forked from yzhq97/cnn-registration
-
Notifications
You must be signed in to change notification settings - Fork 0
/
matching.py
480 lines (406 loc) · 20.1 KB
/
matching.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""
This module contains functions for matching coordinate catalogs.
"""
import numpy as np
from .representation import UnitSphericalRepresentation
from astropy import units as u
from . import Angle
__all__ = ['match_coordinates_3d', 'match_coordinates_sky', 'search_around_3d',
'search_around_sky']
def match_coordinates_3d(matchcoord, catalogcoord, nthneighbor=1, storekdtree='kdtree_3d'):
"""
Finds the nearest 3-dimensional matches of a coordinate or coordinates in
a set of catalog coordinates.
This finds the 3-dimensional closest neighbor, which is only different
from the on-sky distance if ``distance`` is set in either ``matchcoord``
or ``catalogcoord``.
Parameters
----------
matchcoord : `~astropy.coordinates.BaseCoordinateFrame` or `~astropy.coordinates.SkyCoord`
The coordinate(s) to match to the catalog.
catalogcoord : `~astropy.coordinates.BaseCoordinateFrame` or `~astropy.coordinates.SkyCoord`
The base catalog in which to search for matches. Typically this will
be a coordinate object that is an array (i.e.,
``catalogcoord.isscalar == False``)
nthneighbor : int, optional
Which closest neighbor to search for. Typically ``1`` is desired here,
as that is correct for matching one set of coordinates to another.
The next likely use case is ``2``, for matching a coordinate catalog
against *itself* (``1`` is inappropriate because each point will find
itself as the closest match).
storekdtree : bool or str, optional
If a string, will store the KD-Tree used for the computation
in the ``catalogcoord``, as in ``catalogcoord.cache`` with the
provided name. This dramatically speeds up subsequent calls with the
same catalog. If False, the KD-Tree is discarded after use.
Returns
-------
idx : integer array
Indices into ``catalogcoord`` to get the matched points for each
``matchcoord``. Shape matches ``matchcoord``.
sep2d : `~astropy.coordinates.Angle`
The on-sky separation between the closest match for each ``matchcoord``
and the ``matchcoord``. Shape matches ``matchcoord``.
dist3d : `~astropy.units.Quantity`
The 3D distance between the closest match for each ``matchcoord`` and
the ``matchcoord``. Shape matches ``matchcoord``.
Notes
-----
This function requires `SciPy <https://www.scipy.org/>`_ to be installed
or it will fail.
"""
if catalogcoord.isscalar or len(catalogcoord) < 1:
raise ValueError('The catalog for coordinate matching cannot be a '
'scalar or length-0.')
kdt = _get_cartesian_kdtree(catalogcoord, storekdtree)
# make sure coordinate systems match
matchcoord = matchcoord.transform_to(catalogcoord)
# make sure units match
catunit = catalogcoord.cartesian.x.unit
matchxyz = matchcoord.cartesian.xyz.to(catunit)
matchflatxyz = matchxyz.reshape((3, np.prod(matchxyz.shape) // 3))
# Querying NaN returns garbage
if np.isnan(matchflatxyz.value).any():
raise ValueError("Matching coordinates cannot contain NaN entries.")
dist, idx = kdt.query(matchflatxyz.T, nthneighbor)
if nthneighbor > 1: # query gives 1D arrays if k=1, 2D arrays otherwise
dist = dist[:, -1]
idx = idx[:, -1]
sep2d = catalogcoord[idx].separation(matchcoord)
return idx.reshape(matchxyz.shape[1:]), sep2d, dist.reshape(matchxyz.shape[1:]) * catunit
def match_coordinates_sky(matchcoord, catalogcoord, nthneighbor=1, storekdtree='kdtree_sky'):
"""
Finds the nearest on-sky matches of a coordinate or coordinates in
a set of catalog coordinates.
This finds the on-sky closest neighbor, which is only different from the
3-dimensional match if ``distance`` is set in either ``matchcoord``
or ``catalogcoord``.
Parameters
----------
matchcoord : `~astropy.coordinates.BaseCoordinateFrame` or `~astropy.coordinates.SkyCoord`
The coordinate(s) to match to the catalog.
catalogcoord : `~astropy.coordinates.BaseCoordinateFrame` or `~astropy.coordinates.SkyCoord`
The base catalog in which to search for matches. Typically this will
be a coordinate object that is an array (i.e.,
``catalogcoord.isscalar == False``)
nthneighbor : int, optional
Which closest neighbor to search for. Typically ``1`` is desired here,
as that is correct for matching one set of coordinates to another.
The next likely use case is ``2``, for matching a coordinate catalog
against *itself* (``1`` is inappropriate because each point will find
itself as the closest match).
storekdtree : bool or str, optional
If a string, will store the KD-Tree used for the computation
in the ``catalogcoord`` in ``catalogcoord.cache`` with the
provided name. This dramatically speeds up subsequent calls with the
same catalog. If False, the KD-Tree is discarded after use.
Returns
-------
idx : integer array
Indices into ``catalogcoord`` to get the matched points for each
``matchcoord``. Shape matches ``matchcoord``.
sep2d : `~astropy.coordinates.Angle`
The on-sky separation between the closest match for each
``matchcoord`` and the ``matchcoord``. Shape matches ``matchcoord``.
dist3d : `~astropy.units.Quantity`
The 3D distance between the closest match for each ``matchcoord`` and
the ``matchcoord``. Shape matches ``matchcoord``. If either
``matchcoord`` or ``catalogcoord`` don't have a distance, this is the 3D
distance on the unit sphere, rather than a true distance.
Notes
-----
This function requires `SciPy <https://www.scipy.org/>`_ to be installed
or it will fail.
"""
if catalogcoord.isscalar or len(catalogcoord) < 1:
raise ValueError('The catalog for coordinate matching cannot be a '
'scalar or length-0.')
# send to catalog frame
newmatch = matchcoord.transform_to(catalogcoord)
# strip out distance info
match_urepr = newmatch.data.represent_as(UnitSphericalRepresentation)
newmatch_u = newmatch.realize_frame(match_urepr)
cat_urepr = catalogcoord.data.represent_as(UnitSphericalRepresentation)
newcat_u = catalogcoord.realize_frame(cat_urepr)
# Check for a stored KD-tree on the passed-in coordinate. Normally it will
# have a distinct name from the "3D" one, so it's safe to use even though
# it's based on UnitSphericalRepresentation.
storekdtree = catalogcoord.cache.get(storekdtree, storekdtree)
idx, sep2d, sep3d = match_coordinates_3d(newmatch_u, newcat_u, nthneighbor, storekdtree)
# sep3d is *wrong* above, because the distance information was removed,
# unless one of the catalogs doesn't have a real distance
if not (isinstance(catalogcoord.data, UnitSphericalRepresentation) or
isinstance(newmatch.data, UnitSphericalRepresentation)):
sep3d = catalogcoord[idx].separation_3d(newmatch)
# update the kdtree on the actual passed-in coordinate
if isinstance(storekdtree, str):
catalogcoord.cache[storekdtree] = newcat_u.cache[storekdtree]
elif storekdtree is True:
# the old backwards-compatible name
catalogcoord.cache['kdtree'] = newcat_u.cache['kdtree']
return idx, sep2d, sep3d
def search_around_3d(coords1, coords2, distlimit, storekdtree='kdtree_3d'):
"""
Searches for pairs of points that are at least as close as a specified
distance in 3D space.
This is intended for use on coordinate objects with arrays of coordinates,
not scalars. For scalar coordinates, it is better to use the
``separation_3d`` methods.
Parameters
----------
coords1 : `~astropy.coordinates.BaseCoordinateFrame` or `~astropy.coordinates.SkyCoord`
The first set of coordinates, which will be searched for matches from
``coords2`` within ``seplimit``. Cannot be a scalar coordinate.
coords2 : `~astropy.coordinates.BaseCoordinateFrame` or `~astropy.coordinates.SkyCoord`
The second set of coordinates, which will be searched for matches from
``coords1`` within ``seplimit``. Cannot be a scalar coordinate.
distlimit : `~astropy.units.Quantity` with distance units
The physical radius to search within.
storekdtree : bool or str, optional
If a string, will store the KD-Tree used in the search with the name
``storekdtree`` in ``coords2.cache``. This speeds up subsequent calls
to this function. If False, the KD-Trees are not saved.
Returns
-------
idx1 : integer array
Indices into ``coords1`` that matches to the corresponding element of
``idx2``. Shape matches ``idx2``.
idx2 : integer array
Indices into ``coords2`` that matches to the corresponding element of
``idx1``. Shape matches ``idx1``.
sep2d : `~astropy.coordinates.Angle`
The on-sky separation between the coordinates. Shape matches ``idx1``
and ``idx2``.
dist3d : `~astropy.units.Quantity`
The 3D distance between the coordinates. Shape matches ``idx1`` and
``idx2``. The unit is that of ``coords1``.
Notes
-----
This function requires `SciPy <https://www.scipy.org/>`_ (>=0.12.0)
to be installed or it will fail.
If you are using this function to search in a catalog for matches around
specific points, the convention is for ``coords2`` to be the catalog, and
``coords1`` are the points to search around. While these operations are
mathematically the same if ``coords1`` and ``coords2`` are flipped, some of
the optimizations may work better if this convention is obeyed.
In the current implementation, the return values are always sorted in the
same order as the ``coords1`` (so ``idx1`` is in ascending order). This is
considered an implementation detail, though, so it could change in a future
release.
"""
if not distlimit.isscalar:
raise ValueError('distlimit must be a scalar in search_around_3d')
if coords1.isscalar or coords2.isscalar:
raise ValueError('One of the inputs to search_around_3d is a scalar. '
'search_around_3d is intended for use with array '
'coordinates, not scalars. Instead, use '
'``coord1.separation_3d(coord2) < distlimit`` to find '
'the coordinates near a scalar coordinate.')
if len(coords1) == 0 or len(coords2) == 0:
# Empty array input: return empty match
return (np.array([], dtype=int), np.array([], dtype=int),
Angle([], u.deg),
u.Quantity([], coords1.distance.unit))
kdt2 = _get_cartesian_kdtree(coords2, storekdtree)
cunit = coords2.cartesian.x.unit
# we convert coord1 to match coord2's frame. We do it this way
# so that if the conversion does happen, the KD tree of coord2 at least gets
# saved. (by convention, coord2 is the "catalog" if that makes sense)
coords1 = coords1.transform_to(coords2)
kdt1 = _get_cartesian_kdtree(coords1, storekdtree, forceunit=cunit)
# this is the *cartesian* 3D distance that corresponds to the given angle
d = distlimit.to_value(cunit)
idxs1 = []
idxs2 = []
for i, matches in enumerate(kdt1.query_ball_tree(kdt2, d)):
for match in matches:
idxs1.append(i)
idxs2.append(match)
idxs1 = np.array(idxs1, dtype=int)
idxs2 = np.array(idxs2, dtype=int)
if idxs1.size == 0:
d2ds = Angle([], u.deg)
d3ds = u.Quantity([], coords1.distance.unit)
else:
d2ds = coords1[idxs1].separation(coords2[idxs2])
d3ds = coords1[idxs1].separation_3d(coords2[idxs2])
return idxs1, idxs2, d2ds, d3ds
def search_around_sky(coords1, coords2, seplimit, storekdtree='kdtree_sky'):
"""
Searches for pairs of points that have an angular separation at least as
close as a specified angle.
This is intended for use on coordinate objects with arrays of coordinates,
not scalars. For scalar coordinates, it is better to use the ``separation``
methods.
Parameters
----------
coords1 : `~astropy.coordinates.BaseCoordinateFrame` or `~astropy.coordinates.SkyCoord`
The first set of coordinates, which will be searched for matches from
``coords2`` within ``seplimit``. Cannot be a scalar coordinate.
coords2 : `~astropy.coordinates.BaseCoordinateFrame` or `~astropy.coordinates.SkyCoord`
The second set of coordinates, which will be searched for matches from
``coords1`` within ``seplimit``. Cannot be a scalar coordinate.
seplimit : `~astropy.units.Quantity` with angle units
The on-sky separation to search within.
storekdtree : bool or str, optional
If a string, will store the KD-Tree used in the search with the name
``storekdtree`` in ``coords2.cache``. This speeds up subsequent calls
to this function. If False, the KD-Trees are not saved.
Returns
-------
idx1 : integer array
Indices into ``coords1`` that matches to the corresponding element of
``idx2``. Shape matches ``idx2``.
idx2 : integer array
Indices into ``coords2`` that matches to the corresponding element of
``idx1``. Shape matches ``idx1``.
sep2d : `~astropy.coordinates.Angle`
The on-sky separation between the coordinates. Shape matches ``idx1``
and ``idx2``.
dist3d : `~astropy.units.Quantity`
The 3D distance between the coordinates. Shape matches ``idx1``
and ``idx2``; the unit is that of ``coords1``.
If either ``coords1`` or ``coords2`` don't have a distance,
this is the 3D distance on the unit sphere, rather than a
physical distance.
Notes
-----
This function requires `SciPy <https://www.scipy.org/>`_ (>=0.12.0)
to be installed or it will fail.
In the current implementation, the return values are always sorted in the
same order as the ``coords1`` (so ``idx1`` is in ascending order). This is
considered an implementation detail, though, so it could change in a future
release.
"""
if not seplimit.isscalar:
raise ValueError('seplimit must be a scalar in search_around_sky')
if coords1.isscalar or coords2.isscalar:
raise ValueError('One of the inputs to search_around_sky is a scalar. '
'search_around_sky is intended for use with array '
'coordinates, not scalars. Instead, use '
'``coord1.separation(coord2) < seplimit`` to find the '
'coordinates near a scalar coordinate.')
if len(coords1) == 0 or len(coords2) == 0:
# Empty array input: return empty match
if coords2.distance.unit == u.dimensionless_unscaled:
distunit = u.dimensionless_unscaled
else:
distunit = coords1.distance.unit
return (np.array([], dtype=int), np.array([], dtype=int),
Angle([], u.deg),
u.Quantity([], distunit))
# we convert coord1 to match coord2's frame. We do it this way
# so that if the conversion does happen, the KD tree of coord2 at least gets
# saved. (by convention, coord2 is the "catalog" if that makes sense)
coords1 = coords1.transform_to(coords2)
# strip out distance info
urepr1 = coords1.data.represent_as(UnitSphericalRepresentation)
ucoords1 = coords1.realize_frame(urepr1)
kdt1 = _get_cartesian_kdtree(ucoords1, storekdtree)
if storekdtree and coords2.cache.get(storekdtree):
# just use the stored KD-Tree
kdt2 = coords2.cache[storekdtree]
else:
# strip out distance info
urepr2 = coords2.data.represent_as(UnitSphericalRepresentation)
ucoords2 = coords2.realize_frame(urepr2)
kdt2 = _get_cartesian_kdtree(ucoords2, storekdtree)
if storekdtree:
# save the KD-Tree in coords2, *not* ucoords2
coords2.cache['kdtree' if storekdtree is True else storekdtree] = kdt2
# this is the *cartesian* 3D distance that corresponds to the given angle
r = (2 * np.sin(Angle(seplimit) / 2.0)).value
idxs1 = []
idxs2 = []
for i, matches in enumerate(kdt1.query_ball_tree(kdt2, r)):
for match in matches:
idxs1.append(i)
idxs2.append(match)
idxs1 = np.array(idxs1, dtype=int)
idxs2 = np.array(idxs2, dtype=int)
if idxs1.size == 0:
if coords2.distance.unit == u.dimensionless_unscaled:
distunit = u.dimensionless_unscaled
else:
distunit = coords1.distance.unit
d2ds = Angle([], u.deg)
d3ds = u.Quantity([], distunit)
else:
d2ds = coords1[idxs1].separation(coords2[idxs2])
try:
d3ds = coords1[idxs1].separation_3d(coords2[idxs2])
except ValueError:
# they don't have distances, so we just fall back on the cartesian
# distance, computed from d2ds
d3ds = 2 * np.sin(d2ds / 2.0)
return idxs1, idxs2, d2ds, d3ds
def _get_cartesian_kdtree(coord, attrname_or_kdt='kdtree', forceunit=None):
"""
This is a utility function to retrieve (and build/cache, if necessary)
a 3D cartesian KD-Tree from various sorts of astropy coordinate objects.
Parameters
----------
coord : `~astropy.coordinates.BaseCoordinateFrame` or `~astropy.coordinates.SkyCoord`
The coordinates to build the KD-Tree for.
attrname_or_kdt : bool or str or KDTree
If a string, will store the KD-Tree used for the computation in the
``coord``, in ``coord.cache`` with the provided name. If given as a
KD-Tree, it will just be used directly.
forceunit : unit or None
If a unit, the cartesian coordinates will convert to that unit before
being put in the KD-Tree. If None, whatever unit it's already in
will be used
Returns
-------
kdt : `~scipy.spatial.cKDTree` or `~scipy.spatial.KDTree`
The KD-Tree representing the 3D cartesian representation of the input
coordinates.
"""
from warnings import warn
# without scipy this will immediately fail
from scipy import spatial
try:
KDTree = spatial.cKDTree
except Exception:
warn('C-based KD tree not found, falling back on (much slower) '
'python implementation')
KDTree = spatial.KDTree
if attrname_or_kdt is True: # backwards compatibility for pre v0.4
attrname_or_kdt = 'kdtree'
# figure out where any cached KDTree might be
if isinstance(attrname_or_kdt, str):
kdt = coord.cache.get(attrname_or_kdt, None)
if kdt is not None and not isinstance(kdt, KDTree):
raise TypeError(f'The `attrname_or_kdt` "{attrname_or_kdt}" is not a scipy KD tree!')
elif isinstance(attrname_or_kdt, KDTree):
kdt = attrname_or_kdt
attrname_or_kdt = None
elif not attrname_or_kdt:
kdt = None
else:
raise TypeError('Invalid `attrname_or_kdt` argument for KD-Tree:' +
str(attrname_or_kdt))
if kdt is None:
# need to build the cartesian KD-tree for the catalog
if forceunit is None:
cartxyz = coord.cartesian.xyz
else:
cartxyz = coord.cartesian.xyz.to(forceunit)
flatxyz = cartxyz.reshape((3, np.prod(cartxyz.shape) // 3))
# There should be no NaNs in the kdtree data.
if np.isnan(flatxyz.value).any():
raise ValueError("Catalog coordinates cannot contain NaN entries.")
try:
# Set compact_nodes=False, balanced_tree=False to use
# "sliding midpoint" rule, which is much faster than standard for
# many common use cases
kdt = KDTree(flatxyz.value.T, compact_nodes=False, balanced_tree=False)
except TypeError:
# Python implementation does not take compact_nodes and balanced_tree
# as arguments. However, it uses sliding midpoint rule by default
kdt = KDTree(flatxyz.value.T)
if attrname_or_kdt:
# cache the kdtree in `coord`
coord.cache[attrname_or_kdt] = kdt
return kdt