forked from google/style-aligned
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinversion.py
125 lines (100 loc) · 6.07 KB
/
inversion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
# Copyright 2023 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
from typing import Callable
from diffusers import StableDiffusionXLPipeline
import torch
from tqdm import tqdm
import numpy as np
T = torch.Tensor
TN = T | None
InversionCallback = Callable[[StableDiffusionXLPipeline, int, T, dict[str, T]], dict[str, T]]
def _get_text_embeddings(prompt: str, tokenizer, text_encoder, device):
# Tokenize text and get embeddings
text_inputs = tokenizer(prompt, padding='max_length', max_length=tokenizer.model_max_length, truncation=True, return_tensors='pt')
text_input_ids = text_inputs.input_ids
with torch.no_grad():
prompt_embeds = text_encoder(
text_input_ids.to(device),
output_hidden_states=True,
)
pooled_prompt_embeds = prompt_embeds[0]
prompt_embeds = prompt_embeds.hidden_states[-2]
if prompt == '':
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
return negative_prompt_embeds, negative_pooled_prompt_embeds
return prompt_embeds, pooled_prompt_embeds
def _encode_text_sdxl(model: StableDiffusionXLPipeline, prompt: str) -> tuple[dict[str, T], T]:
device = model._execution_device
prompt_embeds, pooled_prompt_embeds, = _get_text_embeddings(prompt, model.tokenizer, model.text_encoder, device)
prompt_embeds_2, pooled_prompt_embeds2, = _get_text_embeddings( prompt, model.tokenizer_2, model.text_encoder_2, device)
prompt_embeds = torch.cat((prompt_embeds, prompt_embeds_2), dim=-1)
text_encoder_projection_dim = model.text_encoder_2.config.projection_dim
add_time_ids = model._get_add_time_ids((1024, 1024), (0, 0), (1024, 1024), torch.float16,
text_encoder_projection_dim).to(device)
added_cond_kwargs = {"text_embeds": pooled_prompt_embeds2, "time_ids": add_time_ids}
return added_cond_kwargs, prompt_embeds
def _encode_text_sdxl_with_negative(model: StableDiffusionXLPipeline, prompt: str) -> tuple[dict[str, T], T]:
added_cond_kwargs, prompt_embeds = _encode_text_sdxl(model, prompt)
added_cond_kwargs_uncond, prompt_embeds_uncond = _encode_text_sdxl(model, "")
prompt_embeds = torch.cat((prompt_embeds_uncond, prompt_embeds, ))
added_cond_kwargs = {"text_embeds": torch.cat((added_cond_kwargs_uncond["text_embeds"], added_cond_kwargs["text_embeds"])),
"time_ids": torch.cat((added_cond_kwargs_uncond["time_ids"], added_cond_kwargs["time_ids"])),}
return added_cond_kwargs, prompt_embeds
def _encode_image(model: StableDiffusionXLPipeline, image: np.ndarray) -> T:
model.vae.to(dtype=torch.float32)
image = torch.from_numpy(image).float() / 255.
image = (image * 2 - 1).permute(2, 0, 1).unsqueeze(0)
latent = model.vae.encode(image.to(model.vae.device))['latent_dist'].mean * model.vae.config.scaling_factor
model.vae.to(dtype=torch.float16)
return latent
def _next_step(model: StableDiffusionXLPipeline, model_output: T, timestep: int, sample: T) -> T:
timestep, next_timestep = min(timestep - model.scheduler.config.num_train_timesteps // model.scheduler.num_inference_steps, 999), timestep
alpha_prod_t = model.scheduler.alphas_cumprod[int(timestep)] if timestep >= 0 else model.scheduler.final_alpha_cumprod
alpha_prod_t_next = model.scheduler.alphas_cumprod[int(next_timestep)]
beta_prod_t = 1 - alpha_prod_t
next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output
next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction
return next_sample
def _get_noise_pred(model: StableDiffusionXLPipeline, latent: T, t: T, context: T, guidance_scale: float, added_cond_kwargs: dict[str, T]):
latents_input = torch.cat([latent] * 2)
noise_pred = model.unet(latents_input, t, encoder_hidden_states=context, added_cond_kwargs=added_cond_kwargs)["sample"]
noise_pred_uncond, noise_prediction_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond)
# latents = next_step(model, noise_pred, t, latent)
return noise_pred
def _ddim_loop(model: StableDiffusionXLPipeline, z0, prompt, guidance_scale) -> T:
all_latent = [z0]
added_cond_kwargs, text_embedding = _encode_text_sdxl_with_negative(model, prompt)
latent = z0.clone().detach().half()
for i in tqdm(range(model.scheduler.num_inference_steps)):
t = model.scheduler.timesteps[len(model.scheduler.timesteps) - i - 1]
noise_pred = _get_noise_pred(model, latent, t, text_embedding, guidance_scale, added_cond_kwargs)
latent = _next_step(model, noise_pred, t, latent)
all_latent.append(latent)
return torch.cat(all_latent).flip(0)
def make_inversion_callback(zts, offset: int = 0) -> [T, InversionCallback]:
def callback_on_step_end(pipeline: StableDiffusionXLPipeline, i: int, t: T, callback_kwargs: dict[str, T]) -> dict[str, T]:
latents = callback_kwargs['latents']
latents[0] = zts[max(offset + 1, i + 1)].to(latents.device, latents.dtype)
return {'latents': latents}
return zts[offset], callback_on_step_end
@torch.no_grad()
def ddim_inversion(model: StableDiffusionXLPipeline, x0: np.ndarray, prompt: str, num_inference_steps: int, guidance_scale,) -> T:
z0 = _encode_image(model, x0)
model.scheduler.set_timesteps(num_inference_steps, device=z0.device)
zs = _ddim_loop(model, z0, prompt, guidance_scale)
return zs