-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
86 lines (60 loc) · 2.59 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import os
class Linear_Qnet(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super().__init__()
self.linear1 = nn.Linear(input_size, hidden_size)
self.linear2 = nn.Linear(hidden_size, output_size)
def forward(self, x):
x = F.relu(self.linear1(x))
x = self.linear2(x)
return x
def save(self, file_name="model.pth"):
model_folder_path = './model'
if not os.path.exists(model_folder_path):
os.makedirs(model_folder_path)
file_name = os.path.join(model_folder_path, file_name)
torch.save(self.state_dict(), file_name)
def load(file_name="model.pth"):
model_folder_path = './model'
file_name = os.path.join(model_folder_path, file_name)
model = torch.load(PATH)
model.eval()
return model
class QTrainer:
def __init__(self, model, lr, gamma):
self.lr = lr
self.gamma = gamma
self.model = model
self.optimizer = optim.Adam(self.model.parameters(), lr=self.lr)
self.criterion = nn.MSELoss()
# trains the model based on the state of the game, the action taken, and the reward received
def train_step(self, state, action, reward, next_state, done ):
state = torch.tensor(state, dtype = torch.float)
next_state = torch.tensor(next_state, dtype = torch.float)
reward = torch.tensor(reward, dtype = torch.float)
action = torch.tensor(action, dtype = torch.float)
if len(state.shape) == 1:
# state is a single value
state = torch.unsqueeze(state, 0)
next_state = torch.unsqueeze(next_state, 0)
reward = torch.unsqueeze(reward, 0)
action = torch.unsqueeze(action, 0)
done = (done, )
# 1: predicuted next action with current state,
pred = self.model(state)
target = pred.clone()
# calculate the new Q value for the next state if the game is not over to predict the reward
for inx in range(len(done)):
Q_new = reward[inx]
# 2: Q_new = r + y * max(next_predicted Q value)
if not done[inx]:
Q_new = reward[inx] + self.gamma * torch.max(self.model(next_state[inx]))
target[inx][torch.argmax(action).item()] = Q_new
self.optimizer.zero_grad()
loss = self.criterion(target, pred)
loss.backward()
self.optimizer.step()