-
Notifications
You must be signed in to change notification settings - Fork 5
/
vectorPredict_featureSelection.R
116 lines (89 loc) · 3.53 KB
/
vectorPredict_featureSelection.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
"""
Babayan, Orton & Streicker
Predicting Reservoir Hosts and Arthropod Vectors from Evolutionary Signatures in RNA Virus Genomes
-- Genomic bias feature selection for vector taxon model
"""
rm(list=ls())
library(plyr)
library(h2o) # https://www.h2o.ai/products/h2o/
library(dplyr)
library(reshape2)
library(matrixStats)
setwd("") # Set local working directory where files are located
localh20<-h2o.init(nthreads = -1) # Start a local H2O cluster using nthreads = num available cores
# Data
f1<-read.csv("BabayanEtAl_VirusData.csv")
# Feature definition
dinucs<-grep("[A|T|G|C|U]p[A|T|G|C|U]",names(f1),value=T)
cps<-grep(".[A|C|D|E|F|G|H|I|K|L|M|N|P|Q|R|S|T|V|W|X|Y]..[A|T|G|C|U]",names(f1),value=T)
aa.codon.bias<-grep(".Bias",names(f1),value=T)
gen.feats<-c(dinucs,cps,aa.codon.bias)
total.feats<-length(gen.feats)
f1<-f1[,c("Virus.name","Genbank.accession","Reservoir","Viral.group","Vector.borne","Vector",gen.feats)]
f1$response<-factor(f1$Vector)
# Select viral groups with vectors and remove features with little variation
f2<-subset(f1,f1$Viral.group=="Bunyavirus"|f1$Viral.group=="Flavivirus"|f1$Viral.group=="Rhabdovirus"|f1$Viral.group=="Togavirus")
f2_genomic<-f2[,7:4235]
f3<-f2_genomic[, sapply(f2_genomic, function(col) length(unique(col))) > 60]
ngenomic<-length(f3)
all.gen<-names(f3)
f4<-cbind(f2[1:6],f3)
# Select viruses with 4 vector classes
f5<-subset(f4,f4$Vector.borne==1)
f6<-subset(f5,f5$Vector=="mosquito"|f5$Vector=="midge"|f5$Vector=="sandfly"|f5$Vector=="tick")
f_v<-droplevels(f6)
# Clean up unneeded files
rm(f1,f2,f2_genomic,f3,f4,f5,f6)
# organize vector database
mosq<-subset(f_v,f_v$Vector=="mosquito")
midg<-subset(f_v,f_v$Vector=="midge")
tick<-subset(f_v,f_v$Vector=="tick")
sand<-subset(f_v,f_v$Vector=="sandfly")
s<-.7 # proportion in the training set
# Evaluate feature importance over 50 training sets (70% each with 5x cross-validation)
set.seed(78910)
nloops<-50
vimps<-matrix(nrow=ngenomic,ncol=nloops)
for (i in 1:nloops){
mosq_sel<-mosq[sample(1:nrow(mosq),20),] # Downsample mosquito viruses
f_all<-rbind(mosq_sel,midg,tick,sand)
trains<-f_all %>% group_by(Vector) %>%
filter(Genbank.accession %in% sample(unique(Genbank.accession), floor(s*length(unique(Genbank.accession)))))
set<-c("Vector",all.gen)
f1_train<-trains[,c(set)]
# Build h2o data frames
train<-as.h2o(f1_train)
# Identity the response column
y <- "Vector"
# Identify the predictor columns
x <- setdiff(names(train), y)
# Convert response to factor
train[,y] <- as.factor(train[,y])
# GBM with 5x cross validation of training set, test set is not used
model <- h2o.gbm(x = x,
y = y,
training_frame = train,
ntrees = 150,
learn_rate = .1,
sample_rate = 1,
max_depth = 10,
col_sample_rate_per_tree = 1,
seed = 123,
nfolds = 5,
keep_cross_validation_predictions=F)
# Retreive feature importance
vi <- h2o.varimp(model)
data2 <- vi[order(vi[,1],decreasing=FALSE),] # order alphabetically
vimps[,i]<-data2[,4] # percentage importance
h2o.rm(model)
rm(train,f1_train,vi,f_all,trains)
}
# Average feature importance across all training sets
row.names(vimps)<-data2$variable
vimean<-rowMeans2(vimps)
visd<-rowSds(vimps)
vistderr<-visd/sqrt(nloops)
vimps<-cbind(vimps,vimean,visd,vistderr)
vimps<- vimps[order(vimps[,nloops+1],decreasing=FALSE),]
# Write to file
write.csv(vimps,file="featureImportance_vector.csv",row.names = T)