-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
67 lines (52 loc) · 2.51 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import os
import streamlit as st
from langchain_groq import ChatGroq
from langchain_community.embeddings import CohereEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_core.prompts import ChatPromptTemplate
from langchain.chains import create_retrieval_chain
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFLoader
from dotenv import load_dotenv
load_dotenv()
cohere_api_key="OPjhvAPIz2uCvs2p3kHT4GbL9dBdrhauYDN61YTR"
groq_api_key = "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"
st.title("Chat With Document")
llm = ChatGroq(groq_api_key=groq_api_key, model_name="Llama3-8b-8192")
prompt = ChatPromptTemplate.from_template(
'''
Answer the questions based on the provided context only.
Please provide the most accurate response based on the question
<context>
{context}
</context>
Questions: {input}
'''
)
prompt1=st.text_input("Enter Your Question from documents")
pdf_docs = st.file_uploader("Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
def vector_embedding():
if 'vectors' not in st.session_state:
st.session_state.embeddings = CohereEmbeddings(cohere_api_key=cohere_api_key, model="embed-english-light-v3.0")
st.session_state.loader = PyPDFLoader(pdf_docs)
st.session_state.docs = st.session_state.loader.load()
st.session_statetext_splitter = RecursiveCharacterTextSplitter(chunk_size = 1000, chunk_overlap = 200)
st.session_state.final_documents = st.session_state.text_splitter.split_documents(st.session_state.docs[:20])
st.session_state.vectores = FAISS.from_documents(st.session_state.final_documents, st.session_state.embeddings)
if st.button("Process"):
vector_embedding()
st.write("Vector Store DB is ready")
import time
if prompt1:
start=time.process_time()
document_chain = create_stuff_documents_chain(llm, prompt)
retriever = st.session_state.vectors.as_retriever()
retrieval_chain=create_retrieval_chain(retriever,document_chain)
response = retrieval_chain.invoke({'input':prompt1})
print("Response time:", time.process_time()-start)
st.write(response['answer'])
with st.expander("Document Similarity Search"):
for i, doc in enumerate(response["context"]):
st.write(doc.page_content)
st.write("-------------------------------")