDV1q2YFinjtjk8uV5Wno6f16+TB3Xv79IS7o1kMK3mgdd6tW767XDDv5GSloafZs3y2t3RETkPgp9HtTixYsZOXIk/v7+vP/++6SmprJ+/XpmzZoFwIcffmgoe+XKFd5++20CAwPp1asXy5cv54MPPiAtLY3u3bsDWesU9u7dm9KlSzNw4EAsLCxYuXIlAwYMYMKECTz99NMFirdp06ZUrFiRn3/+mf3799O+fXtatGhB48aNcXBwwNLS0lDWw8OD4cOHExwcTLt27WjXrh3Ozs5cvXqVwMBASpQoQd++fXFycuLYsWMsWrSIo0ePsmnTJqMRZaNGjaJWrVq89957nDx5kh9++IFTp04xZ84cTEzy/yFrxIgRTJgwgdjYWIYPH46npycXLlxg1apVbNiwwXAvAdatW0dKSgpdunQp0H27k5WVFW5ubhw/fjzX84MGDcLd3Z2QkBAGDRpElSpVMDU1Zdq0aYa4s9f1nDp1KlOmTKFDhw4EBgZy6dIl5s+fz969e1myZAnOzn+Pnpk8eTL+/v506dIFKyurB6pvY2PDK6+8QmpqKrNnz2bgwIFs2bLFsLbmzJkz+fzzz2nYsCHvvvsu0dHRzJkzh2PHjrFw4ULMzc3z1WZezZs3zxBbdHQ03377LUOGDCEuLo42bdrQrl07Fi9ezNixY6lZsyZNmjQhMzOTgQMH8scff9C3b1/c3Ny4ePEiP/74I2+99RbLli0zWqv0dvnpw8svv8zPP/9MSEgIixcvpnr16nzzzTeYm+f+X8qdz1N+4iyu+y/ypEpPSSU9MRVL+5zrc1mWsAEgOe4mFjY515180Lop8YlE7T1BqTqVKVHe+O/VyiHn6Pr01DQuHTiNmbUFtmUd89w3ERF5+CWlppKQnIJTLrOrHG2yXl+i4+MpYXX39Y8/e+F5zM3M7nr+8o0bpGdkUqqEHcsO/saaw4e5npiEk50tLzRqxFM1c3+/fD0xkU3HjtO4ShUq55I8FRGRB1PoycnZs2dTv359vv76a0OirXfv3rRt25Zt27YZJSdTUlIYNWoUffr0AaBnz55069aNCRMm0LVrV8zNzRkzZgzOzs6EhYVhe2sh4759+/LSSy8xduxYAgICjBKI+WVpacm3337Lu+++yx9//MGCBQtYsGABZmZmNGrUiAEDBtCyZUsgay3IgIAAgoOD8fT0NKz7OH/+fK5du8aCBQvw8Ph7DS07OztmzJjByZMnqVOnjuG4p6cnc+fONSRyypYty5QpU9i8ebNhpGF+BAQEMGfOHJKTkw0xeXh44OjoyJo1a4ySk6tXr6Zq1apFsiO2vb094eHhuZ5r0aIFly5dIiQkBF9fX8MIuyVLlhjFff78eb766isGDBjAe++9Z6jfuXNnunfvzrRp0xgxYoThePny5fn8888Nv2v5rZ+ZmcmSJUsMv1sVKlTgnXfeYf369QQGBnLt2jWmTJlCq1atmD59Oma33uRUrFiRkSNHsmPHDqpWrZqvNvPq+vXrhIaGUrp0aQDOnj3L2rVref3113n//fcBaN68Oe3bt2fHjh00adKEQ4cOsW/fPv773//Sq1cvw7V8fHx47bXX2LlzZ67Jyfzetx07dhAXF2e4h+PHj6dChQp37cudz9Pvv/+epziL8/6LPKnSkrJGjuS2jmP2sYyU1EKte2n/KTLTMqiYx81t/vxpDynXEqgc4IPpPT58iojIoyfx1mw2q1y+9La8dSx7lOPd3CsxCZBwq431fxwjNS2N5xs2xM7Kig1//MGMrb8A5Jqg3Hz8BKnp6Txd1/v+HRERkTwr9GndK1asYMaMGUYjAKOjo7G3tychIcGorL29PT179jQ8trS0pGfPnly9epUjR44QGxvL3r17ad26tWGNu5iYGK5fv067du24evUqhw8fLnDM7u7uhIaGMnfuXPr164eHhwfp6ens2bOHV199lRkzZtyz/oABA9ixY4dRYjIpKQlT06zbe2e/+/fvbzTCLCgoCMAwfbwwWFhY0KFDB3bt2sW1a9cAiImJYffu3XTu3LnQ2rldWlraA438vN369evJyMjA39/f8HzHxMRQunRpatWqleMeNWrUyKjN/NZv3bq1ITEJULNmTSBrVC/Azp07SU5Opk+fPobEGEDXrl0JDQ2lSZMm+W4zr+rXr29ITAKGnczbtWtnOJa9OVH29OV69erx66+/GiWk09PTycjIWgj85s2bubaVnz4sWLCAN954AycnJ0aMGEFmZiYffPABSUlJXLp0iR9//JGoqCij69/5POU1zuK8/yJPvHv9d36//+vzWffivlPYuTpjX7nsfcP6a+0+Lu07hYN7WSq2rnvf8iIi8mi61+eKgn7mSL21kWh0fDz/1+UZ2tWpjW81Dz5+pjPlHR0I2fsrmZmZOeptPnGCyqVL4VmuXIHaFxERY4U+ctLCwoJff/2VlStXcubMGcLDw4mOjgbIMbKqUqVKOaaBVqpUCYDIyEhDcm/evHnMmzcv1/buTII8KBMTE5o2bWoY0XfhwgWWLl3K9OnTmTx5Mt26daNs2bt/aEpNTWXixIkcPXqU8PBwIiIiDLtnZydcslWtWtXosYODAw4ODkRGRhZKX7J17dqVkJAQNmzYQI8ePVi7di1paWmFPqU7W1xcXIGnz2aPvLx9NN3t7txw5c72Clo/exRu9nOW/ZxUrlzZqJyVlZVhNGx+28yrUndMFcn+W7k95uyE3e1vnszNzfnxxx/Zu3cv586dIzw83LBhTW5vsvLTh/Pnz/PJJ59Qs2ZN5s2bh62tLefPn2fevHmMGTOGmjVrMnr0aL766ivKly9vqJ/b70Ve4izO+y/yJEhPTSM9yXi9ZTPLWyMc09JzLQ9gZpX739WD1E24HEdS9I177gAOWf8v/LlyD1G7jmPn6kztvm0xNXvi9/UTEXmkpaSlGUYxZrO69d4tJS0t1/IAthYPPnMOwNo8q41a5ctTzsHBcNzM1JQW1TxYsu8AkbFxVHR2MpyLiI3l0rXredopXERE8qfQk5OjR49m/vz51K5dGx8fH7p160b9+vUZPXp0jkRibt94ZSclTE1NDcm9Pn36EBAQkGt71aoVbIe0efPmkZyczGuvvWZ03NXVlSFDhmBlZcWECRP47bff6NChQ67X2LdvH6+++iq2trb4+vrSo0cPateuTXh4OP/73/9ylL9bv80KeWpaw4YNcXV1Zc2aNfTo0YM1a9bg5eWVI9FTGOLj4zl//jxt2rQp0HWyk4LffPMN1tbW9y1/5z3Lb/3sBPj94rnXt7P5bTOv7rZ+471iiYmJ4YUXXuDy5cu0aNECf39/atasSYUKFXjhhRfuWi+vffjll19ITU3ltddeM4w4/fDDDzl06BCLFy/G0dGRkiVL0qJFC6N6dz5PeY2zOO+/yJPg6uGznFyy3eiYW9t6mNlYkHI9IUf5lBuJALmuKQlgbm2Z77oxJ7I2litV5+6vTZkZGZxcup3LB89QolJpvPu3x9ymYB9MRUSk+O368wzTtmw1OtajYQNsrSyJTcj5WpJ9zNEu99ehvHK+Vd/BxibHOXvrrGOJqcZJ09/CzwPQxL1KgdoWEZGcCjU5GRkZyfz58+nWrRvjx483Onf16tUc5aOiosjMzDRKPJw9exYANzc3ypQpA2QlNnx9fY3qnj59moiICGxyeUHJjw0bNnDo0CF69+5tNL03W40aNQDumfT48ssvsba2ZtWqVUYjxKZNm5Zr+cjISKpXr254nD1VPXtDmMJiYmLC008/zZw5c7hw4QL79+83WvOzMK1du5bMzEzDbuYPKnt0bfny5alVq5bRua1bt1KiRIkirX+n7NF/4eHhuLu7G46npKTwwQcf0KVLl0JvsyAWLFhAREQE33//Pc2bNzccP3DgwD3r5bcPtyd1LS0tmTRpEs899xxxcXG8+uqr9/27zGucj9r9F3nUOFZzxeuV9kbHrJ1Lcu3sJeIvxOQofzMqGutSJXPdDCdbCddS+ap7/dxlLB1ssS3jkKNOtlPLdnH54Bkc3MtSu18A5ncZuSkiIo+WuhUrMKJzJ6NjLvb2HL94kbO5fH48Gx1NWQf7e26GkxcOtrY429lyPjY2x7nLN24AUPqO95AnLl7E2c4WV0fHArUtIiI5Fep8qOy1De8czbh161bOnj1L2h1D86Ojo9m4caPhcUJCAgsXLqRChQrUqlULFxcXvLy8CAsL49KlS4ZyqampjBgxgrfffjvHNfOrS5cuJCQkMG7cuBzTrzMyMli8eDH29vY0bpw1fD97BNjtZbOnM9+emLxx4wZhYWEAhhGg2RYvXmz0OHsn84Ik9kxNTXPED1n9S01N5bPPPiMzM5NOnTrlUrtgLl++zJdffknZsmULPGX8qaeeAmD69OlGU5CPHTvGG2+8wZw5c4q0/p18fX2xsLBg0aJFRtdbu3Yta9euLZI2CyJ7k5rb/wYzMzOZP38+wF3/XvLah8aNG2NqakpISIjR79vVq1dJTk4GYM2aNYalHAoa56N2/0UeNVb2tjhVczX6sXEuSek6lUm8co3Y0xcMZROuxBH3ZxRl6rrf44rku258VHSOHbpvd3HfSS7tO4V9ZRfqvNROiUkRkceIk50d3hUrGv2UtbeniXsVLsRd43BEhKFsZGwcRyMj8b1tnf+C8K1WjXNXozl0/u82biYn88vJk1Qr65Jjt/Cz0dHaoVtEpIg80MjJiRMnYnfHf9aQtVGHq6sr06ZNIzk5mXLlynHo0CHCwsKwsrLKsRmHg4MDH374IS+99BKOjo4sXbqUqKgovvrqK8PIrJEjR/LSSy/Ro0cPXnzxRRwdHVm1ahW///477733Hk5OTjniyI/u3buzbds2QkJCOHjwIB07dqRcuXJER0ezZs0aTpw4wYQJEwyjKh0dHTE1NWXjxo24urrSvn17/Pz8mDlzJkOHDqVly5ZcuXKFJUuWGEaL3tnvffv28eabb9K6dWsOHDjAsmXL6NSpk9EIsvxydnbm119/Zfbs2TRs2JB69eoBWRu8VK9endWrV9O0adN7rpuZFxs2bDDc8+TkZM6cOcOyZctITk5m5syZBZ5WW6NGDYKCgpg3bx5xcXEEBAQQFxfH/PnzsbOzY+jQoUVa/06lSpVi8ODBTJo0iVdeeYWAgAAuXrzI/Pnzadq0Kf7+/piamhZqmwXh5+fHvHnzGDhwIM8//zypqamsWbOGI0eOYGpqetcNcfJ632rUqEGfPn2YN28er7/+Om3btuXMmTMsWrQIFxcXAgMDmTBhAn379uX7778vcJyP2v0XeVyUa1SDC7uOc2zhZiq28sLMwpyIbUewtLelQos6hnIp8YnEnrpAifJO2JVzzlddgIz0DJLjbuJco2KucWRmZHBuw0EAnD0rcvXouRxlnKq7YlmiYLMoRETk4fJUzZr8fOQokzZs5Jm6dbEyN2floUM42dnRydvLUO5aQgKHIiKpXMoZt3wmDp+t78O+s2f5Yv16Onl5YW9jw8Zjx0hMSSWoeTOjsukZGUTHx1P/1v4IIiJSuB4oObly5cpcj1etWpUZM2Ywbtw45s6dS2ZmJm5ubowYMYK0tDTGjh3LkSNH8PLKekHx8PCgb9++TJ48maioKGrUqMH06dNp1aqV4Zr169dn4cKFTJkyhe+++460tDTc3d0ZN24czz333IOEb8TU1JRJkyaxfPlyli9fzvz587lx4wYODg40bNiQ//73v9St+/duoDY2NrzzzjvMmjWLMWPG4ObmxpAhQ0hPT2f16tVs3rwZFxcXfH19eeWVV+jcuTO7d+822mF54sSJzJo1i7Fjx+Lo6Mgbb7zB4MGDC9SP1157jRMnTvDFF1/QvXt3Q3ISskZPfvHFFzzzzDMFagMgODjY8G8LCwvKli2Lv78/r7/+utG024L4+OOPqVq1Kj/++COffvopJUuWpFGjRgwdOtRoR/Siqn+nN954gzJlyjB37lzGjRtHmTJlCAwMZMiQIYYkemG3+aD8/PwYM2YMs2fPZty4cTg4OFCnTh1CQkL4v//7P/bs2XPXunntw4gRI3B1dSUkJIRPPvmEUqVK0bNnT9566y3D5k4rVqzAwcEh1+Uc8hvno3T/RR4XpuZmeL/agb9W/0rEL0cwMTHBoWo5qnZqjIXt31PpEi7HcXLxNtza1jMkJ/NaFyAtMRkywcw69/UjE6Ovk3I9a63Ks+tyX57C+7UOSk6KiDxmLMzMGPlMZ+bt3sNPv/+OqYkJtV1d6dusGSVvGwwRGRfH15u30KNhg3wnJ+2srPhvt64s3LuXjceOk5KeRtXSpXndrxU17hjQcTM5mcxMsLHUesciIkXBJPNu2/fKY2PGjBlMmTKF7du34+Bw9zW9RArLnWvJPsp6bR5//0IiIiJF5JsjBVtbT0REpCCchjxeM9Fip0wu1vYft/tZWAp1zUl5+KSkpBAaGkpAQIASk/KPeVwSkyIiIiIiIiJStAp1t+6HQXp6OjExOXcJzU3JkiULvEbiw+rSpUsEBwdz+vRpzp07x2effWZ0PikpiRu3dqK7H2dnZ8NGQPJgbt68SUJCQp7KZu9SLyIiIiIiIiLyuHvskpNRUVF53vU6ODiY7t27F3FExcPBwYF9+/aRlpbGv//9b7y9vY3Or169muHDh+fpWhs3bqRixdw3K5C8mT17NlOnTs1T2RMnThRxNCIiIiIiIiIiD4fHLjlZpkwZvvvuuzyVrVatWhFHU3ysra3Zvn37Xc+3bNkyz/dJI/kK7tlnn6Vhw4bFHYaIiIiIiIiIyEPlsUtOWllZ4evrW9xhPPRcXFxwcXEp7jCeGJUqVaJSpUrFHYaIiIiIiIiIyENFG+KIiIiIiIiIiIhIsVByUkRERERERERERIqFkpMiIiIiIiIiIiJSLJScFBERERERERERkWKh5KSIiIiIiIiIiIgUCyUnRUREREREREREpFgoOSkiIiIiIiIiIiLFQslJERERERERERERKRZKToqIiIiIiIiIiEixUHJSREREREREREREioV5cQcgIiIiIiK5e8MrubhDEBGRJ9iPxR2APBE0clJERERERERERESKhZKTIiIiIiIiIiIiUiyUnBQREREREREREZFioeSkiIiIiIiIiIiIFAslJ0VERERERERERKRYKDkpIiIiIiIiIiIixULJSRERERERERERESkWSk6KiIiIiIiIiIhIsVByUkRERERERERERIqFkpMiIiIiIiIiIiJSLJScFBERERERERERkWKh5KSIiIiIiIiIiIgUC/PiDkAePREREbRt25bnnnuOcePGERQURGRkJJs2bTKUiY+PJyUlBWdnZ8OxlJQUYmNjKVu2bLHEeztTU1NsbW1xd3enW7du9O7dGzMzM8P5PXv20K9fP4KDg+nevTsAkZGRDBs2jN9//x0bGxvWrFnDjh07mDhxIleuXKF9+/ZMmDDhH+3bk2rYsGGEhYVx4sSJ4g5F5LGTFHODM2t+5dqZiwA416yIe6fGWJawKZR69yuXFBvPr58tuWdb3q91wLFq+Qfqn4iIPHqK+rXpdqfCdpJ49Rp1X+9UeB0QEZF7UnJSCmzQoEEkJiYaHh85coQ33niDzz//nKZNmwJZib1XXnmFgQMHGpJ9/7RGjRoRGBgIQEZGBnFxcWzbto0xY8awfft2vv76a0OC0sPDg/Hjx9OgQQND/U8//ZR9+/bx1ltvUaZMGUxMTBg+fDgVK1Zk5MiRVK5cuVj6JSJSWFITkjk0ay2Z6RlU9PMiMzOTiG1HuHkxFp83n8H0ti9xHqReXspZ2FlR44VWOdrISEvjz5/2YGFnjV155xznRUTk8VTUr023u7jvJBd/PYmD+z87mEJE5Emn5KQUWIsWLYwenzx5ksuXLxsdi4iI4OzZs/9gVDlVqlSJbt26GR17+eWX+eKLL5g+fTqzZ8/m9ddfB6B06dI5yp44cYJatWoxePBgAA4cOEBqaip9+vShZ8+e/0wnRESKUOT2oyRfS6Dh292wdXEEoGTFMhyZvY5LB05TvrFngerlpZyZpQVl63vkaOPPlXvITM+gZqAfFjZWhd53ERF5OBX1axNAZkYG57cc4tzG34q4NyIikhutOSlPvLfffht3d3e+++470tLS7louNTUVOzs7o8eA0TERkUfZlUNncHQvZ/gQB+BUzRWbMvZcOfRXges96PVvXozhwq5jlG1YHQf3cg/UNxEReTQV9WtTemoaB6b+xLkNv+Hi44Glg21RdENERO5ByUkpsKCgIPz9/QGYMmUKw4cPB6Bfv374+/sTGhpKv379ABg+fDienn9/S3nt2jVGjx5Nq1at8PLyolOnTsyZM4fMzExDmSlTpuDt7c369etp0aIF9evXZ/HixYUWv7m5OU8//TTR0dH88ccfQNaak56enoSGhhr+HRkZyd69e/H09GTYsGE5+hQREQHAxYsX+fDDD2nWrBne3t48++yzrFixwqjNYcOG0bFjR3744QcaN25M48aN+eWXX/Jd/9ChQ/Tt25d69erh6+vLmDFjSEpKMip76dIlRowYQcuWLalfvz49evRgw4YNRmXy0mZeTZkyhfr163P69GlefvllfHx8aNWqFTNnziQzM5NZs2bRpk0b6tevz6uvvmq4b9l27drFa6+9RtOmTalTpw6tWrVi1KhRXL9+/Z7tFmYfRJ5EqYnJJMXEU6JCqRznSpQvRfyF6ALVe9DrA5xdfwBTC3MqB9TPa3dEROQxUNSvTQCZaRmkJ6dQ88XWeL7QChNTk8LrgIiI5ImmdUuhateuHVeuXCEkJIRBgwbh7e2Np6cngwYNYtq0afTs2ZOGDRsCkJCQQN++fYmKiqJ3796UK1eO3bt388knn3D27Fn+/e9/G66blpbGqFGjePnll0lJSTFco7BUr14dgOPHj1O3bl2jc9nrTwYHB+Pk5MSgQYMoX748ZcuWNeqTs7Mzly5d4oUXXiAzM5OgoCAcHBzYuHEjH3zwAZcvX+a1114zXDcqKopvvvmGt956i8uXL+Pj45Ov+jExMbz66qt06tSJrl278ssvvzBv3jwsLS358MMPAYiLiyMwMJC4uDj69OlDpUqVWLlyJW+99RZTp04lICAgX23mVWpqKi+99BIBAQG0b9+epUuX8vnnn7N7924iIyPp378/sbGxfPvttwwfPpx58+YBsH37dl5//XUaNGjA22+/jYmJCTt27CAkJIRr164xefLkXNsrij6IPGlSriUAYGmfc8SIpb0N6YmppCWmYG5j+UD1HvT6Ny/GEHMsggqt6mCVS10REXl8FfVrk7mNJWbWFjR6twemZhq3IyJSXJSclEJVs2ZNfHx8CAkJwdfX17Ahjq+vL9OmTcPHx8ewluOsWbP466+/WLp0qWE0Ze/evQ1rQPbs2ZOaNWsCWRvYvPzyywwYMKBI4nZwcACyknl3yl5/cvLkyUZrUWZmZubo0//+9z9SUlL46aefcHFxAaBPnz68//77TJ48meeee45SpbK+wU1KSiI4OJinn37a0NYnn3yS5/rXrl1j5MiRBAUFARAYGMjTTz/NTz/9ZEhOzpw5k4sXL7JgwQJDQrd79+4888wzTJs2jYCAACZOnJjnNvMqNTWVrl278tFHHwHQuHFjOnfuzMGDB9mwYYNhF/fIyEhWrlxJSkoKlpaWfP/995QvX57vvvsOS8usN5m9e/emZ8+ebNu27a7tFUUfRJ406SlZS1WYWeR8a2BqnnUsPTUtxwfAvNZ70Otf2HMCTE1wbVYrX/0REZFHX1G/NpnbWGJiYoKJmUZLiogUJ309JMVm3bp11KhRgzJlyhATE2P4CQgIAGDz5s1G5Rs3blxksWSvH1kQGRkZbNiwgUaNGmFubm7oT2xsLO3btyclJYUdO3YY1WnUqFGB6nfq1Mnocc2aNbl69arh8ZYtW6hTp47RSFMrKytmzJjBl19++UBt5lX28whQpUoVABo0aGBITAJUrFiRzMxMQ8zTp09n6dKlhsQkQGxsLCVKlCAhISHXdoqyDyJPlOzlNPL7+Syv9R7g+umpaVw++CelalXC2qlEPgMTEZFHXlG/NomIyENBIyel2ISHh5OUlETz5s1zPR8VFWX0uChHvmWPmLw9cZZfsbGx3Lhxgw0bNuRY0zHbvfr0IPXvjNfS0pKMjAzD48jISMN6oLdzd3cHIDo6Ot9t5lXp0qUN/za/9Q31nc+hmZkZgCFmMzMzzp8/z+TJkzl9+jTh4eFcunTpnu08yH0TkZzMrCwAyEhNz3Eu49ZmYebWFg9cL+0Brn/tzEUyUtIo7VUlr90QEZHHSFG/NomIyMNByUm5r7i4OEqUKGFIMGXLTiw9qPT0dBo2bMhbb72V6/ns6bnZTE2LbqDvsWPHAAzTyB9EenrWm58OHTrQq1evXMtUqlTJ6PHt9/BB6t/vnqSnp2NicvevjB+kzbzK7ffjXrFA1lT/8ePH4+7uTqNGjWjfvj316tVj3rx5/PTTT7nWKco+iDxJrByyRiam3EjMcS7leiJmNhaYWeb8IJfXeg9y/ZgTEZiYm+LsWTH/HRIRkUdeUb82iYjIw0HJSbmnefPmMWbMGFavXo2HhweAYTdoe3v7Al27QoUK3Lx5E19fX6Pj165dY9euXVSuXLlA18+rjIwM1q1bR7ly5ahTp84DX8fZ2RkbGxvS0tJy9OnChQv88ccf2NjYFFn93Li6uhIeHp7jeFhYGPv372fUqFGF3uaDSk5OZsqUKTRt2pTZs2cbJcPvthEOFM19E3kSmdtYYuVcItedT+OjoilZoXQutfJe70Gufz38MiUrlMbc2jLHORERefwV9WuTiIg8HLTmpNxThQoVAPjjjz8Mx7L/XaNGjVzrZI/mu3168Z3TdwH8/f05fvw4W7duNar/zTffMHToUE6dOlUIPbi/r7/+msjISF599dX7juy7F3Nzc/z8/Ni6dSvHjx83Ojdu3DgGDx5MbGxskdXPjZ+fH4cPH+bIkSOGY6mpqcyaNYsjR45gaWlZ6G0+qKSkJBITE6lSpYpRYvLYsWPs3bsXyNq1/U5Fcd9EnlSl61Qm7s8LJFyJMxyLPX2BxCvXKVPXvcD18nP9jPR0Ei7FYef64MttiIjIo6+oX5tERKT4aeSk3FPLli2pWLEiY8aM4dKlS2RkZDBr1izKlClDu3btcq2TvQ7iwoULuXr1Kl26dMHJyQmAFStWkJmZyXPPPcfAgQNZt24dgwcPplevXlSvXp39+/ezfPly/Pz88PPzK9S+nD9/nuXLlwNZO23HxMSwfft2duzYQbt27ejbt2+B23j//ffZs2cPffr0oU+fPri6urJlyxY2b95Mz549qV69epHWv9OgQYP4+eefeemll+jbty8uLi6sWrWKP//8k9mzZxdJmw/KwcGBevXqERoaSokSJXB3d+fUqVMsXrzYkPC+efOmYWf12z0sfRB51FVs5cXlg39yeNbPVGjpRUZaGhHbjlCiQilcfLJGzyfG3OD6ucvYV3bBxrlknuvlpxxActxNMtMzsHbQRjgiIk+yon5tEhGR4qfkpNyTpaUl33//PZ988gnffvstqampNG7cmOHDh1OiRO4fGJs3b06nTp3YvHkzu3fvpn379nh4eBAUFERoaCiHDx+madOmuLm5ERISwpdffsnatWsJCQnB1dWVN998kwEDBhT6GpP79u1j3759QNbahyVKlKB69er897//5YUXXiiU9tzc3Fi0aBFffvklixYtIiEhgUqVKjF8+HCCgoKKvP6dSpUqRUhICBMmTODHH38kJSWFmjVrMnv2bMNGRIXdZkFMnjyZ4OBgli5dSkpKChUqVGDAgAF4eHgwZMgQdu/eTYcOHXLUe5j6IPIosyxhQ93XO3Fm1V7ObTiImaU5pWq54d6xEabmWSPgr5+9xMkl26nxfEvDB8C81MtPOYC0hGQAzLRhgYjIE62oX5tERKT4mWRmZmYWdxAiIg+rXpvHF3cIIiIiIiIixeLHpz4s7hAKVeyUu+9n8E9wGjK0WNt/WGnNSRERERERERERESkWmtYtj6SYmBjS09PvW876/9u787gqy/z/4y92QRRBQVQQGUJwQVEglJQat9LJjBYxEcusJJeavqONzLexphx1bFX7mVZijd+msNRxrcxyT9wLzTWXURBxYXFhOcA5vz+QM+JBY/Wgvp+PR48H576vz3Vf131OHvjc19KgAY0aNboJLbq9nT17tlLlXFxcaNiwYR23RkRERERERERuF0pOyi3pscceIz09/TfLxcTEMG3atJvQottbjx49KlVu7NixjBs3ro5bIyIiIiIiIiK3CyUn5Zb05ptvUlhY+JvlvLy8bkJrbn/z58+vVDlfX986bomIiIiIiIiI3E6UnJRbUlhYmLWbcEeJioqydhNERERERERE5DakDXFERERERERERETEKpScFBEREREREREREatQclJERERERERERESsQslJERERERERERERsQolJ0VERERERERERMQqlJwUERERERERERERq1ByUkRERERERERERKxCyUkRERERERERERGxCiUnRURERERERERExCqUnBQRERERERERERGrsLd2A0REREREpGIf7HWydhNERORO9ntrN0DuBBo5KSIiIiIiIiIiIlah5KSIiIiIiIiIiIhYhZKTIiIiIiIiIiIiYhVKToqIiIiIiIiIiIhVKDkpIiIiIiIiIiIiVqHkpIiIiIiIiIiIiFiFkpMiIiIiIiIiIiJiFUpOioiIiIiIiIiIiFUoOSkiIiIiIiIiIiJWoeSkiIiIiIiIiIiIWIWSkyIiIiIiIiIiImIV9tZugIiIiNQfBVkXOfr1dnKPngbAI9gH//4ROLo610pczpEM/rNmN5cysrBv4ECzjm1o068rdo4O16378uksdv+/FfjeF4Jf7y417KGIiNRnZy5c5P9SUth36hQAXVq3Jr57Nxo73/h7qLJxBzJOk7x9O0fOnsXVyYlwPz8eCw+nsXOD69Z94vx5/nfJvxkUGspj4WE17KGIiFxLIyelxtLS0ggKCmLixIkAxMfH06tXr3JlLl26RFZWVrljBoOBzMzMm9bOMmXtvfq/du3aERYWxmOPPcaCBQsoKSkpF7N161aCgoJYvHix+Vh6ejrx8fF06tSJyMhIsrKyWL58Ob169SIkJIQ//elPN7trIiI1UpRXSOq8b7h48iw+0R1p1bMD5w+cZO/81Riv+XexOnE5RzLYk/QtxpIS/B8Iw6vLXZzefoi987/DZDJVWLexxMjBrzZhKjHWen9FRKR+uVhQwBsrVvDrmTMM7NyZP3TqxK4TJ5iychXFN/geqmzcvlOn+PvKlZzKyeHhLqH069CBrceO8bdly7hUWFhh3SVGI7PXradY30MiInVGIyel1iUkJJCfn29+vXfvXp5//nneeustIiMjgdLE3tNPP82oUaN45JFHrNLO8PBwBg8eDIDRaCQnJ4eNGzcyefJkNm3axOzZs7GzswMgICCA6dOn07VrV3P8P/7xD3bs2MHYsWPx9PTExsaGxMREfHx8eOWVV/Dz87NKv0REqit90y8U5uYR9sIgXLyaANDIx5O9SavJ3PUrLSKCahR39OvtODVpSKdn+2PnUPoriJNbQ44sSyH7cDoebX0s6k5bn0peZk6t91VEROqfVal7yLp0mX88/ig+7u4A3OXlyZSVX7P+0CF6t2tXo7hPNv+IjY0Nfxv0EN5ubgBEtGnDxEWL+Peu3Qzr3s2i7n/v/on07Oy66K6IiFyhkZNS6+655x769Oljfn3o0CHOnDlTrkxaWhrHjx+/yS0rz9fXl0GDBjFo0CBiYmIYMWIESUlJjBo1inXr1pGUlGQu26xZMwYNGoSvr6/52MGDB2nXrh1jxoxh8ODBHDt2jKKiIuLi4oiNjaVbN8tfbkRE6rOzqUdp4u9tTjACuN/VEmfPxpxNPVajuJKiYhxdG+Ad0dacmARw828OwOWM8qProXQ694m1qbTu1bmGPRMRkVvBj0eO0L5lC3OCESDEx4cWTdzYcuRojeLOXrzIyaxsogMDzYlJgFbuTejaujUbDh22qPfE+fP8e/duYrpqSRERkbqk5KTINV544QX8/f2ZP38+xcXF1y1XVFREw4YNy70Gyh0TEblVFOUXUpB1CddWTS3OubZoyqVT52sUZ+dgT8en+tH6vvKJxrKkpFMT13LHjSVGDi3ajHtgS7xCA6rVJxERuXVcKizkzIWL+Hs2szjXplkzjp07V6O4rMuXAfD18LAo19ytMRcLCjh/6ZL5WInRyJz1Gwhp1YqegYHV6pOIiFSOkpNS665ec3LWrFkkJiYCMHz4cHr16sXixYsZPnw4AImJiQQF/XeaYG5uLm+88QY9e/akY8eO9O/fn08//bTcWmSzZs0iJCSE7777jnvuuYcuXbrw5Zdf1lr77e3tGTBgAOfPn2ffvn1A+TUny35OT09n27Zt5vU2r+1TWloaAKdPn+bll1+mW7duhISE8PDDD7Ns2bJy15w4cSIPPPAAn332GREREURERLBhw4Yqx6empjJs2DA6d+5MVFQUkydPpqCgoFzZzMxM/vKXv9CjRw+6dOnCo48+ypo1a8qVqcw1K+tG79cvv/zCuHHjiIqKokOHDnTv3p0//elPnD59ulwdly5dYsqUKdx333107tyZgQMHWrznlfnsiMj1GXLzAHBs7GJxzrGxMyX5RRTnG2otriD7Epm7fuXIim24NG9C0/aty51P27iH/PMXuGtQ92r1R0REbi3ZV5KHHi6WD/rdXVzIKzRwuYJ1ISsb52RfOmo//8qAgqtdvPL7ck7ef5emWvbTz5zOzWVkzx7V6I2IiFSF1pyUOtW3b1/Onj1LcnIyCQkJhISEEBQUREJCAnPmzCE2NpawsNId7/Ly8hg2bBgZGRkMHToUb29vUlJSmDJlCsePH+fVV18111tcXMykSZMYMWIEBoPBXEdtCbzydPTAgQN06tSp3Lmy9SenTp2Ku7s7CQkJtGjRgubNm5frk4eHB5mZmTz++OOYTCbi4+Nxc3Pj+++/Z8KECZw5c4ZnnnnGXG9GRgYffPABY8eO5cyZM4SGhlYpPisri5EjR9K/f38eeughNmzYwIIFC3B0dOTll18GICcnh8GDB5OTk0NcXBy+vr6sWLGCsWPH8v7779OnT58qXbOyKnq/Dh48yNChQ/Hz8+O5557D2dmZXbt2sXTpUv7zn//w1VdfAaUbJ8XFxXH48GEGDx5McHAw69ev55VXXiE/P5/hw4dX6bMjIhUrMZT+sXb1lOsytlf+oCspKsbe2bHGcUV5hWx/s/T/cVtHOwIGRpaLv5yZzYnvfybgoUic3BpSkH0JERG5vZUlDR3tLb9PHK+sA28oLqahk1O14nzc3XF2dGDbsWMMCu2MjY2N+VxqWnrpzyWls6bSsrJZvGsXT90TRVNXV85evFgbXRQRketQclLqVHBwMKGhoSQnJxMVFWXeECcqKoo5c+YQGhrKoEGDAJg3bx7Hjh1j0aJF5tGUQ4cO5Z133mHu3LnExsYSHBwMlG5gM2LECJ577rk6abfblXVocnJyLM6VrT85Y8YM888AJpPJok+vv/46BoOB5cuX4+XlBUBcXBzjx49nxowZxMTE0LRp6VTIgoICpk6dyoABA8zXmjJlSqXjc3NzeeWVV4iPjwdg8ODBDBgwgOXLl5uTkx999BGnT5/mX//6lzmh+8gjj/Dggw8yZ84c+vTpw7vvvlvpa1ZWRe/Xq6++io2NDf/85z9p0qQJALGxsRQVFbFy5UpycnJo0qQJX331FQcOHOCtt95i4MCB5nLDhg3jww8/ZNiwYVX67IjIdZSNMra5CXE2EDzkXowlRk5t2ceepNW0G3IvzTq2wWQ0cmjRJhq38bruBjwiInL7KZvtUpY0rO04ezs7/tAphK927GLWD2t5OLQzRpOJhdt3UHglwWlna4vRaOSDdesI8va+7gY8IiJSuzStW+qN1atX07ZtWzw9PcnKyjL/V7a5ztq1a8uVj4iIqLO2FFUw3aOqjEYja9asITw8HHt7e3N/srOz6devHwaDgc2bN5eLCQ8Pr1F8//79y70ODg7m3FXr86xbt44OHTqUG2nq5OTEhx9+yMyZM6t1zcq69v167bXX+OGHH8yJSSidvu105Wl4Xl6euc0eHh48+OCD5nI2NjZMnz6dzz77DBsbmyp/dkTEkp2TAwDGohKLc8Yr6+/aN3ColTgHZyc8O/nTvEsAnZ7tT4MmDTmychsAaRv3cjkjG//7wym6XEDR5QKK80un8ZUYiim6XKDlGkREbkPODqXfFYYK1nw3lJR+xzg7Olqcq0rcI1270j+kIylHjvDnrxaTuGgJNjY2DOxcuh6yq5MTy39O5URWFk/cfTcX8gu4kF9gnk5eWFzMhXx9D4mI1DaNnJR648SJExQUFNC9e8Xri2VkZJR7XdXRe1VRNmLSo4IFsysrOzubixcvsmbNGos1HcvcqE/Vib+2vY6OjhiNRvPr9PR083qgV/P39wfg/PnzVb5mZV37ftnY2JCdnc3cuXM5ePAgJ06c4NSpU+Zf9sranZ6eTuvWrS2ehrdq1cr8c1U/OyJiycmtdEMaw8V8i3OGC/nYOTtg52iZnKxuXBk7B3s8gn059eN+ii4XkH0oHVOJkZ9mr7Aom77xF9I3/kLEhMdo4O5aQW0iInKraupa+u96zpUH1FfLzsvDxcmRBg6W3ydVibOxsWF4VHcGhXYmI/cCTV0b4tmoEcnbtmNrY0MzV1d+PnmS4hIjryz5t0V9K35OZcXPqcwcOgTPRo1q0l0REbmKkpNSZTk5Obi6umJ/zboudlfWdKmukpISwsLCGDt2bIXny6YYl7G1rbuBv/v37weo0VTgkitPau+//36GDBlSYRlfX99yr6++h9WJ/617UlJScsMpL9W5ZmVd27ZVq1Yxfvx4vLy86NatG9HR0XTs2JFNmzYxd+7cSre5rExVPjsiYsne2REnD9cKd+W+lHGeRq0sd0GtSlze2Rz2fvIdPj1DaNmt/L+tJYVFYAM29nb4D4iw2ECn6FI+BxduxKvL7/DqchcOrg2q200REamnGjo54dmoUYW7ch8/d47feXrWOO7HX4/QxMWZ9i1b4uby343c9mdk4O/ZDEd7e4Z172ax8U5ufj7/74d19Ai8i+i2gbg5O1e3myIiUgElJ6VKFixYwOTJk1m1ahUBAQEA5t2gGzduXKO6W7VqxeXLl4mKiip3PDc3ly1btuDn51ej+ivLaDSyevVqvL296dChQ7Xr8fDwwNnZmeLiYos+nTp1in379uF8g19sahpfkZYtW3LixAmL40uWLGHnzp1MmjSp1q95PW+//TZ+fn4sWrQIl6t+OVy+fLlFmw8ePGgRv379elatWsWECRPqzWdH5FbXrIMfp37cR97ZHFw8mwCQ/esp8s9ewKdnxxrFNfBoTHGBgYxtB/GOCMT2ysOYguxLnNt7HDd/b+ydHCpMgpZtiNPAoxHud7WsxR6LiEh9crd/G77Zu5f07BxauTcBYE9aGhk5ueap1zWJW5maiqG4hGmPPYLdlQfnu/5zgoOnM3n+9/cCVJgELdsQp3njxoT4+NRGV0VE5Cpac1KqpGwq7b59+8zHyn5u27ZthTFlI+aunl5cNkLw6mO9evXiwIEDrF+/vlz8Bx98wIsvvsjhw4droQe/bfbs2aSnpzNy5MgqL8h9NXt7e6Kjo1m/fj0HDhwod27atGmMGTOG7OzsOouvSHR0NHv27GHv3r3mY0VFRcybN4+9e/fi6OhY69e8npycHFq2bFkuMZmRkcHq1auB/47ijI6O5ty5c3z33Xfl4j/99FPWrVuHu7t7vfnsiNzqfHp2xN7ZiT3zviVt0y+cWPcz+z9fi2urpniFlj6Qys+6SObuI+RnXaxSnK2dLQEPdiPvdDapH37NqZT9nPjhJ376YAXY2hDwYKRV+iwiIvXHQ6GdaejkxN9XrmRlaipLdu3mvTXf4+/ZjB6BdwGQeeECGw8dJvPChSrFlZYLJS07m+nffMuaffv5Yts23vtuDZ18fehx110W7RERkZtDIyelSnr06IGPjw+TJ08mMzMTo9HIvHnz8PT0pG/fvhXGlK2D+Pnnn3Pu3DkGDhyIu7s7AMuWLcNkMhETE8OoUaNYvXo1Y8aMYciQIQQGBrJz506WLl1KdHQ00dHRtdqXkydPsnTpUqB0l7+srCw2bdrE5s2b6du3L8OGDavxNcaPH8/WrVuJi4sjLi6Oli1bsm7dOtauXUtsbCyBgYF1Gn+thIQEvv32W5588kmGDRuGl5cXK1eu5MiRIyQlJdXJNa8nOjqaVatWMWnSJEJCQkhLS2PhwoXk55euW3f58mUAhgwZwqJFi3jppZeIi4vD39+fdevWsXnzZqZMmYKdnd1N/+yI3K4cXZ3p9Gx/jq7cxn/W7MbO0Z6m7Vrj/0A4tvalD5UuHM/k0FebaPtYD5w9GlU6DqB5lwBs7W05uX4PR1dux87RniYBLfDr2xUXTzer9FlEROqPxs7OvPrQQP754xa+3LETJ3t7wv38iOsWicOVwQ0HMk4zZ916Eu67l+ZXZm5VJg4g8nf+jOvdi2U//cSCLSm4OTvzYOdODAoNrdMlo0RE5MaUnJQqcXR05JNPPmHKlCl8/PHHFBUVERERQWJiIq6uFW9O0L17d/r378/atWtJSUmhX79+BAQEEB8fz+LFi9mzZw+RkZG0bt2a5ORkZs6cyTfffENycjItW7Zk9OjRPPfcc7X+C8OOHTvYsWMHULo4tqurK4GBgfztb3/j8ccfr5XrtW7dmoULFzJz5kwWLlxIXl4evr6+JCYmEh8fX+fx12ratCnJycm8/fbbfPHFFxgMBoKDg0lKSjJvJlPb17ye1157DRcXF3744QeWLl2Kt7c3Dz/8MH379uWJJ54gJSWF9u3b06BBAxYsWMB7773HypUruXjxIgEBAbz33nvm3cmbNGlyUz87IrczF083Oj5V8cMmgOZd76J5V8vRJb8VV8YzxB/PEP8qtamBuys9pzxVpRgREbk1tWzShIkD+l/3/L1Bbbk3yHLG1m/FlYm6K4CouwKq1CbPRo34fNSzVYoREZHKszGVbY0rIiIWhqydbu0miIjIHeyDvU7WboKIiNzB3Me9aO0m1KrsWTOsev3b7X7WFg0nEhEREREREREREavQtG65LWRlZZk3ULmRBg0a0KhRo5vQotvb2bNnK1XOxcWFhg0b1nFrRERERERERORWpeSk3BYee+wx0tPTf7NcTEwM06ZNuwktur316NGjUuXGjh3LuHHj6rg1IiIiIiIiInKrUnJSbgtvvvkmhYWFv1nOy8vrJrTm9jd//vxKlfP19a3jloiIiIiIiIjIrUzJSbkthIWFWbsJd5SoqChrN0FEREREREREbgPaEEdERERERERERESsQslJERERERERERERsQolJ0VERERERERERMQqlJwUERERERERERERq1ByUkRERERERERERKxCyUkRERERERERERGxCiUnRURERERERERExCqUnBQRERERERERERGrUHJSRERERERERERErELJSREREREREREREbEKJSdFRERERERERETEKpScFBEREREREREREatQclJERERERERERESsQslJERERERERERERsQolJ0VERERERERERMQqlJwUERERERERERERq1ByUkRERERERERERKxCyUkRERERERERERGxCiUnRURERERERERExCqUnBQRERERERERERGrUHJSRERERERERERErELJSREREREREREREbEKe2s34E6VlpZG7969iYmJYdq0acTHx5Oens4PP/xgLnPp0iUMBgMeHh7mYwaDgezsbJo3b26V9l7N1tYWFxcX/P39GTRoEEOHDsXOzs58fuvWrQwfPpypU6fyyCOPAJCens7EiRP5+eefcXZ25uuvv2bz5s28++67nD17ln79+vH222/f1L7dqSZOnMiSJUs4ePBgteJPnTrFlClT2LZtGw0bNuTRRx9l9OjR2NrqmYfI7aYg6yJHv95O7tHTAHgE++DfPwJHV+daids9ezmX0s5bxDft6Ef7ob+vpV6IiMit4MyFi/xfSgr7Tp0CoEvr1sR370Zj5xt/51ztow0bycjJYdJDA2ul/hvVJyIiNafkZD2RkJBAfn6++fXevXt5/vnneeutt4iMjARKE3tPP/00o0aNMif7brbw8HAGDx4MgNFoJCcnh40bNzJ58mQ2bdrE7NmzzQnKgIAApk+fTteuXc3x//jHP9ixYwdjx47F09MTGxsbEhMT8fHx4ZVXXsHPz88q/ZKqKSwsZOTIkeTn5/PCCy+wb98+Zs2ahYuLC08//bS1mycitagor5DUed9gKjHiE90Rk8lE2sa9XD6dTejoB7G96qFUdeJMJhN5Z3Jp2r41TTuU/w5o0KRhnfdPRETqj4sFBbyxYgUlRiMDO3fGaDKxIjWVk1lZTI55GPvrfOdcbe2Bg/yw/wDtWnjXSv03qk9ERGqHkpP1xD333FPu9aFDhzhz5ky5Y2lpaRw/fvwmtsqSr68vgwYNKndsxIgRvPPOO8ydO5ekpCSeffZZAJo1a2ZR9uDBg7Rr144xY8YAsGvXLoqKioiLiyM2NvbmdEJqbMeOHRw9epT33nuP/v37A7B7925Wrlyp5KTIbSZ90y8U5uYR9sIgXLyaANDIx5O9SavJ3PUrLSKCahRXmH0Jo6GYpu1b07xLwM3okoiI1FOrUveQdeky/3j8UXzc3QG4y8uTKSu/Zv2hQ/Ru1+66sUajkSW7f2LRzp21Un9l6hMRkdqh+ZdSK1544QX8/f2ZP38+xcXF1y1XVFREw4YNy70Gyh2T+q9slO+pK9NhTCYTBoMBBwcHazZLROrA2dSjNPH3NicYAdzvaomzZ2POph6rcdzlMzkAODdzq+2mi4jILebHI0do37KFOXEIEOLjQ4smbmw5cvS6cYbiYhIXL+GrHTvpERiIR0OXGtVf2fpERKR2KDlZT8THx9OrVy8AZs2aRWJiIgDDhw+nV69eLF68mOHDhwOQmJhIUNB/R6rk5ubyxhtv0LNnTzp27Ej//v359NNPMZlM5jKzZs0iJCSE7777jnvuuYcuXbrw5Zdf1lr77e3tGTBgAOfPn2ffvn1A6ZqTQUFBLF682Pxzeno627ZtIygoiIkTJ1r0KS0tDYDTp0/z8ssv061bN0JCQnj44YdZtmxZuWtOnDiRBx54gM8++4yIiAgiIiLYsGFDleNTU1MZNmwYnTt3JioqismTJ1NQUFCubGZmJn/5y1/o0aMHXbp04dFHH2XNmjXlylTmmpU1a9YsunTpwq+//sqIESMIDQ2lZ8+efPTRR5hMJubNm8d9991Hly5dGDlypPm+ldmyZQvPPPMMkZGRdOjQgZ49ezJp0iQuXLhww+tWtg/dunXD3d2d2bNnc+DAAV577TXS0tJ44oknLMre6H2qbDtv9v0XkVJF+YUUZF3CtVVTi3OuLZpy6ZTlOpFVjcvLzAbAxas0OVliKKqNpouIyC3mUmEhZy5cxN+zmcW5Ns2acezcuevGFpWUkGcw8GKf3oz+/X0VroFelforU5+IiNQeTeuuh/r27cvZs2dJTk4mISGBkJAQgoKCSEhIYM6cOcTGxhIWFgZAXl4ew4YNIyMjg6FDh+Lt7U1KSgpTpkzh+PHjvPrqq+Z6i4uLmTRpEiNGjMBgMJjrqC2BgYEAHDhwgE6dOpU7V7b+5NSpU3F3dychIYEWLVrQvHnzcn3y8PAgMzOTxx9/HJPJRHx8PG5ubnz//fdMmDCBM2fO8Mwzz5jrzcjI4IMPPmDs2LGcOXOG0NDQKsVnZWUxcuRI+vfvz0MPPcSGDRtYsGABjo6OvPzyywDk5OQwePBgcnJyiIuLw9fXlxUrVjB27Fjef/99+vTpU6VrVlZRURFPPvkkffr0oV+/fixatIi33nqLlJQU0tPTeeqpp8jOzubjjz8mMTGRBQsWALBp0yaeffZZunbtygsvvICNjQ2bN28mOTmZ3NxcZsyYUeH1qtIHV1dXXnvtNV588UViYmKwtbVlwoQJFtP4b/Q+Vbad1rr/IgKG3DwAHBtbjhhxbOxMSX4RxfkG7J0dqx2XdyYHOyd7jq7aztnUYxgNxTTwcMWvb1e8Ov+uDnolIiL1UfblywB4uFjOqHJ3cSGv0MDlwkIaOjlZnHdxdOS9IbHY3SCJWJX6K1OfiIjUHiUn66Hg4GBCQ0NJTk4mKirKvCFOVFQUc+bMITQ01JwEmjdvHseOHWPRokXm0ZRDhw41rwEZGxtLcHAwULpuyogRI3juuefqpN1ubqWjXnJycizOla0/OWPGjHJrUZpMJos+vf766xgMBpYvX46XlxcAcXFxjB8/nhkzZhATE0PTpqWjcQoKCpg6dSoDBgwwX2vKlCmVjs/NzeWVV14hPj4egMGDBzNgwACWL19uTk5+9NFHnD59mn/961/mhO4jjzzCgw8+yJw5c+jTpw/vvvtupa9ZWUVFRTz00EP8+c9/BiAiIoI//OEP7N69mzVr1ph3cU9PT2fFihUYDAYcHR355JNPaNGiBfPnz8fRsTRhMHToUGJjY9m4ceN1r1eVPuTm5rJx40ZsbGwwGo307t37hgnAit6nyrbTWvdfRP47itHOwfLXBVv70mMlRcUWycmqxF3OzKGksJjiAgNBj/ekuMDAqR/3cTB5AyajSetQiojcIfKvLPfkaG/53eF4ZaMaQ3FxhclJGxsb7Gxsaq3+ytQnIiK1R4+CbnGrV6+mbdu2eHp6kpWVZf6vT58+AKxdu7Zc+YiIiDprS9n6kTVhNBpZs2YN4eHh2Nvbm/uTnZ1Nv379MBgMbN68uVxMeHh4jeLLNnQpExwczLmrpnWsW7eODh06lBtp6uTkxIcffsjMmTOrdc3KKnsfAdq0aQNA165dzYlJAB8fH0wmk7nNc+fOZdGiReaEH0B2djaurq7k5eVVeJ2q9CErK4u4uDiWLl3KhAkT6NixI9999x1Lly4FYNWqVeZp21e7+n2qSjutef9F7nhly4NU9e+zKsS1iGhLwEORtB/6e5p18MM7LJDOCX+ggYcrx77ejslorOLFRUTkVlS2JJVNHSUF67p+ERGpPo2cvMWdOHGCgoICunfvXuH5jIyMcq/rcvRY2YjJqxNnVZWdnc3FixdZs2aNxZqCZW7Up+rEX9teR0dHjFf9MZyenm5eD/Rq/v7+AJw/f77K16ysZs3+uyaO/ZWnvNe+h3ZXnvSWtdnOzo6TJ08yY8YMfv31V06cOEFmZuYNr1OV+/bOO+9w+PBh3nrrLQYOHEi/fv145JFHeO2112jfvj1///vf8fT0JDo6ulx8Re2uTDutef9F7nR2TqWbXBmLSizOGa9sfmbfwHIjrKrEtYgMtox3sMerSwAnvv+ZvDM5NPSu/veKiIjcGpyvbKxoqGBzTUNJ6feJs6Ojxbn6Ur+IiFSfkpM3SU5ODq6uruYEU5myxFJ1lZSUEBYWxtixYys8XzbFtUxdLua8f/9+APM08uooufKLwf3338+QIUMqLOPr61vu9dX3sDrxv3VPSkpKbviEtTrXrKyKPh+/9bR33rx5TJ8+HX9/f8LDw+nXrx+dO3dmwYIFLF++vMKYqvTh+++/p02bNgwcONB8fOrUqYwZM4Zhw4aRk5PDsGHDfrMvlW2nNe+/yJ3Oyc0VAMPFfItzhgv52Dk7YOdomZysbtzVHBo6A1BisPwjUkREbj9NXUu/O3IqmOmTnZeHi5MjDRxu/N1hzfpFRKT6lJy8CRYsWMDkyZNZtWoVAQGla2eV7QbduHHjGtXdqlUrLl++TFRUVLnjubm5bNmyBT8/vxrVX1lGo5HVq1fj7e1Nhw4dql2Ph4cHzs7OFBcXW/Tp1KlT7Nu3D2dn5zqLr0jLli05ceKExfElS5awc+dOJk2aVOvXrK7CwkJmzZpFZGQkSUlJ5ZLh19sIB6p230wmk0WisU+fPjz99NMkJSXh4ODA0KFDa62dt9L9F7nd2Ds74uThWuGu3JcyztOoleWOp1WJK8y9zJ75q/Hq5E/rXqHlyuWfywWggbtrDXshIiK3goZOTng2alThrtzHz53jd56e9bp+ERGpPq05eRO0atUKgH379pmPlf3ctm3bCmPKRvNdPb342um7AL169eLAgQOsX7++XPwHH3zAiy++yOHDh2uhB79t9uzZpKenM3LkyBqt42Jvb090dDTr16/nwIED5c5NmzaNMWPGkJ2dXWfxFYmOjmbPnj3s3bvXfKyoqIh58+axd+9eHB0da/2a1VVQUEB+fj5t2rQpl/Dbv38/27ZtA0p3bb9WVe5bZGQkR44cMddXVueZM2eA0nuTnJxca+28le6/yO2oWQc/co6cIu9sjvlY9q+nyD97Ac9O/jWKc3JrSEmBgYzthyguMJjLFeRcInPnYdwCvHFsZLnjt4iI3J7u9m/D3vR00rNzzMf2pKWRkZNLVEDNN0ir6/pFRKR6NHLyJujRowc+Pj5MnjyZzMxMjEYj8+bNw9PTk759+1YYU7YO4ueff865c+cYOHAg7u7uACxbtgyTyURMTAyjRo1i9erVjBkzhiFDhhAYGMjOnTtZunQp0dHRFuv+1dTJkyfNG5+YTCaysrLYtGkTmzdvpm/fvhVO562q8ePHs3XrVuLi4oiLi6Nly5asW7eOtWvXEhsbS2BgYJ3GXyshIYFvv/2WJ598kmHDhuHl5cXKlSs5cuQISUlJdXLN6nJzc6Nz584sXrwYV1dX/P39OXz4MF9++aU54X358mXzzupXq2wfxo8fz48//sjo0aN56qmncHNzY8mSJfzyyy8kJCSwbt063nnnHezt7Xn66adr3M5b6f6L3I58enbkzO4j7Jn3La16dMRYXEzaxr24tmqKV2jpH3L5WRe58J8zNPbzwtmjUaXjAAIe6sb+/1vLz3NX4R3elhJDEae27MfG1pa7BnazSp9FRMQ6HgrtzMbDh/n7ypX8oVMIhuISVqSm4u/ZjB6BdwGQeeECh05n0ta7Oc2rOAutMvWLiMjNp+TkTeDo6Mgnn3zClClT+PjjjykqKiIiIoLExERcXSuerta9e3f69+/P2rVrSUlJoV+/fgQEBBAfH8/ixYvZs2cPkZGRtG7dmuTkZGbOnMk333xDcnIyLVu2ZPTo0Tz33HO1vsbkjh072LFjB1C69qGrqyuBgYH87W9/4/HHH6+V67Vu3ZqFCxcyc+ZMFi5cSF5eHr6+viQmJhIfH1/n8ddq2rQpycnJvP3223zxxRcYDAaCg4NJSkoyb0RU29esiRkzZjB16lQWLVqEwWCgVatWPPfccwQEBDBu3DhSUlK4//77LeIq2wdfX1+++OIL3nrrLebPn09JSQkdOnRg7ty53HfffcTHxzN69Gh8fHxqpZ232v0Xud04ujrT6dn+HF25jf+s2Y2doz1N27XG/4FwbO1LR/RfOJ7Joa820faxHubkZGXiAJq196N9fC9OrEvl2Lc7sHWwo4l/C9rc3xUXzybW6LKIiFhJY2dnXn1oIP/8cQtf7tiJk7094X5+xHWLxOHKLLIDGaeZs249CffdW+XkZGXqFxGRm8/GZDKZrN0IEbm9mEymGk3vr0+GrJ1u7SaIiMgd7IO9TtZugoiI3MHcx71o7SbUquxZ19+L4Wa43e5nbdGakyJS626XxKSIiIiIiIiI1C1N676DZWVlUVJS8pvlGjRoQKNGjW5Ci25vZ8+erVQ5FxcXGjZsWMetERERERERERGxPiUn72CPPfYY6enpv1kuJiaGadOm3YQW3d569OhRqXJjx45l3LhxddwaERERERERERHrU3LyDvbmm29SWFj4m+W8vLxuQmtuf/Pnz69UOV9f3zpuiYiIiIiIiIhI/aDk5B0sLCzM2k24o0RFRVm7CSIiIiIiIiIi9Yo2xBERERERERERERGrUHJSRERERERERERErELJSREREREREREREbEKJSdFRERERERERETqqT/+8Y8EBQWRnZ1tce7Pf/4zQUFBPP/88xbnLl++TPv27fmf//mfm9FMAE6ePFnlGCUnRURERERERERE6qmIiAgAUlNTLc5t3boVBwcHtm/fTklJSblzqamplJSUEBkZeVPaOXv2bJ5++ukqxyk5KSIiIiIiIiIiUk9dLzl5/PhxMjIyePDBB7l48SK//PJLufO7du0C4O67774p7dyyZYtFgrQylJwUERERERERERGppwIDA2nSpAk///xzueMpKSnY2tqSkJCAjY0NW7ZsKXd+9+7deHl54e/vfzObW2VKToqIiIiIiIiIiNRTNjY2hIeHs2fPnnLHU1JSCA4Opk2bNgQFBZGSkmI+ZzKZSE1NNY+aLCkp4eOPP+b++++nY8eO9OjRg1dffZWsrCxzzNatWwkKCmLJkiUMHDiQkJAQEhMTAdi2bRtxcXGEh4fTpUsXhgwZwg8//GCO7dWrF9u2bSM9PZ2goCBmzZpV6f4pOSkiIiIiIiIiIlKPRUREkJOTw/Hjx4HS5OO2bdvM60l269aNXbt2YTAYADhy5Ai5ubl069YNgJdeeok333yTtm3bkpiYyAMPPMBXX33FE088wYULF8pd6/XXX+fuu+9mwoQJ9O7dm6NHjzJq1ChMJhMvvfQS48ePJz8/n9GjR7Njxw4A/vKXv/C73/0Od3d3pk+fTt++fSvdN/ua3hwRERERERERERG5sd69e9/w/Pfff3/dc2UjIH/++WfatGnDoUOHOH/+vDn5GBkZySeffMKuXbvo1q0bu3fvNsdt2LCBb7/9luHDh/O///u/5jrDwsL44x//yJw5c3j55ZfLHf/rX/9qfv3RRx+Rl5fH+++/j4eHBwADBgxgyJAh7N+/n/DwcPr06cOnn35KYWEhgwYNqtJ9UXJSROQGvvj9y79dSEREpK783toNEBERuX24j3vRug3497JqhwYHB9OoUSNSU1MZNGgQKSkp2NnZER4eDpSOrLSzs2Pbtm3mUZTe3t74+fkxf/58AEaNGlWuzv79+zNjxgy+//77csnJsg14ynh7ewPwxhtvMHLkSDp27Ii7uzvffvtttftzNSUnRURERERERERE6tiNRkb+FltbW8LCwsyb4qSkpNCxY0dcXV0BaNSoEe3atWPnzp0A/PTTT+Yp32lpaTRu3JhmzZpZ1BsQEMCGDRvKHSsbHVnmgQce4LvvvmPVqlWsWrUKT09P7r33XmJiYszJ0ZrQmpMiIiIiIiIiIiL1XHh4OAcOHKCwsJAdO3aYp3SXiYyMJDU1laysLI4dO2aeCm4yma5bp9FoxMHBodwxOzu7cq8dHByYOXMmy5YtY9y4cbRs2ZLFixcTFxfHhx9+WON+KTkpIiIiIiIiIiJSz919990UFRXx9ddfc+HCBfPIyDLdunUjLy+PlStXYjKZzOdbtWrFhQsXOHfunEWdx44do0WLFje87qlTp9ixYwdBQUGMHTuWhQsXsnbtWtq0acO8efNq3C8lJ0VEREREREREROq5Dh064OLiwhdffIGDgwNhYWHlzoeFhWFvb8+SJUto1aoVvr6+APTq1QuAuXPnliu/Zs0ajh07xn333XfD686ZM4ennnqKzMxM8zFvb2+8vLywtf1vatHW1haj0VjlfmnNSRERERERERERkXrO3t6eLl26sHnzZsLDw2nQoEG58w0bNiQkJITdu3cTExNjPn7vvffSu3dv/vnPf5KZmUlkZCTHjx/n888/x9fX12KjnGvFxcWxdOlS4uLiiI2Nxc3NjZSUFLZt28YLL7xgLufh4cH27dtJSkoiLCyMzp07V6pfGjkpIiIiIiIiIiJyCyjbSfva9SbLlE3lLltvEsDGxoYZM2bw4osvcuDAAaZOncrq1auJjY3lq6++onHjxje8ZlBQEPPnz8fPz4+kpCTeeOMNDh8+zF//+ldGjx5tLvfMM8/Qpk0b3nnnHRYtWlTpPtmYbrQqpoiIiIiIiIiIiEgd0chJERERERERERERsQolJ0VERERERERERMQqlJwUERERERERERERq1ByUkRERERERERERKxCyUkRERERERERERGxCiUnRURERERERERExCqUnBQRERERERERERGrUHJSRERERERERERErELJSREREREREREREbEKJSdFRERERERERETEKpScFBEREREREREREatQclJERERERERERESsQslJERERERERERERsYr/DxoE6YMVeczCAAAAAElFTkSuQmCC" + "image/png": "iVBORw0KGgoAAAANSUhEUgAABScAAALgCAYAAABmhsJSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1xW5f/H8RfrZoMgILIE3Aoq7m2uNLXMyq1pWVpq2jKtX8PS1Fxlamo5KnOWM3euwjRXmiMnLkBQUUARkHX//iDOVwQNJ1nv5+PRozjnus59nZu7+3A+53N9Lguz2WxGRERERERERERE5AGzLOwBiIiIiIiIiIiIyH+TgpMiIiIiIiIiIiJSKBScFBERERERERERkUKh4KSIiIiIiIiIiIgUCgUnRUREREREREREpFAoOCkiIiIiIiIiIiKFQsFJERERERERERERKRQKToqIiIiIiIiIiEihUHBSRERERERERERECoWCkyIiIiIiIiIiIlIoFJwUERERERERERGRQqHgpIiIiIiIiIhgNptvu09WVhYAmZmZd9RfRMTCrG8PERERERERkf+MrKwsDh8+zO7du7GwsMDW1pYxY8Ywf/58goODb9rHwsICCwuLWx47LS0Nk8l0P4YtIv9SypwUERERERER+Zc6d+4cK1asIC0tzdi2bt06unTpwowZMzh58iRlypRh4MCBuLu75+p7fS6TpaVlnsDktWvXWLduHREREUyYMIHq1aszaNAgzp8/f39PSkT+VZQ5KSIiIiIiIvIvNW3aNGbOnMkPP/yAv78/AC1atODq1at8+umnlC5dGicnJywsLLCysjL6ZWVlYWmZnc90/vx5IiIiAKhRowbW1tYAHD16lC5duuDo6Ejp0qUJCAigevXqNGzYECcnpwd8piLysLIu7AGIiIiIiIiIyP3x9NNP88gjj+Dl5UVmZiZWVlbY2dnh6+tLjRo1crXNmZJtNpuxtLTk5MmTjBo1iq1bt2JjY4O9vT3lypXjpZdeokaNGjg7O9OgQQNWr15N165d6d27N2az+W+nfouIXE/BSREREREREZF/AbPZbAQWc3h4eODh4ZGrXWBgIPv37+fTTz+lZMmSVKtWjREjRpCQkMC0adNwcnLi3LlzDB48mLi4OD744AP8/PzYv38/CxcuZNiwYUybNo2iRYvi5uaGvb09YWFhAApMishtU81JERERERERkX8BCwuLXIFJyF5Fe/fu3axfv564uDheffVV1q5dy4ULF5g2bRq7du0CwNHRkdjYWK5evQrAr7/+ypEjRxg3bhzPPPMMtWvX5sUXX2TixIkcPXqURYsWYTKZ8Pf3Jy0tTUFJEbljypwUEREReUByMloKstqpiIgIZF87srKyMJvNWFlZ5bp+XD+F+urVqxw7dozz588TFBRE6dKlAUhISOCTTz7hzJkz/PTTT7Rs2RIPDw++++47Bg4cyLPPPouNjQ2lSpVizZo1JCQk4OHhwc6dO3FxcSEsLIzIyEiOHDnC/v37OXbsGABbtmzhpZdeIiAggKysLC2CIyJ3TMFJERERkb+RlJTEhQsXCAoKyrVAwN/JzMzMlcWioKSIyH/Pzz//zNy5c+nZsyd16tS56XXkZrUab1yo5sb2aWlpjB49mpUrV5KcnIyzszN2dna0b9+ePn364OzsTFhYGBEREaSnp9OiRQvKlSvHd999B2RnTAL4+fmRlpZGZGQkZcuWJS4ujgsXLhAWFkZKSgoODg4UL16cgIAA3nrrLcqUKYO1tTVeXl44OTlx4sSJ27pGiojkUHBSRERE5BYuXrxIly5d8PT05Lvvvstz05WT0QLkuXm88eeIiAhOnjyJo6MjderUub8DFxGR++b6QOL58+c5ePAgp06dws3Njfr16+Ph4WG0iYuL4+eff6Z27dq5vvtzrh+Wlpa5Hl7dGKQ8duwYP//8M7t27SIzM5NatWrRoUMHXFxcMJvNzJ07l0WLFtG7d2+qVq1KUlISU6dOZfbs2XTo0AE3NzeKFy/O1atXiYqKwt3dnWLFilGkSBFOnjzJlStXcHZ2xsvLC3t7eyIiImjWrBlFixbFZDLRo0cPmjdvjoODA66urri7uxMZGcmFCxfIzMykaNGieHl5cfz4cTIyMjCZTA/2lyEiDz0FJ0VERERuoWjRonz88cfY29vnu/9mGS0A4eHhbN26lZYtWzJv3jxWrVpFZmYmTk5O9OzZk65du+Li4nI/hy8iIveBhYUFV65c4fPPP2f16tWkp6djb29PcnIyrq6u9OjRg27dugFQsWJF7O3tiYyMzHOMnOtHUlIS586dw97eHh8fH6NNdHQ0Q4YMITk5mRIlSpCVlcX48ePZunUrEydOxNHRkcWLF1OrVi169uxpXKuqVatGdHS0kRXp6+uLpaUlx44do1KlStjb21OiRAnOnDnD5cuXcXZ2xs3NDS8vL2PadqVKlVi6dCkeHh5UrFgx19i/+eYbtm/fzsSJE/H09CQoKIgzZ86QnJys4KSI3DYFJ0VERET+RvXq1fPdnpGRwZEjR9i5cyfnz5+nSpUq1KtXz7gZ/OOPP1i8eDHLli2jVKlSTJw4EQsLC2bMmMHkyZMJCAigdevWmgYnIvIPlpmZmech1Pnz5+nfvz8nT57kueeeo3bt2jg4OBAZGcm0adMYM2YMqampvPDCC/j7++Po6MiZM2cAjO/706dP8+2337JhwwYuXLiAjY0NFSpUoF+/ftSqVQtra2s++eQT4uPj+fjjjylXrhwODg5Mnz6dPXv2EBcXh6OjI8WKFWPLli2MHz+eBg0aYDabcXZ2pmrVqsZ4PT09cXNz49ChQ8a20qVLEx4ezqVLl/D19cXFxQU/Pz9OnjxJZmYmtWvXpnz58syZM4fQ0FDKly9PSkoK69ev57vvvqNx48YEBgaSnJyMp6cn69ev5+LFixQpUuT+/1JE5F9FwUkRERH5z8tZqOZWAcITJ07g4OCAt7e3MRVv6tSpfPvttzg5OWFhYcG3335LjRo1ePXVV6lcuTKhoaFAdvbliBEj8PPzA8Dd3Z0uXbrw66+/0rp16wdyjiIicvt+++03vv32W7744otcD5K++OILDh48yHfffUdYWJjRvly5clSrVo3HH3+c5cuX06VLFyOAGBsbS3x8PG5ubiQmJjJ69GhOnTpF27ZtCQoK4ujRo3z33XeMGTOGTz/9lKCgIGJiYvDy8qJYsWK4ubkB0K9fv1xjfP311xk9ejSzZ89m9uzZQHYdSQ8PD5566in69OlD0aJFKVasGEePHjX6lS9fnqVLl3LhwgUAHBwcCAwMZM2aNZw/f57g4GDefPNN+vbtS8+ePWnQoAFZWVkcPHiQWrVq8d577xn9WrZsSWBgIMWKFbt/vwwR+ddScFJERET+9a6vC5lT2+t619f6OnfuHElJSfj5+WFrawvA+vXr6d+/Pz179mTIkCFYWFgwf/58Jk2aRKdOnejcuTN2dnb8+uuvfPTRRyQnJ7NgwQKCg4OxsrLCxsbGWGjAZDLh7e2Nv78/x48fN15fRET+WcxmM7/++isbN27k6tWrRlb8uXPn+PHHH3niiScICQkx2lpYWJCRkYG7uztz5swhMDDQOFZwcDBbtmwhKioKNzc35syZw4YNGxg6dCidOnUysjMdHByYMmUKx44dIygoiObNmzN+/HieffZZypUrh5WVFcHBwVSrVo3Q0FCKFStG+fLlmTRpEpcuXWL//v1ERUURHx9PeHg4M2fOpHLlylStWhU/Pz/27t1rXIvKlClDRkYG586dA8De3p6goCAuXrzI2bNnKV68OPXq1WPx4sX88MMP7NmzBzs7Ozp37syjjz6aa/p5rVq1qFWr1oP75YjIv4qCkyIiIvKvd6u6kACRkZF89tln/Prrr8b0tIYNG9K9e3eCg4Px8/Mzsl4gezrft99+S4UKFRg6dKhxnBIlSpCUlMSECRNYt24djRs3xsfHh8TERACjDpeHhwfe3t4cPXqUa9euGUFQERF58PJb2CwnS9LDwwOA+Ph4Izi5ZcsWrl69yiOPPIKNjU2ujEpr6+xb7JzAZHp6OjY2NpQuXZq1a9dy6tQpQkND8fb2pk+fPrRr1w7AqAd5+PBhLC0tOXHiBACdOnXCzc2NtWvXEh8fT2xsLD///DOzZs2iSpUqzJw5Ezs7O1JSUnB1daVVq1bGeTVs2JDnnnuO8+fPYzKZCAoKYvPmzVy8eNFYdRvg6NGjZGRkYG1tTbFixXB1dSU1NdV4b0qWLMlbb72lB2kict8oOCkiIiIPrVutlH29yMhIdu/ezZEjR3BxcaFx48aUK1cOyF6EYMyYMezbt48+ffrg6enJzp07mTdvHlZWVrz77rv4+Pjg5uZm3CxaWVlx+vRpevToYYwDsoOgzZo1Y+LEiezdu5dHH30UPz8/zpw5Q1xcHB4eHkZ2jK+vL7t37+bMmTOULl36fr5NIiJyC/k9wLK0tCQ2Npbdu3cD8Pjjj+Pl5cX06dNJTk4GsmtR/p2coGXZsmXJysoyFsV56qmnADh48CCLFy9m165dREVF4enpiaWlJadPnwbA2dmZ9u3b0759e6Kjo8nMzMRkMjFr1iy+/fZbtmzZQrVq1ejQoQPNmzfnlVdeISsriwsXLrBkyRIAI7vTw8ODtLQ0jh49SvHixXF3d6devXoEBgYa19ImTZqwffv2XO/N9f8WEbkfFJwUERGRf7ybBSFvvKHMmaqWM70OsjNc3n//fcxmMy4uLpw/f565c+fy4Ycf0qRJE86dO8dPP/3EiBEjePLJJ7GwsKBNmzbUrFkTT09PAFxcXPD29uaPP/7gypUrWFhYYG9vj6WlpfGaOTw8PPDw8DCmyQUFBbF+/XpOnjyZKzgZFBRERkYGx48fp3Tp0rnGLCIidy8rK8v4br1ZTeHMzExjYbPTp08TEBBAkyZNCAgI4MCBA5w8eRJra2v8/f156623KF68OHZ2dgBcvXr1b8eQc40KDg7GZDIZi+IA/Pjjj0ycOBEHBwdq167NI488Qp06dahbty5nz54FIDU1lVWrVlG+fHkqVKhg9K1RowbffPMNJpOJokWLEhISwjfffMO+ffvw8fEhOjqaqKgoPvjgAyNDMiwsjAEDBhAcHAyAjY0NM2bMyHe8IiIPkoKTIiIi8o+S36qoN5uWHRUVxbx58/jll19ITk6mcuXKtG/fnjp16gBw5coVBg8eTIUKFejfvz/u7u7Ex8fz6quvsmPHDho1amQEM1evXk2xYsUoU6YMV65c4ZFHHjGm8AEEBASwZcsWTp8+TZkyZfDy8uL06dMkJSXh7u5uTIlLTU3F0dGR9PR0APz9/YHsaXM1atQwjhccHIydnR1HjhzhscceU3BSROQOmc1mMjMzsbS0zBWEvP6/zWYzGRkZ2NjY5Pq+nTNnDlOmTMHV1RU7OzuWLVvG0qVL+fjjj2nWrBmenp4MGTIEa2tr6tevD2AsbpYTQLzZd3dmZiZxcXG4ubnh7++Pm5sbUVFRZGZmkpWVxcSJE3FycmLMmDGULFnS6GcymYiKiiIuLg5ra2tGjRqFh4cHffr0ITAwkLNnzzJp0iQCAwMpVaoUAKNGjaJZs2asW7eOc+fOUaZMGV566SXq1q1rTDUPCQkxsihFRP5JFJwUERGRQnP9IjU5bgxCnjhxAicnJ1avXs3q1avx9vbms88+Iz4+nhEjRnD06FFq1aqFi4sLP/30E6tWrWLcuHG0atWKU6dOkZCQQLt27ahcuTKQHSz88ccfjcCjv78/L774Il999RW//PILAK6urvj7+1O5cmU6duxImTJlCAgIwGw2c/ToUUJCQggNDSU8PJwjR45Qp04d4+YvKiqK48ePU7t2bSA7qOni4sKxY8dynZe3tzcpKSkcPHjwPryzIiL/bNHR0Rw8eJC9e/dy6NAh9uzZw+TJk6lXr16uGo4FYWFhYXwHX2/fvn3Mnj2b3bt3Y21tTd26dXn66acJDQ0F4I8//mDkyJF07dqVzp07Y29vz59//smwYcPYu3cvFStWpEKFCgQGBrJjxw7juOXLlwfg8OHDxuvnZ/r06axatYrRo0dTtmxZfHx8iImJIS4ujoyMDC5dukTr1q2NwGRGRgYzZ87kwoULODs7c+LECWrWrMm7777L9OnTGTt2LBkZGSQnJxMaGso777yDn58fmZmZODg48MQTT/DEE08U+H0TEfmnUHBSRERECiwqKoo///yTEydOkJGRQY0aNW65OqfZbDYyVG68eTObzbluPhMSEihSpAhffvkl3t7ePP744yQkJNCqVSsaN25MVFQUQUFBlClThqysLGbPns22bdv46KOPaNKkCSaTicGDB/PCCy8wbtw4ypUrR2BgIMHBwbz99tusX7+egIAArKysqFixIpUrV8bNzQ1LS0tefvllHn30UU6dOsXhw4eJjIwkKiqKOXPmcPnyZSOrxdbWlj///JOnnnqKNm3asHLlSj777DNcXV1xcXEhMjKS0aNH4+7ubtwg+vj4cO3aNf744w/gf4sllCxZkkWLFhkZOLdzIy4i8rA5ePAgCxYsYMeOHURHR5Oeno6joyM+Pj4EBwfTuXNnvL29gf99H+b3AOv6rMf09HQiIiJwdHRk7ty5bNmyhQYNGvDWW29x8OBBPvjgA7KysmjRogWpqamsXr2aH3/8kS+//JJq1aoRERGBpaUlzzzzjBEg9PHxoV69etjb2wPZU599fX25evUqly5dwt3dnSJFilClShW2bNlCdHQ0vr6+ucaVU+7j4MGDHDlyxJj+HRQUxJ9//klMTAwhISEEBwczZ84cbGxsKFWqFNu3b+fnn38mLCyM3bt3s3DhQmrWrEnbtm2pXbs2v//+O7a2tpQuXdrIyjebzZqKLSIPPQUnRUREJF8pKSksXryYvXv3smfPHmJjY8nIyMDJyQlXV1cuXLjAnDlz6NSpEwMHDsz3GNcHJW+ctmxhYcG+ffuYOnUq27dvx8XFhd69ezN+/HiaNm1Kw4YNcXNzo2LFimzatIlBgwbRpUsXIPtGde3atbRs2ZLHH38cyL4ZTEhIwMfHhy1btrBx40ZefPFFBg0axIwZM9i1axe//PILSUlJQPYNaL9+/Xj66aextramdOnShIaGGsczm8307t2bnTt3Yjab8fPzw83NzVikoG7dunzyySe8//77dOvWjYCAAM6fP0+RIkUYNWoUlSpVMl5nxowZ+Pj4GGOH7CBlzqI8IiL/VjlZkKdOnWLhwoWUKFGCTz75BEdHR4oVK4abmxuOjo7Y2tpiY2OTq2/O92VmZiZRUVFYWloaQTmA3bt307NnT1q0aMGJEyeoXLkyQUFBmM1mJk+eTGJiIp999hmlS5fGzs6OQYMG8eSTTzJ27Fi+/vprKlSogL29Pc8//zyPPPIIRYoUwdHRkbCwMEJDQ3F0dMz1mkePHjWy4tu3b8+BAweYPXs2/fv3x8nJyRiXyWTiwIED/PbbbzRr1swIfFasWJFly5Zx5MgRqlSpQv/+/Zk2bRrTpk0DsjPqu3fvTqtWrTh+/DjFixc3jlmsWDEee+yxPO+vyoGIyL+BgpMiIiKSr4yMDIYNGwbAc889R4kSJfDz8zNWEr106RLvvfceU6ZMoWXLlpQtWxb4341oVlYWx48f5+jRo9ja2vLII4/kuvGMjIzk448/Ji4ujj59+pCSksLcuXMBuHbtGomJiRQpUgR/f38OHjxIWFiYkcly4sQJzGYzhw8f5o033jAyUVJTUylatChVqlTBw8MDgIYNG9KwYUMSEhI4cuQIWVlZxMbGMmrUKL766iuefvpp1q5dy/fff8+wYcMoUaIE165d4/jx48TGxuLm5oaFhQXFihXDycmJffv2Adk3n0888QRVq1Zl5cqVXLp0ibJly1KzZk0jGzJHlSpV7uvvSkTknyoneFauXDmKFCmCm5sbrVq1KlDfPXv2MGnSJHbs2IGNjQ2enp48+uij9OvXDzs7O4KCgnBwcGDt2rVMmzaNmjVrYmNjQ3x8PJs3b+bDDz80HhQlJSVx6dIlihUrxs6dOzl48CBVq1ZlyJAhLFy4kK1bt5KYmEhKSgoAZcqU4Z133qF27drGw6X9+/cbwck2bdqwf/9+vv76aywsLHj++eeNRdL27dvHhAkTyMzMpG3btri6ugLZZT6uXbtGdHQ0kH19CgkJ4dy5cxQvXpwiRYoY556zIJuIyH+BgpMiIiL/EZGRkWRlZVGiRIkCtXd2dqZSpUqcPn2anj17UqxYsTxt+vfvz//93/+xatUqgoKCMJlMWFpa8ueffzJq1Cj27t2Lo6MjmZmZ+Pn5MWTIEGrWrAnA0qVLOXjwIJ988gmtW7cGsm/2hgwZwokTJ7h06RIlSpQgODgYW1tbI+MRsutSurq68scff+Dj40OjRo0oV64cAQEBeHp6kpWVhYODAwBxcXEcOHCARx55JNcU9J9//plt27ZhNpspVqwYO3bsoGfPnrRu3RpLS0t2795NSkqKEaA1mUw0aNCAK1eukJKSYgRK/fz86NOnzx38RkRE/n1yVsiG7O/qnOBksWLF8PT05MSJE8D/yn7ktL1xRe3Dhw8zdOhQUlJSeOONNyhSpAgbNmzgq6++Ii4ujiFDhhjHzFkQLed7+c8//8TBwYE1a9awbt06jh07xoULF8jKyiIgIIDatWsbU6GfeeYZnnnmGc6dO8fJkyexsbFhz549jB07loULF1K7dm2KFy+Oh4eHUSM4NTUVOzs7Bg4ciK2tLbNmzWLJkiWEhISQlJTE8ePH8fHxYezYsTRu3NhYMK169er8/PPPua6n7u7uuLu73+ffiojIP5uCkyIiIv9S1y8ocOnSJVq1asWzzz7La6+9lmfhgJybyZybw5wVs/39/dm3bx/nzp2jWLFixmqoWVlZWFlZUa5cOYoVK0ZUVJRRG+zMmTO88847pKamMmrUKPz8/Dh8+DCzZ8/mww8/NOpBHjx4kODgYCMwCdl1GLt27crbb7/NhQsXAChbtizXrl0jISHBaFe0aFHc3NxwdnZm1KhRxnTAnJvgUaNGYTKZeP3111mxYgWjRo3igw8+oEaNGlhYWLB79242bdpE69atSU9Pp2bNmsyaNYsFCxbw008/kZaWRmhoKL179zZW/gZ48803832vzWZzrtpommYnIv8FmZmZRs3DnO+9m9XPdXJyws/Pj2PHjhm1G2/1XfnNN98QERHB9OnTjWzFJ598kvfff5+FCxfSuHFjHn30Ufz8/IiOjubixYu5Mg+LFCnCvn37aNq0KZUrV6Zs2bL4+vpSpEgR0tPTjbYRERGcP3+eOnXqGEHD0qVLs2zZMs6dOweAl5cXwcHB/Prrr0ydOpWgoCBatGiBm5ubMVV83bp1nDp1Cn9/fzp27EjNmjWNWpQ511wbG5t8H/SJiPzXKTgpIiLyL3Tu3Dm2bdtm1NByc3Nj1qxZFCtWLN/C+Te7mSxbtiwrV67k8OHDxtS4G28mL126BICdnR0A4eHhREVFMXPmTKNPpUqVqFChAp06dWLlypWULl2aCxcuGMfKCYYC1KhRA7PZTExMDIBRq+vs2bPGazo5OdGwYUM2btzI0qVL6d69u7Fv165dfP3113Tt2pWsrCw6dOjAzz//zIgRIwgMDDQCnY0bN+bNN9/EZDKRlZVFnTp1qFy5Mra2trdcXCAjIyPXjXjOe6IFCUTkYXH16lW++uorypYty2OPPZanJvCtXN82v++9o0ePsnbtWiIjI6lSpQpPPPGEUY8xMDAQgGPHjlGxYkV27tzJn3/+yeHDh9myZQsjRozgscceIzExkUOHDlGzZk2qVq0KZC9+Y2NjwxNPPMGaNWvYtGkTjz76KGXKlOHAgQO5HmD5+PhgZ2eHl5cXo0aNIi0tDWtraywtLYmLi2P8+PFUrVqVLl268NVXX/Hjjz/y6aefUqpUKWPhnIiICAYNGgRkT7F++eWX+b//+z+mTZtGy5YtadGiBZBdP7h8+fLGCt430sMqEZG/p+CkiIjIQ+DatWvY2tr+bbucbMlp06axYcMGgoODjeyQ6tWr59vn6tWr7Nmzh927d5OamkrDhg2Nqdc5gcGjR48C/wtiWllZcfXqVX744QeSk5ONrJbU1FT+/PNP7OzsqFixIn/88QeHDx/m4MGDHDp0iIyMDLZt28Ybb7yBk5MTZ86cMY4H2Te93t7e2NnZERkZSVpaGj4+Pjg7O3PmzJlc06nbtWvHypUrGTFiBIcOHaJOnTpcuXKF6dOnExwczLPPPoulpSUODg588cUXbN68mT///BM3NzeqVKlChQoVsLOzy7VqeM5U8OszIW+8+b4x61RE5GFjY2PD1KlTadmyJY899liuAFpWVpZxLbnxwVVOYDItLY20tDR++eUXNmzYQFpaGl26dMHX15eJEyca39fLly8nOjqal19+2cictLa2plevXmRmZmJnZ0exYsUoXbo07du3N8qOXLx4kdTUVBwcHIwHSDnfvT4+PgQFBRnXpbJly5KYmMj58+eNcRYvXpz69evz7bffsmnTJho3bgxkPwhbvXo1K1asoH79+kB2eZJ9+/YxePBgSpQoQVxcHGazmeeff57nnnsOyA4w1qlTh8WLF+fKzhQRkXtDf12LiIj8g23fvp2XXnqJV199lR49euTbJisry1gVO6d2l5eXFxcuXMBkMgHZN5Tp6en8+eefFC9e3JhWduXKFcaMGcOqVauMVUHnzZtH69at+fjjjylZsiRWVlacOnUKgNjYWE6cOEFERAS7du1i586dvPjii7Rv3x4AW1tbEhMTiYuLo3LlymRlZeHm5kZAQABlypShU6dO+Pr6AhAcHMyOHTs4ffq0cUNqYWHBmTNnsLOzIyYmhitXrlC0aFECAgKIjo7mypUr2Nvbk5GRga2tLe+//z5z585ly5YtrFixAisrK6pVq8bAgQNz1da0t7fnscceK/BKp8qEFJF/q8zMTEwmEz4+PsTHx5OYmIirq2uu0h45QcmcQKW1tbWx/7XXXiMmJoaaNWuydetW7O3tOX78OHv37sVsNlO9enUmTJiAlZUV48aNY8mSJdSvX586deoQEBCAjY0NpUqVYtSoUUB2mQ4HBwesra2N72MnJyecnZ2N+pQ51zgAV1dX7OzsjH2lSpUCcmfX29vb8+yzz7J27VreeOMNOnbsSMWKFTlx4gRff/01TZs2NTIf/fz8mD9/PmvXriUmJgYfHx/CwsIIDg7O894pMCkicn8oOCkiIvIPlHMTGBgYyIcffphnutj10+rym5JtZ2dHVlYW77zzDn5+frz//vvs2rWLV199lWHDhtG+fXvS0tL46quvWLhwIQMGDKBVq1ZkZmYyd+5c5s6dS7t27QgLC8PT05MdO3ZQo0YNrly5gslkIi0tDYCePXvyyiuvAP/L2nR1dcXa2pq3336b2rVrY29vj7OzM87Ozhw9epSLFy8C8Oijj7JkyRJmzZrF22+/ja2tLRkZGcyfP5+EhAQuX77MxYsXKVq0KL6+vmzZsoVz587h5eWFlZUVZrOZ0qVL8/777xMREYGFhQUlSpS4ZWZjZmYmkHfhBRGRf7uc7+icBy9BQUGcPHmSuLg4XF1djWvKrl27mDt3Lnv27MFkMvHII4/Qtm1bKlSoAGRnKq5evZoLFy7Qu3dvWrduzfbt2/noo48A6NOnjzF9+6mnnmLNmjVERERQp04dAgMDcXR0JDk52cjMz4+bmxulS5dm5cqVxMTEGA/PABwdHTl79izFihUjLS2NgIAAHB0diYmJIS0tDZPJhNlsxsfHhzFjxjB37lxWrVrF7NmzcXJyomXLlgwcONDIwgdwcXExHrKJiMiDp+CkiIjIP1BO8LFYsWI8/vjjebL7cn6Ojo7m5MmT2NnZUb16daysrNi1axejRo3CysqK8+fPU6VKFSwsLChdujRWVla56nLNnz+fpk2b0rdvX2Pbm2++Sdu2bSlTpgxWVlb4+flx7tw5+vbtS40aNXB1deXUqVN88803rFmzBisrK3r16mWsNlqxYkUWLVqEyWTKc/M5a9Ysdu/ezeTJk6lTpw7PPvssX375JUeOHKFp06ZERERw5MgRKlSowMmTJ7l8+TIAjRs3pkiRInh4eOQ6/5z/zsmcyXnvrp+qfT1lQ4rIv1XOwmY3W5Tr+gXS3N3dqVy5Mtu3byc2Ntb4rt61axcffPABGRkZtGrVigsXLjB37lxWrFjB8OHDady4MVWqVAGgfPnydOzYEcCo2bt79268vb2N1alzHqxFRUUB2St2+/j48Oeff97yXGxsbGjRogWLFy9m3LhxjBw5EhsbG65cucKyZcuIjIykV69emEwmTCYTLi4u7N27l4SEBLy8vLCwsCArK4vq1atTsWJFoqKicHJyyhXkFBGRfw4FJ0VERArZzVY7zQlQWlhYcOXKFRwdHY2by/Xr1/P5559z4sQJHB0dsbKyonr16owZM4bQ0FAWLFhAt27dCAkJYeDAgbi6umJra4uDgwOnTp3i2rVrnDt3jrS0NGrWrGlMDTebzdjb2xsL2UD29Otdu3YREhJCtWrVyMzMpFSpUlStWpV33nmHGTNmcPXqVQYMGIC7uzu1atWiSpUqTJkyBU9PT2rWrMnVq1dZvXo1S5Ys4cknn6R06dIA9O7dGy8vLxYtWsTkyZPx9PSkb9++ODg48PrrrxsZmu3ataNdu3a3fB+vf7+0AIGIPAwyMjK4ePGiEVC7HTl1cXOuC7fKBjebzcybN48ZM2Zw7tw5mjdvbiwSc+rUKerVq2csFBMfH8/MmTMpUaIE9vb2vPjii3Tu3JlPPvmExo0bGw+Dcha5MZvN2NnZERwczE8//URycjJubm5A9kIy9vb2REZGkpqaip2dHf7+/uzbt4/o6GijzEd+GjVqRMeOHVmwYAHHjx+nXr16JCYm8tNPP9G6dWtjWjZkXyNyrnE5cq6j9vb2xjVHRET+mRScFBERuU3XryxdULdaCfXGYyUmJvLLL7/w+OOPAzBjxgzGjBnDjz/+SOnSpTlz5gwff/wxpUqV4pVXXsHZ2Zl169Yxd+5cmjZtSqtWrahcuTJBQUGcP3+e9PR0AGMxgtOnT5OamkpycjImk4krV64YN7U5AcqcgKizs7Mxle/YsWPUr1/fqF/p7u7ORx99xOjRo5k/fz6ZmZkMGzaMkiVLMmDAAN566y1effVVKleuDEBERASNGzfmrbfeMs7VycmJbt260bp1a1xcXIz3YunSpWRkZBjZmJD/KtnXU0BSRP7JoqKiOHDgAH/88QcHDhzg5MmTpKWl4erqStOmTencuTMlSpQwpl/D/x5e5VcH9/pgZFJSEtu3b+fQoUO4uLjQpEkT/Pz8jL6rVq1i3LhxVKtWjX79+nH06FEWLVpERkaGUasxMTGR33//nZdeeoly5coZxy5dujQ9e/Zk0qRJ7N27lypVqmBvb09CQoKxWJuFhQW+vr6YzWZOnTqFr6+vca0sUaIEUVFRxMXF4efnZ9QDPnLkCL6+vrnON0fOuN944w2qVKnCihUrWLZsGW5ubnTt2pXOnTsbAVCAAQMG5Pue67ogIvJwUHBSRESkgNLT0+nbty+nT59m9erVfxugvP6GK+cGKb8g5fr161m0aBGRkZE0aNAAyJ7+HBISQlBQkFGA//Tp05QuXZpffvmFq1ev8sorrxgZjrVr16Zt27b4+fkZxy9Tpgxbtmzh7NmzxnTo0qVLs3PnTuLj43F1dcXd3Z0jR44YY8vMzMTa2pqdO3cyY8YMPvjgA+MmNWdlVAsLC6Ouo5eXF6+//jpnz57l+++/JzU1lZEjR1K3bl2+//57Fi9ezN69e3F2dqZNmzY0bNgwV8Bx3759fPfdd7zyyiu4ubmRlpbGhQsXmD9/Pt7e3nh6ehpttUq2iDyMTp06xYsvvkhkZCSurq54eXkRHBxMjRo1sLS0ZOfOnXz99ddER0czcuRIIyMRbl2KIjIykgEDBtCzZ0/27NnDxo0bsba2JiYmhgULFjBjxgy8vb1JTU1l6tSp+Pn5MX78eOP4DRs2pFevXkRHR5OZmUlUVBSWlpaEhIQY16qcf4eEhGAymTh48CBVqlQhKCiI6OhoLl26ZEyV9vb2xtbWliNHjlCvXj2ysrKwsrKifPnybNy4kfPnz+Pn52csNLN//36aNGmSb3Ay57VdXFxo164dLVq0yJUVKSIi/y76K19ERKSArK2tsbS05Ny5cyQkJFC0aNFbts+52UpISCA2NpaiRYvmCrYB/PTTTwwdOhQfHx/q1q3Lli1biI6OBuDMmTMEBQXh7e2Ng4MDf/75J82aNcNkMpGens7nn39O+/btcXNzIysri/Lly+Pq6mpM9atUqRIrVqwgJibGCGKWL1+e1atXExMTQ/Xq1QkLCyM8PJwjR45QtmxZIwC4d+9eduzYgaWlJX5+fjg7O3P69Olc55XDx8eHzz//nD59+nD58mUSEhLw8PCgePHi9OvX75bvkYODA8uXL2fLli106NABBwcHowbaoEGD/vY9FhH5p8tZCbt8+fKMHTsWJycnHB0djXqJqampfPTRR6xYsYJNmzYZWfOJiYns2LGD8PBwIiIicHR0pGXLlrRp0waTyYSnpyeHDh1i8uTJ2NjYMGzYMEqUKMGvv/7KsGHDmDFjBoMGDSI5OZmTJ0/y0ksvGYHJ9PR06tatS/ny5YmOjiYpKQmTyWRc4258iObi4oLJZOL8+fNA9qI469ev59y5c0Zw0tPTEw8PD+OBV84xKleuzJIlSzhz5gxVq1alWLFiAPz+++/AzaejXz8GBSZFRP7dFJwUEREpoJzskZ9//pmoqKi/DZwtXbqUL7/8klOnTmFnZ0eZMmVo3749jz32GA4ODly6dInPPvuMYsWKMW7cOLy9vQH47LPPmDlzJn/88QeNGjWiaNGieHl5GTd8LVq0IDo6mmnTprFlyxYATCaTUe/x9ddfp1ixYsZ07MjISGNMZcuWJT09naioKOrUqUPnzp1ZsmQJn3zyCa+//jpOTk7s27ePr776itq1axs3kQB79uwxaobdyMPDg0WLFuX7PmRlZRk1La9fqCErK4tSpUrxzTffsGjRIlauXElKSgqlS5fmrbfeomXLlgX91YiI/GM5Ozvj6elJTEwMQUFBeYJxtra2dOrUicWLF/Pnn3/y+OOPk5aWxrhx4/jtt99wd3fH3d2dAwcO8Msvv3DlyhU6d+6MnZ0dPj4+nDlzhlWrVhkZiYGBgcyfP5/du3eTlJTE+fPnMZlMODs7G6+Z8z1cqVIlfvnlF+Li4ihevDhFixblwIEDxnTtnGz69PR0kpKSjDrAFStWZMmSJcTExBgL5Li7u+Pr68v+/ftzvUbZsmWB7CnqAKGhoSxZsgR/f3/g1rUyRUTkv0HBSRERkduQs/Lo8ePHjVqK+fnxxx/54IMPqFq1Kv369SMhIYFFixbxf//3f1y8eJHevXuza9cuIiIi+OCDDwgICDCmz7Vt25aVK1eyZ88eANzc3PDz8+PkyZOYzWZcXV155ZVX6Ny5M8eOHePYsWNcvHiR06dPs2zZMpydnXn33XeNG8KcTBeAEiVKGNP+srKyqFSpEv/3f//H1KlT6dOnD46Ojly9epWqVasyfPhwo9/YsWMpUqQItra2Nz3nnGnhN9aFtLS0zPfmM2dbrVq1qFy5MpmZmTg6Ohbk1yAi8tCwtrbG39+fvXv3Eh0djb+/f64SHxYWFri4uGBnZ2cE8CZPnszChQsZPHgwjz76KPb29qSnp/P888+zfPlymjRpgr+/P0FBQcTHxxtBw5wHSOXLl2fz5s1cvHgRR0dHnJ2djdIckP19DdkLni1YsICoqCgaNWpE7dq1WbNmDS1btqRRo0ZGNv2vv/4KQP369QFy1RLO4ezsjL+/P4mJibkeZIWFhXH48GGjXc74REREcig4KSIichsCAwOxsbHJdaN1o7i4OKZPn05AQACTJ0/G3t4eCwsLWrRoQf/+/ZkzZw6PP/44JpMJwJjqnVOfy9fXl6pVq7Jjxw4ge0pgiRIl2LVrFwkJCUZtRmtraxo0aGDUqQRo0KABERERXLt2DWdnZ9zc3Pjll1+oWbMm5cqVo2jRophMJv744w+SkpJwcXGhe/fu1KlTh82bN5OamkpoaChhYWG4uLgA2TexjRo1+tv35vpalLcrv2xMEZF/iwoVKrB8+XLOnDljBCdzWFhYGN+/OUG77du307x5c5577rlcx/H39+fgwYPExMTg7+9PmTJl2LFjB5cuXQL+99CnUqVKLF++3MiSL1WqFAcOHODcuXMUK1YMGxsbIPv73Ww2c+LECRo1asSzzz7L5s2befPNN+nRowelSpVi586dLFiwgI4dO1KzZk0ASpUqhYuLS67p1vb29gwfPlyL0IiIyG1TcFJEROQ2eHh4ULRo0VwZKDlyMmFiY2M5cuQIffr0wcHBwZjS7O7uznPPPcfAgQPZunUrPj4+QHamC/xv4QMnJyd8fX25ePEiaWlp2NnZ4efnR2pqKlFRUbi5uTFs2DCj1pinpyfx8fHs2bOHCxcu0K1bN+MGtWvXrnz99df079+fTp06MWjQIDp27Jjr5hSybzRLlSqV7zlfPw1b0+9ERG5fTib7qVOnqFevnvFdmpSUxLZt25g3bx7Vq1c3MhO/+eYbbG1tiY6OZufOnWzdupWtW7cSFxeHu7u7UZs4NDSU9PR04+ec7+uKFSsar9e4cWPatm3LW2+9xezZs3nzzTfJyMjg+PHjzJs3DycnJ6N/xYoVmThxIl9//TVz5szhypUruLq60rNnT/r3729cN+zt7Y0HaNdTYFJERO6EgpMiIiK3wcnJCW9vb06dOmXU5MqRc1N2/UrW8L9MFktLS8qUKWNMqw4NDcVkMhEREUFaWhomk8mYFn358mUATpw4Qbly5ShWrBhWVlYcO3aM0NBQqlatyrp16+jYsSO1a9cmLS2N3bt38+ijj/Lkk08aN5A9e/akdu3aQPZNp729PYMHD8733Mxmc67akDdSYFJE5M7kLCy2fv16kpOT2bt3LxEREcTFxZGUlETNmjUZMWIEnp6eZGVlYWtry8GDB5k4cSJnz57F09OTV155BT8/P3r16sW5c+cAjNrCUVFRwP+uP6VLlwayF1YDaNOmDT///DPTp0/nwIEDVKpUiT179lCyZEmioqI4evQoycnJODg4ULNmTSpUqEBUVBRFihQx6iGLiIjcLwpOioiI3AZra2sCAgL4448/uHDhAn5+fvm2sbe358KFC0bQMSer0s7ODldXV65cuUKZMmUoX748y5cv56mnnsLf3x8rKyuSkpKMzMzDhw9Trlw5vLy8sLe3Z+/evTz11FO0b9+ekiVLsnTpUg4dOoSbmxu9evWiZcuWuRaxcXJyonr16nnGmJGRkWcKtoWFhZG9KSIi946bmxslSpRg27ZtxMbGEhQURP369Tl06BB//vknFStWNKZ6W1paEhcXR69evXB2dqZfv35UqlSJgIAAYmJigP8FIwMDA7GysiIqKsp4uGU2m3FycsLd3Z1Tp06RlJSEk5OTUQd5+fLlLF68mPLlyzN06FAiIyPx8vLKNUXbycmJcuXKPfg3SkRE/pMUnBQREblN19cOyy846e3tjbe3N3v37uXSpUu5sk5Onz7NxYsXcXV1BaBHjx58+OGHvPzyy3Tp0gUvLy/mzZtHVFQUVlZW7NmzhyeffBI3NzdCQkJyLRhTtWpVqlat+rfjzbnhvX663Z3WhhQRkdvn4OCAq6srTk5OfPnll3h5eWFtbU1qaipLly5l2LBhrF27lgkTJhAaGsrvv/9OQkICY8aMyVVXeNOmTVhaWhIbG0t8fDxubm74+/tz5swZ4uPj8fDwID09HZPJhJeXFxcvXjSCky4uLnTt2pX27dsbNY/hf3WPRURECovmZ4mIiNymnNphOdmNmZmZZGVlGfudnJxo0qQJv/32Gz/99BMAaWlpXLx4kdmzZ2NnZ2cEFVu1asXw4cMxmUyMHDmS/v37Yzabeffdd6lYsaIxJa9EiRJ8/fXX+U7JNpvNZGRkkJmZmWuRhRwWFhaqAyYiUogsLS0JDAwkKSmJ9PR0bG1tsbKywtHRka5duzJkyBDOnTvHK6+8QlRUFDY2NlhbW7N9+3aOHz9OREQEM2bMYPLkyVhZWbF371727NkDZJcQOXv2LImJicD/Hj599913LF++PM+07OsDkyIiIv8ESpsQERG5TX5+fjg4OHDs2DGAXFOhU1NTsbCwoG3bthw/fpyPP/6YDRs2UKVKFfbs2cPRo0d57bXXqF27tjHVu3nz5jRs2JD9+/fj6+tL8eLFycrK4tNPPzWm2eXcbOZM27ve3aySLSIiD0ZISAgAx44dIzg4GPhfZnvPnj1JSUlhwoQJvPnmm7zzzju0bduW6dOns2rVKmxtbbl8+TK9evUiKCiIH374wXjoNGHCBFxdXXPVN4bsB2UiIiIPA93JiIiI3CZ3d3e8vLw4dOgQERERxMbGcvbsWc6ePcuJEydISkqiZ8+ejB49mkWLFrFy5UoWL15McHAwgwcP5rHHHgP+N816+fLlODo60rRpUyD7ZvXQoUOcPn2aDh065Hpt1YQUEXk4lSxZEktLS44fP06LFi2A7OtAToCyV69epKWlMWXKFMaMGcOgQYOoV68eu3fvpkSJElStWpWyZctiY2ND8+bNgezrhZubW6Gdk4iIyL1gYc5v/peIiIjcVFZWFr1792bLli34+PgQFxdHWloaALa2tgQGBjJ48GDq1q0LYCyKc6OczMnOnTuzZ88eXnzxRapUqcL58+f5+uuvMZlMfPHFF/j7+z/Q8xMRkXvv/PnztGrVisqVKzNjxoxc+3KuB0lJSfz5558EBQWpFqSIiPxnKHNSRETkNllaWhIQEEBgYCCBgYE89dRThIaGUr58eby8vPK0z1mtO6cu5Y3Zj8OGDWPWrFmsXbuW7777DoAaNWrw+uuvKzApIvIv4erqSsWKFfH09DSCkTly/tvJyYmaNWsW1hBFREQKhTInRURE7rHMzEwsLCyMul+3knODmpaWRkREhJF5WZC+IiIiIiIiDzsFJ0VERO5QVlaWkQ1paWmpgKKIiIiIiMhtUnBSRERERERERERECoVSPERERERERERERKRQKDgpIiIiIiIiIiIihULBSRERERERERERESkUCk6KiIiIiIiIiIhIoVBwUkRERERERERERAqFgpMiIiIiIiIiIiJSKBScFBERkfuiadOmNG3atLCHISIi/1G6DomIPBwUnBQREREREREREZFCYV3YAxAREREREREREZGbGzJkCEuWLMm1zcbGBi8vLxo3bsyAAQNwdXW9L6+dlpZGfHw8xYoVuy/HV3BSRERERERERETkIfD222/j5uYGwLVr1zh+/DgLFixg//79zJs3Dysrq3v6etHR0Tz//PP06dOHp5566p4eO4eCkyIiIiIiIiIiIg+BZs2a4efnl2tbYGAgH374Ib/88guNGze+p68XFRXFqVOn7ukxb6SakyIiIiIiIiIiIg+pWrVqAXDs2LFCHsmdUXBSRERERERERETkIRUbGwtAQECAse348eP069eP6tWrU7lyZTp16kR4eHiufmlpaXz88cc0bdqUkJAQGjVqxIcffkhiYiIAixcv5tlnnwWyp5OXLVv2voxf07pFRERERERERETus6ZNm95y/4YNG/72GJcvX+bSpUsApKenExERwfDhw6lYsSJNmjQB4MiRI3Tp0gUPDw/69OmDjY0NK1asoHfv3owbN45WrVoB8NFHH7FixQqeffZZ/P39OXbsGHPmzOH06dPMnDmTGjVq8NJLLzF16lQ6duxItWrV7vIdyJ+F2Ww235cji4j8C3TaNLqwhyAiIiIiIlIo5jd+q7CHcE8V9v3dheFrb7n/VsHJ/FbrzmFnZ8e3335L5cqVAejevTuxsbEsW7YMBwcHADIyMujRowenTp1i06ZNmEwmKleuzNNPP837779vHOuzzz4jPDycb7/9FkdHR7Zv386zzz7LyJEjtSCOiIiIiIiIiIjIw6ogmZF/Z8yYMXh4eADZmZPR0dHMmTOHrl278uWXX1K+fHl27NhB9+7dSU1NJTU11ejbvHlzRo4cyf79+6lWrRre3t6sWrWKkJAQmjVrhouLC6+++iqvvvrqXY/zdig4KSIiIiIiIiIi8hCoWrVqntW6H3vsMR599FGGDRvGJ598AsDs2bOZPXt2vseIiYkBYOjQobz66qu8/fbbvPfee1SpUoXmzZvz9NNP4+zsfH9P5DoKToqIiIiIiIiIiDyk3NzcqFWrFj/99BOZmZkAdO3alWbNmuXbvlSpUgDUqVOHTZs2Gf/8+uuvjBw5kq+//prFixfj7u7+QMav4KSIiIiIiIiIiMhDLCsrCwAvLy8ArKysqFu3bq42x48fJyoqCnt7e9LS0jh06BDe3t60bt2a1q1bk5WVxaxZsxg9ejQrV66ke/fuD2Tslg/kVUREREREREREROSei4uL47fffqN8+fL4+voSEhLCkiVLOHfunNEmPT2dd955hwEDBpCRkUF8fDwdO3Zk2rRpRhtLS0tCQ0ON/4bsICf8L/h5PyhzUkRERERERERE5CGwfv163NzcADCbzcTGxrJw4UJSUlJ47bXXAHj33Xfp0aMHTz/9NJ07d6ZIkSKsXLmSP/74gzfeeMPo//jjjzN37lxSUlIICwsjISGB7777Dg8PDx577DEAo+3y5csxm820a9cOa+t7G05UcFJEREREREREROQhMHLkSOO/rayscHV1JTQ0lI8//pg6deoAEBYWxrx585g4cSKzZs0iIyODoKAgRo0aRbt27Yz+w4YNw9/fn5UrV7Jy5Urs7e2pU6cOr732mlFvsmTJknTv3p3Fixezf/9+atWqRUBAwD09Jwuz2Wy+p0cUEfkX6bRpdGEPQUREREREpFDMb/xWYQ/hnirs+7t/2/t5r6jmpIiIiIiIiIiIiBQKBSdFRERERERERESkUCg4KSIiIiIiIiIiIoVCwUkREREREREREREpFFqt+wEZMmQIS5YsuWWbpk2b8sUXXzygEeXVpEkTfH19mT17NgDdu3cnOjqajRs3PrAx3IvXXLt2LQsXLuTAgQOkpqZSvHhx6tevT48ePfD39y/QMXJ+X0eOHLkn7W5XVFQUTZs2LVDbDRs2AOTb3sbGBnd3d+rVq8fAgQPx9va+5fEtLCxwdnYmODiYrl278sQTT9zFWdw/EydOZNKkSWzYsAE/P7/CHo7If1LqpSucWL2TxBOxALiX8yPosRqYnOzvSz8REflvSUtK4eSaXcQfjSYrPQPX4OIEt66JvbvzPet7J69x7XIyv09Yint5f8o+0+Cuz1NERBScfODefvtt3Nzc8t1XvHjxBzyaW3vppZdISUkp7GEUWFpaGoMHD2bVqlVUqlSJF154AVdXV44dO8aSJUtYtGgRY8aMoVmzZoU91L/l7u7O6NG5VxEbOXIkkP0ZurHtpUuXAKhevTodOnQw9mVkZHD8+HHmzJnDtm3bWL58OS4uLsb+G9ubzWYiIyOZP38+gwYNwsrKitatW9/z8xORh1t68jX2zViDOTMLv4YhmM1mosIPcDU2nip922BpZXVP+4mIyH9LVkYmB79ZT0pcIr71K2JlayJ6ywH2fbWaqq+0xcbB9q773ulrHF+2lYyUtPty3iIi/1UKTj5gzZo1e2gyverVq1fYQ7gto0ePZtWqVQwaNIgXXngh176XXnqJF154gVdffZVFixZRtmzZQhplwTg4ONC2bdtc2yZMmACQZztgBCf9/f3z3e/v78+HH37I/Pnz6d27d67t+bV/6qmnaNWqFZMnT1ZwUkTyiN5ykGuJyVQb0BYHryIAOPt5cmDmOs79fpziNfL/jr3TfiIi8t9ybs9xkqIvEvL8o7iV8gHAvawvv3++jOgtBwl8tOpd972T1zi3J4L4o2fv9emKiPznqeak/CucPHmS7777jtatW+cJTAIULVqUCRMmYGFhwfDhwwthhIWrVatWAPz+++8Fau/r60uNGjWIiIggKSnpfg5NRB5CF/adoEiQtxFgBHAr5YO9pwsX9p285/1EROS/5cK+k9gVdTaChgAOnkUoUrI4F/aduCd9b/c10q4kc2LFdgKaVL6bUxMRkXwoOPkPtXr1ap588kkqVapEmzZt2LRpE7169aJ79+5GmyZNmuT6+WbbzWYz8+bN45lnniEsLIzQ0FBatmzJl19+idlsvukYunfvTpMmTYDsGoVly5a96T8TJ040+h0/fpx+/fpRvXp1KleuTKdOnQgPD89z/K1bt9KpUyeqVKlCs2bN+P777+/ovQJYtmwZZrOZrl273rRNQEAAzZo1Y+fOncTGxhrbDxw4wPPPP09YWBgNGjRg2rRp+b4vBWlnNpuZNGkSLVq0IDQ0lLp16zJo0CBiYmLu+NzuBUvL7P/VMzMzC9zHwcEB4JafkfwsXryYsmXLcvjwYQYMGEBYWBi1a9fmk08+ITMzkyVLltCiRQuqVKlCp06dOHz4cK7+Bw8e5JVXXqFu3bpUrFiROnXq8MYbb+T6neUnMTGRYcOG0aBBA0JCQnjsscf45ptvbnv8InJr6SnXSL2UhJNv0Tz7nIoXJensxXvaT0RE/nuSzl7EySfv9cLRpyipl5JIT7l2131v9zWOLd2GbRFH/BqG3O7piIjI39C07gfs8uXLxhTcG7m6umJlZcXSpUsZPHgwoaGhDBo0iBMnTjBgwADc3d0JCAi47df87LPPmDp1Ku3ataNDhw5cvXqVpUuXMm7cOBwdHW8Z0MuRXw1EyF6YJDY2lgYNsotBHzlyhC5duuDh4UGfPn2wsbFhxYoV9O7dm3HjxhkZfFu3buXFF18kMDCQV199lUuXLvHxxx9jYWFx05qct7J3716sra0JDQ29ZbvatWuzatUqdu/eTevWrTl27Bjdu3fHxcWFvn37kp6ezsyZM0lLy11HpqDtpk6dyuTJk+natStly5YlKiqKb7/9lgMHDrBixQqsCqme2rZt2wCoUKFCgdqnpKSwc+dO/Pz8cHb++6Lj+enduzfVqlVjyJAhrFu3jpkzZ3L06FGOHDlCjx49MJvNTJkyhQEDBrBq1Sqsra2Nz0+JEiXo3bs39vb2/P777yxbtozTp0/zww8/5PtaycnJdOvWjZiYGLp06YK3tze//fYbI0aM4NSpU3zwwQd3dA4ikldaYjIAJheHPPtMLvZkpqSTkZKGtb3pnvQTEZH/lsy0dDJT0vO/Xvy1eNq1hKvY2OetCVnQvpZWlrf1Guf3RhB/NIoqL6s+sojI/aDg5APWrl27m+5bunQpZcqUYfTo0QQHBzN37lxMpuybtODgYIYPH37bwcn09HRjuvOoUaOM7e3bt6dOnTqEh4cXKDiZXw3E6dOnExkZyfvvv0+VKlUAGD58OO7u7ixZssTIvOvWrRs9evTg448/plmzZphMJsaOHYunpycLFizAyckJgLp169KjR487Ck5euHABV1dX4/26GS8vLwDOnz8PYGR8zp8/31iQqEWLFjz55JO5+hW03Y8//kjDhg159913jW3Fixdn3rx5REdH31Fw+XakpaXlCn4nJiayZ88exo4di6OjI507d75l+4yMDCIjI/niiy+4dOkSQ4YMueOxVKlShU8//RTInlZep04dtm7dyvLlyyldujQAV69eZerUqURFRREYGMjcuXOxsLDg22+/pUiRIgB07NiR9PR0Vq5cSUJCgrH9ejNmzODkyZO56ol26dKF8ePHM23aNDp27Ei5cuXu+FxE5H8y09IBsLLJ+yeEpXX2tsz0jDxBxjvtJyIi/y0ZqTe/XuRsy/rrmnKnfW/nNdKSUohYsQO/BqH5ZlqKiMjdU3DyARszZgweHh757gsICGD//v1cvHiR3r175wq0dezYMdfU6YKysbFh69atpKfnvoDHx8fj5OREcnLybR8TIDw8nPHjx9O2bVsjuBkfH8+OHTvo3r07qamppKamGu2bN2/OyJEj2b9/P4GBgRw8eJAXXnjBCExCdlZj2bJl76jGodlsLlBWovVfN8Bms5msrCzCw8Np1KhRrpXSS5YsSf369dm4cSNAgdsBeHt7s337dr755htat26Nh4cHnTp1olOnTrd9Tndi5cqVrFy5Ms/20qVLM3ToULy9vQvUPjg4mPHjx9/VYjjXr4ru7OyMu7s7jo6ORmASMBaHunDhAoGBgQwdOpSBAwfmCkAmJSVha5v91Do5OTnf4OS6desoU6YMnp6euYKtzZo1Y9q0aWzatEnBSZF7JadUgsUD6iciIv9Nt7peWPzNxaSgfQvQ7viybdg42anWpIjIfaTg5ANWtWrVW67WffZs9upv/v7+ubabTKY82wrKxsaGzZs3s2HDBk6ePMnp06dJTEwEbr+eIMCpU6d4/fXXKV26NB999JGxPTIyEoDZs2cze/bsfPvGxMRgY2MDkG8WYXBwMPv27bvtMXl5eREZGUlGRoYRgMxPTsakl5cXCQkJJCcn33QcOUHHgrYDeOutt3j55ZcZMWIEI0eOpGLFijRp0oQOHTrg6el52+d1u+rXr0+vXr0AsLCwwGQyUbx4cXx8fP62fWxsLNOnT+fy5csMHTqUWrVq3dVYbgzCW1tbU7Ro7qfNOQHlrKwsY8zx8fFMmzaNI0eOcObMGc6ePWt8TnPa3ejMmTOkpqZSp06dfPcXds1PkX8TK9vs7/Cs9Lw1bLMyMgCwtrO5Z/1EROTfKzM9g8zU3GWSrEx/ZS5m5L1eZKZnXy9yrik3KmjfgrY7/8cJLh48Q4XuTcm8lk7mtf8lfJgzski/moqVnY2meouI3CUFJ/+h8gsa5mSP/Z3rFz0xm8307duXTZs2Ua1aNcLCwujYsSM1atSgR48etz2upKQk+vXrh4WFBZMmTcLOzi7P63bt2jVX1tz1SpUqxblz5wByZVbmuFnw6e9Ur16dbdu2sW/fPqpWrXrTdrt27cLCwoKwsDBjW0HHUZB25cqVY+3atYSHh7Np0ybCw8P5/PPPmTVrFgsWLKBkyZK3c1q3zdPTk7p1695x+6ZNm9K+fXtefPFFZs2aRbVq1e54LPllslr8zVPuVatW8eabb+Ll5UXt2rVp2LAhISEhbNmyhWnTpt20X2ZmJtWqVaN///757s+Zzi8id8/WNTvjPe1KSp59aZdTsLK3wcqU96bxTvuJiMi/V9z+Uxz9YUuubQFNK2Nlb0Pa5bwzvHKuIfnVigSwtjMVqG9B20WFHwDgz9kb8rS7sO8kF/adJPSFFhQJLp5nv4iIFJyCk/8wgYGBQHZ24o0iIyON/ZC9AvONC7JkZGQQHx9vZPnt2rWLTZs20bdvXwYOHJirXUJCwm1lY5rNZgYNGkRERATTpk3L09fX1xfIDkrdGCA7fvw4UVFR2Nvb4+vri4WFBadPn87zGlFRUQUez/XatGnDF198wcyZM28anIyNjWXNmjVUq1YNX19fzGYzTk5OfzsONze3ArXLzMzk8OHDODk50bRpU5o2bQpkB9xee+01vv/++7uq4fgguLq6Mm7cODp16sQbb7zBihUrck29v9/GjRtHiRIlWLRokVGzFLJred6Kr68vV69ezfO5S0xMZNu2bZQoUeK+jFfkv8ja3oStu1O+q2snxVzE2Tf/0iV32k9ERP69ipTyIeT5R3Nts3N3JvHUOZLO5l1E9GrMReyKOue7GE4OJ5+iBepbkHb+DUPxqpI3ueDAzHUUKe2DX4MQHIu7/+15iojIrVkW9gAkt3LlyhEQEMD8+fNz1YNcs2aNMSU5h4eHBydPnsyV0bdx40auXbtm/JyQkABkZyxeb+HChaSkpJDx11S6gpgwYQIbN26kf//+NGrUKM9+Ly8vQkJCWLJkiZEdCdmL8rzzzjsMGDCAjIwM3N3dqVGjBsuXLycuLs5ot2fPHg4ePFjg8VwvMDCQ5557jp9++okpU6bk2Z+QkMCAAQNIT0/nvffeA7Kz+Jo3b054eDjHjh0z2kZFRbF582bj54K2y8zM5Nlnn2XEiBG5Xrty5ez6NJaWD8f/bqGhofTq1YuYmBjGjBnzQF87ISEBHx+fXIHJmJgY1q1bB+TOCr5ekyZNOHz4MD///HOu7VOmTGHgwIG5fm8icvc8KpYgIeIsyRcSjG3xx8+ScuEynpWC7nk/ERH5d7J1ccCtlE+uf+zdnfGoWIKUC4nEHz9rtE2+kEBCRMzfXi8K2rcg7Ry8iuQZn1up7HJJJmd73Er53DJQKiIiBaPMyQds/fr1t1yNum3btgwdOpTevXvTsWNHnn76aeLi4pg9e7ZRqzFHmzZtGDZsGC+88AJPPPEEp0+fZuHChUYGI0BYWBhOTk6MHDmS6OhoXF1d2b59O6tWrcLW1parV68WaNybN29m6tSplCxZkjJlyvDjjz/mmtLs4eFBvXr1ePfdd+nRowdPP/00nTt3pkiRIqxcuZI//viDN954wzj3wYMH07VrVzp06EDXrl1JSUnh66+/vqOVunO89tprJCYm8tlnn7Fp0yZatGiBi4sLJ06cYOnSpaSmpjJu3LhcC6MMHDiQzZs3061bN3r27ImVlRWzZ8/G0dExV1ZqQdqZTCa6d+/OlClT6NevHw0aNCA1NZUFCxZgb2/P008/fcfn9qD17duX1atXs2DBAp544om7mt59Oxo2bMiqVat4//33CQ0NJSoqygikAzf9vPbp04d169bRr18/OnXqROnSpdm9ezfLli2jYcOGNGzY8IGMX+S/wq9BCOf3RLB/xlp864eQlZFBVPgBnHyLGhkmKZeucPn0eVxKeGHv7lzgfiIiIt7Vy3B222EOzduEX4MQrGysiQo/gMnFAd96FY12aUkpxB87i1NxNxy93W+rb0HbiYjI/afg5AM2cuTIW+5v27Yt9erVY+bMmYwfP55x48bh4+PDyJEjGTt2bK62Xbp0ISEhgR9++IFhw4ZRrlw5Jk2axMyZM42sSw8PD7788kvGjh3LlClTMJlMBAUFMX78ePbt28e3335LXFzcTVcQz7F//37MZjMRERG88sorefbXrFmTevXqERYWxrx585g4cSKzZs0iIyODoKAgRo0aRbt27Yz2ISEhzJ49m3HjxjFp0iRcXFzo378/Bw4c4Pfffy/o25mLtbU1w4cP59FHH2XOnDl8/fXXXL58GW9vb9q0aUP37t3zLGpTvHhx5s2bx+jRo5k+fTomk4n27dsD5KpxWNB2AwYMoEiRIixatIhPPvkEKysrqlatypgxY+57vcl7yc7Ojg8//JDnnnuO9957j6VLl+ZaPf5+GTp0KA4ODmzcuJFly5bh7e3Nk08+SfPmzencuTO//fYbFSpUyNOvSJEiLFiwgM8//5w1a9awYMECfHx86Nu3L717935oslZFHhYmJ3sqvfgYJ1bu4PT6PViZrClaPoCgltWxtM6uN3v51DmO/rCFMs/UN4KTBeknIiJiaW1FaK8WnFy1k6hfDmBhYYFrsDfBj9XAxuF/mYrJ5xM4+n04AU0rG8HJgvYtaDsREbn/LMx3slyzFIomTZrg6+t705WwReTe67RpdGEPQUREREREpFDMb/xWYQ/hnirs+7t/2/t5ryidSERERERERERERAqFpnXLP1JmZiaXLuVdPS8/zs7O2NnZ3ecR3RuXLl266aIu17Ozs8PZ2fkBjKhgHtZxi4iIiIiIiMg/m4KT8o8UExND06ZNC9R25MiRPPXUU/d5RPfGM888Q3R09N+2a9euHaNGjXoAIyqYh3XcIiIiIiIiIvLPpuDkQ2Tjxo2FPYQHxtPTk1mzZhWobalSpe7zaO6dMWPGcO3atb9t5+Xl9QBGU3AP67hFRERERERE5J9NwUn5R7K1taVu3bqFPYx7rlq1aoU9hDvysI5bRERERERERP7ZtCCOiIiIiIiIiIiIFAoFJ0VERERERERERKRQKDgpIiIiIiIiIiIihULBSRERERERERERESkUCk6KiIiIiIiIiIhIoVBwUkRERERERERERAqFgpMiIiIiIiIiIiJSKBScFBERERERERERkUKh4KSIiIiIiIiIiIgUCgUnRUREREREREREpFBYF/YAREREREQkf1MO2Bb2EERE5L+scWEPQP4LlDkpIiIiIiIiIiIihULBSRERERERERERESkUCk6KiIiIiIiIiIhIoVBwUkRERERERERERAqFgpMiIiIiIiIiIiJSKBScFBERERERERERkUKh4KSIiIiIiIiIiIgUCgUnRUREREREREREpFAoOCkiIiIiIiIiIiKFQsFJERERERERERERKRQKToqIiIiIiIiIiEihUHBSRERERERERERECoV1YQ/gv2rIkCEsWbLklm2aNm3KF1988YBGlFeTJk3w9fVl9uzZAHTv3p3o6Gg2btz4wMZwL15z7dq1LFy4kAMHDpCamkrx4sWpX78+PXr0wN/fv0DHyPl9HTly5J60u11RUVE0bdq0QG03bNgAkG97Gxsb3N3dqVevHgMHDsTb2/uWx7ewsMDZ2Zng4GC6du3KE088cRdnISIPg9RLVzixeieJJ2IBcC/nR9BjNTA52d+TfgVtl5aUwql1v3PpcCRZ6Rk4+RQlsEV1XAI879WpiojIP9jllBTm/LadvZGRpGVkUtHXh+51alPMxeWe9T1+/jzf79rN0dhzZJqzKFG0KE9VDSMsIOCmx17y+x42Hj7MxC6d7/ocRUQkm4KTheztt9/Gzc0t333Fixd/wKO5tZdeeomUlJTCHkaBpaWlMXjwYFatWkWlSpV44YUXcHV15dixYyxZsoRFixYxZswYmjVrVthD/Vvu7u6MHj0617aRI0cC2Z+hG9teunQJgOrVq9OhQwdjX0ZGBsePH2fOnDls27aN5cuX43LdH2k3tjebzURGRjJ//nwGDRqElZUVrVu3vufnJyL/DOnJ19g3Yw3mzCz8GoZgNpuJCj/A1dh4qvRtg6WV1V31K2i7jGvp7PtqDWlXkvGtVwFrO1vO/naI/TPWUOXlNjh653/dFBGRf4f0zExGrV5DTEIirSuFYm+yYeW+/Xz04wpGPf0UznZ2d933bEICH/24Ahc7O54Mq4LJ2pqfjxxhzJq1vNq8GTWDgvIc+4/ISBb//jtFHBzu27mLiPwXKThZyJo1a4afn19hD6NA6tWrV9hDuC2jR49m1apVDBo0iBdeeCHXvpdeeokXXniBV199lUWLFlG2bNlCGmXBODg40LZt21zbJkyYAJBnO2AEJ/39/fPd7+/vz4cffsj8+fPp3bt3ru35tX/qqado1aoVkydPVnBS5F8sestBriUmU21AWxy8igDg7OfJgZnrOPf7cYrXyP+7sqD9Ctou6uf9pMQlEvpCS4oEZWd4e1YKZOfYRUSF76ds+4b3700QEZFC98vRo5y8EMc7rR8j9K97pSr+AQz+4QdW7dtPx5o17rrvvO07sLKwZHi7J41gY9Py5Xjrh0XM3b4jT3By/Z+H+GbrVjIys+7HKYuI/Kep5qT8K508eZLvvvuO1q1b5wlMAhQtWpQJEyZgYWHB8OHDC2GEhatVq1YA/P777wVq7+vrS40aNYiIiCApKel+Dk1ECtGFfScoEuRtBA4B3Er5YO/pwoV9J++6X0Hamc1mzu05jntZPyMwCWBydiDosRq4BBa7+xMVEZF/tG0RJyjm6mIEFwF83YpQ0deXrRERd93XbDZzKCaGyv5+ubIgTdbWVA0I4FziZS5fN2Ps45WrmBG+hQo+PgR6FL1XpykiIn9RcPIhsXr1ap588kkqVapEmzZt2LRpE7169aJ79+5GmyZNmuT6+WbbzWYz8+bN45lnniEsLIzQ0FBatmzJl19+idlsvukYunfvTpMmTYDsGoVly5a96T8TJ040+h0/fpx+/fpRvXp1KleuTKdOnQgPD89z/K1bt9KpUyeqVKlCs2bN+P777+/ovQJYtmwZZrOZrl273rRNQEAAzZo1Y+fOncTGxhrbDxw4wPPPP09YWBgNGjRg2rRp+b4vBWlnNpuZNGkSLVq0IDQ0lLp16zJo0CBiYmLu+NzuBUvL7P/1MzMzC9zH4a8/3G71GcnP4sWLKVu2LGvXrqVJkyZUrlzZ+HycPn2awYMH07BhQ0JCQqhZsyYvvfQSx44dy3WMtLQ0Jk6cyKOPPkqlSpVo0aIFX375Za7xX7t2jU8//ZQmTZoQEhJC06ZNmTBhAmlpabc1XpH/qvSUa6ReSsLJN+9Nl1PxoiSdvXhX/Qra7lp8EmmJyRQp5QNkf+dkpqUD4FO73E2zN0VE5N/jZFwcQUXzXi+CPIpy/vIVkq5du6u+FhYWjHjqKbrWrpWn3ZXUVOB/fy8DxF25wvP16zHksZbY29jcySmJiMgtaFp3Ibt8+bIxBfdGrq6uWFlZsXTpUgYPHkxoaCiDBg3ixIkTDBgwAHd3dwJuUaz5Zj777DOmTp1Ku3bt6NChA1evXmXp0qWMGzcOR0fHWwb0cuRXAxFg4sSJxMbG0qBBAwCOHDlCly5d8PDwoE+fPtjY2LBixQp69+7NuHHjjAy+rVu38uKLLxIYGMirr77KpUuX+Pjjj7GwsLhpTc5b2bt3L9bW1oSGht6yXe3atVm1ahW7d++mdevWHDt2jO7du+Pi4kLfvn1JT09n5syZeQJcBW03depUJk+eTNeuXSlbtixRUVF8++23HDhwgBUrVmB1k/pt99u2bdsAqFChQoHap6SksHPnTvz8/HB2dr6j1/y///s/unXrhpOTE1WqVCEuLo4OHTrg5OREt27dcHNz49ChQyxcuJCDBw+yceNGbP76469fv3788ssvPP744zz33HPs27ePcePGcfHiRd5++20yMzPp06cPv//+Ox06dKBkyZIcOHCAqVOncujQIaZMmYKFhcUdjVvkvyItMRkAk0veOlomF3syU9LJSEnD2t50R/0K2i7l4mUAbBztOLF6J7E7j5KZmo5dUWeCW9WkaPmCLWQmIiIPp9T0dJKvpeHm6JhnXxH77GvIxaQknGxt76qvl0vev2kTk5PZeeoUPkVccx1/TPtnsC6kv9tFRP4LFJwsZO3atbvpvqVLl1KmTBlGjx5NcHAwc+fOxWTKvikMDg5m+PDhtx2cTE9PN6Y7jxo1ytjevn176tSpQ3h4eIGCk/nVQJw+fTqRkZG8//77VKlSBYDhw4fj7u7OkiVLjMy7bt260aNHDz7++GOaNWuGyWRi7NixeHp6smDBApycnACoW7cuPXr0uKPg5IULF3B1dTXer5vx8vIC4Pz58wBGRt/8+fONBYlatGjBk08+matfQdv9+OOPNGzYkHfffdfYVrx4cebNm0d0dPQdBZdvR1paWq7gd2JiInv27GHs2LE4OjrSuXPnW7bPyMggMjKSL774gkuXLjFkyJA7Hkvr1q159dVXjZ+//PJLEhMTmTt3LiVLljS2Ozo68uWXX3L06FEqVqzIzz//zC+//MJrr73GSy+9BEDnzp1JT09nzpw59OvXj/Xr17Nt2zamT59uBMYBKlWqxPvvv8+GDRseioWPRApTTnailU3ePw0srbO3ZaZn5AlOFrRfQdtlpGY/5Dm9fg8WVpaUbFMLLCyICj/An99tIOS5R3H7K6tSRET+fVL+ethva533emH6a1tqevo975uZlcXkTZu5lp5B27AqufYpMCkicn8pOFnIxowZg4eHR777AgIC2L9/PxcvXqR37965Am0dO3bMNXW6oGxsbNi6dSvpN1yU4+PjcXJyIjk5+baPCRAeHs748eNp27atEdyMj49nx44ddO/endTUVFL/miIB0Lx5c0aOHMn+/fsJDAzk4MGDvPDCC0ZgErKzGsuWLXtHNQ7NZnOBshKt//ojxWw2k5WVRXh4OI0aNcq1UnrJkiWpX78+GzduBChwOwBvb2+2b9/ON998Q+vWrfHw8KBTp0506tTpts/pTqxcuZKVK1fm2V66dGmGDh2Kt7d3gdoHBwczfvz4u1oMp0aN3IXLe/fuzdNPP03R66bdpKamGlNocj6LmzdvxtLSkm7duuXqP3jwYF5++WUcHR1Zt24d7u7uVKxYMVdwtVGjRlhZWbF582YFJ0X+Tk7JhttNMi5ovwK2y8rIXmggIzWN6q8/hY19duZK0XL+7By3iFPrdis4KSLyH3CrWS9/NyPmdvtm/RWY3B8VTZ1SJWlYpkzBByoiIndNwclCVrVq1Vuu1n327FkgexXl65lMpjzbCsrGxobNmzezYcMGTp48yenTp0lMTARuv54gwKlTp3j99dcpXbo0H330kbE9MjISgNmzZzN79ux8+8bExBhTd/PLIgwODmbfvn23PSYvLy8iIyPJyMgwApD5ycmY9PLyIiEhgeTk5JuOIyfoWNB2AG+99RYvv/wyI0aMYOTIkVSsWJEmTZrQoUMHPD09b/u8blf9+vXp1asXkP2HmMlkonjx4vj45H9jf3372NhYpk+fzuXLlxk6dCi1auWtyXM7iuZT+yc9PZ1PP/2UgwcPcubMGaKioow6kllZ2QGK6OhoihYtmitwDeDp6Wm8h2fOnOHSpUvUqVMn39cu7BqfIg8DK9vs7+Ks9Ly1aLMyMgCwtstbZ6ug/TIK2M7KJvvBkkfFEkZgEsDa3oR7OT/O74kgMy0dK5NqfomIPOzSMjJIvqEsku1f9wZpf10bbmwP4GCT/+yoO+mbnpnJpA0b2XHyFJX9/ej7SKPbPAsREblbCk4+JPILGtrmU2clP9cvGmI2m+nbty+bNm2iWrVqhIWF0bFjR2rUqEGPHj1ue1xJSUn069cPCwsLJk2ahJ2dXZ7X7dq1602z1kqVKsW5c+cAcmVW5sgJUN2u6tWrs23bNvbt20fVqlVv2m7Xrl1YWFgQFhZmbCvoOArSrly5cqxdu5bw8HA2bdpEeHg4n3/+ObNmzWLBggW5pjPfD56entStW/eO2zdt2pT27dvz4osvMmvWLKpVq3bHY7m+qDhkv/e9evXCwcGBunXr8vTTT1OhQgXOnDmTK8hdkEV7MjMzCQwM5IMPPsh3v4uLyx2PW+S/wtY1+wFA2pWUPPvSLqdgZW+Tb0CwoP0K2s7kkl0nzMbRLk87k5M9mCHzmoKTIiL/BtsiTjB188+5tj1drSoOtibi85nRlbOtiGPe+sUADibTbfVNTU9n3LqfOBAVTViAP6892lxTuEVECoGCk/9wgYGBQHZ24o0iIyON/ZAd/LlxQZaMjAzi4+ONLL9du3axadMm+vbty8CBA3O1S0hIuK1sTLPZzKBBg4iIiGDatGl5+vr6+gJgZWWVJ0B2/PhxoqKisLe3x9fXFwsLC06fPp3nNaKiogo8nuu1adOGL774gpkzZ940OBkbG8uaNWuoVq0avr6+mM1mnJyc/nYcbm5uBWqXmZnJ4cOHcXJyomnTpjRt2hSAVatW8dprr/H999/fVQ3HB8HV1ZVx48bRqVMn3njjDVasWJEng/FOff7559jZ2bFy5Urc3d2N7VOnTs3VzsfHh61bt3L16lUcrytufvDgQWbOnMnLL7+Mn58fBw4coHbt2rmCoOnp6fz00095pq+LSF7W9iZs3Z3yXZU7KeYizr75lyApaL+CtnP0LoKFtSXJ5xPytEuNT8LSxirfwKWIiDx8Kvn58k7rx3Jt83Jx4XBsLKfi4vK0P3XxIsVcXfJdDCdHkIdHgfpmZmXx6U/rORAVTe3gIPo1aazApIhIIbH8+yZSmMqVK0dAQADz58/PVQ9yzZo1xpTkHB4eHpw8eTJXRt/GjRu5du2a8XNCQgKQnbF4vYULF5KSkkJGPlMgbmbChAls3LiR/v3706hR3ukPXl5ehISEsGTJEiM7ErIDRu+88w4DBgwgIyMDd3d3atSowfLly4m77g+JPXv2cPDgwQKP53qBgYE899xz/PTTT0yZMiXP/oSEBAYMGEB6ejrvvfcekD3tuXnz5oSHh3Ps2DGjbVRUFJs3bzZ+Lmi7zMxMnn32WUaMGJHrtStXrgzkzST8pwoNDaVXr17ExMQwZsyYe3bchIQE3N3dcwUmr1y5wpIlS4D/ZUw2atSIrKwsvv/++1z9582bx+rVq/Hw8KBJkyYkJCQwb968XG3mz5/Pa6+9ZqxOLiK35lGxBAkRZ0m+kGBsiz9+lpQLl/GsFHTX/QrSzspkQ9HyAVw6HMXVc/FGu9RLV7h46Azu5f2xeEi+P0VE5NbcHB0J9fPL9U8xFxdqBgVyNiGR/dc9+I+OT+BgdDR1/2bmUUH7Lt79O/sio6gZFMgrTZsoMCkiUoiUOVnI1q9ff8vVqNu2bcvQoUPp3bs3HTt25OmnnyYuLo7Zs2cbtRpztGnThmHDhvHCCy/wxBNPcPr0aRYuXGhkMAKEhYXh5OTEyJEjiY6OxtXVle3bt7Nq1SpsbW25evVqgca9efNmpk6dSsmSJSlTpgw//vhjrinNHh4e1KtXj3fffZcePXrw9NNP07lzZ4oUKcLKlSv5448/eOONN4xzHzx4MF27dqVDhw507dqVlJQUvv766ztaqTvHa6+9RmJiIp999hmbNm2iRYsWuLi4cOLECZYuXUpqairjxo2jXLlyRp+BAweyefNmunXrRs+ePbGysmL27Nk4OjrmykotSDuTyUT37t2ZMmUK/fr1o0GDBqSmprJgwQLs7e15+umn7/jcHrS+ffuyevVqFixYwBNPPHFX07tzNGzYkK+++oqBAwdSv359Lly4wA8//GAEqHM+i02aNKF+/fqMGjWKY8eOERoayp49e1i6dCn9+vWjSJEitG/fniVLljBs2DAOHjxIpUqVOHr0KAsWLKBixYo89dRTdz1ekf8CvwYhnN8Twf4Za/GtH0JWRgZR4Qdw8i2KV5XsG7qUS1e4fPo8LiW8sHd3LnC/22kX1LI6iSdj2T9jLT51y2NpaUX0tj+xtLEi8NG7//4REZF/tsblyrH2wEE+W7+BNpUqYWttzYp9+3BzdOSx0BCjXWJyMvuioilR1J2Av+qbF6TvldRUfty3D2srS0J8ffn1eESeMdQICsTORiVEREQeBAUnC9nIkSNvub9t27bUq1ePmTNnMn78eMaNG4ePjw8jR45k7Nixudp26dKFhIQEfvjhB4YNG0a5cuWYNGkSM2fONLIuPTw8+PLLLxk7dixTpkzBZDIRFBTE+PHj2bdvH99++y1xcXE3XUE8x/79+zGbzURERPDKK6/k2V+zZk3q1atHWFgY8+bNY+LEicyaNYuMjAyCgoIYNWoU7dq1M9qHhIQwe/Zsxo0bx6RJk3BxcaF///4cOHCA33//vaBvZy7W1tYMHz6cRx99lDlz5vD1119z+fJlvL29adOmDd27d8+zqE3x4sWZN28eo0ePZvr06ZhMJtq3bw/AtGnTbrvdgAEDKFKkCIsWLeKTTz7BysqKqlWrMmbMmPteb/JesrOz48MPP+S5557jvffeY+nSpblWj78Tr7zyCpmZmaxatYpNmzbh5eVF3bp1ef7552ndujW//fYbzZs3x9LSki+++ILJkyfz448/snz5cgICAnj//ffp3LkzkB0I/vrrr5k8eTJr165l+fLleHl50blzZ/r164e9vf29eBtE/vVMTvZUevExTqzcwen1e7AyWVO0fABBLatjaZ2dUXL51DmO/rCFMs/UN4KTBel3O+3s3Jyo/FJrTq3ZRVT4ATCDa2AxglpWN15TRET+vWysrHi3TWtm/7adH//4A0sLCyr4+NCtdm2cr6txH52QwBebNvN0tapGcLIgfSPOXyA9I3uWzswtv+Y7hs+Ld1JwUkTkAbEw38nyzPKP0KRJE3x9fW+6EraI3L1Om0YX9hBEROQ/bMqBgi2AKCIicj+4vTLw7xs9RAr7/m5+47cK9fX/qVS0SURERERERERERAqFpnXLQyEzM5NLly4VqK2zszN2dg/HSq6XLl0yFn65FTs7O5yd/zlTGR/WcYuIiIiIiIjIP4uCk/JQiImJoWnTpgVqO3LkyIdmAZRnnnmG6Ojov23Xrl07Ro0a9QBGVDAP67hFRERERERE5J9FwcmH2MaNGwt7CA+Mp6cns2bNKlDbUqVK3efR3Dtjxozh2rVrf9vOy8vrAYym4B7WcYuIiIiIiIjIP4uCk/JQsLW1pW7duoU9jHuuWrVqhT2EO/KwjltERERERERE/lm0II6IiIiIiIiIiIgUCgUnRUREREREREREpFAoOCkiIiIiIiIiIiKFQsFJERERERERERERKRQKToqIiIiIiIiIiEihUHBSRERERERERERECoWCkyIiIiIiIiIiIlIoFJwUERERERERERGRQqHgpIiIiIiIiIiIiBQKBSdFRERERERERESkUCg4KSIiIiIiIiIiIoVCwUkREREREREREREpFApOioiIiIiIiIiISKFQcFJEREREREREREQKhYKTIiIiIiIiIiIiUigUnBQREREREREREZFCoeCkiIiIiIiIiIiIFAoFJ0VERERERERERKRQKDgpIiIiIiIiIiIihULBSRERERERERERESkUCk6KiIiIiIiIiIhIoVBwUkRERERERERERAqFdWEP4HYMGTKEJUuW3LJN06ZN+eKLLx7QiPJq0qQJvr6+zJ49G4Du3bsTHR3Nxo0bH9gY7sVrrl27loULF3LgwAFSU1MpXrw49evXp0ePHvj7+xfoGDm/ryNHjtyTdrcrKiqKpk2bFqjthg0bAPJtb2Njg7u7O/Xq1WPgwIF4e3vf8vgWFhY4OzsTHBxM165deeKJJ+7iLO6fiRMnMmnSJDZs2ICfn99t909ISOCTTz5h8+bNWFlZ0bJlS958803s7Ozuw2hF5EFJvXSFE6t3kngiFgD3cn4EPVYDk5P9PelX0HZ7vviRpKiLeV6naEgJKnRpfMfnJyIiD4fLKSnM+W07eyMjScvIpKKvD93r1KaYi8s963v8/Hm+37Wbo7HnyDRnUaJoUZ6qGkZYQECudpGXLjHnt+0cjo3F1tqaUD8/Otaojqez8z09ZxGR/6qHKjiZ4+2338bNzS3ffcWLF3/Ao7m1l156iZSUlMIeRoGlpaUxePBgVq1aRaVKlXjhhRdwdXXl2LFjLFmyhEWLFjFmzBiaNWtW2EP9W+7u7owePTrXtpEjRwLZn6Eb2166dAmA6tWr06FDB2NfRkYGx48fZ86cOWzbto3ly5fjct0fNje2N5vNREZGMn/+fAYNGoSVlRWtW7e+5+dXmMxmMwMGDODw4cP06dOHuLg4Zs2ahdls5r333ivs4YnIHUpPvsa+GWswZ2bh1zAEs9lMVPgBrsbGU6VvGyytrO6qX0Hbmc1mks8nUrRCAEUrlsj1WnZFHO/vmyAiIoUuPTOTUavXEJOQSOtKodibbFi5bz8f/biCUU8/hfMtHoYXtO/ZhAQ++nEFLnZ2PBlWBZO1NT8fOcKYNWt5tXkzagYFARAdn8AHy5aTZTbzWEgIjra2rD90iPeXLuPDtm3xclGAUkTkbj2UwclmzZrdUaZXYahXr15hD+G2jB49mlWrVjFo0CBeeOGFXPteeuklXnjhBV599VUWLVpE2bJlC2mUBePg4EDbtm1zbZswYQJAnu2AEZz09/fPd7+/vz8ffvgh8+fPp3fv3rm259f+qaeeolWrVkyePPlfF5w8ffo027dvZ9CgQfTq1QuAY8eOsXLlSgUnRR5i0VsOci0xmWoD2uLgVQQAZz9PDsxcx7nfj1O8Rv7f+wXtV9B21+KTyErLoGiFAIqFlbyv5ywiIv88vxw9yskLcbzT+jFC/7rvq+IfwOAffmDVvv10rFnjrvvO274DKwtLhrd7kiIODgA0LV+Ot35YxNztO4zg5JzffiM1PZ0Pnnicsn/NoGpYpjRvLPyeOb/9xmuPNr9v74OIyH+Fak6K4eTJk3z33Xe0bt06T2ASoGjRokyYMAELCwuGDx9eCCMsXK1atQLg999/L1B7X19fatSoQUREBElJSfdzaA9camoqAGfPnjW2Xbt2DRsbm8IakojcAxf2naBIkLcROARwK+WDvacLF/advOt+BW139XwCAPYernd9TiIi8vDZFnGCYq4uRnARwNetCBV9fdkaEXHXfc1mM4diYqjs72cEJgFM1tZUDQjgXOJlLqekkJGZyf7oaEJ8fY3AJICLvT0Ny5Rh16nTXL127V6dtojIf9a/Oji5evVqnnzySSpVqkSbNm3YtGkTvXr1onv37kabJk2a5Pr5ZtvNZjPz5s3jmWeeISwsjNDQUFq2bMmXX36J2Wy+6Ri6d+9OkyZNgOwahWXLlr3pPxMnTjT6HT9+nH79+lG9enUqV65Mp06dCA8Pz3P8rVu30qlTJ6pUqUKzZs34/vvv7+i9Ali2bBlms5muXbvetE1AQADNmjVj586dxMbGGtsPHDjA888/T1hYGA0aNGDatGn5vi8FaWc2m5k0aRItWrQgNDSUunXrMmjQIGJiYu743O4FS8vs/10yMzML3Mfhrz92bvUZyc/ixYspW7Yshw8fZsCAAYSFhVG7dm0++eQTMjMzWbJkCS1atKBKlSp06tSJw4cP5+p/8OBBXnnlFerWrUvFihWpU6cOb7zxRq7fWX4SExMZNmwYDRo0ICQkhMcee4xvvvkmz/jLlClDcHAwCxYsYPv27XzxxRfs2LGDzp075znmxIkTCQ0N5aeffqJevXqEhYUZn9OCjjMpKYkRI0bwyCOPULlyZR5//PE8n/WCjl1E8peeco3US0k4+RbNs8+peFGSzuat/3g7/W7n+Mnn4gFw8MoOTmampd/+CYmIyEPrZFwcQUXzXi+CPIpy/vIVkm4RECxIXwsLC0Y89RRda9fK0+7KXw/hLS0tuZyaSkZmFgHu7nnaebu4kGU2c+av2VciInLnHspp3ZcvXzam4N7I1dUVKysrli5dyuDBgwkNDWXQoEGcOHGCAQMG4O7uTsANBY4L4rPPPmPq1Km0a9eODh06cPXqVZYuXcq4ceNwdHS8ZUAvR341ECE7eBMbG0uDBg0AOHLkCF26dMHDw4M+ffpgY2PDihUr6N27N+PGjTMy+LZu3cqLL75IYGAgr776KpcuXeLjjz/GwsLipjU5b2Xv3r1YW1sTGhp6y3a1a9dm1apV7N69m9atW3Ps2DG6d++Oi4sLffv2JT09nZkzZ5KWlparX0HbTZ06lcmTJ9O1a1fKli1LVFQU3377LQcOHGDFihVY3aTm2f22bds2ACpUqFCg9ikpKezcuRM/Pz+c77BYdu/evalWrRpDhgxh3bp1zJw5k6NHj3LkyBF69OiB2WxmypQpDBgwgFWrVmFtbW18fkqUKEHv3r2xt7fn999/Z9myZZw+fZoffvgh39dKTk6mW7duxMTE0KVLF7y9vfntt98YMWIEp06d4oMPPjDaWlpaMmLECLp3707Pnj3Jysri2Wef5eWXX8732BkZGbz//vs899xzpKWlUa1atQKPMy0tja5du3Ls2DE6dOhAuXLl+Pnnn3n33XdJSUnh2Wefva2xi0j+0hKTATC5OOTZZ3KxJzMlnYyUNKztTXfU73aOn3w+AStba06s2smFfSfJSsvAzt2JEs2r4lU5+K7PVURE/rlS09NJvpaGm2PeGsNF7LOvIReTknCytb2rvvnVikxMTmbnqVP4FHHFydaWq9cd90ZXrqX+1efhWV9AROSf6qEMTrZr1+6m+5YuXUqZMmUYPXo0wcHBzJ07F5Mp+0YqODiY4cOH33ZwMj093ZjuPGrUKGN7+/btqVOnDuHh4QUKTuZXA3H69OlERkby/vvvU6VKFQCGDx+Ou7s7S5YsMTLvunXrRo8ePfj4449p1qwZJpOJsWPH4unpyYIFC3BycgKgbt269OjR446CkxcuXMDV1dV4v27Gy8sLgPPnzwMYGZ/z5883FiRq0aIFTz75ZK5+BW33448/0rBhQ959911jW/HixZk3bx7R0dF3FFy+HWlpabmC34mJiezZs4exY8fi6OiYJzvwxvYZGRlERkbyxRdfcOnSJYYMGXLHY6lSpQqffvopkD2tvE6dOmzdupXly5dTunRpAK5evcrUqVOJiooiMDCQuXPnYmFhwbfffkuRIkUA6NixI+np6axcuZKEhARj+/VmzJjByZMnc9UT7dKlC+PHj2fatGl07NiRcuXKAdnTujds2IDZbCYrK4uQkBDefvttLCws8j2PrKwsnnvuuVy1Oj/44IMCjfOHH37g8OHDjB07lscff9xo161bN7788ku6det2W2MXkfzlZCda2eT908DSOntbZnpGnuBkQfvdzvGvnksg81oGGalplG3fgIzUNM5u/ZMjC37BnGVWHUoRkX+xlL8SF2yt814vTH9tyy9YeLd9M7OymLxpM9fSM2gbVgUAR1tbihdxZU9kJNfSM7C97hq2+9RpIHsBHhERuTsPZXByzJgxeHh45LsvICCA/fv3c/HiRXr37p0r0NaxY8dcU6cLysbGhq1bt5J+w4UsPj4eJycnkpOTb/uYAOHh4YwfP562bdsawc34+Hh27NhB9+7dSU1NNWr7ATRv3pyRI0eyf/9+AgMDOXjwIC+88IIRmITsrMayZcveUY1Ds9lcoKxE678u7DmBqfDwcBo1apRrpfSSJUtSv359Nm7cCFDgdgDe3t5s376db775htatW+Ph4UGnTp3o1KnTbZ/TnVi5ciUrV67Ms7106dIMHToU7+vqzdyqfXBwMOPHj7+rxXCuXxXd2dkZd3d3HB0djcAkYCwOdeHCBQIDAxk6dCgDBw7MFYBMSkrC9q+ny8nJyfkGJ9etW0eZMmXw9PTMFWxt1qwZ06ZNY9OmTZQrV47U1FRefPFFdu7cyfPPP8/JkyfZuHEjU6ZMoV+/fvzyyy9cu3aNRx55JFcNyho1chcuL+g4N2/ejLu7O23atDHaWVhYMHr0aDIyMrCwsCjw2EXkFnJKIOT/jOHu+93G8YvXKIPZbMandnljm2elIH6fsJSTq3fiVTkIC8t/dWUaEZH/vJs99P67fXfSN+uvwOT+qGjqlCpJwzJljH1tq1Rh6uafGbtuHZ1q1MDWxpqV+/Zx7vJlAKx0PRIRuWsPZXCyatWqt1ytO2eRDn9//1zbTSZTnm0FZWNjw+bNm9mwYQMnT57k9OnTJCYmArdfTxDg1KlTvP7665QuXZqPPvrI2B4ZGQnA7NmzmT17dr59Y2JijKBPflmEwcHB7Nu377bH5OXlRWRkJBkZGUYAMj85GZNeXl4kJCSQnJx803HkBB0L2g7grbfe4uWXX2bEiBGMHDmSihUr0qRJEzp06ICnp+dtn9ftql+/vrECtYWFBSaTieLFi+Pj4/O37WNjY5k+fTqXL19m6NCh1KqVt47N7bgxCG9tbU3RG2ro5ASUs7KyjDHHx8czbdo0jhw5wpkzZzh79qzxOc1pd6MzZ86QmppKnTp18t2fU/Nz1qxZ7Nixg9dee42XXnqJxMRE2rVrx+TJk6lZsyafffYZ0dHRbN26NVf/G8dd0HHmZMve+Iekr6/vbY9dRG7Oyjb7upKVnjcDJCsjAwBru7yLXhW0X8ZtHL94rbwPE6xsrPEKK8mZDX+QfD4BR++89b9EROThkpaRQfINJZ5s/7rPSfvr2nBjewAHm/xnet1J3/TMTCZt2MiOk6eo7O9H30ca5drfqGwZEpKTWbT7d95dshSAMt7F6FKrFl/9Eo6j7a1nnYmIyN97KIOTBZVf0NA2n9ok+bl+0ROz2Uzfvn3ZtGkT1apVIywsjI4dO1KjRg169Ohx2+NKSkqiX79+WFhYMGnSJOzs7PK8bteuXXNlzV2vVKlSnDt3DiBXZmWOmwWf/k716tXZtm0b+/bto2rVqjdtt2vXLiwsLAgLCzO2FXQcBWlXrlw51q5dS3h4OJs2bSI8PJzPP/+cWbNmsWDBAkqWvL/T+Tw9Palbt+4dt2/atCnt27fnxRdfZNasWVSrVu2Ox5JfJuvfPSletWoVb775Jl5eXtSuXZuGDRsSEhLCli1bmDZt2k37ZWZmUq1aNfr375/v/pzp/Bs2bMDBwcEIyLq6uvLZZ5/RpUsX+vfvT0JCAu3bt88zdssbnioXdJyZmZl/e84FHbuI3Jyta3YWftqVvLWz0i6nYGVvg5Upb3CyoP3u9PjXs3G0ByAzLe9Np4iIPHy2RZxg6uafc217ulpVHGxNxOczOy1nWxHHvPWLARxMptvqm5qezrh1P3EgKpqwAH9ee7Q51vn8/d02rArNKpQn8lI8LvZ2+BQpwoZDhwDwcnEp4NmKiMjN/CuDk4GBgUB2duKNIiMjjf2QHTC5cUGWjIwM4uPjjSy/Xbt2sWnTJvr27cvAgQNztUtISLitbEyz2cygQYOIiIhg2rRpefrmZINZWVnlCZAdP36cqKgo7O3t8fX1xcLCgtOnT+d5jaioqAKP53pt2rThiy++YObMmTcNTsbGxrJmzRqqVauGr68vZrMZJyenvx2Hm5tbgdplZmZy+PBhnJycaNq0KU2bNgWyA1mvvfYa33///V3VcHwQXF1dGTduHJ06deKNN95gxYoVuabe32/jxo2jRIkSLFq0yKhZCtm1PG/F19eXq1ev5vncJSYmsm3bNkqUKAH8L+h/ffCxUqVKDBkyhGHDhgHQs2fPezZOHx8fjhw5kqf/zz//zKpVqxg0aFCBxy4iN2dtb8LW3SnfVbmTYi7i7Jt/OZWC9itou2uJV9k/ax1elYIIaFIlV7uUuOwZC3ZuD+47VURE7p9Kfr680/qxXNu8XFw4HBvLqbi4PO1PXbxIMVeXfBfDyRHk4VGgvplZWXz603oOREVTOziIfk0a5xuY/P30GQCqlgigXPH/lXc6HBOLq7093gpOiojctX9lgYxy5coREBDA/Pnzc9WDXLNmjTElOYeHhwcnT57MldG3ceNGrl27ZvyckJAAZGcsXm/hwoWkpKSQkc+0gZuZMGECGzdupH///jRq1CjPfi8vL0JCQliyZImRHQnZi/K88847DBgwgIyMDNzd3alRowbLly8n7rqL7549ezh48GCBx3O9wMBAnnvuOX766SemTJmSZ39CQgIDBgwgPT2d9957D8jO4mvevDnh4eEcO3bMaBsVFcXmzZuNnwvaLjMzk2effZYRI0bkeu3KlSsDebPv/qlCQ0Pp1asXMTExjBkz5oG+dkJCAj4+PrkCfjExMaxbtw7InRV8vSZNmnD48GF+/jn30+spU6YwcOBA4/dWq1YtkpOTWbZsWa5210+dvllJgjsZZ8OGDYmLi+Onn37K1f+bb75h8+bNuLn9P3v3HR5VmfZx/BvSewhJSIGQ0IKQACGAdDSASJEi0olYEFlQkHVZ8V0LioLSFgUproLKKqD0EooCUZQiCitF6S0JoaaR3ub9I2RkmAQmCAzo73NdXJc5537Ouc/JmDlzz1MqWpy7iFyfT71qpB47Q9aFVOO2lKNnyL6Qjm/90D/czpI4R09XCnPySNp1mIKc3788zEnN4NzPR/Cs4Y+De+k9ZkRE5N5S0dWViCpVTP5V9vCgaWgIZ1LT2HdVJ4bElFQOJCbS4gajqCxtu+zn3eyNT6BpaAjPt4sutTAJsPXwYebEfWtcbAfgxIWL7Dx+gg716t5whI+IiNzYPdlz8ptvvrnuatTdu3dn3LhxDB06lL59+9KrVy8uXrzIggULTBbogOLeguPHj2fIkCF069aNU6dO8eWXX5rMZxcZGYmbmxsTJ04kMTERT09Pdu7cSWxsLI6OjmRmZlqUd1xcHHPmzKFGjRrUrl2b1atXmwxp9vHxoWXLlrzyyisMHjyYXr160b9/f7y8vFi7di2//PILL774ovHaX3rpJQYOHEifPn0YOHAg2dnZfPLJJze1UneJ0aNHk5aWxvTp09myZQsdO3bEw8OD48ePs2LFCnJycpg6darJ4iKjRo0iLi6OQYMG8cQTT2Bra8uCBQtwdXU16ZVqSZyDgwMxMTHGxVVat25NTk4OixcvxtnZmV69et30td1pw4cPZ926dSxevJhu3br9oeHd5dGmTRtiY2N57bXXiIiIICEhwVhIB8p8vT777LNs3LiRESNG0K9fP2rVqsXPP//MypUradOmDW3atAFg2LBhrFu3jldffZUjR45QpUoV1q9fz86dO+nduzdnzpxh0aJF2Nvbm6y4frN59uvXj6VLlzJ69GgGDhxIaGgocXFx/PDDD0yYMAFbW1uLcxeR66vSOpzze46x7+MNBLUKp6iggISt+3ELqoRfw+IPdNnJl0k/dR6Pan44e7tb3K48cTW6NeO3/27hl7mx+DeuTWFePme2/4ZNhQrUfKTZnb0pIiJyxz1Ypw4b9h9g+jeb6Fq/Po52dqzZu5eKrq50igg3xqVlZbE3IZFqlbwJvjK/uSVtL+fksHrvXuxsKxAeFMQPR4+Z5dAkNAQne3s6149g18mTvL02lra1a3M5N4fYvfsIrOhF56tyERGRm3dPFicnTpx43f3du3enZcuWzJs3j2nTpjF16lQCAwOZOHEiU6ZMMYkdMGAAqampLFmyhPHjx1OnTh1mzpzJvHnzjL0ufXx8+PDDD5kyZQqzZ8/GwcGB0NBQpk2bxt69e/nss8+4ePFimSuIl9i3bx8Gg4Fjx47x/PPPm+1v2rQpLVu2JDIykoULFzJjxgzmz59PQUEBoaGhvPPOO/Ts2dMYHx4ezoIFC5g6dSozZ87Ew8OD5557jv3797N7925Lb6cJOzs73nrrLR566CE+//xzPvnkE9LT0/H396dr167ExMSYLWoTEBDAwoULmTRpEh999BEODg707t0bwGTuQEvjRo4ciZeXF0uXLuXdd9/F1taWRo0aMXny5Ns+3+St5OTkxBtvvMGTTz7Jq6++yooVK0xWj79dxo0bh4uLC5s3b2blypX4+/vTo0cPOnToQP/+/dmxYwd169Y1a+fl5cXixYt5//33Wb9+PYsXLyYwMJDhw4czdOhQY69VDw8PFi5cyNSpU1m6dCnZ2dnUrFmTd999lx49epCVlcWoUaOuu2hVefJ0cnJiwYIFTJ8+nbVr13L58mVq1KjB9OnT6dSpU7lyF5Hrc3Bzpv4znTi+9kdOfbMHWwc7Kt0XTOjDjalgV9yjJP3kOQ4v+Z7aj7UyFictaVeeOJ+61agbE83puL2c2PATFext8QoNIKRjI1x8ve7oPRERkTvP3taWV7p2YcGOnaz+5Rcq2NhQNzCQQc2a4X7VfP2JqanM2hJHr6hGxuKkJW2Pnb9AfkHxKJ153/9Qag7vB/TDyd6eWpUr81Knh/nyp5/5fOdOXB0daVWrJr2ionC+A8/2IiJ/BTaGm1lq+h4WHR1NUFCQRcNOReTmGAyGP80Ql35bJlk7BRER+Qubvd+yxRxFRERuh4rPj7px0D3E2p/vFj34T6ue/26l7kQicsv9WQqTIiIiIiIiInJ73ZPDusUyhYWFJCcnWxTr7u6O01VDJO5mycnJZS7qcjUnJyfc3d3vQEaWuVfzFhERERERERG5XVSc/BNLSkqiXbt2FsVOnDiRRx999DZndGs89thjJCYm3jCuZ8+evPPOO3cgI8vcq3mLiIiIiIiIiNwuf7ni5ObNm62dwh3j6+vL/PnzLYqtWbPmbc7m1pk8eTK5ubk3jPPz87sD2VjuXs1bREREREREROR2+csVJ/9KHB0dadGihbXTuOWioqKsncJNuVfzFhERERERERG5XbQgjoiIiIiIiIiIiFiFipMiIiIiIiIiIiJiFSpOioiIiIiIiIiIiFWoOCkiIiIiIiIiIiJWoeKkiIiIiIiIiIiIWIWKkyIiIiIiIiIiImIVKk6KiIiIiIiIiIiIVag4KSIiIiIiIiIiIlah4qSIiIiIiIiIiIhYhYqTIiIiIiIiIiIiYhUqToqIiIiIiIiIiIhVqDgpIiIiIiIiIiIiVqHipIiIiIiIiIiIiFiFipMiIiIiIiIiIiJiFSpOioiIiIiIiIiIiFWoOCkiIiIiIiIiIiJWoeKkiIiIiIiIiIiIWIWKkyIiIiIiIiIiImIVKk6KiIiIiIiIiIiIVag4KSIiIiIiIiIiIlah4qSIiIiIiIiIiIhYhYqTIiIiIiIiIiIiYhUqToqIiIiIiIiIiIhV2Fk7gb+KsWPHsnz58uvGtGvXjlmzZt2hjMxFR0cTFBTEggULAIiJiSExMZHNmzffsRxuxTk3bNjAl19+yf79+8nJySEgIIBWrVoxePBgqlatatExSn5fhw4duiVxNyssLOy6+0teMwkJCbRr185sv729Pd7e3rRs2ZJRo0bh7+8PUGa8jY0N7u7uVK9enYEDB9KtW7dbcyG32IwZM5g5cyabNm2iSpUq1k5H5E8pLyObE+t/IuVwIkX5BXhWD6B6l6Y4e7vflran437h7K7DNB3T22zfbwvjuLjvpNl2t6BKRI54pFzXJSIi94b07Gw+37GT/8XHk1dQSL2gQGKaN6Oyh8ctadt/7n+ue4xhD7SlbVhtAM6kprL4x10cOHOGvIJCArw86VI/gja1a/+xixQREUDFyTvu5ZdfpmLFiqXuCwgIuMPZXN+wYcPIzs62dhoWy8vL46WXXiI2Npb69eszZMgQPD09OXLkCMuXL2fp0qVMnjyZ9u3bWzvVcqlevTrDhg0rdd+1r5nGjRvTp08f488FBQUcPXqUzz//nO3bt7Nq1So8rnoouzbeYDAQHx/PokWLGDNmDLa2tnTp0uUWX5GI3O2KCgo58Ok3ZF9MI6hVPWwdHUj8fj97/7OORs93x97F8Za2TT6cyOlNv+Dg4VzqMTPPpeBRzQ//pqZf2Ni7lp2HiIjcu/ILC3ln3XqSUtPoUj8CZwd71u7dx5ur1/BOr0dxd3L6w22HP/hAqe0XbN9BQVEh9115zk7PzuGNVaspMhjoFBGOu5MTO44dZ/aWb8nMzaNTRPitvnwRkb8cFSfvsPbt298zPb1atmxp7RTKZdKkScTGxjJmzBiGDBlism/YsGEMGTKEF154gaVLl96wR+LdxMfHh+7du1sUW7Vq1VJjq1atyhtvvMGiRYsYOnToDeMfffRROnfuzAcffKDipMhf0Lk9R8lIvET4Uw9RsWYgAN5hQex+fyWJ3x8g5KFGt6xt0o+HOLZ6J4bColKPV1RYSM6ly/g+EELlyBq36ApFRORu9t3hw5y4cJH/69KJiCufnRpWDealJUuI3buPvk2b/OG2rWvXMmsbu3cfl3NyeC76Qfw8inv7r9izh4ycXCb26klwpUoAdKhbl3GrVvPlrp9od18dHOz0sVpE5I/QnJPyp3DixAn++9//0qVLF7PCJEClSpV47733sLGx4a233rJChtbVuXNnAHbv3m1RfFBQEE2aNOHYsWNkZGTcztRE5C50Ye8JnCq5G4uLAC6+XnjVCODC3uO3rO2+eRs4umI7XjX8cQ30LvV42RfSMRQW4eLrdfMXJCIi95Ttx45T2dPDWFwECKroRb2gILYdO3Zb2qZlZfHlTz8RHhRIy1o1jdt/TUoixKeSsTAJxVMhNatenZz8fOKTU27mEkVE5CoqTt6l1q1bR48ePahfvz5du3Zly5YtPP3008TExBhjoqOjTX4ua7vBYGDhwoU89thjREZGEhERwcMPP8yHH36IwWAoM4eYmBiio6OB4jkKw8LCyvw3Y8YMY7ujR48yYsQIGjduTIMGDejXrx9bt241O/62bdvo168fDRs2pH379nz11Vc3da8AVq5cicFgYODAgWXGBAcH0759e3bt2sXZs2eN2/fv389TTz1FZGQkrVu3Zu7cuaXeF0viDAYDM2fOpGPHjkRERNCiRQvGjBlDUlLSTV/brVChQvH/6oWFhRa3cXFxAbjua6Q0y5YtIywsjIMHDzJy5EgiIyNp1qwZ7777LoWFhSxfvpyOHTvSsGFD+vXrx8GDB03aHzhwgOeff54WLVpQr149mjdvzosvvmjyOytNWloa48ePp3Xr1oSHh9OpUyc+/fTTcucvIpBx5hJugZXMtrsGViInOYP87Nxb0jYnNYMa3ZpRb3AH7BztSz1e1vlUAFz8PAEozMsvz6WIiMg96MTFi4RWMn8vCfWpxPn0y2Tklv0+dLNtl+/5H3kFBQxq3sxk+5iODzEi+kGz+Ms5OQDYVrC57rWIiMiNqf/5HZaenk5ycnKp+zw9PbG1tWXFihW89NJLREREMGbMGI4fP87IkSPx9vYmODi43OecPn06c+bMoWfPnvTp04fMzExWrFjB1KlTcXV1vW5Br4S3tzeTJk0y2z5jxgzOnj1L69atATh06BADBgzAx8eHZ599Fnt7e9asWcPQoUOZOnWqsQfftm3beOaZZwgJCeGFF14gOTmZt99+GxsbmzLn5Lye//3vf9jZ2REREXHduGbNmhEbG8vPP/9Mly5dOHLkCDExMXh4eDB8+HDy8/OZN28eeXl5Ju0sjZszZw4ffPABAwcOJCwsjISEBD777DP279/PmjVrsLW1Lfe15efnl/qasbe3x939xgtTAGzfvh2AunXrWhSfnZ3Nrl27qFKlisXnuNbQoUOJiopi7NixbNy4kXnz5nH48GEOHTrE4MGDMRgMzJ49m5EjRxIbG4udnZ3x9VOtWjWGDh2Ks7Mzu3fvZuXKlZw6dYolS5aUeq6srCwGDRpEUlISAwYMwN/fnx07djBhwgROnjzJ66+/flPXIPJXVJiXT2F2Pg4eLmb7HNyK54TMTc3E3tl8vsfyto0a1YMKN/i7mHmuuEdK0o+HubD3BAVZudi7O1O1bQRBLSz7myYiIveOnPx8snLzqOjqarbPy7n4/eVSRgZujubvQzfbNj07m82/HaRJSAjVrilsVnJzMztWXkEB3x46hLODPVVu4rOLiIiYUnHyDuvZs2eZ+1asWEHt2rWZNGkS1atX54svvsDBwQEoXhTlrbfeKndxMj8/3zjc+Z133jFu7927N82bN2fr1q0WFSddXFzM5ib86KOPiI+P57XXXqNhw4YAvPXWW3h7e7N8+XJjz7tBgwYxePBg3n77bdq3b4+DgwNTpkzB19eXxYsX43blDb9FixYMHjz4poqTFy5cwNPT03i/yuLn5wfA+fPnAYw9PhctWmRcXKZjx4706NHDpJ2lcatXr6ZNmza88sorxm0BAQEsXLiQxMTEmyou79mzh+bNm5ttb9q0qXFl9RJ5eXkmhcy0tDT27NnDlClTcHV1pX///teNLygoID4+nlmzZpGcnMzYsWPLnW+Jhg0b8u9//xsoHlbevHlztm3bxqpVq6hVq3iOn8zMTObMmUNCQgIhISF88cUX2NjY8Nlnn+Hl5QVA3759yc/PZ+3ataSmphq3X+3jjz/mxIkTJvOJDhgwgGnTpjF37lz69u1LnTp1bvpaRP5KCnKKeyba2ps/IpRsKyqj92J5296oMAm/95zMupBKzW7NKCos4tzuIxxf8yOFufkEP9jghscQEZF7R/aVL/8dS5nHsWRux5z80t+HbrbtloOHyC8spHP963d0KDH/hx9IzsziscZR2N1E5wMRETGl4uQdNnnyZHx8fErdFxwczL59+7h06RJDhw41KbT17dvXZOi0pezt7dm2bRv517wJp6Sk4ObmRlZWVrmPCbB161amTZtG9+7djcXNlJQUfvzxR2JiYsjJySHnylAHgA4dOjBx4kT27dtHSEgIBw4cYMiQIcbCJBT3agwLC7upOQ4NBoNFvRLtrjyUGAwGioqK2Lp1K23btjVZ9bpGjRq0atWKzZs3A1gcB+Dv78/OnTv59NNP6dKlCz4+PvTr149+/fqV+5pKhIWFlVokvHrV7RJr165l7dq1Zttr1arFuHHj8Pf3tyi+evXqTJs27Q8thnP1quju7u54e3vj6upqLEwCxsWhLly4QEhICOPGjWPUqFEmBciMjAwcr3y7nZWVVWpxcuPGjdSuXRtfX1+TYmv79u2ZO3cuW7ZsUXFSpLyuN0rN5gZD2P5I22v4hIfgHuRDlbYR2Fxp69ewOns/XMfpLb8Q0DQMe9eyV20VEZF7k8113i+ut+9m2m45dIhqPpUIu+ZZuTRf7NxJ3MHD3BfgT4/IhjeMFxGRG1Nx8g5r1KjRdVfrPnPmDFC8ivLVHBwczLZZyt7enri4ODZt2sSJEyc4deoUaWlpQPnnEwQ4efIkf//736lVqxZvvvmmcXt8fDwACxYsMOvRVyIpKQl7++J5xUrrRVi9enX27t1b7pz8/PyIj4+noKDAWIAsTUmPST8/P1JTU8nKyiozj5Kio6VxAP/85z/529/+xoQJE5g4cSL16tUjOjqaPn364OvrW+7rguLh/i1atLAotlWrVjz99NNA8YOXg4MDAQEBBAYG3jD+7NmzfPTRR6SnpzNu3Djuv//+m8q3xLVFeDs7OypdM0ympKBcVFRkzDklJYW5c+dy6NAhTp8+zZkzZ4yv05K4a50+fZqcnJxSe5gCVp/zU+RuVZhfQGGO6fQUtg5XejgWmM9RW5hfUBxTxvyQf6RtWfwaVDfbZmNjg3+T2qSfOk/66QtUuu/m3h9FRMS68goKyLpmmiTHK58V8goKSo0HcLEvfbTUzbRNSEnhXFr6dVcAh+LPTZ9u28aG/b9SzacSL3Z8CNsKWsJBRORWUHHyLlVa0dCxlHlVSnP1oicGg4Hhw4ezZcsWoqKiiIyMpG/fvjRp0oTBgweXO6+MjAxGjBiBjY0NM2fOxMnp994qJecdOHCgSa+5q9WsWZNz584BmPSsLFFW8elGGjduzPbt29m7dy+NGjUqM+6nn37CxsaGyMhI4zZL87Akrk6dOmzYsIGtW7eyZcsWtm7dyvvvv8/8+fNZvHgxNWrUKM9llZuvr6/FhczS4tu1a0fv3r155plnmD9/PlFRUTedS2k9WW/0LXdsbCz/+Mc/8PPzo1mzZrRp04bw8HC+//575s6dW2a7wsJCoqKieO6550rdXzKcX0RMXdx3ksNLvjfZFtyuAbbO9uSlm/esz7ucDVDqnJIAdk4ON922vEp6S2qBHBGRe9f2Y8eZE/etybZeUY1wcXQgpZQRXiXbvFxLfy9xcXAod9v/nS7uYNE0NKTMPIuKipgd9y3fHzlKDT9fXu7cCVcLP5uJiMiNqTh5lwkJCQGKeydeKz4+3rgfildgvnZBloKCAlJSUoy9/H766Se2bNnC8OHDGTVqlElcampquXpjGgwGxowZw7Fjx5g7d65Z26CgIKC4KHVtgezo0aMkJCTg7OxMUFAQNjY2nDp1yuwcCQkJFudzta5duzJr1izmzZtXZnHy7NmzrF+/nqioKIKCgjAYDLi5ud0wj4oVK1oUV1hYyMGDB3Fzc6Ndu3a0a9cOKC64jR49mq+++uoPzeF4J3h6ejJ16lT69evHiy++yJo1a0yG3t9uU6dOpVq1aixdutQ4ZykUz+V5PUFBQWRmZpq97tLS0ti+fTvVqlW7LfmK3Ou8agYS/tRDJtucvN1JO3mOjDPmC3FlJl3CqZJ7qYvhlHALrHTTba9VVFjI/2avxT3Ih1o9Tf//zrpQPALAqeLNLdolIiLWV79KEP/XpZPJNj8PDw6ePcvJixfN4k9eukRlT49SF8MpEerjU662h86exdvVhcBSpg4q8Z+tW/n+yFHuC/BnzMMdcb7BPPciIlI+6od+l6lTpw7BwcEsWrTIZD7I9evXG4ckl/Dx8eHEiRMmPfo2b95Mbm6u8efU1FSguMfi1b788kuys7MpKGXIQ1nee+89Nm/ezHPPPUfbtm3N9vv5+REeHs7y5cuNvSOheFGe//u//2PkyJEUFBTg7e1NkyZNWLVqFRevenDYs2cPBw4csDifq4WEhPDkk0/y9ddfM3v2bLP9qampjBw5kvz8fF599VWguBdfhw4d2Lp1K0eOHDHGJiQkEBcXZ/zZ0rjCwkIef/xxJkyYYHLuBg2KF2uocI8M+4iIiODpp58mKSmJyZMn39Fzp6amEhgYaFKYTEpKYuPGjYBpr+CrRUdHc/DgQb791vSb99mzZzNq1CiT35uI/M7Rw4WKNQNN/jl7u+NTrxrZF9JIOXrGGJt1IZXUY0n41g+97jH/SNtrVbC1xdbejvO/HCcn9ff5iAuy8ziz7VecKrnjXrX0eZxFROTuV9HVlYgqVUz+VfbwoGloCGdS09h3VUeAxJRUDiQm0uIGI5HK2/bkpUtmK3RfbcvBQ8QdPExt/8q81KmTCpMiIreBek7eYd988811V6Pu3r0748aNY+jQofTt25devXpx8eJFFixYYJyrsUTXrl0ZP348Q4YMoVu3bpw6dYovv/zS2IMRIDIyEjc3NyZOnEhiYiKenp7s3LmT2NhYHB0dyczMtCjvuLg45syZQ40aNahduzarV682GdLs4+NDy5YteeWVVxg8eDC9evWif//+eHl5sXbtWn755RdefPFF47W/9NJLDBw4kD59+jBw4ECys7P55JNPbmql7hKjR48mLS2N6dOns2XLFjp27IiHhwfHjx9nxYoV5OTkMHXqVJOFUUaNGkVcXByDBg3iiSeewNbWlgULFuDq6mrSK9WSOAcHB2JiYpg9ezYjRoygdevW5OTksHjxYpydnenVq9dNX9udNnz4cNatW8fixYvp1q3bHxreXR5t2rQhNjaW1157jYiICBISEoyFdKDM1+uzzz7Lxo0bGTFiBP369aNWrVr8/PPPrFy5kjZt2tCmTZs7kr/In4V/49qc2X6Q3xZuoUrrcGzt7UjYuh8HDxeCWtYzxuVlZJNy5AxuARVx9fcuV1tLVe/SlF/mxvLL3FiCmtcFIGnXIfIysgl/8qEbThchIiL3ngfr1GHD/gNM/2YTXevXx9HOjjV791LR1ZVOEeHGuLSsLPYmJFKtkjfBVwqMlrYFKCwq4lJGBpFljCYrKiriq59+AiAyOJgfT5wwi6lfJQhPl1szZYmIyF+VipN32MSJE6+7v3v37rRs2ZJ58+Yxbdo0pk6dSmBgIBMnTmTKlCkmsQMGDCA1NZUlS5Ywfvx46tSpw8yZM5k3b56x16WPjw8ffvghU6ZMYfbs2Tg4OBAaGsq0adPYu3cvn332GRcvXixzBfES+/btw2AwcOzYMZ5//nmz/U2bNqVly5ZERkaycOFCZsyYwfz58ykoKCA0NJR33nmHnj17GuPDw8NZsGABU6dOZebMmXh4ePDcc8+xf/9+du/ebentNGFnZ8dbb73FQw89xOeff84nn3xCeno6/v7+dO3alZiYGLNFbQICAli4cCGTJk3io48+wsHBgd69ewOYzHFoadzIkSPx8vJi6dKlvPvuu9ja2tKoUSMmT5582+ebvJWcnJx44403ePLJJ3n11VdZsWKFyerxt8u4ceNwcXFh8+bNrFy5En9/f3r06EGHDh3o378/O3bsoG7dumbtvLy8WLx4Me+//z7r169n8eLFBAYGMnz4cIYOHXrP9FoVuVtUsLMl4umOnIjdRcJ3+7GxscGzuj/VOzXB3uX34XBZ51M5/NVWgts1MBYnLW1rKfcqPkQ83ZFTm/ZwavMewAaPYF/CerfBI/jmFhoTEZG7m72tLa907cKCHTtZ/csvVLCxoW5gIIOaNcP9qjnvE1NTmbUljl5RjYzFSUvbAmTm5mIwUGZvyKS0dFIyiz9XLf5xV6kxrz7SRcVJEZE/yMZwM8s1i1VER0cTFBRU5krYInLr9dsyydopiIjIX9js/Vp0Q0RErKfi86NuHHQPsfbnu0UP/tOq579bqTuRiIiIiIiIiIiIWIWGdctdqbCwkORk89VeS+Pu7o7TNUM07lbJycllLupyNScnJ9zd754VaO/VvEVERERERETk7qbipNyVkpKSaNeunUWxEydO5NFHH73NGd0ajz32GImJiTeM69mzJ++8884dyMgy92reIiIiIiIiInJ3U3HyHrJ582Zrp3DH+Pr6Mn/+fItia9aseZuzuXUmT55Mbm7uDeP8/PzuQDaWu1fzFhEREREREZG7m4qTcldydHSkRYsW1k7jlouKirJ2CjflXs1bRERERERERO5uWhBHRERERERERERErELFSREREREREREREbEKFSdFRERERERERETEKlScFBEREREREREREatQcVJERERERERERESsQsVJERERERERERERsQoVJ0VERERERERERMQqVJwUERERERERERERq1BxUkRERERERERERKxCxUkRERERERERERGxCjtrJyAicjebvd/R2imIiMhf2N/Cc62dgoiI/IUtsnYC8pegnpMiIiIiIiIiIiJiFSpOioiIiIiIiIiIiFWoOCkiIiIiIiIiIiJWoeKkiIiIiIiIiIiIWIWKkyIiIiIiIiIiImIVKk6KiIiIiIiIiIiIVag4KSIiIiIiIiIiIlah4qSIiIiIiIiIiIhYhYqTIiIiIiIiIiIiYhUqToqIiIiIiIiIiIhVqDgpIiIiIiIiIiIiVqHipIiIiIiIiIiIiFiFnbUT+KsaO3Ysy5cvv25Mu3btmDVr1h3KyFx0dDRBQUEsWLAAgJiYGBITE9m8efMdy+FWnHPDhg18+eWX7N+/n5ycHAICAmjVqhWDBw+matWqFh2j5Pd16NChWxJ3s8LCwq67v+Q1k5CQQLt27cz229vb4+3tTcuWLRk1ahT+/v4AZcbb2Njg7u5O9erVGThwIN26dbs1FyIid63z6Zf5744d/HrmDACRwcHENG+Gh7Ozxcf4z3dbSUpN5bVuj5jt+yU+nuW793D84kUq2NhQy8+PPk0aU6tyZZO4fy1bzvELF83aNw0NYfRDHcp5VSIici/Ky8jmxPqfSDmcSFF+AZ7VA6jepSnO3u7lOs7puF84u+swTcf0LnV/UWEhu2eswjcihGrtIk32GQwGzmz/jaQfD5Fz6TK2TvZUrBVEaMcoHD1db/raRETkdypOWtnLL79MxYoVS90XEBBwh7O5vmHDhpGdnW3tNCyWl5fHSy+9RGxsLPXr12fIkCF4enpy5MgRli9fztKlS5k8eTLt27e3dqrlUr16dYYNG1bqvmtfM40bN6ZPnz7GnwsKCjh69Ciff/4527dvZ9WqVXh4eJQZbzAYiI+PZ9GiRYwZMwZbW1u6dOlyi69IRO4Wl3NyGL9mDYVFRTzSoAFFBgNr9u4lPjmZt3r2wM7W9obH2HLwEJt/O8h9Af5m+349k8S769ZTpWJF+jVpQqGhiI0HfuXN1Wt4vdsj1PTzA4r/9iSmptI4pBpNQ0NNjuHj7nZrLlZERO5qRQWFHPj0G7IvphHUqh62jg4kfr+fvf9ZR6Pnu2Pv4mjRcZIPJ3J60y84eJT+JZvBYODI8m1kn08rdX/8ll849c3/8K5ThcBm95GblsmZ7b+RfuocjZ7rjp2zw01fo4iIFFNx0srat29PlSpVrJ2GRVq2bGntFMpl0qRJxMbGMmbMGIYMGWKyb9iwYQwZMoQXXniBpUuX3rBH4t3Ex8eH7t27WxRbtWrVUmOrVq3KG2+8waJFixg6dOgN4x999FE6d+7MBx98oOKkyJ9Y7N59JGdk8m7vXlS58sVZTT9fJqxdx7eHD9PuvvvKbFtUVMTyPf9j6c8/lxnz2fbteLu6Mr5HDxztix9B2tSqxYtffsXiXT/xry6dAbhwOYPc/AIah4TQunatW3iFIiJyrzi35ygZiZcIf+ohKtYMBMA7LIjd768k8fsDhDzU6IbHSPrxEMdW78RQWFTq/oLsPA4v/Z5Lv54udX9+Zg6nt+zFJ7wa9w140Ljdq0YA++dt5MzO3wh+oMFNXJ2IiFxNc07Kn9KJEyf473//S5cuXcwKkwCVKlXivffew8bGhrfeessKGVpX587FBYDdu3dbFB8UFESTJk04duwYGRkZtzM1EbGibceOUTcwwFiYBIioUoUAL0+2HzteZru8ggJeXracJT/9TKtatfB2dTGLycjN5fSlSzSrXt1YmATwdHHhvoAADp89Z9yWkJICQKCX5624LBERuQdd2HsCp0ruxsIkgIuvF141Ariwt+z3pBL75m3g6IrteNXwxzXQ22x/RlIyP/17GcmHEghqXa/UY6SfPo+hsAi/RjVNtlesGYitsz3pp86X86pERKQ0Kk7eI9atW0ePHj2oX78+Xbt2ZcuWLTz99NPExMQYY6Kjo01+Lmu7wWBg4cKFPPbYY0RGRhIREcHDDz/Mhx9+iMFgKDOHmJgYoqOjgeI5CsPCwsr8N2PGDGO7o0ePMmLECBo3bkyDBg3o168fW7duNTv+tm3b6NevHw0bNqR9+/Z89dVXN3WvAFauXInBYGDgwIFlxgQHB9O+fXt27drF2bNnjdv379/PU089RWRkJK1bt2bu3Lml3hdL4gwGAzNnzqRjx45ERETQokULxowZQ1JS0k1f261QoULx//qFhYUWt3FxKS42XO81Upply5YRFhbGhg0biI6OpkGDBsbXx6lTp3jppZdo06YN4eHhNG3alGHDhnHkyBGTY+Tl5TFjxgweeugh6tevT8eOHfnwww9N8s/NzeXf//430dHRhIeH065dO9577z3y8vLKla/IX1VGbi7n0y8T6utjti/Ex4cTF83nfyyRX1hIVl4eo9q3Y/iDDxj/xlzNxd6eqX370KV+hNm+yzk52FawMf4cn5wMQNCVImlOfn55L0dERO5xGWcu4RZYyWy7a2AlcpIzyM/OvW77nNQManRrRr3BHbBztDffn3IZZx8PGv6tC4HNSh8Z4FUzkEYju+NV3XSqksL8AoryCrEp5f1ORETKT8O6rSw9PZ3kKx/CruXp6YmtrS0rVqzgpZdeIiIigjFjxnD8+HFGjhyJt7c3wcHB5T7n9OnTmTNnDj179qRPnz5kZmayYsUKpk6diqur63ULeiW8vb2ZNGmS2fYZM2Zw9uxZWrduDcChQ4cYMGAAPj4+PPvss9jb27NmzRqGDh3K1KlTjT34tm3bxjPPPENISAgvvPACycnJvP3229jY2JQ5J+f1/O9//8POzo6ICPMPwVdr1qwZsbGx/Pzzz3Tp0oUjR44QExODh4cHw4cPJz8/n3nz5pkVuCyNmzNnDh988AEDBw4kLCyMhIQEPvvsM/bv38+aNWuwtWD+tmvl5+eX+pqxt7fH3d2yycG3b98OQN26dS2Kz87OZteuXVSpUsXic1zrX//6F4MGDcLNzY2GDRty8eJF+vTpg5ubG4MGDaJixYr89ttvfPnllxw4cIDNmzdjb1/8IDlixAi+++47HnnkEZ588kn27t3L1KlTuXTpEi+//DKFhYU8++yz7N69mz59+lCjRg3279/PnDlz+O2335g9ezY2NjY3yFDkry0lMxMAbxfzyf0ruriQlZtHZm4uro7mc3y5ODgwvV9fbK/zIa1ChQoEeJr3hDx96RKHz52j/lVTnCSkpOBkb8+C7dvZfuw4ufkF+Hm407dJE1rUrHEzlyciIveQwrx8CrPzcfAw74nv4FY8d2Ruaib2zmXPOxk1qgcVrvOs7R1WBZ+61QDISSl9ZJCtvR2u/uafRc79dARDYREewb7XvQ4REbGMipNW1rNnzzL3rVixgtq1azNp0iSqV6/OF198gYND8YTL1atX56233ip3cTI/P9843Pmdd94xbu/duzfNmzdn69atFhUnXVxczOYm/Oijj4iPj+e1116jYcOGALz11lt4e3uzfPlyY8+7QYMGMXjwYN5++23at2+Pg4MDU6ZMwdfXl8WLF+PmVrzYQYsWLRg8ePBNFScvXLiAp6en8X6Vxe/K4gvnzxcPySjp0bdo0SLj4jIdO3akR48eJu0sjVu9ejVt2rThlVdeMW4LCAhg4cKFJCYm3lRxec+ePTRv3txse9OmTY0rq5fIy8szKWSmpaWxZ88epkyZgqurK/37979ufEFBAfHx8cyaNYvk5GTGjh1b7nxLdOnShRdeeMH484cffkhaWhpffPEFNWr8XmxwdXXlww8/5PDhw9SrV49vv/2W7777jtGjRxsXAurfvz/5+fl8/vnnjBgxgm+++Ybt27fz0UcfGQvjAPXr1+e1115j06ZN99zCRyJ3WvaV3okOduaPBg5XPtzlFRSUWpy0sbHB9ia+AMjJz2fWljgAul153wCIT0khJz+frNw8hj/4AFl5eazft58ZmzZTWFSkeShFRP7kCnKK35Ns7c3fk0q2FeVdv1f99QqTluwvS+a5FE5u/Bk7V0f8m9w789aLiNzNVJy0ssmTJ+PjYz6EDoqHHe/bt49Lly4xdOhQk0Jb3759TYZOW8re3p5t27aRf80QuZSUFNzc3MjKyir3MQG2bt3KtGnT6N69u7G4mZKSwo8//khMTAw5OTnk5OQY4zt06MDEiRPZt28fISEhHDhwgCFDhhgLk1DcqzEsLOym5jg0GAwW9Uq0u/Ih3GAwUFRUxNatW2nbtq3Jqtc1atSgVatWbN68GcDiOAB/f3927tzJp59+SpcuXfDx8aFfv37069ev3NdUIiwsrNQi4dWrbpdYu3Yta9euNdteq1Ytxo0bh7+/v0Xx1atXZ9q0aX9oMZwmTZqY/Dx06FB69epFpUq/D9fJyckxDgcteS3GxcVRoUIFBg0aZNL+pZde4m9/+xuurq5s3LgRb29v6tWrZ1Jcbdu2Lba2tsTFxak4KXIDJVM23Klexrn5BUzZsJFTl5LpHtmAuoG//z1td18dDAYDD9X7fQ6wFjVqMOarJXy+Yycta9Yodei4iIj8yVzvLckKo2KyL6Wz/5OvKcwvpF6/ByxeMVxERK5PxUkra9So0XVX6z5z5gxQvIry1RwcHMy2Wcre3p64uDg2bdrEiRMnOHXqFGlpaUD55xMEOHnyJH//+9+pVasWb775pnF7fHw8AAsWLDDr0VciKSnJOHS3tF6E1atXZ+/eveXOyc/Pj/j4eAoKCowFyNKU9Jj08/MjNTWVrKysMvMoKTpaGgfwz3/+k7/97W9MmDCBiRMnUq9ePaKjo+nTpw++vjc3DMTT05MWLVpYFNuqVSuefvppoLjg4ODgQEBAAIGBgTeMP3v2LB999BHp6emMGzeO+++//6byLXF1EbJEfn4+//73vzlw4ACnT58mISHBOI9kUVHxqoqJiYlUqlTJpHAN4Ovra7yHp0+fJjk5udQepYDV5/gUuRc4X/lbnFdQYLYv78r/l8436I1uqczcXCat38Dhs+d4oE5t+l7z5UWHUqaccLCzo3WtWiz9eTcJKSkEl/I3RURE7j2F+QUU5phOjWTrcKV3ZIH5/OiF+cXvU7alzCN5O2WeTWbf/K/Jz8imdq9WeIeV/RlORETKR8XJe0RpRUPHUobWlebqRUMMBgPDhw9ny5YtREVFERkZSd++fWnSpAmDBw8ud14ZGRmMGDECGxsbZs6ciZOTk9l5Bw4cWGavtZo1a3LuXPEKrVf3rCxRUqAqr8aNG7N9+3b27t1Lo0aNyoz76aefsLGxITIy0rjN0jwsiatTpw4bNmxg69atbNmyha1bt/L+++8zf/58Fi9ebDKc+Xbw9fW1uJBZWny7du3o3bs3zzzzDPPnzycqKuqmc7m2l9NPP/3E008/jYuLCy1atKBXr17UrVuX06dPmxS5LVm0p7CwkJCQEF5//fVS95fWq1RETFW68gVAaik96FOysnBxdMDJ/o9/EEzPzmZC7DpOXbxEu/vq8HTrVhb31vR0Lp5nLKeUAqqIiNybLu47yeEl35tsC27XAFtne/LSzd+T8i5nA5Q6H+Xtkn76Agc+/ZqC3Hxq92pF5WtW7xYRkT9Gxcm7XEhICFDcO/Fa8fHxxv1QXPy5dkGWgoICUlJSjL38fvrpJ7Zs2cLw4cMZNWqUSVxqamq5emMaDAbGjBnDsWPHmDt3rlnboKAgAGxtbc0KZEePHiUhIQFnZ2eCgoKwsbHh1KlTZudISEiwOJ+rde3alVmzZjFv3rwyi5Nnz55l/fr1REVFERQUhMFgwM3N7YZ5VKxY0aK4wsJCDh48iJubG+3ataNdu3YAxMbGMnr0aL766qs/NIfjneDp6cnUqVPp168fL774ImvWrDHrwXiz3n//fZycnFi7di3e3t7G7XPmzDGJCwwMZNu2bWRmZuLq+vtCHQcOHGDevHn87W9/o0qVKuzfv59mzZqZFEHz8/P5+uuvzYavi4g5V0dHfN3dS12V++TFi1S/yd7eV8vOyzMWJjtFhPN4C/PezsmZmUxYG0vzGjXoFWX69zsxNRUAv5tcmEtERO4+XjUDCX/qIZNtTt7upJ08R8YZ80UgM5Mu4VTJ/bqL4dxKmWdT2P/pRoryCqnTtw2+EaF35LwiIn8lmrDpLlenTh2Cg4NZtGiRyXyQ69evNw5JLuHj48OJEydMevRt3ryZ3Nxc48+pVz7Y1axp+m3fl19+SXZ2NgXl6I3y3nvvsXnzZp577jnatm1rtt/Pz4/w8HCWL19u7B0JxQWj//u//2PkyJEUFBTg7e1NkyZNWLVqFRev+lC8Z88eDhw4YHE+VwsJCeHJJ5/k66+/Zvbs2Wb7U1NTGTlyJPn5+bz66qtA8bDnDh06sHXrVo4cOWKMTUhIIC4uzvizpXGFhYU8/vjjTJgwweTcDRo0AMx7Et6tIiIiePrpp0lKSmLy5Mm37Lipqal4e3ubFCYvX77M8uXLgd97TLZt25aioiK++uork/YLFy5k3bp1+Pj4EB0dTWpqKgsXLjSJWbRoEaNHjzauTi4i19c0NIT9iYkkpqQat+1LSCApNY0Wt6Cn97zvf+DUxUs8XEZhEsDb1ZWsvDw2HzxI1lVfuF28nMG3hw5TLygQL5c711tGRERuL0cPFyrWDDT55+ztjk+9amRfSCPl6BljbNaFVFKPJeFb/84UCAvzC/ht4RYKc/JVmBQRuY3Uc9LKvvnmm+uuRt29e3fGjRvH0KFD6du3L7169eLixYssWLDAOFdjia5duzJ+/HiGDBlCt27dOHXqFF9++aWxByNAZGQkbm5uTJw4kcTERDw9Pdm5cyexsbE4OjqSmZlpUd5xcXHMmTOHGjVqULt2bVavXm0ypNnHx4eWLVvyyiuvMHjwYHr16kX//v3x8vJi7dq1/PLLL7z44ovGa3/ppZcYOHAgffr0YeDAgWRnZ/PJJ5/c1ErdJUaPHk1aWhrTp09ny5YtdOzYEQ8PD44fP86KFSvIyclh6tSp1KlTx9hm1KhRxMXFMWjQIJ544glsbW1ZsGABrq6uJr1SLYlzcHAgJiaG2bNnM2LECFq3bk1OTg6LFy/G2dmZXr163fS13WnDhw9n3bp1LF68mG7duv2h4d0l2rRpw3/+8x9GjRpFq1atuHDhAkuWLDEWqEtei9HR0bRq1Yp33nmHI0eOEBERwZ49e1ixYgUjRozAy8uL3r17s3z5csaPH8+BAweoX78+hw8fZvHixdSrV49HH330D+cr8lfQrWEDth45wttr19KlfgR5BYWs2buXUF8fWtUq/lLrXHo6h8+eo7Z/ZSqXY8qEhJQUvj9yFBdHB0IqVWLr4SNmMSWrcD/ZsiXTNn7N6ytWEX1fHbLz89i4/1dsK9jwREvLp6oQEZF7l3/j2pzZfpDfFm6hSutwbO3tSNi6HwcPF4Ja/r5gWl5GNilHzuAWUBFXf+/rHLH8zv18lOwL6bhVqURhfiHn9hwz2e/g7kzFmqXP5S4iIpZTcdLKJk6ceN393bt3p2XLlsybN49p06YxdepUAgMDmThxIlOmTDGJHTBgAKmpqSxZsoTx48dTp04dZs6cybx584y9Ln18fPjwww+ZMmUKs2fPxsHBgdDQUKZNm8bevXv57LPPuHjxYpkriJfYt28fBoOBY8eO8fzzz5vtb9q0KS1btiQyMpKFCxcyY8YM5s+fT0FBAaGhobzzzjv07NnTGB8eHs6CBQuYOnUqM2fOxMPDg+eee479+/eze/duS2+nCTs7O9566y0eeughPv/8cz755BPS09Px9/ena9euxMTEmC1qExAQwMKFC5k0aRIfffQRDg4O9O7dG4C5c+eWO27kyJF4eXmxdOlS3n33XWxtbWnUqBGTJ0++7fNN3kpOTk688cYbPPnkk7z66qusWLHCZPX4m/H8889TWFhIbGwsW7Zswc/PjxYtWvDUU0/RpUsXduzYQYcOHahQoQKzZs3igw8+YPXq1axatYrg4GBee+01+vfvDxQXgj/55BM++OADNmzYwKpVq/Dz86N///6MGDEC5yvz1InI9Xk4O/N6t0f4bNt2vvrpZxzt7GhcrRoDm92Pva0tAAeTzjIn7luGPdC2XMXJ364sTJWVm8ecuG9LjSkpTjYJDeHFjh1Ysed/LNz5I/Z2ttQNCKBf06YEVfT6YxcpIiL3hAp2tkQ83ZETsbtI+G4/NjY2eFb3p3qnJiarZGedT+XwV1sJbtfglhcn006eBSAj4RKHv9pqtt8ztLKKkyIit4CN4WaWZ5a7QnR0NEFBQWWuhC0if1zKjPesnYKIiPyF/S0898ZBIiIit8miB/9p7RRuqX5bJln1/H+2+3mr3BuT3omIiIiIiIiIiMifjoZ1yz2hsLCQ5GTz1fpK4+7ujpOT023O6NZITk42LvxyPU5OTrjfRavT3qt5i4iIiIiIiMjdRcVJuSckJSXRrl07i2InTpx4zyyA8thjj5GYmHjDuJ49e/LOO+/cgYwsc6/mLSIiIiIiIiJ3FxUn72GbN2+2dgp3jK+vL/Pnz7cotmbNmrc5m1tn8uTJ5ObeeC4pPz+/O5CN5e7VvEVERERERETk7qLipNwTHB0dadGihbXTuOWioqKsncJNuVfzFhEREREREZG7ixbEEREREREREREREatQcVJERERERERERESsQsVJERERERERERERsQoVJ0VERERERERERMQqVJwUERERERERERERq1BxUkRERERERERERKxCxUkRERERERERERGxChUnRURERERERERExCpUnBQRERERERERERGrUHFSRERERERERERErMLO2gmIiNzN/haea+0URETkL2z2fkdrpyAiIn9lD1o7AfkrUM9JERERERERERERsQoVJ0VERERERERERMQqVJwUERERERERERERq1BxUkRERERERERERKxCxUkRERERERERERGxChUnRURERERERERExCpUnBQRERERERERERGrUHFSRERERERERERErELFSREREREREREREbEKFSdFRERERERERETEKlScFBEREREREREREatQcVJERERERERERESsws7aCZTH2LFjWb58+XVj2rVrx6xZs+5QRuaio6MJCgpiwYIFAMTExJCYmMjmzZvvWA634pwbNmzgyy+/ZP/+/eTk5BAQEECrVq0YPHgwVatWtegYJb+vQ4cO3ZK4mxUWFnbd/SWvmYSEBNq1a2e2397eHm9vb1q2bMmoUaPw9/cHKDPexsYGd3d3qlevzsCBA+nWrdutuZBbbMaMGcycOZNNmzZRpUqVcrdPTU3l3XffJS4uDltbWx5++GH+8Y9/4OTkdBuyFZE7JSf5MsfX7SLt+FkAvOtUIbRTExzcnG9Ju7ST5zi5cTcZiRexc3ag0n3BVGsfib2r6d+OPbNWk5Fwyew8lcKrUXfAg3/kEkVE5B6Qnp3N5zt28r/4ePIKCqkXFEhM82ZU9vAo13GW797D5oMHmTGgv9m+nPx8lvz0M9uPHycjJ5cqFb14rHEUkcHBN3U8ERG5OfdUcbLEyy+/TMWKFUvdFxAQcIezub5hw4aRnZ1t7TQslpeXx0svvURsbCz169dnyJAheHp6cuTIEZYvX87SpUuZPHky7du3t3aq5VK9enWGDRtW6r5rXzONGzemT58+xp8LCgo4evQon3/+Odu3b2fVqlV4XPVQdG28wWAgPj6eRYsWMWbMGGxtbenSpcstviLrMhgMjBw5koMHD/Lss89y8eJF5s+fj8Fg4NVXX7V2eiJyk/Kzctn78XoMhUVUaROOwWAgYet+Ms+m0HB4VyrY2v6hdqnHk9g//2vsnB2o+kB9bGxsSNz2K6nHz9JgWGfsnR2B4r8xWefTqFQ3mEr1qpmcy8nL9fbeBBERsbr8wkLeWbeepNQ0utSPwNnBnrV79/Hm6jW80+tR3C38MvyX+HiW7d6Nl4uL2b6ioiImrVvPkfPn6VivHr7u7nx7+DCT12/g5c6diCjly/vrHU9ERG7ePVmcbN++/U319LKGli1bWjuFcpk0aRKxsbGMGTOGIUOGmOwbNmwYQ4YM4YUXXmDp0qU37JF4N/Hx8aF79+4WxVatWrXU2KpVq/LGG2+waNEihg4desP4Rx99lM6dO/PBBx/86YqTp06dYufOnYwZM4ann34agCNHjrB27VoVJ0XuYYnfHyA3LYuokd1x8fMCwL2KL/vnbeTc7qMENCn9776l7Y6t3olNBRsaPNsZ50rFX/JUqhfM7vdXER+3l+qdmgCQm5JBUV4BleoGUzmyxu29aBERuet8d/gwJy5c5P+6/F4kbFg1mJeWLCF27z76Nm1yw2N88+tvfLptGwWFRaXujzt0mN+SzjL8wQdoXbsWAA/WCeOFRYtZtnuPWXHyRscTEZGbpzknxejEiRP897//pUuXLmaFSYBKlSrx3nvvYWNjw1tvvWWFDK2rc+fOAOzevdui+KCgIJo0acKxY8fIyMi4nandcTk5OQCcOXPGuC03Nxd7e3trpSQit8CFvcfxCvU3FhgBKtYMxNnXgwt7T/yhdjkpGWSdS8UvsoaxMAng4uuF931VObf7qHFb5vlUAJx9PG/NhYmIyD1l+7HjVPb0MCkQBlX0ol5QENuOHbth+7fXxvLx1u+pGxhIiE+lUmO+PXyY4ErexsIkgIOdHYOaNaNRNdNh3ZYcT0REbt6fuji5bt06evToQf369enatStbtmzh6aefJiYmxhgTHR1t8nNZ2w0GAwsXLuSxxx4jMjKSiIgIHn74YT788EMMBkOZOcTExBAdHQ0Uz1EYFhZW5r8ZM2YY2x09epQRI0bQuHFjGjRoQL9+/di6davZ8bdt20a/fv1o2LAh7du356uvvrqpewWwcuVKDAYDAwcOLDMmODiY9u3bs2vXLs6ePWvcvn//fp566ikiIyNp3bo1c+fOLfW+WBJnMBiYOXMmHTt2JCIighYtWjBmzBiSkpJu+tpuhQoViv93KSwstLiNy5UhH9d7jZRm2bJlhIWFcfDgQUaOHElkZCTNmjXj3XffpbCwkOXLl9OxY0caNmxIv379OHjwoEn7AwcO8Pzzz9OiRQvq1atH8+bNefHFF01+Z6VJS0tj/PjxtG7dmvDwcDp16sSnn35qln/t2rWpXr06ixcvZufOncyaNYsff/yR/v3N596ZMWMGERERfP3117Rs2ZLIyEjj69TSPDMyMpgwYQIPPPAADRo04JFHHjF7rVuau4iULj87l5zkDNyCzD90uQVUIuOM+fyP5WmXl54JgGtl82lZnL3dKcjMJTetOCbrXAoALn7FxcnCvPybuCIREblXnbh4kdBK5u8roT6VOJ9+mYzc3Ou2v3j5Mk+1asnYTg/jXMqX5wWFhRw7f556gYHGbTn5xe81LWrW4JEGDcp1PBER+WPuyWHd6enpJCcnl7rP09MTW1tbVqxYwUsvvURERARjxozh+PHjjBw5Em9vb4KvM8FxWaZPn86cOXPo2bMnffr0ITMzkxUrVjB16lRcXV2vW9Ar4e3tzaRJk8y2z5gxg7Nnz9K6dWsADh06xIABA/Dx8eHZZ5/F3t6eNWvWMHToUKZOnWrswbdt2zaeeeYZQkJCeOGFF0hOTubtt9/GxsamzDk5r+d///sfdnZ2REREXDeuWbNmxMbG8vPPP9OlSxeOHDlCTEwMHh4eDB8+nPz8fObNm0deXp5JO0vj5syZwwcffMDAgQMJCwsjISGBzz77jP3797NmzRpsy5jz7Hry8/NLfc3Y29vj7u5u0TG2b98OQN26dS2Kz87OZteuXVSpUsXic1xr6NChREVFMXbsWDZu3Mi8efM4fPgwhw4dYvDgwRgMBmbPns3IkSOJjY3Fzs7O+PqpVq0aQ4cOxdnZmd27d7Ny5UpOnTrFkiVLSj1XVlYWgwYNIikpiQEDBuDv78+OHTuYMGECJ0+e5PXXXzfGVqhQgQkTJhATE8MTTzxBUVERjz/+OH/7299KPXZBQQGvvfYaTz75JHl5eURFRVmcZ15eHgMHDuTIkSP06dOHOnXq8O233/LKK6+QnZ3N448/Xq7cRaR0eWlZADh4mM+j5eDhTGF2PgXZedg5O9xUuwr2xY8chbnmhcb8rOIPmXmXs3H0dCXrfCq2jnYcj93Fhb0nKMorwMnbjWodGuHXoPofu1AREbmr5eTnk5WbR0VX8zmGvZyL32suZWTg5uhY5jEm934Mu+t8Zjh/+TKFRQYqubmyYs//WLdvH+nZOVR0daF348Y8WMd0GpMbHU9ERP6Ye7I42bNnzzL3rVixgtq1azNp0iSqV6/OF198gYND8Qep6tWr89Zbb5W7OJmfn28c7vzOO+8Yt/fu3ZvmzZuzdetWi4qTLi4uZnMTfvTRR8THx/Paa6/RsGFDAN566y28vb1Zvny5sefdoEGDGDx4MG+//Tbt27fHwcGBKVOm4Ovry+LFi3FzcwOgRYsWDB48+KaKkxcuXMDT09N4v8ri5+cHwPnz5wGMPT4XLVpkXFymY8eO9OjRw6SdpXGrV6+mTZs2vPLKK8ZtAQEBLFy4kMTExJsqLu/Zs4fmzZubbW/atKlxZfUSeXl5JoXMtLQ09uzZw5QpU3B1dTXrHXhtfEFBAfHx8cyaNYvk5GTGjh1b7nxLNGzYkH//+99A8bDy5s2bs23bNlatWkWtWsVDUDIzM5kzZw4JCQmEhITwxRdfYGNjw2effYaXlxcAffv2JT8/n7Vr15KammrcfrWPP/6YEydOmMwnOmDAAKZNm8bcuXPp27cvderUAYqHdW/atAmDwUBRURHh4eG8/PLL2NjYlHodRUVFPPnkkyZzdb7++usW5blkyRIOHjzIlClTeOSRR4xxgwYN4sMPP2TQoEHlyl1ESlfSO9HW3vzRoILdlcJifoFZcdLSdi6VvbB1sufigVNUaRth/HtRmF9AypFEAIryCwDIPJdKYW4BBTl5hPVuTUFOHme2/cqhxd9hKDJoHkoRkT+x7CsdFxztzN9XHK5sK+nlWJYbFRKzrpzj619/I7+ggMeionB1dOSbX3/lw2+/AzApUKowKSJye92TxcnJkyfj4+NT6r7g4GD27dvHpUuXGDp0qEmhrW/fviZDpy1lb2/Ptm3byL/mTTAlJQU3NzeysrLKfUyArVu3Mm3aNLp3724sbqakpPDjjz8SExNDTk6OcW4/gA4dOjBx4kT27dtHSEgIBw4cYMiQIcbCJBT3agwLC7upOQ4NBoNFvRLtrjwUlBSmtm7dStu2bU1Wva5RowatWrVi8+bNABbHAfj7+7Nz504+/fRTunTpgo+PD/369aNfv37lvqYSYWFhpRYJr151u8TatWtZu3at2fZatWoxbtw4/P39LYqvXr0606ZN+0OL4Vy9Krq7uzve3t64uroaC5OAcXGoCxcuEBISwrhx4xg1apRJATIjIwPHK98uZ2VllVqc3LhxI7Vr18bX19ek2Nq+fXvmzp3Lli1bqFOnDjk5OTzzzDPs2rWLp556ihMnTrB582Zmz57NiBEj+O6778jNzeWBBx4wmYOySRPTicstzTMuLg5vb2+6du1qjLOxsWHSpEkUFBRgY2Njce4ich0lUyCU/h3DH25XwdaWoJb1OL3pfxxa/B1VH4jAUGTg1Dd7KMorLkra2BZPnxHQpDYGg4HAZvcZ2/vWD2X3eys4sW4Xfg1Csanwp56ZRkTkL6+sL71vtM8S+VemabqUkcHk3o/h71k8jcj91UMZ89USFv+4iwfCav/h84iIiGXuyeJko0aNrrtad8kiHVWrVjXZ7uDgYLbNUvb29sTFxbFp0yZOnDjBqVOnSEtLA8o/nyDAyZMn+fvf/06tWrV48803jdvj4+MBWLBggVmPvhJJSUnGok9pvQirV6/O3r17y52Tn58f8fHxFBQUGAuQpSnpMenn50dqaipZWVll5lFSdLQ0DuCf//wnf/vb35gwYQITJ06kXr16REdH06dPH3x9fct9XVA83L9FixYWxbZq1cq4ArWNjQ0ODg4EBAQQeNWcNGXFnz17lo8++oj09HTGjRvH/ffff1P5lri2CG9nZ0ela+bfKSkoFxUVGXNOSUlh7ty5HDp0iNOnT3PmzBnj67Qk7lqnT58mJyen1B6mgHHOz/nz5/Pjjz8yevRohg0bRlpaGj179uSDDz6gadOmTJ8+ncTERLZt22bS/tq8Lc2zpLfstQ+HQUFB5c5dRMpm61j8vlKUbz6vblFBcfHQzsl8nq3ytAuObmDsBVmyUI73fVWo0iackxt2Y+dc/OVEwP3mXybY2tvhF1mD05t+Iet8Kq7+3uW+RhERubvkFRQYezGWcLzyOSfvynvItfEALvbXH+l1I052xee4LyDAWJgEsK1QgZY1a7Dkp90kpqRSxbv8o9FERKT87snipKVKKxo6XmdukqtdveiJwWBg+PDhbNmyhaioKCIjI+nbty9NmjRh8ODB5c4rIyODESNGYGNjw8yZM3FycjI778CBA016zV2tZs2anDt3DsCkZ2WJsopPN9K4cWO2b9/O3r17adSoUZlxP/30EzY2NkRGRhq3WZqHJXF16tRhw4YNbN26lS1btrB161bef/995s+fz+LFi6lR4/YO5/P19bW4kFlafLt27ejduzfPPPMM8+fPJyoq6qZzKa0n642+wY2NjeUf//gHfn5+NGvWjDZt2hAeHs7333/P3Llzy2xXWFhIVFQUzz33XKn7S4bzb9q0CRcXF2NB1tPTk+nTpzNgwACee+45UlNT6d27t1nuFa7p5WRpnoWFhTe8ZktzF5GyOXoW98LPu5xtti8vPRtbZ3tsHcyLk+VpZ2NjQ40uTanaNoLsi+k4erriVNGNkxt3QwUbHL3M5xe7mr2rMwCFeeYfWEVE5N6z/dhx5sR9a7KtV1QjXBwdSClldFrJNi9X83mOy8P7SntPZ2ezfR5Oxduy8/PM9omIyO3xpyxOhoSEAMW9E68VHx9v3A/FBZNrF2QpKCggJSXF2Mvvp59+YsuWLQwfPpxRo0aZxKWmpparN6bBYGDMmDEcO3aMuXPnmrUt6Q1ma2trViA7evQoCQkJODs7ExQUhI2NDadOnTI7R0JCgsX5XK1r167MmjWLefPmlVmcPHv2LOvXrycqKoqgoCAMBgNubm43zKNixYoWxRUWFnLw4EHc3Nxo164d7dq1A4oLWaNHj+arr776Q3M43gmenp5MnTqVfv368eKLL7JmzRqTofe329SpU6lWrRpLly41zlkKxXN5Xk9QUBCZmZlmr7u0tDS2b99OtWrVgN+L/lcXH+vXr8/YsWMZP348AE888cQtyzMwMJBDhw6Ztf/222+JjY1lzJgxFucuImWzc3bA0dut1FW5M5Iu4R5U+nQq5Wl3/pfjOLg741U9AAe33z8Qpp08i1tQJWzt7chNy2Tf/I341Q8lOLqhyfGyLxaPWHCqeOf+poqIyO1Tv0oQ/9elk8k2Pw8PDp49y8mLF83iT166RGVPj+suhmMJTxcXvF1diE9JMdt3/vJlAHzu4PO7iMhf3Z9ywqY6deoQHBzMokWLTOaDXL9+vXFIcgkfHx9OnDhh0qNv8+bN5ObmGn9OTU0FinssXu3LL78kOzubglKGHJTlvffeY/PmzTz33HO0bdvWbL+fnx/h4eEsX77c2DsSihfl+b//+z9GjhxJQUEB3t7eNGnShFWrVnHxqjfuPXv2cODAAYvzuVpISAhPPvkkX3/9NbNnzzbbn5qaysiRI8nPz+fVV18FinvBdOjQga1bt3LkyBFjbEJCAnFxccafLY0rLCzk8ccfZ8KECSbnbtCgAWDe++5uFRERwdNPP01SUhKTJ0++o+dOTU0lMDDQpOCXlJTExo0bAdNewVeLjo7m4MGDfPut6bfXs2fPZtSoUcbf2/33309WVhYrV640ibt66HRZUxLcTJ5t2rTh4sWLfP311ybtP/30U+Li4qhYsaLFuYvI9fnUq0bqsTNkXUg1bks5eobsC+n41g/9w+0SfzjAsdU7KSr8vcf8pYPxpJ88T+CVodyOnq4U5uSRtOswBTm/f3mYk5rBuZ+P4FnDHwf3P9ZjRkRE7g4VXV2JqFLF5F9lDw+ahoZwJjWNfVd1YkhMSeVAYiItbtEoqhY1a3Lq4iX2xv9+jszcXL47fJialf1KXS1cRERuj3uy5+Q333xz3dWou3fvzrhx4xg6dCh9+/alV69eXLx4kQULFpgs0AHFvQXHjx/PkCFD6NatG6dOneLLL780mc8uMjISNzc3Jk6cSGJiIp6enuzcuZPY2FgcHR3JzMy0KO+4uDjmzJlDjRo1qF27NqtXrzYZ0uzj40PLli155ZVXGDx4ML169aJ///54eXmxdu1afvnlF1588UXjtb/00ksMHDiQPn36MHDgQLKzs/nkk09uaqXuEqNHjyYtLY3p06ezZcsWOnbsiIeHB8ePH2fFihXk5OQwdepUk8VFRo0aRVxcHIMGDeKJJ57A1taWBQsW4OrqatIr1ZI4BwcHYmJijIurtG7dmpycHBYvXoyzszO9evW66Wu704YPH866detYvHgx3bp1+0PDu8ujTZs2xMbG8tprrxEREUFCQoKxkA6U+Xp99tln2bhxIyNGjKBfv37UqlWLn3/+mZUrV9KmTRvatGkDwLBhw1i3bh2vvvoqR44coUqVKqxfv56dO3fSu3dvzpw5w6JFi7C3tzdZcf1m8+zXrx9Lly5l9OjRDBw4kNDQUOLi4vjhhx+YMGECtra2FucuItdXpXU45/ccY9/HGwhqFU5RQQEJW/fjFlQJv4bFHwazky+Tfuo8HtX8cPZ2t7gdQNU2Efz2RRy/LviGSnWrkZOaQeL3B6hYOxC/htWNcTW6NeO3/27hl7mx+DeuTWFePme2/4ZNhQrUfKTZnb0pIiJyxz1Ypw4b9h9g+jeb6Fq/Po52dqzZu5eKrq50igg3xqVlZbE3IZFqlbwJvmZ+8xvpEdmQn06eZNrXX9MpPBwPZ2c2/fYb2Xn5xDTXe42IyJ10TxYnJ06ceN393bt3p2XLlsybN49p06YxdepUAgMDmThxIlOmTDGJHTBgAKmpqSxZsoTx48dTp04dZs6cybx584y9Ln18fPjwww+ZMmUKs2fPxsHBgdDQUKZNm8bevXv57LPPuHjxYpkriJfYt28fBoOBY8eO8fzzz5vtb9q0KS1btiQyMpKFCxcyY8YM5s+fT0FBAaGhobzzzjv07NnTGB8eHs6CBQuYOnUqM2fOxMPDg+eee479+/eze/duS2+nCTs7O9566y0eeughPv/8cz755BPS09Px9/ena9euxMTEmC1qExAQwMKFC5k0aRIfffQRDg4O9O7dG8Bk7kBL40aOHImXlxdLly7l3XffxdbWlkaNGjF58uTbPt/kreTk5MQbb7zBk08+yauvvsqKFStMVo+/XcaNG4eLiwubN29m5cqV+Pv706NHDzp06ED//v3ZsWMHdevWNWvn5eXF4sWLef/991m/fj2LFy8mMDCQ4cOHM3ToUGOvVQ8PDxYuXMjUqVNZunQp2dnZ1KxZk3fffZcePXqQlZXFqFGjrrtoVXnydHJyYsGCBUyfPp21a9dy+fJlatSowfTp0+nUqVO5cheR63Nwc6b+M504vvZHTn2zB1sHOyrdF0zow42pYFc8lUP6yXMcXvI9tR9rZSxOWtIOwCc8hLC+bUj4bh/HY3/E3s2ZKq3Dqdq2vsnq2z51q1E3JprTcXs5seEnKtjb4hUaQEjHRrj4et3ReyIiIneeva0tr3TtwoIdO1n9yy9UsLGhbmAgg5o1w/2q+foTU1OZtSWOXlGNyl2cdHV05I3u3Vj4449s+u0geYUFVPfx4Zk2raldufKtviQREbkOG8PNLDV9D4uOjiYoKMiiYacicnMMBsMNF7G5V/TbMsnaKYiIyF/Y7P1/bG49ERGRP6Li86NuHHQPsfbnu0UP/tOq579bqTuRiNxyf5bCpIiIiIiIiIjcXvfksG6xTGFhIcnJyRbFuru743TVEIm7WXJycpmLulzNyckJd3f3O5CRZe7VvEVEREREREREbhcVJ//EkpKSaNeunUWxEydO5NFHH73NGd0ajz32GImJiTeM69mzJ++8884dyMgy92reIiIiIiIiIiK3y1+uOLl582Zrp3DH+Pr6Mn/+fItia9aseZuzuXUmT55Mbm7uDeP8/PzuQDaWu1fzFhERERERERG5Xf5yxcm/EkdHR1q0aGHtNG65qKgoa6dwU+7VvEVEREREREREbhctiCMiIiIiIiIiIiJWoeKkiIiIiIiIiIiIWIWKkyIiIiIiIiIiImIVKk6KiIiIiIiIiIiIVag4KSIiIiIiIiIiIlah4qSIiIiIiIiIiIhYhYqTIiIiIiIiIiIiYhUqToqIiIiIiIiIiIhVqDgpIiIiIiIiIiIiVqHipIiIiIiIiIiIiFiFipMiIiIiIiIiIiJiFSpOioiIiIiIiIiIiFWoOCkiIiIiIiIiIiJWoeKkiIiIiIiIiIiIWIWKkyIiIiIiIiIiImIVKk6KiIiIiIiIiIiIVag4KSIiIiIiIiIiIlah4qSIiIiIiIiIiIhYhYqTIiIiIiIiIiIiYhUqToqIiIiIiIiIiIhVqDgpIiIiIiIiIiIiVqHipIiIiIiIiIiIiFiFnbUTEOsZO3Ysy5cvN9lmb29PpUqVaNq0KUOHDqVWrVrGfTExMSQmJrJ58+Y7neotlZeXR0pKCpUrV75t54iOjga4p+9VUVERZ86coUqVKtZOxcyyZct4+eWX+eyzz7j//vutnY7In0pO8mWOr9tF2vGzAHjXqUJopyY4uDlft13ayXOc3LibjMSL2Dk7UOm+YKq1j8Te1emm4vIysjm5cTfJB+Mpyi/ALbASIR0b4xHse2svWERE7irn0y/z3x07+PXMGQAig4OJad4MD+frvw8dTDrL4l27OHbhAm6OjjSuVo3HGjfGw9n0/eX4hQss/HEXh8+eo4KNDfcF+DOoeTMCvbxM4v61bDnHL1w0O0/T0BBGP9Thj12kiIiYUHFSePnll6lYsSIA2dnZnD59mqVLl7Jhwwb+85//GIs/w4YNIzs725qp/mGJiYk89dRTPPvsszz66KPWTueulZGRwRNPPEHbtm15/vnnrZ2OiNwh+Vm57P14PYbCIqq0CcdgMJCwdT+ZZ1NoOLwrFWxtS22XejyJ/fO/xs7ZgaoP1MfGxobEbb+SevwsDYZ1xt7ZsVxxBbn57P3PevIuZxHUsi52To6c2fEb+z5eT8O/dcXVv+IduyciInLnXM7JYfyaNRQWFfFIgwYUGQys2buX+ORk3urZA7sy3od+PXOGibHrcHFwoEdkQyrYVGDdvn0cOHOGN3p0x82x+P3lTGoqb65eg6OdHY82igQgdt8+xq1czbuPPUpFV1cADAYDiampNA6pRtPQUJNz+bi73cY7ICLy16TipNC+fXuz3nExMTH06tWLF154gW+++QZXV1datmxppQxvnYSEBE6ePGntNO56qamp7Nu3j7Zt21o7FRG5gxK/P0BuWhZRI7vj4ucFgHsVX/bP28i53UcJaBJWartjq3diU8GGBs92xrmSBwCV6gWz+/1VxMftpXqnJuWKS/h2H9kX04gY8jBeof4A+NYPYdeUpSRs3UdY7za38zaIiIiVxO7dR3JGJu/27kWVK50navr5MmHtOr49fJh2991XartPftiGjY0Nb3Tvhr+nJwBNQkIYu3QpK3bvYVDzZgCs27ef3PwCxnV7hBAfHwDCg4J4ZfkK1u7dZ4y7cDmD3PwCGoeE0Lp2rVLPKSIit47mnJRSBQQE8NJLL5GcnMzSpUutnY6IiNwBF/YexyvU31iYBKhYMxBnXw8u7D1RapuclAyyzqXiF1nDWHAEcPH1wvu+qpzbfbRccQaDgXN7juIdVsVYmARwcHchtFMTPEJu35QcIiJiXduOHaNuYICxMAkQUaUKAV6ebD92vNQ2Fy5fJj45hTa1ahkLkwBBFb1oFBzMd4ePGLedS0/H3cnJWJgEqOHni5uTI/EpKcZtCVf+O9Dr9+OJiMjto+KklOnhhx/GwcGBrVu3AsW9KUvmUoTiuRvffvtt2rVrR3h4OG3btuWNN94gLS3NGDN27Fg6dOjAnj17ePTRR6lfvz4PP/wwCxcuNDvf9u3bGTJkCPfffz/16tWjdevWvPbaa6Snp5sc7+GHH+bzzz+nSZMmNGnShO+++86i9suWLePxxx8Hioeyh4X93gMoLS2N8ePH07p1a8LDw+nUqROffvopBoPhltzLZcuWERYWxsGDBxk5ciSRkZE0a9aMd999l8LCQpYvX07Hjh1p2LAh/fr14+DBg8a2M2bMoG7duhw/fpyYmBgaNGhAdHQ0s2bNorCw0OQ8Bw4c4Pnnn6dFixbUq1eP5s2b8+KLL3L27FmTuIyMDCZMmMADDzxAgwYNeOSRR/jqq68A2LlzJ+3atQNg5syZhIWFkZCQYPG17ty5k7CwMLZt28a//vUvmjRpQlRUFC+//DJZWVl8++23dO/enQYNGtC9e3e2b99u0v7UqVO89NJLtGnThvDwcJo2bcqwYcM4cuRIGWcslpuby7///W+io6MJDw+nXbt2vPfee+Tl5Vmcu8hfWX52LjnJGbgFVTLb5xZQiYwzl0ptl5eeCYBrZfOh1s7e7hRk5pKblmlxXG5KBnlpWXjVDASKi5WFefkABDarU2bvTRERubdl5OZyPv0yob4+ZvtCfHw4cdF8/keA5Mzi95eq3t5m+yp7enA5J4dLGRkABHh6kpGbQ/pVU1VdzskhKzcPr6vmtIxPTgYg6EqRNCc//yavSkRELKFh3VImR0dHgoODTQplV3vzzTdZs2YNjz/+OFWrVuXIkSN8/vnnnDp1innz5hnjUlNTGTJkCG3btuXRRx9l48aNjBs3jvT0dJ599lkAvv/+e5555hkaNWrEyJEjsbGx4YcffmDx4sWkpaXx3nvvGY+XlJTE7Nmzee655zh//jwNGza0qH2TJk0YNmwYc+bMoW/fvkRFRQGQlZXFoEGDSEpKYsCAAfj7+7Njxw4mTJjAyZMnef3112/ZPR06dChRUVGMHTuWjRs3Mm/ePA4fPsyhQ4cYPHgwBoOB2bNnM3LkSGJjY7GzK/5f1GAw8OSTT1KrVi3GjBnDzp07ee+99zh79ixvvvkmAIcOHWLAgAFUq1aNoUOH4uzszO7du1m5ciWnTp1iyZIlQHFReeDAgRw5coQ+ffpQp04dvv32W1555RWys7Pp3LkzL7/8MhMnTqRDhw506NAB71Ie9m5k7Nix1KxZkxdffJEff/yRZcuWcfbsWX799VdiYmJwd3fnww8/ZNSoUXzzzTd4eHhw8eJF+vTpg5ubG4MGDaJixYr89ttvfPnllxw4cIDNmzdjb29vdq7CwkKeffZZdu/eTZ8+fahRowb79+9nzpw5/Pbbb8yePRsbG5s/8JsT+fPLS8sCwMHDxWyfg4czhdn5FGTnYefsYLKvgn3x36nCXPMPbvlZucXHvpxtcVxBdvF/27s6cXzdLs7uOkxhTj5Oldyp3rkple6rerOXKCIid7GUK0VGbxdXs30VXVzIys0jMzcX1yvzR5ZwvPK8nF1KAfFyTg4AqVnZVHJz45EGDfj51ClmbNpMzJUh3P/dsRNb2wp0igg3tktIScHJ3p4F27ez/dhxcvML8PNwp2+TJrSoWePWXLCIiBipOCnX5eHhwenTp0vdt3r1anr16sXf//534zYXFxe2bt1KZmYmrlcmlE5PT+fxxx/nX//6FwD9+/dn8ODBzJo1i379+uHp6cknn3xCQEAA8+fPx8Gh+IPvgAED6Nu3r7HnZomcnBwmTpxI586djdssaV+1alVatGjBnDlzaNiwId27dwfg448/5sSJEyxdutTYm3LAgAFMmzaNuXPn0rdvX+rUqfOH7yVAw4YN+fe//w1A586dad68Odu2bWPVqlXGldEzMzOZM2cOCQkJhISEAMUrZ4eHhzNz5kxsbGwYNGgQ//jHP/jyyy8ZPHgwNWrU4IsvvsDGxobPPvsMryurDfbt25f8/HzWrl1LamoqXl5eLFmyhIMHDzJlyhQeeeQRY9ygQYP48MMPGTRoEO3bt2fixImEhYUZ71N5+fn58dFHH1GhQgX69OnDjz/+yLZt2/jPf/5DmzbF88W5uLjwyiuvsG/fPlq2bMmyZctIS0vjiy++oEaN3x/8XF1d+fDDDzl8+DD16tUzO9fKlSvZvn07H330Ea1btzZur1+/Pq+99hqbNm2iffv2N3UdIn8VJb0Tbe3NHw0qXPngV5hfYFacdKnsha2TPRcPnKJK2wjjFwGF+QWkHEkEoCi/APdgX4viCnKKezuf+mYPNrYVqNH1frCxIWHrfn797ybCn3yIild6VYqIyJ9HSXHRwc78fcjhykI4eQUFZsXJKhUr4uxgz48nTtC9YQPj+0teQQF7E4rfX/IKC4DixWx6REbyyQ8/8NKSZQBUsLHhhQ7tTYZ6x6ekkJOfT1ZuHsMffICsvDzW79vPjE2bKSwq0jyUIiK3mIZ1y3UVFBSU2ePM39+f2NhYli1bZhw6/cILL7B06VJjYbJESQ9JAFtbWx5//HFycnLYtm0bAHPnzmXp0qXGwiJASkoKbm5uZGVlmZ27cePGJj+Xt/3VNm7cSO3atfH19SU5Odn4r6SYtWXLluu2L4+rC2Tu7u54e3sTEhJiLEwCxsWJLly4YNJ26NChJr+LJ598EoPBYMxv3LhxbN682ViYhOLh245XHuBK7kNcXBze3t507drVGGdjY8OkSZP4/PPPb1kPw3bt2lGhQvGfmAoVKlC1alWcnJyMhcnSrnXo0KH88MMPJoXJnJwc43HK+l1u3LgRb29v6tWrZ/I7bNu2Lba2tsTFxd2SaxL5UyuZxqKcfwIq2NoS1LIeGYmXOLT4OzLPJpNx5hIHF8ZRlFf8YdDGtoLFcUUFRQAU5OTR4NnOVG5Uk8qRNWjwTCfsnB05ufHnW3bJIiJy9yiZTqm8z6J2trZ0qR/BiQsXmbF5C6cvXeLkxYtM//obcq8UPG2vPEt+uesnPt76PbUrV+a56AcZ/uAD1PDz5f1Nm/j51CnjMdvdV4cnW7Vg9EMdaBoaygNhYbzZozt+Hu58vmMnRUVFt+aiRUQEUM9JuYHU1NQyh/SOGzeOF154gZdffplXX32Vhg0b0qFDB3r16oW7u7sxzsvLCx8f07ljqlWrBkBiYvG3mba2tsTHx/Pee+9x9OhRTp8+zblz58rMq1Il0znRytv+aqdPnyYnJ4fmzZuXuj8pKcmi41ji2vtgZ2dX6rUAZg89VxfswPwe2tjYkJKSwty5czl06BCnT5/mzJkzxge9kuMlJiYSHBxs9uAXFBT0Ry7NTGnXeu1rqaToePW15ufn8+9//5sDBw5w+vRpEhISjHNrlvUgePr0aZKTk+/I71Dkz8rWsXjKhKL8QrN9RQXFxUM7J/NpFQCCoxtQkJPHmW2/GhfO8b6vClXahHNyw27snB0tjrO1L/4SwqdeNeydf+8dY+fsgHedKpzfc4zCvHxsHUrPRURE7k3OV6buybvynnO1vCvPgs4ODmb7AB5t1IjM3DzW79/P9qPHAGhULZhHGjRg0Y+7cHN0JDM3lzW/7KW6rw+vdO1ifA5tXqM6ryxfwX++3Ur9gVWwt7WlQ926ZudwsLOjda1aLP15NwkpKQRXMp+jWUREbo6Kk1KmjIwM4uPjeeCBB0rd37x5c7Zs2WL898MPPzBx4kQ++eQTli1bZixElTZHYEmRqaQQ9/HHHzNp0iRCQ0Np3LgxDz30EA0aNGDBggWsXr3arH1JuxLlbX+1wsJCoqKieO6550rd7+fnd9325XFt3mD5t8PX3sdr72FsbCz/+Mc/8PPzo1mzZsYFZb7//nvmzp1rbFdYWHhH5l+8mWv96aefePrpp3FxcaFFixb06tWLunXrcvr0aePcmqUpLCwkJCSkzPlBPTw8St0uIr9z9HQDiud9vFZeeja2zvZlFgRtbGyo0aUpVdtGkH0xHUdPV5wqunFy426oYIOjl6vFcQXZxcO67V2dzM7j4OYMhuJ5K1WcFBH5c6nkVvw+lFrKSJmUrCxcHB1wKuVzBRS/vzzeojndGzYgKS2dSm6u+Lq7s/jHXVSwscHHzY345BTyCwtpUbOGsTAJxT0vW9aqyRc7fuRMairVrlN09LyyaE5OKQVUERG5eSpOSpnWr1+PwWAwrtx8tby8PH777Tf8/f3p0qULXbp0oaioiPnz5zNp0iTWrl1LTEwMABcvXjSZgxLg5MmTQHHvv9zcXGbMmMH999/PvHnzjIvAACYL4ZTlj7YPCgoiMzOTFi1amGxPS0tj+/btxh6K1hYfH0/NmjWNP199DwGmTp1KtWrVWLp0KS4uvy9ocW1xNjAwkEOHDpkd/9tvvyU2NpYxY8bchuwt8/777+Pk5MTatWtNelnOmTPnuu2qVKnC/v37adasmcnDZn5+Pl9//TX+/v63LWeRPws7Zwccvd1KXZU7I+kS7kHmq6eWOP/LcRzcnfGqHlBcQLwi7eRZ3IIqGeextCTO1d8LG7sKZJ1PNTtPTkoGFextSy1ciojIvc3V0RFfd/dSV+U+efEi1X19y2y77egxvFycqRsYiOdVz8G/JSUR6uuDg50d9rZXRuyUTGNylaKi4m0Gg4HkzEwmrI2leY0a9IpqZBKXmJoKgN9Vo8REROSP05yTUqrz58/z/vvvU7lyZeOiKVdLSUmhb9++Jj3yKlSoQEREhPG/SxgMBj7//HPjzwUFBXz66ae4u7vTvHlzcnJyyM7OJiQkxKSw+Ntvv/Hjjz8a25SlPO1LGzIdHR3NwYMH+fbbb02OO3v2bEaNGsWRI0fKPPedtGDBApOf58+fj52dHdHR0UDxEPzAwECTwmRSUhIbN24EMA6NbtOmDRcvXuTrr782Od6nn35KXFwcFStWLHNo+e1WMo3A1YXJy5cvs3z5cuD3a7hWdHQ0qampLFy40GT7okWLGD16NNu3b799SYv8ifjUq0bqsTNkXUg1bks5eobsC+n41g8ts13iDwc4tnonRYW//824dDCe9JPnCby/TrnibB3sqXRfMMkHE8g8l2KMy0m+zKXfTuN9X1VsKujxRUTkz6hpaAj7ExNJTEk1btuXkEBSahotapS9SvbavXuZ//02Cq96dt196jSHzp7joXrFQ7SrVKxIRVcXvj102GToeF5BAVuPHMHdyYkqFSvi7epKVl4emw8eJCsvzxh38XIG3x46TL2gQLyuet4WEZE/Tj0nhW+++YaKFSsCxb0Qjx8/zooVK8jNzeU///kPTk7mPVRKipZffPEF2dnZREZGkpqayn//+198fHzo1KmTSfysWbNITEykVq1arFu3jj179vD222/j7OyMs7MzDRo0YNmyZbi5uREaGsqRI0f46quvjEXOzMxMPD09S83f09PT4vYl17lq1SoMBgM9e/bk2WefZePGjYwYMYJ+/fpRq1Ytfv75Z1auXEmbNm1MFnCxpuXLl5ORkUGjRo3YunUrW7ZsYcSIEca5Itu0aUNsbCyvvfYaERERJCQk8OWXX5KdXTxEMzMzE4B+/fqxdOlSRo8ezcCBAwkNDSUuLo4ffviBCRMmYGtri5eXFxUqVGDTpk0EBgby0EMPlXn/b6U2bdrwn//8h1GjRtGqVSsuXLjAkiVLuHjlG/SSa7hW7969Wb58OePHj+fAgQPUr1+fw4cPs3jxYurVq8ejjz5623MX+TOo0jqc83uOse/jDQS1CqeooICErftxC6qEX8PiD4XZyZdJP3Uej2p+OHsX9xyp2iaC376I49cF31CpbjVyUjNI/P4AFWsH4tewuvH4lsaFPtyYtBNn2ffxBgJb3EeFCrYkbv+VCva2hDwUdWdvioiI3DHdGjZg65EjvL12LV3qR5BXUMiavXsJ9fWhVa3iEUTn0tM5fPYctf0rU/nK1D3dGjZk+tffMGn9BpqEhHAx4zKxe/dTv2oVWl0ZeVShQgWeaNmC6V9/w6srVvJAWBhFhiLiDh7mTGoqwx98ALsrX9A/2bIl0zZ+zesrVhF9Xx2y8/PYuP9XbCvY8ETLFqXmLiIiN0/FSWHixInG/7a3t6dy5cpER0fzzDPPEBpadk+Z8ePHU7VqVdauXcvatWtxdnamefPmjB492mzhk48//phx48axfPlyatasycyZM+nQoYNx/3vvvcfEiRNZunQpeXl5BAUFMXToUGrUqMHzzz/Pjh076NixY5m5WNq+Ro0axMTEsGzZMvbt28f9999PcHAwixcv5v3332f9+vUsXryYwMBAhg8fztChQ016gVrTzJkz+eCDD9i4cSNVq1Zl/Pjx9OnTx7h/3LhxuLi4sHnzZlauXIm/vz89evSgQ4cO9O/fnx07dlC3bl2cnJxYsGAB06dPZ+3atVy+fJkaNWowffp0Y1HZ2dmZ0aNH8/HHH/PWW28RHBzM/ffff9uv8fnnn6ewsJDY2Fi2bNmCn58fLVq04KmnnqJLly7s2LHD5HVTwsHBgU8++YQPPviADRs2sGrVKvz8/Ojfvz8jRozA2dm5lLOJyLUc3Jyp/0wnjq/9kVPf7MHWwY5K9wUT+nBjKtgVf2BLP3mOw0u+p/ZjrYzFSZ/wEML6tiHhu30cj/0RezdnqrQOp2rb+ia9HC2Nc6roRoNhXTi5/icStu4HA3iGVCb04cbGc4qIyJ+Ph7Mzr3d7hM+2beern37G0c6OxtWqMbDZ/dhfKRweTDrLnLhvGfZAW2Nx8v7qoTzfLppV//sfC7bvwNPZma4N6tO9YUOTZ/mmoaH8q0sXlv78M4t+3AVAqE8l/vnwwzQMrmqMaxIawosdO7Biz/9YuPNH7O1sqRsQQL+mTQmq6HXnboiIyF+EjcFQyqQbIrfI2LFjWb58ealzHIplZsyYwcyZM9m0aRNVqlSxdjp/Of22TLJ2CiIi8hc2e7/jjYNERERuk4rPj7J2CreUtT/fLXrwn1Y9/93q7ugSJiIiIiIiIiIiIn85GtYtYoHk5OQyF2O5mpOTE+5/wtX7UlNTyc/Pv2Gcvb09Xl5etz8hEREREREREflTUHFSxAKPPfYYiYmJN4zr2bMn77zzzh3I6M56/vnnjSufX0/Tpk3NVhUXERERERERESmL5pwUscDPP/9Mbm7uDeP8/PyoeWVFwD+T/fv3k56efsM4Dw8PwsPD70BGd4615yQREZG/Ns05KSIi1qQ5J28tzTlZOvWcFLFAVFSUtVOwqj9bwVFERERERERE7g5aEEdERERERERERESsQsVJERERERERERERsQoVJ0VERERERERERMQqVJwUERERERERERERq1BxUkRERERERERERKxCxUkRERERERERERGxChUnRURERERERERExCpUnBQRERERERERERGrUHFSRERERERERERErELFSREREREREREREbEKFSdFRERERERERETEKlScFBEREREREREREatQcVJERERERERERESsQsVJERERERERERERsQoVJ0VERERERERERMQqVJwUERERERERERERq1BxUkRERERERERERKxCxUkRERERERERERGxChUnRURERERERERExCpUnBQRERERERERERGrUHFSRERERERERERErELFSREREREREREREbEKFSdFRERERERERETEKuysnYDcHcaOHcvy5ctNttnb21OpUiWaNm3K0KFDqVWrlnFfTEwMiYmJbN68+U6nekvl5eWRkpJC5cqVb9s5oqOjAe7pe1VUVMSZM2eoUqWKtVMRkTvoyPJtZF9Mo/4znW4Ym5N8mePrdpF2/CwA3nWqENqpCQ5uzjd1/D2zVpORcMlse6XwatQd8GA5rkJERO4l59Mv898dO/j1zBkAIoODiWneDA/nst9PAA4mnWXxrl0cu3ABN0dHGlerxmONG+Ph7GQSdyDxDF/+9BOnLl3CxcGB+6tXp2+TxjjZ25vE/WvZco5fuGh2nqahIYx+qMMfvEoREbmaipNi4uWXX6ZixYoAZGdnc/r0aZYuXcqGDRv4z3/+w/333w/AsGHDyM7Otmaqf1hiYiJPPfUUzz77LI8++qi107lrZWRk8MQTT9C2bVuef/55a6cjInfI2Z8Oc3bXYTxDb/zlTX5WLns/Xo+hsIgqbcIxGAwkbN1P5tkUGg7vSgVb23Id32AwkHU+jUp1g6lUr5rJPicv15u/KBERuatdzslh/Jo1FBYV8UiDBhQZDKzZu5f45GTe6tkDu1LeTwB+PXOGibHrcHFwoEdkQyrYVGDdvn0cOHOGN3p0x83RESguTL69di2hPj4MuL8plzIyWbd/P8cvXGBct0ewsbEBit+HElNTaRxSjaahoSbn8nF3u703QUTkL0jFSTHRvn17s95xMTEx9OrVixdeeIFvvvkGV1dXWrZsaaUMb52EhAROnjxp7TTueqmpqezbt4+2bdtaOxURuQMMRUXEx+3l1Kb/Wdwm8fsD5KZlETWyOy5+XgC4V/Fl/7yNnNt9lIAmYeU6fm5KBkV5BVSqG0zlyBo3eSUiInKvid27j+SMTN7t3YsqVzpM1PTzZcLadXx7+DDt7ruv1Haf/LANGxsb3ujeDX9PTwCahIQwdulSVuzew6DmzQD4744dVHJz4/Vuj+BgV/xR2MfNjXnf/8Av8Qk0DK4KwIXLGeTmF9A4JITWtWuVek4REbl1NOek3FBAQAAvvfQSycnJLF261NrpiIjIbVKYX8Dumas59c3/8GtYAwdPF4vaXdh7HK9Qf2NhEqBizUCcfT24sPdEuY+feT4VAGcfz5u+FhERufdsO3aMuoEBxsIkQESVKgR4ebL92PFS21y4fJn45BTa1KplLEwCBFX0olFwMN8dPgJAXkEBHs7ORNepYyxMAtwXEADAqUu/TyWSkJICQKCX3odERO4EFSfFIg8//DAODg5s3boVKO5NWTKXIhTP3fj222/Trl07wsPDadu2LW+88QZpaWnGmLFjx9KhQwf27NnDo48+Sv369Xn44YdZuHCh2fm2b9/OkCFDuP/++6lXrx6tW7fmtddeIz093eR4Dz/8MJ9//jlNmjShSZMmfPfddxa1X7ZsGY8//jhQPJQ9LOz3Xj1paWmMHz+e1q1bEx4eTqdOnfj0008xGAy35F4uW7aMsLAwDh48yMiRI4mMjKRZs2a8++67FBYWsnz5cjp27EjDhg3p168fBw8eNLadMWMGdevW5fjx48TExNCgQQOio6OZNWsWhYWFJuc5cOAAzz//PC1atKBevXo0b96cF198kbNnz5rEZWRkMGHCBB544AEaNGjAI488wldffQXAzp07adeuHQAzZ84kLCyMhIQEi691586dhIWFsXz5ch555BEiIiJ4+eWXAbhw4QJvvPGG8TUTFRXF448/zs8//2xyDIPBwGeffUbXrl2pX78+0dHRTJkyxWRagaKiIubNm8fDDz9MeHg4rVu35q233iIjI8PiXEUEDAVFFObmUad/W8J6t8amgs0N2+Rn55KTnIFbUCWzfW4Blcg48/uHPUuPn3Wu+EOhi1/xh8LCvPybuRwREbmHZOTmcj79MqG+Pmb7Qnx8OHHRfP5HgOTMTACqenub7avs6cHlnBwuZWTgYGfHy5070bNRpEnMyUvFx/V1dzdui09OBiDoSpE0J1/vQyIit5OGdYtFHB0dCQ4ONimUXe3NN99kzZo1PP7441StWpUjR47w+eefc+rUKebNm2eMS01NZciQIbRt25ZHH32UjRs3Mm7cONLT03n22WcB+P7773nmmWdo1KgRI0eOxMbGhh9++IHFixeTlpbGe++9ZzxeUlISs2fP5rnnnuP8+fM0bNjQovZNmjRh2LBhzJkzh759+xIVFQVAVlYWgwYNIikpiQEDBuDv78+OHTuYMGECJ0+e5PXXX79l93To0KFERUUxduxYNm7cyLx58zh8+DCHDh1i8ODBGAwGZs+ezciRI4mNjcXuyje8BoOBJ598klq1ajFmzBh27tzJe++9x9mzZ3nzzTcBOHToEAMGDKBatWoMHToUZ2dndu/ezcqVKzl16hRLliwBiovKAwcO5MiRI/Tp04c6derw7bff8sorr5CdnU3nzp15+eWXmThxIh06dKBDhw54l/LgdyNvvvkmjz76KL179yYwMJCcnBwGDhzI5cuXGThwIJUrV+bkyZMsXLiQIUOG8M0331CpUnGh44033mDhwoU8+OCD9O/fnxMnTjBv3jxOnjzJzJkzAfjXv/7FypUr6dGjB0888QTHjh1j4cKF7N69m4ULF+J4ZZ4hEbk+Wyd7Gv+9FxVsLf/uMi8tCwAHD/NekA4ezhRm51OQnYeds4PFx886n4qtox3HY3dxYe8JivIKcPJ2o1qHRvg1qF6+ixIRkXtCypUio7eL+dzCFV1cyMrNIzM3F9drnuscrzwjZ5dSQLyckwNAalY2ldxM54q8cPkyv55J4r87dlDVuyKNQ36f4zghJQUne3sWbN/O9mPHyc0vwM/Dnb5NmtCipqYbERG51VScFIt5eHhw+vTpUvetXr2aXr168fe//924zcXFha1bt5KZmYmra/FDRnp6Oo8//jj/+te/AOjfvz+DBw9m1qxZ9OvXD09PTz755BMCAgKYP38+Dg4OAAwYMIC+ffsae26WyMnJYeLEiXTu3Nm4zZL2VatWpUWLFsyZM4eGDRvSvXt3AD7++GNOnDjB0qVLjb0pBwwYwLRp05g7dy59+/alTp06f/heAjRs2JB///vfAHTu3JnmzZuzbds2Vq1aZVwZPTMzkzlz5pCQkEBISAhQ3EswPDycmTNnYmNjw6BBg/jHP/7Bl19+yeDBg6lRowZffPEFNjY2fPbZZ3h5eQHQt29f8vPzWbt2LampqXh5ebFkyRIOHjzIlClTeOSRR4xxgwYN4sMPP2TQoEG0b9+eiRMnEhYWZrxP5RUVFcWrr75q/Dk2NpZTp07x0Ucf0bp1a+P2qlWr8vrrr/Pzzz/z0EMPcfToURYtWkSfPn0YP368Mc7V1ZU5c+Zw9OhRLl26xLJly3jjjTfo16+fMaZt27Y8/fTTLFq0iMGDB99U3iJ/NTY2NtjY3ri35NVKejXa2ps/UlS48oGxML8AO2cHi4+feS6VwtwCCnLyCOvdmoKcPM5s+5VDi7/DUGTQPJQiIn9CJcXFq4dcl3C4shBOXkGBWXGySsWKODvY8+OJE3Rv2MC4qE1eQQF7ExKL/7uwwKTN5ZwcRn6xyHi+J1q2MDlvfEoKOfn5ZOXmMfzBB8jKy2P9vv3M2LSZwqIizUMpInKLaVi3WKygoMD4Zn8tf39/YmNjWbZsmXHo9AsvvMDSpUuNhckSJT0kAWxtbXn88cfJyclh27ZtAMydO5elS5caC4sAKSkpuLm5kZWVZXbuxo0bm/xc3vZX27hxI7Vr18bX15fk5GTjv/bt2wOwZcuW67Yvj5JjAri7u+Pt7U1ISIixMAkYFye6cOGCSduhQ4ea/C6efPJJDAaDMb9x48axefNmY2ESiodvl/QgLLkPcXFxeHt707VrV2OcjY0NkyZN4vPPPy/z911eTZo0Mfm5c+fObN++nVatWhm35eXlGf/76vwMBgMxMTEm7Z9++mlWrVpFcHAwGzduxMbGhrZt25r8zurWrYuvry9xcXG35BpEpAwlU17cmj8XAAQ0qU2NbvdTd8CD+NSrhn9ULRoM64KTtxsn1u3CUFR0604mIiJ3hZIplMr7/Glna0uX+hGcuHCRGZu3cPrSJU5evMj0r78h90rB07aC6cdeGxsbRraPZviDD1Clohdvr4ll5/Hf50hud18dnmzVgtEPdaBpaCgPhIXxZo/u+Hm48/mOnRTpfUhE5JZSz0mxWGpqaplDeseNG8cLL7zAyy+/zKuvvkrDhg3p0KEDvXr1wv2q+Vu8vLzw8TGdR6ZateIhFImJxd9s2traEh8fz3vvvcfRo0c5ffo0586dKzOvkuG/Jcrb/mqnT58mJyeH5s2bl7o/KSnJouNY4tr7YGdnV+q1AGYPQDVqmPYauvYe2tjYkJKSwty5czl06BCnT5/mzJkzxoe+kuMlJiYSHBxs9hAYFBT0Ry7NTGmvGxsbGz788EP27NnD6dOnOX36NPlXHiCvzg8w9hot4eHhgYeHB1D8OzMYDDzwwAOlnvva4riI3Fq2jvYAFOUXmu0rKijuqWLnZF+uYwbcb95D3dbeDr/IGpze9AtZ51Nx9S//FBMiInL3crYvfq/IKygw25d3ZW5156s6H1zt0UaNyMzNY/3+/Ww/egyARtWCeaRBAxb9uAu3a3pbujk60vzK8/T91UMZ89USPtu+nfurhwLQoW5ds3M42NnRulYtlv68m4SUFIIrmc+1LCIiN0fFSbFIRkYG8fHxZRaAmjdvzpYtW4z/fvjhByZOnMgnn3zCsmXLjMUpe3vzD6glhaiSQtzHH3/MpEmTCA0NpXHjxjz00EM0aNCABQsWsHr1arP2Je1KlLf91QoLC4mKiuK5554rdb+fn99125fHtXmD5d8UX3sfr72HsbGx/OMf/8DPz49mzZrRpk0bwsPD+f7775k7d66xXWFh4S3rHXk9117r8ePH6d+/P/n5+bRq1YrOnTtz3333YTAYGDFihEl+N1JUVISrq6tx/slrab5JkdvL0bN4Dq+8y9lm+/LSs7F1tsfWoXzFybLYuzoDUJhn/sFVRETubSVzQqaWMtIpJSsLF0cHnEr5LAHFz9CPt2hO94YNSEpLp5KbK77u7iz+cRcVbGzwuWa+yas52NkRGRzMhv0HSM/OwcPZqcxYT+fi96GcUgqoInJvmL3fyp8PH7Tu6e9WKk6KRdavX4/BYDCu3Hy1vLw8fvvtN/z9/enSpQtdunShqKiI+fPnM2nSJNauXWsclnvx4kWTOSgBTp48CRT3/svNzWXGjBncf//9zJs3z7gIDGCyEE5Z/mj7oKAgMjMzadGihcn2tLQ0tm/fbuyhaG3x8fHUrFnT+PPV9xBg6tSpVKtWjaVLl+Li8vsiFdcWZwMDAzl06JDZ8b/99tv/Z+/Ow2s61z6OfzNLQiYSJIQIYkiImSA0Yi5aWhRRndCj6uiI49WeonG0itLWUFpDqSlBTTWrWdHWUGOVSMSYRETm4f0jsmtLQiJJo/w+1+W6std6nrXuZ+3E2vtez8C6det49913iyB6mD17NrGxsaxfv96oV2RO8UFme+/uLXrlyhWCg4Pp168fbm5u7Nq1C29vb0NvyiwbNmzA3d29SNogIpnMrS2xcipptCp3lrjIG5Ryy77q6v0k3bzN0W824lLHA/cAX6N9CddvAlDCMfcvmSIi8s9ka2WFc6lSOa7Kff76dao4O+dad8/ZP3CwI5iCNwAAtPxJREFUsaaWqyv2d332PREZiYdzGSzNzYmIjmHC+vV0rVuXtrWNe0YmpqRgYgIWZqZE3b7Nx2vX0czTkx4N6huVi4iJAcDlrpFhIiJScJpzUh7o6tWrfP7555QtW9awaMrdoqOj6dWrl1GPPFNTU3x8fAw/Z8nIyOC7774zvE5NTWXevHmUKlWKZs2akZiYSEJCApUrVzZKLJ44cYIDBw4Y6uQmP/VzGjIdEBDAyZMn2bFjh9Fxv/rqK4YNG8aZM2dyPfffacGCBUavv/nmG8zNzQkICAAyh+C7uroaJSYjIyPZuHEj8FePRH9/f65fv86mTZuMjjdv3jy2b9+Oo6NjrkPLCyImJgZra2tD8hEyk9zff/+9UXytWrUCYPHixUb1Q0JCWL9+PSVLljS0+auvvjIqs3XrVoYNG/bA3rIiUnBlalci5o9LxF+LMWyLPnuJhGuxONfxyNexrOxtSUtMJvLn06Qm/jUXbWJMHFcOncHesxyWpbKvDC4iIv98jT0qcywigojoGMO2o+HhRMbcxM8z98XQ1h45wje79pB21+fVwxfCOHX5Cu3uJCLL2dsRn5zM5hMnSL1rdM61W7fYf+5PapYvj7WlJU62tsQnJ7P15Eni75oT/fqtOHacOk1tN1ccbHQfEhEpTOo5KUY2b96Mo6MjkNkL8dy5c6xcuZKkpCRmz55NiRLZhzlkJS0XLVpEQkIC9erVIyYmhoULF1KmTBk6duxoVP7LL78kIiKCatWqsX79en755RfGjx+PtbU11tbW1K1bl5CQEEqWLImHhwdnzpxh2bJlhiTn7du3sbe3zzF+e3v7PNfPaufq1avJyMjg2WefZdCgQWzcuJEhQ4bQu3dvqlWrxqFDh1i1ahX+/v74+/sX2rUuiNDQUOLi4qhfvz47d+5k27ZtDBkyxDBXpL+/P+vWrWPMmDH4+PgQHh7O0qVLSUjIHHZ5+/ZtAHr37s2KFSsYPnw4ffv2xcPDg+3bt7N7924+/vhjzMzMcHBwwNTUlC1btuDq6kq7du1yvf555e/vz9atWxk0aBAdOnTg1q1brFy50rAafFZ8NWvW5Pnnn2fBggVcvXqVZs2aGVbwfuaZZ6hRowZeXl60adOGuXPnEhERQbNmzYiIiOC7777D1dWVV155pUCxioixhKhbxF64il0lF6ydMnuOVGjpzdVf/uDonB9xa+FNemoq4TuPUdKtNC6++V9Z27NrU04s3MZvM9dRrmF10pJTuLT3BCamplTt0rSwmyQiIo+Irr512XnmDOPXrqVzHR+SU9NYc+QIHs5laFEtc9TQldhYTl++QvVyZSl7Z9RMV19fpmzazMQNP9KocmWux91i3ZFj1KlYgRZ3RhuZmZoywM+PL7dt578/rKFltarcSkxi4/HjmJqaMKD5XyOnXmrenM82buKDlasJqFmDhJRkNh77HbN7yomISOFQclKMBAcHG362sLCgbNmyBAQE8Nprr+HhkXvvl7Fjx1KxYkXWrl3L2rVrsba2plmzZgwfPjzbYihz5szhww8/JDQ0lKpVqzJ9+nTatm1r2D916lSCg4NZsWIFycnJuLm5MXDgQDw9PRk6dCj79u2jffv2ucaS1/qenp4EBQUREhLC0aNHadKkCe7u7ixZsoTPP/+cDRs2sGTJElxdXfnXv/7FwIEDjXqBFqfp06fzxRdfsHHjRipWrMjYsWPp2bOnYf+HH36IjY0NW7duZdWqVZQrV45nnnmGtm3b8sILL7Bv3z5q1apFiRIlWLBgAVOmTGHt2rXcunULT09PpkyZYkgqW1tbM3z4cObMmcO4ceNwd3enSZMmBYq/d+/exMbGsmzZMsaNG0eZMmXw9fVl+vTp9O7dm3379jFgwAAAPvroIypXrsyyZcvYunUrrq6uDBkyhFdffRXInGNo6tSpfP3116xcuZKtW7fi5OREu3btGDZsWLaFh0SkYGLPX+H08l1Uf66FITlpWdKaOq915NzaA1zY/AtmluaUrumOR4eGmJpnn1/3QcrUqkStoADCth/hzx8PYmphhoNHeSq3r4+Ns0Mht0hERB4VdtbWfNC1C/P37GXZwUNYmZvTsFIl+jZtgsWd0TwnIy8zY/sOBrduZUhONqniwdA2Aaz+9VcW7N2HvbU1T9etQzdfX6PP7y2rV8PCzIxVd8pZmZvj7eZGz0YNcXVwMJRr5FGZt9u3ZeUvv7J4/wEszM2oVb48vRs3xs3RARERKVwmGVnL94oUsREjRhAaGprjHIeSN9OmTWP69Ols2bKFChUqFHc4T4Te2yYWdwgiIvIEK/aJ+0VE5InmOHRYcYdQqKKnPXgtiqL0uF3PwvJodAMTERERERERERGRJ46GdYvkU1RUlGHBlvspUaIEpR7DlfxiYmJISUl5YDkLCwsc7hoeIyIiIiIiIiJyLyUnRfLpueeeIyIi4oHlnn32WSZMmPA3RPT3Gjp0qGHl8/tp3LhxtlXFRURERERERETupjknRfLp0KFDJCUlPbCci4sLVe+sDvg4OXbsGLGxsQ8sZ2dnh7e3998QUdHSnJMiIlKcNOekiIgUp8dtjkTNOfloUs9JkXxq0KBBcYdQrB6HhKOIiIiIiIiIPBq0II6IiIiIiIiIiIgUCyUnRUREREREREREpFgoOSkiIiIiIiIiIiLFQslJERERERERERERKRZKToqIiIiIiIiIiEixUHJSREREREREREREioWSkyIiIiIiIiIiIlIslJwUERERERERERGRYqHkpIiIiIiIiIiIiBQLJSdFRERERERERESkWCg5KSIiIiIiIiIiIsVCyUkREREREREREREpFkpOioiIiIiIiIiISLFQclJERERERERERESKhZKTIiIiIiIiIiIiUiyUnBQREREREREREZFioeSkiIiIiIiIiIiIFAslJ0VERERERERERKRYKDkpIiIiIiIiIiIixULJSRERERERERERESkWSk6KiIiIiIiIiIhIsVByUkRERERERERERIqFkpMiIiIiIiIiIiJSLMyLO4B/uhEjRhAaGmq0zcLCgtKlS9O4cWMGDhxItWrVDPuCgoKIiIhg69atf3eohSo5OZno6GjKli1bZOcICAgA+Edfq/T0dC5dukSFChWKO5RsQkJCGDlyJPPnz6dJkyb5rp+YmMjkyZNZv349SUlJtGrVilGjRuHg4FD4wYpIsTgTuoeE6zep81rHB5ZNjLrFufU/c/PcZQCcalTAo2MjLEtaF/j4ty9H8csXa6jY2odKberlrxEiIvKPcjX2Fgv37eP3S5cAqOfuTlCzpthZ534/ATgZeZklP//MH9euUdLKioaVKvFcw4bYWZfItc7sn3YSGRPDmK5dsu2LTUjg+wM/c+jCBZJT0/AoU5oXmjSmWhF+/xEReVIpOVlIRo4ciaOjIwAJCQmEhYWxYsUKfvzxR2bPnm1I/gwePJiEhITiDLXAIiIiePnllxk0aBDdu3cv7nAeWXFxcQwYMIBWrVoxdOjQ4g6n0H344YesW7eOgQMHYmJiwowZM4iNjWXGjBnFHZqIFILLB09z+efT2Hs8+EtYSnwSR+ZsICMtnQr+3mRkZBC+8xi3L0fj+6+nMTUze+jjp6elc2r5LjLS0h+6LSIi8s9wKzGRsWvWkJaeTpe6dUnPyGDNkSNcjIpi3LPPYJ7D/QTg90uXCF63HhtLS56p54upiSnrjx7l+KVL/PeZbpS0sspWZ9vJU2w9cZKa5ctl25eQnMx/V/9AdHw8nXx8sLWy4sfjxxm7Zi3jn32Gik5Ohd52EZEnmZKThSQwMDBb77igoCB69OjBv//9bzZv3oytrS3NmzcvpggLT3h4OOfPny/uMB55MTExHD16lFatWhV3KIUuKSmJH374gZ49e/LGG28AcPXqVZYsWcLt27extbUt5ghF5GFlpKdzcfsRLmz5Nc91InYdJ+lmPA3e7IaNiwMApSo4c2zuRq4cPkv5Rl4PffzwHUeIvxKT9waIiMg/1rojR4mKu83/nu9BhTsdP6q6OPPx2vXsOH2aNjVr5ljv2917MDEx4b/dulLO3h6ARpUrM2LFClYe/oV+zZoayqanpxP6y6+sOHQo1zhW//obkTdvMvrpp6nlWh6AZp5VeHPx96z+9TeGBDxVWE0WERE052SRKl++PO+//z5RUVGsWLGiuMMRKTRJSUmkpaVx6c5wm6xtpqammOXyRFtEHn1pKakcnv4DFzb/iouvJ5b2Nnmqd+3IORw8yhkSkwCOVV2xdrbj2pE/H/r4ty9HEbbtCO4BdR+qPSIi8s+y548/qOVa3pCYBPCpUIHyDvbs/eNcjnWu3brFxaho/KtVMyQmAdwcHajv7s5Pp88YtiWnpjIyJJTlBw/Rolo1nGyz34cyMjL46fRpfCtWNCQmARxsbAhq2pQaOfS0FBGRglFysoh16NABS0tLdu7cCWT2psyaSxEy524cP348bdq0wdvbm1atWvHf//6XmzdvGsqMGDGCtm3b8ssvv9C9e3fq1KlDhw4dWLx4cbbz7d27l1dffZUmTZpQu3ZtWrZsyZgxY4iNjTU6XocOHfjuu+9o1KgRjRo14qeffspT/ZCQEPr37w9kDmX38vqrN8zNmzcZO3YsLVu2xNvbm44dOzJv3jwyMjIK5VqGhITg5eXFyZMnefPNN6lXrx5Nmzblf//7H2lpaYSGhtK+fXt8fX3p3bs3J0+eNNSdNm0atWrV4ty5cwQFBVG3bl0CAgL48ssvSUtLMzrP8ePHGTp0KH5+ftSuXZtmzZrx9ttvc/nyZaNycXFxfPzxx7Ru3Zq6devSpUsXli1bBsD+/ftp06YNANOnT8fLy4vw8PA8t3X//v14eXmxZ88e/vOf/9CoUSMaNGjAyJEjiY+PZ8eOHXTr1o26devSrVs39u7da1T/woULvP/++/j7++Pt7U3jxo0ZPHgwZ86cyeWMmZKSkpg8eTIBAQF4e3vTpk0bpk6dSnJyslE5Ozs7mjdvzvbt2/nhhx9YsWIFq1ev5tlnn6VECeN5fbLetx9//JGAgADq1q3LtGnT8hVncnIy06ZNo127dtSpU4f27dsza9Yso/cur7GLSO4yUtNJS0qmxgut8Hq+JSamJg+sk5KQRGJUHCXdSmfbV7J8aeIu3Xio46enpXN6xW4cq7ni4uv5cA0SEZF/jLikJK7G3sLDuUy2fZXLlOHP69dzrBd1+zZAjkOty9rbcSsxkRtxcQCkpKURn5zMsMA2/Oup1piaZv86fO1WHFG346lzZ1RcRkYGiSkpALStXSvX3psiIvLwNKy7iFlZWeHu7m6UKLvbRx99xJo1a+jfvz8VK1bkzJkzfPfdd1y4cIG5c+caysXExPDqq6/SqlUrunfvzsaNG/nwww+JjY1l0KBBAOzatYvXXnuN+vXr8+abb2JiYsLu3btZsmQJN2/eZOrUqYbjRUZG8tVXX/HGG29w9epVfH1981S/UaNGDB48mBkzZtCrVy8aNGgAQHx8PP369SMyMpI+ffpQrlw59u3bx8cff8z58+f54IMPCu2aDhw4kAYNGjBixAg2btzI3LlzOX36NKdOneLFF18kIyODr776ijfffJN169Zhbp75a56RkcFLL71EtWrVePfdd9m/fz9Tp07l8uXLfPTRRwCcOnWKPn36UKlSJQYOHIi1tTWHDx9m1apVXLhwgeXLlwOZybK+ffty5swZevbsSY0aNdixYwejR48mISGBTp06MXLkSIKDg2nbti1t27bF6SHmphkxYgRVq1bl7bff5sCBA4SEhHD58mV+//13goKCKFWqFLNmzWLYsGFs3rwZOzs7rl+/Ts+ePSlZsiT9+vXD0dGREydOsHTpUo4fP87WrVuxsLDIdq60tDQGDRrE4cOH6dmzJ56enhw7dowZM2Zw4sQJvvrqK0xM/kokfPDBB3Tv3p333nuP9PR0OnbseN/3+T//+Q/9+vWjZMmS+Pr65ivOIUOG8NNPP9GlSxdeeukljhw5wqRJk7hx4wYjR47Md+wikjOzEhY0fKsHpmZ5f3aZfDMeAEu77L1PLO2sSUtIITUhGXNry3wdP3znURJuxFKrXwAZ6YXzkEtERB5d0XeSjE422acHcrSxIT4pmdtJSdjeM3+k1Z3P+gl3Eoh3u5WYCEBMfAKlS5bExtKSKb17YZZDUjLL5TudROysrVm4dx9bT54kITmFsvZ2BDVrSoNKlR6ugSIikislJ/8GdnZ2hIWF5bjvhx9+oEePHrz11luGbTY2NuzcudNo7r7Y2Fj69+/Pf/7zHwBeeOEFXnzxRb788kt69+6Nvb093377LeXLl+ebb77B0tISgD59+tCrVy9Dz80siYmJBAcH06lTJ8O2vNSvWLEifn5+zJgxA19fX7p16wbAnDlz+PPPP1mxYoWhN2WfPn347LPPmDlzJr169aJGjRoFvpYAvr6+TJ48GYBOnTrRrFkz9uzZw+rVqw0ro9++fZsZM2YQHh5O5cqVgcz5Zby9vZk+fTomJib069ePd955h6VLl/Liiy/i6enJokWLMDExYf78+YZVp3v16kVKSgpr164lJiYGBwcHli9fzsmTJ/n000/p0qWLoVy/fv2YNWsW/fr1IzAwkODgYLy8vAzXKb9cXFz4+uuvMTU1pWfPnhw4cIA9e/Ywe/Zs/P39gczfl9GjR3P06FGaN29OSEgIN2/eZNGiRXh6/tXbyNbWllmzZnH69Glq166d7VyrVq1i7969fP3117Rs2dKwvU6dOowZM4YtW7YQGBgIZCYyN27cSFpaGunp6ZQtW5bg4GDD701OOnfuzL///W/D61mzZuUpzh07dvDTTz8xfPhwBg8eDGT+/qekpPDdd98xZMgQNm/enOfYRSR3JiYmmJjlL5Gflpz5ZdDMIvtHCtM7XxjTUlIxt7bM8/FvX4kmbMtveHZtgpW9LYnRcfmKSURE/nmykouW5tnvJ5Z3pg1KTk3Nlpys4OiItaUFB/78k26+dQ0PpJNTUzkSHpH5c1oqkHmfM3vAA+v4O6Nulh48iLmpKS/6+WFqYsKaI0eY9ONGRnbqiM89aw2IiEjBaFj33yA1NTXXXlvlypVj3bp1hISEGIZO//vf/2bFihXZFhXJ6iEJYGZmRv/+/UlMTGTPnj0AzJw5kxUrVhgliKKjoylZsiTx8fHZzt2wYUOj1/mtf7eNGzdSvXp1nJ2diYqKMvzLSght27btvvXz4+4kU6lSpXBycqJy5cqGxCRgWJzo2rVrRnWzVpbO8tJLL5GRkWGI78MPP2Tr1q2GxCRkDt+2uvMhKOs6bN++HScnJ55++mlDORMTEyZOnMh3331XaL302rRpYxhuYmpqSsWKFSlRooQhMZlTWwcOHMju3buNEn6JiYmG4+T2Xm7cuBEnJydq165t9B62atUKMzMztm/fDmT2QH3vvff45JNPaNeuHb169eLKlSuMHTsWgMOHD7N27Vpu33n6naVRo0ZGr/Ma5/bt2zE1NaVfv35G9d9//31WrVqFra1tnmMXkSKQNXVHIXVOzkhP5/SKXdhVdjFaSEdERB5vWVNB5fdztLmZGZ3r+PDntetM27qNsBs3OH/9OlM2bSbpTsLzfj0l75VyZ9qg+KRkPuzWlVZe1WlZvRpjujyNrZUV3x/4OV/xiYjIg6nn5N8gJiYm1yG9H374If/+978ZOXIk//d//4evry9t27alR48elCpVylDOwcGBMmWM51+pdGdIQURE5hNBMzMzLl68yNSpUzl79ixhYWFcuXIl17hKlzaeHyy/9e8WFhZGYmIizZo1y3F/ZGRkno6TF/deB3Nz8xzbApm9Je92dyIMsl9DExMToqOjmTlzJqdOnSIsLIxLly4ZPixlHS8iIgJ3d/dsH57c3NwK0rRscmrrvb9LWcm8u9uakpLC5MmTOX78OGFhYYSHhxvmZ7z3mmQJCwsjKirqge/hDz/8wJo1a+jZsydjx44lOTmZ33//nRUrVtC0aVM2b97M5s2bDUnzLPe+R3mNMyIigtKlS1OyZEmjus7Ozjg7O+crdhEpfGZWmdMvpKekZduXnprZU8W8RPapJHITvvMYtyOjqTuoEym3M4fjpSYkAZCWnErK7UTMbaw0VYOIyGPG+s50Psl37h13S77z+dA6l1E63evX53ZSMhuOHWPv2T8AqF/JnS516/L9gZ8peU9vy/vJ6rnZ2KOyUT1bKyvqu7uz88wZElNSKJHDNEkiIvJwlJwsYnFxcVy8eJHWrVvnuL9Zs2Zs27bN8G/37t0EBwfz7bffEhISYkhE5TRHYFbyJisRN2fOHCZOnIiHhwcNGzakXbt21K1blwULFvDDDz9kq3/vqsr5rX+3tLQ0GjRowBtvvJHjfhcXl/vWz4+cVoPO65fUe6/jvddw3bp1vPPOO7i4uNC0aVPDQi27du1i5syZhnppaWl/yxfjh2nrwYMHeeWVV7CxscHPz48ePXpQq1YtwsLCDHNr5iQtLY3KlSvnOm+knZ0dAFu2bAFg6NChAFhaWjJlyhS6d+/OBx98QEpKCk2aNDHqfQpkm3A8r3Heu2BRQWIXkcJnZZ/54CD5VkK2fcmxCZhZW2BmmfcvcNGnI8hIS+fXL9dk2xex8zgRO4/T6N3nKOFYMofaIiLyT1X6zoPomBxG+UTHx2NjZZlrQtDExIT+fs3o5luXyJuxlC5pi3OpUiw58DOmJiaUKZn3e0bWCt521tbZ9tnbWJORgZKTIiKFTMnJIrZhwwYyMjIMKzffLTk5mRMnTlCuXDk6d+5M586dSU9P55tvvmHixImsXbuWoKAgAK5fv240ByXA+fPngczef0lJSUybNo0mTZowd+5cwyIwgNFCOLkpaH03Nzdu376Nn5+f0fabN2+yd+9eQw/F4nbx4kWqVq1qeH33NQSYNGkSlSpVYsWKFdjY/LW4w73JWVdXV06dOpXt+Dt27GDdunW8++67RRB93nz++eeUKFGCtWvXGvWynDFjxn3rVahQgWPHjtG0aVOjRGJKSgqbNm2iXLlywF9Dbu5OnFaoUIEJEybw+uuvAzBgwIBCi9PV1ZU9e/Zk+/0/fvw4c+fO5fXXX89z7CJS+MytLbFyKmm0KneWuMgblHLLvurq/Xh0akRqQrLRtpS4BE4t3YlLvSq41KuKRckSBYpZREQePbZWVjiXKpXjqtznr1+nyp0RMznZc/YPHGysqeXqiv1dn+FPREbi4Vwmx3ksc1PRyQkLMzPCo6Oz7bsWewsLczPsSug+JCJSmDTnZBG6evUqn3/+OWXLljUsmnK36OhoevXqZdQjz9TUFB8fH8PPWTIyMvjuu+8Mr1NTU5k3bx6lSpWiWbNmJCYmkpCQQOXKlY0SiydOnODAgQOGOrnJT/2chkwHBARw8uRJduzYYXTcr776imHDhnHmzJlcz/13WrBggdHrb775BnNzcwICAoDMIfiurq5GicnIyEg2btwI/NWLz9/fn+vXr7Np0yaj482bN4/t27fj6OiY69DyopY1jcDdCb9bt24RGhoK5N4TMSAggJiYGBYvXmy0/fvvv2f48OHs3bsXgCZNmgBkK3f30OlFixY9sN15jbNVq1akp6ezbNkyo/qLFy9m/fr1lClTJs+xi0jRKFO7EjF/XCL+WoxhW/TZSyRci8W5jke+jlXKrQyOVV2N/tlVKgtACadSOFZ1zXHxHRER+edr7FGZYxERRETHGLYdDQ8nMuYmfvdMz3S3tUeO8M2uPaTd9fnz8IUwTl2+QrvatfIVQwkLCxpUcueXsDDCo/5KUF6NvcWhC2E0rFQp24ggEREpGH26LySbN2/G0dERyOyFeO7cOVauXElSUhKzZ8+mRA5P17KSlosWLSIhIYF69eoRExPDwoULKVOmDB07djQq/+WXXxIREUG1atVYv349v/zyC+PHj8fa2hpra2vq1q1LSEgIJUuWxMPDgzNnzrBs2TLDzfP27dvY29vnGL+9vX2e62e1c/Xq1WRkZPDss88yaNAgNm7cyJAhQ+jduzfVqlXj0KFDrFq1Cn9/f6MFXIpTaGgocXFx1K9fn507d7Jt2zaGDBlimCvS39+fdevWMWbMGHx8fAgPD2fp0qUkJGQOV8xa5KV3796sWLGC4cOH07dvXzw8PNi+fTu7d+/m448/xszMDAcHB0xNTdmyZQuurq60a9cu1+tfmPz9/Zk9ezbDhg2jRYsWXLt2jeXLl3P9zlPoexeqyfL8888TGhrK2LFjOX78OHXq1OH06dMsWbKE2rVr0717dwB69uzJihUrmD59OteuXaNmzZrs3r2bjRs30qpVK5ycnAgNDeXNN99kypQpBY4zICCAFi1aMGHCBM6cOYOPjw+//PILK1euZMiQITg4OOQ5dhEpuISoW8ReuIpdJResnTLnRq7Q0purv/zB0Tk/4tbCm/TUVMJ3HqOkW2lcfHP/MikiInK3rr512XnmDOPXrqVzHR+SU9NYc+QIHs5laFEtc/TTldhYTl++QvVyZSl7Z+qerr6+TNm0mYkbfqRR5cpcj7vFuiPHqFOxAi3uGjWVV32aNuH3yEjGrllDB29vzM1M2XD0GBbmZvRq3OjBBxARkXxRcrKQBAcHG362sLCgbNmyBAQE8Nprr+HhkXuvkbFjx1KxYkXWrl3L2rVrsba2plmzZgwfPjzbwidz5szhww8/JDQ0lKpVqzJ9+nTatm1r2D916lSCg4NZsWIFycnJuLm5MXDgQDw9PRk6dCj79u2jffv2ucaS1/qenp4EBQUREhLC0aNHadKkCe7u7ixZsoTPP/+cDRs2sGTJElxdXfnXv/7FwIEDH5mni9OnT+eLL75g48aNVKxYkbFjx9KzZ0/D/g8//BAbGxu2bt3KqlWrKFeuHM888wxt27blhRdeYN++fdSqVYsSJUqwYMECpkyZwtq1a7l16xaenp5MmTLFkFS2trZm+PDhzJkzh3HjxuHu7m7odViUhg4dSlpaGuvWrWPbtm24uLjg5+fHyy+/TOfOndm3b5/R700WS0tLvv32W7744gt+/PFHVq9ejYuLCy+88AJDhgzB+s68OxYWFnzzzTdMnTqVjRs3smLFCipVqsTIkSMN0xCYmppia2tr1Av3YeM0NTXlyy+/5IsvvuCHH35g9erVuLu7M2bMGF544YV8xS4iBRd7/gqnl++i+nMtDMlJy5LW1HmtI+fWHuDC5l8wszSndE13PDo0xNQ8+9y5IiIiObGztuaDrl2Yv2cvyw4ewsrcnIaVKtG3aRMs7oxKOhl5mRnbdzC4dStDcrJJFQ+Gtglg9a+/smDvPuytrXm6bh26+fo+1PcQ51Kl+OiZbizef4A1R46QkZFBjXLl6NO0ieGcIiJSeEwysiaQk0fWiBEjCA0NzXGOQ8mbadOmMX36dLZs2UKFChWKO5wnQkZGxmOxmm7vbROLOwQREXmCfXUs76sMi4iIFDbHocOKO4RCFT3twWtqFKXH7XoWlkejO5uIPHYeh8SkiIiIiIiIiBQtDeuWv01UVFSui7HcrUSJEpQqVepviOjvFRMTQ0pKygPLWVhY4ODgUPQBiYiIiIiIiIgUMyUn5W/z3HPPERER8cByzz77LBMmTPgbIvp7DR061LDy+f00btw426riIiIiIiIiIiKPI805KX+bQ4cOkZSU9MByLi4uVH2IVfUedceOHSM2NvaB5ezs7PD29v4bIpK80JyTIiJSnDTnpIiIFKfHbY5EzTn5aFLPSfnbNGjQoLhDKFZKOIqIiIiIiIiIGNOCOCIiIiIiIiIiIlIslJwUERERERERERGRYqHkpIiIiIiIiIiIiBQLJSdFRERERERERESkWCg5KSIiIiIiIiIiIsVCyUkREREREREREREpFkpOioiIiIiIiIiISLFQclJERERERERERESKhZKTIiIiIiIiIiIiUiyUnBQREREREREREZFioeSkiIiIiIiIiIiIFAslJ0VERERERERERKRYKDkpIiIiIiIiIiIixULJSRERERERERERESkWSk6KiIiIiIiIiIhIsVByUkRERERERERERIqFkpMiIiIiIiIiIiJSLJScFBERERERERERkWKh5KSIiIiIiIiIiIgUCyUnRUREREREREREpFgoOSkiIiIiIiIiIiLFQslJERERERERERERKRbmxR2AiIiIPJqS4xL4c8NBok9HkJ6Sin2V8lTp3Bhrp1JFUjds+29c/vk0jd99Psf96WlpHJ62GmefylRqU++h2yUiIo++2IQEvtu3n18vXiQ5NY3abq4ENWtKWTu7IqkbevgXtp48ybQ+L2Tbd/nmTb7bt5/fIyNJSUujmosLvRs3olrZsgVqo4iIZHpiek6OGDECLy8vwsPDC3ysoKAgAgICCiGqwjneunXrCAoKolGjRtSpU4d27doxbtw4rl69mq1senr6Q12DkJAQvLy82L9//33L7d+/Hy8vL0JCQnJ8HR4ejpeXF9OmTTOqd/HixXzHlFdZ7/3d/7y9vWnVqhXvvvsuZ86cyVYnp/fk22+/pUWLFtSpU4dPP/2Umzdv8vrrr+Pr60ujRo34/fffi6wN8pfcfodEpHClp6ZxfN5mbhy/QPkmXri3qUdcxHWOzF5PSnxSodeNOh1B2Jbfcj1mRkYGZ0L3kHD1ZoHaJSIij76UtDQmrN/AgT/P07ZWLZ5rWJ9z167x0Q9ruJWYWOh1f7t4kZDDh3PcF5uQyEc/rOFoRAQdatemd6NGXLsVx9g1awm7caPAbRUREfWc/MebPHkyM2bMoHXr1gwZMoQSJUpw5swZli9fztq1a1myZAnu7u4AxMXFMWDAAFq1asXQoUOLJB5PT08mTpxI/fr1c9zv5OTExIkT8fLyMmz78ssvCQ0NZdOmTUUSU5aRI0fi6OgIQEJCAmFhYaxYsYIff/yR2bNn06RJE0PZwYMHk5CQYHh96tQpgoOD8fX1ZdiwYdSoUYMZM2awdetWBgwYQJUqVahcuXKRxi8i8ne68stZ4iJu4P1yOxyrugLg5OXG4c9XEbHrOJXb5fz//MPUjTxwij9+2E9GWnqOx0tNSOb0il3c+D2skFonIiKPsp9On+bPa9cZ1bkjPhUqAOBb0Z33ly9n3ZGj9GrcqNDqbv79BPP27CE1l3vQtpMnib4dz/B2gTT28ACgsYcHby1dSsjhX/h328DCaLKIyBNNycl/sMjISGbPnk1QUBCjR4822vf000/Tt29fPvvsM6ZMmQJATEwMR48epVWrVkUWU5kyZejWrVuu+21sbLLt37t3L2lpaUUWU5bAwEAq3PmAkiUoKIgePXrw73//m82bN2NrawtA8+bNjcqdPn0agEGDBhl6VE6ePBkHBwdGjhxZ5LGLiPzdrh35kxKlSxmSiwA2zg44eJbn2pFz901O5qfu0bk/EnM2EsfqriTHJZKaYNyzMi4yimPfbCQ1IRm3lrWJ2Hm8EFspIiKPor1/nKOsvZ0huQjg5uhAbTc39vzxx32Tk/mpO37tOo6FR1CnYgViExKIS8reu//arVsA1LnreGVKlaSCoyNhUVEFaqeIiGR6YoZ1P45+++030tLSsiXSAOrVq0edOnX49ddf//7A/kHKly/P+++/T1RUFCtWrMi1XEpKCoAheZm17e7XIiKPk7hLNyjpWjrbdlvX0iRGxZGSkPvQ7vzUTYyJw7NrU2q/2BZzK4tsdRKjb2Fdxg7f1zvj2rTmQ7ZGRET+Sf68fh2P0tnvIx5lSnM19laOScSHqXv91i1ebtGcER07YG2R/R4EUM7eHoDImL+mFUlNSyMq7jaONjZ5bpOIiOROycl7rF+/nn79+tGgQQO8vb0JCAhg4sSJJCcnZyu7detWOnfujI+PD126dGH16tXZypw9e5YhQ4bQsGFD6tatS+/evdm5c2ehxJqVGAsNDc0xvvnz57N9+3Ygc+7HNm3aADB9+nSj+TcvXLjA+++/j7+/P97e3jRu3JjBgwfnOBfj1atXGTJkCL6+vvj5+TF27Fji4uIM+++dY/Je984XGBAQwIEDB4iIiDBsf+utt/D29iY2Ntao7q1bt/Dx8eF///tfPq/U/XXo0AFLS0uj9+XuOSeDgoIMvSP79+9vmLfy7rhHjBhhqBsSEsIzzzyDj48PTZs2ZcSIEUbzf2Zdg2+//ZYXXngBb29vBgwYkO/6K1euZPLkyfj7++Pj48Pzzz/Pvn37srVv1apV9OjRA19fX/z9/RkzZgxR9zzlfdA588PLy4vZs2cza9YsWrduTd26dQkKCuLChQv8+eefvPLKK/j6+hIQEMD8+fON6sbFxTFp0iQ6dOiAj48P9erVo2fPnmzZsuWB5y3MNog86dKSU0hLSMHSLvuXLsuS1gAkxdwulLoNhj2Da9MamJiY5Hg8J68K1B3YKcdkp4iIPH4SU1KIT0rGMYdOAA7WmfeWG3d9/yhI3U+ef462tWvleg8CeKqGF5VKOzHzp584c+UKl2JimLnjJ2ITE3i6bp18tU1ERHKmYd13WbZsGaNHjyYgIIB33nmHlJQUNm3axJw5cwB47733DGWvXbvGm2++Sc+ePenduzerVq3i3XffJTU1le7duwOZ8xT26dOHMmXKMGjQICwsLFizZg0DBw5k0qRJdOrUqUDxNmnShAoVKvDjjz9y6NAh2rVrR/PmzWnUqBH29vZYWloaynp6ejJy5EiCg4Np27Ytbdu2xcnJievXr9OzZ09KlixJv379cHR05MSJEyxdupTjx4+zdetWLO56ijhmzBhq1qzJ22+/zenTp/nuu+84c+YM8+bNu+9NPTejRo1i0qRJREdHM3LkSLy8vLh06RJr165l8+bNhmsJsHHjRpKTk+nSpUuBrtu9rKyscHd35+TJkznuHzx4MB4eHixZsoTBgwdTuXJlTE1NmTFjhiHurHk9p0+fzrRp02jfvj09e/bkypUrLFy4kAMHDrB8+XKcnJwMx506dSoBAQF06dIFKyurh6pvbW3Nyy+/TEpKCnPnzmXQoEFs377dMLfm7Nmz+fTTT2nQoAFvvfUWN27cYN68eZw4cYLFixdjbm6er3Pm1YIFCwyx3bhxg6+//pqhQ4cSExND69atadu2LcuWLWP8+PHUqFGDxo0bk5GRwaBBg/j999/p168f7u7uXL58me+//5433niDlStXGs1VereiaIPIkyw1MbO3uJlF9o8JWdvSk1MKpa6pmdl9Y3nQfhERebwk3Ol0YWWe/T5ieWdbYkrO96D81jXPwz3G1sqK5xo2YPrWbYxZ+VdnlAHN/ah35zuAiIgUjJKTd5k7dy716tXjyy+/NCTa+vTpQ5s2bdi5c6dRcjI5OZkxY8bQt29fAHr16kW3bt2YNGkSXbt2xdzcnHHjxuHk5ERoaCg2d7r89+vXjxdffJHx48cTGBholEDML0tLS77++mveeustfv/9dxYtWsSiRYswMzOjYcOGDBw4kBYtWgCZc0EGBgYSHByMl5eXYd7HhQsXcvPmTRYtWoSnp6fh2La2tsyaNYvTp09Tu3Ztw3YvLy/mz5+P+Z2be9myZZk2bRrbtm17qBXHAwMDmTdvHklJSYaYPD09cXBwYP369UbJyXXr1lGlShVq1aqV/4v1AHZ2doSF5bzQQvPmzbly5QpLlizBz8/PsHDO8uXLjeK+ePEiX3zxBQMHDuTtt9821O/cuTPdu3dnxowZjBo1yrC9fPnyfPrpp4bftfzWz8jIYPny5YbfLTc3N4YPH86mTZvo2bMnN2/eZNq0abRs2ZKZM2didufDV4UKFRg9ejS7d++mSpUq+TpnXsXGxhISEkKZMmUAOH/+PBs2bOC1117jnXfeAaBZs2a0a9eO3bt307hxY44cOcLBgwf573//S+/evQ3H8vX15dVXX2XPnj05Jifze91EJB/u98zpQQ+kClJXRESeePfr+PCgThEFqXuvbSdPMWvHT7iXdqKTjw+W5mbsPH2GeXv2YGpiQtvahf/dRETkSaNh3XdZvXo1s2bNMrph3bhxAzs7O+Lj443K2tnZ0atXL8NrS0tLevXqxfXr1zl27BjR0dEcOHCAVq1akZiYSFRUFFFRUcTGxtK2bVuuX7/O0aNHCxyzh4cHISEhzJ8/n/79++Pp6UlaWhr79+/nlVdeYdasWfetP3DgQHbv3m2UmExMTMTUNPNX4952DxgwwJCYhMwhz4Bh+HhhsLCwoH379uzdu5ebNzPndomKimLfvn107ty50M5zt9TU1Ifq+Xm3TZs2kZ6eTkBAgOH9joqKokyZMtSsWTPbNWrYsKHROfNbv1WrVobEJECNGjWAzF69AHv27CEpKYm+ffsaEpMAXbt2JSQkhMaNG+f7nHlVr149Q2ISMKxk3rZtW8O2rMWJsoZe161bl59//tkoIZ2WlkZ6eubKibdv5zyEtKjaIPKkSEtJJflWvNE/M8s7PRxTsy9WlpaSCoBZDvNDAgWqKyIiT5bk1FRi4uON/lndGbWVnJqaY3kAG4ucO3gUpG5ulv78M04lbflvt6608qpOM09P3uvYgboVK7Jg3z5u3vN9SURE8k89J+9iYWHBzz//zJo1azh37hxhYWHcuHEDyOyVdreKFSsaJemytgFEREQYknsLFixgwYIFOZ4vMjKyUOI2MTGhSZMmhh59ly5dYsWKFcycOZOpU6fSrVs3ypYtm2v9lJQUJk+ezPHjxwkLCyM8PNywenZWYihLlSpVjF7b29tjb29PREREobQlS9euXVmyZAmbN2+mR48ebNiwgdTU1EIf0p0lJiamwEN/s3pe3t3r724W90yyfe/5Clo/qxdu1nuW9Z5UqlTJqJyVlZWhN2x+z5lXpe+ZhDzrb+XumLMSphkZGUblvv/+ew4cOMCFCxcICwsjMTExW7m7FVUbRJ4U14+e5/TyXUbb3NvUxczaguTY7F+4km8lAOQ4pySAeQnLh64rIiJPlr1/nGPG9h1G23o0qI+NlSXROST9srY52OZ8H7GxtHzoujmJTUggJj6B9t61KXHPZ8pW1avza9hFzly9SsM7D+JFROThKDl5l7Fjx7Jw4UJq1aqFr68v3bp1o169eowdOzZbIjGnXnZZyRNTU1NDcq9v374EBgbmeL6qVasWKN4FCxaQlJTEq6++arTd1dWVoUOHYmVlxaRJk/j1119p3759jsc4ePAgr7zyCjY2Nvj5+dGjRw9q1apFWFgYH330UbbyubXbrJDnBGvQoAGurq6sX7+eHj16sH79ery9vbMl2gpDXFwcFy9epHXr1gU6TlZS8KuvvqJEiRIPLH/vNctv/awE+IPiuV+P0PyeM6/uTdxnuV8sUVFRPP/881y9epXmzZsTEBBAjRo1cHNz4/nnn8+1XlG1QeRJ4VDVFe+X2xltK+FUipvnrxB3KSpb+duRNyhRuhQW1la5HrOka+mHrisiIk+OOhXcGNW5o9E2Fzs7Tl6+zPnr17OVP3/jBmXt7Shplft9xKNMmYeuey+zO5+37+2wAZB+57tfei4P0EVEJO+UnLwjIiKChQsX0q1bNyZOnGi073oON7fIyEgyMjKMki3nz58HwN3dHWdnZyAzAeXn52dU9+zZs4SHh2NtbV2gmDdv3syRI0fo06eP0fDeLNWrVwe4b8Lm888/p0SJEqxdu9aoV9uMGTNyLB8REUG1atUMr7OGqrsX8mTQJiYmdOrUiXnz5nHp0iUOHTpkNOdnYdqwYQMZGRmG1cwfVlbv2vLly1OzZk2jfTt27KBkyZJFWv9e5cuXBzJ7Fnp4eBi2Jycn8+6779KlS5dCP2dBLFq0iPDwcL799luaNWtm2H748OH71nuU2iDyT2RlZ4NVDj0Zy9SuxB+r9xN99hKOVV0BiL8WQ8wfkVTw97nvMQtSV0REnhyOtrY5rqzd2KMy3+zaw9HwcHzuTAUUER3D8YgIuvr63veYBal7L1srK6qWdWH/n3/yXMOG2Flnfq/KyMhg68mTmJuZ4nWfEWoiIpI3mnPyjqy5De/tzbhjxw7Onz9P6j3zlty4cYMtW7YYXsfHx7N48WLc3NyoWbMmLi4ueHt7ExoaypUrVwzlUlJSGDVqFG+++Wa2Y+ZXly5diI+PZ8KECdme5qWnp7Ns2TLs7Oxo1KgR8FdPvbvLZg1nvjsxeevWLUJDQwEMPUCzLFu2zOh11krmBUnsmZqa5vg0skuXLqSkpPDJJ5+QkZFBx44dc6hdMFevXuXzzz+nbNmyBR4y/tRTTwEwc+ZMoyHIJ06c4PXXX2fevHlFWv9efn5+WFhYsHTpUqPjbdiwgQ0bNhTJOQsiJiYGMP4bzMjIYOHChQC5/r08Sm0QeZyUa1gda2d7TizeRtj234jYfZyjc37E0s4Gt+Z/LZSWHJfAlV/+4PblqHzXFRERyclTNWrg6mDPlM1bCD38C+uOHGX82rU42trS0cfbUO5mfDw7T58h7M5UXPmpm1f9mzUlISWF/4SGsuqXX9lw9Bgfrv6B4xGX6NGgAfY5dBIREZH8eeJ6Tk6ePBnbHJ7OtW3bFldXV2bMmEFSUhLlypXjyJEjhIaGYmVllW0xDnt7e9577z1efPFFHBwcWLFiBZGRkXzxxReG4bajR4/mxRdfpEePHrzwwgs4ODiwdu1afvvtN95++20cHR0L1Jbu3buzc+dOlixZwi+//EKHDh0oV64cN27cYP369Zw6dYpJkyYZelU6ODhgamrKli1bcHV1pV27dvj7+zN79myGDRtGixYtuHbtGsuXLzf0Fr233QcPHuRf//oXrVq14vDhw6xcuZKOHTsa9XTLLycnJ37++Wfmzp1LgwYNqFu3LpC5wEu1atVYt24dTZo0ue+8mXmxefNmwzVPSkri3LlzrFy5kqSkJGbPnl3gIcHVq1cnKCiIBQsWEBMTQ2BgIDExMSxcuBBbW1uGDRtWpPXvVbp0aYYMGcKUKVN4+eWXCQwM5PLlyyxcuJAmTZoQEBCAqalpoZ6zIPz9/VmwYAGDBg3iueeeIyUlhfXr13Ps2DFMTU1zXRCnsK+biGQyNTfD55X2/LnuZ8J/OoaJiQn2VcpRpWMjLGz+GhIXfzWG08t24t6mLrblnPJVV0REJCcWZmaMfrozC/bt54fffsPUxIRarq70a9qUUnd9Zo+IieHLbdvp0aA+7nfmPM9r3byqVrYsH3XrypKfD7Lyl19JS0/HzdGBIQGtaXHXiDIREXl4T1xycs2aNTlur1KlCrNmzWLChAnMnz+fjIwM3N3dGTVqFKmpqYwfP55jx47h7Z35tM3T05N+/foxdepUIiMjqV69OjNnzqRly5aGY9arV4/Fixczbdo0vvnmG1JTU/Hw8GDChAk8++yzBW6LqakpU6ZMYdWqVaxatYqFCxdy69Yt7O3tadCgAf/973+pU6eOoby1tTXDhw9nzpw5jBs3Dnd3d4YOHUpaWhrr1q1j27ZtuLi44Ofnx8svv0znzp3Zt2+f0QrLkydPZs6cOYwfPx4HBwdef/11hgwZUqB2vPrqq5w6dYrPPvuM7t27G5KTkNl78rPPPuPpp58u0DkAgoODDT9bWFhQtmxZAgICeO2114yGPRfEf/7zH6pUqcL333/P//73P0qVKkXDhg0ZNmyY0YroRVX/Xq+//jrOzs7Mnz+fCRMm4OzsTM+ePRk6dKghiV7Y53xY/v7+jBs3jrlz5zJhwgTs7e2pXbs2S5Ys4f/+7//Yv39/rnUflTaIPG6s7Gyo0bvVfcs4VClPy48HPFTde9V57f495Es4lszxXCIi8vhxtLXlzTYB9y1Ty9WVxYNee6i69xrTNfdRVJXLlOH9jh3ydTwREck7k4zclsAVeQTMmjWLadOmsWvXLuzt7Ys7HHkC9d428cGFREREishXx9TbWEREio/j0MdrJFr0tKnFev7H7XoWFs05KY+s5ORkQkJCCAwMVGJSREREREREROQx9MQN636UpaWlERUV9eCCQKlSpQo8R+Kj6sqVKwQHB3P27FkuXLjAJ598YrQ/MTGRW7du5elYTk5OhoWA5OHcvn2b+Pj4PJXNWqVeRERERERERCQvlJx8hERGRuZ51evg4GC6d+9exBEVD3t7ew4ePEhqaioffPABPj4+RvvXrVvHyJEj83SsLVu2UKFChaII84kxd+5cpk+fnqeyp06dKuJoRERERERERORxouTkI8TZ2ZlvvvkmT2WrVq1axNEUnxIlSrBr165c97do0SLP10k9+QrumWeeoUGDBsUdhoiIiIiIiIg8hpScfIRYWVnh5+dX3GE88lxcXHBxcSnuMJ4YFStWpGLFisUdhoiIiIiIiIg8hrQgjoiIiIiIiIiIiBQLJSdFRERERERERESkWCg5KSIiIiIiIiIiIsVCyUkREREREREREREpFkpOioiIiIiIiIiISLFQclJERERERERERESKhZKTIiIiIiIiIiIiUiyUnBQREREREREREZFioeSkiIiIiIiIiIiIFAslJ0VERERERERERKRYKDkpIiIiIiIiIiIixULJSRERERERERERESkWSk6KiIiIiIiIiIhIsVByUkRERERERERERIqFkpMiIiIiIiIiIiJSLJScFBERERERERERkWKh5KSIiIiIiIiIiIgUCyUnRUREREREREREpFgoOSkiIiIiIiIiIiLFQslJERERERERERERKRZKToqIiIiIiIiIiEixUHJSREREREREREREioV5cQdQXEaMGEFoaChbtmyhQoUKBTpWUFAQERERbN26tVBiK+jx1q1bx+LFizl58iRJSUmUK1cOf39/Bg4ciIuLi1HZ9PR0Ll26lO9rEBISwsiRI5k/fz5NmjTJtdz+/fvp378/wcHBdO/ePdvr8PBw2rRpwxtvvMHQoUMN9S5evEjFihXz1/A8ynrv72ZhYUHp0qVp3LgxAwcOpFq1akb7c3pPvv32W77++mtiY2Pp378/r732GiNGjGDv3r1YWFgwb948atWqVSRtEBEpaslxCfy54SDRpyNIT0nFvkp5qnRujLVTqUKre2Lxdq4fPZ+tfkm30tQb0iXHYyfFxnN46kqcalbE67mWD9U2ERF59MUmJPDdvv38evEiyalp1HZzJahZU8ra2eXrOKGHf2HryZNM6/NCtn1TN21m37k/s233cC7Dx92fNbw+f/063+0/wLlr1zAzMaWee0X6NGmMvY1N/hsmIiLZPLHJycfV5MmTmTFjBq1bt2bIkCGUKFGCM2fOsHz5ctauXcuSJUtwd3cHIC4ujgEDBtCqVSujxGBh8vT0ZOLEidSvXz/H/U5OTkycOBEvLy/Dti+//JLQ0FA2bdpUJDFlGTlyJI6OjgAkJCQQFhbGihUr+PHHH5k9e7ZR0nXw4MEkJCQYXp86dYrg4GB8fX0ZNmwYNWrUYMaMGWzdupUBAwZQpUoVKleuXKTxi4gUlfTUNI7P20zC9Zu4taiNmZUlEbuOcWT2euoP7YaFjVWh1L19JRq7Si6Ua+xldAwL29yPf3bVHlITkgveSBEReWSlpKUxYf0GImNu0rmOD9aWFqw9cpSPfljDhB7dKVWiRJ6O89vFi4QcPoxDLknEi9HRVC9XlsCaNY2233388OhoPlj1A062NjzXoAHxycmsO3qU01euENyjOyUsLB6+oSIiAig5+ViJjIxk9uzZBAUFMXr0aKN9Tz/9NH379uWzzz5jypQpAMTExHD06FFatWpVZDGVKVOGbt265brfxsYm2/69e/eSlpZWZDFlCQwMzNZjNCgoiB49evDvf/+bzZs3Y2trC0Dz5s2Nyp0+fRqAQYMGERAQAGQmhh0cHBg5cmSRxy4iUpSu/HKWuIgbeL/cDseqrgA4eblx+PNVROw6TuV2OT9wyk/d9LQ0Em/cwrl1ZcrW88xjXH8QffpSAVsnIiKPup9On+bPa9cZ1bkjPnc+r/tWdOf95ctZd+QovRo3euAxNv9+gnl79pCalp7j/tS0NK7ExtLN15eW1avlWAZg2c8HMTM14YOuXQxJzirOZZi4/kd2nj5D29oaKSUiUlCac/Ix8ttvv5GWlpYtkQZQr1496tSpw6+//vr3B/YPUr58ed5//32ioqJYsWJFruVSUlIADMnLrG13vxYR+ae6duRPSpQuZUguAtg4O+DgWZ5rR84VSt2Ea7FkpKVj4+yQp5iSb8Vzbs1+3APq5q8xIiLyj7P3j3OUtbczJCYB3BwdqO3mxp4//nhg/fFr1zFn5y5qubpSuUzpHMtE3rxJalo6bo4O9z2WmZkZLatVM+p9WbN8eQDCoqLy0BoREXkQJScfYP369fTr148GDRrg7e1NQEAAEydOJDk5+5CyrVu30rlzZ3x8fOjSpQurV6/OVubs2bMMGTKEhg0bUrduXXr37s3OnTsLJdasxFhoaGiO8c2fP5/t27cDmXNBtmnTBoDp06fj5eVFeHg4ABcuXOD999/H398fb29vGjduzODBgzlz5ky2Y169epUhQ4bg6+uLn58fY8eOJS4uzrB///79eHl5ERISkmPM4eHheHl5MW3aNAACAgI4cOAAERERhu1vvfUW3t7exMbGGtW9desWPj4+/O9//8vnlbq/Dh06YGlpafS+BAUFGXpIBgUFGXpH9u/fHy8vL7y8vIziHjFihKFuSEgIzzzzDD4+PjRt2pQRI0Zw9erVbNfg22+/5YUXXsDb25sBAwbku/7KlSuZPHky/v7++Pj48Pzzz7Nv375s7Vu1ahU9evTA19cXf39/xowZQ9Q9H6wedM788PLyYsqUKQwePBhvb286d+5MamoqKSkpzJw5k65du1K3bl3q1KlD165dWb58ebZj7Nixg379+lGvXj2aN2/O8OHDDb+vWbZt20bv3r2pW7cujRo1YujQofz5Z/Y5hETkweIu3aCka/Yvc7aupUmMiiMlIanAdeOvxgBg42IPQFpyyn1jOrNyL1YOtlTw985rM0RE5B/qz+vX8Sid/V7iUaY0V2NvEZeU+30I4PqtW7zcojkjOnbAOpdh1+HR0QC4OTgAkJiS833ozTYBvNTCuPPHhRs3AChdsuR94xARkbzRsO77WLZsGaNHjyYgIIB33nmHlJQUNm3axJw5cwB47733DGWvXbvGm2++Sc+ePenduzerVq3i3XffJTU1le7duwOZ8xT26dOHMmXKMGjQICwsLFizZg0DBw5k0qRJdOrUqUDxNmnShAoVKvDjjz9y6NAh2rVrR/PmzWnUqBH29vZYWloaynp6ejJy5EiCg4Np27Ytbdu2xcnJievXr9OzZ09KlixJv379cHR05MSJEyxdupTjx4+zdetWLO66wY8ZM4aaNWvy9ttvc/r0ab777jvOnDnDvHnzMDExyXcbRo0axaRJk4iOjmbkyJF4eXlx6dIl1q5dy+bNmw3XEmDjxo0kJyfTpUvOiyY8LCsrK9zd3Tl58mSO+wcPHoyHhwdLlixh8ODBVK5cGVNTU2bMmGGIO2tez+nTpzNt2jTat29Pz549uXLlCgsXLuTAgQMsX74cJycnw3GnTp1KQEAAXbp0wcrK6qHqW1tb8/LLL5OSksLcuXMZNGgQ27dvN8ytOXv2bD799FMaNGjAW2+9xY0bN5g3bx4nTpxg8eLFmJub5+uceTVv3jzq16/P6NGjSUxMxNzcnHfeeYf169fzwgsvEBQURHR0NEuXLuU///kPzs7OhukG1q5dy9tvv021atUYOnSooW1Hjx4lJCQEOzs7QkJCGDVqFM2aNePdd9/l5s2bLF68mJ49e7J06VI8PDzyHbPIkyotOYW0hBQs7bLPz2VZ0hqApJjbWFhnnxcyP3VvX8n8Uhh54DTXjvxJanwSFqWsqdjKBzc/4yFyV3/9g+jT4fi+/jSmZmYFbqOIiDy6ElNSiE9KxjGHEUkO1pn3lxtxcZS0yn1+4k+efw7zB9wvLkZl3oe2nDjJnj/+IC4xCQcba7r5+tLBJ+cHYdG3b3P6ylUW7tuHo60NATW8ciwnIiL5o+TkfcydO5d69erx5ZdfGhJtffr0oU2bNuzcudMoOZmcnMyYMWPo27cvAL169aJbt25MmjSJrl27Ym5uzrhx43ByciI0NBSbO8MC+vXrx4svvsj48eMJDAw0SiDml6WlJV9//TVvvfUWv//+O4sWLWLRokWYmZnRsGFDBg4cSIsWLYDMuSADAwMJDg7Gy8vLMO/jwoULuXnzJosWLcLT8685wGxtbZk1axanT5+mdu3ahu1eXl7Mnz8fc/PMX6WyZcsybdo0tm3bZuhpmB+BgYHMmzePpKQkQ0yenp44ODiwfv16o+TkunXrqFKlSpGsiG1nZ0dYWFiO+5o3b86VK1dYsmQJfn5+hoVzli9fbhT3xYsX+eKLLxg4cCBvv/22oX7nzp3p3r07M2bMYNSoUYbt5cuX59NPPzX8ruW3fkZGBsuXLzf8brm5uTF8+HA2bdpEz549uXnzJtOmTaNly5bMnDkTszsf2CpUqMDo0aPZvXs3VapUydc588rc3JwvvviCEncmF7927Rpr1qzhtddeMzpPYGAgHTt2ZOfOnbRq1Yr09HSCg4OpXr06S5cuNdT38fHhpZde4ocffqBbt26MHz+eTp068dlnnxmO1bNnTzp37synn37KF198ke+YRZ5UqYmZPUfMLLJ/RMjalp5LL8f81M3qORl/LYaqXZuSnpbOlcNnOLfmAGlJKbg/lTl8OzkugT/WHKBCS58ce2SKiMjjJeHOCDAr8+z3Ess723Lr5ZjlQYlJ+KvnZERMDC+3aE5qWjo7Tp9m3p69xKck0z2HBT3fWrKMxJQUTE1MGBLwFHbW1g88j4iIPJiGdd/H6tWrmTVrllEPwBs3bmBnZ0d8fLxRWTs7O3r16mV4bWlpSa9evbh+/TrHjh0jOjqaAwcO0KpVKxITE4mKiiIqKorY2Fjatm3L9evXOXr0aIFj9vDwICQkhPnz59O/f388PT1JS0tj//79vPLKK8yaNeu+9QcOHMju3buNEpOJiYmYmmb+qtzb7gEDBhgSk5A55BkwDB8vDBYWFrRv3569e/dy8+ZNAKKioti3bx+dO3cutPPcLTU19aF6ft5t06ZNpKenExAQYHi/o6KiKFOmDDVr1sx2jRo2bGh0zvzWb9WqlSExCVCjRg0gMxEIsGfPHpKSkujbt68hMQnQtWtXQkJCaNy4cb7PmVd16tQxJBYBnJ2dOXToEP/6178M2zIyMkhNTQXg9u3bABw7doxr167Rs2dPo/p+fn4sW7aMbt26sXv3buLi4ggMDDSK2czMjKZNm7Jr1y7DcUUkH+73X+CD/n/MQ90y3pWp3K4+Pi+3x7mOB2XreeLzcnvsKrkQtu03Um4nAnB21V4sSpbQXJMiIk+Y+30WL+jndICmVarQq3Ej/tO5E808PWlZvRr/6dyJ6uXKsvLwr8QmJBqVT0tP5+UWzXkzMIDabq5M27KVdUcK/v1NRETUc/K+LCws+Pnnn1mzZg3nzp0jLCyMG3fmF3FzczMqW7FiRaMkXdY2gIiICENyb8GCBSxYsCDH80VGRhZK3CYmJjRp0sTQo+/SpUusWLGCmTNnMnXqVLp160bZsmVzrZ+SksLkyZM5fvw4YWFhhIeHG1bPTk83Xu2uSpUqRq/t7e2xt7cnIiKiUNqSpWvXrixZsoTNmzfTo0cPNmzYQGpqaqEP6c4SExPzUMOX75bV87J379457re4Z/6be89X0PpZvXCz3rOs96RSpUpG5aysrAy9YfN7zrzK6VpaWlqyevVqdu3axfnz57lw4YIhKZmRkXHfmCEz4Xl3zMOHD8/1/FFRUbi4uDxU7CKPs7SUVNISjecoNrO808MxNS3H8gBmVjn/X5Cfui51q2QrY2JiQrlG1Ym9cJXYsGukJadw43gYtYLakJaUQlrSXz1lMlLTSbmdiFkJCw31FhH5h0pOTSX+nrnyre583kzO4eFy1jYbi4cfbZbFr6pntm0mJiYE1KjBjMs7OHP1Cg3u+gxqZmpqWNW7aZUqfLj6B5YePMhTNbywLsDoNxERUXLyvsaOHcvChQupVasWvr6+dOvWjXr16jF27NhsicScnt5lJVhMTU0Nyb2+ffsSGBiY4/mqVq1aoHgXLFhAUlISr776qtF2V1dXhg4dipWVFZMmTeLXX3+lffv2OR7j4MGDvPLKK9jY2ODn50ePHj2oVasWYWFhfPTRR9nK59Zus0L+otigQQNcXV1Zv349PXr0YP369Xh7e+eYtCqouLg4Ll68SOvWrQt0nKyk4FdffWXU6y83916z/NbPSoA/KJ77PWnO7znz6t62JSUl0adPH06cOEGTJk1o1qwZAwYMoHHjxkbXPT8xjx07lgp3reh4N3t7+wK2QOTxdP3oeU4v32W0zb1NXcysLUiOjc9WPvlWAkCOc0oCmJewfOi6WSxsM//vSUtOIfpM5gOK3xdsyVbu2pE/uXbkT3xebY9DlfL3PaaIiDya9v5xjhnbdxht69GgPjZWlkTHZ7+XZG1zsL3/vaQg7Kwz70NJKbmPvDExMaGJhwenL1/hUsxNPF2ciyweEZEngZKTuYiIiGDhwoV069aNiRMnGu27fv16tvKRkZFkZGQYJVHOnz8PgLu7O87OmTcsMzMz/Pz8jOqePXuW8PBwrAs4Z8nmzZs5cuQIffr0MRrem6V69eoA9006ff7555QoUYK1a9ca9XabMWNGjuUjIiKoVq2a4XXWUPWsBWEKi4mJCZ06dWLevHlcunSJQ4cOGc35WZg2bNhARkaGYTXzh5XVu7Z8+fLUrFnTaN+OHTso+YDV/Qpa/17ly2d+eQ8LCzNaICY5OZl3332XLl26FPo5c7N+/XqOHTvG+PHjee655wzbr1y5kmvM9xo5ciT169c3xOzk5JTtb2v//v2kp6cXaC5XkceZQ1VXvF9uZ7SthFMpbp6/QtylqGzlb0feoETpUjkuhpOlpGvpB9ZNT0vj16/WUsqtDNWeNf67jb+WOX1HCcdSVPT3wcU3e8+WY3M34lDNlQotvbEtX7Be7iIiUnzqVHBjVOeORttc7Ow4efky53P4znX+xg3K2tvddzGcvEhNS2P0ylV4Ojvzmn9Lo32XYmIAcC5VkttJSfwndCVNPDx4oUljo3IJd+a9zGluTBERyR/NOZmLrLkN7+3NuGPHDs6fP59tDrsbN26wZctfPTvi4+NZvHgxbm5u1KxZExcXF7y9vQkNDTVKwKSkpDBq1CjefPPNAs+L16VLF+Lj45kwYUK24dfp6eksW7YMOzs7GjVqBPzVm+3uslnDme9OTN66dYvQ0FAAQw/QLMuWLTN6nbWSeUESe6amptnih8z2paSk8Mknn5CRkUHHjh1zqF0wV69e5fPPP6ds2bIFHjL+1FNPATBz5kxDL1qAEydO8PrrrzNv3rwirX8vPz8/LCwsWLp0qdHxNmzYwIYNG4rknLmJufOh796/r/nz5wMY/ha8vb1xcnIiJCSE5LuG/Bw6dIiQkBDi4+Px8/PDysqKr7/+mpS7Jke/cuUK//rXv4wWGRIRY1Z2NjhWdTX6Z+1UijK1K5Fw7SbRZy8ZysZfiyHmj0ic63jc54jkqa6pmRlmFuZc/e0ciTFxhnKpCclc2vM7JUqXolTFMti4OGSLz7GqKwCWpaxxrOp630SpiIg82hxtbfGpUMHoX1k7Oxp7VOZSzE2OhocbykZEx3A8IgI/z+wPrfLL3MwMK3Nzdp89y/Vbf92Hbiclsf7oMcra21HVxQVbKyssTM346fRp4pKSjMptO3kS51KlcHN0KHA8IiJPuif+Mc/kyZOxtbXNtr1t27a4uroyY8YMkpKSKFeuHEeOHCE0NBQrKyvD3HhZ7O3tee+993jxxRdxcHBgxYoVREZG8sUXXxiG244ePZoXX3yRHj168MILL+Dg4MDatWv57bffePvtt3F0dCxQW7p3787OnTtZsmQJv/zyCx06dKBcuXLcuHGD9evXc+rUKSZNmmToVeng4ICpqSlbtmzB1dWVdu3a4e/vz+zZsxk2bBgtWrTg2rVrLF++3NBb9N52Hzx4kH/961+0atWKw4cPs3LlSjp27EizZs0euh1OTk78/PPPzJ07lwYNGlC3buYiCDVq1KBatWqsW7eOJk2a3HfezLzYvHmz4ZonJSVx7tw5Vq5cSVJSErNnzy7wsObq1asTFBTEggULiImJITAwkJiYGBYuXIitrS3Dhg0r0vr3Kl26NEOGDGHKlCm8/PLLBAYGcvnyZRYuXEiTJk0ICAjA1NS0UM+ZGz8/P8zNzXnvvffo27cv5ubmbNu2jV27dmFhYWH4PbO0tGTEiBG8//77vPDCC3Tt2pXbt28zf/58PD09ef7557GxseGtt94iODiYXr160bVrV1JTU1m0aBFJSUm8//77hRKzyJOkXMPqXNp7khOLt1GhpTdmFuaE7zyGpZ0Nbs1rG8olxyUQfeYSJcs7YlvOKV91q3RuzG8z1/HbzHW4NasFQOTPp0iOS8D7pXZ6qCAi8gR7qkYNfjx2nCmbt/B0nTpYmZuz5sgRHG1t6ejjbSh3Mz6eI+ERVCrthHvp0vk6R/9mzfhw9Wo+WL2aDt6Z96ctJ04Sm5DIiE4dDfehl1o0Z/yatXy4ajUBNWqQmp7OlhMnuJmQwPsdO+h+JSJSCJ745OSaNWty3F6lShVmzZrFhAkTmD9/PhkZGbi7uzNq1ChSU1MZP348x44dw9s78+bo6elJv379mDp1KpGRkVSvXp2ZM2fSsuVfwwTq1avH4sWLmTZtGt988w2pqal4eHgwYcIEnn322QK3xdTUlClTprBq1SpWrVrFwoULuXXrFvb29jRo0ID//ve/hkVEAKytrRk+fDhz5sxh3LhxuLu7M3ToUNLS0li3bh3btm3DxcUFPz8/Xn75ZTp37sy+ffto27at4RiTJ09mzpw5jB8/HgcHB15//XWGDBlSoHa8+uqrnDp1is8++4zu3bsbkpOQ2Xvys88+4+mnny7QOQCCg4MNP1tYWFC2bFkCAgJ47bXXjIY9F8R//vMfqlSpwvfff8///vc/SpUqRcOGDRk2bJjRiuhFVf9er7/+Os7OzsyfP58JEybg7OxMz549GTp0qCGJXtjnzEn16tX5/PPPmT59Op999hm2trZUq1aNb775hkWLFnHgwAFSUlKwsLCgW7dulCpVihkzZjBp0iTs7Ox46qmnePvttw2J9gEDBlC2bFm++eYbJk+eTIkSJahduzaffPIJDRo0KJSYRZ4kpuZm+LzSnj/X/Uz4T8cwMTHBvko5qnRshIXNXz0V46/GcHrZTtzb1DUkJ/Nat1SFMvi80p4LW37hwtZfABPs3J3xet4fO3fN3SUi8iSzMDNj9NOdWbBvPz/89humJibUcnWlX9OmlLqrA0FETAxfbttOjwb1852c9HRx5j+dO7P80CGWHzyMiQlUK1uWIU+1ptpdnSBquZZnZOeOLD94iO9//hlTExNqlCvHm23aaK5JEZFCYpJx99hNkUfcrFmzmDZtGrt27dIiJ/K36L1t4oMLiYiIFJGvjmnqAhERKT6OQwtn9NyjInra1GI9/+N2PQuL5pyUf4zk5GRCQkIIDAxUYlJERERERERE5DHwxA/rfpSlpaURFZV9xdOclCpVqsBzJD6qrly5QnBwMGfPnuXChQt88sknRvsTExO5detWno7l5ORkWAhIHs7t27eJj4/PU9msVepFRERERERERHKi5OQjLDIyMs+rXgcHB9O9e/cijqh42Nvbc/DgQVJTU/nggw/w8fEx2r9u3TpGjhyZp2Nt2bKFChUqFEWYT4y5c+cyffr0PJU9depUEUcjIiIiIiIiIv9kSk4+wpydnfnmm2/yVLZq1apFHE3xKVGiBLt27cp1f4sWLfJ8ndSTr+CeeeYZLTIjIiIiIiIiIoVCyclHmJWVFX5+fsUdxiPPxcUFFxeX4g7jiVGxYkUqVqxY3GGIiIiIiIiIyGNAC+KIiIiIiIiIiIhIsVByUkRERERERERERIqFkpMiIiIiIiIiIiJSLJScFBERERERERERkWKh5KSIiIiIiIiIiIgUCyUnRUREREREREREpFgoOSkiIiIiIiIiIiLFQslJERERERERERERKRZKToqIiIiIiIiIiEixUHJSREREREREREREioWSkyIiIiIiIiIiIlIslJwUERERERERERGRYqHkpIiIiIiIiIiIiBQLJSdFRERERERERESkWCg5KSIiIiIiIiIiIsVCyUkREREREREREREpFkpOioiIiIiIiIiISLFQclJERERERERERESKhZKTIiIiIiIiIiIiUiyUnBQREREREREREZFioeSkiIiIiIiIiIiIFAslJ0VERERERERERKRYKDkpIiIiIiIiIiIixcI8P4VHjBhBaGgoW7ZsoUKFCgU6cVBQEBEREWzdurVAxyms461bt47Fixdz8uRJkpKSKFeuHP7+/gwcOBAXFxejsunp6Vy6dCnf1yAkJISRI0cyf/58mjRpkmu5/fv3079/f4KDg+nevXu21+Hh4bRp04Y33niDoUOHGupdvHiRihUr5q/heZT13t/NwsKC0qVL07hxYwYOHEi1atWM9uf0nnz77bd8/fXXxMbG0r9/f1577TVGjBjB3r17sbCwYN68edSqVatI2iB/ye13KD+WLFnC3LlzuXr1Kt7e3vzf//0f1atXL+RIRaS4JMcl8OeGg0SfjiA9JRX7KuWp0rkx1k6lCqXuzlHf3vcY1Z9rQdn6VQE4t/5nInYez1bG3MaKZqNfyF/DRETkHys2IYHv9u3n14sXSU5No7abK0HNmlLWzi5fxwk9/AtbT55kWh/je8gLM2fft97g1q1o5aXPuyIihS1fycnH1eTJk5kxYwatW7dmyJAhlChRgjNnzrB8+XLWrl3LkiVLcHd3ByAuLo4BAwbQqlWrh07qPIinpycTJ06kfv36Oe53cnJi4sSJeHl5GbZ9+eWXhIaGsmnTpiKJKcvIkSNxdHQEICEhgbCwMFasWMGPP/7I7NmzjZKugwcPJiEhwfD61KlTBAcH4+vry7Bhw6hRowYzZsxg69atDBgwgCpVqlC5cuUijV8KR0hICGPGjKFHjx7UqlWLr7/+mldeeYX169dTsmTJ4g5PRAooPTWN4/M2k3D9Jm4tamNmZUnErmMcmb2e+kO7YWFjVeC61Z9vmWP9c+sOkJGWjn3lsoZt8VdjsHa2o2LrukZlTS3MCqG1IiLyT5CSlsaE9RuIjLlJ5zo+WFtasPbIUT76YQ0TenSnVIkSeTrObxcvEnL4MA42Ntn2/eup1jnWWbB3H6npadQsX74ALRARkdw88cnJyMhIZs+eTVBQEKNHjzba9/TTT9O3b18+++wzpkyZAkBMTAxHjx6lVatWRRZTmTJl6NatW677bWxssu3fu3cvaWlpRRZTlsDAwGw9RoOCgujRowf//ve/2bx5M7a2tgA0b97cqNzp06cBGDRoEAEBAUBmYtjBwYGRI0cWeexSeJYuXUrVqlX5+OOPgcyE+fDhwzl48CCtW7cu3uBEpMCu/HKWuIgbeL/cDseqrgA4eblx+PNVROw6TuV2OT88y0/dsvU8s9WN2H2c1NtJePXyp8RdvSzjr8RgX6VcjnVEROTJ8NPp0/x57TqjOnfE5873Ed+K7ry/fDnrjhylV+NGDzzG5t9PMG/PHlLT0nPc37J6tWzb1h05yq3ERN4IeAoXuwePHhARkfx74uec/O2330hLS8uWSAOoV68ederU4ddff/37A/sHKV++PO+//z5RUVGsWLEi13IpKSkAhuRl1ra7X8s/Q2JiIlFRUYaesYmJiUDmUH8R+ee7duRPSpQuZUguAtg4O+DgWZ5rR84VSd3kuATOb/oFB8/yuNStYtiempRCUsxtbJztC9AiERH5p9v7xznK2tsZEpMAbo4O1HZzY88ffzyw/vi165izcxe1XF2pXKZ0ns55Mz6epQcP4u3mSvNqVR86dhERub8iSU6uX7+efv360aBBA7y9vQkICGDixIkkJydnK7t161Y6d+6Mj48PXbp0YfXq1dnKnD17liFDhtCwYUPq1q1L79692blzZ6HEmpUYCw0NzTG++fPns337diBzLsg2bdoAMH36dLy8vAgPDwfgwoULvP/++/j7++Pt7U3jxo0ZPHgwZ86cyXbMq1evMmTIEHx9ffHz82Ps2LHExcUZ9u/fvx8vLy9CQkJyjDk8PBwvLy+mTZsGQEBAAAcOHCAiIsKw/a233sLb25vY2Fijurdu3cLHx4f//e9/+bxS99ehQwcsLS2N3pegoCBDD8mgoCBD78j+/fvj5eWFl5eXUdwjRoww1A0JCeGZZ57Bx8eHpk2bMmLECK5evZrtGnz77be88MILeHt7M2DAgHzXX7lyJZMnT8bf3x8fHx+ef/559u3bl619q1atokePHvj6+uLv78+YMWOIiooyKvOgc+aHl5cXs2fPZtasWbRu3Zq6desSFBTEhQsX+PPPP3nllVfw9fUlICCA+fPnG9WNi4tj0qRJdOjQAR8fH+rVq0fPnj3ZsmXLA8+b1zZ07NiRqKgogoODOXLkCJMmTaJKlSrZ5lK93/uUnzj/7usv8qSLu3SDkq7Zv7jZupYmMSqOlISkQq97cfsR0lNS8ehk3PMl/koMADYumVOKpCWnkJGRkdemiIjIY+LP69fxKJ39/uJRpjRXY28Rl5T7vQng+q1bvNyiOSM6dsA6jw/UQ3/5leTUVPo1a/pQMYuISN4U+rDuZcuWMXr0aAICAnjnnXdISUlh06ZNzJkzB4D33nvPUPbatWu8+eab9OzZk969e7Nq1SreffddUlNT6d69O5A5T2GfPn0oU6YMgwYNwsLCgjVr1jBw4EAmTZpEp06dChRvkyZNqFChAj/++COHDh2iXbt2NG/enEaNGmFvb4+lpaWhrKenJyNHjiQ4OJi2bdvStm1bnJycuH79Oj179qRkyZL069cPR0dHTpw4wdKlSzl+/Dhbt2416lE2ZswYatasydtvv83p06f57rvvOHPmDPPmzcPExCTfbRg1ahSTJk0iOjqakSNH4uXlxaVLl1i7di2bN282XEuAjRs3kpycTJcuXQp03e5lZWWFu7s7J0+ezHH/4MGD8fDwYMmSJQwePJjKlStjamrKjBkzDHFnzes5ffp0pk2bRvv27enZsydXrlxh4cKFHDhwgOXLl+Pk5GQ47tSpUwkICKBLly5YWVk9VH1ra2tefvllUlJSmDt3LoMGDWL79u2GuTVnz57Np59+SoMGDXjrrbe4ceMG8+bN48SJEyxevBhzc/N8nTOvFixYYIjtxo0bfP311wwdOpSYmBhat25N27ZtWbZsGePHj6dGjRo0btyYjIwMBg0axO+//06/fv1wd3fn8uXLfP/997zxxhusXLnSaK7Su+WnDS+99BI//vgjS5YsYdmyZVSrVo2vvvoKc/Oc/0u5933KT5zFdf1FnlRpySmkJaRgaZd9Li7LktYAJMXcxsI6+7yTD1s3OS6ByAOnKF27EiXLG/+9xl+NBuDGiTDOrtpDcmwC5taWlG9ag0ptfDExfeIHgYiIPPYSU1KIT0rGMYcRVw7WmfecG3FxlLTKfU7kT55/DnOzvM9VHJuQwNYTJ2lUuTKVckiKiohI4Sn05OTcuXOpV68eX375pSHR1qdPH9q0acPOnTuNkpPJycmMGTOGvn37AtCrVy+6devGpEmT6Nq1K+bm5owbNw4nJydCQ0OxuTNpcb9+/XjxxRcZP348gYGBRgnE/LK0tOTrr7/mrbfe4vfff2fRokUsWrQIMzMzGjZsyMCBA2nRogWQORdkYGAgwcHBeHl5GeZ9XLhwITdv3mTRokV4ev41H5atrS2zZs3i9OnT1K5d27Ddy8uL+fPnGxI5ZcuWZdq0aWzbts3Q0zA/AgMDmTdvHklJSYaYPD09cXBwYP369UbJyXXr1lGlSpUiWRHbzs6OsLCwHPc1b96cK1eusGTJEvz8/Aw97JYvX24U98WLF/niiy8YOHAgb7/9tqF+586d6d69OzNmzGDUqFGG7eXLl+fTTz81/K7lt35GRgbLly83/G65ubkxfPhwNm3aRM+ePbl58ybTpk2jZcuWzJw5E7M7H2gqVKjA6NGj2b17N1WqVMnXOfMqNjaWkJAQypQpA8D58+fZsGEDr732Gu+88w4AzZo1o127duzevZvGjRtz5MgRDh48yH//+1969+5tOJavry+vvvoqe/bsyTE5md/rtnv3bmJiYgzXcOLEibi5ueXalnvfp99++y1PcRbn9Rd5UqUmZk7BYWaR/SNC1rb05JRCrXvl0BkyUtOp0Dz7ven2nZ6TcZduULldA0wtzLh29DwXtx0h+VYC1btnn5ZFREQeLwl3RrhZ5fAg3PLOtsSUnO9NWfKTmATYdvIUKWlpdKrjk696IiKSf4Xe3WD16tXMmjXLqAfgjRs3sLOzIz4+3qisnZ0dvXr1Mry2tLSkV69eXL9+nWPHjhEdHc2BAwdo1aqVYY67qKgoYmNjadu2LdevX+fo0aMFjtnDw4OQkBDmz59P//798fT0JC0tjf379/PKK68wa9as+9YfOHAgu3fvNkpMJiYmYnqnN8e97R4wYIBRD7OgoCAAw/DxwmBhYUH79u3Zu3cvN2/eBCAqKop9+/bRuXPnQjvP3VJTUx+q5+fdNm3aRHp6OgEBAYb3OyoqijJlylCzZs1s16hhw4ZG58xv/VatWhkSkwA1atQAMnv1AuzZs4ekpCT69u1rSIwBdO3alZCQEBo3bpzvc+ZVvXr1DIlJwLCSedu2bQ3bshYnyhq+XLduXX7++WejhHRaWhrp6ZmTft++fTvHc+WnDYsWLeL111/H0dGRUaNGkZGRwbvvvktiYiJXrlzh+++/JzIy0uj4975PeY2zOK+/yBPvfv+dP+j/+nzWvXzwDLauTthVKpttn2M1VyoG1KXuoE6UrV8VZx8PavV5Cuc6Hlw5eIbbl6PvH4uIiDw27vddo6DfQ+617dQpKpUpjVe5coV6XBERya7Qe05aWFjw888/s2bNGs6dO0dYWBg3btwAyNazqmLFitmGgVasWBGAiIgIQ3JvwYIFLFiwIMfz3ZsEeVgmJiY0adLE0KPv0qVLrFixgpkzZzJ16lS6detG2bLZvzRlSUlJYfLkyRw/fpywsDDCw8MNq2dnJVyyVKlSxei1vb099vb2REREFEpbsnTt2pUlS5awefNmevTowYYNG0hNTS30Id1ZYmJiCjx8Nqvn5d296e5274Ir956voPWzeuFmvWdZ70mlSpWMyllZWRl6w+b3nHlV+p7hI1l/K3fHnJWwu3v+NXNzc77//nsOHDjAhQsXCAsLMyxYk9s8bXltw8WLF/n444+pUaMGCxYswMbGhosXL7JgwQLGjRtHjRo1GDt2LF988QXly5c31M/p9yIvcRbn9Rd5EqSlpJKWaDzfspnlnR6OqWk5lgcws8r57+ph6sZfjSHxxq1cVwB3ql4Bp+oVsm0v17g61478Scy5SGzLOeZYV0RE/nmSU1OJv2ctAKs7n+eSU1NzLA9gY/Hwo+nuFR4dzZWbsXlaAVxERAqu0JOTY8eOZeHChdSqVQtfX1+6detGvXr1GDt2bLZEYk5Pt7KSEqampobkXt++fQkMDMzxfFWrFmzVtAULFpCUlMSrr75qtN3V1ZWhQ4diZWXFpEmT+PXXX2nfvn2Oxzh48CCvvPIKNjY2+Pn50aNHD2rVqkVYWBgfffRRtvK5tdssn0MNHqRBgwa4urqyfv16evTowfr16/H29s6W6CkMcXFxXLx4kdatWxfoOFlJwa+++ooSJUo8sPy91yy/9U0fMFdZ1vHu9yQ2v+fMq9zmb7xfLFFRUTz//PNcvXqV5s2bExAQQI0aNXBzc+P555/PtV5e2/DTTz+RkpLCq6++auhx+t5773HkyBGWLVuGg4MDpUqVonlz42GW975PeY2zOK+/yJPg+tHznF6+y2ibe5u6mFlbkBwbn6188q0EgBznlAQwL2GZ77pRpzIXlitdO3/3pqw5LNOTs39RFRGRf669f5xjxvYdRtt6NKiPjZUl0fHZ7y9Z2xxsc743PYxfwy4C0NijcqEdU0REcleoycmIiAgWLlxIt27dmDhxotG+69evZysfGRlJRkaGUeLh/PnzALi7u+Ps7AxkJjb8/PyM6p49e5bw8HCsra0LFPPmzZs5cuQIffr0MRrem6V69eoA9016fP7555QoUYK1a9ca9RCbMWNGjuUjIiKoVq2a4XXWUPWsBWEKi4mJCZ06dWLevHlcunSJQ4cOGc35WZg2bNhARkaGYTXzh5XVu7Z8+fLUrFnTaN+OHTsoWbJkkda/V1bvv7CwMDw8PAzbk5OTeffdd+nSpUuhn7MgFi1aRHh4ON9++y3NmjUzbD98+PB96+W3DXcndS0tLZkyZQrPPvssMTExvPLKKw/8u8xrnP+06y/yT+NQ1RXvl9sZbSvhVIqb568QdykqW/nbkTcoUbpUjovhZCnpWjpfdWMvXMXS3gYbZ/scj3f0m42YmJjgPaCt0fb4qzEAWDnqb1xE5HFSp4Ibozp3NNrmYmfHycuXOZ/Dd8rzN25Q1t7uvovh5Nepy5dxsrXB1cGh0I4pIiK5K9Q5J7PmNry3N+OOHTs4f/48qfd0w79x4wZbtmwxvI6Pj2fx4sW4ublRs2ZNXFxc8Pb2JjQ0lCtXrhjKpaSkMGrUKN58881sx8yvLl26EB8fz4QJE7INv05PT2fZsmXY2dnRqFFml/6sHmB3l80aznx3YvLWrVuEhoYCGHqAZlm2bJnR66yVzAuS2DM1Nc0WP2S2LyUlhU8++YSMjAw6duyYQ+2CuXr1Kp9//jlly5Yt8JDxp556CoCZM2caDUE+ceIEr7/+OvPmzSvS+vfy8/PDwsKCpUuXGh1vw4YNbNiwoUjOWRBZi9Tc/TeYkZHBwoULAXL9e8lrGxo1aoSpqSlLliwx+n27fv06SUlJAKxfv94wlUNB4/ynXX+RfxorOxscq7oa/bN2KkWZ2pVIuHaT6LOXDGXjr8UQ80ckznU87nNE8l03LvJGthW672ZhY0X0mQhuhf/1hTQ9LY2LO49hZm2Bk1f2Id8iIvLP5Whri0+FCkb/ytrZ0dijMpdibnI0PNxQNiI6huMREfjdNfd/YTh/44ZW6BYR+Rs9VM/JyZMnY2trm21727ZtcXV1ZcaMGSQlJVGuXDmOHDlCaGgoVlZW2RbjsLe357333uPFF1/EwcGBFStWEBkZyRdffGHomTV69GhefPFFevTowQsvvICDgwNr167lt99+4+2338bRsWDzTHXv3p2dO3eyZMkSfvnlFzp06EC5cuW4ceMG69ev59SpU0yaNMnQq9LBwQFTU1O2bNmCq6sr7dq1w9/fn9mzZzNs2DBatGjBtWvXWL58uaG36L3tPnjwIP/6179o1aoVhw8fZuXKlXTs2NGoB1l+OTk58fPPPzN37lwaNGhA3bp1gcwFXqpVq8a6deto0qTJfefNzIvNmzcbrnlSUhLnzp1j5cqVJCUlMXv27AIPq61evTpBQUEsWLCAmJgYAgMDiYmJYeHChdja2jJs2LAirX+v0qVLM2TIEKZMmcLLL79MYGAgly9fZuHChTRp0oSAgABMTU0L9ZwF4e/vz4IFCxg0aBDPPfccKSkprF+/nmPHjmFqaprrgjh5vW7Vq1enb9++LFiwgNdee402bdpw7tw5li5diouLCz179mTSpEn069ePb7/9tsBx/tOuv8jjolzD6lzae5ITi7dRoaU3ZhbmhO88hqWdDW7NaxvKJcclEH3mEiXLO2JbzilfdQHS09JJirmd45ySWSq3a0DU6XCOfbsJN7+amFlZcvXXP4i7dAOvnv6Ylyi8OcZEROTR9VSNGvx47DhTNm/h6Tp1sDI3Z82RIzja2tLRx9tQ7mZ8PEfCI6hU2gn3h0gwpqWncyMujnp31kIQEZGi91DJyTVr1uS4vUqVKsyaNYsJEyYwf/58MjIycHd3Z9SoUaSmpjJ+/HiOHTuGt3fmzcPT05N+/foxdepUIiMjqV69OjNnzqRly5aGY9arV4/Fixczbdo0vvnmG1JTU/Hw8GDChAk8++yzDxO+EVNTU6ZMmcKqVatYtWoVCxcu5NatW9jb29OgQQP++9//UqdOHUN5a2trhg8fzpw5cxg3bhzu7u4MHTqUtLQ01q1bx7Zt23BxccHPz4+XX36Zzp07s2/fPqMVlidPnsycOXMYP348Dg4OvP766wwZMqRA7Xj11Vc5deoUn332Gd27dzckJyGz9+Rnn33G008/XaBzAAQHBxt+trCwoGzZsgQEBPDaa68ZDbstiP/85z9UqVKF77//nv/973+UKlWKhg0bMmzYMKMV0Yuq/r1ef/11nJ2dmT9/PhMmTMDZ2ZmePXsydOhQQxK9sM/5sPz9/Rk3bhxz585lwoQJ2NvbU7t2bZYsWcL//d//sX///lzr5rUNo0aNwtXVlSVLlvDxxx9TunRpevXqxRtvvGFY3Gn16tXY29vnOJ1DfuP8J11/kceFqbkZPq+05891PxP+0zFMTEywr1KOKh0bYWHz17C5+KsxnF62E/c2dQ3JybzWBUhNSIIMMLtPgrGEY0nqvtaJ85sOEb7zGBnpGdiWd6J2/0D1mhQReYJYmJkx+unOLNi3nx9++w1TExNqubrSr2lTSt3VQSIiJoYvt22nR4P6D5WcvJ2UREYGWFvq4ZeIyN/FJCO35XvlsTFr1iymTZvGrl27sLfPeU4vkcJ071yy/2S9t018cCEREZEi8tWxwptHT0REJL8chz5eI9Gip00t1vM/btezsBTqnJPy6ElOTiYkJITAwEAlJuVv87gkJkVERERERESkaBXqat2PgrS0NKKisq8SmpNSpUoVeI7ER9WVK1cIDg7m7NmzXLhwgU8++cRof2JiIrdu3crTsZycnAwLAcnDuX37NvHx8Xkqm7VKvYiIiIiIiIjI4+6xS05GRkbmedXr4OBgunfvXsQRFQ97e3sOHjxIamoqH3zwAT4+Pkb7161bx8iRI/N0rC1btlChgub1Koi5c+cyffr0PJU9depUEUcjIiIiIiIiIvJoeOySk87OznzzzTd5Klu1atUijqb4lChRgl27duW6v0WLFnm+TurJV3DPPPMMDRo0KO4wREREREREREQeKY9dctLKygo/P7/iDuOR5+LigouLS3GH8cSoWLEiFStWLO4wREREREREREQeKVoQR0RERERERERERIqFkpMiIiIiIiIiIiJSLJScFBERERERERERkWKh5KSIiIiIiIiIiIgUCyUnRUREREREREREpFgoOSkiIiIiIiIiIiLFQslJERERERERERERKRZKToqIiIiIiIiIiEixUHJSREREREREREREioWSkyIiIiIiIiIiIlIszIs7ABERERERydnr3knFHYKIiDzBvi/uAOSJoJ6TIiIiIiIiIiIiUiyUnBQREREREREREZFioeSkiIiIiIiIiIiIFAslJ0VERERERERERKRYKDkpIiIiIiIiIiIixULJSRERERERERERESkWSk6KiIiIiIiIiIhIsVByUkRERERERERERIqFkpMiIiIiIiIiIiJSLJScFBERERERERERkWKh5KSIiIiIiIiIiIgUCyUnRUREREREREREpFiYF3cA8s8THh5OmzZtePbZZ5kwYQJBQUFERESwdetWQ5m4uDiSk5NxcnIybEtOTiY6OpqyZcsWS7x3MzU1xcbGBg8PD7p160afPn0wMzMz7N+/fz/9+/cnODiY7t27AxAREcGIESP47bffsLa2Zv369ezevZvJkydz7do12rVrx6RJk/7Wtj2pRowYQWhoKKdOnSruUEQeO4lRtzi3/mdunrsMgFONCnh0bIRlSetCqZfXcrcirnP+x0PEhl3FxMQEe49yeHRshI2zfWE1VUREHlFFfS+625nQPSRcv0md1zrmuD8lIYlDk0Px6NCQsvWrPmSLRETkfpSclAIbPHgwCQkJhtfHjh3j9ddf59NPP6VJkyZAZmLv5ZdfZtCgQYZk39+tYcOG9OzZE4D09HRiYmLYuXMn48aNY9euXXz55ZeGBKWnpycTJ06kfv36hvr/+9//OHjwIG+88QbOzs6YmJgwcuRIKlSowOjRo6lUqVKxtEtEpLCkxCdxZM4GMtLSqeDvTUZGBuE7j3H7cjS+/3oa07se4jxMvbyWi792kyOzN2BmaY77U3UBiNj9O7/NWkf9od2wsrP5ey6IiIj87Yr6XnS3ywdPc/nn09h75Nx5Ij0tjZOLt5MSl1iobRQREWNKTkqBNW/e3Oj16dOnuXr1qtG28PBwzp8//zdGlV3FihXp1q2b0baXXnqJzz77jJkzZzJ37lxee+01AMqUKZOt7KlTp6hZsyZDhgwB4PDhw6SkpNC3b1969er19zRCRKQIRew6TtLNeBq82Q0bFwcASlVw5tjcjVw5fJbyjbwKVC/P5fb8TnpyKnUHdqSka2kAHDxd+fXLNUTsPk6Vjo2K7iKIiEixKup7EUBGejoXtx/hwpZfc40j6eZtTn6/g9gLV3MtIyIihUNzTsoT780338TDw4NvvvmG1NTUXMulpKRga2tr9Bow2iYi8k927cg5HDzKGb7UAThWdcXa2Y5rR/4scL28lkuMuoW5rZUhMQlQqkIZzG2siL8SXbBGiojII62o70VpKakcnv4DFzb/iouvJ5b22XvjR5+J4ODkUOIio3D1q1ko7RIRkdwpOSkFFhQUREBAAADTpk1j5MiRAPTv35+AgABCQkLo378/ACNHjsTL66+nljdv3mTs2LG0bNkSb29vOnbsyLx588jIyDCUmTZtGj4+PmzatInmzZtTr149li1bVmjxm5ub06lTJ27cuMHvv/8OZM456eXlRUhIiOHniIgIDhw4gJeXFyNGjMjWpvDwcAAuX77Me++9R9OmTfHx8eGZZ55h9erVRuccMWIEHTp04LvvvqNRo0Y0atSIn376Kd/1jxw5Qr9+/ahbty5+fn6MGzeOxETjYSdXrlxh1KhRtGjRgnr16tGjRw82b95sVCYv58yradOmUa9ePc6ePctLL72Er68vLVu2ZPbs2WRkZDBnzhxat25NvXr1eOWVVwzXLcvevXt59dVXadKkCbVr16Zly5aMGTOG2NjY+563MNsg8iRKSUgiMSqOkm6ls+0rWb40cZduFKhefo5vXdqO1PgkkuP+mjIkJT6J1MRkLB4w35iIiPxzFfW9CCAjNZ20pGRqvNAKr+dbYmJqkq1O/NWbOHiWo/7QrpSu5V6AFomISF5oWLcUqrZt23Lt2jWWLFnC4MGD8fHxwcvLi8GDBzNjxgx69epFgwYNAIiPj6dfv35ERkbSp08fypUrx759+/j44485f/48H3zwgeG4qampjBkzhpdeeonk5GTDMQpLtWrVADh58iR16tQx2pc1/2RwcDCOjo4MHjyY8uXLU7ZsWaM2OTk5ceXKFZ5//nkyMjIICgrC3t6eLVu28O6773L16lVeffVVw3EjIyP56quveOONN7h69Sq+vr75qh8VFcUrr7xCx44d6dq1Kz/99BMLFizA0tKS9957D4CYmBh69uxJTEwMffv2pWLFiqxZs4Y33niD6dOnExgYmK9z5lVKSgovvvgigYGBtGvXjhUrVvDpp5+yb98+IiIiGDBgANHR0Xz99deMHDmSBQsWALBr1y5ee+016tevz5tvvomJiQm7d+9myZIl3Lx5k6lTp+Z4vqJog8iTJvlmPACWOcznaGlnTVpCCqkJyZhbWz5Uvfwcv4K/N1EnL3JqyU9U6Zw5hPvc+oOYmpni5lerYA0VEZFHVlHfi8ytLTErYUHDt3pgapZ7P53yTb1wa555v0m6efuh2yMiInmj5KQUqho1auDr68uSJUvw8/MzLIjj5+fHjBkz8PX1NczlOGfOHP78809WrFhh6E3Zp08fwxyQvXr1okaNGkDmAjYvvfQSAwcOLJK47e0zV3+NiYnJti9r/smpU6cazUWZkZGRrU0fffQRycnJ/PDDD7i4uADQt29f3nnnHaZOncqzzz5L6dKZT3QTExMJDg6mU6dOhnN9/PHHea5/8+ZNRo8eTVBQEAA9e/akU6dO/PDDD4bk5OzZs7l8+TKLFi0yJHS7d+/O008/zYwZMwgMDGTy5Ml5PmdepaSk0LVrV95//30AGjVqROfOnfnll1/YvHmzYRX3iIgI1qxZQ3JyMpaWlnz77beUL1+eb775BkvLzA+dffr0oVevXuzcuTPX8xVFG0SeNGnJmVNVmFlk/2hgap65LS0lNdsXwrzWy8/xSziUpGLrOvzxwz4Of36nB7SpCTX7tDYa6i0iIo+Xor4XmVtbYmJigolZ9t6SRnVyWXRHRESKhoZ1S7HZuHEj1atXx9nZmaioKMO/wMBAALZt22ZUvlGjolsAIWv+yIJIT09n8+bNNGzYEHNzc0N7oqOjadeuHcnJyezevduoTsOGDQtUv2PHjkava9SowfXr1w2vt2/fTu3atY16mlpZWTFr1iw+//zzhzpnXmW9jwCVK1cGoH79+obEJECFChXIyMgwxDxz5kxWrFhhSEwCREdHU7JkSeLj43M8T1G2QeSJkjWdxv2/rz18vXwc//ymw5xduRc7dxe8evlT/fmWlKpQhpOLd3DjxMV8BigiIv8YRX0vEhGRR5J6TkqxCQsLIzExkWbNmuW4PzIy0uh1UfZ8y+oxeXfiLL+io6O5desWmzdvzjanY5b7telh6t8br6WlJenp6YbXERERhvlA7+bh4QHAjRs38n3OvCpTpozhZ/M7T6zvfQ/N7jyVzorZzMyMixcvMnXqVM6ePUtYWBhXrly573ke5rqJSHZmVhYApKekZduXfmexMPMSFg9dLzWv5RKSCd95jJIVSuPzSntMTDOfozrXqcyvX67hTOhuHKs9j6m5erWIiDxuivpeJCIijyYlJ+WBYmJiKFmypCHBlMWsgMMd0tLSaNCgAW+88UaO+7OG52YxNS26jr4nTpwAMAwjfxhpaZkfhtq3b0/v3r1zLFOxYkWj13dfw4ep/6BrkpaWholJ7o+QH+aceZXT78f9YoHMof4TJ07Ew8ODhg0b0q5dO+rWrcuCBQv44YcfcqxTlG0QeZJY2ZcEIPlWQrZ9ybEJmFlbYGaZ/YtdXuvltdyt8OtkpKbjXKeKITEJmUPsXOp68ueGg8Rfu0nJ8g//MElERB5NRX0vEhGRR5OSk3JfCxYsYNy4caxbtw5PT08Aw2rQdnZ2BTq2m5sbt2/fxs/Pz2j7zZs32bt3L5UqVSrQ8fMqPT2djRs3Uq5cOWrXrv3Qx3FycsLa2prU1NRsbbp06RK///471ta5rzJb0Po5cXV1JSwsLNv20NBQDh06xJgxYwr9nA8rKSmJadOm0aRJE+bOnWuUDM9tIRwomusm8iQyt7bEyqlkjiuhxkXeoJRbmRxq5b1eXsuZmt9JSKZnZCuXkZGe9UOe2iQiIv8sRX0vEhGRR5PmnJT7cnNzA+D33383bMv6uXr16jnWyerNd/fw4nuH7wIEBARw8uRJduzYYVT/q6++YtiwYZw5c6YQWvBgX375JREREbzyyisP7Nl3P+bm5vj7+7Njxw5OnjxptG/ChAkMGTKE6OjoIqufE39/f44ePcqxY8cM21JSUpgzZw7Hjh3D0tKy0M/5sBITE0lISKBy5cpGickTJ05w4MABIHPV9nsVxXUTeVKVqV2JmD8uEX8txrAt+uwlEq7F4lzHo8D18lLOxsUBSztrLh8+Q1rKX3/zaSmpXPnlD8xtrbAp61DgtoqIyKOpqO9FIiLy6FHPSbmvFi1aUKFCBcaNG8eVK1dIT09nzpw5ODs707Zt2xzrZM2DuPj/27vzuCrL/P/jL3ZBFEFBRRGIENwXIJSUyq1wUqNFTMQyS8mlZr5fbWS+TcvkqNOu9jOtxBqnKcxl3NPcl0RDLTTXXFIQEWVR2Q7L+f2BnBFBZfW4vJ+PR4+H576vz31d131OHPjc1/LNN5w/f54BAwbg7OwMwLJlyzAajYSHhzN69GjWrl3L2LFjGTJkCL6+vuzevZulS5cSGhpKaGhorfbl9OnTLF26FCjZaTs9PZ1t27axfft2+vbty7Bhw2pcx4QJE9i5cyeRkZFERkbi7u7Opk2b2LhxIxEREfj6+tZp/LWio6NZs2YNzz33HMOGDcPNzY2VK1dy7NgxYmNj66TO6nJycqJTp04sXrwYR0dHvL29OXr0KN99950p4Z2dnW3aWf1qt0sfRO50LXu259zeY+ybu4YWPdpTXFhYsv5ji8a4dS4ZPZ+bfomLv5+joacb9i4NKh1X2XIWlpb4DOjGwX9v5OdPV9IswBej0Ujq7qPkpmXh90xP7aIqInIXq+vvIhERuf0oOSk3ZGtry5dffsmUKVP44osvKCgoICgoiJiYGBwdHSuM6d69O2FhYWzcuJH4+Hj69euHj48PUVFRLF68mH379hEcHEyrVq2Ii4tjxowZfP/998TFxeHu7s6YMWMYNWpUra8xmZCQQEJCAlCy9qGjoyO+vr68/fbbPPPMM7VSX6tWrViwYAEzZsxgwYIF5OTk4OHhQUxMDFFRUXUef63GjRsTFxfHBx98wLfffovBYMDf35/Y2FjTRkS1XWdNTJ8+nalTp7Jo0SIMBgMtWrRg1KhR+Pj4MH78eOLj43n00UfLxd1OfRC5k9k62tPxpTCOr9zF7+v2YmVrTeM2rfB+LNC0Ac3Fk6kcWbiN1k/3MP1BWJm4qpRr0s6TDi88yqkNP3Pyh90AOLo3pt1zfXBp3fIW3hEREbnV6vq7SEREbj8WRqMWbhIRuZ4hG981dxNERERERETM4ttHXjN3E2pVxszr72dwKziPf9Ws9d+utOakiIiIiIiIiIiImIWmdcsdKT09naKiopuWq1evHg0aNLgFLbq7paWlVaqcg4MD9evXr+PWiIiIiIiIiMjdQslJuSM9/fTTJCcn37RceHg406ZNuwUturv16NGjUuXGjRvH+PHj67g1IiIiIiIiInK3UHJS7kjvvfce+fn5Ny3n5uZ2C1pz95s3b16lynl4eNRxS0RERERERETkbqLkpNyRAgICzN2Ee0pISIi5myAiIiIiIiIidyFtiCMiIiIiIiIiIiJmoeSkiIiIiIiIiIiImIWSkyIiIiIiIiIiImIWSk6KiIiIiIiIiIiIWSg5KSIiIiIiIiIiImah5KSIiIiIiIiIiIiYhZKTIiIiIiIiIiIiYhZKToqIiIiIiIiIiIhZKDkpIiIiIiIiIiIiZqHkpIiIiIiIiIiIiJiFtbkbICIiIiIiFft0v525myAiIveyR8zdALkXaOSkiIiIiIiIiIiImIWSkyIiIiIiIiIiImIWSk6KiIiIiIiIiIiIWSg5KSIiIiIiIiIiImah5KSIiIiIiIiIiIiYhZKTIiIiIiIiIiIiYhZKToqIiIiIiIiIiIhZKDkpIiIiIiIiIiIiZqHkpIiIiIiIiIiIiJiFkpMiIiIiIiIiIiJiFkpOioiIiIiIiIiIiFlYm7sBIiIicvvIS7/E8dU/kXX8LAAu/i3xDgvC1tG+VuIyj6Xw+7q9XE5Jx7qeDU3ae+HVrytWtjbXvXb22XT2/r8VeDzcAc/eXWrYQxERuZ2du3iJf8XHc+DMGQC6tGpFVPduNLS/8fdQZeMOpZwl7qefOJaWhqOdHYGenjwdGEhD+3plyv3f4iUcTztfrp4HvL34U7++NemiiIhcQ8lJqbGkpCR69+5NeHg406ZNIyoqiuTkZDZs2GAqc/nyZQwGAy4uLqZjBoOBjIwMmjZtapb2Xs3S0hIHBwe8vb0ZNGgQQ4cOxcrKynR+586dDB8+nKlTp/Lkk08CkJyczKRJk/jll1+wt7dn9erVbN++nY8++oi0tDT69evHBx98cEv7JiJSEwU5+STO/R5jUTEtQ9tjNBpJ2rqf7LMZdB7zOJZX/VysTlzmsRT2xa7BsUVjvB8LID8rhzM/HuBy8gU6jgrDwsKi3LWLi4o5vHAbxqLiOu27iIiY36W8PN5ZsYKi4mIGdOpEsdHIisRETqenMzn8Cayv8z1U2bgDZ84wddVqHGxteaJLZywtLFm9bx+/njnD208MwtHODgCj0UhyZiaBXp484O1dpq4mDRzr9iaIiNyDlJyUWhcdHU1ubq7p9f79+3n55Zd5//33CQ4OBkoSey+88AKjR482JftutcDAQAYPHgxAcXExmZmZbN26lcmTJ7Nt2zZmzZplSlD6+Pjw7rvv0rVrV1P8P/7xDxISEhg3bhyurq5YWFgQExNDy5Ytef311/H09DRLv0REqit526/kZ+UQ8MogHNwaAdCgpSv7Y9eSuuc3mgf51Sju+OqfsGtUn44vhWFlU/IriJ1TfY4tiyfjaDIurVuWu3bS5kRyUjNrva8iInL7WZW4j/TL2fzjmado6ewMwP1urkxZuZrNR47Qu02bGsV9uf1HLCwseHvQQJo5OQEQ5OXFpEWL+M+evQzr3g2AtEuXyS8oJNDLi56tfeu62yIi9zwlJ6XWPfjgg2VeHzlyhHPnzpU5lpSUxMmTJ29hq8rz8PBg0KBBZY6NGDGCDz/8kDlz5hAbG8tLL70EQJMmTcqVPXz4MG3atGHs2LEA7Nmzh4KCAiIjI4mIiLg1nRARqUVpicdp5N3MlGAEcL7fHXvXhqQlnrhucrIycUUFhdg61qNJe09TYhLAybtk9Hx2Snq55GT22XRObUykVa9O/P7D3trrqIiI3JZ+PHaMtu7NTQlGgA4tW9K8kRM7jh2/bnKyMnFply5xOj2D3m38TYlJgBbOjejaqhVbjhw1JSeTMjIAcG/khIiI1D1tiCNyjVdeeQVvb2/mzZtHYWHhdcsVFBRQv379Mq+BMsdERO4UBbn55KVfxrFF43LnHJs35vKZCzWKs7Kxpv3z/Wj1cKcyZbJT0gGwa1R2mlxxUTFHFm3H2dcdt84+1eqTiIjcOS7n53Pu4iW8XZuUO+fVpAknzpdf/7EqcenZ2QB4XLXMVKmmTg25lJfHhcuXATidXvLd1OJKsjPvyu/5IiJSN5SclFoXFRVFr169AJg5cyYxMTEADB8+nF69erF48WKGDx8OQExMDH5+/x2Jk5WVxTvvvEPPnj1p3749YWFhfPXVVxiNRlOZmTNn0qFDB3744QcefPBBunTpwnfffVdr7be2tqZ///5cuHCBAwcOACVrTvr5+bF48WLTv5OTk9m1axd+fn5MmjSpXJ+SkpIAOHv2LK+99hrdunWjQ4cOPPHEEyxbtqxMnZMmTeKxxx7j66+/JigoiKCgILZs2VLl+MTERIYNG0anTp0ICQlh8uTJ5OXllSmbmprKX/7yF3r06EGXLl146qmnWLduXZkylamzsm70fv3666+MHz+ekJAQ2rVrR/fu3fnf//1fzp49W+Yaly9fZsqUKTz88MN06tSJAQMGlHvPK/PZEZHrM2TlAGDb0KHcOduG9hTlFlCYa6i1uLyMy6Tu+Y1jK3bh0LQRjdu2KnM+aes+ci9c5P5B3avVHxERubNkXEkeujiUf9Dv7OBATr6B7Pz8asfZWZeM2s+tINF46crvy5k5JUtTJWVkUM/Ghvk7dvB87DxGxH7Jq998y4+/Hatm70RE5EY0rVvqVN++fUlLSyMuLo7o6Gg6dOiAn58f0dHRzJ49m4iICAICAgDIyclh2LBhpKSkMHToUJo1a0Z8fDxTpkzh5MmTvPnmm6brFhYW8sYbbzBixAgMBoPpGrXF17dkbZlDhw7RsWPHMudK15+cOnUqzs7OREdH07x5c5o2bVqmTy4uLqSmpvLMM89gNBqJiorCycmJ9evXM3HiRM6dO8eLL75oum5KSgqffvop48aN49y5c3Tu3LlK8enp6YwcOZKwsDAGDhzIli1bmD9/Pra2trz22msAZGZmMnjwYDIzM4mMjMTDw4MVK1Ywbtw4PvnkE/r06VOlOiurovfr8OHDDB06FE9PT0aNGoW9vT179uxh6dKl/P777yxcuBAo2TgpMjKSo0ePMnjwYPz9/dm8eTOvv/46ubm5DB8+vEqfHRGpWJGh5I+1q6dcl7K88gddUUEh1va2NY4ryMnnp/dK/h+3tLXCZ0Bwmfjs1AxOrf8Fn4HB2DnVJy/jck26JiIid4DSpKGtdfnvE9sr68AbCgupf2XTmqrGtXR2xt7Whl0nTjCocyfTJmyGwkISk5JL/l1UMmvqdEYGeQUF5OQbGPPIw+QYDHy/bz8z12+gqLhY61CKiNQyJSelTvn7+9O5c2fi4uIICQkxbYgTEhLC7Nmz6dy5s2ktx7lz53LixAkWLVpkGk05dOhQ0xqQERER+Pv7AyUb2IwYMYJRo0bVSbudrqxDk5mZWe5c6fqT06dPL7MWpdFoLNenv/3tbxgMBpYvX46bmxsAkZGRTJgwgenTpxMeHk7jxiVTIfPy8pg6dSr9+/c31TVlypRKx2dlZfH6668TFRUFwODBg+nfvz/Lly83JSc///xzzp49y7///W9TQvfJJ5/k8ccfZ/bs2fTp04ePPvqo0nVWVkXv15tvvomFhQX//Oc/adSoEQAREREUFBSwcuVKMjMzadSoEQsXLuTQoUO8//77DBgwwFRu2LBhfPbZZwwbNqxKnx0RuY7SUcblN8yu/TgL8B/yEMVFxZzZcYB9sWtpM+QhmrT3wlhczJFF22jo5XbdNS5FROTuUzrbpTRpWNtx1lZW/KFjBxYm7GHmho080blkV+8FPyWQfyXBaWVZMrGwdxt/jEYj/dq1M8WH+Pgw8buFfB2/kwfv98HSUpMQRURqi36iym1j7dq1tG7dGldXV9LT003/9enTB4CNGzeWKR8UFFRnbSmohXVliouLWbduHYGBgVhbW5v6k5GRQb9+/TAYDGzfvr1MTGBgYI3iw8LCyrz29/fn/FXr82zatIl27dqVGWlqZ2fHZ599xowZM6pVZ2Vd+3699dZbbNiwwZSYhJLp23ZXnobn5OSY2uzi4sLjjz9uKmdhYcG7777L119/jYWFRZU/OyJSnpWdDQDFBUXlzhVfWX/Xup5NrcTZ2Nvh2tGbpl186PhSGPUa1efYyl0AJG3dT3ZKBt6PBlKQnUdBdh6FuSXT+IoMhRRk52m5BhGRu5C9Tcl3haGCNd8NRSXfMfa2tuXOVSXuya5dCevQnvhjx/jzwsXELFqChYUFAzqVrIfseOX30L5t25ZJTELJyMyevr5k5eaaNswREZHaoZGTcts4deoUeXl5dO9e8fpiKSkpZV5XdfReVZSOmHSpYMHsysrIyODSpUusW7eu3JqOpW7Up+rEX9teW1tbiouLTa+Tk5NN64FezdvbG4ALFy5Uuc7Kuvb9srCwICMjgzlz5nD48GFOnTrFmTNnTEmH0nYnJyfTqlWrck/DW7RoYfp3VT87IlKenVPJhjSGS7nlzhku5mJlb4OVbfnkZHXjSlnZWOPi78GZHw9SkJ1HxpFkjEXF/DxrRbmyyVt/JXnrrwRNfJp6zo4VXE1ERO5UjR1Lfq5nXnlAfbWMnBwc7GypZ1P++6QqcRYWFgwP6c6gzp1IybpIY8f6uDZoQNyun7C0sKCJ442/W5zs7QHIu8GmmSIiUnVKTkqVZWZm4ujoiPU167pYXVnTpbqKiooICAhg3LhxFZ4vnWJcqi6nUhw8eBCgRlOBi648qX300UcZMmRIhWU8PDzKvL76HlYn/mb3pKio6IZTXqpTZ2Vd27ZVq1YxYcIE3Nzc6NatG6GhobRv355t27YxZ86cSre5tExVPjsiUp61vS12Lo4V7sp9OeUCDVqU3wW1KnE5aZns//IHWvbsgHu3sj9bi/ILwAIsrK3w7h9UbgOdgsu5HF6wFbcu9+HW5X5sHOtVt5siInKbqm9nh2uDBhXuyn3y/Hnuc3WtcdyPvx2jkYM9bd3dcXL470ZuB1NS8HZtgq21NenZ2UxZuYruPj48FdC1zPWSrwxgcGvQoDpdFBGR61ByUqpk/vz5TJ48mVWrVuHj4wNg2g26YcOGNbp2ixYtyM7OJiQkpMzxrKwsduzYgaenZ42uX1nFxcWsXbuWZs2a0e6a6RxV4eLigr29PYWFheX6dObMGQ4cOID9laevdRFfEXd3d06dOlXu+JIlS9i9ezdvvPFGrdd5PR988AGenp4sWrQIh6t+OVy+fHm5Nh8+fLhc/ObNm1m1ahUTJ068bT47Ine6Ju08OfPjAXLSMnFwbQRAxm9nyE27SMue7WsUV8+lIYV5BlJ2HaZZkC+WVx7G5GVc5vz+kzh5N8PazqbCJGjphjj1XBrgfL97LfZYRERuJw94e/H9/v0kZ2TSwrkRAPuSkkjJzDJNva5J3MrERAyFRUx7+knT+pJ7fj/F4bOpvPzIQwC41K9PjsHAhkOHCOvQHocrU8LPX7rM5sNHaNfCnUZX/e4qIiI1pzUnpUpKp9IeOHDAdKz0361bt64wpnTE3NXTi0tHCF59rFevXhw6dIjNmzeXif/000959dVXOXr0aC304OZmzZpFcnIyI0eOrPKC3FeztrYmNDSUzZs3c+jQoTLnpk2bxtixY8m4wXo1NY2vSGhoKPv27WP//v2mYwUFBcydO5f9+/dja2tb63VeT2ZmJu7u7mUSkykpKaxduxb47yjO0NBQzp8/zw8//FAm/quvvmLTpk04OzvfNp8dkTtdy57tsba3Y9/cNSRt+5VTm37h4DcbcWzRGLfOJQ+kctMvkbr3GLnpl6oUZ2llic/j3cg5m0HiZ6s5E3+QUxt+5udPV4ClBT6PB5ulzyIicvsY2LkT9e3s+PvKlaxMTGTJnr18vG493q5N6OF7PwCpFy+y9chRUi9erFJcSbnOJGVk8O73a1h34CDf7trFxz+so6NHS3rc/99yIx58kPTL2bz5n2Ws3refxXv28PqS/2BlacHzD5Z9GC4iIjWnkZNSJT169KBly5ZMnjyZ1NRUiouLmTt3Lq6urvTt27fCmNJ1EL/55hvOnz/PgAEDcHZ2BmDZsmUYjUbCw8MZPXo0a9euZezYsQwZMgRfX192797N0qVLCQ0NJTQ0tFb7cvr0aZYuXQqU7PKXnp7Otm3b2L59O3379mXYsGE1rmPChAns3LmTyMhIIiMjcXd3Z9OmTWzcuJGIiAh8fX3rNP5a0dHRrFmzhueee45hw4bh5ubGypUrOXbsGLGxsXVS5/WEhoayatUq3njjDTp06EBSUhILFiwgN7dk3brs7GwAhgwZwqJFi/jTn/5EZGQk3t7ebNq0ie3btzNlyhSsrKxu+WdH5G5l62hPx5fCOL5yF7+v24uVrTWN27TC+7FALK1LHipdPJnKkYXbaP10D+xdGlQ6DqBpFx8srS05vXkfx1f+hJWtNY18muPZtysOrk5m6bOIiNw+Gtrb8+bAAfzzxx18l7AbO2trAj09iewWjM2VwQ2HUs4ye9Nmoh9+iKZXZm5VJg4g+D5vxvfuxbKff2b+jnic7O15vFNHBnXuXGYJoiBvL/730b78Z+/PfLNzFzbWVrRt3pwhDzxgGpkpIiK1R8lJqRJbW1u+/PJLpkyZwhdffEFBQQFBQUHExMTgeJ0FpLt3705YWBgbN24kPj6efv364ePjQ1RUFIsXL2bfvn0EBwfTqlUr4uLimDFjBt9//z1xcXG4u7szZswYRo0aVetrTCYkJJCQkACULI7t6OiIr68vb7/9Ns8880yt1NeqVSsWLFjAjBkzWLBgATk5OXh4eBATE0NUVFSdx1+rcePGxMXF8cEHH/Dtt99iMBjw9/cnNjbWtJlMbdd5PW+99RYODg5s2LCBpUuX0qxZM5544gn69u3Ls88+S3x8PG3btqVevXrMnz+fjz/+mJUrV3Lp0iV8fHz4+OOPTbuTN2rU6JZ+dkTuZg6uTrR/vuKHTQBNu95P0673lzt+s7hSrh28ce3gXaU21XN2pOeU56sUIyIidyb3Ro2Y1D/suucf8mvNQ37lZ2zdLK5UyP0+hNzvc9NygV5eBHp53bSciIjUnIWxdGtcEREpZ8jGd83dBBERuYd9ut/O3E0QEZF7mPP4V83dhFqVMXO6Weu/2+5nbdFwIhERERERERERETELTeuWu0J6erppA5UbqVevHg0aNLgFLbq7paWlVaqcg4MD9evXr+PWiIiIiIiIiMidSslJuSs8/fTTJCcn37RceHg406ZNuwUturv16NGjUuXGjRvH+PHj67g1IiIiIiIiInKnUnJS7grvvfce+fn5Ny3n5uZ2C1pz95s3b16lynl4eNRxS0RERERERETkTqbkpNwVAgICzN2Ee0pISIi5myAiIiIiIiIidwFtiCMiIiIiIiIiIiJmoeSkiIiIiIiIiIiImIWSkyIiIiIiIiIiImIWSk6KiIiIiIiIiIiIWSg5KSIiIiIiIiIiImah5KSIiIiIiIiIiIiYhZKTIiIiIiIiIiIiYhZKToqIiIiIiIiIiIhZKDkpIiIiIiIiIiIiZqHkpIiIiIiIiIiIiJiFkpMiIiIiIiIiIiJiFkpOioiIiIiIiIiIiFkoOSkiIiIiIiIiIiJmoeSkiIiIiIiIiIiImIWSkyIiIiIiIiIiImIWSk6KiIiIiIiIiIiIWSg5KSIiIiIiIiIiImah5KSIiIiIiIiIiIiYhZKTIiIiIiIiIiIiYhZKToqIiIiIiIiIiIhZKDkpIiIiIiIiIiIiZqHkpIiIiIiIiIiIiJiFtbkbcK9KSkqid+/ehIeHM23aNKKiokhOTmbDhg2mMpcvX8ZgMODi4mI6ZjAYyMjIoGnTpmZp79UsLS1xcHDA29ubQYMGMXToUKysrEznd+7cyfDhw5k6dSpPPvkkAMnJyUyaNIlffvkFe3t7Vq9ezfbt2/noo49IS0ujX79+fPDBB7e0b/eqSZMmsWTJEg4fPlyt+DNnzjBlyhR27dpF/fr1eeqppxgzZgyWlnrmIXIny0u/xPHVP5F1/CwALv4t8Q4LwtbRvlbi9s5azuWkC+XiG7f3pO3QRyq89tElP5J7PouOL4VVp0siInIHOXfxEv+Kj+fAmTMAdGnViqju3Whof+Pvoat9vmUrKZmZvDFwQLWv/2vyGRYkJPD7hQs42NoSfN99RAQFUs/Gpga9ExGRiig5eZuIjo4mNzfX9Hr//v28/PLLvP/++wQHBwMlib0XXniB0aNHm5J9t1pgYCCDBw8GoLi4mMzMTLZu3crkyZPZtm0bs2bNMiUofXx8ePfdd+natasp/h//+AcJCQmMGzcOV1dXLCwsiImJoWXLlrz++ut4enqapV9SNfn5+YwcOZLc3FxeeeUVDhw4wMyZM3FwcOCFF14wd/NEpJoKcvJJnPs9xqJiWoa2x2g0krR1P9lnM+g85nEsr3oAVZ04o9FIzrksGrdtReN2ZX/e12tUv8Jrn004wtmfjuDkfWsfyomIyK13KS+Pd1asoKi4mAGdOlFsNLIiMZHT6elMDn8C6+t8D11t46HDbDh4iDbNm1X7+r8mn+HvK1fi3aQJQ4Mf4MLlbFbv38/xtDTeGjgACwuLWu+7iMi9TMnJ28SDDz5Y5vWRI0c4d+5cmWNJSUmcPHnyFraqPA8PDwYNGlTm2IgRI/jwww+ZM2cOsbGxvPTSSwA0adKkXNnDhw/Tpk0bxo4dC8CePXsoKCggMjKSiIiIW9MJqbGEhASOHz/Oxx9/TFhYyUimvXv3snLlSiUnRe5gydt+JT8rh4BXBuHg1giABi1d2R+7ltQ9v9E8yK9GcfkZlyk2FNK4bSuadvG5YVuMxcWc3pTI7+t/rq3uiYjIbW5V4j7SL2fzj2eeoqWzMwD3u7kyZeVqNh85Qu82ba4bW1xczJK9P7No9+4aX/9f8fE0dnTkzYEDsLUu+ZO5iaMjsdu288vpJDq38qitLouICFpzUmrJK6+8gre3N/PmzaOwsPC65QoKCqhfv36Z10CZY3L7Kx3le+bKdBij0YjBYMBG01xE7mhpicdp5N3MlGAEcL7fHXvXhqQlnqhxXPa5TADsmzjdsB1FBYXs+WQ5v6/7GbfOPtg6OVSrPyIicmf58dgx2ro3NyUOATq0bEnzRk7sOHb8unGGwkJiFi9hYcJuevj64lK/4u+NylzfUFhIQ3t7evn7mxKTAG2aNwfg9wvllyYREZGaUXLyNhEVFUWvXr0AmDlzJjExMQAMHz6cXr16sXjxYoYPHw5ATEwMfn7/Hb2SlZXFO++8Q8+ePWnfvj1hYWF89dVXGI1GU5mZM2fSoUMHfvjhBx588EG6dOnCd999V2vtt7a2pn///ly4cIEDBw4AJWtO+vn5sXjxYtO/k5OT2bVrF35+fkyaNKlcn5KSkgA4e/Ysr732Gt26daNDhw488cQTLFu2rEydkyZN4rHHHuPrr78mKCiIoKAgtmzZUuX4xMREhg0bRqdOnQgJCWHy5Mnk5eWVKZuamspf/vIXevToQZcuXXjqqadYt25dmTKVqbOyZs6cSZcuXfjtt98YMWIEnTt3pmfPnnz++ecYjUbmzp3Lww8/TJcuXRg5cqTpvpXasWMHL774IsHBwbRr146ePXvyxhtvcPHixRvWW9k+dOvWDWdnZ2bNmsWhQ4d46623SEpK4tlnny1X9kbvU2Xbeavvv8i9qCA3n7z0yzi2aFzunGPzxlw+U/EfY1WJy0nNAMDBrSQ5WWQoqPCaxsJiivIN+D/7EH7P9MTCUtPnRETudpfz8zl38RLerk3KnfNq0oQT589fN7agqIgcg4FX+/RmzCMPV7gGemWvb2ttTUz/MMK7dilT5uSFkvOuDRpUpVsiIlIJmtZ9G+rbty9paWnExcURHR1Nhw4d8PPzIzo6mtmzZxMREUFAQAAAOTk5DBs2jJSUFIYOHUqzZs2Ij49nypQpnDx5kjfffNN03cLCQt544w1GjBiBwWAwXaO2+Pr6AnDo0CE6duxY5lzp+pNTp07F2dmZ6OhomjdvTtOmTcv0ycXFhdTUVJ555hmMRiNRUVE4OTmxfv16Jk6cyLlz53jxxRdN101JSeHTTz9l3LhxnDt3js6dO1cpPj09nZEjRxIWFsbAgQPZsmUL8+fPx9bWltdeew2AzMxMBg8eTGZmJpGRkXh4eLBixQrGjRvHJ598Qp8+fapUZ2UVFBTw3HPP0adPH/r168eiRYt4//33iY+PJzk5meeff56MjAy++OILYmJimD9/PgDbtm3jpZdeomvXrrzyyitYWFiwfft24uLiyMrKYvr06RXWV5U+ODo68tZbb/Hqq68SHh6OpaUlEydOLDeN/0bvU2Xbaa77L3KvMWTlAGDbsPxoE9uG9hTlFlCYa8Da3rbacTnnMrGys+b4qp9ISzxBsaGQei6OePbtilun+0xxVvVsCPyfp7C00jNUEZF7RUZ2NgAuDuVnVDk7OJCTbyA7P5/6dnblzjvY2vLxkAisbrAxY3Wvn3bpEgfOpPCv+Hg8XJwJ9NIa+SIitU3JyduQv78/nTt3Ji4ujpCQENOGOCEhIcyePZvOnTubkkBz587lxIkTLFq0yDSacujQoaY1ICMiIvD39wdK1mEZMWIEo0aNqpN2OzmVjITJzMwsd650/cnp06eXWYvSaDSW69Pf/vY3DAYDy5cvx83NDYDIyEgmTJjA9OnTCQ8Pp3HjkhE6eXl5TJ06lf79+5vqmjJlSqXjs7KyeP3114mKigJg8ODB9O/fn+XLl5uSk59//jlnz57l3//+tymh++STT/L4448ze/Zs+vTpw0cffVTpOiuroKCAgQMH8uc//xmAoKAg/vCHP7B3717WrVtn2sU9OTmZFStWYDAYsLW15csvv6R58+bMmzcPW9uSJMLQoUOJiIhg69at162vKn3Iyspi69atWFhYUFxcTO/evW+YAKzofapsO811/0XuNaWjGK1syv9qYHllWltRQWG55GRV4rJTMynKL6Qwz4DfMz0pzDNw5scDHI7bgrHYaFqH0sLCAgsrjZYUEbmX5F5Z7unqqdSlbK9sVGMoLKwwOWlhYYHVTTapqc71L+Xl8cq/vzXFPf9gSIXxIiJSMxqScIdbu3YtrVu3xtXVlfT0dNN/ffr0AWDjxo1lygcFBdVZW0rXj6yJ4uJi1q1bR2BgINbW1qb+ZGRk0K9fPwwGA9u3by8TExgYWKP40g1dSvn7+3P+qmkjmzZtol27dmVGmtrZ2fHZZ58xY8aMatVZWaXvI4CXlxcAXbt2NSUmAVq2bInRaDS1ec6cOSxatMiU8APIyMjA0dGRnJycCuupSh/S09OJjIxk6dKlTJw4kfbt2/PDDz+wdOlSAFatWmWatn21q9+nqrTTnPdf5J5SuhRIVXOCVYhrHtQan4HBtB36CE3aedIswJdO0X+gnosjJ1b/hLG4uIqVi4jI3aJ0Saq62gm7Ote3sLDglT69GPPIw7R0bsTfV6xi5/Hrr8EsIiLVo8c+d7hTp06Rl5dH9+7dKzyfkpJS5nVdjh4rHTF5deKsqjIyMrh06RLr1q0rt6ZgqRv1qTrx17bX1taW4qv+QE5OTjatB3o1b29vAC5cuFDlOiurSZP/roljfeUp7bXvodWVJ72lbbaysuL06dNMnz6d3377jVOnTpGamnrDeqpy3z788EOOHj3K+++/z4ABA+jXrx9PPvkkb731Fm3btuXvf/87rq6uhIaGlomvqN2Vaac577/IvcTKrmRDq+KConLniq9sdGZdr/ymV1WJax7sXz7exhq3Lj6cWv8LOecyqd+s+t8hIiJy57K/srGioYLNNQ1FJd8x9ra25c7V5fUd7ezo7lMyqj/4Pm8mfreQf+7YQfB93tVuh4iIlKfk5C2SmZmJo6OjKcFUqjSxVF1FRUUEBAQwbty4Cs+XTnEtVdHi0LXl4MGDAKZp5NVRdOUXg0cffZQhQ4ZUWMbDw6PM66vvYXXib3ZPioqKbviEtTp1VlZFn4+bPe2dO3cu7777Lt7e3gQGBtKvXz86derE/PnzWb58eYUxVenD+vXr8fLyYsCAAabjU6dOZezYsQwbNozMzEyGDRt2075Utp3mvP8i9xI7J0cADJdyy50zXMzFyt4GK9vyycnqxl3Npr49AEWG8n8wiojIvaGxY8n3SWYFM30ycnJwsLOlns2Nv0/q8vq21tZ0adWKNft/5WJuHg3t61W7LSIiUpaSk7fA/PnzmTx5MqtWrcLnypO30t2gGzZsWKNrt2jRguzsbEJCQsocz8rKYseOHXh63poFm4uLi1m7di3NmjWjXbt21b6Oi4sL9vb2FBYWluvTmTNnOHDgAPb29nUWXxF3d3dOnTpV7viSJUvYvXs3b7zxRq3XWV35+fnMnDmT4OBgYmNjyyTDr7cRDlTtvhmNxnKJxj59+vDCCy8QGxuLjY0NQ4cOrbV23kn3X+ROZm1vi52LY4W7cl9OuUCDFuV3N61KXH5WNvvmrcWtozetenUuUy73fBYA9Zwda9gLERG5U9W3s8O1QYMKd+U+ef4897m63pLrJ2dkMm31agZ26kTfdm3LlMsrKMDCAmy0YZuISK3ST9VboEWLFgAcOHDAdKz0361bt64wpnQ039XTi6+dvgvQq1cvDh06xObNm8vEf/rpp7z66qscPXq0Fnpwc7NmzSI5OZmRI0fWaJ0Ya2trQkND2bx5M4cOHSpzbtq0aYwdO5aMjIw6i69IaGgo+/btY//+/aZjBQUFzJ07l/3792Nra1vrdVZXXl4eubm5eHl5lUn4HTx4kF27dgElu7Zfqyr3LTg4mGPHjpmuV3rNc+fOASX3Ji4urtbaeSfdf5E7XZN2nmQeO0NOWqbpWMZvZ8hNu4hrx+tPYatMnJ1TfYryDKT8dITCPIOpXF7mZVJ3H8XJpxm2Dcrv+C0iIveOB7y92J+cTHJGpunYvqQkUjKzCLkyyKOur9/MqSE5BgPrDh6ksOi/S5akXbrEzuMnaNO8eY2ml4uISHkaOXkL9OjRg5YtWzJ58mRSU1MpLi5m7ty5uLq60rdv3wpjStdB/Oabbzh//jwDBgzA2dkZgGXLlmE0GgkPD2f06NGsXbuWsWPHMmTIEHx9fdm9ezdLly4lNDS03Lp/NXX69GnTxidGo5H09HS2bdvG9u3b6du3b4XTeatqwoQJ7Ny5k8jISCIjI3F3d2fTpk1s3LiRiIgIfH196zT+WtHR0axZs4bnnnuOYcOG4ebmxsqVKzl27BixsbF1Umd1OTk50alTJxYvXoyjoyPe3t4cPXqU7777zpTwzs7ONu2sfrXK9mHChAn8+OOPjBkzhueffx4nJyeWLFnCr7/+SnR0NJs2beLDDz/E2tqaF154ocbtvJPuv8idrmXP9pzbe4x9c9fQokd7igsLSdq6H8cWjXHrXPJHW276JS7+fo6Gnm7YuzSodByAz8BuHPzXRn6Zs4pmga0pMhRwZsdBLCwtuX9AN7P0WUREbh8DO3di69Gj/H3lSv7QsQOGwiJWJCbi7dqEHr73A5B68SJHzqbSullTmlZxFlplrm9lacnzISHM2riJt5evoKfv/VzKy2ftr79iaWnB8w+G3KQWERGpKiUnbwFbW1u+/PJLpkyZwhdffEFBQQFBQUHExMTg6FjxFLbu3bsTFhbGxo0biY+Pp1+/fvj4+BAVFcXixYvZt28fwcHBtGrViri4OGbMmMH3339PXFwc7u7ujBkzhlGjRtX6GpMJCQkkJCQAJWsfOjo64uvry9tvv80zzzxTK/W1atWKBQsWMGPGDBYsWEBOTg4eHh7ExMQQFRVV5/HXaty4MXFxcXzwwQd8++23GAwG/P39iY2NNW1EVNt11sT06dOZOnUqixYtwmAw0KJFC0aNGoWPjw/jx48nPj6eRx99tFxcZfvg4eHBt99+y/vvv8+8efMoKiqiXbt2zJkzh4cffpioqCjGjBlDy5Yta6Wdd9r9F7mT2Tra0/GlMI6v3MXv6/ZiZWtN4zat8H4sEEvrktH7F0+mcmThNlo/3cOUnKxMHECTtp60jerFqU2JnFiTgKWNFY28m+P1aFccXBuZo8siInIbaWhvz5sDB/DPH3fwXcJu7KytCfT0JLJbMDZXZpEdSjnL7E2biX74oSonJytzfYCerX2xsbJi6c8/M39HPHbW1rRv0YLBQYG4N2pUm10WERHAwmg0Gs3dCBG5uxiNxhpN77+dDNn4rrmbICIi97BP99uZuwkiInIPcx7/qrmbUKsyZl5/L4Zb4W67n7VFa06KSK27WxKTIiIiIiIiIlK3NK37Hpaenk7RVYs8X0+9evVo0KDBLWjR3S0tLa1S5RwcHKhfv34dt0ZERERERERExPyUnLyHPf300yQnJ9+0XHh4ONOmTbsFLbq79ejRo1Llxo0bx/jx4+u4NSIiIiIiIiIi5qfk5D3svffeIz8//6bl3NzcbkFr7n7z5s2rVDkPD486bomIiIiIiIiIyO1Bycl7WEBAgLmbcE8JCQkxdxNERERERERERG4r2hBHREREREREREREzELJSRERERERERERETELJSdFRERERERERETELJScFBERERERERERuU398Y9/xM/Pj4yMjHLn/vznP+Pn58fLL79c7lx2djZt27blf/7nf25FMwE4ffp0lWOUnBQREREREREREblNBQUFAZCYmFju3M6dO7GxseGnn36iqKiozLnExESKiooIDg6+Je2cNWsWL7zwQpXjlJwUERERERERERG5TV0vOXny5ElSUlJ4/PHHuXTpEr/++muZ83v27AHggQceuCXt3LFjR7kEaWUoOSkiIiIiIiIiInKb8vX1pVGjRvzyyy9ljsfHx2NpaUl0dDQWFhbs2LGjzPm9e/fi5uaGt7f3rWxulSk5KSIiIiIiIiIicpuysLAgMDCQffv2lTkeHx+Pv78/Xl5e+Pn5ER8fbzpnNBpJTEw0jZosKiriiy++4NFHH6V9+/b06NGDN998k/T0dFPMzp078fPzY8mSJQwYMIAOHToQExMDwK5du4iMjCQwMJAuXbowZMgQNmzYYIrt1asXu3btIjk5GT8/P2bOnFnp/ik5KSIiIiIiIiIichsLCgoiMzOTkydPAiXJx127dpnWk+zWrRt79uzBYDAAcOzYMbKysujWrRsAf/rTn3jvvfdo3bo1MTExPPbYYyxcuJBnn32Wixcvlqnrb3/7Gw888AATJ06kd+/eHD9+nNGjR2M0GvnTn/7EhAkTyM3NZcyYMSQkJADwl7/8hfvuuw9nZ2feffdd+vbtW+m+Wdf05oiIiIiIiIiIiMiN9e7d+4bn169ff91zpSMgf/nlF7y8vDhy5AgXLlwwJR+Dg4P58ssv2bNnD926dWPv3r2muC1btrBmzRqGDx/O//3f/5muGRAQwB//+Edmz57Na6+9Vub4X//6V9Przz//nJycHD755BNcXFwA6N+/P0OGDOHgwYMEBgbSp08fvvrqK/Lz8xk0aFCV7ouSkyIiN/DtI6/dvJCIiEhdecTcDRAREbl7OI9/1bwN+M+yaof6+/vToEEDEhMTGTRoEPHx8VhZWREYGAiUjKy0srJi165dplGUzZo1w9PTk3nz5gEwevToMtcMCwtj+vTprF+/vkxysnQDnlLNmjUD4J133mHkyJG0b98eZ2dn1qxZU+3+XE3JSRERERERERERkTp2o5GRN2NpaUlAQIBpU5z4+Hjat2+Po6MjAA0aNKBNmzbs3r0bgJ9//tk05TspKYmGDRvSpEmTctf18fFhy5YtZY6Vjo4s9dhjj/HDDz+watUqVq1ahaurKw899BDh4eGm5GhNaM1JERERERERERGR21xgYCCHDh0iPz+fhIQE05TuUsHBwSQmJpKens6JEydMU8GNRuN1r1lcXIyNjU2ZY1ZWVmVe29jYMGPGDJYtW8b48eNxd3dn8eLFREZG8tlnn9W4X0pOioiIiIiIiIiI3OYeeOABCgoKWL16NRcvXjSNjCzVrVs3cnJyWLlyJUaj0XS+RYsWXLx4kfPnz5e75okTJ2jevPkN6z1z5gwJCQn4+fkxbtw4FixYwMaNG/Hy8mLu3Lk17peSkyIiIiIiIiIiIre5du3a4eDgwLfffouNjQ0BAQFlzgcEBGBtbc2SJUto0aIFHh4eAPTq1QuAOXPmlCm/bt06Tpw4wcMPP3zDemfPns3zzz9Pamqq6VizZs1wc3PD0vK/qUVLS0uKi4ur3C+tOSkiIiIiIiIiInKbs7a2pkuXLmzfvp3AwEDq1atX5nz9+vXp0KEDe/fuJTw83HT8oYceonfv3vzzn/8kNTWV4OBgTp48yTfffIOHh0e5jXKuFRkZydKlS4mMjCQiIgInJyfi4+PZtWsXr7zyiqmci4sLP/30E7GxsQQEBNCpU6dK9UsjJ0VERERERERERO4ApTtpX7veZKnSqdyl600CWFhYMH36dF599VUOHTrE1KlTWbt2LRERESxcuJCGDRvesE4/Pz/mzZuHp6cnsbGxvPPOOxw9epS//vWvjBkzxlTuxRdfxMvLiw8//JBFixZVuk8WxhutiikiIiIiIiIiIiJSRzRyUkRERERERERERMxCyUkRERERERERERExCyUnRURERERERERExCyUnBQRERERERERERGzUHJSREREREREREREzELJSRERERERERERETELJSdFRERERERERETELJScFBEREREREREREbNQclJERERERERERETMQslJERERERERERERMQslJ0VERERERERERMQslJwUERERERERERERs1ByUkRERERERERERMzi/wP0p2rzt7wOMwAAAABJRU5ErkJggg==" }, "metadata": {}, "output_type": "display_data" @@ -872,12 +872,12 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 52, "id": "2326c129", "metadata": { "ExecuteTime": { - "end_time": "2024-06-01T21:36:58.791239Z", - "start_time": "2024-06-01T21:36:58.785485Z" + "end_time": "2024-09-02T20:28:59.307529Z", + "start_time": "2024-09-02T20:28:59.303005Z" } }, "outputs": [], diff --git a/docs/examples/experiment_config.yaml b/docs/examples/experiment_config.yaml index d2c62434..6a868515 100644 --- a/docs/examples/experiment_config.yaml +++ b/docs/examples/experiment_config.yaml @@ -1,6 +1,8 @@ -dataset_name: COMPAS_Without_Sensitive_Attributes + +dataset_name: Law_School bootstrap_fraction: 0.8 +computation_mode: error_analysis random_state: 42 n_estimators: 50 # Better to input the higher number of estimators than 100; this is only for this use case example -computation_mode: error_analysis -sensitive_attributes_dct: {'sex': 1, 'race': 'African-American', 'sex&race': None} +sensitive_attributes_dct: {'male': '0', 'race': 'Non-White', 'male&race': None} +postprocessing_sensitive_attribute: 'race_binary' diff --git a/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__191212/Metrics_COMPAS_Without_Sensitive_Attributes_DecisionTreeClassifier_50_Estimators_20240902__191214.csv b/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__191212/Metrics_COMPAS_Without_Sensitive_Attributes_DecisionTreeClassifier_50_Estimators_20240902__191214.csv new file mode 100644 index 00000000..3716dc73 --- /dev/null +++ b/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__191212/Metrics_COMPAS_Without_Sensitive_Attributes_DecisionTreeClassifier_50_Estimators_20240902__191214.csv @@ -0,0 +1,19 @@ +Metric,overall,sex_priv,sex_dis,race_priv,race_dis,sex&race_priv,sex&race_dis,Model_Name,Model_Params,Virny_Random_State,Runtime_in_Mins +Mean_Prediction,0.5201168108728857,0.5720489239709505,0.5071491471288718,0.5810262097183775,0.48083878731831625,0.5724233463307555,0.4682050417203582,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}",42,0.05899205 +IQR,0.09321837048697892,0.09288338781740779,0.09330201704707303,0.09518186766055678,0.09195219006663434,0.09473005478101326,0.0917180951310128,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}",42,0.05899205 +Overall_Uncertainty,0.8998362650313954,0.9094072894833833,0.8974463405824376,0.8967189378524929,0.9018465040533045,0.9011307663161433,0.8985515335676644,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}",42,0.05899205 +Std,0.07622812066711862,0.07729579369363514,0.07596151829008313,0.07514093950769543,0.07692920010637282,0.07596589571178881,0.07648836656618178,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}",42,0.05899205 +Aleatoric_Uncertainty,0.8699437461655267,0.8757908936185071,0.8684836892275635,0.8660146038356851,0.8724774921539294,0.8695412666279979,0.8703431881216402,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}",42,0.05899205 +Statistical_Bias,0.4221936839922687,0.4168417690478572,0.4235300793215833,0.4185233716587245,0.4245605209176383,0.4169029354399021,0.4274445023668816,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}",42,0.05899205 +Epistemic_Uncertainty,0.029892518865868634,0.03361639586487619,0.02896265135487408,0.030704334016807833,0.02936901189937502,0.031589499688145395,0.02820834544602413,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}",42,0.05899205 +Label_Stability,0.7865909090909091,0.7668246445497631,0.791526627218935,0.8012560386473431,0.7771339563862929,0.7931558935361217,0.7800754716981132,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}",42,0.05899205 +Jitter,0.1480983302411873,0.1598994100009675,0.1451515517449584,0.13886029774228556,0.15405556615169452,0.14401489873515969,0.15215094339622645,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}",42,0.05899205 +TPR,0.6878980891719745,0.5733333333333334,0.7095959595959596,0.5782312925170068,0.7376543209876543,0.601063829787234,0.7455830388692579,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}",42,0.05899205 +TNR,0.6871794871794872,0.8088235294117647,0.6503340757238307,0.7565543071161048,0.6289308176100629,0.7662721893491125,0.5789473684210527,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}",42,0.05899205 +PPV,0.6390532544378699,0.6231884057971014,0.6415525114155252,0.5666666666666667,0.6694677871148459,0.5885416666666666,0.6698412698412698,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}",42,0.05899205 +FNR,0.31210191082802546,0.4266666666666667,0.2904040404040404,0.4217687074829932,0.2623456790123457,0.39893617021276595,0.254416961130742,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}",42,0.05899205 +FPR,0.3128205128205128,0.19117647058823528,0.34966592427616927,0.24344569288389514,0.3710691823899371,0.23372781065088757,0.42105263157894735,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}",42,0.05899205 +Accuracy,0.6875,0.7251184834123223,0.6781065088757396,0.6932367149758454,0.6838006230529595,0.7072243346007605,0.6679245283018868,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}",42,0.05899205 +F1,0.6625766871165644,0.5972222222222222,0.6738609112709832,0.5723905723905723,0.7019089574155654,0.5947368421052631,0.705685618729097,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}",42,0.05899205 +Selection-Rate,0.48011363636363635,0.32701421800947866,0.5183431952662721,0.36231884057971014,0.5560747663551402,0.3650190114068441,0.5943396226415094,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}",42,0.05899205 +Sample_Size,1056.0,211.0,845.0,414.0,642.0,526.0,530.0,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}",42,0.05899205 diff --git a/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__191212/Metrics_COMPAS_Without_Sensitive_Attributes_LogisticRegression_50_Estimators_20240902__191214.csv b/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__191212/Metrics_COMPAS_Without_Sensitive_Attributes_LogisticRegression_50_Estimators_20240902__191214.csv new file mode 100644 index 00000000..eb0ed3f3 --- /dev/null +++ b/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__191212/Metrics_COMPAS_Without_Sensitive_Attributes_LogisticRegression_50_Estimators_20240902__191214.csv @@ -0,0 +1,19 @@ +Metric,overall,sex_priv,sex_dis,race_priv,race_dis,sex&race_priv,sex&race_dis,Model_Name,Model_Params,Virny_Random_State,Runtime_in_Mins +Mean_Prediction,0.51987527529406,0.5667976457966112,0.508158565026559,0.5853888389798944,0.47762821086113855,0.5734379386288904,0.4667168584749639,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.08121993333333334 +IQR,0.027530551760038283,0.026885306150093848,0.02769167226145636,0.02712688294929466,0.027790861553882305,0.027419161561839045,0.02764110127749639,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.08121993333333334 +Overall_Uncertainty,0.9113463914637511,0.9197978513777793,0.9092360269171713,0.9163233844447729,0.9081369287002884,0.918766773125671,0.9039820126822984,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.08121993333333334 +Std,0.022001522231657432,0.02202236209638192,0.02199631843111676,0.022079539514525234,0.02195121202120997,0.02218723058537651,0.021817215450419248,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.08121993333333334 +Aleatoric_Uncertainty,0.9086231626304789,0.917298554899211,0.9064568812473993,0.9138828188161628,0.9052314217256925,0.9162462105769467,0.9010576471213435,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.08121993333333334 +Statistical_Bias,0.4349363283173577,0.4344937955506501,0.43504683058218047,0.43433306791288717,0.4353253467090255,0.4333038826946261,0.43655645359576667,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.08121993333333334 +Epistemic_Uncertainty,0.00272322883327214,0.0024992964785682803,0.0027791456697719985,0.0024405656286100585,0.002905506974595906,0.0025205625487243477,0.002924365560954878,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.08121993333333334 +Label_Stability,0.9435984848484847,0.9143127962085309,0.9509112426035503,0.9457004830917874,0.9422429906542056,0.9371102661596958,0.9500377358490566,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.08121993333333334 +Jitter,0.04155303030303035,0.05982783634780927,0.036989735539186115,0.03993295869072265,0.04259774938012583,0.04558857763637791,0.037547939930689306,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.08121993333333334 +TPR,0.6263269639065817,0.48,0.6540404040404041,0.4421768707482993,0.7098765432098766,0.48404255319148937,0.7208480565371025,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.08121993333333334 +TNR,0.7316239316239316,0.8088235294117647,0.7082405345211581,0.8164794007490637,0.660377358490566,0.8106508875739645,0.6234817813765182,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.08121993333333334 +PPV,0.6526548672566371,0.5806451612903226,0.6641025641025641,0.5701754385964912,0.6804733727810651,0.5870967741935483,0.6868686868686869,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.08121993333333334 +FNR,0.37367303609341823,0.52,0.34595959595959597,0.5578231292517006,0.29012345679012347,0.5159574468085106,0.2791519434628975,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.08121993333333334 +FPR,0.26837606837606837,0.19117647058823528,0.29175946547884185,0.18352059925093633,0.33962264150943394,0.1893491124260355,0.3765182186234818,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.08121993333333334 +Accuracy,0.6846590909090909,0.6919431279620853,0.6828402366863905,0.6835748792270532,0.6853582554517134,0.6939163498098859,0.6754716981132075,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.08121993333333334 +F1,0.6392199349945829,0.5255474452554745,0.6590330788804071,0.49808429118773945,0.6948640483383686,0.5306122448979592,0.7034482758620689,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.08121993333333334 +Selection-Rate,0.42803030303030304,0.2938388625592417,0.46153846153846156,0.2753623188405797,0.5264797507788161,0.2946768060836502,0.560377358490566,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.08121993333333334 +Sample_Size,1056.0,211.0,845.0,414.0,642.0,526.0,530.0,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.08121993333333334 diff --git a/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__191212/Metrics_COMPAS_Without_Sensitive_Attributes_RandomForestClassifier_50_Estimators_20240902__191214.csv b/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__191212/Metrics_COMPAS_Without_Sensitive_Attributes_RandomForestClassifier_50_Estimators_20240902__191214.csv new file mode 100644 index 00000000..63184bd9 --- /dev/null +++ b/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__191212/Metrics_COMPAS_Without_Sensitive_Attributes_RandomForestClassifier_50_Estimators_20240902__191214.csv @@ -0,0 +1,19 @@ +Metric,overall,sex_priv,sex_dis,race_priv,race_dis,sex&race_priv,sex&race_dis,Model_Name,Model_Params,Virny_Random_State,Runtime_in_Mins +Mean_Prediction,0.5223580732536224,0.5772518864256917,0.508650860733733,0.595097466806707,0.4754513615231286,0.5840777726169991,0.4611041829420449,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.1830339 +IQR,0.09124162229148948,0.10084392452988764,0.08884388764971195,0.09338211705424111,0.08986130323887394,0.09254294805407841,0.08995011785541067,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.1830339 +Overall_Uncertainty,0.8621636502678327,0.8803766224447757,0.8576157956769036,0.8516827419756987,0.8689223668300499,0.8614131047232362,0.862908531317753,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.1830339 +Std,0.06986874362680465,0.07569031436019155,0.06841507330166306,0.07076511810069319,0.0692907077511195,0.07041891005278857,0.06932272940026211,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.1830339 +Aleatoric_Uncertainty,0.8369293613974009,0.8491088226125131,0.8338880994845148,0.8247828216002686,0.8447621767805984,0.8349342332813541,0.8389094319427607,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.1830339 +Statistical_Bias,0.40555632087192,0.39860214012279876,0.4072928086092745,0.39507258366072,0.4123168616903574,0.3978565745929863,0.4131979558581825,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.1830339 +Epistemic_Uncertainty,0.025234288870431776,0.03126779983226258,0.023727696192388792,0.026899920375430098,0.02416019004945147,0.0264788714418821,0.02399909937499234,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.1830339 +Label_Stability,0.8398106060606061,0.8001895734597156,0.8497041420118343,0.8318840579710144,0.8449221183800623,0.8346768060836501,0.8449056603773584,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.1830339 +Jitter,0.11241110080395789,0.13552567946609934,0.10663929477116273,0.11512964606132318,0.11065802021743266,0.11488787149840932,0.10995302271852146,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.1830339 +TPR,0.6772823779193206,0.6,0.6919191919191919,0.564625850340136,0.7283950617283951,0.5851063829787234,0.7385159010600707,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.1830339 +TNR,0.7367521367521368,0.7941176470588235,0.7193763919821826,0.8052434456928839,0.6792452830188679,0.7988165680473372,0.6518218623481782,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.1830339 +PPV,0.6744186046511628,0.6164383561643836,0.685,0.6148148148148148,0.6982248520710059,0.6179775280898876,0.7084745762711865,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.1830339 +FNR,0.3227176220806794,0.4,0.30808080808080807,0.43537414965986393,0.2716049382716049,0.4148936170212766,0.26148409893992935,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.1830339 +FPR,0.26324786324786326,0.20588235294117646,0.2806236080178174,0.1947565543071161,0.32075471698113206,0.20118343195266272,0.3481781376518219,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.1830339 +Accuracy,0.7102272727272727,0.7251184834123223,0.7065088757396449,0.7198067632850241,0.7040498442367601,0.7224334600760456,0.6981132075471698,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.1830339 +F1,0.6758474576271186,0.6081081081081081,0.6884422110552764,0.5886524822695035,0.7129909365558912,0.6010928961748634,0.7231833910034602,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.1830339 +Selection-Rate,0.4479166666666667,0.3459715639810427,0.47337278106508873,0.32608695652173914,0.5264797507788161,0.33840304182509506,0.5566037735849056,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.1830339 +Sample_Size,1056.0,211.0,845.0,414.0,642.0,526.0,530.0,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.1830339 diff --git a/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__191212/Metrics_COMPAS_Without_Sensitive_Attributes_XGBClassifier_50_Estimators_20240902__191214.csv b/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__191212/Metrics_COMPAS_Without_Sensitive_Attributes_XGBClassifier_50_Estimators_20240902__191214.csv new file mode 100644 index 00000000..e44a5937 --- /dev/null +++ b/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__191212/Metrics_COMPAS_Without_Sensitive_Attributes_XGBClassifier_50_Estimators_20240902__191214.csv @@ -0,0 +1,19 @@ +Metric,overall,sex_priv,sex_dis,race_priv,race_dis,sex&race_priv,sex&race_dis,Model_Name,Model_Params,Virny_Random_State,Runtime_in_Mins +Mean_Prediction,0.5247065424919128,0.5801324844360352,0.5108664035797119,0.591335654258728,0.4817401170730591,0.5819264650344849,0.46791842579841614,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}",42,0.47291105000000005 +IQR,0.06235350844817179,0.06298876684423871,0.062194881795426094,0.06034463957168054,0.06364894725637645,0.06102884167047508,0.06366817774075383,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}",42,0.47291105000000005 +Overall_Uncertainty,0.8814863180681681,0.8951641420285209,0.8780709087715595,0.8758657614303517,0.8851107891710592,0.8825820405555279,0.8803988651844865,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}",42,0.47291105000000005 +Std,0.04704658314585686,0.04691213369369507,0.047080155462026596,0.04534913972020149,0.04814119264483452,0.045675575733184814,0.048407234251499176,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}",42,0.47291105000000005 +Aleatoric_Uncertainty,0.8726425340732213,0.8864895753835295,0.8691848705034285,0.8675888809211352,0.8759014319002676,0.8742272214402473,0.8710698066108522,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}",42,0.47291105000000005 +Statistical_Bias,0.41401657071246795,0.41066599344190263,0.4148532237350588,0.4097039643765072,0.41679759722818094,0.40925580302798703,0.4187414080748018,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}",42,0.47291105000000005 +Epistemic_Uncertainty,0.008843783994946786,0.008674566644991444,0.008886038268130947,0.008276880509216489,0.00920935727079164,0.008354819115280576,0.009329058573634308,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}",42,0.47291105000000005 +Label_Stability,0.9101515151515152,0.8623696682464455,0.9220828402366865,0.896231884057971,0.9191277258566977,0.8939923954372624,0.926188679245283,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}",42,0.47291105000000005 +Jitter,0.0683812615955474,0.09846987136086668,0.06086801110976939,0.07629300995760632,0.06327929302562134,0.07723752618918313,0.059591836734694016,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}",42,0.47291105000000005 +TPR,0.6624203821656051,0.5333333333333333,0.6868686868686869,0.54421768707483,0.7160493827160493,0.5638297872340425,0.7279151943462897,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}",42,0.47291105000000005 +TNR,0.7384615384615385,0.8014705882352942,0.7193763919821826,0.7940074906367042,0.6918238993710691,0.7928994082840237,0.6639676113360324,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}",42,0.47291105000000005 +PPV,0.6709677419354839,0.5970149253731343,0.6834170854271356,0.5925925925925926,0.703030303030303,0.6022727272727273,0.71280276816609,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}",42,0.47291105000000005 +FNR,0.3375796178343949,0.4666666666666667,0.31313131313131315,0.4557823129251701,0.2839506172839506,0.43617021276595747,0.27208480565371024,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}",42,0.47291105000000005 +FPR,0.26153846153846155,0.19852941176470587,0.2806236080178174,0.20599250936329588,0.3081761006289308,0.20710059171597633,0.3360323886639676,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}",42,0.47291105000000005 +Accuracy,0.7045454545454546,0.7061611374407583,0.7041420118343196,0.7053140096618358,0.7040498442367601,0.7110266159695817,0.6981132075471698,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}",42,0.47291105000000005 +F1,0.6666666666666666,0.5633802816901409,0.6851385390428212,0.5673758865248227,0.709480122324159,0.5824175824175825,0.7202797202797203,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}",42,0.47291105000000005 +Selection-Rate,0.4403409090909091,0.3175355450236967,0.4710059171597633,0.32608695652173914,0.514018691588785,0.33460076045627374,0.5452830188679245,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}",42,0.47291105000000005 +Sample_Size,1056.0,211.0,845.0,414.0,642.0,526.0,530.0,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}",42,0.47291105000000005 diff --git a/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__191705/Metrics_COMPAS_Without_Sensitive_Attributes_DecisionTreeClassifier_50_Estimators_20240902__191705.csv b/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__191705/Metrics_COMPAS_Without_Sensitive_Attributes_DecisionTreeClassifier_50_Estimators_20240902__191705.csv new file mode 100644 index 00000000..c1ba3180 --- /dev/null +++ b/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__191705/Metrics_COMPAS_Without_Sensitive_Attributes_DecisionTreeClassifier_50_Estimators_20240902__191705.csv @@ -0,0 +1,19 @@ +Metric,overall,sex_priv,sex_priv_correct,sex_priv_incorrect,sex_dis,sex_dis_correct,sex_dis_incorrect,race_priv,race_priv_correct,race_priv_incorrect,race_dis,race_dis_correct,race_dis_incorrect,sex&race_priv,sex&race_priv_correct,sex&race_priv_incorrect,sex&race_dis,sex&race_dis_correct,sex&race_dis_incorrect,Model_Name,Model_Params,Virny_Random_State,Runtime_in_Mins +Aleatoric_Uncertainty,0.8596149143454702,0.8669904055354763,0.852746083423315,0.8997078328868471,0.8577732236459539,0.8501513107525607,0.8755076745120774,0.8530262599116102,0.8427088771207625,0.8763419202342343,0.863863672812165,0.8557331511847712,0.8830619202150688,0.8582626277252186,0.8482267224311387,0.8822840526549198,0.860956995028965,0.8531361986268069,0.8785657820203272,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",42,0.09622196666666666 +Mean_Prediction,0.5197325251220082,0.575656671169969,0.5976938910000811,0.5250399318726805,0.5057680342153577,0.5095521381281822,0.49696328849693494,0.5853740826837509,0.6087190111414371,0.532618220736066,0.4774029225821929,0.4751750763041579,0.48266343918634896,0.575688423302101,0.5962059832845691,0.5265786506989032,0.46419893560742553,0.4572585716953475,0.47982539913952776,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",42,0.09622196666666666 +IQR,0.08747405418041407,0.08877327715109583,0.08193560270454316,0.1044785606455215,0.08714963282323794,0.08483454188587859,0.09253632079166059,0.08965550148459185,0.08229698605047928,0.10628458754435802,0.08606732647958915,0.08550446309453334,0.08739639133121305,0.08872328274134222,0.08214475995801411,0.1044692953388566,0.08623425375956839,0.08639248476212223,0.08587799131823551,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",42,0.09622196666666666 +Std,0.07340411759321708,0.07665365719396335,0.07120084511715376,0.08917808493288533,0.07259269409527924,0.0695449626840285,0.07968406915059101,0.07348292419251541,0.06624008114230154,0.08985060888079403,0.07335329838432374,0.07218779133180021,0.07610535953975885,0.0739115065267265,0.0679578409414981,0.08816189318556349,0.07290055801014923,0.0718126381176748,0.07535004635700882,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",42,0.09622196666666666 +Statistical_Bias,0.41669115871514556,0.41326113747808924,0.32403263214666206,0.6182078606612114,0.41754764922522714,0.31721498189424946,0.6509988554953365,0.4120908181164128,0.31001329934225724,0.6427699353461975,0.41965773349376767,0.32402003173798877,0.6454828826657901,0.4107092483552757,0.31602948952976495,0.6373298323827885,0.42262792258173343,0.32114417059814154,0.6511220144711705,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",42,0.09622196666666666 +Overall_Uncertainty,0.8876488942284766,0.8985795884794717,0.8809748403100691,0.9390154944310685,0.8849194545989382,0.8745910900290345,0.9089512005076513,0.8823181789925022,0.866750773954346,0.9174980628188872,0.8910864582591517,0.8816611166471002,0.9133421078247811,0.8881743706843164,0.8737926933830608,0.9225976111924832,0.887127383632681,0.8779551675412096,0.9077789376545826,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",42,0.09622196666666666 +Epistemic_Uncertainty,0.028033979883006377,0.031589182943995375,0.02822875688675408,0.039307661544221384,0.027146230952984296,0.024439779276473783,0.033443525995573875,0.029291919080892015,0.024041896833583487,0.041156142584652944,0.02722278544698664,0.025927965462329006,0.030280187609712295,0.02991174295909782,0.025565970951922035,0.040313558537563354,0.0261703886037159,0.024818968914402717,0.029213155634255417,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",42,0.09622196666666666 +Jitter,0.10841604823747669,0.13046522874552693,0.10277384423157036,0.1940688775510204,0.10291027653665011,0.09009427121102255,0.1327301944399809,0.107780735482599,0.08154163407523293,0.16707697252129264,0.10882573590183718,0.09966966831078361,0.13044556042312225,0.11046325754636464,0.08739754661972601,0.1656721527320608,0.10638428956488274,0.09789912695323331,0.12548891949417806,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",42,0.09622196666666666 +Label_Stability,0.8629166666666667,0.8274881516587679,0.8669387755102042,0.736875,0.8717633136094675,0.8892724196277497,0.8310236220472441,0.8596135265700483,0.8968641114982577,0.7754330708661418,0.8650467289719624,0.8771618625277161,0.8364397905759163,0.856958174904943,0.889811320754717,0.7783225806451612,0.8688301886792453,0.8797820163487738,0.8441717791411044,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",42,0.09622196666666666 +TPR,0.6560509554140127,0.49333333333333335,1.0,0.0,0.6868686868686869,1.0,0.0,0.5170068027210885,1.0,0.0,0.7191358024691358,1.0,0.0,0.5478723404255319,1.0,0.0,0.7279151943462897,1.0,0.0,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",42,0.09622196666666666 +TNR,0.7333333333333333,0.8088235294117647,1.0,0.0,0.7104677060133631,1.0,0.0,0.7902621722846442,1.0,0.0,0.6855345911949685,1.0,0.0,0.7928994082840237,1.0,0.0,0.6518218623481782,1.0,0.0,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",42,0.09622196666666666 +PPV,0.6645161290322581,0.5873015873015873,1.0,0.0,0.6766169154228856,1.0,0.0,0.5757575757575758,1.0,0.0,0.6996996996996997,1.0,0.0,0.5953757225433526,1.0,0.0,0.7054794520547946,1.0,0.0,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",42,0.09622196666666666 +FNR,0.34394904458598724,0.5066666666666667,0.0,1.0,0.31313131313131315,0.0,1.0,0.48299319727891155,0.0,1.0,0.2808641975308642,0.0,1.0,0.4521276595744681,0.0,1.0,0.27208480565371024,0.0,1.0,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",42,0.09622196666666666 +FPR,0.26666666666666666,0.19117647058823528,0.0,1.0,0.289532293986637,0.0,1.0,0.20973782771535582,0.0,1.0,0.31446540880503143,0.0,1.0,0.20710059171597633,0.0,1.0,0.3481781376518219,0.0,1.0,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",42,0.09622196666666666 +Accuracy,0.6988636363636364,0.6966824644549763,1.0,0.0,0.6994082840236686,1.0,0.0,0.6932367149758454,1.0,0.0,0.7024922118380063,1.0,0.0,0.7053231939163498,1.0,0.0,0.6924528301886792,1.0,0.0,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",42,0.09622196666666666 +F1,0.6602564102564102,0.5362318840579711,1.0,0.0,0.681704260651629,1.0,0.0,0.5448028673835126,1.0,0.0,0.7092846270928462,1.0,0.0,0.5706371191135734,1.0,0.0,0.7165217391304348,1.0,0.0,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",42,0.09622196666666666 +Selection-Rate,0.4403409090909091,0.2985781990521327,0.25170068027210885,0.40625,0.4757396449704142,0.4602368866328257,0.5118110236220472,0.3188405797101449,0.26480836236933797,0.4409448818897638,0.5186915887850467,0.516629711751663,0.5235602094240838,0.3288973384030418,0.2776280323450135,0.45161290322580644,0.5509433962264151,0.5613079019073569,0.5276073619631901,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",42,0.09622196666666666 +Sample_Size,1056.0,211.0,147.0,64.0,845.0,591.0,254.0,414.0,287.0,127.0,642.0,451.0,191.0,526.0,371.0,155.0,530.0,367.0,163.0,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",42,0.09622196666666666 diff --git a/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__191705/Metrics_COMPAS_Without_Sensitive_Attributes_LogisticRegression_50_Estimators_20240902__191705.csv b/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__191705/Metrics_COMPAS_Without_Sensitive_Attributes_LogisticRegression_50_Estimators_20240902__191705.csv new file mode 100644 index 00000000..bba63a8a --- /dev/null +++ b/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__191705/Metrics_COMPAS_Without_Sensitive_Attributes_LogisticRegression_50_Estimators_20240902__191705.csv @@ -0,0 +1,19 @@ +Metric,overall,sex_priv,sex_priv_correct,sex_priv_incorrect,sex_dis,sex_dis_correct,sex_dis_incorrect,race_priv,race_priv_correct,race_priv_incorrect,race_dis,race_dis_correct,race_dis_incorrect,sex&race_priv,sex&race_priv_correct,sex&race_priv_incorrect,sex&race_dis,sex&race_dis_correct,sex&race_dis_incorrect,Model_Name,Model_Params,Virny_Random_State,Runtime_in_Mins +Aleatoric_Uncertainty,0.9123450427125209,0.920625077641404,0.9087794673951717,0.9472321406560186,0.9102774836947761,0.901140163841699,0.9299499969605433,0.9177452762926515,0.9096320875772343,0.9352722412274845,0.9088626490954274,0.8982131727090864,0.9320595283528034,0.9198895585007834,0.911255981277903,0.9394625751861952,0.9048574666660569,0.893942021256762,0.9275768239714495,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.10668165 +Mean_Prediction,0.5199450050553764,0.5662002368694692,0.5791607442233473,0.5370889434284507,0.5083948820816799,0.5075953424932974,0.5101162788820407,0.584100423846899,0.5998844709860928,0.5500020624698616,0.47857375368514227,0.47198335451403867,0.4929290786122986,0.5724779023960666,0.5859827789164238,0.5418612568685486,0.46780858241159723,0.45686108092387334,0.4905946610895343,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.10668165 +IQR,0.027083150256957164,0.026423801299132382,0.02550936566736344,0.028477764410490304,0.0272477924227572,0.02734224096926293,0.02704444611181017,0.02670026786210817,0.025062176258905618,0.03023904590566788,0.02733005572653269,0.028200555785067007,0.0254339169851708,0.02698261430915576,0.025844850916711147,0.029562015788921498,0.02718292744288837,0.028121424139944697,0.025229544782736243,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.10668165 +Std,0.021596015090994986,0.02160183879099127,0.020988968179904716,0.022978440471277995,0.021594560888984076,0.021467455990035085,0.021868215839333214,0.02164960109403703,0.02040601126053998,0.024336134856477214,0.021561459631089366,0.021991386985871636,0.020624984204830967,0.02175753321017443,0.020903418727786727,0.023693879707513008,0.02143571597648859,0.02184738442702284,0.02057887117828358,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.10668165 +Statistical_Bias,0.43621008148181445,0.4356389888592183,0.36190123437713334,0.6012653296959014,0.43635268567514907,0.3538639842723283,0.6139496286207745,0.4356656825651123,0.3527975981221014,0.6146860481939069,0.43656114246548217,0.3572167701719095,0.6093904682534623,0.4346209709642396,0.3575838435417682,0.609270359220153,0.4377871987124642,0.3533491515403617,0.6135361573613752,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.10668165 +Overall_Uncertainty,0.9149482865790675,0.9230013147345278,0.9109979367741322,0.9499627483071091,0.912937412092911,0.9038342614256255,0.9325363596116566,0.9200703394958863,0.9115856897479686,0.9383997736841361,0.9116452804925206,0.901225721393032,0.9343413498181397,0.9222896295418931,0.9134207241083897,0.9423961542824444,0.9076623499782255,0.8969818528269468,0.9298926870721659,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.10668165 +Epistemic_Uncertainty,0.002603243866546534,0.0023762370931238452,0.0022184693789605303,0.0027306076510905664,0.002659928398134892,0.002694097583926469,0.0025863626511133386,0.0023250632032348895,0.001953602170734259,0.0031275324566515383,0.002782631397093227,0.003012548683945626,0.0022818214653362867,0.0024000710411097304,0.0021647428304867322,0.0029335790962491393,0.002804883312168549,0.0030398315701847256,0.0023158631007164088,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.10668165 +Jitter,0.04003014842300559,0.055196827546184365,0.051831143416269966,0.06275667189952994,0.03624296582538342,0.029285891132883036,0.051221443801401124,0.038483683328403726,0.03145309006995044,0.05367191151269655,0.041027401614851536,0.035372912801484156,0.05334410992119606,0.043431364941414086,0.03713055633212185,0.05771580681962229,0.036654601463226855,0.030482271120738615,0.049501661129567824,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.10668165 +Label_Stability,0.9483712121212121,0.9273933649289099,0.9320547945205478,0.9169230769230768,0.9536094674556213,0.9621490467937608,0.935223880597015,0.9502415458937198,0.9601413427561838,0.9288549618320611,0.947165109034268,0.9534545454545454,0.9334653465346535,0.9436501901140685,0.9524383561643835,0.9237267080745342,0.9530566037735849,0.9597765363128492,0.9390697674418605,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.10668165 +TPR,0.6263269639065817,0.48,1.0,0.0,0.6540404040404041,1.0,0.0,0.4421768707482993,1.0,0.0,0.7098765432098766,1.0,0.0,0.48404255319148937,1.0,0.0,0.7208480565371025,1.0,0.0,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.10668165 +TNR,0.7316239316239316,0.8088235294117647,1.0,0.0,0.7082405345211581,1.0,0.0,0.8164794007490637,1.0,0.0,0.660377358490566,1.0,0.0,0.8106508875739645,1.0,0.0,0.6234817813765182,1.0,0.0,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.10668165 +PPV,0.6526548672566371,0.5806451612903226,1.0,0.0,0.6641025641025641,1.0,0.0,0.5701754385964912,1.0,0.0,0.6804733727810651,1.0,0.0,0.5870967741935483,1.0,0.0,0.6868686868686869,1.0,0.0,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.10668165 +FNR,0.37367303609341823,0.52,0.0,1.0,0.34595959595959597,0.0,1.0,0.5578231292517006,0.0,1.0,0.29012345679012347,0.0,1.0,0.5159574468085106,0.0,1.0,0.2791519434628975,0.0,1.0,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.10668165 +FPR,0.26837606837606837,0.19117647058823528,0.0,1.0,0.29175946547884185,0.0,1.0,0.18352059925093633,0.0,1.0,0.33962264150943394,0.0,1.0,0.1893491124260355,0.0,1.0,0.3765182186234818,0.0,1.0,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.10668165 +Accuracy,0.6846590909090909,0.6919431279620853,1.0,0.0,0.6828402366863905,1.0,0.0,0.6835748792270532,1.0,0.0,0.6853582554517134,1.0,0.0,0.6939163498098859,1.0,0.0,0.6754716981132075,1.0,0.0,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.10668165 +F1,0.6392199349945829,0.5255474452554745,1.0,0.0,0.6590330788804071,1.0,0.0,0.49808429118773945,1.0,0.0,0.6948640483383686,1.0,0.0,0.5306122448979592,1.0,0.0,0.7034482758620689,1.0,0.0,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.10668165 +Selection-Rate,0.42803030303030304,0.2938388625592417,0.2465753424657534,0.4,0.46153846153846156,0.4488734835355286,0.48880597014925375,0.2753623188405797,0.22968197879858657,0.37404580152671757,0.5264797507788161,0.5227272727272727,0.5346534653465347,0.2946768060836502,0.2493150684931507,0.39751552795031053,0.560377358490566,0.5698324022346368,0.5406976744186046,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.10668165 +Sample_Size,1056.0,211.0,146.0,65.0,845.0,577.0,268.0,414.0,283.0,131.0,642.0,440.0,202.0,526.0,365.0,161.0,530.0,358.0,172.0,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.10668165 diff --git a/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__191705/Metrics_COMPAS_Without_Sensitive_Attributes_RandomForestClassifier_50_Estimators_20240902__191705.csv b/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__191705/Metrics_COMPAS_Without_Sensitive_Attributes_RandomForestClassifier_50_Estimators_20240902__191705.csv new file mode 100644 index 00000000..8ad20266 --- /dev/null +++ b/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__191705/Metrics_COMPAS_Without_Sensitive_Attributes_RandomForestClassifier_50_Estimators_20240902__191705.csv @@ -0,0 +1,19 @@ +Metric,overall,sex_priv,sex_priv_correct,sex_priv_incorrect,sex_dis,sex_dis_correct,sex_dis_incorrect,race_priv,race_priv_correct,race_priv_incorrect,race_dis,race_dis_correct,race_dis_incorrect,sex&race_priv,sex&race_priv_correct,sex&race_priv_incorrect,sex&race_dis,sex&race_dis_correct,sex&race_dis_incorrect,Model_Name,Model_Params,Virny_Random_State,Runtime_in_Mins +Aleatoric_Uncertainty,0.9079228906658654,0.9139339641122654,0.8986081914392207,0.9461631625276387,0.9064219007283619,0.89858131141514,0.9250825032938306,0.9025702647395923,0.891870785470872,0.9267494029295349,0.9113745840201912,0.9028601690414114,0.9314793021114458,0.9072966623796926,0.8967410038221043,0.9321058216647246,0.908544392700822,0.9004320359280767,0.9271373097762445,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 4, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': None, 'verbose': 0, 'warm_start': False}",42,0.1411976 +Mean_Prediction,0.5240994439804834,0.5762226134397022,0.5948270237037261,0.5370986330315344,0.5110840726717316,0.5124971940987276,0.5077208436754815,0.5829737465140652,0.6019531703384382,0.5400832375566239,0.4861337722532203,0.4816752438830243,0.49666150154619637,0.5747795133113591,0.5915162747688103,0.5354427937075406,0.4738018657388972,0.465383711351449,0.4930956481548499,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 4, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': None, 'verbose': 0, 'warm_start': False}",42,0.1411976 +IQR,0.05378713895231291,0.05012348383129891,0.046871391383319735,0.05696244294984334,0.05470196881093297,0.054079329480402304,0.056183850417595965,0.05238018340091532,0.049804389091866075,0.05820107290246755,0.054694428046204814,0.05451430230440916,0.05511975113285319,0.05187344596243386,0.04950689977272858,0.05743558318537177,0.0556863889762306,0.05585843900411178,0.05529206313593149,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 4, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': None, 'verbose': 0, 'warm_start': False}",42,0.1411976 +Std,0.03971148500119152,0.03747687864496107,0.03477653570332399,0.04315554100752141,0.04026947546410823,0.039826423848026184,0.04132393831038348,0.0392311921124445,0.037105481620818136,0.04403496306596232,0.040021206583654545,0.03995674849218648,0.04017340867397964,0.038703081222256776,0.03678773626809553,0.04320475184700518,0.04071227818556826,0.04090810870521318,0.040263449230605666,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 4, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': None, 'verbose': 0, 'warm_start': False}",42,0.1411976 +Statistical_Bias,0.4266668589218814,0.4263663129363929,0.34076890416080935,0.6063726284497524,0.4267419064993229,0.3400179609746237,0.6331448968481072,0.4238194618120491,0.3326050454113547,0.6299496784025949,0.42850303088990416,0.3449733748156055,0.6257379779553948,0.4229413344816347,0.33758380771880464,0.623558706300006,0.4303642661965414,0.3427431301535446,0.6311853792391863,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 4, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': None, 'verbose': 0, 'warm_start': False}",42,0.1411976 +Overall_Uncertainty,0.9136493218001831,0.9190413381623638,0.9031664266459752,0.9524253432630045,0.9123029129807511,0.9044333419117323,0.9310324921250158,0.9082292838976915,0.8970505604546833,0.9334914384500015,0.9171444864288927,0.9087297707258559,0.937013788952817,0.9127825207084266,0.9018225521732951,0.9385419372018252,0.9145095809969074,0.9065531590675047,0.9327451070338614,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 4, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': None, 'verbose': 0, 'warm_start': False}",42,0.1411976 +Epistemic_Uncertainty,0.0057264311343177,0.005107374050098423,0.0045582352067545795,0.006262180735365885,0.005881012252389128,0.005852030496592331,0.005949988831185249,0.005659019158099188,0.0051797749838113916,0.006742035520466594,0.005769902408701455,0.005869601684444503,0.0055344868413711445,0.005485858328733939,0.00508154835119079,0.006436115537100662,0.005965188296085389,0.00612112313942792,0.005607797257616842,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 4, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': None, 'verbose': 0, 'warm_start': False}",42,0.1411976 +Jitter,0.07814625850340143,0.09330496179514462,0.06697302697302673,0.14867947178871527,0.07436106750392463,0.06538844109072274,0.09571591836734683,0.0746130336192447,0.05810424518239356,0.11192029567732673,0.0804246932417827,0.07052626815693039,0.1037974142536595,0.07923488787149865,0.06250318013384189,0.11855972962433384,0.0770658452060071,0.06888778275537857,0.09580935479781977,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 4, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': None, 'verbose': 0, 'warm_start': False}",42,0.1411976 +Label_Stability,0.9001515151515153,0.8792417061611374,0.9138461538461539,0.806470588235294,0.9053727810650887,0.917983193277311,0.87536,0.9047342995169082,0.9269686411149825,0.8544881889763779,0.897196261682243,0.9109534368070954,0.8647120418848168,0.8975665399239544,0.9205420054200543,0.8435668789808917,0.9027169811320754,0.9138211382113822,0.8772670807453417,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 4, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': None, 'verbose': 0, 'warm_start': False}",42,0.1411976 +TPR,0.6496815286624203,0.44,1.0,0.0,0.6893939393939394,1.0,0.0,0.5102040816326531,1.0,0.0,0.7129629629629629,1.0,0.0,0.5319148936170213,1.0,0.0,0.7279151943462897,1.0,0.0,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 4, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': None, 'verbose': 0, 'warm_start': False}",42,0.1411976 +TNR,0.7384615384615385,0.8088235294117647,1.0,0.0,0.7171492204899778,1.0,0.0,0.7940074906367042,1.0,0.0,0.6918238993710691,1.0,0.0,0.7958579881656804,1.0,0.0,0.659919028340081,1.0,0.0,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 4, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': None, 'verbose': 0, 'warm_start': False}",42,0.1411976 +PPV,0.6666666666666666,0.559322033898305,1.0,0.0,0.6825,1.0,0.0,0.5769230769230769,1.0,0.0,0.7021276595744681,1.0,0.0,0.591715976331361,1.0,0.0,0.7103448275862069,1.0,0.0,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 4, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': None, 'verbose': 0, 'warm_start': False}",42,0.1411976 +FNR,0.3503184713375796,0.56,0.0,1.0,0.3106060606060606,0.0,1.0,0.4897959183673469,0.0,1.0,0.28703703703703703,0.0,1.0,0.46808510638297873,0.0,1.0,0.27208480565371024,0.0,1.0,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 4, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': None, 'verbose': 0, 'warm_start': False}",42,0.1411976 +FPR,0.26153846153846155,0.19117647058823528,0.0,1.0,0.2828507795100223,0.0,1.0,0.20599250936329588,0.0,1.0,0.3081761006289308,0.0,1.0,0.20414201183431951,0.0,1.0,0.340080971659919,0.0,1.0,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 4, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': None, 'verbose': 0, 'warm_start': False}",42,0.1411976 +Accuracy,0.6988636363636364,0.6777251184834123,1.0,0.0,0.7041420118343196,1.0,0.0,0.6932367149758454,1.0,0.0,0.7024922118380063,1.0,0.0,0.7015209125475285,1.0,0.0,0.6962264150943396,1.0,0.0,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 4, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': None, 'verbose': 0, 'warm_start': False}",42,0.1411976 +F1,0.6580645161290323,0.4925373134328358,1.0,0.0,0.6859296482412061,1.0,0.0,0.5415162454873647,1.0,0.0,0.7075038284839203,1.0,0.0,0.5602240896358543,1.0,0.0,0.7190226876090751,1.0,0.0,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 4, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': None, 'verbose': 0, 'warm_start': False}",42,0.1411976 +Selection-Rate,0.4346590909090909,0.2796208530805687,0.23076923076923078,0.38235294117647056,0.47337278106508873,0.4588235294117647,0.508,0.3140096618357488,0.2613240418118467,0.4330708661417323,0.5124610591900312,0.5121951219512195,0.5130890052356021,0.32129277566539927,0.27100271002710025,0.4394904458598726,0.5471698113207547,0.5582655826558266,0.5217391304347826,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 4, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': None, 'verbose': 0, 'warm_start': False}",42,0.1411976 +Sample_Size,1056.0,211.0,143.0,68.0,845.0,595.0,250.0,414.0,287.0,127.0,642.0,451.0,191.0,526.0,369.0,157.0,530.0,369.0,161.0,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 4, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': None, 'verbose': 0, 'warm_start': False}",42,0.1411976 diff --git a/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__191705/Metrics_COMPAS_Without_Sensitive_Attributes_XGBClassifier_50_Estimators_20240902__191705.csv b/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__191705/Metrics_COMPAS_Without_Sensitive_Attributes_XGBClassifier_50_Estimators_20240902__191705.csv new file mode 100644 index 00000000..add4eb30 --- /dev/null +++ b/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__191705/Metrics_COMPAS_Without_Sensitive_Attributes_XGBClassifier_50_Estimators_20240902__191705.csv @@ -0,0 +1,19 @@ +Metric,overall,sex_priv,sex_priv_correct,sex_priv_incorrect,sex_dis,sex_dis_correct,sex_dis_incorrect,race_priv,race_priv_correct,race_priv_incorrect,race_dis,race_dis_correct,race_dis_incorrect,sex&race_priv,sex&race_priv_correct,sex&race_priv_incorrect,sex&race_dis,sex&race_dis_correct,sex&race_dis_incorrect,Model_Name,Model_Params,Virny_Random_State,Runtime_in_Mins +Aleatoric_Uncertainty,0.8288795609849311,0.8506699397016051,0.8313329711810706,0.8971410414686958,0.823438413163371,0.8096437138648777,0.8564570508416924,0.8318299975923873,0.8223499711667736,0.8558946800574065,0.8269769429857303,0.8084337605645421,0.869798312700639,0.8375500913978621,0.8262313801494903,0.8670097508114325,0.8202744685373806,0.8012283334592885,0.862406827952554,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': None, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0}",42,0.3579488333333333 +Mean_Prediction,0.5189512372016907,0.5749213695526123,0.5984514951705933,0.5183730721473694,0.5049753189086914,0.5072201490402222,0.49960198998451233,0.5922276973724365,0.614119827747345,0.5366553068161011,0.47169822454452515,0.46669408679008484,0.4832543432712555,0.5798354148864746,0.6007328033447266,0.5254451036453247,0.458526611328125,0.4471070170402527,0.4837881028652191,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': None, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0}",42,0.3579488333333333 +IQR,0.09322320626145511,0.0977206958978662,0.09095560564290757,0.11397873538155709,0.09210016447058796,0.09004081588163472,0.09702936832205837,0.09165308455338225,0.08532219613441314,0.10772380130922693,0.09423571465264229,0.09347325726412237,0.09599644099314188,0.09277839567724742,0.08800758174375484,0.10519558262743361,0.0936646597846499,0.09253104231128954,0.09617235904390162,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': None, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0}",42,0.3579488333333333 +Std,0.07068225741386414,0.07257327437400818,0.06769300997257233,0.0843016654253006,0.07021006941795349,0.06847503036260605,0.07436300814151764,0.06876082718372345,0.06345239281654358,0.08223610371351242,0.07192131876945496,0.07154468446969986,0.07279106974601746,0.06955240666866302,0.0656871497631073,0.07961264997720718,0.07180359214544296,0.0710582509636879,0.07345239073038101,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': None, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0}",42,0.3579488333333333 +Statistical_Bias,0.40785022563068196,0.40595479314855487,0.31533082547103797,0.6237446509542004,0.40832352297237284,0.301939517762762,0.6629615434740921,0.40321780712420235,0.3027069031916283,0.6583608709530443,0.4108374861628978,0.30588458779883304,0.6532029421788823,0.4034273862597947,0.30796976556119166,0.6518787278041039,0.41223968508178893,0.3011280401877753,0.6580321116655162,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': None, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0}",42,0.3579488333333333 +Overall_Uncertainty,0.8584497224019242,0.8806019506591429,0.8596612775943726,0.9309271165728659,0.8529182192513052,0.8386758447965929,0.8870084006770419,0.8596219572997196,0.8471760271448519,0.8912154723082302,0.8576937952248411,0.8400202093712272,0.898507024412568,0.8662386882374876,0.8534090582417181,0.8996308758977097,0.8507195412141764,0.8319038129547341,0.8923422128183971,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': None, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0}",42,0.3579488333333333 +Epistemic_Uncertainty,0.02957016141699309,0.029932010957537836,0.028328306413301974,0.03378607510417009,0.029479806087934213,0.029032130931715194,0.03055134983534946,0.02779195970733228,0.0248260559780783,0.03532079225082363,0.030716852239110803,0.03158644880668515,0.028708711711929014,0.028688596839625546,0.02717767809222782,0.032621125086277236,0.030445072676795748,0.03067547949544569,0.02993538486584313,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': None, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0}",42,0.3579488333333333 +Jitter,0.11190166975881251,0.13589708869329753,0.10989179564443187,0.19839368005266636,0.10590991426156245,0.09551842213395412,0.1307827227276454,0.11474120082815736,0.09684326255755007,0.1601744287458584,0.11007057028418832,0.09942055393585993,0.13466442247001947,0.11561108093427501,0.09892373791621917,0.15904389152921417,0.10822025413939182,0.09784064858820234,0.13118119975262796,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': None, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0}",42,0.3579488333333333 +Label_Stability,0.8492424242424242,0.8085308056872038,0.8459060402684563,0.7187096774193549,0.8594082840236686,0.8731543624161073,0.8265060240963856,0.8379710144927536,0.8628956228956228,0.7747008547008546,0.8565109034267913,0.8708928571428572,0.8232989690721648,0.8387832699619772,0.861578947368421,0.7794520547945206,0.859622641509434,0.8740821917808218,0.8276363636363635,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': None, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0}",42,0.3579488333333333 +TPR,0.6602972399150743,0.5733333333333334,1.0,0.0,0.6767676767676768,1.0,0.0,0.5510204081632653,1.0,0.0,0.7098765432098766,1.0,0.0,0.5851063829787234,1.0,0.0,0.7102473498233216,1.0,0.0,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': None, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0}",42,0.3579488333333333 +TNR,0.7418803418803419,0.7794117647058824,1.0,0.0,0.7305122494432071,1.0,0.0,0.8089887640449438,1.0,0.0,0.6855345911949685,1.0,0.0,0.7988165680473372,1.0,0.0,0.6639676113360324,1.0,0.0,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': None, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0}",42,0.3579488333333333 +PPV,0.6731601731601732,0.589041095890411,1.0,0.0,0.6889460154241646,1.0,0.0,0.6136363636363636,1.0,0.0,0.696969696969697,1.0,0.0,0.6179775280898876,1.0,0.0,0.7077464788732394,1.0,0.0,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': None, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0}",42,0.3579488333333333 +FNR,0.33970276008492567,0.4266666666666667,0.0,1.0,0.32323232323232326,0.0,1.0,0.4489795918367347,0.0,1.0,0.29012345679012347,0.0,1.0,0.4148936170212766,0.0,1.0,0.28975265017667845,0.0,1.0,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': None, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0}",42,0.3579488333333333 +FPR,0.25811965811965815,0.22058823529411764,0.0,1.0,0.26948775055679286,0.0,1.0,0.19101123595505617,0.0,1.0,0.31446540880503143,0.0,1.0,0.20118343195266272,0.0,1.0,0.3360323886639676,0.0,1.0,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': None, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0}",42,0.3579488333333333 +Accuracy,0.7054924242424242,0.7061611374407583,1.0,0.0,0.7053254437869823,1.0,0.0,0.717391304347826,1.0,0.0,0.6978193146417445,1.0,0.0,0.7224334600760456,1.0,0.0,0.6886792452830188,1.0,0.0,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': None, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0}",42,0.3579488333333333 +F1,0.6666666666666666,0.581081081081081,1.0,0.0,0.6828025477707006,1.0,0.0,0.5806451612903226,1.0,0.0,0.7033639143730887,1.0,0.0,0.6010928961748634,1.0,0.0,0.708994708994709,1.0,0.0,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': None, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0}",42,0.3579488333333333 +Selection-Rate,0.4375,0.3459715639810427,0.28859060402684567,0.4838709677419355,0.4603550295857988,0.44966442953020136,0.4859437751004016,0.3188405797101449,0.2727272727272727,0.4358974358974359,0.514018691588785,0.5133928571428571,0.5154639175257731,0.33840304182509506,0.2894736842105263,0.4657534246575342,0.5358490566037736,0.5506849315068493,0.503030303030303,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': None, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0}",42,0.3579488333333333 +Sample_Size,1056.0,211.0,149.0,62.0,845.0,596.0,249.0,414.0,297.0,117.0,642.0,448.0,194.0,526.0,380.0,146.0,530.0,365.0,165.0,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': None, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0}",42,0.3579488333333333 diff --git a/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__194238/Metrics_COMPAS_Without_Sensitive_Attributes_DecisionTreeClassifier_50_Estimators_20240902__194240.csv b/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__194238/Metrics_COMPAS_Without_Sensitive_Attributes_DecisionTreeClassifier_50_Estimators_20240902__194240.csv new file mode 100644 index 00000000..436fd562 --- /dev/null +++ b/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__194238/Metrics_COMPAS_Without_Sensitive_Attributes_DecisionTreeClassifier_50_Estimators_20240902__194240.csv @@ -0,0 +1,19 @@ +Metric,overall,sex_priv,sex_dis,race_priv,race_dis,sex&race_priv,sex&race_dis,Model_Name,Model_Params,Virny_Random_State,Runtime_in_Mins +Std,0.07622812066711862,0.07729579369363514,0.07596151829008313,0.07514093950769543,0.07692920010637282,0.07596589571178881,0.07648836656618178,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}",42,0.05964743333333333 +Mean_Prediction,0.5201168108728857,0.5720489239709505,0.5071491471288718,0.5810262097183775,0.48083878731831625,0.5724233463307555,0.4682050417203582,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}",42,0.05964743333333333 +IQR,0.09321837048697892,0.09288338781740779,0.09330201704707303,0.09518186766055678,0.09195219006663434,0.09473005478101326,0.0917180951310128,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}",42,0.05964743333333333 +Overall_Uncertainty,0.8998362650313954,0.9094072894833833,0.8974463405824376,0.8967189378524929,0.9018465040533045,0.9011307663161433,0.8985515335676644,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}",42,0.05964743333333333 +Statistical_Bias,0.4221936839922687,0.4168417690478572,0.4235300793215833,0.4185233716587245,0.4245605209176383,0.4169029354399021,0.4274445023668816,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}",42,0.05964743333333333 +Aleatoric_Uncertainty,0.8699437461655267,0.8757908936185071,0.8684836892275635,0.8660146038356851,0.8724774921539294,0.8695412666279979,0.8703431881216402,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}",42,0.05964743333333333 +Epistemic_Uncertainty,0.029892518865868634,0.03361639586487619,0.02896265135487408,0.030704334016807833,0.02936901189937502,0.031589499688145395,0.02820834544602413,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}",42,0.05964743333333333 +Jitter,0.1480983302411873,0.1598994100009675,0.1451515517449584,0.13886029774228556,0.15405556615169452,0.14401489873515969,0.15215094339622645,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}",42,0.05964743333333333 +Label_Stability,0.7865909090909091,0.7668246445497631,0.791526627218935,0.8012560386473431,0.7771339563862929,0.7931558935361217,0.7800754716981132,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}",42,0.05964743333333333 +TPR,0.6878980891719745,0.5733333333333334,0.7095959595959596,0.5782312925170068,0.7376543209876543,0.601063829787234,0.7455830388692579,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}",42,0.05964743333333333 +TNR,0.6871794871794872,0.8088235294117647,0.6503340757238307,0.7565543071161048,0.6289308176100629,0.7662721893491125,0.5789473684210527,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}",42,0.05964743333333333 +PPV,0.6390532544378699,0.6231884057971014,0.6415525114155252,0.5666666666666667,0.6694677871148459,0.5885416666666666,0.6698412698412698,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}",42,0.05964743333333333 +FNR,0.31210191082802546,0.4266666666666667,0.2904040404040404,0.4217687074829932,0.2623456790123457,0.39893617021276595,0.254416961130742,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}",42,0.05964743333333333 +FPR,0.3128205128205128,0.19117647058823528,0.34966592427616927,0.24344569288389514,0.3710691823899371,0.23372781065088757,0.42105263157894735,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}",42,0.05964743333333333 +Accuracy,0.6875,0.7251184834123223,0.6781065088757396,0.6932367149758454,0.6838006230529595,0.7072243346007605,0.6679245283018868,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}",42,0.05964743333333333 +F1,0.6625766871165644,0.5972222222222222,0.6738609112709832,0.5723905723905723,0.7019089574155654,0.5947368421052631,0.705685618729097,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}",42,0.05964743333333333 +Selection-Rate,0.48011363636363635,0.32701421800947866,0.5183431952662721,0.36231884057971014,0.5560747663551402,0.3650190114068441,0.5943396226415094,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}",42,0.05964743333333333 +Sample_Size,1056.0,211.0,845.0,414.0,642.0,526.0,530.0,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}",42,0.05964743333333333 diff --git a/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__194238/Metrics_COMPAS_Without_Sensitive_Attributes_LogisticRegression_50_Estimators_20240902__194240.csv b/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__194238/Metrics_COMPAS_Without_Sensitive_Attributes_LogisticRegression_50_Estimators_20240902__194240.csv new file mode 100644 index 00000000..d46ba678 --- /dev/null +++ b/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__194238/Metrics_COMPAS_Without_Sensitive_Attributes_LogisticRegression_50_Estimators_20240902__194240.csv @@ -0,0 +1,19 @@ +Metric,overall,sex_priv,sex_dis,race_priv,race_dis,sex&race_priv,sex&race_dis,Model_Name,Model_Params,Virny_Random_State,Runtime_in_Mins +Std,0.022001522231657432,0.02202236209638192,0.02199631843111676,0.022079539514525234,0.02195121202120997,0.02218723058537651,0.021817215450419248,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.07433531666666666 +Mean_Prediction,0.51987527529406,0.5667976457966112,0.508158565026559,0.5853888389798944,0.47762821086113855,0.5734379386288904,0.4667168584749639,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.07433531666666666 +IQR,0.027530551760038283,0.026885306150093848,0.02769167226145636,0.02712688294929466,0.027790861553882305,0.027419161561839045,0.02764110127749639,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.07433531666666666 +Overall_Uncertainty,0.9113463914637511,0.9197978513777793,0.9092360269171713,0.9163233844447729,0.9081369287002884,0.918766773125671,0.9039820126822984,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.07433531666666666 +Statistical_Bias,0.4349363283173577,0.4344937955506501,0.43504683058218047,0.43433306791288717,0.4353253467090255,0.4333038826946261,0.43655645359576667,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.07433531666666666 +Aleatoric_Uncertainty,0.9086231626304789,0.917298554899211,0.9064568812473993,0.9138828188161628,0.9052314217256925,0.9162462105769467,0.9010576471213435,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.07433531666666666 +Epistemic_Uncertainty,0.00272322883327214,0.0024992964785682803,0.0027791456697719985,0.0024405656286100585,0.002905506974595906,0.0025205625487243477,0.002924365560954878,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.07433531666666666 +Jitter,0.04155303030303035,0.05982783634780927,0.036989735539186115,0.03993295869072265,0.04259774938012583,0.04558857763637791,0.037547939930689306,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.07433531666666666 +Label_Stability,0.9435984848484847,0.9143127962085309,0.9509112426035503,0.9457004830917874,0.9422429906542056,0.9371102661596958,0.9500377358490566,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.07433531666666666 +TPR,0.6263269639065817,0.48,0.6540404040404041,0.4421768707482993,0.7098765432098766,0.48404255319148937,0.7208480565371025,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.07433531666666666 +TNR,0.7316239316239316,0.8088235294117647,0.7082405345211581,0.8164794007490637,0.660377358490566,0.8106508875739645,0.6234817813765182,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.07433531666666666 +PPV,0.6526548672566371,0.5806451612903226,0.6641025641025641,0.5701754385964912,0.6804733727810651,0.5870967741935483,0.6868686868686869,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.07433531666666666 +FNR,0.37367303609341823,0.52,0.34595959595959597,0.5578231292517006,0.29012345679012347,0.5159574468085106,0.2791519434628975,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.07433531666666666 +FPR,0.26837606837606837,0.19117647058823528,0.29175946547884185,0.18352059925093633,0.33962264150943394,0.1893491124260355,0.3765182186234818,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.07433531666666666 +Accuracy,0.6846590909090909,0.6919431279620853,0.6828402366863905,0.6835748792270532,0.6853582554517134,0.6939163498098859,0.6754716981132075,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.07433531666666666 +F1,0.6392199349945829,0.5255474452554745,0.6590330788804071,0.49808429118773945,0.6948640483383686,0.5306122448979592,0.7034482758620689,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.07433531666666666 +Selection-Rate,0.42803030303030304,0.2938388625592417,0.46153846153846156,0.2753623188405797,0.5264797507788161,0.2946768060836502,0.560377358490566,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.07433531666666666 +Sample_Size,1056.0,211.0,845.0,414.0,642.0,526.0,530.0,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.07433531666666666 diff --git a/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__194238/Metrics_COMPAS_Without_Sensitive_Attributes_RandomForestClassifier_50_Estimators_20240902__194240.csv b/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__194238/Metrics_COMPAS_Without_Sensitive_Attributes_RandomForestClassifier_50_Estimators_20240902__194240.csv new file mode 100644 index 00000000..d45c6e5e --- /dev/null +++ b/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__194238/Metrics_COMPAS_Without_Sensitive_Attributes_RandomForestClassifier_50_Estimators_20240902__194240.csv @@ -0,0 +1,19 @@ +Metric,overall,sex_priv,sex_dis,race_priv,race_dis,sex&race_priv,sex&race_dis,Model_Name,Model_Params,Virny_Random_State,Runtime_in_Mins +Std,0.06986874362680465,0.07569031436019155,0.06841507330166306,0.07076511810069319,0.0692907077511195,0.07041891005278857,0.06932272940026211,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.1819761666666667 +Mean_Prediction,0.5223580732536224,0.5772518864256917,0.508650860733733,0.595097466806707,0.4754513615231286,0.5840777726169991,0.4611041829420449,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.1819761666666667 +IQR,0.09124162229148948,0.10084392452988764,0.08884388764971195,0.09338211705424111,0.08986130323887394,0.09254294805407841,0.08995011785541067,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.1819761666666667 +Overall_Uncertainty,0.8621636502678327,0.8803766224447757,0.8576157956769036,0.8516827419756987,0.8689223668300499,0.8614131047232362,0.862908531317753,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.1819761666666667 +Statistical_Bias,0.40555632087192,0.39860214012279876,0.4072928086092745,0.39507258366072,0.4123168616903574,0.3978565745929863,0.4131979558581825,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.1819761666666667 +Aleatoric_Uncertainty,0.8369293613974009,0.8491088226125131,0.8338880994845148,0.8247828216002686,0.8447621767805984,0.8349342332813541,0.8389094319427607,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.1819761666666667 +Epistemic_Uncertainty,0.025234288870431776,0.03126779983226258,0.023727696192388792,0.026899920375430098,0.02416019004945147,0.0264788714418821,0.02399909937499234,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.1819761666666667 +Jitter,0.11241110080395789,0.13552567946609934,0.10663929477116273,0.11512964606132318,0.11065802021743266,0.11488787149840932,0.10995302271852146,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.1819761666666667 +Label_Stability,0.8398106060606061,0.8001895734597156,0.8497041420118343,0.8318840579710144,0.8449221183800623,0.8346768060836501,0.8449056603773584,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.1819761666666667 +TPR,0.6772823779193206,0.6,0.6919191919191919,0.564625850340136,0.7283950617283951,0.5851063829787234,0.7385159010600707,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.1819761666666667 +TNR,0.7367521367521368,0.7941176470588235,0.7193763919821826,0.8052434456928839,0.6792452830188679,0.7988165680473372,0.6518218623481782,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.1819761666666667 +PPV,0.6744186046511628,0.6164383561643836,0.685,0.6148148148148148,0.6982248520710059,0.6179775280898876,0.7084745762711865,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.1819761666666667 +FNR,0.3227176220806794,0.4,0.30808080808080807,0.43537414965986393,0.2716049382716049,0.4148936170212766,0.26148409893992935,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.1819761666666667 +FPR,0.26324786324786326,0.20588235294117646,0.2806236080178174,0.1947565543071161,0.32075471698113206,0.20118343195266272,0.3481781376518219,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.1819761666666667 +Accuracy,0.7102272727272727,0.7251184834123223,0.7065088757396449,0.7198067632850241,0.7040498442367601,0.7224334600760456,0.6981132075471698,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.1819761666666667 +F1,0.6758474576271186,0.6081081081081081,0.6884422110552764,0.5886524822695035,0.7129909365558912,0.6010928961748634,0.7231833910034602,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.1819761666666667 +Selection-Rate,0.4479166666666667,0.3459715639810427,0.47337278106508873,0.32608695652173914,0.5264797507788161,0.33840304182509506,0.5566037735849056,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.1819761666666667 +Sample_Size,1056.0,211.0,845.0,414.0,642.0,526.0,530.0,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.1819761666666667 diff --git a/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__194238/Metrics_COMPAS_Without_Sensitive_Attributes_XGBClassifier_50_Estimators_20240902__194240.csv b/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__194238/Metrics_COMPAS_Without_Sensitive_Attributes_XGBClassifier_50_Estimators_20240902__194240.csv new file mode 100644 index 00000000..872d1790 --- /dev/null +++ b/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__194238/Metrics_COMPAS_Without_Sensitive_Attributes_XGBClassifier_50_Estimators_20240902__194240.csv @@ -0,0 +1,19 @@ +Metric,overall,sex_priv,sex_dis,race_priv,race_dis,sex&race_priv,sex&race_dis,Model_Name,Model_Params,Virny_Random_State,Runtime_in_Mins +Std,0.04704658314585686,0.04691213369369507,0.047080155462026596,0.04534913972020149,0.04814119264483452,0.045675575733184814,0.048407234251499176,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}",42,0.32537181666666665 +Mean_Prediction,0.5247065424919128,0.5801324844360352,0.5108664035797119,0.591335654258728,0.4817401170730591,0.5819264650344849,0.46791842579841614,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}",42,0.32537181666666665 +IQR,0.06235350844817179,0.06298876684423871,0.062194881795426094,0.06034463957168054,0.06364894725637645,0.06102884167047508,0.06366817774075383,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}",42,0.32537181666666665 +Overall_Uncertainty,0.8814863180681681,0.8951641420285209,0.8780709087715595,0.8758657614303517,0.8851107891710592,0.8825820405555279,0.8803988651844865,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}",42,0.32537181666666665 +Statistical_Bias,0.41401657071246795,0.41066599344190263,0.4148532237350588,0.4097039643765072,0.41679759722818094,0.40925580302798703,0.4187414080748018,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}",42,0.32537181666666665 +Aleatoric_Uncertainty,0.8726425340732213,0.8864895753835295,0.8691848705034285,0.8675888809211352,0.8759014319002676,0.8742272214402473,0.8710698066108522,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}",42,0.32537181666666665 +Epistemic_Uncertainty,0.008843783994946786,0.008674566644991444,0.008886038268130947,0.008276880509216489,0.00920935727079164,0.008354819115280576,0.009329058573634308,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}",42,0.32537181666666665 +Jitter,0.0683812615955474,0.09846987136086668,0.06086801110976939,0.07629300995760632,0.06327929302562134,0.07723752618918313,0.059591836734694016,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}",42,0.32537181666666665 +Label_Stability,0.9101515151515152,0.8623696682464455,0.9220828402366865,0.896231884057971,0.9191277258566977,0.8939923954372624,0.926188679245283,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}",42,0.32537181666666665 +TPR,0.6624203821656051,0.5333333333333333,0.6868686868686869,0.54421768707483,0.7160493827160493,0.5638297872340425,0.7279151943462897,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}",42,0.32537181666666665 +TNR,0.7384615384615385,0.8014705882352942,0.7193763919821826,0.7940074906367042,0.6918238993710691,0.7928994082840237,0.6639676113360324,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}",42,0.32537181666666665 +PPV,0.6709677419354839,0.5970149253731343,0.6834170854271356,0.5925925925925926,0.703030303030303,0.6022727272727273,0.71280276816609,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}",42,0.32537181666666665 +FNR,0.3375796178343949,0.4666666666666667,0.31313131313131315,0.4557823129251701,0.2839506172839506,0.43617021276595747,0.27208480565371024,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}",42,0.32537181666666665 +FPR,0.26153846153846155,0.19852941176470587,0.2806236080178174,0.20599250936329588,0.3081761006289308,0.20710059171597633,0.3360323886639676,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}",42,0.32537181666666665 +Accuracy,0.7045454545454546,0.7061611374407583,0.7041420118343196,0.7053140096618358,0.7040498442367601,0.7110266159695817,0.6981132075471698,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}",42,0.32537181666666665 +F1,0.6666666666666666,0.5633802816901409,0.6851385390428212,0.5673758865248227,0.709480122324159,0.5824175824175825,0.7202797202797203,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}",42,0.32537181666666665 +Selection-Rate,0.4403409090909091,0.3175355450236967,0.4710059171597633,0.32608695652173914,0.514018691588785,0.33460076045627374,0.5452830188679245,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}",42,0.32537181666666665 +Sample_Size,1056.0,211.0,845.0,414.0,642.0,526.0,530.0,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}",42,0.32537181666666665 diff --git a/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__201340/Metrics_COMPAS_Without_Sensitive_Attributes_DecisionTreeClassifier_50_Estimators_20240902__201344.csv b/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__201340/Metrics_COMPAS_Without_Sensitive_Attributes_DecisionTreeClassifier_50_Estimators_20240902__201344.csv new file mode 100644 index 00000000..be5d4bee --- /dev/null +++ b/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__201340/Metrics_COMPAS_Without_Sensitive_Attributes_DecisionTreeClassifier_50_Estimators_20240902__201344.csv @@ -0,0 +1,19 @@ +Metric,overall,sex_priv,sex_dis,race_priv,race_dis,sex&race_priv,sex&race_dis,Model_Name,Model_Params,Virny_Random_State,Runtime_in_Mins +Std,0.07622812066711862,0.07729579369363514,0.07596151829008313,0.07514093950769543,0.07692920010637282,0.07596589571178881,0.07648836656618178,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}",42,0.07910788333333334 +Mean_Prediction,0.5201168108728857,0.5720489239709505,0.5071491471288718,0.5810262097183775,0.48083878731831625,0.5724233463307555,0.4682050417203582,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}",42,0.07910788333333334 +IQR,0.09321837048697892,0.09288338781740779,0.09330201704707303,0.09518186766055678,0.09195219006663434,0.09473005478101326,0.0917180951310128,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}",42,0.07910788333333334 +Overall_Uncertainty,0.8998362650313954,0.9094072894833833,0.8974463405824376,0.8967189378524929,0.9018465040533045,0.9011307663161433,0.8985515335676644,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}",42,0.07910788333333334 +Statistical_Bias,0.4221936839922687,0.4168417690478572,0.4235300793215833,0.4185233716587245,0.4245605209176383,0.4169029354399021,0.4274445023668816,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}",42,0.07910788333333334 +Aleatoric_Uncertainty,0.8699437461655267,0.8757908936185071,0.8684836892275635,0.8660146038356851,0.8724774921539294,0.8695412666279979,0.8703431881216402,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}",42,0.07910788333333334 +Epistemic_Uncertainty,0.029892518865868634,0.03361639586487619,0.02896265135487408,0.030704334016807833,0.02936901189937502,0.031589499688145395,0.02820834544602413,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}",42,0.07910788333333334 +Jitter,0.1480983302411873,0.1598994100009675,0.1451515517449584,0.13886029774228556,0.15405556615169452,0.14401489873515969,0.15215094339622645,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}",42,0.07910788333333334 +Label_Stability,0.7865909090909091,0.7668246445497631,0.791526627218935,0.8012560386473431,0.7771339563862929,0.7931558935361217,0.7800754716981132,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}",42,0.07910788333333334 +TPR,0.6878980891719745,0.5733333333333334,0.7095959595959596,0.5782312925170068,0.7376543209876543,0.601063829787234,0.7455830388692579,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}",42,0.07910788333333334 +TNR,0.6871794871794872,0.8088235294117647,0.6503340757238307,0.7565543071161048,0.6289308176100629,0.7662721893491125,0.5789473684210527,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}",42,0.07910788333333334 +PPV,0.6390532544378699,0.6231884057971014,0.6415525114155252,0.5666666666666667,0.6694677871148459,0.5885416666666666,0.6698412698412698,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}",42,0.07910788333333334 +FNR,0.31210191082802546,0.4266666666666667,0.2904040404040404,0.4217687074829932,0.2623456790123457,0.39893617021276595,0.254416961130742,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}",42,0.07910788333333334 +FPR,0.3128205128205128,0.19117647058823528,0.34966592427616927,0.24344569288389514,0.3710691823899371,0.23372781065088757,0.42105263157894735,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}",42,0.07910788333333334 +Accuracy,0.6875,0.7251184834123223,0.6781065088757396,0.6932367149758454,0.6838006230529595,0.7072243346007605,0.6679245283018868,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}",42,0.07910788333333334 +F1,0.6625766871165644,0.5972222222222222,0.6738609112709832,0.5723905723905723,0.7019089574155654,0.5947368421052631,0.705685618729097,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}",42,0.07910788333333334 +Selection-Rate,0.48011363636363635,0.32701421800947866,0.5183431952662721,0.36231884057971014,0.5560747663551402,0.3650190114068441,0.5943396226415094,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}",42,0.07910788333333334 +Sample_Size,1056.0,211.0,845.0,414.0,642.0,526.0,530.0,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}",42,0.07910788333333334 diff --git a/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__201340/Metrics_COMPAS_Without_Sensitive_Attributes_LogisticRegression_50_Estimators_20240902__201344.csv b/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__201340/Metrics_COMPAS_Without_Sensitive_Attributes_LogisticRegression_50_Estimators_20240902__201344.csv new file mode 100644 index 00000000..2ad03937 --- /dev/null +++ b/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__201340/Metrics_COMPAS_Without_Sensitive_Attributes_LogisticRegression_50_Estimators_20240902__201344.csv @@ -0,0 +1,19 @@ +Metric,overall,sex_priv,sex_dis,race_priv,race_dis,sex&race_priv,sex&race_dis,Model_Name,Model_Params,Virny_Random_State,Runtime_in_Mins +Std,0.022001522231657432,0.02202236209638192,0.02199631843111676,0.022079539514525234,0.02195121202120997,0.02218723058537651,0.021817215450419248,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.64735745 +Mean_Prediction,0.51987527529406,0.5667976457966112,0.508158565026559,0.5853888389798944,0.47762821086113855,0.5734379386288904,0.4667168584749639,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.64735745 +IQR,0.027530551760038283,0.026885306150093848,0.02769167226145636,0.02712688294929466,0.027790861553882305,0.027419161561839045,0.02764110127749639,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.64735745 +Overall_Uncertainty,0.9113463914637511,0.9197978513777793,0.9092360269171713,0.9163233844447729,0.9081369287002884,0.918766773125671,0.9039820126822984,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.64735745 +Statistical_Bias,0.4349363283173577,0.4344937955506501,0.43504683058218047,0.43433306791288717,0.4353253467090255,0.4333038826946261,0.43655645359576667,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.64735745 +Aleatoric_Uncertainty,0.9086231626304789,0.917298554899211,0.9064568812473993,0.9138828188161628,0.9052314217256925,0.9162462105769467,0.9010576471213435,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.64735745 +Epistemic_Uncertainty,0.00272322883327214,0.0024992964785682803,0.0027791456697719985,0.0024405656286100585,0.002905506974595906,0.0025205625487243477,0.002924365560954878,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.64735745 +Jitter,0.04155303030303035,0.05982783634780927,0.036989735539186115,0.03993295869072265,0.04259774938012583,0.04558857763637791,0.037547939930689306,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.64735745 +Label_Stability,0.9435984848484847,0.9143127962085309,0.9509112426035503,0.9457004830917874,0.9422429906542056,0.9371102661596958,0.9500377358490566,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.64735745 +TPR,0.6263269639065817,0.48,0.6540404040404041,0.4421768707482993,0.7098765432098766,0.48404255319148937,0.7208480565371025,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.64735745 +TNR,0.7316239316239316,0.8088235294117647,0.7082405345211581,0.8164794007490637,0.660377358490566,0.8106508875739645,0.6234817813765182,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.64735745 +PPV,0.6526548672566371,0.5806451612903226,0.6641025641025641,0.5701754385964912,0.6804733727810651,0.5870967741935483,0.6868686868686869,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.64735745 +FNR,0.37367303609341823,0.52,0.34595959595959597,0.5578231292517006,0.29012345679012347,0.5159574468085106,0.2791519434628975,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.64735745 +FPR,0.26837606837606837,0.19117647058823528,0.29175946547884185,0.18352059925093633,0.33962264150943394,0.1893491124260355,0.3765182186234818,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.64735745 +Accuracy,0.6846590909090909,0.6919431279620853,0.6828402366863905,0.6835748792270532,0.6853582554517134,0.6939163498098859,0.6754716981132075,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.64735745 +F1,0.6392199349945829,0.5255474452554745,0.6590330788804071,0.49808429118773945,0.6948640483383686,0.5306122448979592,0.7034482758620689,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.64735745 +Selection-Rate,0.42803030303030304,0.2938388625592417,0.46153846153846156,0.2753623188405797,0.5264797507788161,0.2946768060836502,0.560377358490566,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.64735745 +Sample_Size,1056.0,211.0,845.0,414.0,642.0,526.0,530.0,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.64735745 diff --git a/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__201340/Metrics_COMPAS_Without_Sensitive_Attributes_RandomForestClassifier_50_Estimators_20240902__201344.csv b/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__201340/Metrics_COMPAS_Without_Sensitive_Attributes_RandomForestClassifier_50_Estimators_20240902__201344.csv new file mode 100644 index 00000000..99687410 --- /dev/null +++ b/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__201340/Metrics_COMPAS_Without_Sensitive_Attributes_RandomForestClassifier_50_Estimators_20240902__201344.csv @@ -0,0 +1,19 @@ +Metric,overall,sex_priv,sex_dis,race_priv,race_dis,sex&race_priv,sex&race_dis,Model_Name,Model_Params,Virny_Random_State,Runtime_in_Mins +Std,0.06986874362680465,0.07569031436019155,0.06841507330166306,0.07076511810069319,0.0692907077511195,0.07041891005278857,0.06932272940026211,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.33712965 +Mean_Prediction,0.5223580732536224,0.5772518864256917,0.508650860733733,0.595097466806707,0.4754513615231286,0.5840777726169991,0.4611041829420449,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.33712965 +IQR,0.09124162229148948,0.10084392452988764,0.08884388764971195,0.09338211705424111,0.08986130323887394,0.09254294805407841,0.08995011785541067,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.33712965 +Overall_Uncertainty,0.8621636502678327,0.8803766224447757,0.8576157956769036,0.8516827419756987,0.8689223668300499,0.8614131047232362,0.862908531317753,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.33712965 +Statistical_Bias,0.40555632087192,0.39860214012279876,0.4072928086092745,0.39507258366072,0.4123168616903574,0.3978565745929863,0.4131979558581825,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.33712965 +Aleatoric_Uncertainty,0.8369293613974009,0.8491088226125131,0.8338880994845148,0.8247828216002686,0.8447621767805984,0.8349342332813541,0.8389094319427607,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.33712965 +Epistemic_Uncertainty,0.025234288870431776,0.03126779983226258,0.023727696192388792,0.026899920375430098,0.02416019004945147,0.0264788714418821,0.02399909937499234,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.33712965 +Jitter,0.11241110080395789,0.13552567946609934,0.10663929477116273,0.11512964606132318,0.11065802021743266,0.11488787149840932,0.10995302271852146,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.33712965 +Label_Stability,0.8398106060606061,0.8001895734597156,0.8497041420118343,0.8318840579710144,0.8449221183800623,0.8346768060836501,0.8449056603773584,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.33712965 +TPR,0.6772823779193206,0.6,0.6919191919191919,0.564625850340136,0.7283950617283951,0.5851063829787234,0.7385159010600707,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.33712965 +TNR,0.7367521367521368,0.7941176470588235,0.7193763919821826,0.8052434456928839,0.6792452830188679,0.7988165680473372,0.6518218623481782,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.33712965 +PPV,0.6744186046511628,0.6164383561643836,0.685,0.6148148148148148,0.6982248520710059,0.6179775280898876,0.7084745762711865,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.33712965 +FNR,0.3227176220806794,0.4,0.30808080808080807,0.43537414965986393,0.2716049382716049,0.4148936170212766,0.26148409893992935,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.33712965 +FPR,0.26324786324786326,0.20588235294117646,0.2806236080178174,0.1947565543071161,0.32075471698113206,0.20118343195266272,0.3481781376518219,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.33712965 +Accuracy,0.7102272727272727,0.7251184834123223,0.7065088757396449,0.7198067632850241,0.7040498442367601,0.7224334600760456,0.6981132075471698,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.33712965 +F1,0.6758474576271186,0.6081081081081081,0.6884422110552764,0.5886524822695035,0.7129909365558912,0.6010928961748634,0.7231833910034602,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.33712965 +Selection-Rate,0.4479166666666667,0.3459715639810427,0.47337278106508873,0.32608695652173914,0.5264797507788161,0.33840304182509506,0.5566037735849056,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.33712965 +Sample_Size,1056.0,211.0,845.0,414.0,642.0,526.0,530.0,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.33712965 diff --git a/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__201340/Metrics_COMPAS_Without_Sensitive_Attributes_XGBClassifier_50_Estimators_20240902__201344.csv b/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__201340/Metrics_COMPAS_Without_Sensitive_Attributes_XGBClassifier_50_Estimators_20240902__201344.csv new file mode 100644 index 00000000..e7660e55 --- /dev/null +++ b/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__201340/Metrics_COMPAS_Without_Sensitive_Attributes_XGBClassifier_50_Estimators_20240902__201344.csv @@ -0,0 +1,19 @@ +Metric,overall,sex_priv,sex_dis,race_priv,race_dis,sex&race_priv,sex&race_dis,Model_Name,Model_Params,Virny_Random_State,Runtime_in_Mins +Std,0.04704658314585686,0.04691213369369507,0.047080155462026596,0.04534913972020149,0.04814119264483452,0.045675575733184814,0.048407234251499176,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}",42,0.4320988 +Mean_Prediction,0.5247065424919128,0.5801324844360352,0.5108664035797119,0.591335654258728,0.4817401170730591,0.5819264650344849,0.46791842579841614,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}",42,0.4320988 +IQR,0.06235350844817179,0.06298876684423871,0.062194881795426094,0.06034463957168054,0.06364894725637645,0.06102884167047508,0.06366817774075383,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}",42,0.4320988 +Overall_Uncertainty,0.8814863180681681,0.8951641420285209,0.8780709087715595,0.8758657614303517,0.8851107891710592,0.8825820405555279,0.8803988651844865,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}",42,0.4320988 +Statistical_Bias,0.41401657071246795,0.41066599344190263,0.4148532237350588,0.4097039643765072,0.41679759722818094,0.40925580302798703,0.4187414080748018,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}",42,0.4320988 +Aleatoric_Uncertainty,0.8726425340732213,0.8864895753835295,0.8691848705034285,0.8675888809211352,0.8759014319002676,0.8742272214402473,0.8710698066108522,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}",42,0.4320988 +Epistemic_Uncertainty,0.008843783994946786,0.008674566644991444,0.008886038268130947,0.008276880509216489,0.00920935727079164,0.008354819115280576,0.009329058573634308,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}",42,0.4320988 +Jitter,0.0683812615955474,0.09846987136086668,0.06086801110976939,0.07629300995760632,0.06327929302562134,0.07723752618918313,0.059591836734694016,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}",42,0.4320988 +Label_Stability,0.9101515151515152,0.8623696682464455,0.9220828402366865,0.896231884057971,0.9191277258566977,0.8939923954372624,0.926188679245283,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}",42,0.4320988 +TPR,0.6624203821656051,0.5333333333333333,0.6868686868686869,0.54421768707483,0.7160493827160493,0.5638297872340425,0.7279151943462897,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}",42,0.4320988 +TNR,0.7384615384615385,0.8014705882352942,0.7193763919821826,0.7940074906367042,0.6918238993710691,0.7928994082840237,0.6639676113360324,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}",42,0.4320988 +PPV,0.6709677419354839,0.5970149253731343,0.6834170854271356,0.5925925925925926,0.703030303030303,0.6022727272727273,0.71280276816609,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}",42,0.4320988 +FNR,0.3375796178343949,0.4666666666666667,0.31313131313131315,0.4557823129251701,0.2839506172839506,0.43617021276595747,0.27208480565371024,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}",42,0.4320988 +FPR,0.26153846153846155,0.19852941176470587,0.2806236080178174,0.20599250936329588,0.3081761006289308,0.20710059171597633,0.3360323886639676,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}",42,0.4320988 +Accuracy,0.7045454545454546,0.7061611374407583,0.7041420118343196,0.7053140096618358,0.7040498442367601,0.7110266159695817,0.6981132075471698,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}",42,0.4320988 +F1,0.6666666666666666,0.5633802816901409,0.6851385390428212,0.5673758865248227,0.709480122324159,0.5824175824175825,0.7202797202797203,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}",42,0.4320988 +Selection-Rate,0.4403409090909091,0.3175355450236967,0.4710059171597633,0.32608695652173914,0.514018691588785,0.33460076045627374,0.5452830188679245,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}",42,0.4320988 +Sample_Size,1056.0,211.0,845.0,414.0,642.0,526.0,530.0,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}",42,0.4320988 diff --git a/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__202137/Metrics_COMPAS_Without_Sensitive_Attributes_DecisionTreeClassifier_50_Estimators_20240902__202137.csv b/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__202137/Metrics_COMPAS_Without_Sensitive_Attributes_DecisionTreeClassifier_50_Estimators_20240902__202137.csv new file mode 100644 index 00000000..6d4d46b4 --- /dev/null +++ b/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__202137/Metrics_COMPAS_Without_Sensitive_Attributes_DecisionTreeClassifier_50_Estimators_20240902__202137.csv @@ -0,0 +1,19 @@ +Metric,overall,sex_priv,sex_priv_correct,sex_priv_incorrect,sex_dis,sex_dis_correct,sex_dis_incorrect,race_priv,race_priv_correct,race_priv_incorrect,race_dis,race_dis_correct,race_dis_incorrect,sex&race_priv,sex&race_priv_correct,sex&race_priv_incorrect,sex&race_dis,sex&race_dis_correct,sex&race_dis_incorrect,Model_Name,Model_Params,Virny_Random_State,Runtime_in_Mins +Aleatoric_Uncertainty,0.8596149143454702,0.8669904055354763,0.852746083423315,0.8997078328868471,0.8577732236459539,0.8501513107525607,0.8755076745120774,0.8530262599116102,0.8427088771207625,0.8763419202342343,0.863863672812165,0.8557331511847712,0.8830619202150688,0.8582626277252186,0.8482267224311387,0.8822840526549198,0.860956995028965,0.8531361986268069,0.8785657820203272,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",42,0.09668508333333332 +Mean_Prediction,0.5197325251220082,0.575656671169969,0.5976938910000811,0.5250399318726805,0.5057680342153577,0.5095521381281822,0.49696328849693494,0.5853740826837509,0.6087190111414371,0.532618220736066,0.4774029225821929,0.4751750763041579,0.48266343918634896,0.575688423302101,0.5962059832845691,0.5265786506989032,0.46419893560742553,0.4572585716953475,0.47982539913952776,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",42,0.09668508333333332 +IQR,0.08747405418041407,0.08877327715109583,0.08193560270454316,0.1044785606455215,0.08714963282323794,0.08483454188587859,0.09253632079166059,0.08965550148459185,0.08229698605047928,0.10628458754435802,0.08606732647958915,0.08550446309453334,0.08739639133121305,0.08872328274134222,0.08214475995801411,0.1044692953388566,0.08623425375956839,0.08639248476212223,0.08587799131823551,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",42,0.09668508333333332 +Std,0.07340411759321708,0.07665365719396335,0.07120084511715376,0.08917808493288533,0.07259269409527924,0.0695449626840285,0.07968406915059101,0.07348292419251541,0.06624008114230154,0.08985060888079403,0.07335329838432374,0.07218779133180021,0.07610535953975885,0.0739115065267265,0.0679578409414981,0.08816189318556349,0.07290055801014923,0.0718126381176748,0.07535004635700882,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",42,0.09668508333333332 +Statistical_Bias,0.41669115871514556,0.41326113747808924,0.32403263214666206,0.6182078606612114,0.41754764922522714,0.31721498189424946,0.6509988554953365,0.4120908181164128,0.31001329934225724,0.6427699353461975,0.41965773349376767,0.32402003173798877,0.6454828826657901,0.4107092483552757,0.31602948952976495,0.6373298323827885,0.42262792258173343,0.32114417059814154,0.6511220144711705,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",42,0.09668508333333332 +Overall_Uncertainty,0.8876488942284766,0.8985795884794717,0.8809748403100691,0.9390154944310685,0.8849194545989382,0.8745910900290345,0.9089512005076513,0.8823181789925022,0.866750773954346,0.9174980628188872,0.8910864582591517,0.8816611166471002,0.9133421078247811,0.8881743706843164,0.8737926933830608,0.9225976111924832,0.887127383632681,0.8779551675412096,0.9077789376545826,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",42,0.09668508333333332 +Epistemic_Uncertainty,0.028033979883006377,0.031589182943995375,0.02822875688675408,0.039307661544221384,0.027146230952984296,0.024439779276473783,0.033443525995573875,0.029291919080892015,0.024041896833583487,0.041156142584652944,0.02722278544698664,0.025927965462329006,0.030280187609712295,0.02991174295909782,0.025565970951922035,0.040313558537563354,0.0261703886037159,0.024818968914402717,0.029213155634255417,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",42,0.09668508333333332 +Jitter,0.10841604823747669,0.13046522874552693,0.10277384423157036,0.1940688775510204,0.10291027653665011,0.09009427121102255,0.1327301944399809,0.107780735482599,0.08154163407523293,0.16707697252129264,0.10882573590183718,0.09966966831078361,0.13044556042312225,0.11046325754636464,0.08739754661972601,0.1656721527320608,0.10638428956488274,0.09789912695323331,0.12548891949417806,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",42,0.09668508333333332 +Label_Stability,0.8629166666666667,0.8274881516587679,0.8669387755102042,0.736875,0.8717633136094675,0.8892724196277497,0.8310236220472441,0.8596135265700483,0.8968641114982577,0.7754330708661418,0.8650467289719624,0.8771618625277161,0.8364397905759163,0.856958174904943,0.889811320754717,0.7783225806451612,0.8688301886792453,0.8797820163487738,0.8441717791411044,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",42,0.09668508333333332 +TPR,0.6560509554140127,0.49333333333333335,1.0,0.0,0.6868686868686869,1.0,0.0,0.5170068027210885,1.0,0.0,0.7191358024691358,1.0,0.0,0.5478723404255319,1.0,0.0,0.7279151943462897,1.0,0.0,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",42,0.09668508333333332 +TNR,0.7333333333333333,0.8088235294117647,1.0,0.0,0.7104677060133631,1.0,0.0,0.7902621722846442,1.0,0.0,0.6855345911949685,1.0,0.0,0.7928994082840237,1.0,0.0,0.6518218623481782,1.0,0.0,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",42,0.09668508333333332 +PPV,0.6645161290322581,0.5873015873015873,1.0,0.0,0.6766169154228856,1.0,0.0,0.5757575757575758,1.0,0.0,0.6996996996996997,1.0,0.0,0.5953757225433526,1.0,0.0,0.7054794520547946,1.0,0.0,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",42,0.09668508333333332 +FNR,0.34394904458598724,0.5066666666666667,0.0,1.0,0.31313131313131315,0.0,1.0,0.48299319727891155,0.0,1.0,0.2808641975308642,0.0,1.0,0.4521276595744681,0.0,1.0,0.27208480565371024,0.0,1.0,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",42,0.09668508333333332 +FPR,0.26666666666666666,0.19117647058823528,0.0,1.0,0.289532293986637,0.0,1.0,0.20973782771535582,0.0,1.0,0.31446540880503143,0.0,1.0,0.20710059171597633,0.0,1.0,0.3481781376518219,0.0,1.0,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",42,0.09668508333333332 +Accuracy,0.6988636363636364,0.6966824644549763,1.0,0.0,0.6994082840236686,1.0,0.0,0.6932367149758454,1.0,0.0,0.7024922118380063,1.0,0.0,0.7053231939163498,1.0,0.0,0.6924528301886792,1.0,0.0,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",42,0.09668508333333332 +F1,0.6602564102564102,0.5362318840579711,1.0,0.0,0.681704260651629,1.0,0.0,0.5448028673835126,1.0,0.0,0.7092846270928462,1.0,0.0,0.5706371191135734,1.0,0.0,0.7165217391304348,1.0,0.0,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",42,0.09668508333333332 +Selection-Rate,0.4403409090909091,0.2985781990521327,0.25170068027210885,0.40625,0.4757396449704142,0.4602368866328257,0.5118110236220472,0.3188405797101449,0.26480836236933797,0.4409448818897638,0.5186915887850467,0.516629711751663,0.5235602094240838,0.3288973384030418,0.2776280323450135,0.45161290322580644,0.5509433962264151,0.5613079019073569,0.5276073619631901,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",42,0.09668508333333332 +Sample_Size,1056.0,211.0,147.0,64.0,845.0,591.0,254.0,414.0,287.0,127.0,642.0,451.0,191.0,526.0,371.0,155.0,530.0,367.0,163.0,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",42,0.09668508333333332 diff --git a/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__202137/Metrics_COMPAS_Without_Sensitive_Attributes_LogisticRegression_50_Estimators_20240902__202137.csv b/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__202137/Metrics_COMPAS_Without_Sensitive_Attributes_LogisticRegression_50_Estimators_20240902__202137.csv new file mode 100644 index 00000000..618cab05 --- /dev/null +++ b/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__202137/Metrics_COMPAS_Without_Sensitive_Attributes_LogisticRegression_50_Estimators_20240902__202137.csv @@ -0,0 +1,19 @@ +Metric,overall,sex_priv,sex_priv_correct,sex_priv_incorrect,sex_dis,sex_dis_correct,sex_dis_incorrect,race_priv,race_priv_correct,race_priv_incorrect,race_dis,race_dis_correct,race_dis_incorrect,sex&race_priv,sex&race_priv_correct,sex&race_priv_incorrect,sex&race_dis,sex&race_dis_correct,sex&race_dis_incorrect,Model_Name,Model_Params,Virny_Random_State,Runtime_in_Mins +Aleatoric_Uncertainty,0.9123450427125209,0.920625077641404,0.9087794673951717,0.9472321406560186,0.9102774836947761,0.901140163841699,0.9299499969605433,0.9177452762926515,0.9096320875772343,0.9352722412274845,0.9088626490954274,0.8982131727090864,0.9320595283528034,0.9198895585007834,0.911255981277903,0.9394625751861952,0.9048574666660569,0.893942021256762,0.9275768239714495,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.24792561666666665 +Mean_Prediction,0.5199450050553764,0.5662002368694692,0.5791607442233473,0.5370889434284507,0.5083948820816799,0.5075953424932974,0.5101162788820407,0.584100423846899,0.5998844709860928,0.5500020624698616,0.47857375368514227,0.47198335451403867,0.4929290786122986,0.5724779023960666,0.5859827789164238,0.5418612568685486,0.46780858241159723,0.45686108092387334,0.4905946610895343,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.24792561666666665 +IQR,0.027083150256957164,0.026423801299132382,0.02550936566736344,0.028477764410490304,0.0272477924227572,0.02734224096926293,0.02704444611181017,0.02670026786210817,0.025062176258905618,0.03023904590566788,0.02733005572653269,0.028200555785067007,0.0254339169851708,0.02698261430915576,0.025844850916711147,0.029562015788921498,0.02718292744288837,0.028121424139944697,0.025229544782736243,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.24792561666666665 +Std,0.021596015090994986,0.02160183879099127,0.020988968179904716,0.022978440471277995,0.021594560888984076,0.021467455990035085,0.021868215839333214,0.02164960109403703,0.02040601126053998,0.024336134856477214,0.021561459631089366,0.021991386985871636,0.020624984204830967,0.02175753321017443,0.020903418727786727,0.023693879707513008,0.02143571597648859,0.02184738442702284,0.02057887117828358,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.24792561666666665 +Statistical_Bias,0.43621008148181445,0.4356389888592183,0.36190123437713334,0.6012653296959014,0.43635268567514907,0.3538639842723283,0.6139496286207745,0.4356656825651123,0.3527975981221014,0.6146860481939069,0.43656114246548217,0.3572167701719095,0.6093904682534623,0.4346209709642396,0.3575838435417682,0.609270359220153,0.4377871987124642,0.3533491515403617,0.6135361573613752,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.24792561666666665 +Overall_Uncertainty,0.9149482865790675,0.9230013147345278,0.9109979367741322,0.9499627483071091,0.912937412092911,0.9038342614256255,0.9325363596116566,0.9200703394958863,0.9115856897479686,0.9383997736841361,0.9116452804925206,0.901225721393032,0.9343413498181397,0.9222896295418931,0.9134207241083897,0.9423961542824444,0.9076623499782255,0.8969818528269468,0.9298926870721659,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.24792561666666665 +Epistemic_Uncertainty,0.002603243866546534,0.0023762370931238452,0.0022184693789605303,0.0027306076510905664,0.002659928398134892,0.002694097583926469,0.0025863626511133386,0.0023250632032348895,0.001953602170734259,0.0031275324566515383,0.002782631397093227,0.003012548683945626,0.0022818214653362867,0.0024000710411097304,0.0021647428304867322,0.0029335790962491393,0.002804883312168549,0.0030398315701847256,0.0023158631007164088,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.24792561666666665 +Jitter,0.04003014842300559,0.055196827546184365,0.051831143416269966,0.06275667189952994,0.03624296582538342,0.029285891132883036,0.051221443801401124,0.038483683328403726,0.03145309006995044,0.05367191151269655,0.041027401614851536,0.035372912801484156,0.05334410992119606,0.043431364941414086,0.03713055633212185,0.05771580681962229,0.036654601463226855,0.030482271120738615,0.049501661129567824,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.24792561666666665 +Label_Stability,0.9483712121212121,0.9273933649289099,0.9320547945205478,0.9169230769230768,0.9536094674556213,0.9621490467937608,0.935223880597015,0.9502415458937198,0.9601413427561838,0.9288549618320611,0.947165109034268,0.9534545454545454,0.9334653465346535,0.9436501901140685,0.9524383561643835,0.9237267080745342,0.9530566037735849,0.9597765363128492,0.9390697674418605,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.24792561666666665 +TPR,0.6263269639065817,0.48,1.0,0.0,0.6540404040404041,1.0,0.0,0.4421768707482993,1.0,0.0,0.7098765432098766,1.0,0.0,0.48404255319148937,1.0,0.0,0.7208480565371025,1.0,0.0,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.24792561666666665 +TNR,0.7316239316239316,0.8088235294117647,1.0,0.0,0.7082405345211581,1.0,0.0,0.8164794007490637,1.0,0.0,0.660377358490566,1.0,0.0,0.8106508875739645,1.0,0.0,0.6234817813765182,1.0,0.0,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.24792561666666665 +PPV,0.6526548672566371,0.5806451612903226,1.0,0.0,0.6641025641025641,1.0,0.0,0.5701754385964912,1.0,0.0,0.6804733727810651,1.0,0.0,0.5870967741935483,1.0,0.0,0.6868686868686869,1.0,0.0,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.24792561666666665 +FNR,0.37367303609341823,0.52,0.0,1.0,0.34595959595959597,0.0,1.0,0.5578231292517006,0.0,1.0,0.29012345679012347,0.0,1.0,0.5159574468085106,0.0,1.0,0.2791519434628975,0.0,1.0,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.24792561666666665 +FPR,0.26837606837606837,0.19117647058823528,0.0,1.0,0.29175946547884185,0.0,1.0,0.18352059925093633,0.0,1.0,0.33962264150943394,0.0,1.0,0.1893491124260355,0.0,1.0,0.3765182186234818,0.0,1.0,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.24792561666666665 +Accuracy,0.6846590909090909,0.6919431279620853,1.0,0.0,0.6828402366863905,1.0,0.0,0.6835748792270532,1.0,0.0,0.6853582554517134,1.0,0.0,0.6939163498098859,1.0,0.0,0.6754716981132075,1.0,0.0,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.24792561666666665 +F1,0.6392199349945829,0.5255474452554745,1.0,0.0,0.6590330788804071,1.0,0.0,0.49808429118773945,1.0,0.0,0.6948640483383686,1.0,0.0,0.5306122448979592,1.0,0.0,0.7034482758620689,1.0,0.0,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.24792561666666665 +Selection-Rate,0.42803030303030304,0.2938388625592417,0.2465753424657534,0.4,0.46153846153846156,0.4488734835355286,0.48880597014925375,0.2753623188405797,0.22968197879858657,0.37404580152671757,0.5264797507788161,0.5227272727272727,0.5346534653465347,0.2946768060836502,0.2493150684931507,0.39751552795031053,0.560377358490566,0.5698324022346368,0.5406976744186046,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.24792561666666665 +Sample_Size,1056.0,211.0,146.0,65.0,845.0,577.0,268.0,414.0,283.0,131.0,642.0,440.0,202.0,526.0,365.0,161.0,530.0,358.0,172.0,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.24792561666666665 diff --git a/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__202137/Metrics_COMPAS_Without_Sensitive_Attributes_RandomForestClassifier_50_Estimators_20240902__202137.csv b/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__202137/Metrics_COMPAS_Without_Sensitive_Attributes_RandomForestClassifier_50_Estimators_20240902__202137.csv new file mode 100644 index 00000000..40b6fbf8 --- /dev/null +++ b/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__202137/Metrics_COMPAS_Without_Sensitive_Attributes_RandomForestClassifier_50_Estimators_20240902__202137.csv @@ -0,0 +1,19 @@ +Metric,overall,sex_priv,sex_priv_correct,sex_priv_incorrect,sex_dis,sex_dis_correct,sex_dis_incorrect,race_priv,race_priv_correct,race_priv_incorrect,race_dis,race_dis_correct,race_dis_incorrect,sex&race_priv,sex&race_priv_correct,sex&race_priv_incorrect,sex&race_dis,sex&race_dis_correct,sex&race_dis_incorrect,Model_Name,Model_Params,Virny_Random_State,Runtime_in_Mins +Aleatoric_Uncertainty,0.9079228906658654,0.9139339641122654,0.8986081914392207,0.9461631625276387,0.9064219007283619,0.89858131141514,0.9250825032938306,0.9025702647395923,0.891870785470872,0.9267494029295349,0.9113745840201912,0.9028601690414114,0.9314793021114458,0.9072966623796926,0.8967410038221043,0.9321058216647246,0.908544392700822,0.9004320359280767,0.9271373097762445,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 4, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': None, 'verbose': 0, 'warm_start': False}",42,0.1622866 +Mean_Prediction,0.5240994439804834,0.5762226134397022,0.5948270237037261,0.5370986330315344,0.5110840726717316,0.5124971940987276,0.5077208436754815,0.5829737465140652,0.6019531703384382,0.5400832375566239,0.4861337722532203,0.4816752438830243,0.49666150154619637,0.5747795133113591,0.5915162747688103,0.5354427937075406,0.4738018657388972,0.465383711351449,0.4930956481548499,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 4, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': None, 'verbose': 0, 'warm_start': False}",42,0.1622866 +IQR,0.05378713895231291,0.05012348383129891,0.046871391383319735,0.05696244294984334,0.05470196881093297,0.054079329480402304,0.056183850417595965,0.05238018340091532,0.049804389091866075,0.05820107290246755,0.054694428046204814,0.05451430230440916,0.05511975113285319,0.05187344596243386,0.04950689977272858,0.05743558318537177,0.0556863889762306,0.05585843900411178,0.05529206313593149,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 4, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': None, 'verbose': 0, 'warm_start': False}",42,0.1622866 +Std,0.03971148500119152,0.03747687864496107,0.03477653570332399,0.04315554100752141,0.04026947546410823,0.039826423848026184,0.04132393831038348,0.0392311921124445,0.037105481620818136,0.04403496306596232,0.040021206583654545,0.03995674849218648,0.04017340867397964,0.038703081222256776,0.03678773626809553,0.04320475184700518,0.04071227818556826,0.04090810870521318,0.040263449230605666,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 4, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': None, 'verbose': 0, 'warm_start': False}",42,0.1622866 +Statistical_Bias,0.4266668589218814,0.4263663129363929,0.34076890416080935,0.6063726284497524,0.4267419064993229,0.3400179609746237,0.6331448968481072,0.4238194618120491,0.3326050454113547,0.6299496784025949,0.42850303088990416,0.3449733748156055,0.6257379779553948,0.4229413344816347,0.33758380771880464,0.623558706300006,0.4303642661965414,0.3427431301535446,0.6311853792391863,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 4, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': None, 'verbose': 0, 'warm_start': False}",42,0.1622866 +Overall_Uncertainty,0.9136493218001831,0.9190413381623638,0.9031664266459752,0.9524253432630045,0.9123029129807511,0.9044333419117323,0.9310324921250158,0.9082292838976915,0.8970505604546833,0.9334914384500015,0.9171444864288927,0.9087297707258559,0.937013788952817,0.9127825207084266,0.9018225521732951,0.9385419372018252,0.9145095809969074,0.9065531590675047,0.9327451070338614,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 4, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': None, 'verbose': 0, 'warm_start': False}",42,0.1622866 +Epistemic_Uncertainty,0.0057264311343177,0.005107374050098423,0.0045582352067545795,0.006262180735365885,0.005881012252389128,0.005852030496592331,0.005949988831185249,0.005659019158099188,0.0051797749838113916,0.006742035520466594,0.005769902408701455,0.005869601684444503,0.0055344868413711445,0.005485858328733939,0.00508154835119079,0.006436115537100662,0.005965188296085389,0.00612112313942792,0.005607797257616842,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 4, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': None, 'verbose': 0, 'warm_start': False}",42,0.1622866 +Jitter,0.07814625850340143,0.09330496179514462,0.06697302697302673,0.14867947178871527,0.07436106750392463,0.06538844109072274,0.09571591836734683,0.0746130336192447,0.05810424518239356,0.11192029567732673,0.0804246932417827,0.07052626815693039,0.1037974142536595,0.07923488787149865,0.06250318013384189,0.11855972962433384,0.0770658452060071,0.06888778275537857,0.09580935479781977,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 4, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': None, 'verbose': 0, 'warm_start': False}",42,0.1622866 +Label_Stability,0.9001515151515153,0.8792417061611374,0.9138461538461539,0.806470588235294,0.9053727810650887,0.917983193277311,0.87536,0.9047342995169082,0.9269686411149825,0.8544881889763779,0.897196261682243,0.9109534368070954,0.8647120418848168,0.8975665399239544,0.9205420054200543,0.8435668789808917,0.9027169811320754,0.9138211382113822,0.8772670807453417,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 4, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': None, 'verbose': 0, 'warm_start': False}",42,0.1622866 +TPR,0.6496815286624203,0.44,1.0,0.0,0.6893939393939394,1.0,0.0,0.5102040816326531,1.0,0.0,0.7129629629629629,1.0,0.0,0.5319148936170213,1.0,0.0,0.7279151943462897,1.0,0.0,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 4, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': None, 'verbose': 0, 'warm_start': False}",42,0.1622866 +TNR,0.7384615384615385,0.8088235294117647,1.0,0.0,0.7171492204899778,1.0,0.0,0.7940074906367042,1.0,0.0,0.6918238993710691,1.0,0.0,0.7958579881656804,1.0,0.0,0.659919028340081,1.0,0.0,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 4, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': None, 'verbose': 0, 'warm_start': False}",42,0.1622866 +PPV,0.6666666666666666,0.559322033898305,1.0,0.0,0.6825,1.0,0.0,0.5769230769230769,1.0,0.0,0.7021276595744681,1.0,0.0,0.591715976331361,1.0,0.0,0.7103448275862069,1.0,0.0,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 4, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': None, 'verbose': 0, 'warm_start': False}",42,0.1622866 +FNR,0.3503184713375796,0.56,0.0,1.0,0.3106060606060606,0.0,1.0,0.4897959183673469,0.0,1.0,0.28703703703703703,0.0,1.0,0.46808510638297873,0.0,1.0,0.27208480565371024,0.0,1.0,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 4, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': None, 'verbose': 0, 'warm_start': False}",42,0.1622866 +FPR,0.26153846153846155,0.19117647058823528,0.0,1.0,0.2828507795100223,0.0,1.0,0.20599250936329588,0.0,1.0,0.3081761006289308,0.0,1.0,0.20414201183431951,0.0,1.0,0.340080971659919,0.0,1.0,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 4, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': None, 'verbose': 0, 'warm_start': False}",42,0.1622866 +Accuracy,0.6988636363636364,0.6777251184834123,1.0,0.0,0.7041420118343196,1.0,0.0,0.6932367149758454,1.0,0.0,0.7024922118380063,1.0,0.0,0.7015209125475285,1.0,0.0,0.6962264150943396,1.0,0.0,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 4, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': None, 'verbose': 0, 'warm_start': False}",42,0.1622866 +F1,0.6580645161290323,0.4925373134328358,1.0,0.0,0.6859296482412061,1.0,0.0,0.5415162454873647,1.0,0.0,0.7075038284839203,1.0,0.0,0.5602240896358543,1.0,0.0,0.7190226876090751,1.0,0.0,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 4, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': None, 'verbose': 0, 'warm_start': False}",42,0.1622866 +Selection-Rate,0.4346590909090909,0.2796208530805687,0.23076923076923078,0.38235294117647056,0.47337278106508873,0.4588235294117647,0.508,0.3140096618357488,0.2613240418118467,0.4330708661417323,0.5124610591900312,0.5121951219512195,0.5130890052356021,0.32129277566539927,0.27100271002710025,0.4394904458598726,0.5471698113207547,0.5582655826558266,0.5217391304347826,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 4, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': None, 'verbose': 0, 'warm_start': False}",42,0.1622866 +Sample_Size,1056.0,211.0,143.0,68.0,845.0,595.0,250.0,414.0,287.0,127.0,642.0,451.0,191.0,526.0,369.0,157.0,530.0,369.0,161.0,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 4, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': None, 'verbose': 0, 'warm_start': False}",42,0.1622866 diff --git a/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__202137/Metrics_COMPAS_Without_Sensitive_Attributes_XGBClassifier_50_Estimators_20240902__202137.csv b/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__202137/Metrics_COMPAS_Without_Sensitive_Attributes_XGBClassifier_50_Estimators_20240902__202137.csv new file mode 100644 index 00000000..e4be79ee --- /dev/null +++ b/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20240902__202137/Metrics_COMPAS_Without_Sensitive_Attributes_XGBClassifier_50_Estimators_20240902__202137.csv @@ -0,0 +1,19 @@ +Metric,overall,sex_priv,sex_priv_correct,sex_priv_incorrect,sex_dis,sex_dis_correct,sex_dis_incorrect,race_priv,race_priv_correct,race_priv_incorrect,race_dis,race_dis_correct,race_dis_incorrect,sex&race_priv,sex&race_priv_correct,sex&race_priv_incorrect,sex&race_dis,sex&race_dis_correct,sex&race_dis_incorrect,Model_Name,Model_Params,Virny_Random_State,Runtime_in_Mins +Aleatoric_Uncertainty,0.8288795609849311,0.8506699397016051,0.8313329711810706,0.8971410414686958,0.823438413163371,0.8096437138648777,0.8564570508416924,0.8318299975923873,0.8223499711667736,0.8558946800574065,0.8269769429857303,0.8084337605645421,0.869798312700639,0.8375500913978621,0.8262313801494903,0.8670097508114325,0.8202744685373806,0.8012283334592885,0.862406827952554,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': None, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0}",42,0.6247168333333334 +Mean_Prediction,0.5189512372016907,0.5749213695526123,0.5984514951705933,0.5183730721473694,0.5049753189086914,0.5072201490402222,0.49960198998451233,0.5922276973724365,0.614119827747345,0.5366553068161011,0.47169822454452515,0.46669408679008484,0.4832543432712555,0.5798354148864746,0.6007328033447266,0.5254451036453247,0.458526611328125,0.4471070170402527,0.4837881028652191,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': None, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0}",42,0.6247168333333334 +IQR,0.09322320626145511,0.0977206958978662,0.09095560564290757,0.11397873538155709,0.09210016447058796,0.09004081588163472,0.09702936832205837,0.09165308455338225,0.08532219613441314,0.10772380130922693,0.09423571465264229,0.09347325726412237,0.09599644099314188,0.09277839567724742,0.08800758174375484,0.10519558262743361,0.0936646597846499,0.09253104231128954,0.09617235904390162,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': None, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0}",42,0.6247168333333334 +Std,0.07068225741386414,0.07257327437400818,0.06769300997257233,0.0843016654253006,0.07021006941795349,0.06847503036260605,0.07436300814151764,0.06876082718372345,0.06345239281654358,0.08223610371351242,0.07192131876945496,0.07154468446969986,0.07279106974601746,0.06955240666866302,0.0656871497631073,0.07961264997720718,0.07180359214544296,0.0710582509636879,0.07345239073038101,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': None, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0}",42,0.6247168333333334 +Statistical_Bias,0.40785022563068196,0.40595479314855487,0.31533082547103797,0.6237446509542004,0.40832352297237284,0.301939517762762,0.6629615434740921,0.40321780712420235,0.3027069031916283,0.6583608709530443,0.4108374861628978,0.30588458779883304,0.6532029421788823,0.4034273862597947,0.30796976556119166,0.6518787278041039,0.41223968508178893,0.3011280401877753,0.6580321116655162,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': None, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0}",42,0.6247168333333334 +Overall_Uncertainty,0.8584497224019242,0.8806019506591429,0.8596612775943726,0.9309271165728659,0.8529182192513052,0.8386758447965929,0.8870084006770419,0.8596219572997196,0.8471760271448519,0.8912154723082302,0.8576937952248411,0.8400202093712272,0.898507024412568,0.8662386882374876,0.8534090582417181,0.8996308758977097,0.8507195412141764,0.8319038129547341,0.8923422128183971,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': None, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0}",42,0.6247168333333334 +Epistemic_Uncertainty,0.02957016141699309,0.029932010957537836,0.028328306413301974,0.03378607510417009,0.029479806087934213,0.029032130931715194,0.03055134983534946,0.02779195970733228,0.0248260559780783,0.03532079225082363,0.030716852239110803,0.03158644880668515,0.028708711711929014,0.028688596839625546,0.02717767809222782,0.032621125086277236,0.030445072676795748,0.03067547949544569,0.02993538486584313,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': None, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0}",42,0.6247168333333334 +Jitter,0.11190166975881251,0.13589708869329753,0.10989179564443187,0.19839368005266636,0.10590991426156245,0.09551842213395412,0.1307827227276454,0.11474120082815736,0.09684326255755007,0.1601744287458584,0.11007057028418832,0.09942055393585993,0.13466442247001947,0.11561108093427501,0.09892373791621917,0.15904389152921417,0.10822025413939182,0.09784064858820234,0.13118119975262796,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': None, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0}",42,0.6247168333333334 +Label_Stability,0.8492424242424242,0.8085308056872038,0.8459060402684563,0.7187096774193549,0.8594082840236686,0.8731543624161073,0.8265060240963856,0.8379710144927536,0.8628956228956228,0.7747008547008546,0.8565109034267913,0.8708928571428572,0.8232989690721648,0.8387832699619772,0.861578947368421,0.7794520547945206,0.859622641509434,0.8740821917808218,0.8276363636363635,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': None, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0}",42,0.6247168333333334 +TPR,0.6602972399150743,0.5733333333333334,1.0,0.0,0.6767676767676768,1.0,0.0,0.5510204081632653,1.0,0.0,0.7098765432098766,1.0,0.0,0.5851063829787234,1.0,0.0,0.7102473498233216,1.0,0.0,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': None, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0}",42,0.6247168333333334 +TNR,0.7418803418803419,0.7794117647058824,1.0,0.0,0.7305122494432071,1.0,0.0,0.8089887640449438,1.0,0.0,0.6855345911949685,1.0,0.0,0.7988165680473372,1.0,0.0,0.6639676113360324,1.0,0.0,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': None, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0}",42,0.6247168333333334 +PPV,0.6731601731601732,0.589041095890411,1.0,0.0,0.6889460154241646,1.0,0.0,0.6136363636363636,1.0,0.0,0.696969696969697,1.0,0.0,0.6179775280898876,1.0,0.0,0.7077464788732394,1.0,0.0,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': None, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0}",42,0.6247168333333334 +FNR,0.33970276008492567,0.4266666666666667,0.0,1.0,0.32323232323232326,0.0,1.0,0.4489795918367347,0.0,1.0,0.29012345679012347,0.0,1.0,0.4148936170212766,0.0,1.0,0.28975265017667845,0.0,1.0,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': None, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0}",42,0.6247168333333334 +FPR,0.25811965811965815,0.22058823529411764,0.0,1.0,0.26948775055679286,0.0,1.0,0.19101123595505617,0.0,1.0,0.31446540880503143,0.0,1.0,0.20118343195266272,0.0,1.0,0.3360323886639676,0.0,1.0,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': None, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0}",42,0.6247168333333334 +Accuracy,0.7054924242424242,0.7061611374407583,1.0,0.0,0.7053254437869823,1.0,0.0,0.717391304347826,1.0,0.0,0.6978193146417445,1.0,0.0,0.7224334600760456,1.0,0.0,0.6886792452830188,1.0,0.0,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': None, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0}",42,0.6247168333333334 +F1,0.6666666666666666,0.581081081081081,1.0,0.0,0.6828025477707006,1.0,0.0,0.5806451612903226,1.0,0.0,0.7033639143730887,1.0,0.0,0.6010928961748634,1.0,0.0,0.708994708994709,1.0,0.0,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': None, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0}",42,0.6247168333333334 +Selection-Rate,0.4375,0.3459715639810427,0.28859060402684567,0.4838709677419355,0.4603550295857988,0.44966442953020136,0.4859437751004016,0.3188405797101449,0.2727272727272727,0.4358974358974359,0.514018691588785,0.5133928571428571,0.5154639175257731,0.33840304182509506,0.2894736842105263,0.4657534246575342,0.5358490566037736,0.5506849315068493,0.503030303030303,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': None, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0}",42,0.6247168333333334 +Sample_Size,1056.0,211.0,149.0,62.0,845.0,596.0,249.0,414.0,297.0,117.0,642.0,448.0,194.0,526.0,380.0,146.0,530.0,365.0,165.0,XGBClassifier,"{'objective': 'binary:logistic', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': None, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0}",42,0.6247168333333334 diff --git a/docs/examples/results/Law_School_Metrics_20240902__192830/Metrics_Law_School_ExponentiatedGradientReduction_30_Estimators_20240902__192830.csv b/docs/examples/results/Law_School_Metrics_20240902__192830/Metrics_Law_School_ExponentiatedGradientReduction_30_Estimators_20240902__192830.csv new file mode 100644 index 00000000..213caba7 --- /dev/null +++ b/docs/examples/results/Law_School_Metrics_20240902__192830/Metrics_Law_School_ExponentiatedGradientReduction_30_Estimators_20240902__192830.csv @@ -0,0 +1,19 @@ +Metric,overall,male_priv,male_priv_correct,male_priv_incorrect,male_dis,male_dis_correct,male_dis_incorrect,race_priv,race_priv_correct,race_priv_incorrect,race_dis,race_dis_correct,race_dis_incorrect,male&race_priv,male&race_priv_correct,male&race_priv_incorrect,male&race_dis,male&race_dis_correct,male&race_dis_incorrect,Model_Name,Model_Params,Virny_Random_State,Runtime_in_Mins +Overall_Uncertainty,0.020169141515575608,0.018284979232249907,0.012945931734670365,0.07372893401480665,0.022658927389970294,0.011679862423193207,0.11104594535483224,0.015864958078568938,0.010445547692689117,0.08749732600160956,0.044106918800884,0.025925226707611434,0.09888214308188233,0.01732401793745019,0.011285855525144457,0.0822250028844419,0.053189818195031206,0.028141101957407152,0.1314670564376064,ExponentiatedGradientReduction,{'sensitive_attr_for_intervention': 'race_binary'},42,1.2420335166666667 +Aleatoric_Uncertainty,0.0059052534542774916,0.0048831172373593875,0.0032960511709544294,0.02136418792694933,0.007255933455204988,0.0036038997472391406,0.03665664926579873,0.0031053028589152465,0.0020106752907227896,0.01757380757074941,0.021477218437317366,0.013178767065906413,0.04647761623979592,0.004231682744137436,0.0026668121999259787,0.021051640986213975,0.02532881654469086,0.01407830711128052,0.06048665852409818,ExponentiatedGradientReduction,{'sensitive_attr_for_intervention': 'race_binary'},42,1.2420335166666667 +Std,0.009615429534277747,0.008868384077359553,0.006229151033668037,0.03627580414646375,0.010602596745205365,0.005570702648560499,0.051111885583851414,0.008154987056426257,0.005328218511346583,0.04551848419663261,0.017737701106682092,0.010228499946080452,0.04036035776773513,0.00856126878054591,0.005557576778481837,0.040846350913160974,0.02185008313061999,0.011443668890912147,0.05437012762970701,ExponentiatedGradientReduction,{'sensitive_attr_for_intervention': 'race_binary'},42,1.2420335166666667 +Statistical_Bias,0.09845814659649274,0.08984659238260767,0.0042103806980131695,0.9791457137226273,0.10983770037912657,0.003317117175717746,0.9673821934409126,0.07169236453284307,0.0034039089178491693,0.9743115480245766,0.24731642349937719,0.006772885825825536,0.9719918914272921,0.08637384069279137,0.0035991232174787894,0.9760750984642491,0.2387093332970268,0.00708231732702742,0.9625437582032749,ExponentiatedGradientReduction,{'sensitive_attr_for_intervention': 'race_binary'},42,1.2420335166666667 +IQR,0.010354520128125497,0.009921698904014491,0.008073449653730655,0.029115056503115872,0.010926462459986469,0.005680893019413301,0.053155945734095725,0.008797110899311709,0.006598295886871637,0.037860480297612374,0.01901607366250628,0.010220127747558393,0.04551525249488092,0.009357235389569436,0.006847766844010453,0.03633017337619115,0.021929067245306445,0.009997678814361553,0.059214656092009245,ExponentiatedGradientReduction,{'sensitive_attr_for_intervention': 'race_binary'},42,1.2420335166666667 +Mean_Prediction,0.024633128054093966,0.021841896627271457,0.015440315002686658,0.0883198596518059,0.02832154101096657,0.020068350049003543,0.09476389653303256,0.022746787320571064,0.015406140232573718,0.11977356616918111,0.03512403882128917,0.031173745171298693,0.04702492348834913,0.02337317035813005,0.016308781103976246,0.09930451988743956,0.03925627343452376,0.03277624558232825,0.05950636047263469,ExponentiatedGradientReduction,{'sensitive_attr_for_intervention': 'race_binary'},42,1.2420335166666667 +Epistemic_Uncertainty,0.014263888061298116,0.013401861994890518,0.009649880563715936,0.05236474608785732,0.015402993934765307,0.008075962675954066,0.07438929608903351,0.012759655219653691,0.008434872401966328,0.06992351843086014,0.022629700363566634,0.01274645964170502,0.05240452684208641,0.013092335193312755,0.008619043325218477,0.061173361898227925,0.027861001650340347,0.014062794846126632,0.07098039791350821,ExponentiatedGradientReduction,{'sensitive_attr_for_intervention': 'race_binary'},42,1.2420335166666667 +Jitter,0.008197944297082226,0.007552811432121774,0.005555555555555551,0.028293545534924854,0.009050441297208537,0.004642409033877038,0.044537327295948115,0.006719867519445048,0.004547909083896119,0.035428253615128004,0.016418289278073928,0.009436878199555661,0.037450894805761616,0.007149245220731671,0.004801081194562532,0.03238840702348209,0.020369209334726596,0.010308045977011484,0.05181034482758617,ExponentiatedGradientReduction,{'sensitive_attr_for_intervention': 'race_binary'},42,1.2420335166666667 +Label_Stability,0.9890865384615386,0.9896959459459459,0.9922222222222221,0.9634615384615385,0.98828125,0.9939355918025932,0.9427609427609427,0.9907543959160521,0.9935936546674802,0.9532258064516128,0.9798107255520505,0.9885154061624649,0.9535864978902953,0.9903046127067016,0.9933409436834095,0.9576687116564419,0.974949494949495,0.9874666666666667,0.9358333333333334,ExponentiatedGradientReduction,{'sensitive_attr_for_intervention': 'race_binary'},42,1.2420335166666667 +TPR,0.9906115879828327,0.9911627906976744,1.0,0.0,0.9898605830164765,1.0,0.0,0.9908060067422617,1.0,0.0,0.989247311827957,1.0,0.0,0.9908151549942594,1.0,0.0,0.9877049180327869,1.0,0.0,ExponentiatedGradientReduction,{'sensitive_attr_for_intervention': 'race_binary'},42,1.2420335166666667 +TNR,0.1412037037037037,0.13302752293577982,1.0,0.0,0.14953271028037382,1.0,0.0,0.17110266159695817,1.0,0.0,0.09467455621301775,1.0,0.0,0.15028901734104047,1.0,0.0,0.10465116279069768,1.0,0.0,ExponentiatedGradientReduction,{'sensitive_attr_for_intervention': 'race_binary'},42,1.2420335166666667 +PPV,0.9087106299212598,0.9185344827586207,1.0,0.0,0.8956422018348624,1.0,0.0,0.9368299043755434,1.0,0.0,0.7504078303425775,1.0,0.0,0.9215162840363054,1.0,0.0,0.7578616352201258,1.0,0.0,ExponentiatedGradientReduction,{'sensitive_attr_for_intervention': 'race_binary'},42,1.2420335166666667 +FNR,0.009388412017167383,0.008837209302325582,0.0,1.0,0.010139416983523447,0.0,1.0,0.009193993257738278,0.0,1.0,0.010752688172043012,0.0,1.0,0.009184845005740528,0.0,1.0,0.012295081967213115,0.0,1.0,ExponentiatedGradientReduction,{'sensitive_attr_for_intervention': 'race_binary'},42,1.2420335166666667 +FPR,0.8587962962962963,0.8669724770642202,0.0,1.0,0.8504672897196262,0.0,1.0,0.8288973384030418,0.0,1.0,0.9053254437869822,0.0,1.0,0.8497109826589595,0.0,1.0,0.8953488372093024,0.0,1.0,ExponentiatedGradientReduction,{'sensitive_attr_for_intervention': 'race_binary'},42,1.2420335166666667 +Accuracy,0.9024038461538462,0.9121621621621622,1.0,0.0,0.8895089285714286,1.0,0.0,0.9296653431650596,1.0,0.0,0.750788643533123,1.0,0.0,0.9148825065274151,1.0,0.0,0.7575757575757576,1.0,0.0,ExponentiatedGradientReduction,{'sensitive_attr_for_intervention': 'race_binary'},42,1.2420335166666667 +F1,0.9478952772073922,0.9534675615212528,1.0,0.0,0.9403973509933775,1.0,0.0,0.9630622579684242,1.0,0.0,0.8534322820037106,1.0,0.0,0.9549100968188106,1.0,0.0,0.8576512455516014,1.0,0.0,ExponentiatedGradientReduction,{'sensitive_attr_for_intervention': 'race_binary'},42,1.2420335166666667 +Selection-Rate,0.9769230769230769,0.9797297297297297,0.986574074074074,0.9086538461538461,0.9732142857142857,0.9799247176913425,0.9191919191919192,0.9787294384571753,0.9862721171446004,0.8790322580645161,0.9668769716088328,0.9663865546218487,0.9683544303797469,0.9780678851174934,0.9851598173515982,0.901840490797546,0.9636363636363636,0.964,0.9625,ExponentiatedGradientReduction,{'sensitive_attr_for_intervention': 'race_binary'},42,1.2420335166666667 +Sample_Size,4160.0,2368.0,2160.0,208.0,1792.0,1594.0,198.0,3526.0,3278.0,248.0,634.0,476.0,158.0,3830.0,3504.0,326.0,330.0,250.0,80.0,ExponentiatedGradientReduction,{'sensitive_attr_for_intervention': 'race_binary'},42,1.2420335166666667 diff --git a/docs/examples/results/Law_School_Metrics_20240902__194409/Metrics_Law_School_ExponentiatedGradientReduction_30_Estimators_20240902__194410.csv b/docs/examples/results/Law_School_Metrics_20240902__194409/Metrics_Law_School_ExponentiatedGradientReduction_30_Estimators_20240902__194410.csv new file mode 100644 index 00000000..837972bc --- /dev/null +++ b/docs/examples/results/Law_School_Metrics_20240902__194409/Metrics_Law_School_ExponentiatedGradientReduction_30_Estimators_20240902__194410.csv @@ -0,0 +1,19 @@ +Metric,overall,male_priv,male_priv_correct,male_priv_incorrect,male_dis,male_dis_correct,male_dis_incorrect,race_priv,race_priv_correct,race_priv_incorrect,race_dis,race_dis_correct,race_dis_incorrect,male&race_priv,male&race_priv_correct,male&race_priv_incorrect,male&race_dis,male&race_dis_correct,male&race_dis_incorrect,Model_Name,Model_Params,Virny_Random_State,Runtime_in_Mins +Overall_Uncertainty,0.020169141515575608,0.018284979232249907,0.012945931734670365,0.07372893401480665,0.022658927389970294,0.011679862423193207,0.11104594535483224,0.015864958078568938,0.010445547692689117,0.08749732600160956,0.044106918800884,0.025925226707611434,0.09888214308188233,0.01732401793745019,0.011285855525144457,0.0822250028844419,0.053189818195031206,0.028141101957407152,0.1314670564376064,ExponentiatedGradientReduction,{'sensitive_attr_for_intervention': 'race_binary'},42,1.3498276500000002 +Aleatoric_Uncertainty,0.0059052534542774916,0.0048831172373593875,0.0032960511709544294,0.02136418792694933,0.007255933455204988,0.0036038997472391406,0.03665664926579873,0.0031053028589152465,0.0020106752907227896,0.01757380757074941,0.021477218437317366,0.013178767065906413,0.04647761623979592,0.004231682744137436,0.0026668121999259787,0.021051640986213975,0.02532881654469086,0.01407830711128052,0.06048665852409818,ExponentiatedGradientReduction,{'sensitive_attr_for_intervention': 'race_binary'},42,1.3498276500000002 +Std,0.009615429534277747,0.008868384077359553,0.006229151033668037,0.03627580414646375,0.010602596745205365,0.005570702648560499,0.051111885583851414,0.008154987056426257,0.005328218511346583,0.04551848419663261,0.017737701106682092,0.010228499946080452,0.04036035776773513,0.00856126878054591,0.005557576778481837,0.040846350913160974,0.02185008313061999,0.011443668890912147,0.05437012762970701,ExponentiatedGradientReduction,{'sensitive_attr_for_intervention': 'race_binary'},42,1.3498276500000002 +Statistical_Bias,0.09845814659649274,0.08984659238260767,0.0042103806980131695,0.9791457137226273,0.10983770037912657,0.003317117175717746,0.9673821934409126,0.07169236453284307,0.0034039089178491693,0.9743115480245766,0.24731642349937719,0.006772885825825536,0.9719918914272921,0.08637384069279137,0.0035991232174787894,0.9760750984642491,0.2387093332970268,0.00708231732702742,0.9625437582032749,ExponentiatedGradientReduction,{'sensitive_attr_for_intervention': 'race_binary'},42,1.3498276500000002 +IQR,0.010354520128125497,0.009921698904014491,0.008073449653730655,0.029115056503115872,0.010926462459986469,0.005680893019413301,0.053155945734095725,0.008797110899311709,0.006598295886871637,0.037860480297612374,0.01901607366250628,0.010220127747558393,0.04551525249488092,0.009357235389569436,0.006847766844010453,0.03633017337619115,0.021929067245306445,0.009997678814361553,0.059214656092009245,ExponentiatedGradientReduction,{'sensitive_attr_for_intervention': 'race_binary'},42,1.3498276500000002 +Mean_Prediction,0.024633128054093966,0.021841896627271457,0.015440315002686658,0.0883198596518059,0.02832154101096657,0.020068350049003543,0.09476389653303256,0.022746787320571064,0.015406140232573718,0.11977356616918111,0.03512403882128917,0.031173745171298693,0.04702492348834913,0.02337317035813005,0.016308781103976246,0.09930451988743956,0.03925627343452376,0.03277624558232825,0.05950636047263469,ExponentiatedGradientReduction,{'sensitive_attr_for_intervention': 'race_binary'},42,1.3498276500000002 +Epistemic_Uncertainty,0.014263888061298116,0.013401861994890518,0.009649880563715936,0.05236474608785732,0.015402993934765307,0.008075962675954066,0.07438929608903351,0.012759655219653691,0.008434872401966328,0.06992351843086014,0.022629700363566634,0.01274645964170502,0.05240452684208641,0.013092335193312755,0.008619043325218477,0.061173361898227925,0.027861001650340347,0.014062794846126632,0.07098039791350821,ExponentiatedGradientReduction,{'sensitive_attr_for_intervention': 'race_binary'},42,1.3498276500000002 +Jitter,0.008197944297082226,0.007552811432121774,0.005555555555555551,0.028293545534924854,0.009050441297208537,0.004642409033877038,0.044537327295948115,0.006719867519445048,0.004547909083896119,0.035428253615128004,0.016418289278073928,0.009436878199555661,0.037450894805761616,0.007149245220731671,0.004801081194562532,0.03238840702348209,0.020369209334726596,0.010308045977011484,0.05181034482758617,ExponentiatedGradientReduction,{'sensitive_attr_for_intervention': 'race_binary'},42,1.3498276500000002 +Label_Stability,0.9890865384615386,0.9896959459459459,0.9922222222222221,0.9634615384615385,0.98828125,0.9939355918025932,0.9427609427609427,0.9907543959160521,0.9935936546674802,0.9532258064516128,0.9798107255520505,0.9885154061624649,0.9535864978902953,0.9903046127067016,0.9933409436834095,0.9576687116564419,0.974949494949495,0.9874666666666667,0.9358333333333334,ExponentiatedGradientReduction,{'sensitive_attr_for_intervention': 'race_binary'},42,1.3498276500000002 +TPR,0.9906115879828327,0.9911627906976744,1.0,0.0,0.9898605830164765,1.0,0.0,0.9908060067422617,1.0,0.0,0.989247311827957,1.0,0.0,0.9908151549942594,1.0,0.0,0.9877049180327869,1.0,0.0,ExponentiatedGradientReduction,{'sensitive_attr_for_intervention': 'race_binary'},42,1.3498276500000002 +TNR,0.1412037037037037,0.13302752293577982,1.0,0.0,0.14953271028037382,1.0,0.0,0.17110266159695817,1.0,0.0,0.09467455621301775,1.0,0.0,0.15028901734104047,1.0,0.0,0.10465116279069768,1.0,0.0,ExponentiatedGradientReduction,{'sensitive_attr_for_intervention': 'race_binary'},42,1.3498276500000002 +PPV,0.9087106299212598,0.9185344827586207,1.0,0.0,0.8956422018348624,1.0,0.0,0.9368299043755434,1.0,0.0,0.7504078303425775,1.0,0.0,0.9215162840363054,1.0,0.0,0.7578616352201258,1.0,0.0,ExponentiatedGradientReduction,{'sensitive_attr_for_intervention': 'race_binary'},42,1.3498276500000002 +FNR,0.009388412017167383,0.008837209302325582,0.0,1.0,0.010139416983523447,0.0,1.0,0.009193993257738278,0.0,1.0,0.010752688172043012,0.0,1.0,0.009184845005740528,0.0,1.0,0.012295081967213115,0.0,1.0,ExponentiatedGradientReduction,{'sensitive_attr_for_intervention': 'race_binary'},42,1.3498276500000002 +FPR,0.8587962962962963,0.8669724770642202,0.0,1.0,0.8504672897196262,0.0,1.0,0.8288973384030418,0.0,1.0,0.9053254437869822,0.0,1.0,0.8497109826589595,0.0,1.0,0.8953488372093024,0.0,1.0,ExponentiatedGradientReduction,{'sensitive_attr_for_intervention': 'race_binary'},42,1.3498276500000002 +Accuracy,0.9024038461538462,0.9121621621621622,1.0,0.0,0.8895089285714286,1.0,0.0,0.9296653431650596,1.0,0.0,0.750788643533123,1.0,0.0,0.9148825065274151,1.0,0.0,0.7575757575757576,1.0,0.0,ExponentiatedGradientReduction,{'sensitive_attr_for_intervention': 'race_binary'},42,1.3498276500000002 +F1,0.9478952772073922,0.9534675615212528,1.0,0.0,0.9403973509933775,1.0,0.0,0.9630622579684242,1.0,0.0,0.8534322820037106,1.0,0.0,0.9549100968188106,1.0,0.0,0.8576512455516014,1.0,0.0,ExponentiatedGradientReduction,{'sensitive_attr_for_intervention': 'race_binary'},42,1.3498276500000002 +Selection-Rate,0.9769230769230769,0.9797297297297297,0.986574074074074,0.9086538461538461,0.9732142857142857,0.9799247176913425,0.9191919191919192,0.9787294384571753,0.9862721171446004,0.8790322580645161,0.9668769716088328,0.9663865546218487,0.9683544303797469,0.9780678851174934,0.9851598173515982,0.901840490797546,0.9636363636363636,0.964,0.9625,ExponentiatedGradientReduction,{'sensitive_attr_for_intervention': 'race_binary'},42,1.3498276500000002 +Sample_Size,4160.0,2368.0,2160.0,208.0,1792.0,1594.0,198.0,3526.0,3278.0,248.0,634.0,476.0,158.0,3830.0,3504.0,326.0,330.0,250.0,80.0,ExponentiatedGradientReduction,{'sensitive_attr_for_intervention': 'race_binary'},42,1.3498276500000002 diff --git a/docs/examples/results/Law_School_Metrics_20240902__194600/Metrics_Law_School_LogisticRegression_50_Estimators_20240902__194604.csv b/docs/examples/results/Law_School_Metrics_20240902__194600/Metrics_Law_School_LogisticRegression_50_Estimators_20240902__194604.csv new file mode 100644 index 00000000..8562630b --- /dev/null +++ b/docs/examples/results/Law_School_Metrics_20240902__194600/Metrics_Law_School_LogisticRegression_50_Estimators_20240902__194604.csv @@ -0,0 +1,12 @@ +Metric,overall,male_priv,male_priv_correct,male_priv_incorrect,male_dis,male_dis_correct,male_dis_incorrect,race_priv,race_priv_correct,race_priv_incorrect,race_dis,race_dis_correct,race_dis_incorrect,male&race_priv,male&race_priv_correct,male&race_priv_incorrect,male&race_dis,male&race_dis_correct,male&race_dis_incorrect,Model_Name,Model_Params,Virny_Random_State,Runtime_in_Mins +Jitter,0.044092817896389316,0.04128137065637064,0.035661796752126995,0.09784474537478521,0.04780794460641396,0.03763995270652305,0.12695878351340528,0.038878534964751646,0.03696860617912118,0.06401442504712723,0.07309212644048162,0.0332078121571209,0.1828329911846389,0.03996845526722431,0.03595220592525173,0.08228423899680336,0.09196042053184907,0.04437269989963194,0.22697674418604719,LogisticRegression,"{'C': 100, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.27380075000000004 +Label_Stability,0.9499134615384616,0.9538006756756756,0.9622841225626741,0.8684112149532712,0.9447767857142857,0.958513853904282,0.837843137254902,0.958094157685763,0.9612084223375038,0.9171084337349398,0.9044164037854889,0.956989247311828,0.7597633136094675,0.9559895561357704,0.9620240137221269,0.8924096385542167,0.8793939393939395,0.9414754098360656,0.7032558139534885,LogisticRegression,"{'C': 100, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.27380075000000004 +TPR,0.9949034334763949,0.9948837209302326,1.0,0.0,0.9949302915082383,1.0,0.0,0.9941771376034324,1.0,0.0,1.0,1.0,,0.9945464982778416,1.0,0.0,1.0,1.0,,LogisticRegression,"{'C': 100, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.27380075000000004 +TNR,0.0763888888888889,0.06880733944954129,1.0,0.0,0.08411214953271028,1.0,0.0,0.12547528517110265,1.0,0.0,0.0,,0.0,0.0953757225433526,1.0,0.0,0.0,,0.0,LogisticRegression,"{'C': 100, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.27380075000000004 +PPV,0.9028724440116845,0.9133219470538002,1.0,0.0,0.8890147225368064,1.0,0.0,0.9337938975244675,1.0,0.0,0.7334384858044164,1.0,0.0,0.91715193223928,1.0,0.0,0.7393939393939394,1.0,0.0,LogisticRegression,"{'C': 100, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.27380075000000004 +FNR,0.00509656652360515,0.0051162790697674414,0.0,1.0,0.005069708491761723,0.0,1.0,0.0058228623965675755,0.0,1.0,0.0,0.0,,0.0054535017221584384,0.0,1.0,0.0,0.0,,LogisticRegression,"{'C': 100, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.27380075000000004 +FPR,0.9236111111111112,0.9311926605504587,0.0,1.0,0.9158878504672897,0.0,1.0,0.8745247148288974,0.0,1.0,1.0,,1.0,0.9046242774566474,0.0,1.0,1.0,,1.0,LogisticRegression,"{'C': 100, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.27380075000000004 +Accuracy,0.8995192307692308,0.9096283783783784,1.0,0.0,0.8861607142857143,1.0,0.0,0.9293817356778219,1.0,0.0,0.7334384858044164,1.0,0.0,0.9133159268929504,1.0,0.0,0.7393939393939394,1.0,0.0,LogisticRegression,"{'C': 100, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.27380075000000004 +F1,0.9466564573762124,0.9523597506678539,1.0,0.0,0.9389952153110048,1.0,0.0,0.9630399287516699,1.0,0.0,0.8462238398544131,1.0,0.0,0.9542825667860093,1.0,0.0,0.8501742160278746,1.0,0.0,LogisticRegression,"{'C': 100, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.27380075000000004 +Selection-Rate,0.9875,0.9890202702702703,0.9930362116991643,0.9485981308411215,0.9854910714285714,0.9886649874055415,0.9607843137254902,0.9852524106636416,0.9899298138541349,0.9236947791164659,1.0,1.0,1.0,0.9864229765013055,0.9905660377358491,0.9427710843373494,1.0,1.0,1.0,LogisticRegression,"{'C': 100, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.27380075000000004 +Sample_Size,4160.0,2368.0,2154.0,214.0,1792.0,1588.0,204.0,3526.0,3277.0,249.0,634.0,465.0,169.0,3830.0,3498.0,332.0,330.0,244.0,86.0,LogisticRegression,"{'C': 100, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.27380075000000004 diff --git a/docs/examples/results/Law_School_Metrics_20240902__194600/Metrics_Law_School_RandomForestClassifier_50_Estimators_20240902__194604.csv b/docs/examples/results/Law_School_Metrics_20240902__194600/Metrics_Law_School_RandomForestClassifier_50_Estimators_20240902__194604.csv new file mode 100644 index 00000000..e6fbc652 --- /dev/null +++ b/docs/examples/results/Law_School_Metrics_20240902__194600/Metrics_Law_School_RandomForestClassifier_50_Estimators_20240902__194604.csv @@ -0,0 +1,12 @@ +Metric,overall,male_priv,male_priv_correct,male_priv_incorrect,male_dis,male_dis_correct,male_dis_incorrect,race_priv,race_priv_correct,race_priv_incorrect,race_dis,race_dis_correct,race_dis_incorrect,male&race_priv,male&race_priv_correct,male&race_priv_incorrect,male&race_dis,male&race_dis_correct,male&race_dis_incorrect,Model_Name,Model_Params,Virny_Random_State,Runtime_in_Mins +Jitter,0.041602629513343856,0.03683190843905139,0.02559931814953362,0.1504761904761904,0.047906796647230306,0.03181471333828404,0.17745619459905201,0.02736592311343138,0.020508050268134174,0.11459699833240784,0.12078027425481228,0.08091326530612242,0.24504108136761196,0.03346235413225338,0.02354547312487232,0.1369235455376182,0.13607915893630204,0.09286517756709,0.28050483351235195,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.7177724 +Label_Stability,0.9421057692307692,0.9501351351351351,0.967647331786543,0.7729577464788732,0.9314955357142857,0.9574153074027604,0.7228282828282827,0.9652297220646625,0.9757846436219028,0.8309727626459144,0.8135015772870662,0.87825,0.6116883116883117,0.95556135770235,0.9708497854077253,0.7960597014925371,0.7859393939393939,0.8593700787401575,0.5405263157894736,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.7177724 +TPR,0.9892703862660944,0.9911627906976744,1.0,0.0,0.9866920152091255,1.0,0.0,0.9932577382776586,1.0,0.0,0.9612903225806452,1.0,0.0,0.9919632606199771,1.0,0.0,0.9508196721311475,1.0,0.0,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.7177724 +TNR,0.1412037037037037,0.11009174311926606,1.0,0.0,0.17289719626168223,1.0,0.0,0.10646387832699619,1.0,0.0,0.1952662721893491,1.0,0.0,0.11271676300578035,1.0,0.0,0.2558139534883721,1.0,0.0,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.7177724 +PPV,0.9085981768908599,0.9165591397849462,1.0,0.0,0.8979238754325259,1.0,0.0,0.9323935558112774,1.0,0.0,0.7667238421955404,1.0,0.0,0.9184161573212862,1.0,0.0,0.7837837837837838,1.0,0.0,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.7177724 +FNR,0.01072961373390558,0.008837209302325582,0.0,1.0,0.013307984790874524,0.0,1.0,0.006742261722341404,0.0,1.0,0.03870967741935484,0.0,1.0,0.008036739380022962,0.0,1.0,0.04918032786885246,0.0,1.0,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.7177724 +FPR,0.8587962962962963,0.8899082568807339,0.0,1.0,0.8271028037383178,0.0,1.0,0.8935361216730038,0.0,1.0,0.8047337278106509,0.0,1.0,0.8872832369942196,0.0,1.0,0.7441860465116279,0.0,1.0,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.7177724 +Accuracy,0.901201923076923,0.9100506756756757,1.0,0.0,0.8895089285714286,1.0,0.0,0.9271128757799206,1.0,0.0,0.7570977917981072,1.0,0.0,0.912532637075718,1.0,0.0,0.7696969696969697,1.0,0.0,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.7177724 +F1,0.9472197251829974,0.9524022346368715,1.0,0.0,0.9402173913043478,1.0,0.0,0.9618637780086067,1.0,0.0,0.8530534351145038,1.0,0.0,0.9537739754381124,1.0,0.0,0.8592592592592593,1.0,0.0,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.7177724 +Selection-Rate,0.9757211538461539,0.9818412162162162,0.9888631090487239,0.9107981220657277,0.9676339285714286,0.9767879548306148,0.8939393939393939,0.9858196256381169,0.9914346895074947,0.914396887159533,0.919558359621451,0.93125,0.8831168831168831,0.9825065274151435,0.9888412017167382,0.9164179104477612,0.896969696969697,0.9133858267716536,0.8421052631578947,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.7177724 +Sample_Size,4160.0,2368.0,2155.0,213.0,1792.0,1594.0,198.0,3526.0,3269.0,257.0,634.0,480.0,154.0,3830.0,3495.0,335.0,330.0,254.0,76.0,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.7177724 diff --git a/docs/examples/results/Law_School_Metrics_20240902__202330/Metrics_Law_School_ExponentiatedGradientReduction_30_Estimators_20240902__202330.csv b/docs/examples/results/Law_School_Metrics_20240902__202330/Metrics_Law_School_ExponentiatedGradientReduction_30_Estimators_20240902__202330.csv new file mode 100644 index 00000000..2f6e8d26 --- /dev/null +++ b/docs/examples/results/Law_School_Metrics_20240902__202330/Metrics_Law_School_ExponentiatedGradientReduction_30_Estimators_20240902__202330.csv @@ -0,0 +1,19 @@ +Metric,overall,male_priv,male_priv_correct,male_priv_incorrect,male_dis,male_dis_correct,male_dis_incorrect,race_priv,race_priv_correct,race_priv_incorrect,race_dis,race_dis_correct,race_dis_incorrect,male&race_priv,male&race_priv_correct,male&race_priv_incorrect,male&race_dis,male&race_dis_correct,male&race_dis_incorrect,Model_Name,Model_Params,Virny_Random_State,Runtime_in_Mins +Overall_Uncertainty,0.020169141515575608,0.018284979232249907,0.012945931734670365,0.07372893401480665,0.022658927389970294,0.011679862423193207,0.11104594535483224,0.015864958078568938,0.010445547692689117,0.08749732600160956,0.044106918800884,0.025925226707611434,0.09888214308188233,0.01732401793745019,0.011285855525144457,0.0822250028844419,0.053189818195031206,0.028141101957407152,0.1314670564376064,ExponentiatedGradientReduction,{'sensitive_attr_for_intervention': 'race_binary'},42,1.6581254666666667 +Aleatoric_Uncertainty,0.0059052534542774916,0.0048831172373593875,0.0032960511709544294,0.02136418792694933,0.007255933455204988,0.0036038997472391406,0.03665664926579873,0.0031053028589152465,0.0020106752907227896,0.01757380757074941,0.021477218437317366,0.013178767065906413,0.04647761623979592,0.004231682744137436,0.0026668121999259787,0.021051640986213975,0.02532881654469086,0.01407830711128052,0.06048665852409818,ExponentiatedGradientReduction,{'sensitive_attr_for_intervention': 'race_binary'},42,1.6581254666666667 +Std,0.009615429534277747,0.008868384077359553,0.006229151033668037,0.03627580414646375,0.010602596745205365,0.005570702648560499,0.051111885583851414,0.008154987056426257,0.005328218511346583,0.04551848419663261,0.017737701106682092,0.010228499946080452,0.04036035776773513,0.00856126878054591,0.005557576778481837,0.040846350913160974,0.02185008313061999,0.011443668890912147,0.05437012762970701,ExponentiatedGradientReduction,{'sensitive_attr_for_intervention': 'race_binary'},42,1.6581254666666667 +Statistical_Bias,0.09845814659649274,0.08984659238260767,0.0042103806980131695,0.9791457137226273,0.10983770037912657,0.003317117175717746,0.9673821934409126,0.07169236453284307,0.0034039089178491693,0.9743115480245766,0.24731642349937719,0.006772885825825536,0.9719918914272921,0.08637384069279137,0.0035991232174787894,0.9760750984642491,0.2387093332970268,0.00708231732702742,0.9625437582032749,ExponentiatedGradientReduction,{'sensitive_attr_for_intervention': 'race_binary'},42,1.6581254666666667 +IQR,0.010354520128125497,0.009921698904014491,0.008073449653730655,0.029115056503115872,0.010926462459986469,0.005680893019413301,0.053155945734095725,0.008797110899311709,0.006598295886871637,0.037860480297612374,0.01901607366250628,0.010220127747558393,0.04551525249488092,0.009357235389569436,0.006847766844010453,0.03633017337619115,0.021929067245306445,0.009997678814361553,0.059214656092009245,ExponentiatedGradientReduction,{'sensitive_attr_for_intervention': 'race_binary'},42,1.6581254666666667 +Mean_Prediction,0.024633128054093966,0.021841896627271457,0.015440315002686658,0.0883198596518059,0.02832154101096657,0.020068350049003543,0.09476389653303256,0.022746787320571064,0.015406140232573718,0.11977356616918111,0.03512403882128917,0.031173745171298693,0.04702492348834913,0.02337317035813005,0.016308781103976246,0.09930451988743956,0.03925627343452376,0.03277624558232825,0.05950636047263469,ExponentiatedGradientReduction,{'sensitive_attr_for_intervention': 'race_binary'},42,1.6581254666666667 +Epistemic_Uncertainty,0.014263888061298116,0.013401861994890518,0.009649880563715936,0.05236474608785732,0.015402993934765307,0.008075962675954066,0.07438929608903351,0.012759655219653691,0.008434872401966328,0.06992351843086014,0.022629700363566634,0.01274645964170502,0.05240452684208641,0.013092335193312755,0.008619043325218477,0.061173361898227925,0.027861001650340347,0.014062794846126632,0.07098039791350821,ExponentiatedGradientReduction,{'sensitive_attr_for_intervention': 'race_binary'},42,1.6581254666666667 +Jitter,0.008197944297082226,0.007552811432121774,0.005555555555555551,0.028293545534924854,0.009050441297208537,0.004642409033877038,0.044537327295948115,0.006719867519445048,0.004547909083896119,0.035428253615128004,0.016418289278073928,0.009436878199555661,0.037450894805761616,0.007149245220731671,0.004801081194562532,0.03238840702348209,0.020369209334726596,0.010308045977011484,0.05181034482758617,ExponentiatedGradientReduction,{'sensitive_attr_for_intervention': 'race_binary'},42,1.6581254666666667 +Label_Stability,0.9890865384615386,0.9896959459459459,0.9922222222222221,0.9634615384615385,0.98828125,0.9939355918025932,0.9427609427609427,0.9907543959160521,0.9935936546674802,0.9532258064516128,0.9798107255520505,0.9885154061624649,0.9535864978902953,0.9903046127067016,0.9933409436834095,0.9576687116564419,0.974949494949495,0.9874666666666667,0.9358333333333334,ExponentiatedGradientReduction,{'sensitive_attr_for_intervention': 'race_binary'},42,1.6581254666666667 +TPR,0.9906115879828327,0.9911627906976744,1.0,0.0,0.9898605830164765,1.0,0.0,0.9908060067422617,1.0,0.0,0.989247311827957,1.0,0.0,0.9908151549942594,1.0,0.0,0.9877049180327869,1.0,0.0,ExponentiatedGradientReduction,{'sensitive_attr_for_intervention': 'race_binary'},42,1.6581254666666667 +TNR,0.1412037037037037,0.13302752293577982,1.0,0.0,0.14953271028037382,1.0,0.0,0.17110266159695817,1.0,0.0,0.09467455621301775,1.0,0.0,0.15028901734104047,1.0,0.0,0.10465116279069768,1.0,0.0,ExponentiatedGradientReduction,{'sensitive_attr_for_intervention': 'race_binary'},42,1.6581254666666667 +PPV,0.9087106299212598,0.9185344827586207,1.0,0.0,0.8956422018348624,1.0,0.0,0.9368299043755434,1.0,0.0,0.7504078303425775,1.0,0.0,0.9215162840363054,1.0,0.0,0.7578616352201258,1.0,0.0,ExponentiatedGradientReduction,{'sensitive_attr_for_intervention': 'race_binary'},42,1.6581254666666667 +FNR,0.009388412017167383,0.008837209302325582,0.0,1.0,0.010139416983523447,0.0,1.0,0.009193993257738278,0.0,1.0,0.010752688172043012,0.0,1.0,0.009184845005740528,0.0,1.0,0.012295081967213115,0.0,1.0,ExponentiatedGradientReduction,{'sensitive_attr_for_intervention': 'race_binary'},42,1.6581254666666667 +FPR,0.8587962962962963,0.8669724770642202,0.0,1.0,0.8504672897196262,0.0,1.0,0.8288973384030418,0.0,1.0,0.9053254437869822,0.0,1.0,0.8497109826589595,0.0,1.0,0.8953488372093024,0.0,1.0,ExponentiatedGradientReduction,{'sensitive_attr_for_intervention': 'race_binary'},42,1.6581254666666667 +Accuracy,0.9024038461538462,0.9121621621621622,1.0,0.0,0.8895089285714286,1.0,0.0,0.9296653431650596,1.0,0.0,0.750788643533123,1.0,0.0,0.9148825065274151,1.0,0.0,0.7575757575757576,1.0,0.0,ExponentiatedGradientReduction,{'sensitive_attr_for_intervention': 'race_binary'},42,1.6581254666666667 +F1,0.9478952772073922,0.9534675615212528,1.0,0.0,0.9403973509933775,1.0,0.0,0.9630622579684242,1.0,0.0,0.8534322820037106,1.0,0.0,0.9549100968188106,1.0,0.0,0.8576512455516014,1.0,0.0,ExponentiatedGradientReduction,{'sensitive_attr_for_intervention': 'race_binary'},42,1.6581254666666667 +Selection-Rate,0.9769230769230769,0.9797297297297297,0.986574074074074,0.9086538461538461,0.9732142857142857,0.9799247176913425,0.9191919191919192,0.9787294384571753,0.9862721171446004,0.8790322580645161,0.9668769716088328,0.9663865546218487,0.9683544303797469,0.9780678851174934,0.9851598173515982,0.901840490797546,0.9636363636363636,0.964,0.9625,ExponentiatedGradientReduction,{'sensitive_attr_for_intervention': 'race_binary'},42,1.6581254666666667 +Sample_Size,4160.0,2368.0,2160.0,208.0,1792.0,1594.0,198.0,3526.0,3278.0,248.0,634.0,476.0,158.0,3830.0,3504.0,326.0,330.0,250.0,80.0,ExponentiatedGradientReduction,{'sensitive_attr_for_intervention': 'race_binary'},42,1.6581254666666667 diff --git a/docs/examples/results/Law_School_Metrics_20240902__202753/Metrics_Law_School_LogisticRegression_50_Estimators_20240902__202757.csv b/docs/examples/results/Law_School_Metrics_20240902__202753/Metrics_Law_School_LogisticRegression_50_Estimators_20240902__202757.csv new file mode 100644 index 00000000..bffbddeb --- /dev/null +++ b/docs/examples/results/Law_School_Metrics_20240902__202753/Metrics_Law_School_LogisticRegression_50_Estimators_20240902__202757.csv @@ -0,0 +1,12 @@ +Metric,overall,male_priv,male_priv_correct,male_priv_incorrect,male_dis,male_dis_correct,male_dis_incorrect,race_priv,race_priv_correct,race_priv_incorrect,race_dis,race_dis_correct,race_dis_incorrect,male&race_priv,male&race_priv_correct,male&race_priv_incorrect,male&race_dis,male&race_dis_correct,male&race_dis_incorrect,Model_Name,Model_Params,Virny_Random_State,Runtime_in_Mins +Jitter,0.04411636577708008,0.04063706563706563,0.03472343812176683,0.10016021361815733,0.04871401239067058,0.038617179869428434,0.1273109243697479,0.03888038709528055,0.0366372926955343,0.06840095074174245,0.0732363355436811,0.034533245556287104,0.1797270861007119,0.040075451590557844,0.03577927912159726,0.08534054585689684,0.09101546072974638,0.04492806958849112,0.2217750355956343,LogisticRegression,"{'C': 100, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.28929345 +Label_Stability,0.9499326923076924,0.9544932432432431,0.9631754874651812,0.8671028037383177,0.9439062500000001,0.9576322418136021,0.8370588235294117,0.9581168462847419,0.9615746109246261,0.9126104417670683,0.9044164037854892,0.9555268817204301,0.7637869822485208,0.9559060052219323,0.9621726700971985,0.8898795180722893,0.8806060606060607,0.9414754098360656,0.7079069767441861,LogisticRegression,"{'C': 100, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.28929345 +TPR,0.9949034334763949,0.9948837209302326,1.0,0.0,0.9949302915082383,1.0,0.0,0.9941771376034324,1.0,0.0,1.0,1.0,,0.9945464982778416,1.0,0.0,1.0,1.0,,LogisticRegression,"{'C': 100, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.28929345 +TNR,0.0763888888888889,0.06880733944954129,1.0,0.0,0.08411214953271028,1.0,0.0,0.12547528517110265,1.0,0.0,0.0,,0.0,0.0953757225433526,1.0,0.0,0.0,,0.0,LogisticRegression,"{'C': 100, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.28929345 +PPV,0.9028724440116845,0.9133219470538002,1.0,0.0,0.8890147225368064,1.0,0.0,0.9337938975244675,1.0,0.0,0.7334384858044164,1.0,0.0,0.91715193223928,1.0,0.0,0.7393939393939394,1.0,0.0,LogisticRegression,"{'C': 100, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.28929345 +FNR,0.00509656652360515,0.0051162790697674414,0.0,1.0,0.005069708491761723,0.0,1.0,0.0058228623965675755,0.0,1.0,0.0,0.0,,0.0054535017221584384,0.0,1.0,0.0,0.0,,LogisticRegression,"{'C': 100, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.28929345 +FPR,0.9236111111111112,0.9311926605504587,0.0,1.0,0.9158878504672897,0.0,1.0,0.8745247148288974,0.0,1.0,1.0,,1.0,0.9046242774566474,0.0,1.0,1.0,,1.0,LogisticRegression,"{'C': 100, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.28929345 +Accuracy,0.8995192307692308,0.9096283783783784,1.0,0.0,0.8861607142857143,1.0,0.0,0.9293817356778219,1.0,0.0,0.7334384858044164,1.0,0.0,0.9133159268929504,1.0,0.0,0.7393939393939394,1.0,0.0,LogisticRegression,"{'C': 100, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.28929345 +F1,0.9466564573762124,0.9523597506678539,1.0,0.0,0.9389952153110048,1.0,0.0,0.9630399287516699,1.0,0.0,0.8462238398544131,1.0,0.0,0.9542825667860093,1.0,0.0,0.8501742160278746,1.0,0.0,LogisticRegression,"{'C': 100, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.28929345 +Selection-Rate,0.9875,0.9890202702702703,0.9930362116991643,0.9485981308411215,0.9854910714285714,0.9886649874055415,0.9607843137254902,0.9852524106636416,0.9899298138541349,0.9236947791164659,1.0,1.0,1.0,0.9864229765013055,0.9905660377358491,0.9427710843373494,1.0,1.0,1.0,LogisticRegression,"{'C': 100, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.28929345 +Sample_Size,4160.0,2368.0,2154.0,214.0,1792.0,1588.0,204.0,3526.0,3277.0,249.0,634.0,465.0,169.0,3830.0,3498.0,332.0,330.0,244.0,86.0,LogisticRegression,"{'C': 100, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",42,0.28929345 diff --git a/docs/examples/results/Law_School_Metrics_20240902__202753/Metrics_Law_School_RandomForestClassifier_50_Estimators_20240902__202757.csv b/docs/examples/results/Law_School_Metrics_20240902__202753/Metrics_Law_School_RandomForestClassifier_50_Estimators_20240902__202757.csv new file mode 100644 index 00000000..b3cc35c9 --- /dev/null +++ b/docs/examples/results/Law_School_Metrics_20240902__202753/Metrics_Law_School_RandomForestClassifier_50_Estimators_20240902__202757.csv @@ -0,0 +1,12 @@ +Metric,overall,male_priv,male_priv_correct,male_priv_incorrect,male_dis,male_dis_correct,male_dis_incorrect,race_priv,race_priv_correct,race_priv_incorrect,race_dis,race_dis_correct,race_dis_incorrect,male&race_priv,male&race_priv_correct,male&race_priv_incorrect,male&race_dis,male&race_dis_correct,male&race_dis_incorrect,Model_Name,Model_Params,Virny_Random_State,Runtime_in_Mins +Jitter,0.04177923861852436,0.03715388858246003,0.026671710389438465,0.14487074829932,0.0478913083090379,0.03333716225702283,0.16847203129956545,0.027343697547084603,0.02035195963330249,0.11590571112165829,0.12206270520826637,0.09070239138600203,0.2278226600985209,0.033589385623701125,0.02413204046627222,0.13323334152938332,0.1368311688311689,0.10212276416358149,0.263443518252371,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.7270353333333334 +Label_Stability,0.9419903846153845,0.949864864864865,0.9658943466172383,0.7851428571428571,0.9315848214285715,0.9540712945590994,0.7452849740932641,0.9652977878615995,0.9760954712362302,0.8285271317829457,0.8123659305993692,0.8590593047034765,0.654896551724138,0.9554778067885118,0.9698456260720413,0.8040963855421688,0.7854545454545454,0.8395366795366795,0.5881690140845072,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.7270353333333334 +TPR,0.990343347639485,0.9920930232558139,1.0,0.0,0.9879594423320659,1.0,0.0,0.992951271835734,1.0,0.0,0.9720430107526882,1.0,0.0,0.9922502870264064,1.0,0.0,0.9631147540983607,1.0,0.0,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.7270353333333334 +TNR,0.15046296296296297,0.11467889908256881,1.0,0.0,0.18691588785046728,1.0,0.0,0.10646387832699619,1.0,0.0,0.21893491124260356,1.0,0.0,0.11849710982658959,1.0,0.0,0.27906976744186046,1.0,0.0,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.7270353333333334 +PPV,0.9095836412909584,0.9170249355116079,1.0,0.0,0.8995960761684939,1.0,0.0,0.9323741007194245,1.0,0.0,0.773972602739726,1.0,0.0,0.9189261031366295,1.0,0.0,0.7912457912457912,1.0,0.0,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.7270353333333334 +FNR,0.009656652360515022,0.007906976744186046,0.0,1.0,0.012040557667934094,0.0,1.0,0.007048728164266013,0.0,1.0,0.02795698924731183,0.0,1.0,0.007749712973593571,0.0,1.0,0.036885245901639344,0.0,1.0,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.7270353333333334 +FPR,0.8495370370370371,0.8853211009174312,0.0,1.0,0.8130841121495327,0.0,1.0,0.8935361216730038,0.0,1.0,0.7810650887573964,0.0,1.0,0.8815028901734104,0.0,1.0,0.7209302325581395,0.0,1.0,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.7270353333333334 +Accuracy,0.903125,0.9113175675675675,1.0,0.0,0.8922991071428571,1.0,0.0,0.926829268292683,1.0,0.0,0.7712933753943217,1.0,0.0,0.9133159268929504,1.0,0.0,0.7848484848484848,1.0,0.0,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.7270353333333334 +F1,0.9482470784641068,0.953083109919571,1.0,0.0,0.9417094533373603,1.0,0.0,0.9617097061442564,1.0,0.0,0.8617731172545281,1.0,0.0,0.9541816174441071,1.0,0.0,0.8687615526802218,1.0,0.0,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.7270353333333334 +Selection-Rate,0.9757211538461539,0.9822635135135135,0.9884151992585728,0.919047619047619,0.9670758928571429,0.9749843652282677,0.9015544041450777,0.9855360181508792,0.9914320685434517,0.9108527131782945,0.9211356466876972,0.9243353783231084,0.9103448275862069,0.9822454308093995,0.9882790165809033,0.9186746987951807,0.9,0.9073359073359073,0.8732394366197183,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.7270353333333334 +Sample_Size,4160.0,2368.0,2158.0,210.0,1792.0,1599.0,193.0,3526.0,3268.0,258.0,634.0,489.0,145.0,3830.0,3498.0,332.0,330.0,259.0,71.0,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}",42,0.7270353333333334 diff --git a/docs/examples/results/models_tuning/tuning_results_COMPAS_Without_Sensitive_Attributes_20240902__191214.csv b/docs/examples/results/models_tuning/tuning_results_COMPAS_Without_Sensitive_Attributes_20240902__191214.csv new file mode 100644 index 00000000..11b97fe7 --- /dev/null +++ b/docs/examples/results/models_tuning/tuning_results_COMPAS_Without_Sensitive_Attributes_20240902__191214.csv @@ -0,0 +1,5 @@ +Dataset_Name,Model_Name,F1_Score,Accuracy_Score,Model_Best_Params +COMPAS_Without_Sensitive_Attributes,DecisionTreeClassifier,0.6555,0.6575,"{'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'min_samples_split': 0.1}" +COMPAS_Without_Sensitive_Attributes,LogisticRegression,0.6484,0.6521,"{'C': 1, 'max_iter': 250, 'penalty': 'l2', 'solver': 'newton-cg'}" +COMPAS_Without_Sensitive_Attributes,RandomForestClassifier,0.6569,0.6587,"{'max_depth': 10, 'max_features': 0.6, 'min_samples_leaf': 1, 'n_estimators': 100}" +COMPAS_Without_Sensitive_Attributes,XGBClassifier,0.6649,0.6670,"{'lambda': 100, 'learning_rate': 0.1, 'max_depth': 5, 'n_estimators': 200}" diff --git a/docs/examples/results/models_tuning/tuning_results_COMPAS_Without_Sensitive_Attributes_20240902__194221.csv b/docs/examples/results/models_tuning/tuning_results_COMPAS_Without_Sensitive_Attributes_20240902__194221.csv new file mode 100644 index 00000000..11b97fe7 --- /dev/null +++ b/docs/examples/results/models_tuning/tuning_results_COMPAS_Without_Sensitive_Attributes_20240902__194221.csv @@ -0,0 +1,5 @@ +Dataset_Name,Model_Name,F1_Score,Accuracy_Score,Model_Best_Params +COMPAS_Without_Sensitive_Attributes,DecisionTreeClassifier,0.6555,0.6575,"{'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'min_samples_split': 0.1}" +COMPAS_Without_Sensitive_Attributes,LogisticRegression,0.6484,0.6521,"{'C': 1, 'max_iter': 250, 'penalty': 'l2', 'solver': 'newton-cg'}" +COMPAS_Without_Sensitive_Attributes,RandomForestClassifier,0.6569,0.6587,"{'max_depth': 10, 'max_features': 0.6, 'min_samples_leaf': 1, 'n_estimators': 100}" +COMPAS_Without_Sensitive_Attributes,XGBClassifier,0.6649,0.6670,"{'lambda': 100, 'learning_rate': 0.1, 'max_depth': 5, 'n_estimators': 200}" diff --git a/docs/examples/results/models_tuning/tuning_results_COMPAS_Without_Sensitive_Attributes_20240902__194240.csv b/docs/examples/results/models_tuning/tuning_results_COMPAS_Without_Sensitive_Attributes_20240902__194240.csv new file mode 100644 index 00000000..11b97fe7 --- /dev/null +++ b/docs/examples/results/models_tuning/tuning_results_COMPAS_Without_Sensitive_Attributes_20240902__194240.csv @@ -0,0 +1,5 @@ +Dataset_Name,Model_Name,F1_Score,Accuracy_Score,Model_Best_Params +COMPAS_Without_Sensitive_Attributes,DecisionTreeClassifier,0.6555,0.6575,"{'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'min_samples_split': 0.1}" +COMPAS_Without_Sensitive_Attributes,LogisticRegression,0.6484,0.6521,"{'C': 1, 'max_iter': 250, 'penalty': 'l2', 'solver': 'newton-cg'}" +COMPAS_Without_Sensitive_Attributes,RandomForestClassifier,0.6569,0.6587,"{'max_depth': 10, 'max_features': 0.6, 'min_samples_leaf': 1, 'n_estimators': 100}" +COMPAS_Without_Sensitive_Attributes,XGBClassifier,0.6649,0.6670,"{'lambda': 100, 'learning_rate': 0.1, 'max_depth': 5, 'n_estimators': 200}" diff --git a/docs/examples/results/models_tuning/tuning_results_COMPAS_Without_Sensitive_Attributes_20240902__201344.csv b/docs/examples/results/models_tuning/tuning_results_COMPAS_Without_Sensitive_Attributes_20240902__201344.csv new file mode 100644 index 00000000..11b97fe7 --- /dev/null +++ b/docs/examples/results/models_tuning/tuning_results_COMPAS_Without_Sensitive_Attributes_20240902__201344.csv @@ -0,0 +1,5 @@ +Dataset_Name,Model_Name,F1_Score,Accuracy_Score,Model_Best_Params +COMPAS_Without_Sensitive_Attributes,DecisionTreeClassifier,0.6555,0.6575,"{'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'min_samples_split': 0.1}" +COMPAS_Without_Sensitive_Attributes,LogisticRegression,0.6484,0.6521,"{'C': 1, 'max_iter': 250, 'penalty': 'l2', 'solver': 'newton-cg'}" +COMPAS_Without_Sensitive_Attributes,RandomForestClassifier,0.6569,0.6587,"{'max_depth': 10, 'max_features': 0.6, 'min_samples_leaf': 1, 'n_estimators': 100}" +COMPAS_Without_Sensitive_Attributes,XGBClassifier,0.6649,0.6670,"{'lambda': 100, 'learning_rate': 0.1, 'max_depth': 5, 'n_estimators': 200}" diff --git a/docs/examples/results/models_tuning/tuning_results_Law_School_20240902__194604.csv b/docs/examples/results/models_tuning/tuning_results_Law_School_20240902__194604.csv new file mode 100644 index 00000000..96487f1d --- /dev/null +++ b/docs/examples/results/models_tuning/tuning_results_Law_School_20240902__194604.csv @@ -0,0 +1,3 @@ +Dataset_Name,Model_Name,F1_Score,Accuracy_Score,Model_Best_Params +Law_School,LogisticRegression,0.6564,0.8987,"{'C': 100, 'max_iter': 250, 'penalty': 'l2', 'solver': 'newton-cg'}" +Law_School,RandomForestClassifier,0.6539,0.8981,"{'max_depth': 10, 'max_features': 0.6, 'min_samples_leaf': 1, 'n_estimators': 50}" diff --git a/docs/examples/results/models_tuning/tuning_results_Law_School_20240902__202757.csv b/docs/examples/results/models_tuning/tuning_results_Law_School_20240902__202757.csv new file mode 100644 index 00000000..96487f1d --- /dev/null +++ b/docs/examples/results/models_tuning/tuning_results_Law_School_20240902__202757.csv @@ -0,0 +1,3 @@ +Dataset_Name,Model_Name,F1_Score,Accuracy_Score,Model_Best_Params +Law_School,LogisticRegression,0.6564,0.8987,"{'C': 100, 'max_iter': 250, 'penalty': 'l2', 'solver': 'newton-cg'}" +Law_School,RandomForestClassifier,0.6539,0.8981,"{'max_depth': 10, 'max_features': 0.6, 'min_samples_leaf': 1, 'n_estimators': 50}" diff --git a/docs/release_notes/.pages b/docs/release_notes/.pages index 8f5829a8..ca83d1fa 100644 --- a/docs/release_notes/.pages +++ b/docs/release_notes/.pages @@ -1,5 +1,6 @@ title: Release Notes 📒 nav: + - 0.6.0.md - 0.5.0.md - 0.4.0.md - 0.3.0.md diff --git a/docs/release_notes/0.6.0.md b/docs/release_notes/0.6.0.md new file mode 100644 index 00000000..ebed72f8 --- /dev/null +++ b/docs/release_notes/0.6.0.md @@ -0,0 +1,16 @@ +# 0.6.0 - 2024-09-02 + +- [PyPI](https://pypi.org/project/virny/) +- [GitHub](https://github.com/DataResponsibly/Virny/releases/tag/0.6.0) + + +## 🚀 New Python Versions Support + +* Now Virny supports Python 3.8, 3.9, 3.10, 3.11, and 3.12! 🎉🥳 + + +## ⚙️ Fitted Bootstrap Exporting + +* Added the `return_fitted_bootstrap` flag to metric computation interfaces to return a fitted bootstrap, which users can save to a pickle file later and reuse for future experiments + +* Added the new `compute_metrics_with_fitted_bootstrap` interface in the inference API, where users can provide a fitted bootstrap, use it to do inference, and avoid the heavy bootstrap re-training to get metrics diff --git a/lib_base_packages.txt b/lib_base_packages.txt index a62ec5c4..30327cd0 100644 --- a/lib_base_packages.txt +++ b/lib_base_packages.txt @@ -1,12 +1,12 @@ -numpy==1.23.5 +setuptools~=74.1.0 +aif360[Reductions]~=0.6.1 matplotlib~=3.6.2 pandas~=1.5.2 altair~=4.2.0 -scikit-learn~=1.2.0 +scikit-learn>=1.2.0 tqdm~=4.64.1 gradio==4.10.0 seaborn~=0.12.1 -aif360~=0.5.0 folktables~=0.0.11 munch~=2.5.0 PyYAML~=6.0 diff --git a/requirements.txt b/requirements.txt index 5094fa86..56a0c2ac 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,12 +1,12 @@ wheel~=0.38.4 twine~=4.0.2 -aif360~=0.5.0 +aif360~=0.6.1 numpy==1.23.5 fairlearn~=0.9.0 matplotlib~=3.6.2 pandas~=1.5.2 altair~=4.2.0 -scikit-learn~=1.2.0 +scikit-learn>=1.2.0 tqdm~=4.64.1 seaborn~=0.12.1 folktables~=0.0.11 diff --git a/setup.py b/setup.py index 823886f5..04403492 100644 --- a/setup.py +++ b/setup.py @@ -47,13 +47,21 @@ author_email=EMAILS, license="BSD-3", classifiers=[ + "Intended Audience :: Science/Research", "Intended Audience :: Developers", "License :: OSI Approved :: BSD License", + "Topic :: Software Development", + "Topic :: Scientific/Engineering", "Programming Language :: Python", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", - "Operating System :: OS Independent" + "Programming Language :: Python :: 3.10", + "Programming Language :: Python :: 3.11", + "Programming Language :: Python :: 3.12", + "Operating System :: POSIX", + "Operating System :: Unix", + "Operating System :: MacOS", ], packages=find_packages(exclude=("tests",)), include_package_data=True, diff --git a/tests/files_for_tests/law_school_dataset_20k/Metrics_law_school_DecisionTreeClassifier_50_Estimators_20240423__010106.csv b/tests/files_for_tests/law_school_dataset_20k/python_3_11-/Metrics_law_school_DecisionTreeClassifier_50_Estimators_20240423__010106.csv similarity index 87% rename from tests/files_for_tests/law_school_dataset_20k/Metrics_law_school_DecisionTreeClassifier_50_Estimators_20240423__010106.csv rename to tests/files_for_tests/law_school_dataset_20k/python_3_11-/Metrics_law_school_DecisionTreeClassifier_50_Estimators_20240423__010106.csv index 37b7e613..f443393f 100644 --- a/tests/files_for_tests/law_school_dataset_20k/Metrics_law_school_DecisionTreeClassifier_50_Estimators_20240423__010106.csv +++ b/tests/files_for_tests/law_school_dataset_20k/python_3_11-/Metrics_law_school_DecisionTreeClassifier_50_Estimators_20240423__010106.csv @@ -1,19 +1,19 @@ -Metric,overall,male_priv,male_dis,race_priv,race_dis,male&race_priv,male&race_dis,Model_Name,Model_Params,Virny_Random_State,Runtime_in_Mins -Statistical_Bias,0.14871459501539216,0.13922538692994388,0.1612539056997345,0.12087562594490028,0.3035414166913454,0.13498160237084172,0.3081005399506289,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",100,0.13008081666666665 -Std,0.041588229003281706,0.04014981475236609,0.04348899069199162,0.035707999117036614,0.07429121098892864,0.03859272201556965,0.0763542646485458,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",100,0.13008081666666665 -IQR,0.053505982148091664,0.05084500766436651,0.05702226985872847,0.044968952602027774,0.10098479315664254,0.049091273172528614,0.1047433620765962,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",100,0.13008081666666665 -Overall_Uncertainty,0.37102753012884837,0.35860883223592943,0.3874379523444912,0.3189445800260836,0.6606875964732465,0.3439739430925971,0.6850131008829163,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",100,0.13008081666666665 -Mean_Prediction,0.10730163589001154,0.10127383420207314,0.11526694526335872,0.08243941922626423,0.2455732067991173,0.0941339892140465,0.26012614125045447,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",100,0.13008081666666665 -Aleatoric_Uncertainty,0.35318189936459926,0.3413540927984995,0.368811500898374,0.3031037696893525,0.6316921284417605,0.3271516798716977,0.6552902043882751,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",100,0.13008081666666665 -Epistemic_Uncertainty,0.01784563076424911,0.017254739437429945,0.018626451446117187,0.015840810336731126,0.028995468031486005,0.016822263220899414,0.029722896494641216,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",100,0.13008081666666665 -Jitter,0.03490286499215079,0.027672021511307245,0.044457908163265336,0.013944459235764642,0.15146333612309273,0.023045132413278664,0.1725244279529997,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",100,0.13008081666666665 -Label_Stability,0.9493557692307693,0.9616385135135135,0.9331249999999999,0.9821100397050483,0.767192429022082,0.9684804177545692,0.7273939393939394,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",100,0.13008081666666665 -TPR,0.9959763948497854,0.9986046511627907,0.9923954372623575,1.0,0.967741935483871,0.9991389207807119,0.9508196721311475,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",100,0.13008081666666665 -TNR,0.1111111111111111,0.06880733944954129,0.1542056074766355,0.0,0.28402366863905326,0.04335260115606936,0.38372093023255816,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",100,0.13008081666666665 -PPV,0.9062728825970222,0.9136170212765957,0.8963938179736691,0.9254112308564946,0.7880910683012259,0.9131689401888772,0.8140350877192982,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",100,0.13008081666666665 -FNR,0.004023605150214592,0.0013953488372093023,0.0076045627376425855,0.0,0.03225806451612903,0.0008610792192881745,0.04918032786885246,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",100,0.13008081666666665 -FPR,0.8888888888888888,0.9311926605504587,0.8457943925233645,1.0,0.7159763313609467,0.9566473988439307,0.6162790697674418,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",100,0.13008081666666665 -Accuracy,0.9040865384615384,0.9130067567567568,0.8922991071428571,0.9254112308564946,0.7854889589905363,0.9127937336814621,0.803030303030303,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",100,0.13008081666666665 -F1,0.9490095846645368,0.9542222222222222,0.9419548872180451,0.9612608631609957,0.8687258687258688,0.9542214912280702,0.8771266540642723,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",100,0.13008081666666665 -Selection-Rate,0.9848557692307692,0.9923986486486487,0.9748883928571429,1.0,0.9006309148264984,0.9953002610966057,0.8636363636363636,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",100,0.13008081666666665 -Sample_Size,4160.0,2368.0,1792.0,3526.0,634.0,3830.0,330.0,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",100,0.13008081666666665 +Metric,overall,male_priv,male_dis,race_priv,race_dis,male&race_priv,male&race_dis,Model_Name,Model_Params,Virny_Random_State +Statistical_Bias,0.14871459501539216,0.13922538692994388,0.1612539056997345,0.12087562594490028,0.3035414166913454,0.13498160237084172,0.3081005399506289,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",100 +Std,0.041588229003281706,0.04014981475236609,0.04348899069199162,0.035707999117036614,0.07429121098892864,0.03859272201556965,0.0763542646485458,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",100 +IQR,0.053505982148091664,0.05084500766436651,0.05702226985872847,0.044968952602027774,0.10098479315664254,0.049091273172528614,0.1047433620765962,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",100 +Overall_Uncertainty,0.37102753012884837,0.35860883223592943,0.3874379523444912,0.3189445800260836,0.6606875964732465,0.3439739430925971,0.6850131008829163,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",100 +Mean_Prediction,0.10730163589001154,0.10127383420207314,0.11526694526335872,0.08243941922626423,0.2455732067991173,0.0941339892140465,0.26012614125045447,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",100 +Aleatoric_Uncertainty,0.35318189936459926,0.3413540927984995,0.368811500898374,0.3031037696893525,0.6316921284417605,0.3271516798716977,0.6552902043882751,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",100 +Epistemic_Uncertainty,0.01784563076424911,0.017254739437429945,0.018626451446117187,0.015840810336731126,0.028995468031486005,0.016822263220899414,0.029722896494641216,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",100 +Jitter,0.03490286499215079,0.027672021511307245,0.044457908163265336,0.013944459235764642,0.15146333612309273,0.023045132413278664,0.1725244279529997,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",100 +Label_Stability,0.9493557692307693,0.9616385135135135,0.9331249999999999,0.9821100397050483,0.767192429022082,0.9684804177545692,0.7273939393939394,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",100 +TPR,0.9959763948497854,0.9986046511627907,0.9923954372623575,1.0,0.967741935483871,0.9991389207807119,0.9508196721311475,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",100 +TNR,0.1111111111111111,0.06880733944954129,0.1542056074766355,0.0,0.28402366863905326,0.04335260115606936,0.38372093023255816,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",100 +PPV,0.9062728825970222,0.9136170212765957,0.8963938179736691,0.9254112308564946,0.7880910683012259,0.9131689401888772,0.8140350877192982,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",100 +FNR,0.004023605150214592,0.0013953488372093023,0.0076045627376425855,0.0,0.03225806451612903,0.0008610792192881745,0.04918032786885246,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",100 +FPR,0.8888888888888888,0.9311926605504587,0.8457943925233645,1.0,0.7159763313609467,0.9566473988439307,0.6162790697674418,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",100 +Accuracy,0.9040865384615384,0.9130067567567568,0.8922991071428571,0.9254112308564946,0.7854889589905363,0.9127937336814621,0.803030303030303,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",100 +F1,0.9490095846645368,0.9542222222222222,0.9419548872180451,0.9612608631609957,0.8687258687258688,0.9542214912280702,0.8771266540642723,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",100 +Selection-Rate,0.9848557692307692,0.9923986486486487,0.9748883928571429,1.0,0.9006309148264984,0.9953002610966057,0.8636363636363636,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",100 +Sample_Size,4160.0,2368.0,1792.0,3526.0,634.0,3830.0,330.0,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'}",100 diff --git a/tests/files_for_tests/law_school_dataset_20k/Metrics_law_school_LogisticRegression_50_Estimators_20240423__010106.csv b/tests/files_for_tests/law_school_dataset_20k/python_3_11-/Metrics_law_school_LogisticRegression_50_Estimators_20240423__010106.csv similarity index 89% rename from tests/files_for_tests/law_school_dataset_20k/Metrics_law_school_LogisticRegression_50_Estimators_20240423__010106.csv rename to tests/files_for_tests/law_school_dataset_20k/python_3_11-/Metrics_law_school_LogisticRegression_50_Estimators_20240423__010106.csv index c5a529f6..37c8c75b 100644 --- a/tests/files_for_tests/law_school_dataset_20k/Metrics_law_school_LogisticRegression_50_Estimators_20240423__010106.csv +++ b/tests/files_for_tests/law_school_dataset_20k/python_3_11-/Metrics_law_school_LogisticRegression_50_Estimators_20240423__010106.csv @@ -1,19 +1,19 @@ -Metric,overall,male_priv,male_dis,race_priv,race_dis,male&race_priv,male&race_dis,Model_Name,Model_Params,Virny_Random_State,Runtime_in_Mins -Statistical_Bias,0.13884987532256288,0.12866752312911567,0.15230512643533242,0.11307241003120876,0.28221161446659226,0.12620186366973807,0.28564346511140876,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",100,0.18614128333333332 -Std,0.009171479431908339,0.008607050335232607,0.009917332166801268,0.007286748976075047,0.019653434616873924,0.008239377682865036,0.01998950882232001,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",100,0.18614128333333332 -IQR,0.012256803023512921,0.011445377171906256,0.013329044327421729,0.009739371815749175,0.026257532421896154,0.010976514379596776,0.027115910618054847,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",100,0.18614128333333332 -Overall_Uncertainty,0.342781514255694,0.3232951664439918,0.36853133100687174,0.2930493994499396,0.6193673767242902,0.3160946056979695,0.6525113923650412,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",100,0.18614128333333332 -Mean_Prediction,0.10451562164193534,0.09389099362298176,0.11855530866698118,0.07598923254313926,0.2631655395636309,0.0885187447414513,0.2901763444566442,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",100,0.18614128333333332 -Aleatoric_Uncertainty,0.34187256444643516,0.32243319534477255,0.36756030218791796,0.2923502561201371,0.6172915852012101,0.3152813861742673,0.6504913910597774,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",100,0.18614128333333332 -Epistemic_Uncertainty,0.0009089498092588189,0.0008619710992192609,0.0009710288189537786,0.0006991433298024763,0.0020757915230801283,0.0008132195237021689,0.0020200013052638077,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",100,0.18614128333333332 -Jitter,0.008828885400313994,0.007884376723662437,0.010076986151603502,0.005247780337319282,0.02874525204403535,0.006921084883039359,0.030970933828076638,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",100,0.18614128333333332 -Label_Stability,0.9874423076923078,0.9889695945945947,0.9854241071428572,0.9924333522404991,0.9596845425867508,0.9902872062663186,0.9544242424242425,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",100,0.18614128333333332 -TPR,0.9849785407725322,0.9897674418604652,0.9784537389100126,0.9947900704872816,0.9161290322580645,0.9913892078071183,0.8934426229508197,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",100,0.18614128333333332 -TNR,0.24074074074074073,0.17889908256880735,0.3037383177570093,0.11787072243346007,0.4319526627218935,0.16473988439306358,0.5465116279069767,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",100,0.18614128333333332 -PPV,0.918,0.9224100563502384,0.9119905493207324,0.9332949971247844,0.8160919540229885,0.9227892065188351,0.8482490272373541,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",100,0.18614128333333332 -FNR,0.015021459227467811,0.010232558139534883,0.021546261089987327,0.005209929512718358,0.08387096774193549,0.008610792192881744,0.10655737704918032,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",100,0.18614128333333332 -FPR,0.7592592592592593,0.8211009174311926,0.6962616822429907,0.8821292775665399,0.5680473372781065,0.8352601156069365,0.45348837209302323,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",100,0.18614128333333332 -Accuracy,0.9076923076923077,0.9151182432432432,0.8978794642857143,0.9293817356778219,0.7870662460567823,0.9167101827676241,0.803030303030303,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",100,0.18614128333333332 -F1,0.9503105590062112,0.9549024007179717,0.9440538061754815,0.9630618602581219,0.8632218844984803,0.9558599695585996,0.8702594810379242,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",100,0.18614128333333332 -Selection-Rate,0.9615384615384616,0.9742398648648649,0.9447544642857143,0.9863868406125922,0.8233438485804416,0.9772845953002611,0.7787878787878788,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",100,0.18614128333333332 -Sample_Size,4160.0,2368.0,1792.0,3526.0,634.0,3830.0,330.0,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",100,0.18614128333333332 +Metric,overall,male_priv,male_dis,race_priv,race_dis,male&race_priv,male&race_dis,Model_Name,Model_Params,Virny_Random_State +Statistical_Bias,0.13884987532256288,0.12866752312911567,0.15230512643533242,0.11307241003120876,0.28221161446659226,0.12620186366973807,0.28564346511140876,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",100 +Std,0.009171479431908339,0.008607050335232607,0.009917332166801268,0.007286748976075047,0.019653434616873924,0.008239377682865036,0.01998950882232001,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",100 +IQR,0.012256803023512921,0.011445377171906256,0.013329044327421729,0.009739371815749175,0.026257532421896154,0.010976514379596776,0.027115910618054847,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",100 +Overall_Uncertainty,0.342781514255694,0.3232951664439918,0.36853133100687174,0.2930493994499396,0.6193673767242902,0.3160946056979695,0.6525113923650412,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",100 +Mean_Prediction,0.10451562164193534,0.09389099362298176,0.11855530866698118,0.07598923254313926,0.2631655395636309,0.0885187447414513,0.2901763444566442,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",100 +Aleatoric_Uncertainty,0.34187256444643516,0.32243319534477255,0.36756030218791796,0.2923502561201371,0.6172915852012101,0.3152813861742673,0.6504913910597774,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",100 +Epistemic_Uncertainty,0.0009089498092588189,0.0008619710992192609,0.0009710288189537786,0.0006991433298024763,0.0020757915230801283,0.0008132195237021689,0.0020200013052638077,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",100 +Jitter,0.008828885400313994,0.007884376723662437,0.010076986151603502,0.005247780337319282,0.02874525204403535,0.006921084883039359,0.030970933828076638,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",100 +Label_Stability,0.9874423076923078,0.9889695945945947,0.9854241071428572,0.9924333522404991,0.9596845425867508,0.9902872062663186,0.9544242424242425,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",100 +TPR,0.9849785407725322,0.9897674418604652,0.9784537389100126,0.9947900704872816,0.9161290322580645,0.9913892078071183,0.8934426229508197,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",100 +TNR,0.24074074074074073,0.17889908256880735,0.3037383177570093,0.11787072243346007,0.4319526627218935,0.16473988439306358,0.5465116279069767,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",100 +PPV,0.918,0.9224100563502384,0.9119905493207324,0.9332949971247844,0.8160919540229885,0.9227892065188351,0.8482490272373541,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",100 +FNR,0.015021459227467811,0.010232558139534883,0.021546261089987327,0.005209929512718358,0.08387096774193549,0.008610792192881744,0.10655737704918032,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",100 +FPR,0.7592592592592593,0.8211009174311926,0.6962616822429907,0.8821292775665399,0.5680473372781065,0.8352601156069365,0.45348837209302323,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",100 +Accuracy,0.9076923076923077,0.9151182432432432,0.8978794642857143,0.9293817356778219,0.7870662460567823,0.9167101827676241,0.803030303030303,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",100 +F1,0.9503105590062112,0.9549024007179717,0.9440538061754815,0.9630618602581219,0.8632218844984803,0.9558599695585996,0.8702594810379242,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",100 +Selection-Rate,0.9615384615384616,0.9742398648648649,0.9447544642857143,0.9863868406125922,0.8233438485804416,0.9772845953002611,0.7787878787878788,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",100 +Sample_Size,4160.0,2368.0,1792.0,3526.0,634.0,3830.0,330.0,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",100 diff --git a/tests/files_for_tests/law_school_dataset_20k/python_3_12+/Metrics_law_school_DecisionTreeClassifier_50_Estimators_20240902__220132.csv b/tests/files_for_tests/law_school_dataset_20k/python_3_12+/Metrics_law_school_DecisionTreeClassifier_50_Estimators_20240902__220132.csv new file mode 100644 index 00000000..c1e70a48 --- /dev/null +++ b/tests/files_for_tests/law_school_dataset_20k/python_3_12+/Metrics_law_school_DecisionTreeClassifier_50_Estimators_20240902__220132.csv @@ -0,0 +1,19 @@ +Metric,overall,male_priv,male_dis,race_priv,race_dis,male&race_priv,male&race_dis,Model_Name,Model_Params,Virny_Random_State +IQR,0.05433679704393761,0.05185732764374271,0.057613238751338024,0.04526554347776688,0.10478670252393446,0.04957708403463801,0.10957831469732389,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'monotonic_cst': None, 'random_state': None, 'splitter': 'best'}",100 +Statistical_Bias,0.1485460477889447,0.13885191650835318,0.16135614983829774,0.1206959795622374,0.3034345975797488,0.13474825022045164,0.3086841225990307,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'monotonic_cst': None, 'random_state': None, 'splitter': 'best'}",100 +Aleatoric_Uncertainty,0.35278605356537523,0.34062679761658954,0.36885364178341346,0.3026598740384362,0.6315635125748185,0.3267062604357122,0.6554697132217671,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'monotonic_cst': None, 'random_state': None, 'splitter': 'best'}",100 +Std,0.042595752935374216,0.04106432732527748,0.044619422491573475,0.03640805289375485,0.07700873455485355,0.0394433034815967,0.07918327235345879,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'monotonic_cst': None, 'random_state': None, 'splitter': 'best'}",100 +Mean_Prediction,0.10689943863572628,0.10067674363641255,0.11512228559910512,0.08190956920555666,0.2458809522173952,0.09366054591035684,0.2605508299634987,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'monotonic_cst': None, 'random_state': None, 'splitter': 'best'}",100 +Overall_Uncertainty,0.37117830444850247,0.3583978297342497,0.3880667888923365,0.31890438077568595,0.661900473013725,0.34400681382809695,0.6865322713459363,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'monotonic_cst': None, 'random_state': None, 'splitter': 'best'}",100 +Epistemic_Uncertainty,0.018392250883127237,0.01777103211766018,0.019213147108923023,0.016244506737249753,0.030336960438906546,0.017300553392384732,0.03106255812416925,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'monotonic_cst': None, 'random_state': None, 'splitter': 'best'}",100 +Jitter,0.038216444270015665,0.030332666850524003,0.04863429300291543,0.01557618623172467,0.16413056074164717,0.02552373847711407,0.1855287569573283,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'monotonic_cst': None, 'random_state': None, 'splitter': 'best'}",100 +Label_Stability,0.9436057692307692,0.9566385135135134,0.9263839285714285,0.9787067498581963,0.748391167192429,0.9637493472584856,0.7098181818181818,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'monotonic_cst': None, 'random_state': None, 'splitter': 'best'}",100 +TPR,0.9957081545064378,0.998139534883721,0.9923954372623575,1.0,0.9655913978494624,0.9988518943742825,0.9508196721311475,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'monotonic_cst': None, 'random_state': None, 'splitter': 'best'}",100 +TNR,0.125,0.0779816513761468,0.17289719626168223,0.026615969581749048,0.2781065088757396,0.06069364161849711,0.38372093023255816,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'monotonic_cst': None, 'random_state': None, 'splitter': 'best'}",100 +PPV,0.9075794621026895,0.9143587558585429,0.8984509466437177,0.9272520602443876,0.7863397548161121,0.9145860709592641,0.8140350877192982,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'monotonic_cst': None, 'random_state': None, 'splitter': 'best'}",100 +FNR,0.004291845493562232,0.0018604651162790699,0.0076045627376425855,0.0,0.034408602150537634,0.001148105625717566,0.04918032786885246,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'monotonic_cst': None, 'random_state': None, 'splitter': 'best'}",100 +FPR,0.875,0.9220183486238532,0.8271028037383178,0.973384030418251,0.7218934911242604,0.9393063583815029,0.6162790697674418,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'monotonic_cst': None, 'random_state': None, 'splitter': 'best'}",100 +Accuracy,0.9052884615384615,0.9134290540540541,0.89453125,0.9273964832671583,0.7823343848580442,0.9140992167101828,0.803030303030303,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'monotonic_cst': None, 'random_state': None, 'splitter': 'best'}",100 +F1,0.9496034791506779,0.9544140538136535,0.943089430894309,0.9622530227071661,0.8667953667953668,0.954863492934559,0.8771266540642723,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'monotonic_cst': None, 'random_state': None, 'splitter': 'best'}",100 +Selection-Rate,0.9831730769230769,0.9911317567567568,0.97265625,0.9980147475893364,0.9006309148264984,0.9934725848563969,0.8636363636363636,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'monotonic_cst': None, 'random_state': None, 'splitter': 'best'}",100 +Sample_Size,4160.0,2368.0,1792.0,3526.0,634.0,3830.0,330.0,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 0.6, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'monotonic_cst': None, 'random_state': None, 'splitter': 'best'}",100 diff --git a/tests/files_for_tests/law_school_dataset_20k/python_3_12+/Metrics_law_school_LogisticRegression_50_Estimators_20240902__220132.csv b/tests/files_for_tests/law_school_dataset_20k/python_3_12+/Metrics_law_school_LogisticRegression_50_Estimators_20240902__220132.csv new file mode 100644 index 00000000..e9c9b3ae --- /dev/null +++ b/tests/files_for_tests/law_school_dataset_20k/python_3_12+/Metrics_law_school_LogisticRegression_50_Estimators_20240902__220132.csv @@ -0,0 +1,19 @@ +Metric,overall,male_priv,male_dis,race_priv,race_dis,male&race_priv,male&race_dis,Model_Name,Model_Params,Virny_Random_State +IQR,0.011419687394194309,0.010451263586665198,0.012699390282714922,0.00892175766969869,0.025311959016546925,0.01007916110640982,0.026977916734238525,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'deprecated', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",100 +Statistical_Bias,0.1387144798061811,0.12815170690399935,0.15267242971263548,0.11277299821420668,0.2829883979344173,0.12593001168137175,0.28709179167896826,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'deprecated', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",100 +Aleatoric_Uncertainty,0.3414549629607785,0.3208370984275454,0.36869999823683636,0.2914392664783241,0.6196179689499488,0.3145254227683469,0.6540008385274846,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'deprecated', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",100 +Std,0.008657704312113908,0.007928013182409438,0.009621939019223385,0.006777265759583952,0.01911579001593193,0.007650000770777627,0.020353172685804687,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'deprecated', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",100 +Mean_Prediction,0.10412864589848997,0.09288075207051188,0.11899193417117529,0.07532233971872429,0.26433532663958426,0.08787924754695121,0.2927201479784701,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'deprecated', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",100 +Overall_Uncertainty,0.34226152607880284,0.32156453380265854,0.36961112301513627,0.29204344135573435,0.6215501171411677,0.31522407010533965,0.6560598787405117,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'deprecated', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",100 +Epistemic_Uncertainty,0.0008065631180243504,0.0007274353751131613,0.0009111247782999099,0.0006041748774102684,0.0019321481912188965,0.0006986473369927637,0.0020590402130271634,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'deprecated', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",100 +Jitter,0.00806887755102042,0.006519925537782693,0.010115706997084539,0.004305045898109686,0.029001480718470394,0.005883305802738843,0.033434755720469965,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'deprecated', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",100 +Label_Stability,0.9886250000000001,0.9911317567567568,0.9853124999999999,0.993908111174135,0.9592429022082021,0.9918851174934726,0.9507878787878787,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'deprecated', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",100 +TPR,0.9849785407725322,0.9897674418604652,0.9784537389100126,0.9950965369292063,0.9139784946236559,0.9916762342135477,0.889344262295082,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'deprecated', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",100 +TNR,0.24305555555555555,0.1743119266055046,0.3130841121495327,0.11026615969581749,0.44970414201183434,0.15895953757225434,0.5813953488372093,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'deprecated', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",100 +PPV,0.9182295573893473,0.9220103986135182,0.9130691898285038,0.9327779373743177,0.8204633204633205,0.9223171382808328,0.857707509881423,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'deprecated', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",100 +FNR,0.015021459227467811,0.010232558139534883,0.021546261089987327,0.004903463070793748,0.08602150537634409,0.008323765786452353,0.11065573770491803,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'deprecated', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",100 +FPR,0.7569444444444444,0.8256880733944955,0.6869158878504673,0.8897338403041825,0.5502958579881657,0.8410404624277457,0.4186046511627907,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'deprecated', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",100 +Accuracy,0.9079326923076924,0.9146959459459459,0.8989955357142857,0.9290981281905842,0.7902208201892744,0.9164490861618799,0.8090909090909091,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'deprecated', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",100 +F1,0.9504335447133428,0.9546882009869897,0.9446313857448762,0.9629300118623962,0.8646998982706002,0.9557399723374828,0.8732394366197183,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'deprecated', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",100 +Selection-Rate,0.9612980769230769,0.9746621621621622,0.9436383928571429,0.9872376630743052,0.8170347003154574,0.9780678851174934,0.7666666666666667,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'deprecated', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",100 +Sample_Size,4160.0,2368.0,1792.0,3526.0,634.0,3830.0,330.0,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'deprecated', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",100 diff --git a/tests/user_interfaces/conftest.py b/tests/user_interfaces/conftest.py index fe2028b6..5359375c 100644 --- a/tests/user_interfaces/conftest.py +++ b/tests/user_interfaces/conftest.py @@ -32,7 +32,7 @@ def law_school_dataset_1k_params(common_seed): # Preprocess the dataset column_transformer = ColumnTransformer(transformers=[ - ('categorical_features', OneHotEncoder(handle_unknown='ignore', sparse=False), data_loader.categorical_columns), + ('categorical_features', OneHotEncoder(handle_unknown='ignore', sparse_output=False), data_loader.categorical_columns), ('numerical_features', StandardScaler(), data_loader.numerical_columns), ]) base_flow_dataset = preprocess_dataset(data_loader=data_loader, @@ -64,7 +64,7 @@ def law_school_dataset_20k_params(common_seed): # Preprocess the dataset column_transformer = ColumnTransformer(transformers=[ - ('categorical_features', OneHotEncoder(handle_unknown='ignore', sparse=False), data_loader.categorical_columns), + ('categorical_features', OneHotEncoder(handle_unknown='ignore', sparse_output=False), data_loader.categorical_columns), ('numerical_features', StandardScaler(), data_loader.numerical_columns), ]) base_flow_dataset = preprocess_dataset(data_loader=data_loader, diff --git a/tests/user_interfaces/test_compute_model_metrics.py b/tests/user_interfaces/test_compute_model_metrics.py index f2494c70..24374f7c 100644 --- a/tests/user_interfaces/test_compute_model_metrics.py +++ b/tests/user_interfaces/test_compute_model_metrics.py @@ -23,7 +23,7 @@ def test_subgroup_variance_and_error_analyzers(COMPAS_y_test, COMPAS_RF_bootstra data_loader = CompasWithoutSensitiveAttrsDataset() sensitive_attributes_dct = {'sex': 1, 'race': 'African-American', 'sex&race': None} column_transformer = ColumnTransformer(transformers=[ - ('categorical_features', OneHotEncoder(handle_unknown='ignore', sparse=False), data_loader.categorical_columns), + ('categorical_features', OneHotEncoder(handle_unknown='ignore', sparse_output=False), data_loader.categorical_columns), ('numerical_features', StandardScaler(), data_loader.numerical_columns), ]) base_flow_dataset = preprocess_dataset(data_loader=data_loader, diff --git a/tests/user_interfaces/test_multiple_models_api.py b/tests/user_interfaces/test_multiple_models_api.py index c5fda9f5..14d1bb3e 100644 --- a/tests/user_interfaces/test_multiple_models_api.py +++ b/tests/user_interfaces/test_multiple_models_api.py @@ -1,3 +1,4 @@ +import sys import copy import pathlib @@ -76,15 +77,18 @@ def test_compute_metrics_with_config_should_equal_prev_release_results(law_schoo models_config=copy.deepcopy(models_config), save_results_dir_path=save_results_dir_path) - metrics_path = str(pathlib.Path(__file__).parent.parent.joinpath('files_for_tests', 'law_school_dataset_20k')) + if sys.version_info.major == 3 and sys.version_info.minor >= 12: + print("Python 3.12 or newer is installed.") + metrics_path = str(pathlib.Path(__file__).parent.parent.joinpath('files_for_tests', 'law_school_dataset_20k', 'python_3_12+')) + else: + print("Older version of Python is installed.") + metrics_path = str(pathlib.Path(__file__).parent.parent.joinpath('files_for_tests', 'law_school_dataset_20k', 'python_3_11-')) + expected_metrics_dct = read_model_metric_dfs(metrics_path, model_names=['LogisticRegression', 'DecisionTreeClassifier']) # Drop technical columns metrics_dct['LogisticRegression'] = metrics_dct['LogisticRegression'].drop('Runtime_in_Mins', axis=1) metrics_dct['DecisionTreeClassifier'] = metrics_dct['DecisionTreeClassifier'].drop('Runtime_in_Mins', axis=1) - expected_metrics_dct['LogisticRegression'] = expected_metrics_dct['LogisticRegression'].drop('Runtime_in_Mins', axis=1) - expected_metrics_dct['DecisionTreeClassifier'] = expected_metrics_dct['DecisionTreeClassifier'].drop('Runtime_in_Mins', axis=1) - assert compare_metric_dfs_with_tolerance(expected_metrics_dct['LogisticRegression'], metrics_dct['LogisticRegression']) assert compare_metric_dfs_with_tolerance(expected_metrics_dct['DecisionTreeClassifier'], metrics_dct['DecisionTreeClassifier']) diff --git a/tests/utils/test_stability_utils.py b/tests/utils/test_stability_utils.py index 44cc362c..8e6c0cf9 100644 --- a/tests/utils/test_stability_utils.py +++ b/tests/utils/test_stability_utils.py @@ -65,7 +65,7 @@ def test_count_prediction_metrics_true2(COMPAS_y_test, COMPAS_RF_bootstrap_predi # ========================== Test generate_bootstrap ========================== def test_generate_bootstrap_true1(compas_without_sensitive_attrs_dataset_class, config_params): column_transformer = ColumnTransformer(transformers=[ - ('categorical_features', OneHotEncoder(handle_unknown='ignore', sparse=False), compas_without_sensitive_attrs_dataset_class.categorical_columns), + ('categorical_features', OneHotEncoder(handle_unknown='ignore', sparse_output=False), compas_without_sensitive_attrs_dataset_class.categorical_columns), ('numerical_features', StandardScaler(), compas_without_sensitive_attrs_dataset_class.numerical_columns), ]) base_flow_ds = preprocess_dataset(compas_without_sensitive_attrs_dataset_class, diff --git a/virny/__version__.py b/virny/__version__.py index 1d212215..30aec592 100644 --- a/virny/__version__.py +++ b/virny/__version__.py @@ -1,3 +1,3 @@ -VERSION = (0, 5, 0) +VERSION = (0, 6, 0) __version__ = ".".join(map(str, VERSION)) diff --git a/virny/analyzers/batch_overall_variance_analyzer_postprocessing.py b/virny/analyzers/batch_overall_variance_analyzer_postprocessing.py index fe2d518e..97d29a0e 100644 --- a/virny/analyzers/batch_overall_variance_analyzer_postprocessing.py +++ b/virny/analyzers/batch_overall_variance_analyzer_postprocessing.py @@ -1,6 +1,7 @@ import gc import sys import pandas as pd +from copy import deepcopy from virny.utils.stability_utils import generate_bootstrap from virny.analyzers.batch_overall_variance_analyzer import BatchOverallVarianceAnalyzer @@ -77,9 +78,10 @@ def __init__(self, postprocessor, sensitive_attribute: str, verbose=verbose) self.postprocessor = postprocessor + self.postprocessors_lst = [deepcopy(self.postprocessor) for _ in range(n_estimators)] self.sensitive_attribute = sensitive_attribute self.test_binary_label_dataset = construct_binary_label_dataset_from_df(X_test, y_test, target_column, sensitive_attribute) - + def UQ_by_boostrap(self, boostrap_size: int, with_replacement: bool, with_fit: bool = True) -> dict: """ Quantifying uncertainty of the base model by constructing an ensemble from bootstrapped samples @@ -119,6 +121,7 @@ def UQ_by_boostrap(self, boostrap_size: int, with_replacement: bool, with_fit: b # Train and test each estimator in models_predictions for idx in cycle_range: classifier = self.models_lst[idx] + postprocessor = self.postprocessors_lst[idx] if with_fit: classifier_random_state = self.random_state + idx + 1 if self.random_state is not None else None X_sample, y_sample = generate_bootstrap(features=self.X_train, @@ -136,13 +139,14 @@ def UQ_by_boostrap(self, boostrap_size: int, with_replacement: bool, with_fit: b train_binary_label_dataset_sample = construct_binary_label_dataset_from_samples(X_sample, y_sample, self.X_train.columns, self.target_column, self.sensitive_attribute) train_binary_label_dataset_sample_pred = predict_on_binary_label_dataset(classifier, train_binary_label_dataset_sample) test_binary_label_dataset_pred = predict_on_binary_label_dataset(classifier, self.test_binary_label_dataset) - postprocessor_fitted = self.postprocessor.fit(train_binary_label_dataset_sample, train_binary_label_dataset_sample_pred) + postprocessor_fitted = postprocessor.fit(train_binary_label_dataset_sample, train_binary_label_dataset_sample_pred) # Note that model predictions do not preserve X_test indexes. # Indexes of the predictions will be aligned with X_test later in the pipeline. models_predictions[idx] = postprocessor_fitted.predict(test_binary_label_dataset_pred).labels.ravel() self.models_lst[idx] = classifier - + self.postprocessors_lst[idx] = postprocessor_fitted + if self._verbose >= 1: print('\n', flush=True) self._logger.info('Successfully tested classifiers by bootstrap') diff --git a/virny/analyzers/subgroup_variance_analyzer.py b/virny/analyzers/subgroup_variance_analyzer.py index a429d5bd..dae8b81d 100644 --- a/virny/analyzers/subgroup_variance_analyzer.py +++ b/virny/analyzers/subgroup_variance_analyzer.py @@ -120,6 +120,14 @@ def set_test_sets(self, new_X_test, new_y_test): def set_test_protected_groups(self, new_test_protected_groups): self.__subgroup_variance_calculator.test_protected_groups = new_test_protected_groups + def set_fitted_bootstrap(self, fitted_bootstrap: list): + models_lst = [None] * self.n_estimators + for i in range(self.n_estimators): + model_dct = fitted_bootstrap[i] + models_lst[model_dct['model_idx']] = model_dct['model_obj'] + + self.__overall_variance_analyzer.models_lst = models_lst + def compute_metrics(self, save_results: bool, result_filename: str = None, save_dir_path: str = None, with_fit: bool = True): """ @@ -144,6 +152,15 @@ def compute_metrics(self, save_results: bool, result_filename: str = None, y_preds = pd.Series(y_preds, index=y_test_true.index) self.overall_variance_metrics_dct = self.__overall_variance_analyzer.prediction_metrics + # Create a list of fitted models from the bootstrap + fitted_bootstrap = [] + for model_idx in range(len(self.__overall_variance_analyzer.models_lst)): + model = self.__overall_variance_analyzer.models_lst[model_idx] + model_dct = {'model_idx': model_idx, 'model_obj': model} + if isinstance(self.__overall_variance_analyzer, BatchOverallVarianceAnalyzerPostProcessing): + model_dct['postprocessor'] = self.__overall_variance_analyzer.postprocessors_lst[model_idx] + fitted_bootstrap.append(model_dct) + # Count and display fairness metrics self.__subgroup_variance_calculator.set_overall_variance_metrics(self.overall_variance_metrics_dct) self.subgroup_variance_metrics_dct = self.__subgroup_variance_calculator.compute_subgroup_metrics( @@ -151,4 +168,4 @@ def compute_metrics(self, save_results: bool, result_filename: str = None, save_results, result_filename, save_dir_path ) - return y_preds, pd.DataFrame(self.subgroup_variance_metrics_dct) + return y_preds, pd.DataFrame(self.subgroup_variance_metrics_dct), fitted_bootstrap diff --git a/virny/user_interfaces/__init__.py b/virny/user_interfaces/__init__.py index d51106b5..3b7dce17 100644 --- a/virny/user_interfaces/__init__.py +++ b/virny/user_interfaces/__init__.py @@ -15,10 +15,12 @@ run_metrics_computation_with_multiple_test_sets, compute_one_model_metrics_with_multiple_test_sets ) +from .inference_api import compute_metrics_with_fitted_bootstrap __all__ = [ "compute_metrics_with_config", "compute_metrics_with_db_writer", "compute_metrics_with_multiple_test_sets", + "compute_metrics_with_fitted_bootstrap", ] diff --git a/virny/user_interfaces/inference_api.py b/virny/user_interfaces/inference_api.py new file mode 100644 index 00000000..d2a50f69 --- /dev/null +++ b/virny/user_interfaces/inference_api.py @@ -0,0 +1,58 @@ +import pandas as pd + +from virny.configs.constants import ModelSetting +from virny.custom_classes.base_dataset import BaseFlowDataset +from virny.analyzers.subgroup_error_analyzer import SubgroupErrorAnalyzer +from virny.analyzers.subgroup_variance_analyzer import SubgroupVarianceAnalyzer +from virny.utils.protected_groups_partitioning import create_test_protected_groups + + +def compute_metrics_with_fitted_bootstrap(fitted_bootstrap: list, test_base_flow_dataset: BaseFlowDataset, + config, with_predict_proba: bool = True, verbose: int = 0): + model_setting = ModelSetting.BATCH + X_test, y_test = test_base_flow_dataset.X_test, test_base_flow_dataset.y_test + test_protected_groups = create_test_protected_groups(X_test, + test_base_flow_dataset.init_sensitive_attrs_df, + config.sensitive_attributes_dct) + + subgroup_variance_analyzer = SubgroupVarianceAnalyzer(model_setting=model_setting, + n_estimators=config.n_estimators, + base_model=None, + base_model_name=None, + bootstrap_fraction=config.bootstrap_fraction, + dataset=test_base_flow_dataset, + dataset_name=config.dataset_name, + sensitive_attributes_dct=config.sensitive_attributes_dct, + test_protected_groups=test_protected_groups, + random_state=config.random_state, + computation_mode=config.computation_mode, + with_predict_proba=with_predict_proba, + notebook_logs_stdout=False, + verbose=verbose) + + # Compute stability metrics for subgroups + subgroup_variance_analyzer.set_fitted_bootstrap(fitted_bootstrap) + y_preds, variance_metrics_df, _ = subgroup_variance_analyzer.compute_metrics(save_results=False, + result_filename=None, + save_dir_path=None, + with_fit=False) + # Compute accuracy metrics for subgroups + error_analyzer = SubgroupErrorAnalyzer(X_test=X_test, + y_test=y_test, + sensitive_attributes_dct=config.sensitive_attributes_dct, + test_protected_groups=test_protected_groups, + computation_mode=config.computation_mode) + dtc_res = error_analyzer.compute_subgroup_metrics(y_preds, + models_predictions=dict(), + save_results=False, + result_filename=None, + save_dir_path=None) + error_metrics_df = pd.DataFrame(dtc_res) + + metrics_df = pd.concat([variance_metrics_df, error_metrics_df]) + metrics_df = metrics_df.reset_index() + metrics_df = metrics_df.rename(columns={"index": "Metric"}) + metrics_df['Model_Params'] = str(fitted_bootstrap[0]['model_obj'].get_params()) + metrics_df['Virny_Random_State'] = config.random_state + + return metrics_df diff --git a/virny/user_interfaces/multiple_models_api.py b/virny/user_interfaces/multiple_models_api.py index ba1b45ff..084a5b88 100644 --- a/virny/user_interfaces/multiple_models_api.py +++ b/virny/user_interfaces/multiple_models_api.py @@ -14,7 +14,8 @@ def compute_metrics_with_config(dataset: BaseFlowDataset, config, models_config: dict, save_results_dir_path: str, postprocessor=None, with_predict_proba: bool = True, - notebook_logs_stdout: bool = False, verbose: int = 0) -> dict: + notebook_logs_stdout: bool = False, return_fitted_bootstrap: bool = False, + verbose: int = 0): """ Compute stability and accuracy metrics for each model in models_config. Arguments are defined as an input config object. Save results in `save_results_dir_path` folder. @@ -40,6 +41,9 @@ def compute_metrics_with_config(dataset: BaseFlowDataset, config, models_config: notebook_logs_stdout [Optional] True, if this interface was execute in a Jupyter notebook, False, otherwise. + return_fitted_bootstrap + [Optional] If True, the fitted bootstrap of models is returned. Can be useful to reuse this bootstrap on other test sets. + Default, False. verbose [Optional] Level of logs printing. The greater level provides more logs. As for now, 0, 1, 2 levels are supported. Currently, verbose works only with notebook_logs_stdout = False. @@ -53,21 +57,21 @@ def compute_metrics_with_config(dataset: BaseFlowDataset, config, models_config: os.makedirs(save_results_dir_path, exist_ok=True) model_metrics_dct = dict() - models_metrics_dct = run_metrics_computation(dataset=dataset, - bootstrap_fraction=config.bootstrap_fraction, - dataset_name=config.dataset_name, - models_config=models_config, - n_estimators=config.n_estimators, - sensitive_attributes_dct=config.sensitive_attributes_dct, - random_state=config.random_state, - model_setting=config.model_setting, - computation_mode=config.computation_mode, - postprocessor=postprocessor, - postprocessing_sensitive_attribute=config.postprocessing_sensitive_attribute, - save_results=False, - with_predict_proba=with_predict_proba, - notebook_logs_stdout=notebook_logs_stdout, - verbose=verbose) + models_metrics_dct, models_fitted_bootstraps_dct = run_metrics_computation(dataset=dataset, + bootstrap_fraction=config.bootstrap_fraction, + dataset_name=config.dataset_name, + models_config=models_config, + n_estimators=config.n_estimators, + sensitive_attributes_dct=config.sensitive_attributes_dct, + random_state=config.random_state, + model_setting=config.model_setting, + computation_mode=config.computation_mode, + postprocessor=postprocessor, + postprocessing_sensitive_attribute=config.postprocessing_sensitive_attribute, + save_results=False, + with_predict_proba=with_predict_proba, + notebook_logs_stdout=notebook_logs_stdout, + verbose=verbose) # Concatenate with previous results and save them in an overwrite mode each time for backups for model_name in models_metrics_dct.keys(): @@ -77,6 +81,9 @@ def compute_metrics_with_config(dataset: BaseFlowDataset, config, models_config: result_filename = f'Metrics_{config.dataset_name}_{model_name}_{config.n_estimators}_Estimators_{start_datetime.strftime("%Y%m%d__%H%M%S")}.csv' model_metrics_dct[model_name].to_csv(f'{save_results_dir_path}/{result_filename}', index=False, mode='w') + if return_fitted_bootstrap: + return model_metrics_dct, models_fitted_bootstraps_dct + return model_metrics_dct @@ -87,7 +94,7 @@ def run_metrics_computation(dataset: BaseFlowDataset, bootstrap_fraction: float, postprocessing_sensitive_attribute: str = None, save_results: bool = True, save_results_dir_path: str = None, with_predict_proba: bool = True, notebook_logs_stdout: bool = False, - verbose: int = 0) -> dict: + verbose: int = 0): """ Compute stability and accuracy metrics for each model in models_config. Save results in `save_results_dir_path` folder. @@ -142,6 +149,7 @@ def run_metrics_computation(dataset: BaseFlowDataset, bootstrap_fraction: float, from tqdm import tqdm models_metrics_dct = dict() + models_fitted_bootstraps_dct = dict() num_models = len(models_config) for model_idx, model_name in tqdm(enumerate(models_config.keys()), total=num_models, @@ -154,28 +162,29 @@ def run_metrics_computation(dataset: BaseFlowDataset, bootstrap_fraction: float, try: base_model = models_config[model_name] computation_start_date_time = datetime.now() - model_metrics_df = compute_one_model_metrics(base_model=base_model, - n_estimators=n_estimators, - dataset=dataset, - bootstrap_fraction=bootstrap_fraction, - sensitive_attributes_dct=sensitive_attributes_dct, - random_state=random_state, - model_setting=model_setting, - computation_mode=computation_mode, - dataset_name=dataset_name, - base_model_name=model_name, - postprocessor=postprocessor, - postprocessing_sensitive_attribute=postprocessing_sensitive_attribute, - save_results=save_results, - save_results_dir_path=save_results_dir_path, - with_predict_proba=with_predict_proba, - notebook_logs_stdout=notebook_logs_stdout, - verbose=verbose) + model_metrics_df, fitted_bootstrap = compute_one_model_metrics(base_model=base_model, + n_estimators=n_estimators, + dataset=dataset, + bootstrap_fraction=bootstrap_fraction, + sensitive_attributes_dct=sensitive_attributes_dct, + random_state=random_state, + model_setting=model_setting, + computation_mode=computation_mode, + dataset_name=dataset_name, + base_model_name=model_name, + postprocessor=postprocessor, + postprocessing_sensitive_attribute=postprocessing_sensitive_attribute, + save_results=save_results, + save_results_dir_path=save_results_dir_path, + with_predict_proba=with_predict_proba, + notebook_logs_stdout=notebook_logs_stdout, + verbose=verbose) computation_end_date_time = datetime.now() computation_runtime = (computation_end_date_time - computation_start_date_time).total_seconds() / 60.0 model_metrics_df['Runtime_in_Mins'] = computation_runtime models_metrics_dct[model_name] = model_metrics_df + models_fitted_bootstraps_dct[model_name] = fitted_bootstrap except Exception as err: print('#' * 20, f'ERROR with {model_name}', '#' * 20) @@ -184,7 +193,7 @@ def run_metrics_computation(dataset: BaseFlowDataset, bootstrap_fraction: float, if verbose >= 1: print('\n\n\n') - return models_metrics_dct + return models_metrics_dct, models_fitted_bootstraps_dct def compute_one_model_metrics(base_model, n_estimators: int, dataset: BaseFlowDataset, bootstrap_fraction: float, @@ -267,9 +276,9 @@ def compute_one_model_metrics(base_model, n_estimators: int, dataset: BaseFlowDa with_predict_proba=with_predict_proba, notebook_logs_stdout=notebook_logs_stdout, verbose=verbose) - y_preds, variance_metrics_df = subgroup_variance_analyzer.compute_metrics(save_results=False, - result_filename=None, - save_dir_path=None) + y_preds, variance_metrics_df, fitted_bootstrap = subgroup_variance_analyzer.compute_metrics(save_results=False, + result_filename=None, + save_dir_path=None) # Compute error metrics for subgroups error_analyzer = SubgroupErrorAnalyzer(X_test=dataset.X_test, @@ -296,4 +305,4 @@ def compute_one_model_metrics(base_model, n_estimators: int, dataset: BaseFlowDa result_filename = f'Metrics_{dataset_name}_{base_model_name}' save_metrics_to_file(metrics_df, result_filename, save_results_dir_path) - return metrics_df + return metrics_df, fitted_bootstrap diff --git a/virny/user_interfaces/multiple_models_with_db_writer_api.py b/virny/user_interfaces/multiple_models_with_db_writer_api.py index c1ab02fb..a3ad6de6 100644 --- a/virny/user_interfaces/multiple_models_with_db_writer_api.py +++ b/virny/user_interfaces/multiple_models_with_db_writer_api.py @@ -8,7 +8,7 @@ def compute_metrics_with_db_writer(dataset: BaseFlowDataset, config, models_config: dict, custom_tbl_fields_dct: dict, db_writer_func, postprocessor=None, with_predict_proba: bool = True, notebook_logs_stdout: bool = False, - verbose: int = 0) -> dict: + return_fitted_bootstrap: bool = False, verbose: int = 0): """ Compute stability and accuracy metrics for each model in models_config. Arguments are defined as an input config object. Save results to a database after each run appending fields and value from custom_tbl_fields_dct and using db_writer_func. @@ -36,6 +36,9 @@ def compute_metrics_with_db_writer(dataset: BaseFlowDataset, config, models_conf notebook_logs_stdout [Optional] True, if this interface was execute in a Jupyter notebook, False, otherwise. + return_fitted_bootstrap + [Optional] If True, the fitted bootstrap of models is returned. Can be useful to reuse this bootstrap on other test sets. + Default, False. verbose [Optional] Level of logs printing. The greater level provides more logs. As for now, 0, 1, 2 levels are supported. Currently, verbose works only with notebook_logs_stdout = False. @@ -47,21 +50,21 @@ def compute_metrics_with_db_writer(dataset: BaseFlowDataset, config, models_conf multiple_models_metrics_dct = dict() run_models_metrics_df = pd.DataFrame() - models_metrics_dct = run_metrics_computation(dataset=dataset, - bootstrap_fraction=config.bootstrap_fraction, - dataset_name=config.dataset_name, - models_config=models_config, - n_estimators=config.n_estimators, - sensitive_attributes_dct=config.sensitive_attributes_dct, - random_state=config.random_state, - model_setting=config.model_setting, - computation_mode=config.computation_mode, - postprocessor=postprocessor, - postprocessing_sensitive_attribute=config.postprocessing_sensitive_attribute, - save_results=False, - with_predict_proba=with_predict_proba, - notebook_logs_stdout=notebook_logs_stdout, - verbose=verbose) + models_metrics_dct, models_fitted_bootstraps_dct = run_metrics_computation(dataset=dataset, + bootstrap_fraction=config.bootstrap_fraction, + dataset_name=config.dataset_name, + models_config=models_config, + n_estimators=config.n_estimators, + sensitive_attributes_dct=config.sensitive_attributes_dct, + random_state=config.random_state, + model_setting=config.model_setting, + computation_mode=config.computation_mode, + postprocessor=postprocessor, + postprocessing_sensitive_attribute=config.postprocessing_sensitive_attribute, + save_results=False, + with_predict_proba=with_predict_proba, + notebook_logs_stdout=notebook_logs_stdout, + verbose=verbose) # Concatenate current run metrics with previous results and # create melted_model_metrics_df to save it in a database @@ -96,4 +99,7 @@ def compute_metrics_with_db_writer(dataset: BaseFlowDataset, config, models_conf # Save results for this run in a database db_writer_func(run_models_metrics_df) + if return_fitted_bootstrap: + return multiple_models_metrics_dct, models_fitted_bootstraps_dct + return multiple_models_metrics_dct diff --git a/virny/user_interfaces/multiple_models_with_multiple_test_sets_api.py b/virny/user_interfaces/multiple_models_with_multiple_test_sets_api.py index f9765c00..29aa4c85 100644 --- a/virny/user_interfaces/multiple_models_with_multiple_test_sets_api.py +++ b/virny/user_interfaces/multiple_models_with_multiple_test_sets_api.py @@ -13,7 +13,8 @@ def compute_metrics_with_multiple_test_sets(dataset: BaseFlowDataset, extra_test_sets_lst, config, models_config: dict, custom_tbl_fields_dct: dict, db_writer_func, with_predict_proba: bool = True, - notebook_logs_stdout: bool = False, verbose: int = 0): + notebook_logs_stdout: bool = False, return_fitted_bootstrap: bool = False, + verbose: int = 0): """ Compute stability and accuracy metrics for each model in models_config based on dataset.X_test and each extra test set in extra_test_sets_lst. Arguments are defined as an input config object. Save results to a database after each run @@ -43,6 +44,9 @@ def compute_metrics_with_multiple_test_sets(dataset: BaseFlowDataset, extra_test notebook_logs_stdout [Optional] True, if this interface was execute in a Jupyter notebook, False, otherwise. + return_fitted_bootstrap + [Optional] If True, the fitted bootstrap of models is returned. Can be useful to reuse this bootstrap on other test sets. + Default, False. verbose [Optional] Level of logs printing. The greater level provides more logs. As for now, 0, 1, 2 levels are supported. Currently, verbose works only with notebook_logs_stdout = False. @@ -52,19 +56,20 @@ def compute_metrics_with_multiple_test_sets(dataset: BaseFlowDataset, extra_test if notebook_logs_stdout: verbose = 0 - models_metrics_dct = run_metrics_computation_with_multiple_test_sets(dataset=dataset, - bootstrap_fraction=config.bootstrap_fraction, - dataset_name=config.dataset_name, - extra_test_sets_lst=extra_test_sets_lst, - models_config=models_config, - n_estimators=config.n_estimators, - sensitive_attributes_dct=config.sensitive_attributes_dct, - random_state=config.random_state, - model_setting=config.model_setting, - computation_mode=config.computation_mode, - with_predict_proba=with_predict_proba, - notebook_logs_stdout=notebook_logs_stdout, - verbose=verbose) + models_metrics_dct, models_fitted_bootstraps_dct =\ + run_metrics_computation_with_multiple_test_sets(dataset=dataset, + bootstrap_fraction=config.bootstrap_fraction, + dataset_name=config.dataset_name, + extra_test_sets_lst=extra_test_sets_lst, + models_config=models_config, + n_estimators=config.n_estimators, + sensitive_attributes_dct=config.sensitive_attributes_dct, + random_state=config.random_state, + model_setting=config.model_setting, + computation_mode=config.computation_mode, + with_predict_proba=with_predict_proba, + notebook_logs_stdout=notebook_logs_stdout, + verbose=verbose) # Concatenate current run metrics with previous results and # create melted_model_metrics_df to save it in a database run_models_metrics_df = pd.DataFrame() @@ -94,13 +99,16 @@ def compute_metrics_with_multiple_test_sets(dataset: BaseFlowDataset, extra_test if verbose >= 1: print('Metrics computation interface was successfully executed!') + if return_fitted_bootstrap: + return models_fitted_bootstraps_dct + def run_metrics_computation_with_multiple_test_sets(dataset: BaseFlowDataset, bootstrap_fraction: float, dataset_name: str, extra_test_sets_lst: list, models_config: dict, n_estimators: int, sensitive_attributes_dct: dict, random_state: int = None, model_setting: str = ModelSetting.BATCH.value, computation_mode: str = None, with_predict_proba: bool = True, - notebook_logs_stdout: bool = False, verbose: int = 0) -> dict: + notebook_logs_stdout: bool = False, verbose: int = 0): """ Compute stability and accuracy metrics for each model in models_config based on dataset.X_test and each extra test set in extra_test_sets_lst. Save results in `save_results_dir_path` folder. @@ -149,6 +157,7 @@ def run_metrics_computation_with_multiple_test_sets(dataset: BaseFlowDataset, bo from tqdm import tqdm models_metrics_dct = dict() + models_fitted_bootstraps_dct = dict() num_models = len(models_config) for model_idx, model_name in tqdm(enumerate(models_config.keys()), total=num_models, @@ -160,26 +169,28 @@ def run_metrics_computation_with_multiple_test_sets(dataset: BaseFlowDataset, bo try: base_model = models_config[model_name] computation_start_date_time = datetime.now() - model_metrics_dfs_lst = compute_one_model_metrics_with_multiple_test_sets(base_model=base_model, - n_estimators=n_estimators, - dataset=dataset, - extra_test_sets_lst=extra_test_sets_lst, - bootstrap_fraction=bootstrap_fraction, - sensitive_attributes_dct=sensitive_attributes_dct, - random_state=random_state, - model_setting=model_setting, - computation_mode=computation_mode, - dataset_name=dataset_name, - base_model_name=model_name, - with_predict_proba=with_predict_proba, - notebook_logs_stdout=notebook_logs_stdout, - verbose=verbose) + model_metrics_dfs_lst, fitted_bootstrap =\ + compute_one_model_metrics_with_multiple_test_sets(base_model=base_model, + n_estimators=n_estimators, + dataset=dataset, + extra_test_sets_lst=extra_test_sets_lst, + bootstrap_fraction=bootstrap_fraction, + sensitive_attributes_dct=sensitive_attributes_dct, + random_state=random_state, + model_setting=model_setting, + computation_mode=computation_mode, + dataset_name=dataset_name, + base_model_name=model_name, + with_predict_proba=with_predict_proba, + notebook_logs_stdout=notebook_logs_stdout, + verbose=verbose) computation_end_date_time = datetime.now() computation_runtime = (computation_end_date_time - computation_start_date_time).total_seconds() / 60.0 for model_metrics_df in model_metrics_dfs_lst: model_metrics_df['Runtime_in_Mins'] = computation_runtime models_metrics_dct[model_name] = model_metrics_dfs_lst + models_fitted_bootstraps_dct[model_name] = fitted_bootstrap except Exception as err: print('#' * 20, f'ERROR with {model_name}', '#' * 20) traceback.print_exc() @@ -187,7 +198,7 @@ def run_metrics_computation_with_multiple_test_sets(dataset: BaseFlowDataset, bo if verbose >= 1: print('\n\n\n') - return models_metrics_dct + return models_metrics_dct, models_fitted_bootstraps_dct def compute_one_model_metrics_with_multiple_test_sets(base_model, n_estimators: int, @@ -259,6 +270,7 @@ def compute_one_model_metrics_with_multiple_test_sets(base_model, n_estimators: test_sets_lst = [(dataset.X_test, dataset.y_test, dataset.init_sensitive_attrs_df)] + extra_test_sets_lst all_test_sets_metrics_lst = [] + fitted_bootstrap = [] for set_idx, (new_X_test, new_y_test, cur_init_sensitive_attrs_df) in enumerate(test_sets_lst): new_test_protected_groups = create_test_protected_groups(new_X_test, cur_init_sensitive_attrs_df, sensitive_attributes_dct) if verbose >= 2: @@ -271,10 +283,18 @@ def compute_one_model_metrics_with_multiple_test_sets(base_model, n_estimators: subgroup_variance_analyzer.set_test_protected_groups(new_test_protected_groups) # Compute stability metrics for subgroups - y_preds, variance_metrics_df = subgroup_variance_analyzer.compute_metrics(save_results=False, - result_filename=None, - save_dir_path=None, - with_fit=True if set_idx == 0 else False) + if set_idx == 0: + y_preds, variance_metrics_df, fitted_bootstrap =\ + subgroup_variance_analyzer.compute_metrics(save_results=False, + result_filename=None, + save_dir_path=None, + with_fit=True) + else: + y_preds, variance_metrics_df, _ = \ + subgroup_variance_analyzer.compute_metrics(save_results=False, + result_filename=None, + save_dir_path=None, + with_fit=False) # Compute accuracy metrics for subgroups error_analyzer = SubgroupErrorAnalyzer(X_test=new_X_test, @@ -298,4 +318,4 @@ def compute_one_model_metrics_with_multiple_test_sets(base_model, n_estimators: all_test_sets_metrics_lst.append(metrics_df) - return all_test_sets_metrics_lst + return all_test_sets_metrics_lst, fitted_bootstrap diff --git a/virny/utils/stability_utils.py b/virny/utils/stability_utils.py index c0612d4c..7f572e83 100644 --- a/virny/utils/stability_utils.py +++ b/virny/utils/stability_utils.py @@ -1,3 +1,4 @@ +import sys import numpy as np import pandas as pd @@ -84,8 +85,13 @@ def count_prediction_metrics(y_true, uq_results, with_predict_proba: bool = True def generate_bootstrap(features, labels, boostrap_size, with_replacement=True, random_state=None): - # Create a local random state - rng = np.random.RandomState(random_state) + # Create a local random state. + # Note that to keep reverse compatibility we need to use different generators for different python versions + # since random number generation was changed in Python 3.12 + if sys.version_info.major == 3 and sys.version_info.minor >= 12: + rng = np.random.default_rng(seed=random_state) + else: + rng = np.random.RandomState(random_state) # Generate bootstrapped indexes bootstrap_index = rng.choice(features.shape[0], size=boostrap_size, replace=with_replacement)