-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathoptimization.py
337 lines (291 loc) · 15.4 KB
/
optimization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
from __future__ import division
import numpy as np
from numba.decorators import jit
import measures # import for accuracy measures
import utility # import for calculation of weighted scores
# a python script define optimization process
# test of this script can be found in testOptimization.py
# Part of optimization code refers from github https://github.com/zjelveh/learning-fair-representations/blob/master/lfr.py
SCORE_DIVERGENCE="scoreDiff" # represent average score difference -ranking accuracy measure
POSITION_DIFFERENCE="positionDiff" # represent average position difference -ranking accuracy measure
KENDALL_DIS="kendallDis" # represent kendall distance -ranking accuracy measure
SPEARMAN_COR="spearmanDis" # represent spearman correlation -ranking accuracy measure
PEARSON_COR="pearsonDis" # represent pearson correlation -ranking accuracy measure
def calculateEvaluateRez(_rez,_data,_inputscores,_k,_accmeasure):
"""
Calculate estimated scores of all input user and ranking accuracy of the corresponding ranking after optimization converged.
:param _rez: The optimization parameter results of L-BFGS algorithm after converged
:param _data: The input data, each row is a feature vector of one user
:param _inputscores: The input scores of data that can be weighted scores or some score attributes
:param _k: The number of clusters in the intermediate layer of neural network
:param _accmeasure: The accuracy measure used in this function
:return: returns the estimated scores and ranking accuracy of corresponding ranking
"""
user_N,att_N=_data.shape
# error handling for input type
if not isinstance(_rez, (list, tuple, np.ndarray)) and not isinstance( _rez, basestring ):
raise TypeError("Input parameter list must be a list-wise structure defined by '[]' symbol")
if not isinstance(_inputscores, (list, tuple, np.ndarray)) and not isinstance( _inputscores, basestring ):
raise TypeError("Input score list must be a list-wise structure defined by '[]' symbol")
if not isinstance( _k, ( int, long ) ):
raise TypeError("Input k must be an integer")
if not isinstance( _accmeasure, str ):
raise TypeError("Input accuracy measure must be a string that choose from ['scoreDiff', 'positionDiff', 'kendallDis', 'spearmanDis', 'pearsonDis'] defined in the begining of this file")
# error handling for input value
if user_N == 0:
raise ValueError("Input data should not be empty")
if att_N == 0:
raise ValueError("Input data should have at least one attribute column")
if len(_rez) == 0:
raise ValueError("Input _rez should not be empty")
if len(_inputscores) == 0:
raise ValueError("Input estimated score list should not be empty")
if _k == 0:
raise ValueError("Input k must be an integer larger than 0")
# initialize the clusters
clusters=np.matrix(_rez[0][(2 * att_N) + _k:]).reshape((_k, att_N))
alpha1 = _rez[0][att_N : 2 * att_N]
# get the distance between input user X and intermediate clusters Z
dists_x = distances(_data, clusters, alpha1, user_N, att_N, _k)
# compute the probability of each X maps to Z
Mnk_x=M_nk(dists_x, user_N, _k)
# get the estiamted scores and ranking accuracy
scores_hat, ranking_accuracy = calculateEstimateY(Mnk_x, _inputscores, clusters, user_N, _k, _accmeasure)
return scores_hat, ranking_accuracy
@jit
def distances(_X, _clusters, _alpha, _N, _P, _k):
"""
Calculate the distance between input X and clusters Z.
:param _X: The input user feature vector
:param _clusters: The clusters in the intermediate Z
:param _alpha: The weight of each attribute in the input X
:param _N: The total user number in input X
:param _P: The attribute number in input X
:param _k: The number of clusters in the intermediate layer of neural network
:return: returns the distance matrix between X and Z.
"""
dists = np.zeros((_N, _k))
for i in range(_N):
for p in range(_P):
for j in range(_k):
dists[i, j] += (_X[i, p] - _clusters[j, p]) * (_X[i, p] - _clusters[j, p])
return dists
@jit
def M_nk(_dists, _N, _k):
"""
Calculate the probability of input X maps to clusters Z.
:param _dists: The distance matrix between X and Z
:param _clusters: The clusters in the intermediate Z
:param _alpha: The weight of each attribute in the input X
:param _N: The total user number in input X
:param _P: The attribute number in input X
:param _k: The number of clusters in the intermediate layer of neural network
:return: returns the probability mapping matrix between X and Z.
"""
M_nk = np.zeros((_N, _k))
exp = np.zeros((_N, _k))
denom = np.zeros(_N)
for i in range(_N):
for j in range(_k):
exp[i, j] = np.exp(-1 * _dists[i, j])
denom[i] += exp[i, j]
for j in range(_k):
if denom[i]:
M_nk[i, j] = exp[i, j] / denom[i]
else:
M_nk[i, j] = exp[i, j] / 1e-6
return M_nk
@jit
def M_k(_M_nk, _N, _k):
# print(_M_nk, _N, _k)
"""
Calculate the summed probability of all input users.
:param _M_nk: The probability mapping matrix between X and Z
:param _N: The total user number in input X
:param _k: The number of clusters in the intermediate layer of neural network
:return: returns the summed probability matrix of all users.
"""
M_k = np.zeros(_k)
for j in range(_k):
for i in range(_N):
M_k[j] += _M_nk[i, j]
M_k[j] /= _N
return M_k
@jit
def x_n_hat(_X, _M_nk, _clusters, _N, _P, _k):
"""
Calculate the estimated X through clusters Z.
:param _X: The input user feature vector
:param _M_nk: The probability mapping matrix between X and Z
:param _clusters: The clusters in the intermediate Z
:param _N: The total user number in input X
:param _P: The attribute number in input X
:param _k: The number of clusters in the intermediate layer of neural network
:return: returns the estimated X and loss between input X and estimated X.
"""
x_n_hat = np.zeros((_N, _P))
L_x = 0.0
for i in range(_N):
for p in range(_P):
for j in range(_k):
x_n_hat[i, p] += _M_nk[i, j] * _clusters[j, p]
L_x += (_X[i, p] - x_n_hat[i, p]) * (_X[i, p] - x_n_hat[i, p])
L_x=L_x/_N
return x_n_hat, L_x
# @jit
def calculateEstimateY(_M_nk_x, _inputscores, _clusters, _N, _k,_accmeasure):
"""
Calculate the estimated score and ranking accuracy of corresponding ranking.
:param _M_nk_x: The probability mapping matrix from input X and clusters Z
:param _inputscores: The input scores of all users
:param _clusters: The clusters in the intermediate Z
:param _N: The total user number in input X
:param _k: The number of clusters in the intermediate layer of neural network
:param _accmeasure: The ranking accuracy measure used in this function
:return: returns the estimated X and loss between input X and estimated X.
"""
score_hat = np.zeros(_N) # initialize the estimated scores
# calculate estimate score of each user by mapping probability between X and Z
for ui in range(_N):
score_hat_u = 0.0
for ki in range(_k):
score_hat_u += (_M_nk_x[ui,ki] * _clusters[ki])
score_hat[ui] = utility.calculateWeightedScores(score_hat_u)
ranking_loss = 0.0
score_hat=list(score_hat)
_inputscores=list(_inputscores)
# generate permutations of two score lists returned permutation of sorted id
per_scores_hat=sorted(range(len(score_hat)), key=lambda k: score_hat[k],reverse=True)
per_scores_input=sorted(range(len(_inputscores)), key=lambda k: _inputscores[k],reverse=True)
# sort the scores in descending order
sorted_score_hat = score_hat
sorted_score_hat.sort(reverse=True)
sorted_inputscores = _inputscores
sorted_inputscores.sort(reverse=True)
if _accmeasure==SCORE_DIVERGENCE:
L_y=measures.calculateScoreDifference(sorted_score_hat,sorted_inputscores)
ranking_loss = L_y
elif _accmeasure==POSITION_DIFFERENCE:
L_y=measures.calculatePositionDifference(per_scores_hat,per_scores_input)
ranking_loss = L_y
elif _accmeasure==KENDALL_DIS:
L_y=measures.calculateKendallDistance(per_scores_hat,per_scores_input) # kendall distance
ranking_loss = L_y
# for spearman and pearson relation, use the negative value to minimize during optimization
elif _accmeasure==SPEARMAN_COR:
L_y=measures.calculateSpearmanR(score_hat,_inputscores)
ranking_loss = -L_y
elif _accmeasure==PEARSON_COR:
L_y=measures.calculatePearsonC(score_hat,_inputscores)
ranking_loss=-L_y
return score_hat, ranking_loss
def lbfgsOptimize(_params, _data, _pro_data, _unpro_data,
_inputscores, _accmeasure, _k, A_x = 0.01, A_y = 1, A_z = 100, results=0):
"""
The function to run the optimization using l-bfgs algorithm.
:param _params: The initialized optimization parameters
:param _data: The input data of all users - X
:param _pro_data: The input data of protected group
:param _unpro_data: The input data of unprotected group
:param _inputscores: The scores of input users which can be a score attribute or summed score of all attributes
:param _accmeasure: The ranking accuracy measure used in this function
:param _k: The number of clusters in the intermediate layer of neural network
:param A_x: The super parameter - optimization weight for accuracy of reconstructing X
:param A_y: The super parameter - optimization weight for ranking accuracy
:param A_z: The super parameter - optimization weight for group fairness
:param results: The flag of optimization, initialize to 0, update to 1 when optimization converged
:return: returns the estimated scores of all user and the probability mapping of protected and unprotected group if converged.
returns the last loss during optimization if optimization doesn't converge.
"""
lbfgsOptimize.iters += 1
# get basic statistics
user_N, att_N= _data.shape
pro_N, pro_att_N = _pro_data.shape
unpro_N, unpro_att_N = _unpro_data.shape
# error handling for input type
if not isinstance(_inputscores, (list, tuple, np.ndarray)) and not isinstance( _inputscores, basestring ):
raise TypeError("Input score list must be a list-wise structure defined by '[]' symbol")
if not isinstance( _k, ( int, long ) ):
raise TypeError("Input k must be an integer")
if not isinstance( _accmeasure, str ):
raise TypeError("Input accuracy measure must be a string that choose from ['scoreDiff', 'positionDiff', 'kendallDis', 'spearmanDis', 'pearsonDis'] defined in the begining of this file")
# error handling for input value
if user_N == 0:
raise ValueError("Input data should not be empty")
if (att_N *pro_att_N *unpro_att_N) == 0:
raise ValueError("Input data, protected group data, and unprotected group data should have at least one attribute column")
if att_N != pro_att_N:
raise ValueError("Input protected group data '_pro_data' should have same size with '_data'")
if att_N != unpro_att_N:
raise ValueError("Input unprotected group data '_unpro_data' should have same size with '_data'")
if len(_inputscores) == 0:
raise ValueError("Input estimated score list should not be empty")
if _k == 0:
raise ValueError("Input k must be an integer larger than 0")
# initialize parameters of neural network
alpha0 = _params[:att_N]
alpha1 = _params[att_N : 2 * att_N]
w = _params[2 * att_N : (2 * att_N) + _k]
# initialize the starting clusters
clusters = np.matrix(_params[(2 * att_N) + _k:]).reshape((_k, att_N))
# compute the distance from X to Z
dists_x = distances(_data, clusters, alpha1, user_N, att_N, _k)
M_nk_x = M_nk(dists_x, user_N, _k)
# based on the cluster centroid compute the distance of protected group and unprotected group
pro_dists = distances(_pro_data, clusters, alpha1, pro_N, att_N, _k)
unpro_dists = distances(_unpro_data, clusters, alpha0, unpro_N, att_N, _k)
# compute the probability mapping from X to Z
pro_M_nk = M_nk(pro_dists, pro_N, _k)
unpro_M_nk = M_nk(unpro_dists, unpro_N, _k)
# compute the summed probability of protected and unprotected group
pro_M_k = M_k(pro_M_nk, pro_N, _k)
unpro_M_k = M_k(unpro_M_nk, unpro_N, _k)
# compute the mapping difference between protected group and unprotected group i.e. sub-loss of group fairness
L_z = 0.0
for j in range(_k):
L_z += abs(pro_M_k[j] - unpro_M_k[j])
# compute the estimated x hat from Z i.e. sub-loss of X
pro_x_n_hat, L_x1 = x_n_hat(_pro_data, pro_M_nk, clusters, pro_N, att_N, _k)
unpro_x_n_hat, L_x2 = x_n_hat(_unpro_data, unpro_M_nk, clusters, unpro_N, att_N, _k)
L_x = L_x1 + L_x2
# compute the estimated scores and ranking accuracy i.e. sub-loss of ranking Y
estimate_scores, L_y = calculateEstimateY(M_nk_x, _inputscores, clusters, user_N, _k, _accmeasure)
# generate the total loss
criterion = A_x * L_x + A_y * L_y + A_z * L_z
# print out the current loss after each 250 iterations
if lbfgsOptimize.iters % 250 == 0:
print(lbfgsOptimize.iters, criterion)
if results:
return estimate_scores, pro_M_nk, unpro_M_nk
else:
return criterion
# after each optimization, reset the iteration to zero
lbfgsOptimize.iters = 0
def initOptimization(_data,_k):
"""
Initialize the parameter and bound of optimization.
:param _data: The input data w.r.t X
:param _k: The number of clusters in the intermediate layer of neural network
:return: returns the parameter vector and bound of optimization.
"""
user_N,att_N=_data.shape
# error handling for input type
if not isinstance( _k, ( int, long ) ):
raise TypeError("Input k must be an integer")
# error handling for input value
if user_N == 0:
raise ValueError("Input data should not be empty")
if att_N == 0:
raise ValueError("Input data should have at least one attribute column")
if _k == 0:
raise ValueError("Input k must be an integer larger than 0")
# initialize the parameter vector for neural network
rez = np.random.uniform(size=_data.shape[1] * 2 + _k + _data.shape[1] * _k)
# initialize the bound of optimization algorithm
bnd = []
for i, k2 in enumerate(rez):
if i < _data.shape[1] * 2 or i >= _data.shape[1] * 2 + _k:
bnd.append((None, None))
else:
bnd.append((0, 1))
return rez, bnd