From fb81401dfa64a6909d4471a316a989d406c08ba8 Mon Sep 17 00:00:00 2001 From: digicontributer Date: Wed, 13 Dec 2017 23:12:50 +1000 Subject: [PATCH 1/4] syncing --- BRMerkleBlock.c | 6 +++--- BRPeer.c | 6 +++--- BRPeerManager.c | 18 +++++++----------- 3 files changed, 13 insertions(+), 17 deletions(-) diff --git a/BRMerkleBlock.c b/BRMerkleBlock.c index af6b56dff..cf1927c5e 100644 --- a/BRMerkleBlock.c +++ b/BRMerkleBlock.c @@ -32,7 +32,7 @@ #include #define MAX_PROOF_OF_WORK 0x1e0fffff // highest value for difficulty target (higher values are less difficult) -#define TARGET_TIMESPAN (0.10*24*60*60) // the targeted timespan between difficulty target adjustments +#define TARGET_TIMESPAN (0.10*24*60*60) // the targeted timespan between difficulty target adjustments inline static int _ceil_log2(int x) { @@ -289,7 +289,7 @@ int BRMerkleBlockIsValid(const BRMerkleBlock *block, uint32_t currentTime) if (size > 3) UInt32SetLE(&t.u8[size - 3], target); else UInt32SetLE(t.u8, target >> (3 - size)*8); - + for (int i = sizeof(t) - 1; r && i >= 0; i--) { // check proof-of-work if (block->powHash.u8[i] < t.u8[i]) break; if (block->powHash.u8[i] > t.u8[i]) { @@ -298,7 +298,7 @@ int BRMerkleBlockIsValid(const BRMerkleBlock *block, uint32_t currentTime) digi_log("invalid blockHash[%d]: %x - %x", i, block->powHash.u8[i], t.u8[i]); } } - + return r; } diff --git a/BRPeer.c b/BRPeer.c index ee96f8068..cebd2eb97 100644 --- a/BRPeer.c +++ b/BRPeer.c @@ -46,14 +46,14 @@ #if BITCOIN_TESTNET #define MAGIC_NUMBER 0xdab6c3fau //TODO: When the testnet becomes available update this value #else -#define MAGIC_NUMBER 0xdab6c3fau +#define MAGIC_NUMBER 0xdab6c3fa #endif #define HEADER_LENGTH 24 #define MAX_MSG_LENGTH 0x02000000u #define MAX_GETDATA_HASHES 50000 #define ENABLED_SERVICES 0ULL // we don't provide full blocks to remote nodes #define PROTOCOL_VERSION 70015 -#define MIN_PROTO_VERSION 70001 // peers earlier than this protocol version not supported (need v0.9 txFee relay rules) +#define MIN_PROTO_VERSION 70002 // peers earlier than this protocol version not supported (need v0.9 txFee relay rules) #define LOCAL_HOST ((UInt128) { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff, 0x7f, 0x00, 0x00, 0x01 }) #define CONNECT_TIMEOUT 3.0 #define MESSAGE_TIMEOUT 10.0 @@ -485,7 +485,7 @@ static int _BRPeerAcceptHeadersMessage(BRPeer *peer, const uint8_t *msg, size_t BRMerkleBlock *block = BRMerkleBlockParse(&msg[off + 81*i], 81); if (! BRMerkleBlockIsValid(block, (uint32_t)now)) { - peer_log(peer, "invalid block header: %s", u256_hex_encode(block->blockHash)); + peer_log(peer, "invalid block header: %s ", u256_hex_encode(block->blockHash)); BRMerkleBlockFree(block); r = 0; } diff --git a/BRPeerManager.c b/BRPeerManager.c index 35cb8edff..be2463a96 100644 --- a/BRPeerManager.c +++ b/BRPeerManager.c @@ -43,7 +43,7 @@ #define MAX_CONNECT_FAILURES 20 // notify user of network problems after this many connect failures in a row #define CHECKPOINT_COUNT (sizeof(checkpoint_array)/sizeof(*checkpoint_array)) #define DNS_SEEDS_COUNT (sizeof(dns_seeds)/sizeof(*dns_seeds)) -#define GENESIS_BLOCK_HASH (UInt256Reverse(u256_hex_decode("7497ea1b465eb39f1c8f507bc877078fe016d6fcb6dfad3a64c98dcc6e1e8496"))) +#define GENESIS_BLOCK_HASH (UInt256Reverse(u256_hex_decode(checkpoint_array[0].hash))) #define PEER_FLAG_SYNCED 0x01 #define PEER_FLAG_NEEDSUPDATE 0x02 @@ -78,21 +78,17 @@ static const struct { uint32_t timestamp; uint32_t target; } checkpoint_array[] = { + { 0, "7497ea1b465eb39f1c8f507bc877078fe016d6fcb6dfad3a64c98dcc6e1e8496", 1389388394, 0x1e0ffff0 }, // { 0, "852c475c605e1f20bbe60219c811abaeef08bf0d4ff87eef59200fd7a7567fa7", 1413145109, 0x1b336ce6 }, // Sitt 2016-02-18 Use Checkpoint from the First day of digiwallet fork (from breadWallet) - { 145000, "f8d650dda836d5e3809b928b8523f050891c3bb9fa2c201bb04824a8a2fe7df6", 1409596362, 0x1c01f271}, - { 1800000, "72f46e1fff56518dce7e540b407260ea827cb1c4652f24eb1d1917f54b95d65a", 1454769372, 0x1c021355}, - { 2149922, "557846763a5f1eb3205d175724bd26ba7123c17c49eaaadf20b67c7e20e3118a", 1460001303, 0x1c012a26}, - { 4444444, "0000000000000114de2ba1462056d2a9bd9ccfbd406cd2dfedaaef2c12910659", 1494132592, 0x1a01152f} + //{ 145000, "f8d650dda836d5e3809b928b8523f050891c3bb9fa2c201bb04824a8a2fe7df6", 1409596362, 0x1c01f271}, + //{ 1800000, "72f46e1fff56518dce7e540b407260ea827cb1c4652f24eb1d1917f54b95d65a", 1454769372, 0x1c021355}, + //{ 2149922, "557846763a5f1eb3205d175724bd26ba7123c17c49eaaadf20b67c7e20e3118a", 1460001303, 0x1c012a26}, + //{ 4444444, "0000000000000114de2ba1462056d2a9bd9ccfbd406cd2dfedaaef2c12910659", 1494132592, 0x1a01152f} }; static const char *dns_seeds[] = { - "digibyte.io.", - "seed.digibyte.io.", - "digiexplorer.info.", - "digiexplorer.info.", - "digihash.co.", - "digihash.co." + "seed.digibyte.io." }; #endif From 8b6bc5144d0e7ff71adef4564efdaeda94ff35dd Mon Sep 17 00:00:00 2001 From: digicontributer Date: Thu, 21 Dec 2017 01:14:00 +1000 Subject: [PATCH 2/4] multialgo support --- BRCrypto.c | 16 + BRCrypto.h | 6 + BRMerkleBlock.c | 24 +- BRMerkleBlock.h | 2 +- crypto/groestl.c | 26 + crypto/groestl.h | 15 + crypto/qubit.c | 45 + crypto/qubit.h | 16 + crypto/sha256.h | 440 +++++ crypto/sha3/aes_helper.c | 392 +++++ crypto/sha3/blake.c | 1120 +++++++++++++ crypto/sha3/bmw.c | 958 +++++++++++ crypto/sha3/cubehash.c | 718 +++++++++ crypto/sha3/groestl.c | 3119 ++++++++++++++++++++++++++++++++++++ crypto/sha3/hashblock.h | 195 +++ crypto/sha3/keccak.c | 1824 +++++++++++++++++++++ crypto/sha3/skein.c | 1254 +++++++++++++++ crypto/sha3/sph_blake.h | 327 ++++ crypto/sha3/sph_bmw.h | 321 ++++ crypto/sha3/sph_cubehash.h | 286 ++++ crypto/sha3/sph_echo.c | 1031 ++++++++++++ crypto/sha3/sph_echo.h | 320 ++++ crypto/sha3/sph_groestl.h | 329 ++++ crypto/sha3/sph_keccak.h | 293 ++++ crypto/sha3/sph_luffa.c | 1426 +++++++++++++++++ crypto/sha3/sph_luffa.h | 296 ++++ crypto/sha3/sph_shavite.c | 1764 ++++++++++++++++++++ crypto/sha3/sph_shavite.h | 314 ++++ crypto/sha3/sph_simd.c | 1799 +++++++++++++++++++++ crypto/sha3/sph_simd.h | 309 ++++ crypto/sha3/sph_skein.h | 298 ++++ crypto/sha3/sph_types.h | 1976 +++++++++++++++++++++++ crypto/skein.c | 52 + crypto/skein.h | 14 + 34 files changed, 21323 insertions(+), 2 deletions(-) create mode 100644 crypto/groestl.c create mode 100644 crypto/groestl.h create mode 100644 crypto/qubit.c create mode 100644 crypto/qubit.h create mode 100644 crypto/sha256.h create mode 100644 crypto/sha3/aes_helper.c create mode 100644 crypto/sha3/blake.c create mode 100644 crypto/sha3/bmw.c create mode 100644 crypto/sha3/cubehash.c create mode 100644 crypto/sha3/groestl.c create mode 100644 crypto/sha3/hashblock.h create mode 100644 crypto/sha3/keccak.c create mode 100644 crypto/sha3/skein.c create mode 100644 crypto/sha3/sph_blake.h create mode 100644 crypto/sha3/sph_bmw.h create mode 100644 crypto/sha3/sph_cubehash.h create mode 100644 crypto/sha3/sph_echo.c create mode 100644 crypto/sha3/sph_echo.h create mode 100644 crypto/sha3/sph_groestl.h create mode 100644 crypto/sha3/sph_keccak.h create mode 100644 crypto/sha3/sph_luffa.c create mode 100644 crypto/sha3/sph_luffa.h create mode 100644 crypto/sha3/sph_shavite.c create mode 100644 crypto/sha3/sph_shavite.h create mode 100644 crypto/sha3/sph_simd.c create mode 100644 crypto/sha3/sph_simd.h create mode 100644 crypto/sha3/sph_skein.h create mode 100644 crypto/sha3/sph_types.h create mode 100644 crypto/skein.c create mode 100644 crypto/skein.h diff --git a/BRCrypto.c b/BRCrypto.c index 489177f49..8b2741b68 100644 --- a/BRCrypto.c +++ b/BRCrypto.c @@ -23,6 +23,10 @@ // THE SOFTWARE. #include "BRCrypto.h" +#include "crypto/groestl.h" +#include "crypto/skein.h" +#include "crypto/qubit.h" + #include #include #include @@ -897,3 +901,15 @@ void BRScrypt(void *dk, size_t dkLen, const void *pw, size_t pwLen, const void * mem_clean(v, 128*r*n); free(v); } + +void BRSkein(const char* input, char* output) { + skein_hash(input, output); +} + +void BRGroestl(const char* input, char* output){ + groestl_hash(input, output); +} + +void BRQubit(const char* input, char* output) { + qubit_hash(input, output); +} diff --git a/BRCrypto.h b/BRCrypto.h index 9a6d3b2a1..9cd08f3c2 100644 --- a/BRCrypto.h +++ b/BRCrypto.h @@ -89,6 +89,12 @@ void BRPBKDF2(void *dk, size_t dkLen, void (*hash)(void *, const void *, size_t) void BRScrypt(void *dk, size_t dkLen, const void *pw, size_t pwLen, const void *salt, size_t saltLen, unsigned n, unsigned r, unsigned p); +void BRSkein(const char* input, char* output); + +void BRGroestl(const char* input, char* output); + +void BRQubit(const char* input, char* output); + // zeros out memory in a way that can't be optimized out by the compiler inline static void mem_clean(void *ptr, size_t len) { diff --git a/BRMerkleBlock.c b/BRMerkleBlock.c index cf1927c5e..6e3f71ffd 100644 --- a/BRMerkleBlock.c +++ b/BRMerkleBlock.c @@ -33,6 +33,7 @@ #define MAX_PROOF_OF_WORK 0x1e0fffff // highest value for difficulty target (higher values are less difficult) #define TARGET_TIMESPAN (0.10*24*60*60) // the targeted timespan between difficulty target adjustments +#define BLOCK_VERSION_ALGO (7 << 9) inline static int _ceil_log2(int x) { @@ -123,7 +124,28 @@ BRMerkleBlock *BRMerkleBlockParse(const uint8_t *buf, size_t bufLen) } BRSHA256_2(&block->blockHash, buf, 80); - BRScrypt(&block->powHash, sizeof(block->powHash), buf, 80, buf, 80, 1024, 1, 1); + + switch (block->version & BLOCK_VERSION_ALGO) { + case 512: + BRSHA256_2(&block->powHash, buf, 80); + break; + + case 1536: + BRSkein(&block->powHash, buf); + break; + + case 2048: + BRQubit(&block->powHash, buf); + break; + + case 1024: + BRGroestl(&block->powHash, buf); + break; + + default: + BRScrypt(&block->powHash, sizeof(block->powHash), buf, 80, buf, 80, 1024, 1, 1); + + } } return block; diff --git a/BRMerkleBlock.h b/BRMerkleBlock.h index 026d2295e..ee41635ce 100644 --- a/BRMerkleBlock.h +++ b/BRMerkleBlock.h @@ -44,7 +44,7 @@ extern "C" { #endif -#define BLOCK_DIFFICULTY_INTERVAL 144 // number of blocks between difficulty target adjustments +#define BLOCK_DIFFICULTY_INTERVAL 1 // number of blocks between difficulty target adjustments #define BLOCK_UNKNOWN_HEIGHT INT32_MAX #define BLOCK_MAX_TIME_DRIFT (2*60*60) // the furthest in the future a block is allowed to be timestamped diff --git a/crypto/groestl.c b/crypto/groestl.c new file mode 100644 index 000000000..6cd06cd36 --- /dev/null +++ b/crypto/groestl.c @@ -0,0 +1,26 @@ +#include "groestl.h" +#include +#include +#include +#include + +#include "sha3/sph_groestl.h" +#include "sha256.h" + + +// This is myriadgroestl +void groestl_hash(const char* input, char* output) +{ + uint32_t len = 80; + char temp[64]; + + sph_groestl512_context ctx_groestl; + sph_groestl512_init(&ctx_groestl); + sph_groestl512(&ctx_groestl, input, len); + sph_groestl512_close(&ctx_groestl, &temp); + + SHA256_CTX ctx_sha256; + SHA256_Init(&ctx_sha256); + SHA256_Update(&ctx_sha256, &temp, 64); + SHA256_Final((unsigned char*) output, &ctx_sha256); +} \ No newline at end of file diff --git a/crypto/groestl.h b/crypto/groestl.h new file mode 100644 index 000000000..5e05eabab --- /dev/null +++ b/crypto/groestl.h @@ -0,0 +1,15 @@ +#ifndef GROESTL_H +#define GROESTL_H + +#ifdef __cplusplus +extern "C" { +#endif + +#include + +void groestl_hash(const char* input, char* output); +#ifdef __cplusplus +} +#endif + +#endif \ No newline at end of file diff --git a/crypto/qubit.c b/crypto/qubit.c new file mode 100644 index 000000000..9308a26e8 --- /dev/null +++ b/crypto/qubit.c @@ -0,0 +1,45 @@ +#include "qubit.h" + +#include +#include + +#include "sha3/sph_cubehash.h" +#include "sha3/sph_luffa.h" +#include "sha3/sph_shavite.h" +#include "sha3/sph_simd.h" +#include "sha3/sph_echo.h" + +void qubit_hash(const char* input, char* output) +{ + sph_luffa512_context ctx_luffa; + sph_cubehash512_context ctx_cubehash; + sph_shavite512_context ctx_shavite; + sph_simd512_context ctx_simd; + sph_echo512_context ctx_echo; + + uint32_t len = 80; + char hash1[64]; + char hash2[64]; + + sph_luffa512_init(&ctx_luffa); + sph_luffa512(&ctx_luffa, (const void*) input, len); + sph_luffa512_close(&ctx_luffa, (void*) &hash1); // 1 + + sph_cubehash512_init(&ctx_cubehash); + sph_cubehash512(&ctx_cubehash, (const void*) &hash1, 64); // 1 + sph_cubehash512_close(&ctx_cubehash, (void*) &hash2); // 2 + + sph_shavite512_init(&ctx_shavite); + sph_shavite512(&ctx_shavite, (const void*) &hash2, 64); // 3 + sph_shavite512_close(&ctx_shavite, (void*) &hash1); // 4 + + sph_simd512_init(&ctx_simd); + sph_simd512(&ctx_simd, (const void*) &hash1, 64); // 4 + sph_simd512_close(&ctx_simd, (void*) &hash2); // 5 + + sph_echo512_init(&ctx_echo); + sph_echo512(&ctx_echo, (const void*) &hash2, 64); // 5 + sph_echo512_close(&ctx_echo, (void*) &hash1); // 6 + + memcpy(output, &hash1, 32); +} \ No newline at end of file diff --git a/crypto/qubit.h b/crypto/qubit.h new file mode 100644 index 000000000..3b2bcee4f --- /dev/null +++ b/crypto/qubit.h @@ -0,0 +1,16 @@ +#ifndef QUBIT_H +#define QUBIT_H + +#ifdef __cplusplus +extern "C" { +#endif + +#include + +void qubit_hash(const char* input, char* output); + +#ifdef __cplusplus +} +#endif + +#endif \ No newline at end of file diff --git a/crypto/sha256.h b/crypto/sha256.h new file mode 100644 index 000000000..5858f659e --- /dev/null +++ b/crypto/sha256.h @@ -0,0 +1,440 @@ +#ifndef SHA256_H +#define SHA256_H + +#if defined(WIN32) || defined(_WIN32) || defined(__WIN32) && !defined(__CYGWIN__) +#include "stdint.h" +#else +#include +#endif + +#include + +static __inline uint32_t +be32dec(const void *pp) +{ + const uint8_t *p = (uint8_t const *)pp; + + return ((uint32_t)(p[3]) + ((uint32_t)(p[2]) << 8) + + ((uint32_t)(p[1]) << 16) + ((uint32_t)(p[0]) << 24)); +} + +static __inline void +be32enc(void *pp, uint32_t x) +{ + uint8_t * p = (uint8_t *)pp; + + p[3] = x & 0xff; + p[2] = (x >> 8) & 0xff; + p[1] = (x >> 16) & 0xff; + p[0] = (x >> 24) & 0xff; +} + +static __inline uint32_t +le32dec(const void *pp) +{ + const uint8_t *p = (uint8_t const *)pp; + + return ((uint32_t)(p[0]) + ((uint32_t)(p[1]) << 8) + + ((uint32_t)(p[2]) << 16) + ((uint32_t)(p[3]) << 24)); +} + +static __inline void +le32enc(void *pp, uint32_t x) +{ + uint8_t * p = (uint8_t *)pp; + + p[0] = x & 0xff; + p[1] = (x >> 8) & 0xff; + p[2] = (x >> 16) & 0xff; + p[3] = (x >> 24) & 0xff; +} + + +typedef struct SHA256Context { + uint32_t state[8]; + uint32_t count[2]; + unsigned char buf[64]; +} SHA256_CTX; + +typedef struct HMAC_SHA256Context { + SHA256_CTX ictx; + SHA256_CTX octx; +} HMAC_SHA256_CTX; + +/* + * Encode a length len/4 vector of (uint32_t) into a length len vector of + * (unsigned char) in big-endian form. Assumes len is a multiple of 4. + */ +static void +be32enc_vect(unsigned char *dst, const uint32_t *src, size_t len) +{ + size_t i; + + for (i = 0; i < len / 4; i++) + be32enc(dst + i * 4, src[i]); +} + +/* + * Decode a big-endian length len vector of (unsigned char) into a length + * len/4 vector of (uint32_t). Assumes len is a multiple of 4. + */ +static void +be32dec_vect(uint32_t *dst, const unsigned char *src, size_t len) +{ + size_t i; + + for (i = 0; i < len / 4; i++) + dst[i] = be32dec(src + i * 4); +} + +/* Elementary functions used by SHA256 */ +#define Ch(x, y, z) ((x & (y ^ z)) ^ z) +#define Maj(x, y, z) ((x & (y | z)) | (y & z)) +#define SHR(x, n) (x >> n) +#define ROTR(x, n) ((x >> n) | (x << (32 - n))) +#define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22)) +#define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25)) +#define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3)) +#define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10)) + +/* SHA256 round function */ +#define RND(a, b, c, d, e, f, g, h, k) \ + t0 = h + S1(e) + Ch(e, f, g) + k; \ + t1 = S0(a) + Maj(a, b, c); \ + d += t0; \ + h = t0 + t1; + +/* Adjusted round function for rotating state */ +#define RNDr(S, W, i, k) \ + RND(S[(64 - i) % 8], S[(65 - i) % 8], \ + S[(66 - i) % 8], S[(67 - i) % 8], \ + S[(68 - i) % 8], S[(69 - i) % 8], \ + S[(70 - i) % 8], S[(71 - i) % 8], \ + W[i] + k) + +/* + * SHA256 block compression function. The 256-bit state is transformed via + * the 512-bit input block to produce a new state. + */ +static void +SHA256_Transform(uint32_t * state, const unsigned char block[64]) +{ + uint32_t W[64]; + uint32_t S[8]; + uint32_t t0, t1; + int i; + + /* 1. Prepare message schedule W. */ + be32dec_vect(W, block, 64); + for (i = 16; i < 64; i++) + W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16]; + + /* 2. Initialize working variables. */ + memcpy(S, state, 32); + + /* 3. Mix. */ + RNDr(S, W, 0, 0x428a2f98); + RNDr(S, W, 1, 0x71374491); + RNDr(S, W, 2, 0xb5c0fbcf); + RNDr(S, W, 3, 0xe9b5dba5); + RNDr(S, W, 4, 0x3956c25b); + RNDr(S, W, 5, 0x59f111f1); + RNDr(S, W, 6, 0x923f82a4); + RNDr(S, W, 7, 0xab1c5ed5); + RNDr(S, W, 8, 0xd807aa98); + RNDr(S, W, 9, 0x12835b01); + RNDr(S, W, 10, 0x243185be); + RNDr(S, W, 11, 0x550c7dc3); + RNDr(S, W, 12, 0x72be5d74); + RNDr(S, W, 13, 0x80deb1fe); + RNDr(S, W, 14, 0x9bdc06a7); + RNDr(S, W, 15, 0xc19bf174); + RNDr(S, W, 16, 0xe49b69c1); + RNDr(S, W, 17, 0xefbe4786); + RNDr(S, W, 18, 0x0fc19dc6); + RNDr(S, W, 19, 0x240ca1cc); + RNDr(S, W, 20, 0x2de92c6f); + RNDr(S, W, 21, 0x4a7484aa); + RNDr(S, W, 22, 0x5cb0a9dc); + RNDr(S, W, 23, 0x76f988da); + RNDr(S, W, 24, 0x983e5152); + RNDr(S, W, 25, 0xa831c66d); + RNDr(S, W, 26, 0xb00327c8); + RNDr(S, W, 27, 0xbf597fc7); + RNDr(S, W, 28, 0xc6e00bf3); + RNDr(S, W, 29, 0xd5a79147); + RNDr(S, W, 30, 0x06ca6351); + RNDr(S, W, 31, 0x14292967); + RNDr(S, W, 32, 0x27b70a85); + RNDr(S, W, 33, 0x2e1b2138); + RNDr(S, W, 34, 0x4d2c6dfc); + RNDr(S, W, 35, 0x53380d13); + RNDr(S, W, 36, 0x650a7354); + RNDr(S, W, 37, 0x766a0abb); + RNDr(S, W, 38, 0x81c2c92e); + RNDr(S, W, 39, 0x92722c85); + RNDr(S, W, 40, 0xa2bfe8a1); + RNDr(S, W, 41, 0xa81a664b); + RNDr(S, W, 42, 0xc24b8b70); + RNDr(S, W, 43, 0xc76c51a3); + RNDr(S, W, 44, 0xd192e819); + RNDr(S, W, 45, 0xd6990624); + RNDr(S, W, 46, 0xf40e3585); + RNDr(S, W, 47, 0x106aa070); + RNDr(S, W, 48, 0x19a4c116); + RNDr(S, W, 49, 0x1e376c08); + RNDr(S, W, 50, 0x2748774c); + RNDr(S, W, 51, 0x34b0bcb5); + RNDr(S, W, 52, 0x391c0cb3); + RNDr(S, W, 53, 0x4ed8aa4a); + RNDr(S, W, 54, 0x5b9cca4f); + RNDr(S, W, 55, 0x682e6ff3); + RNDr(S, W, 56, 0x748f82ee); + RNDr(S, W, 57, 0x78a5636f); + RNDr(S, W, 58, 0x84c87814); + RNDr(S, W, 59, 0x8cc70208); + RNDr(S, W, 60, 0x90befffa); + RNDr(S, W, 61, 0xa4506ceb); + RNDr(S, W, 62, 0xbef9a3f7); + RNDr(S, W, 63, 0xc67178f2); + + /* 4. Mix local working variables into global state */ + for (i = 0; i < 8; i++) + state[i] += S[i]; + + /* Clean the stack. */ + memset(W, 0, 256); + memset(S, 0, 32); + t0 = t1 = 0; +} + +static unsigned char PAD[64] = { + 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 +}; + +/* SHA-256 initialization. Begins a SHA-256 operation. */ +static void +SHA256_Init(SHA256_CTX * ctx) +{ + + /* Zero bits processed so far */ + ctx->count[0] = ctx->count[1] = 0; + + /* Magic initialization constants */ + ctx->state[0] = 0x6A09E667; + ctx->state[1] = 0xBB67AE85; + ctx->state[2] = 0x3C6EF372; + ctx->state[3] = 0xA54FF53A; + ctx->state[4] = 0x510E527F; + ctx->state[5] = 0x9B05688C; + ctx->state[6] = 0x1F83D9AB; + ctx->state[7] = 0x5BE0CD19; +} + +/* Add bytes into the hash */ +static void +SHA256_Update(SHA256_CTX * ctx, const void *in, size_t len) +{ + uint32_t bitlen[2]; + uint32_t r; + const unsigned char *src = in; + + /* Number of bytes left in the buffer from previous updates */ + r = (ctx->count[1] >> 3) & 0x3f; + + /* Convert the length into a number of bits */ + bitlen[1] = ((uint32_t)len) << 3; + bitlen[0] = (uint32_t)(len >> 29); + + /* Update number of bits */ + if ((ctx->count[1] += bitlen[1]) < bitlen[1]) + ctx->count[0]++; + ctx->count[0] += bitlen[0]; + + /* Handle the case where we don't need to perform any transforms */ + if (len < 64 - r) { + memcpy(&ctx->buf[r], src, len); + return; + } + + /* Finish the current block */ + memcpy(&ctx->buf[r], src, 64 - r); + SHA256_Transform(ctx->state, ctx->buf); + src += 64 - r; + len -= 64 - r; + + /* Perform complete blocks */ + while (len >= 64) { + SHA256_Transform(ctx->state, src); + src += 64; + len -= 64; + } + + /* Copy left over data into buffer */ + memcpy(ctx->buf, src, len); +} + +/* Add padding and terminating bit-count. */ +static void +SHA256_Pad(SHA256_CTX * ctx) +{ + unsigned char len[8]; + uint32_t r, plen; + + /* + * Convert length to a vector of bytes -- we do this now rather + * than later because the length will change after we pad. + */ + be32enc_vect(len, ctx->count, 8); + + /* Add 1--64 bytes so that the resulting length is 56 mod 64 */ + r = (ctx->count[1] >> 3) & 0x3f; + plen = (r < 56) ? (56 - r) : (120 - r); + SHA256_Update(ctx, PAD, (size_t)plen); + + /* Add the terminating bit-count */ + SHA256_Update(ctx, len, 8); +} + +/* + * SHA-256 finalization. Pads the input data, exports the hash value, + * and clears the context state. + */ +static void +SHA256_Final(unsigned char digest[32], SHA256_CTX * ctx) +{ + + /* Add padding */ + SHA256_Pad(ctx); + + /* Write the hash */ + be32enc_vect(digest, ctx->state, 32); + + /* Clear the context state */ + memset((void *)ctx, 0, sizeof(*ctx)); +} + +/* Initialize an HMAC-SHA256 operation with the given key. */ +static void +HMAC_SHA256_Init(HMAC_SHA256_CTX * ctx, const void * _K, size_t Klen) +{ + unsigned char pad[64]; + unsigned char khash[32]; + const unsigned char * K = _K; + size_t i; + + /* If Klen > 64, the key is really SHA256(K). */ + if (Klen > 64) { + SHA256_Init(&ctx->ictx); + SHA256_Update(&ctx->ictx, K, Klen); + SHA256_Final(khash, &ctx->ictx); + K = khash; + Klen = 32; + } + + /* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */ + SHA256_Init(&ctx->ictx); + memset(pad, 0x36, 64); + for (i = 0; i < Klen; i++) + pad[i] ^= K[i]; + SHA256_Update(&ctx->ictx, pad, 64); + + /* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */ + SHA256_Init(&ctx->octx); + memset(pad, 0x5c, 64); + for (i = 0; i < Klen; i++) + pad[i] ^= K[i]; + SHA256_Update(&ctx->octx, pad, 64); + + /* Clean the stack. */ + memset(khash, 0, 32); +} + +/* Add bytes to the HMAC-SHA256 operation. */ +static void +HMAC_SHA256_Update(HMAC_SHA256_CTX * ctx, const void *in, size_t len) +{ + + /* Feed data to the inner SHA256 operation. */ + SHA256_Update(&ctx->ictx, in, len); +} + +/* Finish an HMAC-SHA256 operation. */ +static void +HMAC_SHA256_Final(unsigned char digest[32], HMAC_SHA256_CTX * ctx) +{ + unsigned char ihash[32]; + + /* Finish the inner SHA256 operation. */ + SHA256_Final(ihash, &ctx->ictx); + + /* Feed the inner hash to the outer SHA256 operation. */ + SHA256_Update(&ctx->octx, ihash, 32); + + /* Finish the outer SHA256 operation. */ + SHA256_Final(digest, &ctx->octx); + + /* Clean the stack. */ + memset(ihash, 0, 32); +} + +/** + * PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen): + * Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and + * write the output to buf. The value dkLen must be at most 32 * (2^32 - 1). + */ +static void +PBKDF2_SHA256(const uint8_t * passwd, size_t passwdlen, const uint8_t * salt, + size_t saltlen, uint64_t c, uint8_t * buf, size_t dkLen) +{ + HMAC_SHA256_CTX PShctx, hctx; + size_t i; + uint8_t ivec[4]; + uint8_t U[32]; + uint8_t T[32]; + uint64_t j; + int k; + size_t clen; + + /* Compute HMAC state after processing P and S. */ + HMAC_SHA256_Init(&PShctx, passwd, passwdlen); + HMAC_SHA256_Update(&PShctx, salt, saltlen); + + /* Iterate through the blocks. */ + for (i = 0; i * 32 < dkLen; i++) { + /* Generate INT(i + 1). */ + be32enc(ivec, (uint32_t)(i + 1)); + + /* Compute U_1 = PRF(P, S || INT(i)). */ + memcpy(&hctx, &PShctx, sizeof(HMAC_SHA256_CTX)); + HMAC_SHA256_Update(&hctx, ivec, 4); + HMAC_SHA256_Final(U, &hctx); + + /* T_i = U_1 ... */ + memcpy(T, U, 32); + + for (j = 2; j <= c; j++) { + /* Compute U_j. */ + HMAC_SHA256_Init(&hctx, passwd, passwdlen); + HMAC_SHA256_Update(&hctx, U, 32); + HMAC_SHA256_Final(U, &hctx); + + /* ... xor U_j ... */ + for (k = 0; k < 32; k++) + T[k] ^= U[k]; + } + + /* Copy as many bytes as necessary into buf. */ + clen = dkLen - i * 32; + if (clen > 32) + clen = 32; + memcpy(&buf[i * 32], T, clen); + } + + /* Clean PShctx, since we never called _Final on it. */ + memset(&PShctx, 0, sizeof(HMAC_SHA256_CTX)); +} +#endif diff --git a/crypto/sha3/aes_helper.c b/crypto/sha3/aes_helper.c new file mode 100644 index 000000000..75b7cc69d --- /dev/null +++ b/crypto/sha3/aes_helper.c @@ -0,0 +1,392 @@ +/* $Id: aes_helper.c 220 2010-06-09 09:21:50Z tp $ */ +/* + * AES tables. This file is not meant to be compiled by itself; it + * is included by some hash function implementations. It contains + * the precomputed tables and helper macros for evaluating an AES + * round, optionally with a final XOR with a subkey. + * + * By default, this file defines the tables and macros for little-endian + * processing (i.e. it is assumed that the input bytes have been read + * from memory and assembled with the little-endian convention). If + * the 'AES_BIG_ENDIAN' macro is defined (to a non-zero integer value) + * when this file is included, then the tables and macros for big-endian + * processing are defined instead. The big-endian tables and macros have + * names distinct from the little-endian tables and macros, hence it is + * possible to have both simultaneously, by including this file twice + * (with and without the AES_BIG_ENDIAN macro). + * + * ==========================(LICENSE BEGIN)============================ + * + * Copyright (c) 2007-2010 Projet RNRT SAPHIR + * + * Permission is hereby granted, free of charge, to any person obtaining + * a copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sublicense, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * The above copyright notice and this permission notice shall be + * included in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + * + * ===========================(LICENSE END)============================= + * + * @author Thomas Pornin + */ + +#include "sph_types.h" +#ifdef __cplusplus +extern "C"{ +#endif +#if AES_BIG_ENDIAN + +#define AESx(x) ( ((SPH_C32(x) >> 24) & SPH_C32(0x000000FF)) \ + | ((SPH_C32(x) >> 8) & SPH_C32(0x0000FF00)) \ + | ((SPH_C32(x) << 8) & SPH_C32(0x00FF0000)) \ + | ((SPH_C32(x) << 24) & SPH_C32(0xFF000000))) + +#define AES0 AES0_BE +#define AES1 AES1_BE +#define AES2 AES2_BE +#define AES3 AES3_BE + +#define AES_ROUND_BE(X0, X1, X2, X3, K0, K1, K2, K3, Y0, Y1, Y2, Y3) do { \ + (Y0) = AES0[((X0) >> 24) & 0xFF] \ + ^ AES1[((X1) >> 16) & 0xFF] \ + ^ AES2[((X2) >> 8) & 0xFF] \ + ^ AES3[(X3) & 0xFF] ^ (K0); \ + (Y1) = AES0[((X1) >> 24) & 0xFF] \ + ^ AES1[((X2) >> 16) & 0xFF] \ + ^ AES2[((X3) >> 8) & 0xFF] \ + ^ AES3[(X0) & 0xFF] ^ (K1); \ + (Y2) = AES0[((X2) >> 24) & 0xFF] \ + ^ AES1[((X3) >> 16) & 0xFF] \ + ^ AES2[((X0) >> 8) & 0xFF] \ + ^ AES3[(X1) & 0xFF] ^ (K2); \ + (Y3) = AES0[((X3) >> 24) & 0xFF] \ + ^ AES1[((X0) >> 16) & 0xFF] \ + ^ AES2[((X1) >> 8) & 0xFF] \ + ^ AES3[(X2) & 0xFF] ^ (K3); \ + } while (0) + +#define AES_ROUND_NOKEY_BE(X0, X1, X2, X3, Y0, Y1, Y2, Y3) \ + AES_ROUND_BE(X0, X1, X2, X3, 0, 0, 0, 0, Y0, Y1, Y2, Y3) + +#else + +#define AESx(x) SPH_C32(x) +#define AES0 AES0_LE +#define AES1 AES1_LE +#define AES2 AES2_LE +#define AES3 AES3_LE + +#define AES_ROUND_LE(X0, X1, X2, X3, K0, K1, K2, K3, Y0, Y1, Y2, Y3) do { \ + (Y0) = AES0[(X0) & 0xFF] \ + ^ AES1[((X1) >> 8) & 0xFF] \ + ^ AES2[((X2) >> 16) & 0xFF] \ + ^ AES3[((X3) >> 24) & 0xFF] ^ (K0); \ + (Y1) = AES0[(X1) & 0xFF] \ + ^ AES1[((X2) >> 8) & 0xFF] \ + ^ AES2[((X3) >> 16) & 0xFF] \ + ^ AES3[((X0) >> 24) & 0xFF] ^ (K1); \ + (Y2) = AES0[(X2) & 0xFF] \ + ^ AES1[((X3) >> 8) & 0xFF] \ + ^ AES2[((X0) >> 16) & 0xFF] \ + ^ AES3[((X1) >> 24) & 0xFF] ^ (K2); \ + (Y3) = AES0[(X3) & 0xFF] \ + ^ AES1[((X0) >> 8) & 0xFF] \ + ^ AES2[((X1) >> 16) & 0xFF] \ + ^ AES3[((X2) >> 24) & 0xFF] ^ (K3); \ + } while (0) + +#define AES_ROUND_NOKEY_LE(X0, X1, X2, X3, Y0, Y1, Y2, Y3) \ + AES_ROUND_LE(X0, X1, X2, X3, 0, 0, 0, 0, Y0, Y1, Y2, Y3) + +#endif + +/* + * The AES*[] tables allow us to perform a fast evaluation of an AES + * round; table AESi[] combines SubBytes for a byte at row i, and + * MixColumns for the column where that byte goes after ShiftRows. + */ + +static const sph_u32 AES0[256] = { + AESx(0xA56363C6), AESx(0x847C7CF8), AESx(0x997777EE), AESx(0x8D7B7BF6), + AESx(0x0DF2F2FF), AESx(0xBD6B6BD6), AESx(0xB16F6FDE), AESx(0x54C5C591), + AESx(0x50303060), AESx(0x03010102), AESx(0xA96767CE), AESx(0x7D2B2B56), + AESx(0x19FEFEE7), AESx(0x62D7D7B5), AESx(0xE6ABAB4D), AESx(0x9A7676EC), + AESx(0x45CACA8F), AESx(0x9D82821F), AESx(0x40C9C989), AESx(0x877D7DFA), + AESx(0x15FAFAEF), AESx(0xEB5959B2), AESx(0xC947478E), AESx(0x0BF0F0FB), + AESx(0xECADAD41), AESx(0x67D4D4B3), AESx(0xFDA2A25F), AESx(0xEAAFAF45), + AESx(0xBF9C9C23), AESx(0xF7A4A453), AESx(0x967272E4), AESx(0x5BC0C09B), + AESx(0xC2B7B775), AESx(0x1CFDFDE1), AESx(0xAE93933D), AESx(0x6A26264C), + AESx(0x5A36366C), AESx(0x413F3F7E), AESx(0x02F7F7F5), AESx(0x4FCCCC83), + AESx(0x5C343468), AESx(0xF4A5A551), AESx(0x34E5E5D1), AESx(0x08F1F1F9), + AESx(0x937171E2), AESx(0x73D8D8AB), AESx(0x53313162), AESx(0x3F15152A), + AESx(0x0C040408), AESx(0x52C7C795), AESx(0x65232346), AESx(0x5EC3C39D), + AESx(0x28181830), AESx(0xA1969637), AESx(0x0F05050A), AESx(0xB59A9A2F), + AESx(0x0907070E), AESx(0x36121224), AESx(0x9B80801B), AESx(0x3DE2E2DF), + AESx(0x26EBEBCD), AESx(0x6927274E), AESx(0xCDB2B27F), AESx(0x9F7575EA), + AESx(0x1B090912), AESx(0x9E83831D), AESx(0x742C2C58), AESx(0x2E1A1A34), + AESx(0x2D1B1B36), AESx(0xB26E6EDC), AESx(0xEE5A5AB4), AESx(0xFBA0A05B), + AESx(0xF65252A4), AESx(0x4D3B3B76), AESx(0x61D6D6B7), AESx(0xCEB3B37D), + AESx(0x7B292952), AESx(0x3EE3E3DD), AESx(0x712F2F5E), AESx(0x97848413), + AESx(0xF55353A6), AESx(0x68D1D1B9), AESx(0x00000000), AESx(0x2CEDEDC1), + AESx(0x60202040), AESx(0x1FFCFCE3), AESx(0xC8B1B179), AESx(0xED5B5BB6), + AESx(0xBE6A6AD4), AESx(0x46CBCB8D), AESx(0xD9BEBE67), AESx(0x4B393972), + AESx(0xDE4A4A94), AESx(0xD44C4C98), AESx(0xE85858B0), AESx(0x4ACFCF85), + AESx(0x6BD0D0BB), AESx(0x2AEFEFC5), AESx(0xE5AAAA4F), AESx(0x16FBFBED), + AESx(0xC5434386), AESx(0xD74D4D9A), AESx(0x55333366), AESx(0x94858511), + AESx(0xCF45458A), AESx(0x10F9F9E9), AESx(0x06020204), AESx(0x817F7FFE), + AESx(0xF05050A0), AESx(0x443C3C78), AESx(0xBA9F9F25), AESx(0xE3A8A84B), + AESx(0xF35151A2), AESx(0xFEA3A35D), AESx(0xC0404080), AESx(0x8A8F8F05), + AESx(0xAD92923F), AESx(0xBC9D9D21), AESx(0x48383870), AESx(0x04F5F5F1), + AESx(0xDFBCBC63), AESx(0xC1B6B677), AESx(0x75DADAAF), AESx(0x63212142), + AESx(0x30101020), AESx(0x1AFFFFE5), AESx(0x0EF3F3FD), AESx(0x6DD2D2BF), + AESx(0x4CCDCD81), AESx(0x140C0C18), AESx(0x35131326), AESx(0x2FECECC3), + AESx(0xE15F5FBE), AESx(0xA2979735), AESx(0xCC444488), AESx(0x3917172E), + AESx(0x57C4C493), AESx(0xF2A7A755), AESx(0x827E7EFC), AESx(0x473D3D7A), + AESx(0xAC6464C8), AESx(0xE75D5DBA), AESx(0x2B191932), AESx(0x957373E6), + AESx(0xA06060C0), AESx(0x98818119), AESx(0xD14F4F9E), AESx(0x7FDCDCA3), + AESx(0x66222244), AESx(0x7E2A2A54), AESx(0xAB90903B), AESx(0x8388880B), + AESx(0xCA46468C), AESx(0x29EEEEC7), AESx(0xD3B8B86B), AESx(0x3C141428), + AESx(0x79DEDEA7), AESx(0xE25E5EBC), AESx(0x1D0B0B16), AESx(0x76DBDBAD), + AESx(0x3BE0E0DB), AESx(0x56323264), AESx(0x4E3A3A74), AESx(0x1E0A0A14), + AESx(0xDB494992), AESx(0x0A06060C), AESx(0x6C242448), AESx(0xE45C5CB8), + AESx(0x5DC2C29F), AESx(0x6ED3D3BD), AESx(0xEFACAC43), AESx(0xA66262C4), + AESx(0xA8919139), AESx(0xA4959531), AESx(0x37E4E4D3), AESx(0x8B7979F2), + AESx(0x32E7E7D5), AESx(0x43C8C88B), AESx(0x5937376E), AESx(0xB76D6DDA), + AESx(0x8C8D8D01), AESx(0x64D5D5B1), AESx(0xD24E4E9C), AESx(0xE0A9A949), + AESx(0xB46C6CD8), AESx(0xFA5656AC), AESx(0x07F4F4F3), AESx(0x25EAEACF), + AESx(0xAF6565CA), AESx(0x8E7A7AF4), AESx(0xE9AEAE47), AESx(0x18080810), + AESx(0xD5BABA6F), AESx(0x887878F0), AESx(0x6F25254A), AESx(0x722E2E5C), + AESx(0x241C1C38), AESx(0xF1A6A657), AESx(0xC7B4B473), AESx(0x51C6C697), + AESx(0x23E8E8CB), AESx(0x7CDDDDA1), AESx(0x9C7474E8), AESx(0x211F1F3E), + AESx(0xDD4B4B96), AESx(0xDCBDBD61), AESx(0x868B8B0D), AESx(0x858A8A0F), + AESx(0x907070E0), AESx(0x423E3E7C), AESx(0xC4B5B571), AESx(0xAA6666CC), + AESx(0xD8484890), AESx(0x05030306), AESx(0x01F6F6F7), AESx(0x120E0E1C), + AESx(0xA36161C2), AESx(0x5F35356A), AESx(0xF95757AE), AESx(0xD0B9B969), + AESx(0x91868617), AESx(0x58C1C199), AESx(0x271D1D3A), AESx(0xB99E9E27), + AESx(0x38E1E1D9), AESx(0x13F8F8EB), AESx(0xB398982B), AESx(0x33111122), + AESx(0xBB6969D2), AESx(0x70D9D9A9), AESx(0x898E8E07), AESx(0xA7949433), + AESx(0xB69B9B2D), AESx(0x221E1E3C), AESx(0x92878715), AESx(0x20E9E9C9), + AESx(0x49CECE87), AESx(0xFF5555AA), AESx(0x78282850), AESx(0x7ADFDFA5), + AESx(0x8F8C8C03), AESx(0xF8A1A159), AESx(0x80898909), AESx(0x170D0D1A), + AESx(0xDABFBF65), AESx(0x31E6E6D7), AESx(0xC6424284), AESx(0xB86868D0), + AESx(0xC3414182), AESx(0xB0999929), AESx(0x772D2D5A), AESx(0x110F0F1E), + AESx(0xCBB0B07B), AESx(0xFC5454A8), AESx(0xD6BBBB6D), AESx(0x3A16162C) +}; + +static const sph_u32 AES1[256] = { + AESx(0x6363C6A5), AESx(0x7C7CF884), AESx(0x7777EE99), AESx(0x7B7BF68D), + AESx(0xF2F2FF0D), AESx(0x6B6BD6BD), AESx(0x6F6FDEB1), AESx(0xC5C59154), + AESx(0x30306050), AESx(0x01010203), AESx(0x6767CEA9), AESx(0x2B2B567D), + AESx(0xFEFEE719), AESx(0xD7D7B562), AESx(0xABAB4DE6), AESx(0x7676EC9A), + AESx(0xCACA8F45), AESx(0x82821F9D), AESx(0xC9C98940), AESx(0x7D7DFA87), + AESx(0xFAFAEF15), AESx(0x5959B2EB), AESx(0x47478EC9), AESx(0xF0F0FB0B), + AESx(0xADAD41EC), AESx(0xD4D4B367), AESx(0xA2A25FFD), AESx(0xAFAF45EA), + AESx(0x9C9C23BF), AESx(0xA4A453F7), AESx(0x7272E496), AESx(0xC0C09B5B), + AESx(0xB7B775C2), AESx(0xFDFDE11C), AESx(0x93933DAE), AESx(0x26264C6A), + AESx(0x36366C5A), AESx(0x3F3F7E41), AESx(0xF7F7F502), AESx(0xCCCC834F), + AESx(0x3434685C), AESx(0xA5A551F4), AESx(0xE5E5D134), AESx(0xF1F1F908), + AESx(0x7171E293), AESx(0xD8D8AB73), AESx(0x31316253), AESx(0x15152A3F), + AESx(0x0404080C), AESx(0xC7C79552), AESx(0x23234665), AESx(0xC3C39D5E), + AESx(0x18183028), AESx(0x969637A1), AESx(0x05050A0F), AESx(0x9A9A2FB5), + AESx(0x07070E09), AESx(0x12122436), AESx(0x80801B9B), AESx(0xE2E2DF3D), + AESx(0xEBEBCD26), AESx(0x27274E69), AESx(0xB2B27FCD), AESx(0x7575EA9F), + AESx(0x0909121B), AESx(0x83831D9E), AESx(0x2C2C5874), AESx(0x1A1A342E), + AESx(0x1B1B362D), AESx(0x6E6EDCB2), AESx(0x5A5AB4EE), AESx(0xA0A05BFB), + AESx(0x5252A4F6), AESx(0x3B3B764D), AESx(0xD6D6B761), AESx(0xB3B37DCE), + AESx(0x2929527B), AESx(0xE3E3DD3E), AESx(0x2F2F5E71), AESx(0x84841397), + AESx(0x5353A6F5), AESx(0xD1D1B968), AESx(0x00000000), AESx(0xEDEDC12C), + AESx(0x20204060), AESx(0xFCFCE31F), AESx(0xB1B179C8), AESx(0x5B5BB6ED), + AESx(0x6A6AD4BE), AESx(0xCBCB8D46), AESx(0xBEBE67D9), AESx(0x3939724B), + AESx(0x4A4A94DE), AESx(0x4C4C98D4), AESx(0x5858B0E8), AESx(0xCFCF854A), + AESx(0xD0D0BB6B), AESx(0xEFEFC52A), AESx(0xAAAA4FE5), AESx(0xFBFBED16), + AESx(0x434386C5), AESx(0x4D4D9AD7), AESx(0x33336655), AESx(0x85851194), + AESx(0x45458ACF), AESx(0xF9F9E910), AESx(0x02020406), AESx(0x7F7FFE81), + AESx(0x5050A0F0), AESx(0x3C3C7844), AESx(0x9F9F25BA), AESx(0xA8A84BE3), + AESx(0x5151A2F3), AESx(0xA3A35DFE), AESx(0x404080C0), AESx(0x8F8F058A), + AESx(0x92923FAD), AESx(0x9D9D21BC), AESx(0x38387048), AESx(0xF5F5F104), + AESx(0xBCBC63DF), AESx(0xB6B677C1), AESx(0xDADAAF75), AESx(0x21214263), + AESx(0x10102030), AESx(0xFFFFE51A), AESx(0xF3F3FD0E), AESx(0xD2D2BF6D), + AESx(0xCDCD814C), AESx(0x0C0C1814), AESx(0x13132635), AESx(0xECECC32F), + AESx(0x5F5FBEE1), AESx(0x979735A2), AESx(0x444488CC), AESx(0x17172E39), + AESx(0xC4C49357), AESx(0xA7A755F2), AESx(0x7E7EFC82), AESx(0x3D3D7A47), + AESx(0x6464C8AC), AESx(0x5D5DBAE7), AESx(0x1919322B), AESx(0x7373E695), + AESx(0x6060C0A0), AESx(0x81811998), AESx(0x4F4F9ED1), AESx(0xDCDCA37F), + AESx(0x22224466), AESx(0x2A2A547E), AESx(0x90903BAB), AESx(0x88880B83), + AESx(0x46468CCA), AESx(0xEEEEC729), AESx(0xB8B86BD3), AESx(0x1414283C), + AESx(0xDEDEA779), AESx(0x5E5EBCE2), AESx(0x0B0B161D), AESx(0xDBDBAD76), + AESx(0xE0E0DB3B), AESx(0x32326456), AESx(0x3A3A744E), AESx(0x0A0A141E), + AESx(0x494992DB), AESx(0x06060C0A), AESx(0x2424486C), AESx(0x5C5CB8E4), + AESx(0xC2C29F5D), AESx(0xD3D3BD6E), AESx(0xACAC43EF), AESx(0x6262C4A6), + AESx(0x919139A8), AESx(0x959531A4), AESx(0xE4E4D337), AESx(0x7979F28B), + AESx(0xE7E7D532), AESx(0xC8C88B43), AESx(0x37376E59), AESx(0x6D6DDAB7), + AESx(0x8D8D018C), AESx(0xD5D5B164), AESx(0x4E4E9CD2), AESx(0xA9A949E0), + AESx(0x6C6CD8B4), AESx(0x5656ACFA), AESx(0xF4F4F307), AESx(0xEAEACF25), + AESx(0x6565CAAF), AESx(0x7A7AF48E), AESx(0xAEAE47E9), AESx(0x08081018), + AESx(0xBABA6FD5), AESx(0x7878F088), AESx(0x25254A6F), AESx(0x2E2E5C72), + AESx(0x1C1C3824), AESx(0xA6A657F1), AESx(0xB4B473C7), AESx(0xC6C69751), + AESx(0xE8E8CB23), AESx(0xDDDDA17C), AESx(0x7474E89C), AESx(0x1F1F3E21), + AESx(0x4B4B96DD), AESx(0xBDBD61DC), AESx(0x8B8B0D86), AESx(0x8A8A0F85), + AESx(0x7070E090), AESx(0x3E3E7C42), AESx(0xB5B571C4), AESx(0x6666CCAA), + AESx(0x484890D8), AESx(0x03030605), AESx(0xF6F6F701), AESx(0x0E0E1C12), + AESx(0x6161C2A3), AESx(0x35356A5F), AESx(0x5757AEF9), AESx(0xB9B969D0), + AESx(0x86861791), AESx(0xC1C19958), AESx(0x1D1D3A27), AESx(0x9E9E27B9), + AESx(0xE1E1D938), AESx(0xF8F8EB13), AESx(0x98982BB3), AESx(0x11112233), + AESx(0x6969D2BB), AESx(0xD9D9A970), AESx(0x8E8E0789), AESx(0x949433A7), + AESx(0x9B9B2DB6), AESx(0x1E1E3C22), AESx(0x87871592), AESx(0xE9E9C920), + AESx(0xCECE8749), AESx(0x5555AAFF), AESx(0x28285078), AESx(0xDFDFA57A), + AESx(0x8C8C038F), AESx(0xA1A159F8), AESx(0x89890980), AESx(0x0D0D1A17), + AESx(0xBFBF65DA), AESx(0xE6E6D731), AESx(0x424284C6), AESx(0x6868D0B8), + AESx(0x414182C3), AESx(0x999929B0), AESx(0x2D2D5A77), AESx(0x0F0F1E11), + AESx(0xB0B07BCB), AESx(0x5454A8FC), AESx(0xBBBB6DD6), AESx(0x16162C3A) +}; + +static const sph_u32 AES2[256] = { + AESx(0x63C6A563), AESx(0x7CF8847C), AESx(0x77EE9977), AESx(0x7BF68D7B), + AESx(0xF2FF0DF2), AESx(0x6BD6BD6B), AESx(0x6FDEB16F), AESx(0xC59154C5), + AESx(0x30605030), AESx(0x01020301), AESx(0x67CEA967), AESx(0x2B567D2B), + AESx(0xFEE719FE), AESx(0xD7B562D7), AESx(0xAB4DE6AB), AESx(0x76EC9A76), + AESx(0xCA8F45CA), AESx(0x821F9D82), AESx(0xC98940C9), AESx(0x7DFA877D), + AESx(0xFAEF15FA), AESx(0x59B2EB59), AESx(0x478EC947), AESx(0xF0FB0BF0), + AESx(0xAD41ECAD), AESx(0xD4B367D4), AESx(0xA25FFDA2), AESx(0xAF45EAAF), + AESx(0x9C23BF9C), AESx(0xA453F7A4), AESx(0x72E49672), AESx(0xC09B5BC0), + AESx(0xB775C2B7), AESx(0xFDE11CFD), AESx(0x933DAE93), AESx(0x264C6A26), + AESx(0x366C5A36), AESx(0x3F7E413F), AESx(0xF7F502F7), AESx(0xCC834FCC), + AESx(0x34685C34), AESx(0xA551F4A5), AESx(0xE5D134E5), AESx(0xF1F908F1), + AESx(0x71E29371), AESx(0xD8AB73D8), AESx(0x31625331), AESx(0x152A3F15), + AESx(0x04080C04), AESx(0xC79552C7), AESx(0x23466523), AESx(0xC39D5EC3), + AESx(0x18302818), AESx(0x9637A196), AESx(0x050A0F05), AESx(0x9A2FB59A), + AESx(0x070E0907), AESx(0x12243612), AESx(0x801B9B80), AESx(0xE2DF3DE2), + AESx(0xEBCD26EB), AESx(0x274E6927), AESx(0xB27FCDB2), AESx(0x75EA9F75), + AESx(0x09121B09), AESx(0x831D9E83), AESx(0x2C58742C), AESx(0x1A342E1A), + AESx(0x1B362D1B), AESx(0x6EDCB26E), AESx(0x5AB4EE5A), AESx(0xA05BFBA0), + AESx(0x52A4F652), AESx(0x3B764D3B), AESx(0xD6B761D6), AESx(0xB37DCEB3), + AESx(0x29527B29), AESx(0xE3DD3EE3), AESx(0x2F5E712F), AESx(0x84139784), + AESx(0x53A6F553), AESx(0xD1B968D1), AESx(0x00000000), AESx(0xEDC12CED), + AESx(0x20406020), AESx(0xFCE31FFC), AESx(0xB179C8B1), AESx(0x5BB6ED5B), + AESx(0x6AD4BE6A), AESx(0xCB8D46CB), AESx(0xBE67D9BE), AESx(0x39724B39), + AESx(0x4A94DE4A), AESx(0x4C98D44C), AESx(0x58B0E858), AESx(0xCF854ACF), + AESx(0xD0BB6BD0), AESx(0xEFC52AEF), AESx(0xAA4FE5AA), AESx(0xFBED16FB), + AESx(0x4386C543), AESx(0x4D9AD74D), AESx(0x33665533), AESx(0x85119485), + AESx(0x458ACF45), AESx(0xF9E910F9), AESx(0x02040602), AESx(0x7FFE817F), + AESx(0x50A0F050), AESx(0x3C78443C), AESx(0x9F25BA9F), AESx(0xA84BE3A8), + AESx(0x51A2F351), AESx(0xA35DFEA3), AESx(0x4080C040), AESx(0x8F058A8F), + AESx(0x923FAD92), AESx(0x9D21BC9D), AESx(0x38704838), AESx(0xF5F104F5), + AESx(0xBC63DFBC), AESx(0xB677C1B6), AESx(0xDAAF75DA), AESx(0x21426321), + AESx(0x10203010), AESx(0xFFE51AFF), AESx(0xF3FD0EF3), AESx(0xD2BF6DD2), + AESx(0xCD814CCD), AESx(0x0C18140C), AESx(0x13263513), AESx(0xECC32FEC), + AESx(0x5FBEE15F), AESx(0x9735A297), AESx(0x4488CC44), AESx(0x172E3917), + AESx(0xC49357C4), AESx(0xA755F2A7), AESx(0x7EFC827E), AESx(0x3D7A473D), + AESx(0x64C8AC64), AESx(0x5DBAE75D), AESx(0x19322B19), AESx(0x73E69573), + AESx(0x60C0A060), AESx(0x81199881), AESx(0x4F9ED14F), AESx(0xDCA37FDC), + AESx(0x22446622), AESx(0x2A547E2A), AESx(0x903BAB90), AESx(0x880B8388), + AESx(0x468CCA46), AESx(0xEEC729EE), AESx(0xB86BD3B8), AESx(0x14283C14), + AESx(0xDEA779DE), AESx(0x5EBCE25E), AESx(0x0B161D0B), AESx(0xDBAD76DB), + AESx(0xE0DB3BE0), AESx(0x32645632), AESx(0x3A744E3A), AESx(0x0A141E0A), + AESx(0x4992DB49), AESx(0x060C0A06), AESx(0x24486C24), AESx(0x5CB8E45C), + AESx(0xC29F5DC2), AESx(0xD3BD6ED3), AESx(0xAC43EFAC), AESx(0x62C4A662), + AESx(0x9139A891), AESx(0x9531A495), AESx(0xE4D337E4), AESx(0x79F28B79), + AESx(0xE7D532E7), AESx(0xC88B43C8), AESx(0x376E5937), AESx(0x6DDAB76D), + AESx(0x8D018C8D), AESx(0xD5B164D5), AESx(0x4E9CD24E), AESx(0xA949E0A9), + AESx(0x6CD8B46C), AESx(0x56ACFA56), AESx(0xF4F307F4), AESx(0xEACF25EA), + AESx(0x65CAAF65), AESx(0x7AF48E7A), AESx(0xAE47E9AE), AESx(0x08101808), + AESx(0xBA6FD5BA), AESx(0x78F08878), AESx(0x254A6F25), AESx(0x2E5C722E), + AESx(0x1C38241C), AESx(0xA657F1A6), AESx(0xB473C7B4), AESx(0xC69751C6), + AESx(0xE8CB23E8), AESx(0xDDA17CDD), AESx(0x74E89C74), AESx(0x1F3E211F), + AESx(0x4B96DD4B), AESx(0xBD61DCBD), AESx(0x8B0D868B), AESx(0x8A0F858A), + AESx(0x70E09070), AESx(0x3E7C423E), AESx(0xB571C4B5), AESx(0x66CCAA66), + AESx(0x4890D848), AESx(0x03060503), AESx(0xF6F701F6), AESx(0x0E1C120E), + AESx(0x61C2A361), AESx(0x356A5F35), AESx(0x57AEF957), AESx(0xB969D0B9), + AESx(0x86179186), AESx(0xC19958C1), AESx(0x1D3A271D), AESx(0x9E27B99E), + AESx(0xE1D938E1), AESx(0xF8EB13F8), AESx(0x982BB398), AESx(0x11223311), + AESx(0x69D2BB69), AESx(0xD9A970D9), AESx(0x8E07898E), AESx(0x9433A794), + AESx(0x9B2DB69B), AESx(0x1E3C221E), AESx(0x87159287), AESx(0xE9C920E9), + AESx(0xCE8749CE), AESx(0x55AAFF55), AESx(0x28507828), AESx(0xDFA57ADF), + AESx(0x8C038F8C), AESx(0xA159F8A1), AESx(0x89098089), AESx(0x0D1A170D), + AESx(0xBF65DABF), AESx(0xE6D731E6), AESx(0x4284C642), AESx(0x68D0B868), + AESx(0x4182C341), AESx(0x9929B099), AESx(0x2D5A772D), AESx(0x0F1E110F), + AESx(0xB07BCBB0), AESx(0x54A8FC54), AESx(0xBB6DD6BB), AESx(0x162C3A16) +}; + +static const sph_u32 AES3[256] = { + AESx(0xC6A56363), AESx(0xF8847C7C), AESx(0xEE997777), AESx(0xF68D7B7B), + AESx(0xFF0DF2F2), AESx(0xD6BD6B6B), AESx(0xDEB16F6F), AESx(0x9154C5C5), + AESx(0x60503030), AESx(0x02030101), AESx(0xCEA96767), AESx(0x567D2B2B), + AESx(0xE719FEFE), AESx(0xB562D7D7), AESx(0x4DE6ABAB), AESx(0xEC9A7676), + AESx(0x8F45CACA), AESx(0x1F9D8282), AESx(0x8940C9C9), AESx(0xFA877D7D), + AESx(0xEF15FAFA), AESx(0xB2EB5959), AESx(0x8EC94747), AESx(0xFB0BF0F0), + AESx(0x41ECADAD), AESx(0xB367D4D4), AESx(0x5FFDA2A2), AESx(0x45EAAFAF), + AESx(0x23BF9C9C), AESx(0x53F7A4A4), AESx(0xE4967272), AESx(0x9B5BC0C0), + AESx(0x75C2B7B7), AESx(0xE11CFDFD), AESx(0x3DAE9393), AESx(0x4C6A2626), + AESx(0x6C5A3636), AESx(0x7E413F3F), AESx(0xF502F7F7), AESx(0x834FCCCC), + AESx(0x685C3434), AESx(0x51F4A5A5), AESx(0xD134E5E5), AESx(0xF908F1F1), + AESx(0xE2937171), AESx(0xAB73D8D8), AESx(0x62533131), AESx(0x2A3F1515), + AESx(0x080C0404), AESx(0x9552C7C7), AESx(0x46652323), AESx(0x9D5EC3C3), + AESx(0x30281818), AESx(0x37A19696), AESx(0x0A0F0505), AESx(0x2FB59A9A), + AESx(0x0E090707), AESx(0x24361212), AESx(0x1B9B8080), AESx(0xDF3DE2E2), + AESx(0xCD26EBEB), AESx(0x4E692727), AESx(0x7FCDB2B2), AESx(0xEA9F7575), + AESx(0x121B0909), AESx(0x1D9E8383), AESx(0x58742C2C), AESx(0x342E1A1A), + AESx(0x362D1B1B), AESx(0xDCB26E6E), AESx(0xB4EE5A5A), AESx(0x5BFBA0A0), + AESx(0xA4F65252), AESx(0x764D3B3B), AESx(0xB761D6D6), AESx(0x7DCEB3B3), + AESx(0x527B2929), AESx(0xDD3EE3E3), AESx(0x5E712F2F), AESx(0x13978484), + AESx(0xA6F55353), AESx(0xB968D1D1), AESx(0x00000000), AESx(0xC12CEDED), + AESx(0x40602020), AESx(0xE31FFCFC), AESx(0x79C8B1B1), AESx(0xB6ED5B5B), + AESx(0xD4BE6A6A), AESx(0x8D46CBCB), AESx(0x67D9BEBE), AESx(0x724B3939), + AESx(0x94DE4A4A), AESx(0x98D44C4C), AESx(0xB0E85858), AESx(0x854ACFCF), + AESx(0xBB6BD0D0), AESx(0xC52AEFEF), AESx(0x4FE5AAAA), AESx(0xED16FBFB), + AESx(0x86C54343), AESx(0x9AD74D4D), AESx(0x66553333), AESx(0x11948585), + AESx(0x8ACF4545), AESx(0xE910F9F9), AESx(0x04060202), AESx(0xFE817F7F), + AESx(0xA0F05050), AESx(0x78443C3C), AESx(0x25BA9F9F), AESx(0x4BE3A8A8), + AESx(0xA2F35151), AESx(0x5DFEA3A3), AESx(0x80C04040), AESx(0x058A8F8F), + AESx(0x3FAD9292), AESx(0x21BC9D9D), AESx(0x70483838), AESx(0xF104F5F5), + AESx(0x63DFBCBC), AESx(0x77C1B6B6), AESx(0xAF75DADA), AESx(0x42632121), + AESx(0x20301010), AESx(0xE51AFFFF), AESx(0xFD0EF3F3), AESx(0xBF6DD2D2), + AESx(0x814CCDCD), AESx(0x18140C0C), AESx(0x26351313), AESx(0xC32FECEC), + AESx(0xBEE15F5F), AESx(0x35A29797), AESx(0x88CC4444), AESx(0x2E391717), + AESx(0x9357C4C4), AESx(0x55F2A7A7), AESx(0xFC827E7E), AESx(0x7A473D3D), + AESx(0xC8AC6464), AESx(0xBAE75D5D), AESx(0x322B1919), AESx(0xE6957373), + AESx(0xC0A06060), AESx(0x19988181), AESx(0x9ED14F4F), AESx(0xA37FDCDC), + AESx(0x44662222), AESx(0x547E2A2A), AESx(0x3BAB9090), AESx(0x0B838888), + AESx(0x8CCA4646), AESx(0xC729EEEE), AESx(0x6BD3B8B8), AESx(0x283C1414), + AESx(0xA779DEDE), AESx(0xBCE25E5E), AESx(0x161D0B0B), AESx(0xAD76DBDB), + AESx(0xDB3BE0E0), AESx(0x64563232), AESx(0x744E3A3A), AESx(0x141E0A0A), + AESx(0x92DB4949), AESx(0x0C0A0606), AESx(0x486C2424), AESx(0xB8E45C5C), + AESx(0x9F5DC2C2), AESx(0xBD6ED3D3), AESx(0x43EFACAC), AESx(0xC4A66262), + AESx(0x39A89191), AESx(0x31A49595), AESx(0xD337E4E4), AESx(0xF28B7979), + AESx(0xD532E7E7), AESx(0x8B43C8C8), AESx(0x6E593737), AESx(0xDAB76D6D), + AESx(0x018C8D8D), AESx(0xB164D5D5), AESx(0x9CD24E4E), AESx(0x49E0A9A9), + AESx(0xD8B46C6C), AESx(0xACFA5656), AESx(0xF307F4F4), AESx(0xCF25EAEA), + AESx(0xCAAF6565), AESx(0xF48E7A7A), AESx(0x47E9AEAE), AESx(0x10180808), + AESx(0x6FD5BABA), AESx(0xF0887878), AESx(0x4A6F2525), AESx(0x5C722E2E), + AESx(0x38241C1C), AESx(0x57F1A6A6), AESx(0x73C7B4B4), AESx(0x9751C6C6), + AESx(0xCB23E8E8), AESx(0xA17CDDDD), AESx(0xE89C7474), AESx(0x3E211F1F), + AESx(0x96DD4B4B), AESx(0x61DCBDBD), AESx(0x0D868B8B), AESx(0x0F858A8A), + AESx(0xE0907070), AESx(0x7C423E3E), AESx(0x71C4B5B5), AESx(0xCCAA6666), + AESx(0x90D84848), AESx(0x06050303), AESx(0xF701F6F6), AESx(0x1C120E0E), + AESx(0xC2A36161), AESx(0x6A5F3535), AESx(0xAEF95757), AESx(0x69D0B9B9), + AESx(0x17918686), AESx(0x9958C1C1), AESx(0x3A271D1D), AESx(0x27B99E9E), + AESx(0xD938E1E1), AESx(0xEB13F8F8), AESx(0x2BB39898), AESx(0x22331111), + AESx(0xD2BB6969), AESx(0xA970D9D9), AESx(0x07898E8E), AESx(0x33A79494), + AESx(0x2DB69B9B), AESx(0x3C221E1E), AESx(0x15928787), AESx(0xC920E9E9), + AESx(0x8749CECE), AESx(0xAAFF5555), AESx(0x50782828), AESx(0xA57ADFDF), + AESx(0x038F8C8C), AESx(0x59F8A1A1), AESx(0x09808989), AESx(0x1A170D0D), + AESx(0x65DABFBF), AESx(0xD731E6E6), AESx(0x84C64242), AESx(0xD0B86868), + AESx(0x82C34141), AESx(0x29B09999), AESx(0x5A772D2D), AESx(0x1E110F0F), + AESx(0x7BCBB0B0), AESx(0xA8FC5454), AESx(0x6DD6BBBB), AESx(0x2C3A1616) +}; + +#ifdef __cplusplus +} +#endif diff --git a/crypto/sha3/blake.c b/crypto/sha3/blake.c new file mode 100644 index 000000000..0650b9cf2 --- /dev/null +++ b/crypto/sha3/blake.c @@ -0,0 +1,1120 @@ +/* $Id: blake.c 252 2011-06-07 17:55:14Z tp $ */ +/* + * BLAKE implementation. + * + * ==========================(LICENSE BEGIN)============================ + * + * Copyright (c) 2007-2010 Projet RNRT SAPHIR + * + * Permission is hereby granted, free of charge, to any person obtaining + * a copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sublicense, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * The above copyright notice and this permission notice shall be + * included in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + * + * ===========================(LICENSE END)============================= + * + * @author Thomas Pornin + */ + +#include +#include +#include + +#include "sph_blake.h" + +#ifdef __cplusplus +extern "C"{ +#endif + +#if SPH_SMALL_FOOTPRINT && !defined SPH_SMALL_FOOTPRINT_BLAKE +#define SPH_SMALL_FOOTPRINT_BLAKE 1 +#endif + +#if SPH_SMALL_FOOTPRINT_BLAKE +#define SPH_COMPACT_BLAKE_32 1 +#endif + +#if SPH_64 && (SPH_SMALL_FOOTPRINT_BLAKE || !SPH_64_TRUE) +#define SPH_COMPACT_BLAKE_64 1 +#endif + +#ifdef _MSC_VER +#pragma warning (disable: 4146) +#endif + +static const sph_u32 IV224[8] = { + SPH_C32(0xC1059ED8), SPH_C32(0x367CD507), + SPH_C32(0x3070DD17), SPH_C32(0xF70E5939), + SPH_C32(0xFFC00B31), SPH_C32(0x68581511), + SPH_C32(0x64F98FA7), SPH_C32(0xBEFA4FA4) +}; + +static const sph_u32 IV256[8] = { + SPH_C32(0x6A09E667), SPH_C32(0xBB67AE85), + SPH_C32(0x3C6EF372), SPH_C32(0xA54FF53A), + SPH_C32(0x510E527F), SPH_C32(0x9B05688C), + SPH_C32(0x1F83D9AB), SPH_C32(0x5BE0CD19) +}; + +#if SPH_64 + +static const sph_u64 IV384[8] = { + SPH_C64(0xCBBB9D5DC1059ED8), SPH_C64(0x629A292A367CD507), + SPH_C64(0x9159015A3070DD17), SPH_C64(0x152FECD8F70E5939), + SPH_C64(0x67332667FFC00B31), SPH_C64(0x8EB44A8768581511), + SPH_C64(0xDB0C2E0D64F98FA7), SPH_C64(0x47B5481DBEFA4FA4) +}; + +static const sph_u64 IV512[8] = { + SPH_C64(0x6A09E667F3BCC908), SPH_C64(0xBB67AE8584CAA73B), + SPH_C64(0x3C6EF372FE94F82B), SPH_C64(0xA54FF53A5F1D36F1), + SPH_C64(0x510E527FADE682D1), SPH_C64(0x9B05688C2B3E6C1F), + SPH_C64(0x1F83D9ABFB41BD6B), SPH_C64(0x5BE0CD19137E2179) +}; + +#endif + +#if SPH_COMPACT_BLAKE_32 || SPH_COMPACT_BLAKE_64 + +static const unsigned sigma[16][16] = { + { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, + { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }, + { 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 }, + { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 }, + { 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 }, + { 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 }, + { 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 }, + { 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 }, + { 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 }, + { 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0 }, + { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, + { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }, + { 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 }, + { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 }, + { 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 }, + { 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 } +}; + +/* + 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 + 14 10 4 8 9 15 13 6 1 12 0 2 11 7 5 3 + 11 8 12 0 5 2 15 13 10 14 3 6 7 1 9 4 + 7 9 3 1 13 12 11 14 2 6 5 10 4 0 15 8 + 9 0 5 7 2 4 10 15 14 1 11 12 6 8 3 13 + 2 12 6 10 0 11 8 3 4 13 7 5 15 14 1 9 + 12 5 1 15 14 13 4 10 0 7 6 3 9 2 8 11 + 13 11 7 14 12 1 3 9 5 0 15 4 8 6 2 10 + 6 15 14 9 11 3 0 8 12 2 13 7 1 4 10 5 + 10 2 8 4 7 6 1 5 15 11 9 14 3 12 13 0 +*/ +#endif + +#define Z00 0 +#define Z01 1 +#define Z02 2 +#define Z03 3 +#define Z04 4 +#define Z05 5 +#define Z06 6 +#define Z07 7 +#define Z08 8 +#define Z09 9 +#define Z0A A +#define Z0B B +#define Z0C C +#define Z0D D +#define Z0E E +#define Z0F F + +#define Z10 E +#define Z11 A +#define Z12 4 +#define Z13 8 +#define Z14 9 +#define Z15 F +#define Z16 D +#define Z17 6 +#define Z18 1 +#define Z19 C +#define Z1A 0 +#define Z1B 2 +#define Z1C B +#define Z1D 7 +#define Z1E 5 +#define Z1F 3 + +#define Z20 B +#define Z21 8 +#define Z22 C +#define Z23 0 +#define Z24 5 +#define Z25 2 +#define Z26 F +#define Z27 D +#define Z28 A +#define Z29 E +#define Z2A 3 +#define Z2B 6 +#define Z2C 7 +#define Z2D 1 +#define Z2E 9 +#define Z2F 4 + +#define Z30 7 +#define Z31 9 +#define Z32 3 +#define Z33 1 +#define Z34 D +#define Z35 C +#define Z36 B +#define Z37 E +#define Z38 2 +#define Z39 6 +#define Z3A 5 +#define Z3B A +#define Z3C 4 +#define Z3D 0 +#define Z3E F +#define Z3F 8 + +#define Z40 9 +#define Z41 0 +#define Z42 5 +#define Z43 7 +#define Z44 2 +#define Z45 4 +#define Z46 A +#define Z47 F +#define Z48 E +#define Z49 1 +#define Z4A B +#define Z4B C +#define Z4C 6 +#define Z4D 8 +#define Z4E 3 +#define Z4F D + +#define Z50 2 +#define Z51 C +#define Z52 6 +#define Z53 A +#define Z54 0 +#define Z55 B +#define Z56 8 +#define Z57 3 +#define Z58 4 +#define Z59 D +#define Z5A 7 +#define Z5B 5 +#define Z5C F +#define Z5D E +#define Z5E 1 +#define Z5F 9 + +#define Z60 C +#define Z61 5 +#define Z62 1 +#define Z63 F +#define Z64 E +#define Z65 D +#define Z66 4 +#define Z67 A +#define Z68 0 +#define Z69 7 +#define Z6A 6 +#define Z6B 3 +#define Z6C 9 +#define Z6D 2 +#define Z6E 8 +#define Z6F B + +#define Z70 D +#define Z71 B +#define Z72 7 +#define Z73 E +#define Z74 C +#define Z75 1 +#define Z76 3 +#define Z77 9 +#define Z78 5 +#define Z79 0 +#define Z7A F +#define Z7B 4 +#define Z7C 8 +#define Z7D 6 +#define Z7E 2 +#define Z7F A + +#define Z80 6 +#define Z81 F +#define Z82 E +#define Z83 9 +#define Z84 B +#define Z85 3 +#define Z86 0 +#define Z87 8 +#define Z88 C +#define Z89 2 +#define Z8A D +#define Z8B 7 +#define Z8C 1 +#define Z8D 4 +#define Z8E A +#define Z8F 5 + +#define Z90 A +#define Z91 2 +#define Z92 8 +#define Z93 4 +#define Z94 7 +#define Z95 6 +#define Z96 1 +#define Z97 5 +#define Z98 F +#define Z99 B +#define Z9A 9 +#define Z9B E +#define Z9C 3 +#define Z9D C +#define Z9E D +#define Z9F 0 + +#define Mx(r, i) Mx_(Z ## r ## i) +#define Mx_(n) Mx__(n) +#define Mx__(n) M ## n + +#define CSx(r, i) CSx_(Z ## r ## i) +#define CSx_(n) CSx__(n) +#define CSx__(n) CS ## n + +#define CS0 SPH_C32(0x243F6A88) +#define CS1 SPH_C32(0x85A308D3) +#define CS2 SPH_C32(0x13198A2E) +#define CS3 SPH_C32(0x03707344) +#define CS4 SPH_C32(0xA4093822) +#define CS5 SPH_C32(0x299F31D0) +#define CS6 SPH_C32(0x082EFA98) +#define CS7 SPH_C32(0xEC4E6C89) +#define CS8 SPH_C32(0x452821E6) +#define CS9 SPH_C32(0x38D01377) +#define CSA SPH_C32(0xBE5466CF) +#define CSB SPH_C32(0x34E90C6C) +#define CSC SPH_C32(0xC0AC29B7) +#define CSD SPH_C32(0xC97C50DD) +#define CSE SPH_C32(0x3F84D5B5) +#define CSF SPH_C32(0xB5470917) + +#if SPH_COMPACT_BLAKE_32 + +static const sph_u32 CS[16] = { + SPH_C32(0x243F6A88), SPH_C32(0x85A308D3), + SPH_C32(0x13198A2E), SPH_C32(0x03707344), + SPH_C32(0xA4093822), SPH_C32(0x299F31D0), + SPH_C32(0x082EFA98), SPH_C32(0xEC4E6C89), + SPH_C32(0x452821E6), SPH_C32(0x38D01377), + SPH_C32(0xBE5466CF), SPH_C32(0x34E90C6C), + SPH_C32(0xC0AC29B7), SPH_C32(0xC97C50DD), + SPH_C32(0x3F84D5B5), SPH_C32(0xB5470917) +}; + +#endif + +#if SPH_64 + +#define CBx(r, i) CBx_(Z ## r ## i) +#define CBx_(n) CBx__(n) +#define CBx__(n) CB ## n + +#define CB0 SPH_C64(0x243F6A8885A308D3) +#define CB1 SPH_C64(0x13198A2E03707344) +#define CB2 SPH_C64(0xA4093822299F31D0) +#define CB3 SPH_C64(0x082EFA98EC4E6C89) +#define CB4 SPH_C64(0x452821E638D01377) +#define CB5 SPH_C64(0xBE5466CF34E90C6C) +#define CB6 SPH_C64(0xC0AC29B7C97C50DD) +#define CB7 SPH_C64(0x3F84D5B5B5470917) +#define CB8 SPH_C64(0x9216D5D98979FB1B) +#define CB9 SPH_C64(0xD1310BA698DFB5AC) +#define CBA SPH_C64(0x2FFD72DBD01ADFB7) +#define CBB SPH_C64(0xB8E1AFED6A267E96) +#define CBC SPH_C64(0xBA7C9045F12C7F99) +#define CBD SPH_C64(0x24A19947B3916CF7) +#define CBE SPH_C64(0x0801F2E2858EFC16) +#define CBF SPH_C64(0x636920D871574E69) + +#if SPH_COMPACT_BLAKE_64 + +static const sph_u64 CB[16] = { + SPH_C64(0x243F6A8885A308D3), SPH_C64(0x13198A2E03707344), + SPH_C64(0xA4093822299F31D0), SPH_C64(0x082EFA98EC4E6C89), + SPH_C64(0x452821E638D01377), SPH_C64(0xBE5466CF34E90C6C), + SPH_C64(0xC0AC29B7C97C50DD), SPH_C64(0x3F84D5B5B5470917), + SPH_C64(0x9216D5D98979FB1B), SPH_C64(0xD1310BA698DFB5AC), + SPH_C64(0x2FFD72DBD01ADFB7), SPH_C64(0xB8E1AFED6A267E96), + SPH_C64(0xBA7C9045F12C7F99), SPH_C64(0x24A19947B3916CF7), + SPH_C64(0x0801F2E2858EFC16), SPH_C64(0x636920D871574E69) +}; + +#endif + +#endif + +#define GS(m0, m1, c0, c1, a, b, c, d) do { \ + a = SPH_T32(a + b + (m0 ^ c1)); \ + d = SPH_ROTR32(d ^ a, 16); \ + c = SPH_T32(c + d); \ + b = SPH_ROTR32(b ^ c, 12); \ + a = SPH_T32(a + b + (m1 ^ c0)); \ + d = SPH_ROTR32(d ^ a, 8); \ + c = SPH_T32(c + d); \ + b = SPH_ROTR32(b ^ c, 7); \ + } while (0) + +#if SPH_COMPACT_BLAKE_32 + +#define ROUND_S(r) do { \ + GS(M[sigma[r][0x0]], M[sigma[r][0x1]], \ + CS[sigma[r][0x0]], CS[sigma[r][0x1]], V0, V4, V8, VC); \ + GS(M[sigma[r][0x2]], M[sigma[r][0x3]], \ + CS[sigma[r][0x2]], CS[sigma[r][0x3]], V1, V5, V9, VD); \ + GS(M[sigma[r][0x4]], M[sigma[r][0x5]], \ + CS[sigma[r][0x4]], CS[sigma[r][0x5]], V2, V6, VA, VE); \ + GS(M[sigma[r][0x6]], M[sigma[r][0x7]], \ + CS[sigma[r][0x6]], CS[sigma[r][0x7]], V3, V7, VB, VF); \ + GS(M[sigma[r][0x8]], M[sigma[r][0x9]], \ + CS[sigma[r][0x8]], CS[sigma[r][0x9]], V0, V5, VA, VF); \ + GS(M[sigma[r][0xA]], M[sigma[r][0xB]], \ + CS[sigma[r][0xA]], CS[sigma[r][0xB]], V1, V6, VB, VC); \ + GS(M[sigma[r][0xC]], M[sigma[r][0xD]], \ + CS[sigma[r][0xC]], CS[sigma[r][0xD]], V2, V7, V8, VD); \ + GS(M[sigma[r][0xE]], M[sigma[r][0xF]], \ + CS[sigma[r][0xE]], CS[sigma[r][0xF]], V3, V4, V9, VE); \ + } while (0) + +#else + +#define ROUND_S(r) do { \ + GS(Mx(r, 0), Mx(r, 1), CSx(r, 0), CSx(r, 1), V0, V4, V8, VC); \ + GS(Mx(r, 2), Mx(r, 3), CSx(r, 2), CSx(r, 3), V1, V5, V9, VD); \ + GS(Mx(r, 4), Mx(r, 5), CSx(r, 4), CSx(r, 5), V2, V6, VA, VE); \ + GS(Mx(r, 6), Mx(r, 7), CSx(r, 6), CSx(r, 7), V3, V7, VB, VF); \ + GS(Mx(r, 8), Mx(r, 9), CSx(r, 8), CSx(r, 9), V0, V5, VA, VF); \ + GS(Mx(r, A), Mx(r, B), CSx(r, A), CSx(r, B), V1, V6, VB, VC); \ + GS(Mx(r, C), Mx(r, D), CSx(r, C), CSx(r, D), V2, V7, V8, VD); \ + GS(Mx(r, E), Mx(r, F), CSx(r, E), CSx(r, F), V3, V4, V9, VE); \ + } while (0) + +#endif + +#if SPH_64 + +#define GB(m0, m1, c0, c1, a, b, c, d) do { \ + a = SPH_T64(a + b + (m0 ^ c1)); \ + d = SPH_ROTR64(d ^ a, 32); \ + c = SPH_T64(c + d); \ + b = SPH_ROTR64(b ^ c, 25); \ + a = SPH_T64(a + b + (m1 ^ c0)); \ + d = SPH_ROTR64(d ^ a, 16); \ + c = SPH_T64(c + d); \ + b = SPH_ROTR64(b ^ c, 11); \ + } while (0) + +#if SPH_COMPACT_BLAKE_64 + +#define ROUND_B(r) do { \ + GB(M[sigma[r][0x0]], M[sigma[r][0x1]], \ + CB[sigma[r][0x0]], CB[sigma[r][0x1]], V0, V4, V8, VC); \ + GB(M[sigma[r][0x2]], M[sigma[r][0x3]], \ + CB[sigma[r][0x2]], CB[sigma[r][0x3]], V1, V5, V9, VD); \ + GB(M[sigma[r][0x4]], M[sigma[r][0x5]], \ + CB[sigma[r][0x4]], CB[sigma[r][0x5]], V2, V6, VA, VE); \ + GB(M[sigma[r][0x6]], M[sigma[r][0x7]], \ + CB[sigma[r][0x6]], CB[sigma[r][0x7]], V3, V7, VB, VF); \ + GB(M[sigma[r][0x8]], M[sigma[r][0x9]], \ + CB[sigma[r][0x8]], CB[sigma[r][0x9]], V0, V5, VA, VF); \ + GB(M[sigma[r][0xA]], M[sigma[r][0xB]], \ + CB[sigma[r][0xA]], CB[sigma[r][0xB]], V1, V6, VB, VC); \ + GB(M[sigma[r][0xC]], M[sigma[r][0xD]], \ + CB[sigma[r][0xC]], CB[sigma[r][0xD]], V2, V7, V8, VD); \ + GB(M[sigma[r][0xE]], M[sigma[r][0xF]], \ + CB[sigma[r][0xE]], CB[sigma[r][0xF]], V3, V4, V9, VE); \ + } while (0) + +#else + +#define ROUND_B(r) do { \ + GB(Mx(r, 0), Mx(r, 1), CBx(r, 0), CBx(r, 1), V0, V4, V8, VC); \ + GB(Mx(r, 2), Mx(r, 3), CBx(r, 2), CBx(r, 3), V1, V5, V9, VD); \ + GB(Mx(r, 4), Mx(r, 5), CBx(r, 4), CBx(r, 5), V2, V6, VA, VE); \ + GB(Mx(r, 6), Mx(r, 7), CBx(r, 6), CBx(r, 7), V3, V7, VB, VF); \ + GB(Mx(r, 8), Mx(r, 9), CBx(r, 8), CBx(r, 9), V0, V5, VA, VF); \ + GB(Mx(r, A), Mx(r, B), CBx(r, A), CBx(r, B), V1, V6, VB, VC); \ + GB(Mx(r, C), Mx(r, D), CBx(r, C), CBx(r, D), V2, V7, V8, VD); \ + GB(Mx(r, E), Mx(r, F), CBx(r, E), CBx(r, F), V3, V4, V9, VE); \ + } while (0) + +#endif + +#endif + +#define DECL_STATE32 \ + sph_u32 H0, H1, H2, H3, H4, H5, H6, H7; \ + sph_u32 S0, S1, S2, S3, T0, T1; + +#define READ_STATE32(state) do { \ + H0 = (state)->H[0]; \ + H1 = (state)->H[1]; \ + H2 = (state)->H[2]; \ + H3 = (state)->H[3]; \ + H4 = (state)->H[4]; \ + H5 = (state)->H[5]; \ + H6 = (state)->H[6]; \ + H7 = (state)->H[7]; \ + S0 = (state)->S[0]; \ + S1 = (state)->S[1]; \ + S2 = (state)->S[2]; \ + S3 = (state)->S[3]; \ + T0 = (state)->T0; \ + T1 = (state)->T1; \ + } while (0) + +#define WRITE_STATE32(state) do { \ + (state)->H[0] = H0; \ + (state)->H[1] = H1; \ + (state)->H[2] = H2; \ + (state)->H[3] = H3; \ + (state)->H[4] = H4; \ + (state)->H[5] = H5; \ + (state)->H[6] = H6; \ + (state)->H[7] = H7; \ + (state)->S[0] = S0; \ + (state)->S[1] = S1; \ + (state)->S[2] = S2; \ + (state)->S[3] = S3; \ + (state)->T0 = T0; \ + (state)->T1 = T1; \ + } while (0) + +#if SPH_COMPACT_BLAKE_32 + +#define COMPRESS32 do { \ + sph_u32 M[16]; \ + sph_u32 V0, V1, V2, V3, V4, V5, V6, V7; \ + sph_u32 V8, V9, VA, VB, VC, VD, VE, VF; \ + unsigned r; \ + V0 = H0; \ + V1 = H1; \ + V2 = H2; \ + V3 = H3; \ + V4 = H4; \ + V5 = H5; \ + V6 = H6; \ + V7 = H7; \ + V8 = S0 ^ CS0; \ + V9 = S1 ^ CS1; \ + VA = S2 ^ CS2; \ + VB = S3 ^ CS3; \ + VC = T0 ^ CS4; \ + VD = T0 ^ CS5; \ + VE = T1 ^ CS6; \ + VF = T1 ^ CS7; \ + M[0x0] = sph_dec32be_aligned(buf + 0); \ + M[0x1] = sph_dec32be_aligned(buf + 4); \ + M[0x2] = sph_dec32be_aligned(buf + 8); \ + M[0x3] = sph_dec32be_aligned(buf + 12); \ + M[0x4] = sph_dec32be_aligned(buf + 16); \ + M[0x5] = sph_dec32be_aligned(buf + 20); \ + M[0x6] = sph_dec32be_aligned(buf + 24); \ + M[0x7] = sph_dec32be_aligned(buf + 28); \ + M[0x8] = sph_dec32be_aligned(buf + 32); \ + M[0x9] = sph_dec32be_aligned(buf + 36); \ + M[0xA] = sph_dec32be_aligned(buf + 40); \ + M[0xB] = sph_dec32be_aligned(buf + 44); \ + M[0xC] = sph_dec32be_aligned(buf + 48); \ + M[0xD] = sph_dec32be_aligned(buf + 52); \ + M[0xE] = sph_dec32be_aligned(buf + 56); \ + M[0xF] = sph_dec32be_aligned(buf + 60); \ + for (r = 0; r < 14; r ++) \ + ROUND_S(r); \ + H0 ^= S0 ^ V0 ^ V8; \ + H1 ^= S1 ^ V1 ^ V9; \ + H2 ^= S2 ^ V2 ^ VA; \ + H3 ^= S3 ^ V3 ^ VB; \ + H4 ^= S0 ^ V4 ^ VC; \ + H5 ^= S1 ^ V5 ^ VD; \ + H6 ^= S2 ^ V6 ^ VE; \ + H7 ^= S3 ^ V7 ^ VF; \ + } while (0) + +#else + +#define COMPRESS32 do { \ + sph_u32 M0, M1, M2, M3, M4, M5, M6, M7; \ + sph_u32 M8, M9, MA, MB, MC, MD, ME, MF; \ + sph_u32 V0, V1, V2, V3, V4, V5, V6, V7; \ + sph_u32 V8, V9, VA, VB, VC, VD, VE, VF; \ + V0 = H0; \ + V1 = H1; \ + V2 = H2; \ + V3 = H3; \ + V4 = H4; \ + V5 = H5; \ + V6 = H6; \ + V7 = H7; \ + V8 = S0 ^ CS0; \ + V9 = S1 ^ CS1; \ + VA = S2 ^ CS2; \ + VB = S3 ^ CS3; \ + VC = T0 ^ CS4; \ + VD = T0 ^ CS5; \ + VE = T1 ^ CS6; \ + VF = T1 ^ CS7; \ + M0 = sph_dec32be_aligned(buf + 0); \ + M1 = sph_dec32be_aligned(buf + 4); \ + M2 = sph_dec32be_aligned(buf + 8); \ + M3 = sph_dec32be_aligned(buf + 12); \ + M4 = sph_dec32be_aligned(buf + 16); \ + M5 = sph_dec32be_aligned(buf + 20); \ + M6 = sph_dec32be_aligned(buf + 24); \ + M7 = sph_dec32be_aligned(buf + 28); \ + M8 = sph_dec32be_aligned(buf + 32); \ + M9 = sph_dec32be_aligned(buf + 36); \ + MA = sph_dec32be_aligned(buf + 40); \ + MB = sph_dec32be_aligned(buf + 44); \ + MC = sph_dec32be_aligned(buf + 48); \ + MD = sph_dec32be_aligned(buf + 52); \ + ME = sph_dec32be_aligned(buf + 56); \ + MF = sph_dec32be_aligned(buf + 60); \ + ROUND_S(0); \ + ROUND_S(1); \ + ROUND_S(2); \ + ROUND_S(3); \ + ROUND_S(4); \ + ROUND_S(5); \ + ROUND_S(6); \ + ROUND_S(7); \ + ROUND_S(8); \ + ROUND_S(9); \ + ROUND_S(0); \ + ROUND_S(1); \ + ROUND_S(2); \ + ROUND_S(3); \ + H0 ^= S0 ^ V0 ^ V8; \ + H1 ^= S1 ^ V1 ^ V9; \ + H2 ^= S2 ^ V2 ^ VA; \ + H3 ^= S3 ^ V3 ^ VB; \ + H4 ^= S0 ^ V4 ^ VC; \ + H5 ^= S1 ^ V5 ^ VD; \ + H6 ^= S2 ^ V6 ^ VE; \ + H7 ^= S3 ^ V7 ^ VF; \ + } while (0) + +#endif + +#if SPH_64 + +#define DECL_STATE64 \ + sph_u64 H0, H1, H2, H3, H4, H5, H6, H7; \ + sph_u64 S0, S1, S2, S3, T0, T1; + +#define READ_STATE64(state) do { \ + H0 = (state)->H[0]; \ + H1 = (state)->H[1]; \ + H2 = (state)->H[2]; \ + H3 = (state)->H[3]; \ + H4 = (state)->H[4]; \ + H5 = (state)->H[5]; \ + H6 = (state)->H[6]; \ + H7 = (state)->H[7]; \ + S0 = (state)->S[0]; \ + S1 = (state)->S[1]; \ + S2 = (state)->S[2]; \ + S3 = (state)->S[3]; \ + T0 = (state)->T0; \ + T1 = (state)->T1; \ + } while (0) + +#define WRITE_STATE64(state) do { \ + (state)->H[0] = H0; \ + (state)->H[1] = H1; \ + (state)->H[2] = H2; \ + (state)->H[3] = H3; \ + (state)->H[4] = H4; \ + (state)->H[5] = H5; \ + (state)->H[6] = H6; \ + (state)->H[7] = H7; \ + (state)->S[0] = S0; \ + (state)->S[1] = S1; \ + (state)->S[2] = S2; \ + (state)->S[3] = S3; \ + (state)->T0 = T0; \ + (state)->T1 = T1; \ + } while (0) + +#if SPH_COMPACT_BLAKE_64 + +#define COMPRESS64 do { \ + sph_u64 M[16]; \ + sph_u64 V0, V1, V2, V3, V4, V5, V6, V7; \ + sph_u64 V8, V9, VA, VB, VC, VD, VE, VF; \ + unsigned r; \ + V0 = H0; \ + V1 = H1; \ + V2 = H2; \ + V3 = H3; \ + V4 = H4; \ + V5 = H5; \ + V6 = H6; \ + V7 = H7; \ + V8 = S0 ^ CB0; \ + V9 = S1 ^ CB1; \ + VA = S2 ^ CB2; \ + VB = S3 ^ CB3; \ + VC = T0 ^ CB4; \ + VD = T0 ^ CB5; \ + VE = T1 ^ CB6; \ + VF = T1 ^ CB7; \ + M[0x0] = sph_dec64be_aligned(buf + 0); \ + M[0x1] = sph_dec64be_aligned(buf + 8); \ + M[0x2] = sph_dec64be_aligned(buf + 16); \ + M[0x3] = sph_dec64be_aligned(buf + 24); \ + M[0x4] = sph_dec64be_aligned(buf + 32); \ + M[0x5] = sph_dec64be_aligned(buf + 40); \ + M[0x6] = sph_dec64be_aligned(buf + 48); \ + M[0x7] = sph_dec64be_aligned(buf + 56); \ + M[0x8] = sph_dec64be_aligned(buf + 64); \ + M[0x9] = sph_dec64be_aligned(buf + 72); \ + M[0xA] = sph_dec64be_aligned(buf + 80); \ + M[0xB] = sph_dec64be_aligned(buf + 88); \ + M[0xC] = sph_dec64be_aligned(buf + 96); \ + M[0xD] = sph_dec64be_aligned(buf + 104); \ + M[0xE] = sph_dec64be_aligned(buf + 112); \ + M[0xF] = sph_dec64be_aligned(buf + 120); \ + for (r = 0; r < 16; r ++) \ + ROUND_B(r); \ + H0 ^= S0 ^ V0 ^ V8; \ + H1 ^= S1 ^ V1 ^ V9; \ + H2 ^= S2 ^ V2 ^ VA; \ + H3 ^= S3 ^ V3 ^ VB; \ + H4 ^= S0 ^ V4 ^ VC; \ + H5 ^= S1 ^ V5 ^ VD; \ + H6 ^= S2 ^ V6 ^ VE; \ + H7 ^= S3 ^ V7 ^ VF; \ + } while (0) + +#else + +#define COMPRESS64 do { \ + sph_u64 M0, M1, M2, M3, M4, M5, M6, M7; \ + sph_u64 M8, M9, MA, MB, MC, MD, ME, MF; \ + sph_u64 V0, V1, V2, V3, V4, V5, V6, V7; \ + sph_u64 V8, V9, VA, VB, VC, VD, VE, VF; \ + V0 = H0; \ + V1 = H1; \ + V2 = H2; \ + V3 = H3; \ + V4 = H4; \ + V5 = H5; \ + V6 = H6; \ + V7 = H7; \ + V8 = S0 ^ CB0; \ + V9 = S1 ^ CB1; \ + VA = S2 ^ CB2; \ + VB = S3 ^ CB3; \ + VC = T0 ^ CB4; \ + VD = T0 ^ CB5; \ + VE = T1 ^ CB6; \ + VF = T1 ^ CB7; \ + M0 = sph_dec64be_aligned(buf + 0); \ + M1 = sph_dec64be_aligned(buf + 8); \ + M2 = sph_dec64be_aligned(buf + 16); \ + M3 = sph_dec64be_aligned(buf + 24); \ + M4 = sph_dec64be_aligned(buf + 32); \ + M5 = sph_dec64be_aligned(buf + 40); \ + M6 = sph_dec64be_aligned(buf + 48); \ + M7 = sph_dec64be_aligned(buf + 56); \ + M8 = sph_dec64be_aligned(buf + 64); \ + M9 = sph_dec64be_aligned(buf + 72); \ + MA = sph_dec64be_aligned(buf + 80); \ + MB = sph_dec64be_aligned(buf + 88); \ + MC = sph_dec64be_aligned(buf + 96); \ + MD = sph_dec64be_aligned(buf + 104); \ + ME = sph_dec64be_aligned(buf + 112); \ + MF = sph_dec64be_aligned(buf + 120); \ + ROUND_B(0); \ + ROUND_B(1); \ + ROUND_B(2); \ + ROUND_B(3); \ + ROUND_B(4); \ + ROUND_B(5); \ + ROUND_B(6); \ + ROUND_B(7); \ + ROUND_B(8); \ + ROUND_B(9); \ + ROUND_B(0); \ + ROUND_B(1); \ + ROUND_B(2); \ + ROUND_B(3); \ + ROUND_B(4); \ + ROUND_B(5); \ + H0 ^= S0 ^ V0 ^ V8; \ + H1 ^= S1 ^ V1 ^ V9; \ + H2 ^= S2 ^ V2 ^ VA; \ + H3 ^= S3 ^ V3 ^ VB; \ + H4 ^= S0 ^ V4 ^ VC; \ + H5 ^= S1 ^ V5 ^ VD; \ + H6 ^= S2 ^ V6 ^ VE; \ + H7 ^= S3 ^ V7 ^ VF; \ + } while (0) + +#endif + +#endif + +static const sph_u32 salt_zero_small[4] = { 0, 0, 0, 0 }; + +static void +blake32_init(sph_blake_small_context *sc, + const sph_u32 *iv, const sph_u32 *salt) +{ + memcpy(sc->H, iv, 8 * sizeof(sph_u32)); + memcpy(sc->S, salt, 4 * sizeof(sph_u32)); + sc->T0 = sc->T1 = 0; + sc->ptr = 0; +} + +static void +blake32(sph_blake_small_context *sc, const void *data, size_t len) +{ + unsigned char *buf; + size_t ptr; + DECL_STATE32 + + buf = sc->buf; + ptr = sc->ptr; + if (len < (sizeof sc->buf) - ptr) { + memcpy(buf + ptr, data, len); + ptr += len; + sc->ptr = ptr; + return; + } + + READ_STATE32(sc); + while (len > 0) { + size_t clen; + + clen = (sizeof sc->buf) - ptr; + if (clen > len) + clen = len; + memcpy(buf + ptr, data, clen); + ptr += clen; + data = (const unsigned char *)data + clen; + len -= clen; + if (ptr == sizeof sc->buf) { + if ((T0 = SPH_T32(T0 + 512)) < 512) + T1 = SPH_T32(T1 + 1); + COMPRESS32; + ptr = 0; + } + } + WRITE_STATE32(sc); + sc->ptr = ptr; +} + +static void +blake32_close(sph_blake_small_context *sc, + unsigned ub, unsigned n, void *dst, size_t out_size_w32) +{ + union { + unsigned char buf[64]; + sph_u32 dummy; + } u; + size_t ptr, k; + unsigned bit_len; + unsigned z; + sph_u32 th, tl; + unsigned char *out; + + ptr = sc->ptr; + bit_len = ((unsigned)ptr << 3) + n; + z = 0x80 >> n; + u.buf[ptr] = ((ub & -z) | z) & 0xFF; + tl = sc->T0 + bit_len; + th = sc->T1; + if (ptr == 0 && n == 0) { + sc->T0 = SPH_C32(0xFFFFFE00); + sc->T1 = SPH_C32(0xFFFFFFFF); + } else if (sc->T0 == 0) { + sc->T0 = SPH_C32(0xFFFFFE00) + bit_len; + sc->T1 = SPH_T32(sc->T1 - 1); + } else { + sc->T0 -= 512 - bit_len; + } + if (bit_len <= 446) { + memset(u.buf + ptr + 1, 0, 55 - ptr); + if (out_size_w32 == 8) + u.buf[55] |= 1; + sph_enc32be_aligned(u.buf + 56, th); + sph_enc32be_aligned(u.buf + 60, tl); + blake32(sc, u.buf + ptr, 64 - ptr); + } else { + memset(u.buf + ptr + 1, 0, 63 - ptr); + blake32(sc, u.buf + ptr, 64 - ptr); + sc->T0 = SPH_C32(0xFFFFFE00); + sc->T1 = SPH_C32(0xFFFFFFFF); + memset(u.buf, 0, 56); + if (out_size_w32 == 8) + u.buf[55] = 1; + sph_enc32be_aligned(u.buf + 56, th); + sph_enc32be_aligned(u.buf + 60, tl); + blake32(sc, u.buf, 64); + } + out = dst; + for (k = 0; k < out_size_w32; k ++) + sph_enc32be(out + (k << 2), sc->H[k]); +} + +#if SPH_64 + +static const sph_u64 salt_zero_big[4] = { 0, 0, 0, 0 }; + +static void +blake64_init(sph_blake_big_context *sc, + const sph_u64 *iv, const sph_u64 *salt) +{ + memcpy(sc->H, iv, 8 * sizeof(sph_u64)); + memcpy(sc->S, salt, 4 * sizeof(sph_u64)); + sc->T0 = sc->T1 = 0; + sc->ptr = 0; +} + +static void +blake64(sph_blake_big_context *sc, const void *data, size_t len) +{ + unsigned char *buf; + size_t ptr; + DECL_STATE64 + + buf = sc->buf; + ptr = sc->ptr; + if (len < (sizeof sc->buf) - ptr) { + memcpy(buf + ptr, data, len); + ptr += len; + sc->ptr = ptr; + return; + } + + READ_STATE64(sc); + while (len > 0) { + size_t clen; + + clen = (sizeof sc->buf) - ptr; + if (clen > len) + clen = len; + memcpy(buf + ptr, data, clen); + ptr += clen; + data = (const unsigned char *)data + clen; + len -= clen; + if (ptr == sizeof sc->buf) { + if ((T0 = SPH_T64(T0 + 1024)) < 1024) + T1 = SPH_T64(T1 + 1); + COMPRESS64; + ptr = 0; + } + } + WRITE_STATE64(sc); + sc->ptr = ptr; +} + +static void +blake64_close(sph_blake_big_context *sc, + unsigned ub, unsigned n, void *dst, size_t out_size_w64) +{ + union { + unsigned char buf[128]; + sph_u64 dummy; + } u; + size_t ptr, k; + unsigned bit_len; + unsigned z; + sph_u64 th, tl; + unsigned char *out; + + ptr = sc->ptr; + bit_len = ((unsigned)ptr << 3) + n; + z = 0x80 >> n; + u.buf[ptr] = ((ub & -z) | z) & 0xFF; + tl = sc->T0 + bit_len; + th = sc->T1; + if (ptr == 0 && n == 0) { + sc->T0 = SPH_C64(0xFFFFFFFFFFFFFC00); + sc->T1 = SPH_C64(0xFFFFFFFFFFFFFFFF); + } else if (sc->T0 == 0) { + sc->T0 = SPH_C64(0xFFFFFFFFFFFFFC00) + bit_len; + sc->T1 = SPH_T64(sc->T1 - 1); + } else { + sc->T0 -= 1024 - bit_len; + } + if (bit_len <= 894) { + memset(u.buf + ptr + 1, 0, 111 - ptr); + if (out_size_w64 == 8) + u.buf[111] |= 1; + sph_enc64be_aligned(u.buf + 112, th); + sph_enc64be_aligned(u.buf + 120, tl); + blake64(sc, u.buf + ptr, 128 - ptr); + } else { + memset(u.buf + ptr + 1, 0, 127 - ptr); + blake64(sc, u.buf + ptr, 128 - ptr); + sc->T0 = SPH_C64(0xFFFFFFFFFFFFFC00); + sc->T1 = SPH_C64(0xFFFFFFFFFFFFFFFF); + memset(u.buf, 0, 112); + if (out_size_w64 == 8) + u.buf[111] = 1; + sph_enc64be_aligned(u.buf + 112, th); + sph_enc64be_aligned(u.buf + 120, tl); + blake64(sc, u.buf, 128); + } + out = dst; + for (k = 0; k < out_size_w64; k ++) + sph_enc64be(out + (k << 3), sc->H[k]); +} + +#endif + +/* see sph_blake.h */ +void +sph_blake224_init(void *cc) +{ + blake32_init(cc, IV224, salt_zero_small); +} + +/* see sph_blake.h */ +void +sph_blake224(void *cc, const void *data, size_t len) +{ + blake32(cc, data, len); +} + +/* see sph_blake.h */ +void +sph_blake224_close(void *cc, void *dst) +{ + sph_blake224_addbits_and_close(cc, 0, 0, dst); +} + +/* see sph_blake.h */ +void +sph_blake224_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst) +{ + blake32_close(cc, ub, n, dst, 7); + sph_blake224_init(cc); +} + +/* see sph_blake.h */ +void +sph_blake256_init(void *cc) +{ + blake32_init(cc, IV256, salt_zero_small); +} + +/* see sph_blake.h */ +void +sph_blake256(void *cc, const void *data, size_t len) +{ + blake32(cc, data, len); +} + +/* see sph_blake.h */ +void +sph_blake256_close(void *cc, void *dst) +{ + sph_blake256_addbits_and_close(cc, 0, 0, dst); +} + +/* see sph_blake.h */ +void +sph_blake256_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst) +{ + blake32_close(cc, ub, n, dst, 8); + sph_blake256_init(cc); +} + +#if SPH_64 + +/* see sph_blake.h */ +void +sph_blake384_init(void *cc) +{ + blake64_init(cc, IV384, salt_zero_big); +} + +/* see sph_blake.h */ +void +sph_blake384(void *cc, const void *data, size_t len) +{ + blake64(cc, data, len); +} + +/* see sph_blake.h */ +void +sph_blake384_close(void *cc, void *dst) +{ + sph_blake384_addbits_and_close(cc, 0, 0, dst); +} + +/* see sph_blake.h */ +void +sph_blake384_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst) +{ + blake64_close(cc, ub, n, dst, 6); + sph_blake384_init(cc); +} + +/* see sph_blake.h */ +void +sph_blake512_init(void *cc) +{ + blake64_init(cc, IV512, salt_zero_big); +} + +/* see sph_blake.h */ +void +sph_blake512(void *cc, const void *data, size_t len) +{ + blake64(cc, data, len); +} + +/* see sph_blake.h */ +void +sph_blake512_close(void *cc, void *dst) +{ + sph_blake512_addbits_and_close(cc, 0, 0, dst); +} + +/* see sph_blake.h */ +void +sph_blake512_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst) +{ + blake64_close(cc, ub, n, dst, 8); + sph_blake512_init(cc); +} + +#endif + +#ifdef __cplusplus +} +#endif diff --git a/crypto/sha3/bmw.c b/crypto/sha3/bmw.c new file mode 100644 index 000000000..0fa7b6372 --- /dev/null +++ b/crypto/sha3/bmw.c @@ -0,0 +1,958 @@ +/* $Id: bmw.c 227 2010-06-16 17:28:38Z tp $ */ +/* + * BMW implementation. + * + * ==========================(LICENSE BEGIN)============================ + * + * Copyright (c) 2007-2010 Projet RNRT SAPHIR + * + * Permission is hereby granted, free of charge, to any person obtaining + * a copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sublicense, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * The above copyright notice and this permission notice shall be + * included in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + * + * ===========================(LICENSE END)============================= + * + * @author Thomas Pornin + */ + +#include +#include +#include + +#include "sph_bmw.h" + +#if SPH_SMALL_FOOTPRINT && !defined SPH_SMALL_FOOTPRINT_BMW +#define SPH_SMALL_FOOTPRINT_BMW 1 +#endif + +#ifdef _MSC_VER +#pragma warning (disable: 4146) +#endif + +static const sph_u32 IV224[] = { + SPH_C32(0x00010203), SPH_C32(0x04050607), + SPH_C32(0x08090A0B), SPH_C32(0x0C0D0E0F), + SPH_C32(0x10111213), SPH_C32(0x14151617), + SPH_C32(0x18191A1B), SPH_C32(0x1C1D1E1F), + SPH_C32(0x20212223), SPH_C32(0x24252627), + SPH_C32(0x28292A2B), SPH_C32(0x2C2D2E2F), + SPH_C32(0x30313233), SPH_C32(0x34353637), + SPH_C32(0x38393A3B), SPH_C32(0x3C3D3E3F) +}; + +static const sph_u32 IV256[] = { + SPH_C32(0x40414243), SPH_C32(0x44454647), + SPH_C32(0x48494A4B), SPH_C32(0x4C4D4E4F), + SPH_C32(0x50515253), SPH_C32(0x54555657), + SPH_C32(0x58595A5B), SPH_C32(0x5C5D5E5F), + SPH_C32(0x60616263), SPH_C32(0x64656667), + SPH_C32(0x68696A6B), SPH_C32(0x6C6D6E6F), + SPH_C32(0x70717273), SPH_C32(0x74757677), + SPH_C32(0x78797A7B), SPH_C32(0x7C7D7E7F) +}; + +#if SPH_64 + +static const sph_u64 IV384[] = { + SPH_C64(0x0001020304050607), SPH_C64(0x08090A0B0C0D0E0F), + SPH_C64(0x1011121314151617), SPH_C64(0x18191A1B1C1D1E1F), + SPH_C64(0x2021222324252627), SPH_C64(0x28292A2B2C2D2E2F), + SPH_C64(0x3031323334353637), SPH_C64(0x38393A3B3C3D3E3F), + SPH_C64(0x4041424344454647), SPH_C64(0x48494A4B4C4D4E4F), + SPH_C64(0x5051525354555657), SPH_C64(0x58595A5B5C5D5E5F), + SPH_C64(0x6061626364656667), SPH_C64(0x68696A6B6C6D6E6F), + SPH_C64(0x7071727374757677), SPH_C64(0x78797A7B7C7D7E7F) +}; + +static const sph_u64 IV512[] = { + SPH_C64(0x8081828384858687), SPH_C64(0x88898A8B8C8D8E8F), + SPH_C64(0x9091929394959697), SPH_C64(0x98999A9B9C9D9E9F), + SPH_C64(0xA0A1A2A3A4A5A6A7), SPH_C64(0xA8A9AAABACADAEAF), + SPH_C64(0xB0B1B2B3B4B5B6B7), SPH_C64(0xB8B9BABBBCBDBEBF), + SPH_C64(0xC0C1C2C3C4C5C6C7), SPH_C64(0xC8C9CACBCCCDCECF), + SPH_C64(0xD0D1D2D3D4D5D6D7), SPH_C64(0xD8D9DADBDCDDDEDF), + SPH_C64(0xE0E1E2E3E4E5E6E7), SPH_C64(0xE8E9EAEBECEDEEEF), + SPH_C64(0xF0F1F2F3F4F5F6F7), SPH_C64(0xF8F9FAFBFCFDFEFF) +}; + +#endif + +#define XCAT(x, y) XCAT_(x, y) +#define XCAT_(x, y) x ## y + +#define LPAR ( + +#define I16_16 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 +#define I16_17 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 +#define I16_18 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 +#define I16_19 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 +#define I16_20 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 +#define I16_21 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 +#define I16_22 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 +#define I16_23 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 +#define I16_24 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 +#define I16_25 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 +#define I16_26 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 +#define I16_27 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 +#define I16_28 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 +#define I16_29 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 +#define I16_30 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 +#define I16_31 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 + +#define M16_16 0, 1, 3, 4, 7, 10, 11 +#define M16_17 1, 2, 4, 5, 8, 11, 12 +#define M16_18 2, 3, 5, 6, 9, 12, 13 +#define M16_19 3, 4, 6, 7, 10, 13, 14 +#define M16_20 4, 5, 7, 8, 11, 14, 15 +#define M16_21 5, 6, 8, 9, 12, 15, 16 +#define M16_22 6, 7, 9, 10, 13, 0, 1 +#define M16_23 7, 8, 10, 11, 14, 1, 2 +#define M16_24 8, 9, 11, 12, 15, 2, 3 +#define M16_25 9, 10, 12, 13, 0, 3, 4 +#define M16_26 10, 11, 13, 14, 1, 4, 5 +#define M16_27 11, 12, 14, 15, 2, 5, 6 +#define M16_28 12, 13, 15, 16, 3, 6, 7 +#define M16_29 13, 14, 0, 1, 4, 7, 8 +#define M16_30 14, 15, 1, 2, 5, 8, 9 +#define M16_31 15, 16, 2, 3, 6, 9, 10 + +#define ss0(x) (((x) >> 1) ^ SPH_T32((x) << 3) \ + ^ SPH_ROTL32(x, 4) ^ SPH_ROTL32(x, 19)) +#define ss1(x) (((x) >> 1) ^ SPH_T32((x) << 2) \ + ^ SPH_ROTL32(x, 8) ^ SPH_ROTL32(x, 23)) +#define ss2(x) (((x) >> 2) ^ SPH_T32((x) << 1) \ + ^ SPH_ROTL32(x, 12) ^ SPH_ROTL32(x, 25)) +#define ss3(x) (((x) >> 2) ^ SPH_T32((x) << 2) \ + ^ SPH_ROTL32(x, 15) ^ SPH_ROTL32(x, 29)) +#define ss4(x) (((x) >> 1) ^ (x)) +#define ss5(x) (((x) >> 2) ^ (x)) +#define rs1(x) SPH_ROTL32(x, 3) +#define rs2(x) SPH_ROTL32(x, 7) +#define rs3(x) SPH_ROTL32(x, 13) +#define rs4(x) SPH_ROTL32(x, 16) +#define rs5(x) SPH_ROTL32(x, 19) +#define rs6(x) SPH_ROTL32(x, 23) +#define rs7(x) SPH_ROTL32(x, 27) + +#define Ks(j) SPH_T32((sph_u32)(j) * SPH_C32(0x05555555)) + +#define add_elt_s(mf, hf, j0m, j1m, j3m, j4m, j7m, j10m, j11m, j16) \ + (SPH_T32(SPH_ROTL32(mf(j0m), j1m) + SPH_ROTL32(mf(j3m), j4m) \ + - SPH_ROTL32(mf(j10m), j11m) + Ks(j16)) ^ hf(j7m)) + +#define expand1s_inner(qf, mf, hf, i16, \ + i0, i1, i2, i3, i4, i5, i6, i7, i8, \ + i9, i10, i11, i12, i13, i14, i15, \ + i0m, i1m, i3m, i4m, i7m, i10m, i11m) \ + SPH_T32(ss1(qf(i0)) + ss2(qf(i1)) + ss3(qf(i2)) + ss0(qf(i3)) \ + + ss1(qf(i4)) + ss2(qf(i5)) + ss3(qf(i6)) + ss0(qf(i7)) \ + + ss1(qf(i8)) + ss2(qf(i9)) + ss3(qf(i10)) + ss0(qf(i11)) \ + + ss1(qf(i12)) + ss2(qf(i13)) + ss3(qf(i14)) + ss0(qf(i15)) \ + + add_elt_s(mf, hf, i0m, i1m, i3m, i4m, i7m, i10m, i11m, i16)) + +#define expand1s(qf, mf, hf, i16) \ + expand1s_(qf, mf, hf, i16, I16_ ## i16, M16_ ## i16) +#define expand1s_(qf, mf, hf, i16, ix, iy) \ + expand1s_inner LPAR qf, mf, hf, i16, ix, iy) + +#define expand2s_inner(qf, mf, hf, i16, \ + i0, i1, i2, i3, i4, i5, i6, i7, i8, \ + i9, i10, i11, i12, i13, i14, i15, \ + i0m, i1m, i3m, i4m, i7m, i10m, i11m) \ + SPH_T32(qf(i0) + rs1(qf(i1)) + qf(i2) + rs2(qf(i3)) \ + + qf(i4) + rs3(qf(i5)) + qf(i6) + rs4(qf(i7)) \ + + qf(i8) + rs5(qf(i9)) + qf(i10) + rs6(qf(i11)) \ + + qf(i12) + rs7(qf(i13)) + ss4(qf(i14)) + ss5(qf(i15)) \ + + add_elt_s(mf, hf, i0m, i1m, i3m, i4m, i7m, i10m, i11m, i16)) + +#define expand2s(qf, mf, hf, i16) \ + expand2s_(qf, mf, hf, i16, I16_ ## i16, M16_ ## i16) +#define expand2s_(qf, mf, hf, i16, ix, iy) \ + expand2s_inner LPAR qf, mf, hf, i16, ix, iy) + +#if SPH_64 + +#define sb0(x) (((x) >> 1) ^ SPH_T64((x) << 3) \ + ^ SPH_ROTL64(x, 4) ^ SPH_ROTL64(x, 37)) +#define sb1(x) (((x) >> 1) ^ SPH_T64((x) << 2) \ + ^ SPH_ROTL64(x, 13) ^ SPH_ROTL64(x, 43)) +#define sb2(x) (((x) >> 2) ^ SPH_T64((x) << 1) \ + ^ SPH_ROTL64(x, 19) ^ SPH_ROTL64(x, 53)) +#define sb3(x) (((x) >> 2) ^ SPH_T64((x) << 2) \ + ^ SPH_ROTL64(x, 28) ^ SPH_ROTL64(x, 59)) +#define sb4(x) (((x) >> 1) ^ (x)) +#define sb5(x) (((x) >> 2) ^ (x)) +#define rb1(x) SPH_ROTL64(x, 5) +#define rb2(x) SPH_ROTL64(x, 11) +#define rb3(x) SPH_ROTL64(x, 27) +#define rb4(x) SPH_ROTL64(x, 32) +#define rb5(x) SPH_ROTL64(x, 37) +#define rb6(x) SPH_ROTL64(x, 43) +#define rb7(x) SPH_ROTL64(x, 53) + +#define Kb(j) SPH_T64((sph_u64)(j) * SPH_C64(0x0555555555555555)) + +#if SPH_SMALL_FOOTPRINT_BMW + +static const sph_u64 Kb_tab[] = { + Kb(16), Kb(17), Kb(18), Kb(19), Kb(20), Kb(21), Kb(22), Kb(23), + Kb(24), Kb(25), Kb(26), Kb(27), Kb(28), Kb(29), Kb(30), Kb(31) +}; + +#define rol_off(mf, j, off) \ + SPH_ROTL64(mf(((j) + (off)) & 15), (((j) + (off)) & 15) + 1) + +#define add_elt_b(mf, hf, j) \ + (SPH_T64(rol_off(mf, j, 0) + rol_off(mf, j, 3) \ + - rol_off(mf, j, 10) + Kb_tab[j]) ^ hf(((j) + 7) & 15)) + +#define expand1b(qf, mf, hf, i) \ + SPH_T64(sb1(qf((i) - 16)) + sb2(qf((i) - 15)) \ + + sb3(qf((i) - 14)) + sb0(qf((i) - 13)) \ + + sb1(qf((i) - 12)) + sb2(qf((i) - 11)) \ + + sb3(qf((i) - 10)) + sb0(qf((i) - 9)) \ + + sb1(qf((i) - 8)) + sb2(qf((i) - 7)) \ + + sb3(qf((i) - 6)) + sb0(qf((i) - 5)) \ + + sb1(qf((i) - 4)) + sb2(qf((i) - 3)) \ + + sb3(qf((i) - 2)) + sb0(qf((i) - 1)) \ + + add_elt_b(mf, hf, (i) - 16)) + +#define expand2b(qf, mf, hf, i) \ + SPH_T64(qf((i) - 16) + rb1(qf((i) - 15)) \ + + qf((i) - 14) + rb2(qf((i) - 13)) \ + + qf((i) - 12) + rb3(qf((i) - 11)) \ + + qf((i) - 10) + rb4(qf((i) - 9)) \ + + qf((i) - 8) + rb5(qf((i) - 7)) \ + + qf((i) - 6) + rb6(qf((i) - 5)) \ + + qf((i) - 4) + rb7(qf((i) - 3)) \ + + sb4(qf((i) - 2)) + sb5(qf((i) - 1)) \ + + add_elt_b(mf, hf, (i) - 16)) + +#else + +#define add_elt_b(mf, hf, j0m, j1m, j3m, j4m, j7m, j10m, j11m, j16) \ + (SPH_T64(SPH_ROTL64(mf(j0m), j1m) + SPH_ROTL64(mf(j3m), j4m) \ + - SPH_ROTL64(mf(j10m), j11m) + Kb(j16)) ^ hf(j7m)) + +#define expand1b_inner(qf, mf, hf, i16, \ + i0, i1, i2, i3, i4, i5, i6, i7, i8, \ + i9, i10, i11, i12, i13, i14, i15, \ + i0m, i1m, i3m, i4m, i7m, i10m, i11m) \ + SPH_T64(sb1(qf(i0)) + sb2(qf(i1)) + sb3(qf(i2)) + sb0(qf(i3)) \ + + sb1(qf(i4)) + sb2(qf(i5)) + sb3(qf(i6)) + sb0(qf(i7)) \ + + sb1(qf(i8)) + sb2(qf(i9)) + sb3(qf(i10)) + sb0(qf(i11)) \ + + sb1(qf(i12)) + sb2(qf(i13)) + sb3(qf(i14)) + sb0(qf(i15)) \ + + add_elt_b(mf, hf, i0m, i1m, i3m, i4m, i7m, i10m, i11m, i16)) + +#define expand1b(qf, mf, hf, i16) \ + expand1b_(qf, mf, hf, i16, I16_ ## i16, M16_ ## i16) +#define expand1b_(qf, mf, hf, i16, ix, iy) \ + expand1b_inner LPAR qf, mf, hf, i16, ix, iy) + +#define expand2b_inner(qf, mf, hf, i16, \ + i0, i1, i2, i3, i4, i5, i6, i7, i8, \ + i9, i10, i11, i12, i13, i14, i15, \ + i0m, i1m, i3m, i4m, i7m, i10m, i11m) \ + SPH_T64(qf(i0) + rb1(qf(i1)) + qf(i2) + rb2(qf(i3)) \ + + qf(i4) + rb3(qf(i5)) + qf(i6) + rb4(qf(i7)) \ + + qf(i8) + rb5(qf(i9)) + qf(i10) + rb6(qf(i11)) \ + + qf(i12) + rb7(qf(i13)) + sb4(qf(i14)) + sb5(qf(i15)) \ + + add_elt_b(mf, hf, i0m, i1m, i3m, i4m, i7m, i10m, i11m, i16)) + +#define expand2b(qf, mf, hf, i16) \ + expand2b_(qf, mf, hf, i16, I16_ ## i16, M16_ ## i16) +#define expand2b_(qf, mf, hf, i16, ix, iy) \ + expand2b_inner LPAR qf, mf, hf, i16, ix, iy) + +#endif + +#endif + +#define MAKE_W(tt, i0, op01, i1, op12, i2, op23, i3, op34, i4) \ + tt((M(i0) ^ H(i0)) op01 (M(i1) ^ H(i1)) op12 (M(i2) ^ H(i2)) \ + op23 (M(i3) ^ H(i3)) op34 (M(i4) ^ H(i4))) + +#define Ws0 MAKE_W(SPH_T32, 5, -, 7, +, 10, +, 13, +, 14) +#define Ws1 MAKE_W(SPH_T32, 6, -, 8, +, 11, +, 14, -, 15) +#define Ws2 MAKE_W(SPH_T32, 0, +, 7, +, 9, -, 12, +, 15) +#define Ws3 MAKE_W(SPH_T32, 0, -, 1, +, 8, -, 10, +, 13) +#define Ws4 MAKE_W(SPH_T32, 1, +, 2, +, 9, -, 11, -, 14) +#define Ws5 MAKE_W(SPH_T32, 3, -, 2, +, 10, -, 12, +, 15) +#define Ws6 MAKE_W(SPH_T32, 4, -, 0, -, 3, -, 11, +, 13) +#define Ws7 MAKE_W(SPH_T32, 1, -, 4, -, 5, -, 12, -, 14) +#define Ws8 MAKE_W(SPH_T32, 2, -, 5, -, 6, +, 13, -, 15) +#define Ws9 MAKE_W(SPH_T32, 0, -, 3, +, 6, -, 7, +, 14) +#define Ws10 MAKE_W(SPH_T32, 8, -, 1, -, 4, -, 7, +, 15) +#define Ws11 MAKE_W(SPH_T32, 8, -, 0, -, 2, -, 5, +, 9) +#define Ws12 MAKE_W(SPH_T32, 1, +, 3, -, 6, -, 9, +, 10) +#define Ws13 MAKE_W(SPH_T32, 2, +, 4, +, 7, +, 10, +, 11) +#define Ws14 MAKE_W(SPH_T32, 3, -, 5, +, 8, -, 11, -, 12) +#define Ws15 MAKE_W(SPH_T32, 12, -, 4, -, 6, -, 9, +, 13) + +#if SPH_SMALL_FOOTPRINT_BMW + +#define MAKE_Qas do { \ + unsigned u; \ + sph_u32 Ws[16]; \ + Ws[ 0] = Ws0; \ + Ws[ 1] = Ws1; \ + Ws[ 2] = Ws2; \ + Ws[ 3] = Ws3; \ + Ws[ 4] = Ws4; \ + Ws[ 5] = Ws5; \ + Ws[ 6] = Ws6; \ + Ws[ 7] = Ws7; \ + Ws[ 8] = Ws8; \ + Ws[ 9] = Ws9; \ + Ws[10] = Ws10; \ + Ws[11] = Ws11; \ + Ws[12] = Ws12; \ + Ws[13] = Ws13; \ + Ws[14] = Ws14; \ + Ws[15] = Ws15; \ + for (u = 0; u < 15; u += 5) { \ + qt[u + 0] = SPH_T32(ss0(Ws[u + 0]) + H(u + 1)); \ + qt[u + 1] = SPH_T32(ss1(Ws[u + 1]) + H(u + 2)); \ + qt[u + 2] = SPH_T32(ss2(Ws[u + 2]) + H(u + 3)); \ + qt[u + 3] = SPH_T32(ss3(Ws[u + 3]) + H(u + 4)); \ + qt[u + 4] = SPH_T32(ss4(Ws[u + 4]) + H(u + 5)); \ + } \ + qt[15] = SPH_T32(ss0(Ws[15]) + H(0)); \ + } while (0) + +#define MAKE_Qbs do { \ + qt[16] = expand1s(Qs, M, H, 16); \ + qt[17] = expand1s(Qs, M, H, 17); \ + qt[18] = expand2s(Qs, M, H, 18); \ + qt[19] = expand2s(Qs, M, H, 19); \ + qt[20] = expand2s(Qs, M, H, 20); \ + qt[21] = expand2s(Qs, M, H, 21); \ + qt[22] = expand2s(Qs, M, H, 22); \ + qt[23] = expand2s(Qs, M, H, 23); \ + qt[24] = expand2s(Qs, M, H, 24); \ + qt[25] = expand2s(Qs, M, H, 25); \ + qt[26] = expand2s(Qs, M, H, 26); \ + qt[27] = expand2s(Qs, M, H, 27); \ + qt[28] = expand2s(Qs, M, H, 28); \ + qt[29] = expand2s(Qs, M, H, 29); \ + qt[30] = expand2s(Qs, M, H, 30); \ + qt[31] = expand2s(Qs, M, H, 31); \ + } while (0) + +#else + +#define MAKE_Qas do { \ + qt[ 0] = SPH_T32(ss0(Ws0 ) + H( 1)); \ + qt[ 1] = SPH_T32(ss1(Ws1 ) + H( 2)); \ + qt[ 2] = SPH_T32(ss2(Ws2 ) + H( 3)); \ + qt[ 3] = SPH_T32(ss3(Ws3 ) + H( 4)); \ + qt[ 4] = SPH_T32(ss4(Ws4 ) + H( 5)); \ + qt[ 5] = SPH_T32(ss0(Ws5 ) + H( 6)); \ + qt[ 6] = SPH_T32(ss1(Ws6 ) + H( 7)); \ + qt[ 7] = SPH_T32(ss2(Ws7 ) + H( 8)); \ + qt[ 8] = SPH_T32(ss3(Ws8 ) + H( 9)); \ + qt[ 9] = SPH_T32(ss4(Ws9 ) + H(10)); \ + qt[10] = SPH_T32(ss0(Ws10) + H(11)); \ + qt[11] = SPH_T32(ss1(Ws11) + H(12)); \ + qt[12] = SPH_T32(ss2(Ws12) + H(13)); \ + qt[13] = SPH_T32(ss3(Ws13) + H(14)); \ + qt[14] = SPH_T32(ss4(Ws14) + H(15)); \ + qt[15] = SPH_T32(ss0(Ws15) + H( 0)); \ + } while (0) + +#define MAKE_Qbs do { \ + qt[16] = expand1s(Qs, M, H, 16); \ + qt[17] = expand1s(Qs, M, H, 17); \ + qt[18] = expand2s(Qs, M, H, 18); \ + qt[19] = expand2s(Qs, M, H, 19); \ + qt[20] = expand2s(Qs, M, H, 20); \ + qt[21] = expand2s(Qs, M, H, 21); \ + qt[22] = expand2s(Qs, M, H, 22); \ + qt[23] = expand2s(Qs, M, H, 23); \ + qt[24] = expand2s(Qs, M, H, 24); \ + qt[25] = expand2s(Qs, M, H, 25); \ + qt[26] = expand2s(Qs, M, H, 26); \ + qt[27] = expand2s(Qs, M, H, 27); \ + qt[28] = expand2s(Qs, M, H, 28); \ + qt[29] = expand2s(Qs, M, H, 29); \ + qt[30] = expand2s(Qs, M, H, 30); \ + qt[31] = expand2s(Qs, M, H, 31); \ + } while (0) + +#endif + +#define MAKE_Qs do { \ + MAKE_Qas; \ + MAKE_Qbs; \ + } while (0) + +#define Qs(j) (qt[j]) + +#if SPH_64 + +#define Wb0 MAKE_W(SPH_T64, 5, -, 7, +, 10, +, 13, +, 14) +#define Wb1 MAKE_W(SPH_T64, 6, -, 8, +, 11, +, 14, -, 15) +#define Wb2 MAKE_W(SPH_T64, 0, +, 7, +, 9, -, 12, +, 15) +#define Wb3 MAKE_W(SPH_T64, 0, -, 1, +, 8, -, 10, +, 13) +#define Wb4 MAKE_W(SPH_T64, 1, +, 2, +, 9, -, 11, -, 14) +#define Wb5 MAKE_W(SPH_T64, 3, -, 2, +, 10, -, 12, +, 15) +#define Wb6 MAKE_W(SPH_T64, 4, -, 0, -, 3, -, 11, +, 13) +#define Wb7 MAKE_W(SPH_T64, 1, -, 4, -, 5, -, 12, -, 14) +#define Wb8 MAKE_W(SPH_T64, 2, -, 5, -, 6, +, 13, -, 15) +#define Wb9 MAKE_W(SPH_T64, 0, -, 3, +, 6, -, 7, +, 14) +#define Wb10 MAKE_W(SPH_T64, 8, -, 1, -, 4, -, 7, +, 15) +#define Wb11 MAKE_W(SPH_T64, 8, -, 0, -, 2, -, 5, +, 9) +#define Wb12 MAKE_W(SPH_T64, 1, +, 3, -, 6, -, 9, +, 10) +#define Wb13 MAKE_W(SPH_T64, 2, +, 4, +, 7, +, 10, +, 11) +#define Wb14 MAKE_W(SPH_T64, 3, -, 5, +, 8, -, 11, -, 12) +#define Wb15 MAKE_W(SPH_T64, 12, -, 4, -, 6, -, 9, +, 13) + +#if SPH_SMALL_FOOTPRINT_BMW + +#define MAKE_Qab do { \ + unsigned u; \ + sph_u64 Wb[16]; \ + Wb[ 0] = Wb0; \ + Wb[ 1] = Wb1; \ + Wb[ 2] = Wb2; \ + Wb[ 3] = Wb3; \ + Wb[ 4] = Wb4; \ + Wb[ 5] = Wb5; \ + Wb[ 6] = Wb6; \ + Wb[ 7] = Wb7; \ + Wb[ 8] = Wb8; \ + Wb[ 9] = Wb9; \ + Wb[10] = Wb10; \ + Wb[11] = Wb11; \ + Wb[12] = Wb12; \ + Wb[13] = Wb13; \ + Wb[14] = Wb14; \ + Wb[15] = Wb15; \ + for (u = 0; u < 15; u += 5) { \ + qt[u + 0] = SPH_T64(sb0(Wb[u + 0]) + H(u + 1)); \ + qt[u + 1] = SPH_T64(sb1(Wb[u + 1]) + H(u + 2)); \ + qt[u + 2] = SPH_T64(sb2(Wb[u + 2]) + H(u + 3)); \ + qt[u + 3] = SPH_T64(sb3(Wb[u + 3]) + H(u + 4)); \ + qt[u + 4] = SPH_T64(sb4(Wb[u + 4]) + H(u + 5)); \ + } \ + qt[15] = SPH_T64(sb0(Wb[15]) + H(0)); \ + } while (0) + +#define MAKE_Qbb do { \ + unsigned u; \ + for (u = 16; u < 18; u ++) \ + qt[u] = expand1b(Qb, M, H, u); \ + for (u = 18; u < 32; u ++) \ + qt[u] = expand2b(Qb, M, H, u); \ + } while (0) + +#else + +#define MAKE_Qab do { \ + qt[ 0] = SPH_T64(sb0(Wb0 ) + H( 1)); \ + qt[ 1] = SPH_T64(sb1(Wb1 ) + H( 2)); \ + qt[ 2] = SPH_T64(sb2(Wb2 ) + H( 3)); \ + qt[ 3] = SPH_T64(sb3(Wb3 ) + H( 4)); \ + qt[ 4] = SPH_T64(sb4(Wb4 ) + H( 5)); \ + qt[ 5] = SPH_T64(sb0(Wb5 ) + H( 6)); \ + qt[ 6] = SPH_T64(sb1(Wb6 ) + H( 7)); \ + qt[ 7] = SPH_T64(sb2(Wb7 ) + H( 8)); \ + qt[ 8] = SPH_T64(sb3(Wb8 ) + H( 9)); \ + qt[ 9] = SPH_T64(sb4(Wb9 ) + H(10)); \ + qt[10] = SPH_T64(sb0(Wb10) + H(11)); \ + qt[11] = SPH_T64(sb1(Wb11) + H(12)); \ + qt[12] = SPH_T64(sb2(Wb12) + H(13)); \ + qt[13] = SPH_T64(sb3(Wb13) + H(14)); \ + qt[14] = SPH_T64(sb4(Wb14) + H(15)); \ + qt[15] = SPH_T64(sb0(Wb15) + H( 0)); \ + } while (0) + +#define MAKE_Qbb do { \ + qt[16] = expand1b(Qb, M, H, 16); \ + qt[17] = expand1b(Qb, M, H, 17); \ + qt[18] = expand2b(Qb, M, H, 18); \ + qt[19] = expand2b(Qb, M, H, 19); \ + qt[20] = expand2b(Qb, M, H, 20); \ + qt[21] = expand2b(Qb, M, H, 21); \ + qt[22] = expand2b(Qb, M, H, 22); \ + qt[23] = expand2b(Qb, M, H, 23); \ + qt[24] = expand2b(Qb, M, H, 24); \ + qt[25] = expand2b(Qb, M, H, 25); \ + qt[26] = expand2b(Qb, M, H, 26); \ + qt[27] = expand2b(Qb, M, H, 27); \ + qt[28] = expand2b(Qb, M, H, 28); \ + qt[29] = expand2b(Qb, M, H, 29); \ + qt[30] = expand2b(Qb, M, H, 30); \ + qt[31] = expand2b(Qb, M, H, 31); \ + } while (0) + +#endif + +#define MAKE_Qb do { \ + MAKE_Qab; \ + MAKE_Qbb; \ + } while (0) + +#define Qb(j) (qt[j]) + +#endif + +#define FOLD(type, mkQ, tt, rol, mf, qf, dhf) do { \ + type qt[32], xl, xh; \ + mkQ; \ + xl = qf(16) ^ qf(17) ^ qf(18) ^ qf(19) \ + ^ qf(20) ^ qf(21) ^ qf(22) ^ qf(23); \ + xh = xl ^ qf(24) ^ qf(25) ^ qf(26) ^ qf(27) \ + ^ qf(28) ^ qf(29) ^ qf(30) ^ qf(31); \ + dhf( 0) = tt(((xh << 5) ^ (qf(16) >> 5) ^ mf( 0)) \ + + (xl ^ qf(24) ^ qf( 0))); \ + dhf( 1) = tt(((xh >> 7) ^ (qf(17) << 8) ^ mf( 1)) \ + + (xl ^ qf(25) ^ qf( 1))); \ + dhf( 2) = tt(((xh >> 5) ^ (qf(18) << 5) ^ mf( 2)) \ + + (xl ^ qf(26) ^ qf( 2))); \ + dhf( 3) = tt(((xh >> 1) ^ (qf(19) << 5) ^ mf( 3)) \ + + (xl ^ qf(27) ^ qf( 3))); \ + dhf( 4) = tt(((xh >> 3) ^ (qf(20) << 0) ^ mf( 4)) \ + + (xl ^ qf(28) ^ qf( 4))); \ + dhf( 5) = tt(((xh << 6) ^ (qf(21) >> 6) ^ mf( 5)) \ + + (xl ^ qf(29) ^ qf( 5))); \ + dhf( 6) = tt(((xh >> 4) ^ (qf(22) << 6) ^ mf( 6)) \ + + (xl ^ qf(30) ^ qf( 6))); \ + dhf( 7) = tt(((xh >> 11) ^ (qf(23) << 2) ^ mf( 7)) \ + + (xl ^ qf(31) ^ qf( 7))); \ + dhf( 8) = tt(rol(dhf(4), 9) + (xh ^ qf(24) ^ mf( 8)) \ + + ((xl << 8) ^ qf(23) ^ qf( 8))); \ + dhf( 9) = tt(rol(dhf(5), 10) + (xh ^ qf(25) ^ mf( 9)) \ + + ((xl >> 6) ^ qf(16) ^ qf( 9))); \ + dhf(10) = tt(rol(dhf(6), 11) + (xh ^ qf(26) ^ mf(10)) \ + + ((xl << 6) ^ qf(17) ^ qf(10))); \ + dhf(11) = tt(rol(dhf(7), 12) + (xh ^ qf(27) ^ mf(11)) \ + + ((xl << 4) ^ qf(18) ^ qf(11))); \ + dhf(12) = tt(rol(dhf(0), 13) + (xh ^ qf(28) ^ mf(12)) \ + + ((xl >> 3) ^ qf(19) ^ qf(12))); \ + dhf(13) = tt(rol(dhf(1), 14) + (xh ^ qf(29) ^ mf(13)) \ + + ((xl >> 4) ^ qf(20) ^ qf(13))); \ + dhf(14) = tt(rol(dhf(2), 15) + (xh ^ qf(30) ^ mf(14)) \ + + ((xl >> 7) ^ qf(21) ^ qf(14))); \ + dhf(15) = tt(rol(dhf(3), 16) + (xh ^ qf(31) ^ mf(15)) \ + + ((xl >> 2) ^ qf(22) ^ qf(15))); \ + } while (0) + +#define FOLDs FOLD(sph_u32, MAKE_Qs, SPH_T32, SPH_ROTL32, M, Qs, dH) + +#if SPH_64 + +#define FOLDb FOLD(sph_u64, MAKE_Qb, SPH_T64, SPH_ROTL64, M, Qb, dH) + +#endif + +static void +compress_small(const unsigned char *data, const sph_u32 h[16], sph_u32 dh[16]) +{ +#if SPH_LITTLE_FAST +#define M(x) sph_dec32le_aligned(data + 4 * (x)) +#else + sph_u32 mv[16]; + + mv[ 0] = sph_dec32le_aligned(data + 0); + mv[ 1] = sph_dec32le_aligned(data + 4); + mv[ 2] = sph_dec32le_aligned(data + 8); + mv[ 3] = sph_dec32le_aligned(data + 12); + mv[ 4] = sph_dec32le_aligned(data + 16); + mv[ 5] = sph_dec32le_aligned(data + 20); + mv[ 6] = sph_dec32le_aligned(data + 24); + mv[ 7] = sph_dec32le_aligned(data + 28); + mv[ 8] = sph_dec32le_aligned(data + 32); + mv[ 9] = sph_dec32le_aligned(data + 36); + mv[10] = sph_dec32le_aligned(data + 40); + mv[11] = sph_dec32le_aligned(data + 44); + mv[12] = sph_dec32le_aligned(data + 48); + mv[13] = sph_dec32le_aligned(data + 52); + mv[14] = sph_dec32le_aligned(data + 56); + mv[15] = sph_dec32le_aligned(data + 60); +#define M(x) (mv[x]) +#endif +#define H(x) (h[x]) +#define dH(x) (dh[x]) + + FOLDs; + +#undef M +#undef H +#undef dH +} + +static const sph_u32 final_s[16] = { + SPH_C32(0xaaaaaaa0), SPH_C32(0xaaaaaaa1), SPH_C32(0xaaaaaaa2), + SPH_C32(0xaaaaaaa3), SPH_C32(0xaaaaaaa4), SPH_C32(0xaaaaaaa5), + SPH_C32(0xaaaaaaa6), SPH_C32(0xaaaaaaa7), SPH_C32(0xaaaaaaa8), + SPH_C32(0xaaaaaaa9), SPH_C32(0xaaaaaaaa), SPH_C32(0xaaaaaaab), + SPH_C32(0xaaaaaaac), SPH_C32(0xaaaaaaad), SPH_C32(0xaaaaaaae), + SPH_C32(0xaaaaaaaf) +}; + +static void +bmw32_init(sph_bmw_small_context *sc, const sph_u32 *iv) +{ + memcpy(sc->H, iv, sizeof sc->H); + sc->ptr = 0; +#if SPH_64 + sc->bit_count = 0; +#else + sc->bit_count_high = 0; + sc->bit_count_low = 0; +#endif +} + +static void +bmw32(sph_bmw_small_context *sc, const void *data, size_t len) +{ + unsigned char *buf; + size_t ptr; + sph_u32 htmp[16]; + sph_u32 *h1, *h2; +#if !SPH_64 + sph_u32 tmp; +#endif + +#if SPH_64 + sc->bit_count += (sph_u64)len << 3; +#else + tmp = sc->bit_count_low; + sc->bit_count_low = SPH_T32(tmp + ((sph_u32)len << 3)); + if (sc->bit_count_low < tmp) + sc->bit_count_high ++; + sc->bit_count_high += len >> 29; +#endif + buf = sc->buf; + ptr = sc->ptr; + h1 = sc->H; + h2 = htmp; + while (len > 0) { + size_t clen; + + clen = (sizeof sc->buf) - ptr; + if (clen > len) + clen = len; + memcpy(buf + ptr, data, clen); + data = (const unsigned char *)data + clen; + len -= clen; + ptr += clen; + if (ptr == sizeof sc->buf) { + sph_u32 *ht; + + compress_small(buf, h1, h2); + ht = h1; + h1 = h2; + h2 = ht; + ptr = 0; + } + } + sc->ptr = ptr; + if (h1 != sc->H) + memcpy(sc->H, h1, sizeof sc->H); +} + +static void +bmw32_close(sph_bmw_small_context *sc, unsigned ub, unsigned n, + void *dst, size_t out_size_w32) +{ + unsigned char *buf, *out; + size_t ptr, u, v; + unsigned z; + sph_u32 h1[16], h2[16], *h; + + buf = sc->buf; + ptr = sc->ptr; + z = 0x80 >> n; + buf[ptr ++] = ((ub & -z) | z) & 0xFF; + h = sc->H; + if (ptr > (sizeof sc->buf) - 8) { + memset(buf + ptr, 0, (sizeof sc->buf) - ptr); + compress_small(buf, h, h1); + ptr = 0; + h = h1; + } + memset(buf + ptr, 0, (sizeof sc->buf) - 8 - ptr); +#if SPH_64 + sph_enc64le_aligned(buf + (sizeof sc->buf) - 8, + SPH_T64(sc->bit_count + n)); +#else + sph_enc32le_aligned(buf + (sizeof sc->buf) - 8, + sc->bit_count_low + n); + sph_enc32le_aligned(buf + (sizeof sc->buf) - 4, + SPH_T32(sc->bit_count_high)); +#endif + compress_small(buf, h, h2); + for (u = 0; u < 16; u ++) + sph_enc32le_aligned(buf + 4 * u, h2[u]); + compress_small(buf, final_s, h1); + out = dst; + for (u = 0, v = 16 - out_size_w32; u < out_size_w32; u ++, v ++) + sph_enc32le(out + 4 * u, h1[v]); +} + +#if SPH_64 + +static void +compress_big(const unsigned char *data, const sph_u64 h[16], sph_u64 dh[16]) +{ +#if SPH_LITTLE_FAST +#define M(x) sph_dec64le_aligned(data + 8 * (x)) +#else + sph_u64 mv[16]; + + mv[ 0] = sph_dec64le_aligned(data + 0); + mv[ 1] = sph_dec64le_aligned(data + 8); + mv[ 2] = sph_dec64le_aligned(data + 16); + mv[ 3] = sph_dec64le_aligned(data + 24); + mv[ 4] = sph_dec64le_aligned(data + 32); + mv[ 5] = sph_dec64le_aligned(data + 40); + mv[ 6] = sph_dec64le_aligned(data + 48); + mv[ 7] = sph_dec64le_aligned(data + 56); + mv[ 8] = sph_dec64le_aligned(data + 64); + mv[ 9] = sph_dec64le_aligned(data + 72); + mv[10] = sph_dec64le_aligned(data + 80); + mv[11] = sph_dec64le_aligned(data + 88); + mv[12] = sph_dec64le_aligned(data + 96); + mv[13] = sph_dec64le_aligned(data + 104); + mv[14] = sph_dec64le_aligned(data + 112); + mv[15] = sph_dec64le_aligned(data + 120); +#define M(x) (mv[x]) +#endif +#define H(x) (h[x]) +#define dH(x) (dh[x]) + + FOLDb; + +#undef M +#undef H +#undef dH +} + +static const sph_u64 final_b[16] = { + SPH_C64(0xaaaaaaaaaaaaaaa0), SPH_C64(0xaaaaaaaaaaaaaaa1), + SPH_C64(0xaaaaaaaaaaaaaaa2), SPH_C64(0xaaaaaaaaaaaaaaa3), + SPH_C64(0xaaaaaaaaaaaaaaa4), SPH_C64(0xaaaaaaaaaaaaaaa5), + SPH_C64(0xaaaaaaaaaaaaaaa6), SPH_C64(0xaaaaaaaaaaaaaaa7), + SPH_C64(0xaaaaaaaaaaaaaaa8), SPH_C64(0xaaaaaaaaaaaaaaa9), + SPH_C64(0xaaaaaaaaaaaaaaaa), SPH_C64(0xaaaaaaaaaaaaaaab), + SPH_C64(0xaaaaaaaaaaaaaaac), SPH_C64(0xaaaaaaaaaaaaaaad), + SPH_C64(0xaaaaaaaaaaaaaaae), SPH_C64(0xaaaaaaaaaaaaaaaf) +}; + +static void +bmw64_init(sph_bmw_big_context *sc, const sph_u64 *iv) +{ + memcpy(sc->H, iv, sizeof sc->H); + sc->ptr = 0; + sc->bit_count = 0; +} + +static void +bmw64(sph_bmw_big_context *sc, const void *data, size_t len) +{ + unsigned char *buf; + size_t ptr; + sph_u64 htmp[16]; + sph_u64 *h1, *h2; + + sc->bit_count += (sph_u64)len << 3; + buf = sc->buf; + ptr = sc->ptr; + h1 = sc->H; + h2 = htmp; + while (len > 0) { + size_t clen; + + clen = (sizeof sc->buf) - ptr; + if (clen > len) + clen = len; + memcpy(buf + ptr, data, clen); + data = (const unsigned char *)data + clen; + len -= clen; + ptr += clen; + if (ptr == sizeof sc->buf) { + sph_u64 *ht; + + compress_big(buf, h1, h2); + ht = h1; + h1 = h2; + h2 = ht; + ptr = 0; + } + } + sc->ptr = ptr; + if (h1 != sc->H) + memcpy(sc->H, h1, sizeof sc->H); +} + +static void +bmw64_close(sph_bmw_big_context *sc, unsigned ub, unsigned n, + void *dst, size_t out_size_w64) +{ + unsigned char *buf, *out; + size_t ptr, u, v; + unsigned z; + sph_u64 h1[16], h2[16], *h; + + buf = sc->buf; + ptr = sc->ptr; + z = 0x80 >> n; + buf[ptr ++] = ((ub & -z) | z) & 0xFF; + h = sc->H; + if (ptr > (sizeof sc->buf) - 8) { + memset(buf + ptr, 0, (sizeof sc->buf) - ptr); + compress_big(buf, h, h1); + ptr = 0; + h = h1; + } + memset(buf + ptr, 0, (sizeof sc->buf) - 8 - ptr); + sph_enc64le_aligned(buf + (sizeof sc->buf) - 8, + SPH_T64(sc->bit_count + n)); + compress_big(buf, h, h2); + for (u = 0; u < 16; u ++) + sph_enc64le_aligned(buf + 8 * u, h2[u]); + compress_big(buf, final_b, h1); + out = dst; + for (u = 0, v = 16 - out_size_w64; u < out_size_w64; u ++, v ++) + sph_enc64le(out + 8 * u, h1[v]); +} + +#endif + +/* see sph_bmw.h */ +void +sph_bmw224_init(void *cc) +{ + bmw32_init(cc, IV224); +} + +/* see sph_bmw.h */ +void +sph_bmw224(void *cc, const void *data, size_t len) +{ + bmw32(cc, data, len); +} + +/* see sph_bmw.h */ +void +sph_bmw224_close(void *cc, void *dst) +{ + sph_bmw224_addbits_and_close(cc, 0, 0, dst); +} + +/* see sph_bmw.h */ +void +sph_bmw224_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst) +{ + bmw32_close(cc, ub, n, dst, 7); + sph_bmw224_init(cc); +} + +/* see sph_bmw.h */ +void +sph_bmw256_init(void *cc) +{ + bmw32_init(cc, IV256); +} + +/* see sph_bmw.h */ +void +sph_bmw256(void *cc, const void *data, size_t len) +{ + bmw32(cc, data, len); +} + +/* see sph_bmw.h */ +void +sph_bmw256_close(void *cc, void *dst) +{ + sph_bmw256_addbits_and_close(cc, 0, 0, dst); +} + +/* see sph_bmw.h */ +void +sph_bmw256_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst) +{ + bmw32_close(cc, ub, n, dst, 8); + sph_bmw256_init(cc); +} + +#if SPH_64 + +/* see sph_bmw.h */ +void +sph_bmw384_init(void *cc) +{ + bmw64_init(cc, IV384); +} + +/* see sph_bmw.h */ +void +sph_bmw384(void *cc, const void *data, size_t len) +{ + bmw64(cc, data, len); +} + +/* see sph_bmw.h */ +void +sph_bmw384_close(void *cc, void *dst) +{ + sph_bmw384_addbits_and_close(cc, 0, 0, dst); +} + +/* see sph_bmw.h */ +void +sph_bmw384_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst) +{ + bmw64_close(cc, ub, n, dst, 6); + sph_bmw384_init(cc); +} + +/* see sph_bmw.h */ +void +sph_bmw512_init(void *cc) +{ + bmw64_init(cc, IV512); +} + +/* see sph_bmw.h */ +void +sph_bmw512(void *cc, const void *data, size_t len) +{ + bmw64(cc, data, len); +} + +/* see sph_bmw.h */ +void +sph_bmw512_close(void *cc, void *dst) +{ + sph_bmw512_addbits_and_close(cc, 0, 0, dst); +} + +/* see sph_bmw.h */ +void +sph_bmw512_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst) +{ + bmw64_close(cc, ub, n, dst, 8); + sph_bmw512_init(cc); +} + +#endif + diff --git a/crypto/sha3/cubehash.c b/crypto/sha3/cubehash.c new file mode 100644 index 000000000..5580dafce --- /dev/null +++ b/crypto/sha3/cubehash.c @@ -0,0 +1,718 @@ +/* $Id: cubehash.c 227 2010-06-16 17:28:38Z tp $ */ +/* + * CubeHash implementation. + * + * ==========================(LICENSE BEGIN)============================ + * + * Copyright (c) 2007-2010 Projet RNRT SAPHIR + * + * Permission is hereby granted, free of charge, to any person obtaining + * a copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sublicense, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * The above copyright notice and this permission notice shall be + * included in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + * + * ===========================(LICENSE END)============================= + * + * @author Thomas Pornin + */ + +#include +#include +#include + +#include "sph_cubehash.h" + +#if SPH_SMALL_FOOTPRINT && !defined SPH_SMALL_FOOTPRINT_CUBEHASH +#define SPH_SMALL_FOOTPRINT_CUBEHASH 1 +#endif + +/* + * Some tests were conducted on an Intel Core2 Q6600 (32-bit and 64-bit + * mode), a PowerPC G3, and a MIPS-compatible CPU (Broadcom BCM3302). + * It appears that the optimal settings are: + * -- full unroll, no state copy on the "big" systems (x86, PowerPC) + * -- unroll to 4 or 8, state copy on the "small" system (MIPS) + */ + +#if SPH_SMALL_FOOTPRINT_CUBEHASH + +#if !defined SPH_CUBEHASH_UNROLL +#define SPH_CUBEHASH_UNROLL 4 +#endif +#if !defined SPH_CUBEHASH_NOCOPY +#define SPH_CUBEHASH_NOCOPY 1 +#endif + +#else + +#if !defined SPH_CUBEHASH_UNROLL +#define SPH_CUBEHASH_UNROLL 0 +#endif +#if !defined SPH_CUBEHASH_NOCOPY +#define SPH_CUBEHASH_NOCOPY 0 +#endif + +#endif + +#ifdef _MSC_VER +#pragma warning (disable: 4146) +#endif + +static const sph_u32 IV224[] = { + SPH_C32(0xB0FC8217), SPH_C32(0x1BEE1A90), SPH_C32(0x829E1A22), + SPH_C32(0x6362C342), SPH_C32(0x24D91C30), SPH_C32(0x03A7AA24), + SPH_C32(0xA63721C8), SPH_C32(0x85B0E2EF), SPH_C32(0xF35D13F3), + SPH_C32(0x41DA807D), SPH_C32(0x21A70CA6), SPH_C32(0x1F4E9774), + SPH_C32(0xB3E1C932), SPH_C32(0xEB0A79A8), SPH_C32(0xCDDAAA66), + SPH_C32(0xE2F6ECAA), SPH_C32(0x0A713362), SPH_C32(0xAA3080E0), + SPH_C32(0xD8F23A32), SPH_C32(0xCEF15E28), SPH_C32(0xDB086314), + SPH_C32(0x7F709DF7), SPH_C32(0xACD228A4), SPH_C32(0x704D6ECE), + SPH_C32(0xAA3EC95F), SPH_C32(0xE387C214), SPH_C32(0x3A6445FF), + SPH_C32(0x9CAB81C3), SPH_C32(0xC73D4B98), SPH_C32(0xD277AEBE), + SPH_C32(0xFD20151C), SPH_C32(0x00CB573E) +}; + +static const sph_u32 IV256[] = { + SPH_C32(0xEA2BD4B4), SPH_C32(0xCCD6F29F), SPH_C32(0x63117E71), + SPH_C32(0x35481EAE), SPH_C32(0x22512D5B), SPH_C32(0xE5D94E63), + SPH_C32(0x7E624131), SPH_C32(0xF4CC12BE), SPH_C32(0xC2D0B696), + SPH_C32(0x42AF2070), SPH_C32(0xD0720C35), SPH_C32(0x3361DA8C), + SPH_C32(0x28CCECA4), SPH_C32(0x8EF8AD83), SPH_C32(0x4680AC00), + SPH_C32(0x40E5FBAB), SPH_C32(0xD89041C3), SPH_C32(0x6107FBD5), + SPH_C32(0x6C859D41), SPH_C32(0xF0B26679), SPH_C32(0x09392549), + SPH_C32(0x5FA25603), SPH_C32(0x65C892FD), SPH_C32(0x93CB6285), + SPH_C32(0x2AF2B5AE), SPH_C32(0x9E4B4E60), SPH_C32(0x774ABFDD), + SPH_C32(0x85254725), SPH_C32(0x15815AEB), SPH_C32(0x4AB6AAD6), + SPH_C32(0x9CDAF8AF), SPH_C32(0xD6032C0A) +}; + +static const sph_u32 IV384[] = { + SPH_C32(0xE623087E), SPH_C32(0x04C00C87), SPH_C32(0x5EF46453), + SPH_C32(0x69524B13), SPH_C32(0x1A05C7A9), SPH_C32(0x3528DF88), + SPH_C32(0x6BDD01B5), SPH_C32(0x5057B792), SPH_C32(0x6AA7A922), + SPH_C32(0x649C7EEE), SPH_C32(0xF426309F), SPH_C32(0xCB629052), + SPH_C32(0xFC8E20ED), SPH_C32(0xB3482BAB), SPH_C32(0xF89E5E7E), + SPH_C32(0xD83D4DE4), SPH_C32(0x44BFC10D), SPH_C32(0x5FC1E63D), + SPH_C32(0x2104E6CB), SPH_C32(0x17958F7F), SPH_C32(0xDBEAEF70), + SPH_C32(0xB4B97E1E), SPH_C32(0x32C195F6), SPH_C32(0x6184A8E4), + SPH_C32(0x796C2543), SPH_C32(0x23DE176D), SPH_C32(0xD33BBAEC), + SPH_C32(0x0C12E5D2), SPH_C32(0x4EB95A7B), SPH_C32(0x2D18BA01), + SPH_C32(0x04EE475F), SPH_C32(0x1FC5F22E) +}; + +static const sph_u32 IV512[] = { + SPH_C32(0x2AEA2A61), SPH_C32(0x50F494D4), SPH_C32(0x2D538B8B), + SPH_C32(0x4167D83E), SPH_C32(0x3FEE2313), SPH_C32(0xC701CF8C), + SPH_C32(0xCC39968E), SPH_C32(0x50AC5695), SPH_C32(0x4D42C787), + SPH_C32(0xA647A8B3), SPH_C32(0x97CF0BEF), SPH_C32(0x825B4537), + SPH_C32(0xEEF864D2), SPH_C32(0xF22090C4), SPH_C32(0xD0E5CD33), + SPH_C32(0xA23911AE), SPH_C32(0xFCD398D9), SPH_C32(0x148FE485), + SPH_C32(0x1B017BEF), SPH_C32(0xB6444532), SPH_C32(0x6A536159), + SPH_C32(0x2FF5781C), SPH_C32(0x91FA7934), SPH_C32(0x0DBADEA9), + SPH_C32(0xD65C8A2B), SPH_C32(0xA5A70E75), SPH_C32(0xB1C62456), + SPH_C32(0xBC796576), SPH_C32(0x1921C8F7), SPH_C32(0xE7989AF1), + SPH_C32(0x7795D246), SPH_C32(0xD43E3B44) +}; + +#define T32 SPH_T32 +#define ROTL32 SPH_ROTL32 + +#if SPH_CUBEHASH_NOCOPY + +#define DECL_STATE +#define READ_STATE(cc) +#define WRITE_STATE(cc) + +#define x0 ((sc)->state[ 0]) +#define x1 ((sc)->state[ 1]) +#define x2 ((sc)->state[ 2]) +#define x3 ((sc)->state[ 3]) +#define x4 ((sc)->state[ 4]) +#define x5 ((sc)->state[ 5]) +#define x6 ((sc)->state[ 6]) +#define x7 ((sc)->state[ 7]) +#define x8 ((sc)->state[ 8]) +#define x9 ((sc)->state[ 9]) +#define xa ((sc)->state[10]) +#define xb ((sc)->state[11]) +#define xc ((sc)->state[12]) +#define xd ((sc)->state[13]) +#define xe ((sc)->state[14]) +#define xf ((sc)->state[15]) +#define xg ((sc)->state[16]) +#define xh ((sc)->state[17]) +#define xi ((sc)->state[18]) +#define xj ((sc)->state[19]) +#define xk ((sc)->state[20]) +#define xl ((sc)->state[21]) +#define xm ((sc)->state[22]) +#define xn ((sc)->state[23]) +#define xo ((sc)->state[24]) +#define xp ((sc)->state[25]) +#define xq ((sc)->state[26]) +#define xr ((sc)->state[27]) +#define xs ((sc)->state[28]) +#define xt ((sc)->state[29]) +#define xu ((sc)->state[30]) +#define xv ((sc)->state[31]) + +#else + +#define DECL_STATE \ + sph_u32 x0, x1, x2, x3, x4, x5, x6, x7; \ + sph_u32 x8, x9, xa, xb, xc, xd, xe, xf; \ + sph_u32 xg, xh, xi, xj, xk, xl, xm, xn; \ + sph_u32 xo, xp, xq, xr, xs, xt, xu, xv; + +#define READ_STATE(cc) do { \ + x0 = (cc)->state[ 0]; \ + x1 = (cc)->state[ 1]; \ + x2 = (cc)->state[ 2]; \ + x3 = (cc)->state[ 3]; \ + x4 = (cc)->state[ 4]; \ + x5 = (cc)->state[ 5]; \ + x6 = (cc)->state[ 6]; \ + x7 = (cc)->state[ 7]; \ + x8 = (cc)->state[ 8]; \ + x9 = (cc)->state[ 9]; \ + xa = (cc)->state[10]; \ + xb = (cc)->state[11]; \ + xc = (cc)->state[12]; \ + xd = (cc)->state[13]; \ + xe = (cc)->state[14]; \ + xf = (cc)->state[15]; \ + xg = (cc)->state[16]; \ + xh = (cc)->state[17]; \ + xi = (cc)->state[18]; \ + xj = (cc)->state[19]; \ + xk = (cc)->state[20]; \ + xl = (cc)->state[21]; \ + xm = (cc)->state[22]; \ + xn = (cc)->state[23]; \ + xo = (cc)->state[24]; \ + xp = (cc)->state[25]; \ + xq = (cc)->state[26]; \ + xr = (cc)->state[27]; \ + xs = (cc)->state[28]; \ + xt = (cc)->state[29]; \ + xu = (cc)->state[30]; \ + xv = (cc)->state[31]; \ + } while (0) + +#define WRITE_STATE(cc) do { \ + (cc)->state[ 0] = x0; \ + (cc)->state[ 1] = x1; \ + (cc)->state[ 2] = x2; \ + (cc)->state[ 3] = x3; \ + (cc)->state[ 4] = x4; \ + (cc)->state[ 5] = x5; \ + (cc)->state[ 6] = x6; \ + (cc)->state[ 7] = x7; \ + (cc)->state[ 8] = x8; \ + (cc)->state[ 9] = x9; \ + (cc)->state[10] = xa; \ + (cc)->state[11] = xb; \ + (cc)->state[12] = xc; \ + (cc)->state[13] = xd; \ + (cc)->state[14] = xe; \ + (cc)->state[15] = xf; \ + (cc)->state[16] = xg; \ + (cc)->state[17] = xh; \ + (cc)->state[18] = xi; \ + (cc)->state[19] = xj; \ + (cc)->state[20] = xk; \ + (cc)->state[21] = xl; \ + (cc)->state[22] = xm; \ + (cc)->state[23] = xn; \ + (cc)->state[24] = xo; \ + (cc)->state[25] = xp; \ + (cc)->state[26] = xq; \ + (cc)->state[27] = xr; \ + (cc)->state[28] = xs; \ + (cc)->state[29] = xt; \ + (cc)->state[30] = xu; \ + (cc)->state[31] = xv; \ + } while (0) + +#endif + +#define INPUT_BLOCK do { \ + x0 ^= sph_dec32le_aligned(buf + 0); \ + x1 ^= sph_dec32le_aligned(buf + 4); \ + x2 ^= sph_dec32le_aligned(buf + 8); \ + x3 ^= sph_dec32le_aligned(buf + 12); \ + x4 ^= sph_dec32le_aligned(buf + 16); \ + x5 ^= sph_dec32le_aligned(buf + 20); \ + x6 ^= sph_dec32le_aligned(buf + 24); \ + x7 ^= sph_dec32le_aligned(buf + 28); \ + } while (0) + +#define ROUND_EVEN do { \ + xg = T32(x0 + xg); \ + x0 = ROTL32(x0, 7); \ + xh = T32(x1 + xh); \ + x1 = ROTL32(x1, 7); \ + xi = T32(x2 + xi); \ + x2 = ROTL32(x2, 7); \ + xj = T32(x3 + xj); \ + x3 = ROTL32(x3, 7); \ + xk = T32(x4 + xk); \ + x4 = ROTL32(x4, 7); \ + xl = T32(x5 + xl); \ + x5 = ROTL32(x5, 7); \ + xm = T32(x6 + xm); \ + x6 = ROTL32(x6, 7); \ + xn = T32(x7 + xn); \ + x7 = ROTL32(x7, 7); \ + xo = T32(x8 + xo); \ + x8 = ROTL32(x8, 7); \ + xp = T32(x9 + xp); \ + x9 = ROTL32(x9, 7); \ + xq = T32(xa + xq); \ + xa = ROTL32(xa, 7); \ + xr = T32(xb + xr); \ + xb = ROTL32(xb, 7); \ + xs = T32(xc + xs); \ + xc = ROTL32(xc, 7); \ + xt = T32(xd + xt); \ + xd = ROTL32(xd, 7); \ + xu = T32(xe + xu); \ + xe = ROTL32(xe, 7); \ + xv = T32(xf + xv); \ + xf = ROTL32(xf, 7); \ + x8 ^= xg; \ + x9 ^= xh; \ + xa ^= xi; \ + xb ^= xj; \ + xc ^= xk; \ + xd ^= xl; \ + xe ^= xm; \ + xf ^= xn; \ + x0 ^= xo; \ + x1 ^= xp; \ + x2 ^= xq; \ + x3 ^= xr; \ + x4 ^= xs; \ + x5 ^= xt; \ + x6 ^= xu; \ + x7 ^= xv; \ + xi = T32(x8 + xi); \ + x8 = ROTL32(x8, 11); \ + xj = T32(x9 + xj); \ + x9 = ROTL32(x9, 11); \ + xg = T32(xa + xg); \ + xa = ROTL32(xa, 11); \ + xh = T32(xb + xh); \ + xb = ROTL32(xb, 11); \ + xm = T32(xc + xm); \ + xc = ROTL32(xc, 11); \ + xn = T32(xd + xn); \ + xd = ROTL32(xd, 11); \ + xk = T32(xe + xk); \ + xe = ROTL32(xe, 11); \ + xl = T32(xf + xl); \ + xf = ROTL32(xf, 11); \ + xq = T32(x0 + xq); \ + x0 = ROTL32(x0, 11); \ + xr = T32(x1 + xr); \ + x1 = ROTL32(x1, 11); \ + xo = T32(x2 + xo); \ + x2 = ROTL32(x2, 11); \ + xp = T32(x3 + xp); \ + x3 = ROTL32(x3, 11); \ + xu = T32(x4 + xu); \ + x4 = ROTL32(x4, 11); \ + xv = T32(x5 + xv); \ + x5 = ROTL32(x5, 11); \ + xs = T32(x6 + xs); \ + x6 = ROTL32(x6, 11); \ + xt = T32(x7 + xt); \ + x7 = ROTL32(x7, 11); \ + xc ^= xi; \ + xd ^= xj; \ + xe ^= xg; \ + xf ^= xh; \ + x8 ^= xm; \ + x9 ^= xn; \ + xa ^= xk; \ + xb ^= xl; \ + x4 ^= xq; \ + x5 ^= xr; \ + x6 ^= xo; \ + x7 ^= xp; \ + x0 ^= xu; \ + x1 ^= xv; \ + x2 ^= xs; \ + x3 ^= xt; \ + } while (0) + +#define ROUND_ODD do { \ + xj = T32(xc + xj); \ + xc = ROTL32(xc, 7); \ + xi = T32(xd + xi); \ + xd = ROTL32(xd, 7); \ + xh = T32(xe + xh); \ + xe = ROTL32(xe, 7); \ + xg = T32(xf + xg); \ + xf = ROTL32(xf, 7); \ + xn = T32(x8 + xn); \ + x8 = ROTL32(x8, 7); \ + xm = T32(x9 + xm); \ + x9 = ROTL32(x9, 7); \ + xl = T32(xa + xl); \ + xa = ROTL32(xa, 7); \ + xk = T32(xb + xk); \ + xb = ROTL32(xb, 7); \ + xr = T32(x4 + xr); \ + x4 = ROTL32(x4, 7); \ + xq = T32(x5 + xq); \ + x5 = ROTL32(x5, 7); \ + xp = T32(x6 + xp); \ + x6 = ROTL32(x6, 7); \ + xo = T32(x7 + xo); \ + x7 = ROTL32(x7, 7); \ + xv = T32(x0 + xv); \ + x0 = ROTL32(x0, 7); \ + xu = T32(x1 + xu); \ + x1 = ROTL32(x1, 7); \ + xt = T32(x2 + xt); \ + x2 = ROTL32(x2, 7); \ + xs = T32(x3 + xs); \ + x3 = ROTL32(x3, 7); \ + x4 ^= xj; \ + x5 ^= xi; \ + x6 ^= xh; \ + x7 ^= xg; \ + x0 ^= xn; \ + x1 ^= xm; \ + x2 ^= xl; \ + x3 ^= xk; \ + xc ^= xr; \ + xd ^= xq; \ + xe ^= xp; \ + xf ^= xo; \ + x8 ^= xv; \ + x9 ^= xu; \ + xa ^= xt; \ + xb ^= xs; \ + xh = T32(x4 + xh); \ + x4 = ROTL32(x4, 11); \ + xg = T32(x5 + xg); \ + x5 = ROTL32(x5, 11); \ + xj = T32(x6 + xj); \ + x6 = ROTL32(x6, 11); \ + xi = T32(x7 + xi); \ + x7 = ROTL32(x7, 11); \ + xl = T32(x0 + xl); \ + x0 = ROTL32(x0, 11); \ + xk = T32(x1 + xk); \ + x1 = ROTL32(x1, 11); \ + xn = T32(x2 + xn); \ + x2 = ROTL32(x2, 11); \ + xm = T32(x3 + xm); \ + x3 = ROTL32(x3, 11); \ + xp = T32(xc + xp); \ + xc = ROTL32(xc, 11); \ + xo = T32(xd + xo); \ + xd = ROTL32(xd, 11); \ + xr = T32(xe + xr); \ + xe = ROTL32(xe, 11); \ + xq = T32(xf + xq); \ + xf = ROTL32(xf, 11); \ + xt = T32(x8 + xt); \ + x8 = ROTL32(x8, 11); \ + xs = T32(x9 + xs); \ + x9 = ROTL32(x9, 11); \ + xv = T32(xa + xv); \ + xa = ROTL32(xa, 11); \ + xu = T32(xb + xu); \ + xb = ROTL32(xb, 11); \ + x0 ^= xh; \ + x1 ^= xg; \ + x2 ^= xj; \ + x3 ^= xi; \ + x4 ^= xl; \ + x5 ^= xk; \ + x6 ^= xn; \ + x7 ^= xm; \ + x8 ^= xp; \ + x9 ^= xo; \ + xa ^= xr; \ + xb ^= xq; \ + xc ^= xt; \ + xd ^= xs; \ + xe ^= xv; \ + xf ^= xu; \ + } while (0) + +/* + * There is no need to unroll all 16 rounds. The word-swapping permutation + * is an involution, so we need to unroll an even number of rounds. On + * "big" systems, unrolling 4 rounds yields about 97% of the speed + * achieved with full unrolling; and it keeps the code more compact + * for small architectures. + */ + +#if SPH_CUBEHASH_UNROLL == 2 + +#define SIXTEEN_ROUNDS do { \ + int j; \ + for (j = 0; j < 8; j ++) { \ + ROUND_EVEN; \ + ROUND_ODD; \ + } \ + } while (0) + +#elif SPH_CUBEHASH_UNROLL == 4 + +#define SIXTEEN_ROUNDS do { \ + int j; \ + for (j = 0; j < 4; j ++) { \ + ROUND_EVEN; \ + ROUND_ODD; \ + ROUND_EVEN; \ + ROUND_ODD; \ + } \ + } while (0) + +#elif SPH_CUBEHASH_UNROLL == 8 + +#define SIXTEEN_ROUNDS do { \ + int j; \ + for (j = 0; j < 2; j ++) { \ + ROUND_EVEN; \ + ROUND_ODD; \ + ROUND_EVEN; \ + ROUND_ODD; \ + ROUND_EVEN; \ + ROUND_ODD; \ + ROUND_EVEN; \ + ROUND_ODD; \ + } \ + } while (0) + +#else + +#define SIXTEEN_ROUNDS do { \ + ROUND_EVEN; \ + ROUND_ODD; \ + ROUND_EVEN; \ + ROUND_ODD; \ + ROUND_EVEN; \ + ROUND_ODD; \ + ROUND_EVEN; \ + ROUND_ODD; \ + ROUND_EVEN; \ + ROUND_ODD; \ + ROUND_EVEN; \ + ROUND_ODD; \ + ROUND_EVEN; \ + ROUND_ODD; \ + ROUND_EVEN; \ + ROUND_ODD; \ + } while (0) + +#endif + +static void +cubehash_init(sph_cubehash_context *sc, const sph_u32 *iv) +{ + memcpy(sc->state, iv, sizeof sc->state); + sc->ptr = 0; +} + +static void +cubehash_core(sph_cubehash_context *sc, const void *data, size_t len) +{ + unsigned char *buf; + size_t ptr; + DECL_STATE + + buf = sc->buf; + ptr = sc->ptr; + if (len < (sizeof sc->buf) - ptr) { + memcpy(buf + ptr, data, len); + ptr += len; + sc->ptr = ptr; + return; + } + + READ_STATE(sc); + while (len > 0) { + size_t clen; + + clen = (sizeof sc->buf) - ptr; + if (clen > len) + clen = len; + memcpy(buf + ptr, data, clen); + ptr += clen; + data = (const unsigned char *)data + clen; + len -= clen; + if (ptr == sizeof sc->buf) { + INPUT_BLOCK; + SIXTEEN_ROUNDS; + ptr = 0; + } + } + WRITE_STATE(sc); + sc->ptr = ptr; +} + +static void +cubehash_close(sph_cubehash_context *sc, unsigned ub, unsigned n, + void *dst, size_t out_size_w32) +{ + unsigned char *buf, *out; + size_t ptr; + unsigned z; + int i; + DECL_STATE + + buf = sc->buf; + ptr = sc->ptr; + z = 0x80 >> n; + buf[ptr ++] = ((ub & -z) | z) & 0xFF; + memset(buf + ptr, 0, (sizeof sc->buf) - ptr); + READ_STATE(sc); + INPUT_BLOCK; + for (i = 0; i < 11; i ++) { + SIXTEEN_ROUNDS; + if (i == 0) + xv ^= SPH_C32(1); + } + WRITE_STATE(sc); + out = dst; + for (z = 0; z < out_size_w32; z ++) + sph_enc32le(out + (z << 2), sc->state[z]); +} + +/* see sph_cubehash.h */ +void +sph_cubehash224_init(void *cc) +{ + cubehash_init(cc, IV224); +} + +/* see sph_cubehash.h */ +void +sph_cubehash224(void *cc, const void *data, size_t len) +{ + cubehash_core(cc, data, len); +} + +/* see sph_cubehash.h */ +void +sph_cubehash224_close(void *cc, void *dst) +{ + sph_cubehash224_addbits_and_close(cc, 0, 0, dst); +} + +/* see sph_cubehash.h */ +void +sph_cubehash224_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst) +{ + cubehash_close(cc, ub, n, dst, 7); + sph_cubehash224_init(cc); +} + +/* see sph_cubehash.h */ +void +sph_cubehash256_init(void *cc) +{ + cubehash_init(cc, IV256); +} + +/* see sph_cubehash.h */ +void +sph_cubehash256(void *cc, const void *data, size_t len) +{ + cubehash_core(cc, data, len); +} + +/* see sph_cubehash.h */ +void +sph_cubehash256_close(void *cc, void *dst) +{ + sph_cubehash256_addbits_and_close(cc, 0, 0, dst); +} + +/* see sph_cubehash.h */ +void +sph_cubehash256_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst) +{ + cubehash_close(cc, ub, n, dst, 8); + sph_cubehash256_init(cc); +} + +/* see sph_cubehash.h */ +void +sph_cubehash384_init(void *cc) +{ + cubehash_init(cc, IV384); +} + +/* see sph_cubehash.h */ +void +sph_cubehash384(void *cc, const void *data, size_t len) +{ + cubehash_core(cc, data, len); +} + +/* see sph_cubehash.h */ +void +sph_cubehash384_close(void *cc, void *dst) +{ + sph_cubehash384_addbits_and_close(cc, 0, 0, dst); +} + +/* see sph_cubehash.h */ +void +sph_cubehash384_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst) +{ + cubehash_close(cc, ub, n, dst, 12); + sph_cubehash384_init(cc); +} + +/* see sph_cubehash.h */ +void +sph_cubehash512_init(void *cc) +{ + cubehash_init(cc, IV512); +} + +/* see sph_cubehash.h */ +void +sph_cubehash512(void *cc, const void *data, size_t len) +{ + cubehash_core(cc, data, len); +} + +/* see sph_cubehash.h */ +void +sph_cubehash512_close(void *cc, void *dst) +{ + sph_cubehash512_addbits_and_close(cc, 0, 0, dst); +} + +/* see sph_cubehash.h */ +void +sph_cubehash512_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst) +{ + cubehash_close(cc, ub, n, dst, 16); + sph_cubehash512_init(cc); +} + diff --git a/crypto/sha3/groestl.c b/crypto/sha3/groestl.c new file mode 100644 index 000000000..91f75d320 --- /dev/null +++ b/crypto/sha3/groestl.c @@ -0,0 +1,3119 @@ +/* $Id: groestl.c 260 2011-07-21 01:02:38Z tp $ */ +/* + * Groestl implementation. + * + * ==========================(LICENSE BEGIN)============================ + * + * Copyright (c) 2007-2010 Projet RNRT SAPHIR + * + * Permission is hereby granted, free of charge, to any person obtaining + * a copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sublicense, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * The above copyright notice and this permission notice shall be + * included in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + * + * ===========================(LICENSE END)============================= + * + * @author Thomas Pornin + */ + +#include +#include + +#include "sph_groestl.h" + +#ifdef __cplusplus +extern "C"{ +#endif + +#if SPH_SMALL_FOOTPRINT && !defined SPH_SMALL_FOOTPRINT_GROESTL +#define SPH_SMALL_FOOTPRINT_GROESTL 1 +#endif + +/* + * Apparently, the 32-bit-only version is not faster than the 64-bit + * version unless using the "small footprint" code on a 32-bit machine. + */ +#if !defined SPH_GROESTL_64 +#if SPH_SMALL_FOOTPRINT_GROESTL && !SPH_64_TRUE +#define SPH_GROESTL_64 0 +#else +#define SPH_GROESTL_64 1 +#endif +#endif + +#if !SPH_64 +#undef SPH_GROESTL_64 +#endif + +#ifdef _MSC_VER +#pragma warning (disable: 4146) +#endif + +/* + * The internal representation may use either big-endian or + * little-endian. Using the platform default representation speeds up + * encoding and decoding between bytes and the matrix columns. + */ + +#undef USE_LE +#if SPH_GROESTL_LITTLE_ENDIAN +#define USE_LE 1 +#elif SPH_GROESTL_BIG_ENDIAN +#define USE_LE 0 +#elif SPH_LITTLE_ENDIAN +#define USE_LE 1 +#endif + +#if USE_LE + +#define C32e(x) ((SPH_C32(x) >> 24) \ + | ((SPH_C32(x) >> 8) & SPH_C32(0x0000FF00)) \ + | ((SPH_C32(x) << 8) & SPH_C32(0x00FF0000)) \ + | ((SPH_C32(x) << 24) & SPH_C32(0xFF000000))) +#define dec32e_aligned sph_dec32le_aligned +#define enc32e sph_enc32le +#define B32_0(x) ((x) & 0xFF) +#define B32_1(x) (((x) >> 8) & 0xFF) +#define B32_2(x) (((x) >> 16) & 0xFF) +#define B32_3(x) ((x) >> 24) + +#define R32u(u, d) SPH_T32(((u) << 16) | ((d) >> 16)) +#define R32d(u, d) SPH_T32(((u) >> 16) | ((d) << 16)) + +#define PC32up(j, r) ((sph_u32)((j) + (r))) +#define PC32dn(j, r) 0 +#define QC32up(j, r) SPH_C32(0xFFFFFFFF) +#define QC32dn(j, r) (((sph_u32)(r) << 24) ^ SPH_T32(~((sph_u32)(j) << 24))) + +#if SPH_64 +#define C64e(x) ((SPH_C64(x) >> 56) \ + | ((SPH_C64(x) >> 40) & SPH_C64(0x000000000000FF00)) \ + | ((SPH_C64(x) >> 24) & SPH_C64(0x0000000000FF0000)) \ + | ((SPH_C64(x) >> 8) & SPH_C64(0x00000000FF000000)) \ + | ((SPH_C64(x) << 8) & SPH_C64(0x000000FF00000000)) \ + | ((SPH_C64(x) << 24) & SPH_C64(0x0000FF0000000000)) \ + | ((SPH_C64(x) << 40) & SPH_C64(0x00FF000000000000)) \ + | ((SPH_C64(x) << 56) & SPH_C64(0xFF00000000000000))) +#define dec64e_aligned sph_dec64le_aligned +#define enc64e sph_enc64le +#define B64_0(x) ((x) & 0xFF) +#define B64_1(x) (((x) >> 8) & 0xFF) +#define B64_2(x) (((x) >> 16) & 0xFF) +#define B64_3(x) (((x) >> 24) & 0xFF) +#define B64_4(x) (((x) >> 32) & 0xFF) +#define B64_5(x) (((x) >> 40) & 0xFF) +#define B64_6(x) (((x) >> 48) & 0xFF) +#define B64_7(x) ((x) >> 56) +#define R64 SPH_ROTL64 +#define PC64(j, r) ((sph_u64)((j) + (r))) +#define QC64(j, r) (((sph_u64)(r) << 56) ^ SPH_T64(~((sph_u64)(j) << 56))) +#endif + +#else + +#define C32e(x) SPH_C32(x) +#define dec32e_aligned sph_dec32be_aligned +#define enc32e sph_enc32be +#define B32_0(x) ((x) >> 24) +#define B32_1(x) (((x) >> 16) & 0xFF) +#define B32_2(x) (((x) >> 8) & 0xFF) +#define B32_3(x) ((x) & 0xFF) + +#define R32u(u, d) SPH_T32(((u) >> 16) | ((d) << 16)) +#define R32d(u, d) SPH_T32(((u) << 16) | ((d) >> 16)) + +#define PC32up(j, r) ((sph_u32)((j) + (r)) << 24) +#define PC32dn(j, r) 0 +#define QC32up(j, r) SPH_C32(0xFFFFFFFF) +#define QC32dn(j, r) ((sph_u32)(r) ^ SPH_T32(~(sph_u32)(j))) + +#if SPH_64 +#define C64e(x) SPH_C64(x) +#define dec64e_aligned sph_dec64be_aligned +#define enc64e sph_enc64be +#define B64_0(x) ((x) >> 56) +#define B64_1(x) (((x) >> 48) & 0xFF) +#define B64_2(x) (((x) >> 40) & 0xFF) +#define B64_3(x) (((x) >> 32) & 0xFF) +#define B64_4(x) (((x) >> 24) & 0xFF) +#define B64_5(x) (((x) >> 16) & 0xFF) +#define B64_6(x) (((x) >> 8) & 0xFF) +#define B64_7(x) ((x) & 0xFF) +#define R64 SPH_ROTR64 +#define PC64(j, r) ((sph_u64)((j) + (r)) << 56) +#define QC64(j, r) ((sph_u64)(r) ^ SPH_T64(~(sph_u64)(j))) +#endif + +#endif + +#if SPH_GROESTL_64 + +static const sph_u64 T0[] = { + C64e(0xc632f4a5f497a5c6), C64e(0xf86f978497eb84f8), + C64e(0xee5eb099b0c799ee), C64e(0xf67a8c8d8cf78df6), + C64e(0xffe8170d17e50dff), C64e(0xd60adcbddcb7bdd6), + C64e(0xde16c8b1c8a7b1de), C64e(0x916dfc54fc395491), + C64e(0x6090f050f0c05060), C64e(0x0207050305040302), + C64e(0xce2ee0a9e087a9ce), C64e(0x56d1877d87ac7d56), + C64e(0xe7cc2b192bd519e7), C64e(0xb513a662a67162b5), + C64e(0x4d7c31e6319ae64d), C64e(0xec59b59ab5c39aec), + C64e(0x8f40cf45cf05458f), C64e(0x1fa3bc9dbc3e9d1f), + C64e(0x8949c040c0094089), C64e(0xfa68928792ef87fa), + C64e(0xefd03f153fc515ef), C64e(0xb29426eb267febb2), + C64e(0x8ece40c94007c98e), C64e(0xfbe61d0b1ded0bfb), + C64e(0x416e2fec2f82ec41), C64e(0xb31aa967a97d67b3), + C64e(0x5f431cfd1cbefd5f), C64e(0x456025ea258aea45), + C64e(0x23f9dabfda46bf23), C64e(0x535102f702a6f753), + C64e(0xe445a196a1d396e4), C64e(0x9b76ed5bed2d5b9b), + C64e(0x75285dc25deac275), C64e(0xe1c5241c24d91ce1), + C64e(0x3dd4e9aee97aae3d), C64e(0x4cf2be6abe986a4c), + C64e(0x6c82ee5aeed85a6c), C64e(0x7ebdc341c3fc417e), + C64e(0xf5f3060206f102f5), C64e(0x8352d14fd11d4f83), + C64e(0x688ce45ce4d05c68), C64e(0x515607f407a2f451), + C64e(0xd18d5c345cb934d1), C64e(0xf9e1180818e908f9), + C64e(0xe24cae93aedf93e2), C64e(0xab3e9573954d73ab), + C64e(0x6297f553f5c45362), C64e(0x2a6b413f41543f2a), + C64e(0x081c140c14100c08), C64e(0x9563f652f6315295), + C64e(0x46e9af65af8c6546), C64e(0x9d7fe25ee2215e9d), + C64e(0x3048782878602830), C64e(0x37cff8a1f86ea137), + C64e(0x0a1b110f11140f0a), C64e(0x2febc4b5c45eb52f), + C64e(0x0e151b091b1c090e), C64e(0x247e5a365a483624), + C64e(0x1badb69bb6369b1b), C64e(0xdf98473d47a53ddf), + C64e(0xcda76a266a8126cd), C64e(0x4ef5bb69bb9c694e), + C64e(0x7f334ccd4cfecd7f), C64e(0xea50ba9fbacf9fea), + C64e(0x123f2d1b2d241b12), C64e(0x1da4b99eb93a9e1d), + C64e(0x58c49c749cb07458), C64e(0x3446722e72682e34), + C64e(0x3641772d776c2d36), C64e(0xdc11cdb2cda3b2dc), + C64e(0xb49d29ee2973eeb4), C64e(0x5b4d16fb16b6fb5b), + C64e(0xa4a501f60153f6a4), C64e(0x76a1d74dd7ec4d76), + C64e(0xb714a361a37561b7), C64e(0x7d3449ce49face7d), + C64e(0x52df8d7b8da47b52), C64e(0xdd9f423e42a13edd), + C64e(0x5ecd937193bc715e), C64e(0x13b1a297a2269713), + C64e(0xa6a204f50457f5a6), C64e(0xb901b868b86968b9), + C64e(0x0000000000000000), C64e(0xc1b5742c74992cc1), + C64e(0x40e0a060a0806040), C64e(0xe3c2211f21dd1fe3), + C64e(0x793a43c843f2c879), C64e(0xb69a2ced2c77edb6), + C64e(0xd40dd9bed9b3bed4), C64e(0x8d47ca46ca01468d), + C64e(0x671770d970ced967), C64e(0x72afdd4bdde44b72), + C64e(0x94ed79de7933de94), C64e(0x98ff67d4672bd498), + C64e(0xb09323e8237be8b0), C64e(0x855bde4ade114a85), + C64e(0xbb06bd6bbd6d6bbb), C64e(0xc5bb7e2a7e912ac5), + C64e(0x4f7b34e5349ee54f), C64e(0xedd73a163ac116ed), + C64e(0x86d254c55417c586), C64e(0x9af862d7622fd79a), + C64e(0x6699ff55ffcc5566), C64e(0x11b6a794a7229411), + C64e(0x8ac04acf4a0fcf8a), C64e(0xe9d9301030c910e9), + C64e(0x040e0a060a080604), C64e(0xfe66988198e781fe), + C64e(0xa0ab0bf00b5bf0a0), C64e(0x78b4cc44ccf04478), + C64e(0x25f0d5bad54aba25), C64e(0x4b753ee33e96e34b), + C64e(0xa2ac0ef30e5ff3a2), C64e(0x5d4419fe19bafe5d), + C64e(0x80db5bc05b1bc080), C64e(0x0580858a850a8a05), + C64e(0x3fd3ecadec7ead3f), C64e(0x21fedfbcdf42bc21), + C64e(0x70a8d848d8e04870), C64e(0xf1fd0c040cf904f1), + C64e(0x63197adf7ac6df63), C64e(0x772f58c158eec177), + C64e(0xaf309f759f4575af), C64e(0x42e7a563a5846342), + C64e(0x2070503050403020), C64e(0xe5cb2e1a2ed11ae5), + C64e(0xfdef120e12e10efd), C64e(0xbf08b76db7656dbf), + C64e(0x8155d44cd4194c81), C64e(0x18243c143c301418), + C64e(0x26795f355f4c3526), C64e(0xc3b2712f719d2fc3), + C64e(0xbe8638e13867e1be), C64e(0x35c8fda2fd6aa235), + C64e(0x88c74fcc4f0bcc88), C64e(0x2e654b394b5c392e), + C64e(0x936af957f93d5793), C64e(0x55580df20daaf255), + C64e(0xfc619d829de382fc), C64e(0x7ab3c947c9f4477a), + C64e(0xc827efacef8bacc8), C64e(0xba8832e7326fe7ba), + C64e(0x324f7d2b7d642b32), C64e(0xe642a495a4d795e6), + C64e(0xc03bfba0fb9ba0c0), C64e(0x19aab398b3329819), + C64e(0x9ef668d16827d19e), C64e(0xa322817f815d7fa3), + C64e(0x44eeaa66aa886644), C64e(0x54d6827e82a87e54), + C64e(0x3bdde6abe676ab3b), C64e(0x0b959e839e16830b), + C64e(0x8cc945ca4503ca8c), C64e(0xc7bc7b297b9529c7), + C64e(0x6b056ed36ed6d36b), C64e(0x286c443c44503c28), + C64e(0xa72c8b798b5579a7), C64e(0xbc813de23d63e2bc), + C64e(0x1631271d272c1d16), C64e(0xad379a769a4176ad), + C64e(0xdb964d3b4dad3bdb), C64e(0x649efa56fac85664), + C64e(0x74a6d24ed2e84e74), C64e(0x1436221e22281e14), + C64e(0x92e476db763fdb92), C64e(0x0c121e0a1e180a0c), + C64e(0x48fcb46cb4906c48), C64e(0xb88f37e4376be4b8), + C64e(0x9f78e75de7255d9f), C64e(0xbd0fb26eb2616ebd), + C64e(0x43692aef2a86ef43), C64e(0xc435f1a6f193a6c4), + C64e(0x39dae3a8e372a839), C64e(0x31c6f7a4f762a431), + C64e(0xd38a593759bd37d3), C64e(0xf274868b86ff8bf2), + C64e(0xd583563256b132d5), C64e(0x8b4ec543c50d438b), + C64e(0x6e85eb59ebdc596e), C64e(0xda18c2b7c2afb7da), + C64e(0x018e8f8c8f028c01), C64e(0xb11dac64ac7964b1), + C64e(0x9cf16dd26d23d29c), C64e(0x49723be03b92e049), + C64e(0xd81fc7b4c7abb4d8), C64e(0xacb915fa1543faac), + C64e(0xf3fa090709fd07f3), C64e(0xcfa06f256f8525cf), + C64e(0xca20eaafea8fafca), C64e(0xf47d898e89f38ef4), + C64e(0x476720e9208ee947), C64e(0x1038281828201810), + C64e(0x6f0b64d564ded56f), C64e(0xf073838883fb88f0), + C64e(0x4afbb16fb1946f4a), C64e(0x5cca967296b8725c), + C64e(0x38546c246c702438), C64e(0x575f08f108aef157), + C64e(0x732152c752e6c773), C64e(0x9764f351f3355197), + C64e(0xcbae6523658d23cb), C64e(0xa125847c84597ca1), + C64e(0xe857bf9cbfcb9ce8), C64e(0x3e5d6321637c213e), + C64e(0x96ea7cdd7c37dd96), C64e(0x611e7fdc7fc2dc61), + C64e(0x0d9c9186911a860d), C64e(0x0f9b9485941e850f), + C64e(0xe04bab90abdb90e0), C64e(0x7cbac642c6f8427c), + C64e(0x712657c457e2c471), C64e(0xcc29e5aae583aacc), + C64e(0x90e373d8733bd890), C64e(0x06090f050f0c0506), + C64e(0xf7f4030103f501f7), C64e(0x1c2a36123638121c), + C64e(0xc23cfea3fe9fa3c2), C64e(0x6a8be15fe1d45f6a), + C64e(0xaebe10f91047f9ae), C64e(0x69026bd06bd2d069), + C64e(0x17bfa891a82e9117), C64e(0x9971e858e8295899), + C64e(0x3a5369276974273a), C64e(0x27f7d0b9d04eb927), + C64e(0xd991483848a938d9), C64e(0xebde351335cd13eb), + C64e(0x2be5ceb3ce56b32b), C64e(0x2277553355443322), + C64e(0xd204d6bbd6bfbbd2), C64e(0xa9399070904970a9), + C64e(0x07878089800e8907), C64e(0x33c1f2a7f266a733), + C64e(0x2decc1b6c15ab62d), C64e(0x3c5a66226678223c), + C64e(0x15b8ad92ad2a9215), C64e(0xc9a96020608920c9), + C64e(0x875cdb49db154987), C64e(0xaab01aff1a4fffaa), + C64e(0x50d8887888a07850), C64e(0xa52b8e7a8e517aa5), + C64e(0x03898a8f8a068f03), C64e(0x594a13f813b2f859), + C64e(0x09929b809b128009), C64e(0x1a2339173934171a), + C64e(0x651075da75cada65), C64e(0xd784533153b531d7), + C64e(0x84d551c65113c684), C64e(0xd003d3b8d3bbb8d0), + C64e(0x82dc5ec35e1fc382), C64e(0x29e2cbb0cb52b029), + C64e(0x5ac3997799b4775a), C64e(0x1e2d3311333c111e), + C64e(0x7b3d46cb46f6cb7b), C64e(0xa8b71ffc1f4bfca8), + C64e(0x6d0c61d661dad66d), C64e(0x2c624e3a4e583a2c) +}; + +#if !SPH_SMALL_FOOTPRINT_GROESTL + +static const sph_u64 T1[] = { + C64e(0xc6c632f4a5f497a5), C64e(0xf8f86f978497eb84), + C64e(0xeeee5eb099b0c799), C64e(0xf6f67a8c8d8cf78d), + C64e(0xffffe8170d17e50d), C64e(0xd6d60adcbddcb7bd), + C64e(0xdede16c8b1c8a7b1), C64e(0x91916dfc54fc3954), + C64e(0x606090f050f0c050), C64e(0x0202070503050403), + C64e(0xcece2ee0a9e087a9), C64e(0x5656d1877d87ac7d), + C64e(0xe7e7cc2b192bd519), C64e(0xb5b513a662a67162), + C64e(0x4d4d7c31e6319ae6), C64e(0xecec59b59ab5c39a), + C64e(0x8f8f40cf45cf0545), C64e(0x1f1fa3bc9dbc3e9d), + C64e(0x898949c040c00940), C64e(0xfafa68928792ef87), + C64e(0xefefd03f153fc515), C64e(0xb2b29426eb267feb), + C64e(0x8e8ece40c94007c9), C64e(0xfbfbe61d0b1ded0b), + C64e(0x41416e2fec2f82ec), C64e(0xb3b31aa967a97d67), + C64e(0x5f5f431cfd1cbefd), C64e(0x45456025ea258aea), + C64e(0x2323f9dabfda46bf), C64e(0x53535102f702a6f7), + C64e(0xe4e445a196a1d396), C64e(0x9b9b76ed5bed2d5b), + C64e(0x7575285dc25deac2), C64e(0xe1e1c5241c24d91c), + C64e(0x3d3dd4e9aee97aae), C64e(0x4c4cf2be6abe986a), + C64e(0x6c6c82ee5aeed85a), C64e(0x7e7ebdc341c3fc41), + C64e(0xf5f5f3060206f102), C64e(0x838352d14fd11d4f), + C64e(0x68688ce45ce4d05c), C64e(0x51515607f407a2f4), + C64e(0xd1d18d5c345cb934), C64e(0xf9f9e1180818e908), + C64e(0xe2e24cae93aedf93), C64e(0xabab3e9573954d73), + C64e(0x626297f553f5c453), C64e(0x2a2a6b413f41543f), + C64e(0x08081c140c14100c), C64e(0x959563f652f63152), + C64e(0x4646e9af65af8c65), C64e(0x9d9d7fe25ee2215e), + C64e(0x3030487828786028), C64e(0x3737cff8a1f86ea1), + C64e(0x0a0a1b110f11140f), C64e(0x2f2febc4b5c45eb5), + C64e(0x0e0e151b091b1c09), C64e(0x24247e5a365a4836), + C64e(0x1b1badb69bb6369b), C64e(0xdfdf98473d47a53d), + C64e(0xcdcda76a266a8126), C64e(0x4e4ef5bb69bb9c69), + C64e(0x7f7f334ccd4cfecd), C64e(0xeaea50ba9fbacf9f), + C64e(0x12123f2d1b2d241b), C64e(0x1d1da4b99eb93a9e), + C64e(0x5858c49c749cb074), C64e(0x343446722e72682e), + C64e(0x363641772d776c2d), C64e(0xdcdc11cdb2cda3b2), + C64e(0xb4b49d29ee2973ee), C64e(0x5b5b4d16fb16b6fb), + C64e(0xa4a4a501f60153f6), C64e(0x7676a1d74dd7ec4d), + C64e(0xb7b714a361a37561), C64e(0x7d7d3449ce49face), + C64e(0x5252df8d7b8da47b), C64e(0xdddd9f423e42a13e), + C64e(0x5e5ecd937193bc71), C64e(0x1313b1a297a22697), + C64e(0xa6a6a204f50457f5), C64e(0xb9b901b868b86968), + C64e(0x0000000000000000), C64e(0xc1c1b5742c74992c), + C64e(0x4040e0a060a08060), C64e(0xe3e3c2211f21dd1f), + C64e(0x79793a43c843f2c8), C64e(0xb6b69a2ced2c77ed), + C64e(0xd4d40dd9bed9b3be), C64e(0x8d8d47ca46ca0146), + C64e(0x67671770d970ced9), C64e(0x7272afdd4bdde44b), + C64e(0x9494ed79de7933de), C64e(0x9898ff67d4672bd4), + C64e(0xb0b09323e8237be8), C64e(0x85855bde4ade114a), + C64e(0xbbbb06bd6bbd6d6b), C64e(0xc5c5bb7e2a7e912a), + C64e(0x4f4f7b34e5349ee5), C64e(0xededd73a163ac116), + C64e(0x8686d254c55417c5), C64e(0x9a9af862d7622fd7), + C64e(0x666699ff55ffcc55), C64e(0x1111b6a794a72294), + C64e(0x8a8ac04acf4a0fcf), C64e(0xe9e9d9301030c910), + C64e(0x04040e0a060a0806), C64e(0xfefe66988198e781), + C64e(0xa0a0ab0bf00b5bf0), C64e(0x7878b4cc44ccf044), + C64e(0x2525f0d5bad54aba), C64e(0x4b4b753ee33e96e3), + C64e(0xa2a2ac0ef30e5ff3), C64e(0x5d5d4419fe19bafe), + C64e(0x8080db5bc05b1bc0), C64e(0x050580858a850a8a), + C64e(0x3f3fd3ecadec7ead), C64e(0x2121fedfbcdf42bc), + C64e(0x7070a8d848d8e048), C64e(0xf1f1fd0c040cf904), + C64e(0x6363197adf7ac6df), C64e(0x77772f58c158eec1), + C64e(0xafaf309f759f4575), C64e(0x4242e7a563a58463), + C64e(0x2020705030504030), C64e(0xe5e5cb2e1a2ed11a), + C64e(0xfdfdef120e12e10e), C64e(0xbfbf08b76db7656d), + C64e(0x818155d44cd4194c), C64e(0x1818243c143c3014), + C64e(0x2626795f355f4c35), C64e(0xc3c3b2712f719d2f), + C64e(0xbebe8638e13867e1), C64e(0x3535c8fda2fd6aa2), + C64e(0x8888c74fcc4f0bcc), C64e(0x2e2e654b394b5c39), + C64e(0x93936af957f93d57), C64e(0x5555580df20daaf2), + C64e(0xfcfc619d829de382), C64e(0x7a7ab3c947c9f447), + C64e(0xc8c827efacef8bac), C64e(0xbaba8832e7326fe7), + C64e(0x32324f7d2b7d642b), C64e(0xe6e642a495a4d795), + C64e(0xc0c03bfba0fb9ba0), C64e(0x1919aab398b33298), + C64e(0x9e9ef668d16827d1), C64e(0xa3a322817f815d7f), + C64e(0x4444eeaa66aa8866), C64e(0x5454d6827e82a87e), + C64e(0x3b3bdde6abe676ab), C64e(0x0b0b959e839e1683), + C64e(0x8c8cc945ca4503ca), C64e(0xc7c7bc7b297b9529), + C64e(0x6b6b056ed36ed6d3), C64e(0x28286c443c44503c), + C64e(0xa7a72c8b798b5579), C64e(0xbcbc813de23d63e2), + C64e(0x161631271d272c1d), C64e(0xadad379a769a4176), + C64e(0xdbdb964d3b4dad3b), C64e(0x64649efa56fac856), + C64e(0x7474a6d24ed2e84e), C64e(0x141436221e22281e), + C64e(0x9292e476db763fdb), C64e(0x0c0c121e0a1e180a), + C64e(0x4848fcb46cb4906c), C64e(0xb8b88f37e4376be4), + C64e(0x9f9f78e75de7255d), C64e(0xbdbd0fb26eb2616e), + C64e(0x4343692aef2a86ef), C64e(0xc4c435f1a6f193a6), + C64e(0x3939dae3a8e372a8), C64e(0x3131c6f7a4f762a4), + C64e(0xd3d38a593759bd37), C64e(0xf2f274868b86ff8b), + C64e(0xd5d583563256b132), C64e(0x8b8b4ec543c50d43), + C64e(0x6e6e85eb59ebdc59), C64e(0xdada18c2b7c2afb7), + C64e(0x01018e8f8c8f028c), C64e(0xb1b11dac64ac7964), + C64e(0x9c9cf16dd26d23d2), C64e(0x4949723be03b92e0), + C64e(0xd8d81fc7b4c7abb4), C64e(0xacacb915fa1543fa), + C64e(0xf3f3fa090709fd07), C64e(0xcfcfa06f256f8525), + C64e(0xcaca20eaafea8faf), C64e(0xf4f47d898e89f38e), + C64e(0x47476720e9208ee9), C64e(0x1010382818282018), + C64e(0x6f6f0b64d564ded5), C64e(0xf0f073838883fb88), + C64e(0x4a4afbb16fb1946f), C64e(0x5c5cca967296b872), + C64e(0x3838546c246c7024), C64e(0x57575f08f108aef1), + C64e(0x73732152c752e6c7), C64e(0x979764f351f33551), + C64e(0xcbcbae6523658d23), C64e(0xa1a125847c84597c), + C64e(0xe8e857bf9cbfcb9c), C64e(0x3e3e5d6321637c21), + C64e(0x9696ea7cdd7c37dd), C64e(0x61611e7fdc7fc2dc), + C64e(0x0d0d9c9186911a86), C64e(0x0f0f9b9485941e85), + C64e(0xe0e04bab90abdb90), C64e(0x7c7cbac642c6f842), + C64e(0x71712657c457e2c4), C64e(0xcccc29e5aae583aa), + C64e(0x9090e373d8733bd8), C64e(0x0606090f050f0c05), + C64e(0xf7f7f4030103f501), C64e(0x1c1c2a3612363812), + C64e(0xc2c23cfea3fe9fa3), C64e(0x6a6a8be15fe1d45f), + C64e(0xaeaebe10f91047f9), C64e(0x6969026bd06bd2d0), + C64e(0x1717bfa891a82e91), C64e(0x999971e858e82958), + C64e(0x3a3a536927697427), C64e(0x2727f7d0b9d04eb9), + C64e(0xd9d991483848a938), C64e(0xebebde351335cd13), + C64e(0x2b2be5ceb3ce56b3), C64e(0x2222775533554433), + C64e(0xd2d204d6bbd6bfbb), C64e(0xa9a9399070904970), + C64e(0x0707878089800e89), C64e(0x3333c1f2a7f266a7), + C64e(0x2d2decc1b6c15ab6), C64e(0x3c3c5a6622667822), + C64e(0x1515b8ad92ad2a92), C64e(0xc9c9a96020608920), + C64e(0x87875cdb49db1549), C64e(0xaaaab01aff1a4fff), + C64e(0x5050d8887888a078), C64e(0xa5a52b8e7a8e517a), + C64e(0x0303898a8f8a068f), C64e(0x59594a13f813b2f8), + C64e(0x0909929b809b1280), C64e(0x1a1a233917393417), + C64e(0x65651075da75cada), C64e(0xd7d784533153b531), + C64e(0x8484d551c65113c6), C64e(0xd0d003d3b8d3bbb8), + C64e(0x8282dc5ec35e1fc3), C64e(0x2929e2cbb0cb52b0), + C64e(0x5a5ac3997799b477), C64e(0x1e1e2d3311333c11), + C64e(0x7b7b3d46cb46f6cb), C64e(0xa8a8b71ffc1f4bfc), + C64e(0x6d6d0c61d661dad6), C64e(0x2c2c624e3a4e583a) +}; + +static const sph_u64 T2[] = { + C64e(0xa5c6c632f4a5f497), C64e(0x84f8f86f978497eb), + C64e(0x99eeee5eb099b0c7), C64e(0x8df6f67a8c8d8cf7), + C64e(0x0dffffe8170d17e5), C64e(0xbdd6d60adcbddcb7), + C64e(0xb1dede16c8b1c8a7), C64e(0x5491916dfc54fc39), + C64e(0x50606090f050f0c0), C64e(0x0302020705030504), + C64e(0xa9cece2ee0a9e087), C64e(0x7d5656d1877d87ac), + C64e(0x19e7e7cc2b192bd5), C64e(0x62b5b513a662a671), + C64e(0xe64d4d7c31e6319a), C64e(0x9aecec59b59ab5c3), + C64e(0x458f8f40cf45cf05), C64e(0x9d1f1fa3bc9dbc3e), + C64e(0x40898949c040c009), C64e(0x87fafa68928792ef), + C64e(0x15efefd03f153fc5), C64e(0xebb2b29426eb267f), + C64e(0xc98e8ece40c94007), C64e(0x0bfbfbe61d0b1ded), + C64e(0xec41416e2fec2f82), C64e(0x67b3b31aa967a97d), + C64e(0xfd5f5f431cfd1cbe), C64e(0xea45456025ea258a), + C64e(0xbf2323f9dabfda46), C64e(0xf753535102f702a6), + C64e(0x96e4e445a196a1d3), C64e(0x5b9b9b76ed5bed2d), + C64e(0xc27575285dc25dea), C64e(0x1ce1e1c5241c24d9), + C64e(0xae3d3dd4e9aee97a), C64e(0x6a4c4cf2be6abe98), + C64e(0x5a6c6c82ee5aeed8), C64e(0x417e7ebdc341c3fc), + C64e(0x02f5f5f3060206f1), C64e(0x4f838352d14fd11d), + C64e(0x5c68688ce45ce4d0), C64e(0xf451515607f407a2), + C64e(0x34d1d18d5c345cb9), C64e(0x08f9f9e1180818e9), + C64e(0x93e2e24cae93aedf), C64e(0x73abab3e9573954d), + C64e(0x53626297f553f5c4), C64e(0x3f2a2a6b413f4154), + C64e(0x0c08081c140c1410), C64e(0x52959563f652f631), + C64e(0x654646e9af65af8c), C64e(0x5e9d9d7fe25ee221), + C64e(0x2830304878287860), C64e(0xa13737cff8a1f86e), + C64e(0x0f0a0a1b110f1114), C64e(0xb52f2febc4b5c45e), + C64e(0x090e0e151b091b1c), C64e(0x3624247e5a365a48), + C64e(0x9b1b1badb69bb636), C64e(0x3ddfdf98473d47a5), + C64e(0x26cdcda76a266a81), C64e(0x694e4ef5bb69bb9c), + C64e(0xcd7f7f334ccd4cfe), C64e(0x9feaea50ba9fbacf), + C64e(0x1b12123f2d1b2d24), C64e(0x9e1d1da4b99eb93a), + C64e(0x745858c49c749cb0), C64e(0x2e343446722e7268), + C64e(0x2d363641772d776c), C64e(0xb2dcdc11cdb2cda3), + C64e(0xeeb4b49d29ee2973), C64e(0xfb5b5b4d16fb16b6), + C64e(0xf6a4a4a501f60153), C64e(0x4d7676a1d74dd7ec), + C64e(0x61b7b714a361a375), C64e(0xce7d7d3449ce49fa), + C64e(0x7b5252df8d7b8da4), C64e(0x3edddd9f423e42a1), + C64e(0x715e5ecd937193bc), C64e(0x971313b1a297a226), + C64e(0xf5a6a6a204f50457), C64e(0x68b9b901b868b869), + C64e(0x0000000000000000), C64e(0x2cc1c1b5742c7499), + C64e(0x604040e0a060a080), C64e(0x1fe3e3c2211f21dd), + C64e(0xc879793a43c843f2), C64e(0xedb6b69a2ced2c77), + C64e(0xbed4d40dd9bed9b3), C64e(0x468d8d47ca46ca01), + C64e(0xd967671770d970ce), C64e(0x4b7272afdd4bdde4), + C64e(0xde9494ed79de7933), C64e(0xd49898ff67d4672b), + C64e(0xe8b0b09323e8237b), C64e(0x4a85855bde4ade11), + C64e(0x6bbbbb06bd6bbd6d), C64e(0x2ac5c5bb7e2a7e91), + C64e(0xe54f4f7b34e5349e), C64e(0x16ededd73a163ac1), + C64e(0xc58686d254c55417), C64e(0xd79a9af862d7622f), + C64e(0x55666699ff55ffcc), C64e(0x941111b6a794a722), + C64e(0xcf8a8ac04acf4a0f), C64e(0x10e9e9d9301030c9), + C64e(0x0604040e0a060a08), C64e(0x81fefe66988198e7), + C64e(0xf0a0a0ab0bf00b5b), C64e(0x447878b4cc44ccf0), + C64e(0xba2525f0d5bad54a), C64e(0xe34b4b753ee33e96), + C64e(0xf3a2a2ac0ef30e5f), C64e(0xfe5d5d4419fe19ba), + C64e(0xc08080db5bc05b1b), C64e(0x8a050580858a850a), + C64e(0xad3f3fd3ecadec7e), C64e(0xbc2121fedfbcdf42), + C64e(0x487070a8d848d8e0), C64e(0x04f1f1fd0c040cf9), + C64e(0xdf6363197adf7ac6), C64e(0xc177772f58c158ee), + C64e(0x75afaf309f759f45), C64e(0x634242e7a563a584), + C64e(0x3020207050305040), C64e(0x1ae5e5cb2e1a2ed1), + C64e(0x0efdfdef120e12e1), C64e(0x6dbfbf08b76db765), + C64e(0x4c818155d44cd419), C64e(0x141818243c143c30), + C64e(0x352626795f355f4c), C64e(0x2fc3c3b2712f719d), + C64e(0xe1bebe8638e13867), C64e(0xa23535c8fda2fd6a), + C64e(0xcc8888c74fcc4f0b), C64e(0x392e2e654b394b5c), + C64e(0x5793936af957f93d), C64e(0xf25555580df20daa), + C64e(0x82fcfc619d829de3), C64e(0x477a7ab3c947c9f4), + C64e(0xacc8c827efacef8b), C64e(0xe7baba8832e7326f), + C64e(0x2b32324f7d2b7d64), C64e(0x95e6e642a495a4d7), + C64e(0xa0c0c03bfba0fb9b), C64e(0x981919aab398b332), + C64e(0xd19e9ef668d16827), C64e(0x7fa3a322817f815d), + C64e(0x664444eeaa66aa88), C64e(0x7e5454d6827e82a8), + C64e(0xab3b3bdde6abe676), C64e(0x830b0b959e839e16), + C64e(0xca8c8cc945ca4503), C64e(0x29c7c7bc7b297b95), + C64e(0xd36b6b056ed36ed6), C64e(0x3c28286c443c4450), + C64e(0x79a7a72c8b798b55), C64e(0xe2bcbc813de23d63), + C64e(0x1d161631271d272c), C64e(0x76adad379a769a41), + C64e(0x3bdbdb964d3b4dad), C64e(0x5664649efa56fac8), + C64e(0x4e7474a6d24ed2e8), C64e(0x1e141436221e2228), + C64e(0xdb9292e476db763f), C64e(0x0a0c0c121e0a1e18), + C64e(0x6c4848fcb46cb490), C64e(0xe4b8b88f37e4376b), + C64e(0x5d9f9f78e75de725), C64e(0x6ebdbd0fb26eb261), + C64e(0xef4343692aef2a86), C64e(0xa6c4c435f1a6f193), + C64e(0xa83939dae3a8e372), C64e(0xa43131c6f7a4f762), + C64e(0x37d3d38a593759bd), C64e(0x8bf2f274868b86ff), + C64e(0x32d5d583563256b1), C64e(0x438b8b4ec543c50d), + C64e(0x596e6e85eb59ebdc), C64e(0xb7dada18c2b7c2af), + C64e(0x8c01018e8f8c8f02), C64e(0x64b1b11dac64ac79), + C64e(0xd29c9cf16dd26d23), C64e(0xe04949723be03b92), + C64e(0xb4d8d81fc7b4c7ab), C64e(0xfaacacb915fa1543), + C64e(0x07f3f3fa090709fd), C64e(0x25cfcfa06f256f85), + C64e(0xafcaca20eaafea8f), C64e(0x8ef4f47d898e89f3), + C64e(0xe947476720e9208e), C64e(0x1810103828182820), + C64e(0xd56f6f0b64d564de), C64e(0x88f0f073838883fb), + C64e(0x6f4a4afbb16fb194), C64e(0x725c5cca967296b8), + C64e(0x243838546c246c70), C64e(0xf157575f08f108ae), + C64e(0xc773732152c752e6), C64e(0x51979764f351f335), + C64e(0x23cbcbae6523658d), C64e(0x7ca1a125847c8459), + C64e(0x9ce8e857bf9cbfcb), C64e(0x213e3e5d6321637c), + C64e(0xdd9696ea7cdd7c37), C64e(0xdc61611e7fdc7fc2), + C64e(0x860d0d9c9186911a), C64e(0x850f0f9b9485941e), + C64e(0x90e0e04bab90abdb), C64e(0x427c7cbac642c6f8), + C64e(0xc471712657c457e2), C64e(0xaacccc29e5aae583), + C64e(0xd89090e373d8733b), C64e(0x050606090f050f0c), + C64e(0x01f7f7f4030103f5), C64e(0x121c1c2a36123638), + C64e(0xa3c2c23cfea3fe9f), C64e(0x5f6a6a8be15fe1d4), + C64e(0xf9aeaebe10f91047), C64e(0xd06969026bd06bd2), + C64e(0x911717bfa891a82e), C64e(0x58999971e858e829), + C64e(0x273a3a5369276974), C64e(0xb92727f7d0b9d04e), + C64e(0x38d9d991483848a9), C64e(0x13ebebde351335cd), + C64e(0xb32b2be5ceb3ce56), C64e(0x3322227755335544), + C64e(0xbbd2d204d6bbd6bf), C64e(0x70a9a93990709049), + C64e(0x890707878089800e), C64e(0xa73333c1f2a7f266), + C64e(0xb62d2decc1b6c15a), C64e(0x223c3c5a66226678), + C64e(0x921515b8ad92ad2a), C64e(0x20c9c9a960206089), + C64e(0x4987875cdb49db15), C64e(0xffaaaab01aff1a4f), + C64e(0x785050d8887888a0), C64e(0x7aa5a52b8e7a8e51), + C64e(0x8f0303898a8f8a06), C64e(0xf859594a13f813b2), + C64e(0x800909929b809b12), C64e(0x171a1a2339173934), + C64e(0xda65651075da75ca), C64e(0x31d7d784533153b5), + C64e(0xc68484d551c65113), C64e(0xb8d0d003d3b8d3bb), + C64e(0xc38282dc5ec35e1f), C64e(0xb02929e2cbb0cb52), + C64e(0x775a5ac3997799b4), C64e(0x111e1e2d3311333c), + C64e(0xcb7b7b3d46cb46f6), C64e(0xfca8a8b71ffc1f4b), + C64e(0xd66d6d0c61d661da), C64e(0x3a2c2c624e3a4e58) +}; + +static const sph_u64 T3[] = { + C64e(0x97a5c6c632f4a5f4), C64e(0xeb84f8f86f978497), + C64e(0xc799eeee5eb099b0), C64e(0xf78df6f67a8c8d8c), + C64e(0xe50dffffe8170d17), C64e(0xb7bdd6d60adcbddc), + C64e(0xa7b1dede16c8b1c8), C64e(0x395491916dfc54fc), + C64e(0xc050606090f050f0), C64e(0x0403020207050305), + C64e(0x87a9cece2ee0a9e0), C64e(0xac7d5656d1877d87), + C64e(0xd519e7e7cc2b192b), C64e(0x7162b5b513a662a6), + C64e(0x9ae64d4d7c31e631), C64e(0xc39aecec59b59ab5), + C64e(0x05458f8f40cf45cf), C64e(0x3e9d1f1fa3bc9dbc), + C64e(0x0940898949c040c0), C64e(0xef87fafa68928792), + C64e(0xc515efefd03f153f), C64e(0x7febb2b29426eb26), + C64e(0x07c98e8ece40c940), C64e(0xed0bfbfbe61d0b1d), + C64e(0x82ec41416e2fec2f), C64e(0x7d67b3b31aa967a9), + C64e(0xbefd5f5f431cfd1c), C64e(0x8aea45456025ea25), + C64e(0x46bf2323f9dabfda), C64e(0xa6f753535102f702), + C64e(0xd396e4e445a196a1), C64e(0x2d5b9b9b76ed5bed), + C64e(0xeac27575285dc25d), C64e(0xd91ce1e1c5241c24), + C64e(0x7aae3d3dd4e9aee9), C64e(0x986a4c4cf2be6abe), + C64e(0xd85a6c6c82ee5aee), C64e(0xfc417e7ebdc341c3), + C64e(0xf102f5f5f3060206), C64e(0x1d4f838352d14fd1), + C64e(0xd05c68688ce45ce4), C64e(0xa2f451515607f407), + C64e(0xb934d1d18d5c345c), C64e(0xe908f9f9e1180818), + C64e(0xdf93e2e24cae93ae), C64e(0x4d73abab3e957395), + C64e(0xc453626297f553f5), C64e(0x543f2a2a6b413f41), + C64e(0x100c08081c140c14), C64e(0x3152959563f652f6), + C64e(0x8c654646e9af65af), C64e(0x215e9d9d7fe25ee2), + C64e(0x6028303048782878), C64e(0x6ea13737cff8a1f8), + C64e(0x140f0a0a1b110f11), C64e(0x5eb52f2febc4b5c4), + C64e(0x1c090e0e151b091b), C64e(0x483624247e5a365a), + C64e(0x369b1b1badb69bb6), C64e(0xa53ddfdf98473d47), + C64e(0x8126cdcda76a266a), C64e(0x9c694e4ef5bb69bb), + C64e(0xfecd7f7f334ccd4c), C64e(0xcf9feaea50ba9fba), + C64e(0x241b12123f2d1b2d), C64e(0x3a9e1d1da4b99eb9), + C64e(0xb0745858c49c749c), C64e(0x682e343446722e72), + C64e(0x6c2d363641772d77), C64e(0xa3b2dcdc11cdb2cd), + C64e(0x73eeb4b49d29ee29), C64e(0xb6fb5b5b4d16fb16), + C64e(0x53f6a4a4a501f601), C64e(0xec4d7676a1d74dd7), + C64e(0x7561b7b714a361a3), C64e(0xface7d7d3449ce49), + C64e(0xa47b5252df8d7b8d), C64e(0xa13edddd9f423e42), + C64e(0xbc715e5ecd937193), C64e(0x26971313b1a297a2), + C64e(0x57f5a6a6a204f504), C64e(0x6968b9b901b868b8), + C64e(0x0000000000000000), C64e(0x992cc1c1b5742c74), + C64e(0x80604040e0a060a0), C64e(0xdd1fe3e3c2211f21), + C64e(0xf2c879793a43c843), C64e(0x77edb6b69a2ced2c), + C64e(0xb3bed4d40dd9bed9), C64e(0x01468d8d47ca46ca), + C64e(0xced967671770d970), C64e(0xe44b7272afdd4bdd), + C64e(0x33de9494ed79de79), C64e(0x2bd49898ff67d467), + C64e(0x7be8b0b09323e823), C64e(0x114a85855bde4ade), + C64e(0x6d6bbbbb06bd6bbd), C64e(0x912ac5c5bb7e2a7e), + C64e(0x9ee54f4f7b34e534), C64e(0xc116ededd73a163a), + C64e(0x17c58686d254c554), C64e(0x2fd79a9af862d762), + C64e(0xcc55666699ff55ff), C64e(0x22941111b6a794a7), + C64e(0x0fcf8a8ac04acf4a), C64e(0xc910e9e9d9301030), + C64e(0x080604040e0a060a), C64e(0xe781fefe66988198), + C64e(0x5bf0a0a0ab0bf00b), C64e(0xf0447878b4cc44cc), + C64e(0x4aba2525f0d5bad5), C64e(0x96e34b4b753ee33e), + C64e(0x5ff3a2a2ac0ef30e), C64e(0xbafe5d5d4419fe19), + C64e(0x1bc08080db5bc05b), C64e(0x0a8a050580858a85), + C64e(0x7ead3f3fd3ecadec), C64e(0x42bc2121fedfbcdf), + C64e(0xe0487070a8d848d8), C64e(0xf904f1f1fd0c040c), + C64e(0xc6df6363197adf7a), C64e(0xeec177772f58c158), + C64e(0x4575afaf309f759f), C64e(0x84634242e7a563a5), + C64e(0x4030202070503050), C64e(0xd11ae5e5cb2e1a2e), + C64e(0xe10efdfdef120e12), C64e(0x656dbfbf08b76db7), + C64e(0x194c818155d44cd4), C64e(0x30141818243c143c), + C64e(0x4c352626795f355f), C64e(0x9d2fc3c3b2712f71), + C64e(0x67e1bebe8638e138), C64e(0x6aa23535c8fda2fd), + C64e(0x0bcc8888c74fcc4f), C64e(0x5c392e2e654b394b), + C64e(0x3d5793936af957f9), C64e(0xaaf25555580df20d), + C64e(0xe382fcfc619d829d), C64e(0xf4477a7ab3c947c9), + C64e(0x8bacc8c827efacef), C64e(0x6fe7baba8832e732), + C64e(0x642b32324f7d2b7d), C64e(0xd795e6e642a495a4), + C64e(0x9ba0c0c03bfba0fb), C64e(0x32981919aab398b3), + C64e(0x27d19e9ef668d168), C64e(0x5d7fa3a322817f81), + C64e(0x88664444eeaa66aa), C64e(0xa87e5454d6827e82), + C64e(0x76ab3b3bdde6abe6), C64e(0x16830b0b959e839e), + C64e(0x03ca8c8cc945ca45), C64e(0x9529c7c7bc7b297b), + C64e(0xd6d36b6b056ed36e), C64e(0x503c28286c443c44), + C64e(0x5579a7a72c8b798b), C64e(0x63e2bcbc813de23d), + C64e(0x2c1d161631271d27), C64e(0x4176adad379a769a), + C64e(0xad3bdbdb964d3b4d), C64e(0xc85664649efa56fa), + C64e(0xe84e7474a6d24ed2), C64e(0x281e141436221e22), + C64e(0x3fdb9292e476db76), C64e(0x180a0c0c121e0a1e), + C64e(0x906c4848fcb46cb4), C64e(0x6be4b8b88f37e437), + C64e(0x255d9f9f78e75de7), C64e(0x616ebdbd0fb26eb2), + C64e(0x86ef4343692aef2a), C64e(0x93a6c4c435f1a6f1), + C64e(0x72a83939dae3a8e3), C64e(0x62a43131c6f7a4f7), + C64e(0xbd37d3d38a593759), C64e(0xff8bf2f274868b86), + C64e(0xb132d5d583563256), C64e(0x0d438b8b4ec543c5), + C64e(0xdc596e6e85eb59eb), C64e(0xafb7dada18c2b7c2), + C64e(0x028c01018e8f8c8f), C64e(0x7964b1b11dac64ac), + C64e(0x23d29c9cf16dd26d), C64e(0x92e04949723be03b), + C64e(0xabb4d8d81fc7b4c7), C64e(0x43faacacb915fa15), + C64e(0xfd07f3f3fa090709), C64e(0x8525cfcfa06f256f), + C64e(0x8fafcaca20eaafea), C64e(0xf38ef4f47d898e89), + C64e(0x8ee947476720e920), C64e(0x2018101038281828), + C64e(0xded56f6f0b64d564), C64e(0xfb88f0f073838883), + C64e(0x946f4a4afbb16fb1), C64e(0xb8725c5cca967296), + C64e(0x70243838546c246c), C64e(0xaef157575f08f108), + C64e(0xe6c773732152c752), C64e(0x3551979764f351f3), + C64e(0x8d23cbcbae652365), C64e(0x597ca1a125847c84), + C64e(0xcb9ce8e857bf9cbf), C64e(0x7c213e3e5d632163), + C64e(0x37dd9696ea7cdd7c), C64e(0xc2dc61611e7fdc7f), + C64e(0x1a860d0d9c918691), C64e(0x1e850f0f9b948594), + C64e(0xdb90e0e04bab90ab), C64e(0xf8427c7cbac642c6), + C64e(0xe2c471712657c457), C64e(0x83aacccc29e5aae5), + C64e(0x3bd89090e373d873), C64e(0x0c050606090f050f), + C64e(0xf501f7f7f4030103), C64e(0x38121c1c2a361236), + C64e(0x9fa3c2c23cfea3fe), C64e(0xd45f6a6a8be15fe1), + C64e(0x47f9aeaebe10f910), C64e(0xd2d06969026bd06b), + C64e(0x2e911717bfa891a8), C64e(0x2958999971e858e8), + C64e(0x74273a3a53692769), C64e(0x4eb92727f7d0b9d0), + C64e(0xa938d9d991483848), C64e(0xcd13ebebde351335), + C64e(0x56b32b2be5ceb3ce), C64e(0x4433222277553355), + C64e(0xbfbbd2d204d6bbd6), C64e(0x4970a9a939907090), + C64e(0x0e89070787808980), C64e(0x66a73333c1f2a7f2), + C64e(0x5ab62d2decc1b6c1), C64e(0x78223c3c5a662266), + C64e(0x2a921515b8ad92ad), C64e(0x8920c9c9a9602060), + C64e(0x154987875cdb49db), C64e(0x4fffaaaab01aff1a), + C64e(0xa0785050d8887888), C64e(0x517aa5a52b8e7a8e), + C64e(0x068f0303898a8f8a), C64e(0xb2f859594a13f813), + C64e(0x12800909929b809b), C64e(0x34171a1a23391739), + C64e(0xcada65651075da75), C64e(0xb531d7d784533153), + C64e(0x13c68484d551c651), C64e(0xbbb8d0d003d3b8d3), + C64e(0x1fc38282dc5ec35e), C64e(0x52b02929e2cbb0cb), + C64e(0xb4775a5ac3997799), C64e(0x3c111e1e2d331133), + C64e(0xf6cb7b7b3d46cb46), C64e(0x4bfca8a8b71ffc1f), + C64e(0xdad66d6d0c61d661), C64e(0x583a2c2c624e3a4e) +}; + +#endif + +static const sph_u64 T4[] = { + C64e(0xf497a5c6c632f4a5), C64e(0x97eb84f8f86f9784), + C64e(0xb0c799eeee5eb099), C64e(0x8cf78df6f67a8c8d), + C64e(0x17e50dffffe8170d), C64e(0xdcb7bdd6d60adcbd), + C64e(0xc8a7b1dede16c8b1), C64e(0xfc395491916dfc54), + C64e(0xf0c050606090f050), C64e(0x0504030202070503), + C64e(0xe087a9cece2ee0a9), C64e(0x87ac7d5656d1877d), + C64e(0x2bd519e7e7cc2b19), C64e(0xa67162b5b513a662), + C64e(0x319ae64d4d7c31e6), C64e(0xb5c39aecec59b59a), + C64e(0xcf05458f8f40cf45), C64e(0xbc3e9d1f1fa3bc9d), + C64e(0xc00940898949c040), C64e(0x92ef87fafa689287), + C64e(0x3fc515efefd03f15), C64e(0x267febb2b29426eb), + C64e(0x4007c98e8ece40c9), C64e(0x1ded0bfbfbe61d0b), + C64e(0x2f82ec41416e2fec), C64e(0xa97d67b3b31aa967), + C64e(0x1cbefd5f5f431cfd), C64e(0x258aea45456025ea), + C64e(0xda46bf2323f9dabf), C64e(0x02a6f753535102f7), + C64e(0xa1d396e4e445a196), C64e(0xed2d5b9b9b76ed5b), + C64e(0x5deac27575285dc2), C64e(0x24d91ce1e1c5241c), + C64e(0xe97aae3d3dd4e9ae), C64e(0xbe986a4c4cf2be6a), + C64e(0xeed85a6c6c82ee5a), C64e(0xc3fc417e7ebdc341), + C64e(0x06f102f5f5f30602), C64e(0xd11d4f838352d14f), + C64e(0xe4d05c68688ce45c), C64e(0x07a2f451515607f4), + C64e(0x5cb934d1d18d5c34), C64e(0x18e908f9f9e11808), + C64e(0xaedf93e2e24cae93), C64e(0x954d73abab3e9573), + C64e(0xf5c453626297f553), C64e(0x41543f2a2a6b413f), + C64e(0x14100c08081c140c), C64e(0xf63152959563f652), + C64e(0xaf8c654646e9af65), C64e(0xe2215e9d9d7fe25e), + C64e(0x7860283030487828), C64e(0xf86ea13737cff8a1), + C64e(0x11140f0a0a1b110f), C64e(0xc45eb52f2febc4b5), + C64e(0x1b1c090e0e151b09), C64e(0x5a483624247e5a36), + C64e(0xb6369b1b1badb69b), C64e(0x47a53ddfdf98473d), + C64e(0x6a8126cdcda76a26), C64e(0xbb9c694e4ef5bb69), + C64e(0x4cfecd7f7f334ccd), C64e(0xbacf9feaea50ba9f), + C64e(0x2d241b12123f2d1b), C64e(0xb93a9e1d1da4b99e), + C64e(0x9cb0745858c49c74), C64e(0x72682e343446722e), + C64e(0x776c2d363641772d), C64e(0xcda3b2dcdc11cdb2), + C64e(0x2973eeb4b49d29ee), C64e(0x16b6fb5b5b4d16fb), + C64e(0x0153f6a4a4a501f6), C64e(0xd7ec4d7676a1d74d), + C64e(0xa37561b7b714a361), C64e(0x49face7d7d3449ce), + C64e(0x8da47b5252df8d7b), C64e(0x42a13edddd9f423e), + C64e(0x93bc715e5ecd9371), C64e(0xa226971313b1a297), + C64e(0x0457f5a6a6a204f5), C64e(0xb86968b9b901b868), + C64e(0x0000000000000000), C64e(0x74992cc1c1b5742c), + C64e(0xa080604040e0a060), C64e(0x21dd1fe3e3c2211f), + C64e(0x43f2c879793a43c8), C64e(0x2c77edb6b69a2ced), + C64e(0xd9b3bed4d40dd9be), C64e(0xca01468d8d47ca46), + C64e(0x70ced967671770d9), C64e(0xdde44b7272afdd4b), + C64e(0x7933de9494ed79de), C64e(0x672bd49898ff67d4), + C64e(0x237be8b0b09323e8), C64e(0xde114a85855bde4a), + C64e(0xbd6d6bbbbb06bd6b), C64e(0x7e912ac5c5bb7e2a), + C64e(0x349ee54f4f7b34e5), C64e(0x3ac116ededd73a16), + C64e(0x5417c58686d254c5), C64e(0x622fd79a9af862d7), + C64e(0xffcc55666699ff55), C64e(0xa722941111b6a794), + C64e(0x4a0fcf8a8ac04acf), C64e(0x30c910e9e9d93010), + C64e(0x0a080604040e0a06), C64e(0x98e781fefe669881), + C64e(0x0b5bf0a0a0ab0bf0), C64e(0xccf0447878b4cc44), + C64e(0xd54aba2525f0d5ba), C64e(0x3e96e34b4b753ee3), + C64e(0x0e5ff3a2a2ac0ef3), C64e(0x19bafe5d5d4419fe), + C64e(0x5b1bc08080db5bc0), C64e(0x850a8a050580858a), + C64e(0xec7ead3f3fd3ecad), C64e(0xdf42bc2121fedfbc), + C64e(0xd8e0487070a8d848), C64e(0x0cf904f1f1fd0c04), + C64e(0x7ac6df6363197adf), C64e(0x58eec177772f58c1), + C64e(0x9f4575afaf309f75), C64e(0xa584634242e7a563), + C64e(0x5040302020705030), C64e(0x2ed11ae5e5cb2e1a), + C64e(0x12e10efdfdef120e), C64e(0xb7656dbfbf08b76d), + C64e(0xd4194c818155d44c), C64e(0x3c30141818243c14), + C64e(0x5f4c352626795f35), C64e(0x719d2fc3c3b2712f), + C64e(0x3867e1bebe8638e1), C64e(0xfd6aa23535c8fda2), + C64e(0x4f0bcc8888c74fcc), C64e(0x4b5c392e2e654b39), + C64e(0xf93d5793936af957), C64e(0x0daaf25555580df2), + C64e(0x9de382fcfc619d82), C64e(0xc9f4477a7ab3c947), + C64e(0xef8bacc8c827efac), C64e(0x326fe7baba8832e7), + C64e(0x7d642b32324f7d2b), C64e(0xa4d795e6e642a495), + C64e(0xfb9ba0c0c03bfba0), C64e(0xb332981919aab398), + C64e(0x6827d19e9ef668d1), C64e(0x815d7fa3a322817f), + C64e(0xaa88664444eeaa66), C64e(0x82a87e5454d6827e), + C64e(0xe676ab3b3bdde6ab), C64e(0x9e16830b0b959e83), + C64e(0x4503ca8c8cc945ca), C64e(0x7b9529c7c7bc7b29), + C64e(0x6ed6d36b6b056ed3), C64e(0x44503c28286c443c), + C64e(0x8b5579a7a72c8b79), C64e(0x3d63e2bcbc813de2), + C64e(0x272c1d161631271d), C64e(0x9a4176adad379a76), + C64e(0x4dad3bdbdb964d3b), C64e(0xfac85664649efa56), + C64e(0xd2e84e7474a6d24e), C64e(0x22281e141436221e), + C64e(0x763fdb9292e476db), C64e(0x1e180a0c0c121e0a), + C64e(0xb4906c4848fcb46c), C64e(0x376be4b8b88f37e4), + C64e(0xe7255d9f9f78e75d), C64e(0xb2616ebdbd0fb26e), + C64e(0x2a86ef4343692aef), C64e(0xf193a6c4c435f1a6), + C64e(0xe372a83939dae3a8), C64e(0xf762a43131c6f7a4), + C64e(0x59bd37d3d38a5937), C64e(0x86ff8bf2f274868b), + C64e(0x56b132d5d5835632), C64e(0xc50d438b8b4ec543), + C64e(0xebdc596e6e85eb59), C64e(0xc2afb7dada18c2b7), + C64e(0x8f028c01018e8f8c), C64e(0xac7964b1b11dac64), + C64e(0x6d23d29c9cf16dd2), C64e(0x3b92e04949723be0), + C64e(0xc7abb4d8d81fc7b4), C64e(0x1543faacacb915fa), + C64e(0x09fd07f3f3fa0907), C64e(0x6f8525cfcfa06f25), + C64e(0xea8fafcaca20eaaf), C64e(0x89f38ef4f47d898e), + C64e(0x208ee947476720e9), C64e(0x2820181010382818), + C64e(0x64ded56f6f0b64d5), C64e(0x83fb88f0f0738388), + C64e(0xb1946f4a4afbb16f), C64e(0x96b8725c5cca9672), + C64e(0x6c70243838546c24), C64e(0x08aef157575f08f1), + C64e(0x52e6c773732152c7), C64e(0xf33551979764f351), + C64e(0x658d23cbcbae6523), C64e(0x84597ca1a125847c), + C64e(0xbfcb9ce8e857bf9c), C64e(0x637c213e3e5d6321), + C64e(0x7c37dd9696ea7cdd), C64e(0x7fc2dc61611e7fdc), + C64e(0x911a860d0d9c9186), C64e(0x941e850f0f9b9485), + C64e(0xabdb90e0e04bab90), C64e(0xc6f8427c7cbac642), + C64e(0x57e2c471712657c4), C64e(0xe583aacccc29e5aa), + C64e(0x733bd89090e373d8), C64e(0x0f0c050606090f05), + C64e(0x03f501f7f7f40301), C64e(0x3638121c1c2a3612), + C64e(0xfe9fa3c2c23cfea3), C64e(0xe1d45f6a6a8be15f), + C64e(0x1047f9aeaebe10f9), C64e(0x6bd2d06969026bd0), + C64e(0xa82e911717bfa891), C64e(0xe82958999971e858), + C64e(0x6974273a3a536927), C64e(0xd04eb92727f7d0b9), + C64e(0x48a938d9d9914838), C64e(0x35cd13ebebde3513), + C64e(0xce56b32b2be5ceb3), C64e(0x5544332222775533), + C64e(0xd6bfbbd2d204d6bb), C64e(0x904970a9a9399070), + C64e(0x800e890707878089), C64e(0xf266a73333c1f2a7), + C64e(0xc15ab62d2decc1b6), C64e(0x6678223c3c5a6622), + C64e(0xad2a921515b8ad92), C64e(0x608920c9c9a96020), + C64e(0xdb154987875cdb49), C64e(0x1a4fffaaaab01aff), + C64e(0x88a0785050d88878), C64e(0x8e517aa5a52b8e7a), + C64e(0x8a068f0303898a8f), C64e(0x13b2f859594a13f8), + C64e(0x9b12800909929b80), C64e(0x3934171a1a233917), + C64e(0x75cada65651075da), C64e(0x53b531d7d7845331), + C64e(0x5113c68484d551c6), C64e(0xd3bbb8d0d003d3b8), + C64e(0x5e1fc38282dc5ec3), C64e(0xcb52b02929e2cbb0), + C64e(0x99b4775a5ac39977), C64e(0x333c111e1e2d3311), + C64e(0x46f6cb7b7b3d46cb), C64e(0x1f4bfca8a8b71ffc), + C64e(0x61dad66d6d0c61d6), C64e(0x4e583a2c2c624e3a) +}; + +#if !SPH_SMALL_FOOTPRINT_GROESTL + +static const sph_u64 T5[] = { + C64e(0xa5f497a5c6c632f4), C64e(0x8497eb84f8f86f97), + C64e(0x99b0c799eeee5eb0), C64e(0x8d8cf78df6f67a8c), + C64e(0x0d17e50dffffe817), C64e(0xbddcb7bdd6d60adc), + C64e(0xb1c8a7b1dede16c8), C64e(0x54fc395491916dfc), + C64e(0x50f0c050606090f0), C64e(0x0305040302020705), + C64e(0xa9e087a9cece2ee0), C64e(0x7d87ac7d5656d187), + C64e(0x192bd519e7e7cc2b), C64e(0x62a67162b5b513a6), + C64e(0xe6319ae64d4d7c31), C64e(0x9ab5c39aecec59b5), + C64e(0x45cf05458f8f40cf), C64e(0x9dbc3e9d1f1fa3bc), + C64e(0x40c00940898949c0), C64e(0x8792ef87fafa6892), + C64e(0x153fc515efefd03f), C64e(0xeb267febb2b29426), + C64e(0xc94007c98e8ece40), C64e(0x0b1ded0bfbfbe61d), + C64e(0xec2f82ec41416e2f), C64e(0x67a97d67b3b31aa9), + C64e(0xfd1cbefd5f5f431c), C64e(0xea258aea45456025), + C64e(0xbfda46bf2323f9da), C64e(0xf702a6f753535102), + C64e(0x96a1d396e4e445a1), C64e(0x5bed2d5b9b9b76ed), + C64e(0xc25deac27575285d), C64e(0x1c24d91ce1e1c524), + C64e(0xaee97aae3d3dd4e9), C64e(0x6abe986a4c4cf2be), + C64e(0x5aeed85a6c6c82ee), C64e(0x41c3fc417e7ebdc3), + C64e(0x0206f102f5f5f306), C64e(0x4fd11d4f838352d1), + C64e(0x5ce4d05c68688ce4), C64e(0xf407a2f451515607), + C64e(0x345cb934d1d18d5c), C64e(0x0818e908f9f9e118), + C64e(0x93aedf93e2e24cae), C64e(0x73954d73abab3e95), + C64e(0x53f5c453626297f5), C64e(0x3f41543f2a2a6b41), + C64e(0x0c14100c08081c14), C64e(0x52f63152959563f6), + C64e(0x65af8c654646e9af), C64e(0x5ee2215e9d9d7fe2), + C64e(0x2878602830304878), C64e(0xa1f86ea13737cff8), + C64e(0x0f11140f0a0a1b11), C64e(0xb5c45eb52f2febc4), + C64e(0x091b1c090e0e151b), C64e(0x365a483624247e5a), + C64e(0x9bb6369b1b1badb6), C64e(0x3d47a53ddfdf9847), + C64e(0x266a8126cdcda76a), C64e(0x69bb9c694e4ef5bb), + C64e(0xcd4cfecd7f7f334c), C64e(0x9fbacf9feaea50ba), + C64e(0x1b2d241b12123f2d), C64e(0x9eb93a9e1d1da4b9), + C64e(0x749cb0745858c49c), C64e(0x2e72682e34344672), + C64e(0x2d776c2d36364177), C64e(0xb2cda3b2dcdc11cd), + C64e(0xee2973eeb4b49d29), C64e(0xfb16b6fb5b5b4d16), + C64e(0xf60153f6a4a4a501), C64e(0x4dd7ec4d7676a1d7), + C64e(0x61a37561b7b714a3), C64e(0xce49face7d7d3449), + C64e(0x7b8da47b5252df8d), C64e(0x3e42a13edddd9f42), + C64e(0x7193bc715e5ecd93), C64e(0x97a226971313b1a2), + C64e(0xf50457f5a6a6a204), C64e(0x68b86968b9b901b8), + C64e(0x0000000000000000), C64e(0x2c74992cc1c1b574), + C64e(0x60a080604040e0a0), C64e(0x1f21dd1fe3e3c221), + C64e(0xc843f2c879793a43), C64e(0xed2c77edb6b69a2c), + C64e(0xbed9b3bed4d40dd9), C64e(0x46ca01468d8d47ca), + C64e(0xd970ced967671770), C64e(0x4bdde44b7272afdd), + C64e(0xde7933de9494ed79), C64e(0xd4672bd49898ff67), + C64e(0xe8237be8b0b09323), C64e(0x4ade114a85855bde), + C64e(0x6bbd6d6bbbbb06bd), C64e(0x2a7e912ac5c5bb7e), + C64e(0xe5349ee54f4f7b34), C64e(0x163ac116ededd73a), + C64e(0xc55417c58686d254), C64e(0xd7622fd79a9af862), + C64e(0x55ffcc55666699ff), C64e(0x94a722941111b6a7), + C64e(0xcf4a0fcf8a8ac04a), C64e(0x1030c910e9e9d930), + C64e(0x060a080604040e0a), C64e(0x8198e781fefe6698), + C64e(0xf00b5bf0a0a0ab0b), C64e(0x44ccf0447878b4cc), + C64e(0xbad54aba2525f0d5), C64e(0xe33e96e34b4b753e), + C64e(0xf30e5ff3a2a2ac0e), C64e(0xfe19bafe5d5d4419), + C64e(0xc05b1bc08080db5b), C64e(0x8a850a8a05058085), + C64e(0xadec7ead3f3fd3ec), C64e(0xbcdf42bc2121fedf), + C64e(0x48d8e0487070a8d8), C64e(0x040cf904f1f1fd0c), + C64e(0xdf7ac6df6363197a), C64e(0xc158eec177772f58), + C64e(0x759f4575afaf309f), C64e(0x63a584634242e7a5), + C64e(0x3050403020207050), C64e(0x1a2ed11ae5e5cb2e), + C64e(0x0e12e10efdfdef12), C64e(0x6db7656dbfbf08b7), + C64e(0x4cd4194c818155d4), C64e(0x143c30141818243c), + C64e(0x355f4c352626795f), C64e(0x2f719d2fc3c3b271), + C64e(0xe13867e1bebe8638), C64e(0xa2fd6aa23535c8fd), + C64e(0xcc4f0bcc8888c74f), C64e(0x394b5c392e2e654b), + C64e(0x57f93d5793936af9), C64e(0xf20daaf25555580d), + C64e(0x829de382fcfc619d), C64e(0x47c9f4477a7ab3c9), + C64e(0xacef8bacc8c827ef), C64e(0xe7326fe7baba8832), + C64e(0x2b7d642b32324f7d), C64e(0x95a4d795e6e642a4), + C64e(0xa0fb9ba0c0c03bfb), C64e(0x98b332981919aab3), + C64e(0xd16827d19e9ef668), C64e(0x7f815d7fa3a32281), + C64e(0x66aa88664444eeaa), C64e(0x7e82a87e5454d682), + C64e(0xabe676ab3b3bdde6), C64e(0x839e16830b0b959e), + C64e(0xca4503ca8c8cc945), C64e(0x297b9529c7c7bc7b), + C64e(0xd36ed6d36b6b056e), C64e(0x3c44503c28286c44), + C64e(0x798b5579a7a72c8b), C64e(0xe23d63e2bcbc813d), + C64e(0x1d272c1d16163127), C64e(0x769a4176adad379a), + C64e(0x3b4dad3bdbdb964d), C64e(0x56fac85664649efa), + C64e(0x4ed2e84e7474a6d2), C64e(0x1e22281e14143622), + C64e(0xdb763fdb9292e476), C64e(0x0a1e180a0c0c121e), + C64e(0x6cb4906c4848fcb4), C64e(0xe4376be4b8b88f37), + C64e(0x5de7255d9f9f78e7), C64e(0x6eb2616ebdbd0fb2), + C64e(0xef2a86ef4343692a), C64e(0xa6f193a6c4c435f1), + C64e(0xa8e372a83939dae3), C64e(0xa4f762a43131c6f7), + C64e(0x3759bd37d3d38a59), C64e(0x8b86ff8bf2f27486), + C64e(0x3256b132d5d58356), C64e(0x43c50d438b8b4ec5), + C64e(0x59ebdc596e6e85eb), C64e(0xb7c2afb7dada18c2), + C64e(0x8c8f028c01018e8f), C64e(0x64ac7964b1b11dac), + C64e(0xd26d23d29c9cf16d), C64e(0xe03b92e04949723b), + C64e(0xb4c7abb4d8d81fc7), C64e(0xfa1543faacacb915), + C64e(0x0709fd07f3f3fa09), C64e(0x256f8525cfcfa06f), + C64e(0xafea8fafcaca20ea), C64e(0x8e89f38ef4f47d89), + C64e(0xe9208ee947476720), C64e(0x1828201810103828), + C64e(0xd564ded56f6f0b64), C64e(0x8883fb88f0f07383), + C64e(0x6fb1946f4a4afbb1), C64e(0x7296b8725c5cca96), + C64e(0x246c70243838546c), C64e(0xf108aef157575f08), + C64e(0xc752e6c773732152), C64e(0x51f33551979764f3), + C64e(0x23658d23cbcbae65), C64e(0x7c84597ca1a12584), + C64e(0x9cbfcb9ce8e857bf), C64e(0x21637c213e3e5d63), + C64e(0xdd7c37dd9696ea7c), C64e(0xdc7fc2dc61611e7f), + C64e(0x86911a860d0d9c91), C64e(0x85941e850f0f9b94), + C64e(0x90abdb90e0e04bab), C64e(0x42c6f8427c7cbac6), + C64e(0xc457e2c471712657), C64e(0xaae583aacccc29e5), + C64e(0xd8733bd89090e373), C64e(0x050f0c050606090f), + C64e(0x0103f501f7f7f403), C64e(0x123638121c1c2a36), + C64e(0xa3fe9fa3c2c23cfe), C64e(0x5fe1d45f6a6a8be1), + C64e(0xf91047f9aeaebe10), C64e(0xd06bd2d06969026b), + C64e(0x91a82e911717bfa8), C64e(0x58e82958999971e8), + C64e(0x276974273a3a5369), C64e(0xb9d04eb92727f7d0), + C64e(0x3848a938d9d99148), C64e(0x1335cd13ebebde35), + C64e(0xb3ce56b32b2be5ce), C64e(0x3355443322227755), + C64e(0xbbd6bfbbd2d204d6), C64e(0x70904970a9a93990), + C64e(0x89800e8907078780), C64e(0xa7f266a73333c1f2), + C64e(0xb6c15ab62d2decc1), C64e(0x226678223c3c5a66), + C64e(0x92ad2a921515b8ad), C64e(0x20608920c9c9a960), + C64e(0x49db154987875cdb), C64e(0xff1a4fffaaaab01a), + C64e(0x7888a0785050d888), C64e(0x7a8e517aa5a52b8e), + C64e(0x8f8a068f0303898a), C64e(0xf813b2f859594a13), + C64e(0x809b12800909929b), C64e(0x173934171a1a2339), + C64e(0xda75cada65651075), C64e(0x3153b531d7d78453), + C64e(0xc65113c68484d551), C64e(0xb8d3bbb8d0d003d3), + C64e(0xc35e1fc38282dc5e), C64e(0xb0cb52b02929e2cb), + C64e(0x7799b4775a5ac399), C64e(0x11333c111e1e2d33), + C64e(0xcb46f6cb7b7b3d46), C64e(0xfc1f4bfca8a8b71f), + C64e(0xd661dad66d6d0c61), C64e(0x3a4e583a2c2c624e) +}; + +static const sph_u64 T6[] = { + C64e(0xf4a5f497a5c6c632), C64e(0x978497eb84f8f86f), + C64e(0xb099b0c799eeee5e), C64e(0x8c8d8cf78df6f67a), + C64e(0x170d17e50dffffe8), C64e(0xdcbddcb7bdd6d60a), + C64e(0xc8b1c8a7b1dede16), C64e(0xfc54fc395491916d), + C64e(0xf050f0c050606090), C64e(0x0503050403020207), + C64e(0xe0a9e087a9cece2e), C64e(0x877d87ac7d5656d1), + C64e(0x2b192bd519e7e7cc), C64e(0xa662a67162b5b513), + C64e(0x31e6319ae64d4d7c), C64e(0xb59ab5c39aecec59), + C64e(0xcf45cf05458f8f40), C64e(0xbc9dbc3e9d1f1fa3), + C64e(0xc040c00940898949), C64e(0x928792ef87fafa68), + C64e(0x3f153fc515efefd0), C64e(0x26eb267febb2b294), + C64e(0x40c94007c98e8ece), C64e(0x1d0b1ded0bfbfbe6), + C64e(0x2fec2f82ec41416e), C64e(0xa967a97d67b3b31a), + C64e(0x1cfd1cbefd5f5f43), C64e(0x25ea258aea454560), + C64e(0xdabfda46bf2323f9), C64e(0x02f702a6f7535351), + C64e(0xa196a1d396e4e445), C64e(0xed5bed2d5b9b9b76), + C64e(0x5dc25deac2757528), C64e(0x241c24d91ce1e1c5), + C64e(0xe9aee97aae3d3dd4), C64e(0xbe6abe986a4c4cf2), + C64e(0xee5aeed85a6c6c82), C64e(0xc341c3fc417e7ebd), + C64e(0x060206f102f5f5f3), C64e(0xd14fd11d4f838352), + C64e(0xe45ce4d05c68688c), C64e(0x07f407a2f4515156), + C64e(0x5c345cb934d1d18d), C64e(0x180818e908f9f9e1), + C64e(0xae93aedf93e2e24c), C64e(0x9573954d73abab3e), + C64e(0xf553f5c453626297), C64e(0x413f41543f2a2a6b), + C64e(0x140c14100c08081c), C64e(0xf652f63152959563), + C64e(0xaf65af8c654646e9), C64e(0xe25ee2215e9d9d7f), + C64e(0x7828786028303048), C64e(0xf8a1f86ea13737cf), + C64e(0x110f11140f0a0a1b), C64e(0xc4b5c45eb52f2feb), + C64e(0x1b091b1c090e0e15), C64e(0x5a365a483624247e), + C64e(0xb69bb6369b1b1bad), C64e(0x473d47a53ddfdf98), + C64e(0x6a266a8126cdcda7), C64e(0xbb69bb9c694e4ef5), + C64e(0x4ccd4cfecd7f7f33), C64e(0xba9fbacf9feaea50), + C64e(0x2d1b2d241b12123f), C64e(0xb99eb93a9e1d1da4), + C64e(0x9c749cb0745858c4), C64e(0x722e72682e343446), + C64e(0x772d776c2d363641), C64e(0xcdb2cda3b2dcdc11), + C64e(0x29ee2973eeb4b49d), C64e(0x16fb16b6fb5b5b4d), + C64e(0x01f60153f6a4a4a5), C64e(0xd74dd7ec4d7676a1), + C64e(0xa361a37561b7b714), C64e(0x49ce49face7d7d34), + C64e(0x8d7b8da47b5252df), C64e(0x423e42a13edddd9f), + C64e(0x937193bc715e5ecd), C64e(0xa297a226971313b1), + C64e(0x04f50457f5a6a6a2), C64e(0xb868b86968b9b901), + C64e(0x0000000000000000), C64e(0x742c74992cc1c1b5), + C64e(0xa060a080604040e0), C64e(0x211f21dd1fe3e3c2), + C64e(0x43c843f2c879793a), C64e(0x2ced2c77edb6b69a), + C64e(0xd9bed9b3bed4d40d), C64e(0xca46ca01468d8d47), + C64e(0x70d970ced9676717), C64e(0xdd4bdde44b7272af), + C64e(0x79de7933de9494ed), C64e(0x67d4672bd49898ff), + C64e(0x23e8237be8b0b093), C64e(0xde4ade114a85855b), + C64e(0xbd6bbd6d6bbbbb06), C64e(0x7e2a7e912ac5c5bb), + C64e(0x34e5349ee54f4f7b), C64e(0x3a163ac116ededd7), + C64e(0x54c55417c58686d2), C64e(0x62d7622fd79a9af8), + C64e(0xff55ffcc55666699), C64e(0xa794a722941111b6), + C64e(0x4acf4a0fcf8a8ac0), C64e(0x301030c910e9e9d9), + C64e(0x0a060a080604040e), C64e(0x988198e781fefe66), + C64e(0x0bf00b5bf0a0a0ab), C64e(0xcc44ccf0447878b4), + C64e(0xd5bad54aba2525f0), C64e(0x3ee33e96e34b4b75), + C64e(0x0ef30e5ff3a2a2ac), C64e(0x19fe19bafe5d5d44), + C64e(0x5bc05b1bc08080db), C64e(0x858a850a8a050580), + C64e(0xecadec7ead3f3fd3), C64e(0xdfbcdf42bc2121fe), + C64e(0xd848d8e0487070a8), C64e(0x0c040cf904f1f1fd), + C64e(0x7adf7ac6df636319), C64e(0x58c158eec177772f), + C64e(0x9f759f4575afaf30), C64e(0xa563a584634242e7), + C64e(0x5030504030202070), C64e(0x2e1a2ed11ae5e5cb), + C64e(0x120e12e10efdfdef), C64e(0xb76db7656dbfbf08), + C64e(0xd44cd4194c818155), C64e(0x3c143c3014181824), + C64e(0x5f355f4c35262679), C64e(0x712f719d2fc3c3b2), + C64e(0x38e13867e1bebe86), C64e(0xfda2fd6aa23535c8), + C64e(0x4fcc4f0bcc8888c7), C64e(0x4b394b5c392e2e65), + C64e(0xf957f93d5793936a), C64e(0x0df20daaf2555558), + C64e(0x9d829de382fcfc61), C64e(0xc947c9f4477a7ab3), + C64e(0xefacef8bacc8c827), C64e(0x32e7326fe7baba88), + C64e(0x7d2b7d642b32324f), C64e(0xa495a4d795e6e642), + C64e(0xfba0fb9ba0c0c03b), C64e(0xb398b332981919aa), + C64e(0x68d16827d19e9ef6), C64e(0x817f815d7fa3a322), + C64e(0xaa66aa88664444ee), C64e(0x827e82a87e5454d6), + C64e(0xe6abe676ab3b3bdd), C64e(0x9e839e16830b0b95), + C64e(0x45ca4503ca8c8cc9), C64e(0x7b297b9529c7c7bc), + C64e(0x6ed36ed6d36b6b05), C64e(0x443c44503c28286c), + C64e(0x8b798b5579a7a72c), C64e(0x3de23d63e2bcbc81), + C64e(0x271d272c1d161631), C64e(0x9a769a4176adad37), + C64e(0x4d3b4dad3bdbdb96), C64e(0xfa56fac85664649e), + C64e(0xd24ed2e84e7474a6), C64e(0x221e22281e141436), + C64e(0x76db763fdb9292e4), C64e(0x1e0a1e180a0c0c12), + C64e(0xb46cb4906c4848fc), C64e(0x37e4376be4b8b88f), + C64e(0xe75de7255d9f9f78), C64e(0xb26eb2616ebdbd0f), + C64e(0x2aef2a86ef434369), C64e(0xf1a6f193a6c4c435), + C64e(0xe3a8e372a83939da), C64e(0xf7a4f762a43131c6), + C64e(0x593759bd37d3d38a), C64e(0x868b86ff8bf2f274), + C64e(0x563256b132d5d583), C64e(0xc543c50d438b8b4e), + C64e(0xeb59ebdc596e6e85), C64e(0xc2b7c2afb7dada18), + C64e(0x8f8c8f028c01018e), C64e(0xac64ac7964b1b11d), + C64e(0x6dd26d23d29c9cf1), C64e(0x3be03b92e0494972), + C64e(0xc7b4c7abb4d8d81f), C64e(0x15fa1543faacacb9), + C64e(0x090709fd07f3f3fa), C64e(0x6f256f8525cfcfa0), + C64e(0xeaafea8fafcaca20), C64e(0x898e89f38ef4f47d), + C64e(0x20e9208ee9474767), C64e(0x2818282018101038), + C64e(0x64d564ded56f6f0b), C64e(0x838883fb88f0f073), + C64e(0xb16fb1946f4a4afb), C64e(0x967296b8725c5cca), + C64e(0x6c246c7024383854), C64e(0x08f108aef157575f), + C64e(0x52c752e6c7737321), C64e(0xf351f33551979764), + C64e(0x6523658d23cbcbae), C64e(0x847c84597ca1a125), + C64e(0xbf9cbfcb9ce8e857), C64e(0x6321637c213e3e5d), + C64e(0x7cdd7c37dd9696ea), C64e(0x7fdc7fc2dc61611e), + C64e(0x9186911a860d0d9c), C64e(0x9485941e850f0f9b), + C64e(0xab90abdb90e0e04b), C64e(0xc642c6f8427c7cba), + C64e(0x57c457e2c4717126), C64e(0xe5aae583aacccc29), + C64e(0x73d8733bd89090e3), C64e(0x0f050f0c05060609), + C64e(0x030103f501f7f7f4), C64e(0x36123638121c1c2a), + C64e(0xfea3fe9fa3c2c23c), C64e(0xe15fe1d45f6a6a8b), + C64e(0x10f91047f9aeaebe), C64e(0x6bd06bd2d0696902), + C64e(0xa891a82e911717bf), C64e(0xe858e82958999971), + C64e(0x69276974273a3a53), C64e(0xd0b9d04eb92727f7), + C64e(0x483848a938d9d991), C64e(0x351335cd13ebebde), + C64e(0xceb3ce56b32b2be5), C64e(0x5533554433222277), + C64e(0xd6bbd6bfbbd2d204), C64e(0x9070904970a9a939), + C64e(0x8089800e89070787), C64e(0xf2a7f266a73333c1), + C64e(0xc1b6c15ab62d2dec), C64e(0x66226678223c3c5a), + C64e(0xad92ad2a921515b8), C64e(0x6020608920c9c9a9), + C64e(0xdb49db154987875c), C64e(0x1aff1a4fffaaaab0), + C64e(0x887888a0785050d8), C64e(0x8e7a8e517aa5a52b), + C64e(0x8a8f8a068f030389), C64e(0x13f813b2f859594a), + C64e(0x9b809b1280090992), C64e(0x39173934171a1a23), + C64e(0x75da75cada656510), C64e(0x533153b531d7d784), + C64e(0x51c65113c68484d5), C64e(0xd3b8d3bbb8d0d003), + C64e(0x5ec35e1fc38282dc), C64e(0xcbb0cb52b02929e2), + C64e(0x997799b4775a5ac3), C64e(0x3311333c111e1e2d), + C64e(0x46cb46f6cb7b7b3d), C64e(0x1ffc1f4bfca8a8b7), + C64e(0x61d661dad66d6d0c), C64e(0x4e3a4e583a2c2c62) +}; + +static const sph_u64 T7[] = { + C64e(0x32f4a5f497a5c6c6), C64e(0x6f978497eb84f8f8), + C64e(0x5eb099b0c799eeee), C64e(0x7a8c8d8cf78df6f6), + C64e(0xe8170d17e50dffff), C64e(0x0adcbddcb7bdd6d6), + C64e(0x16c8b1c8a7b1dede), C64e(0x6dfc54fc39549191), + C64e(0x90f050f0c0506060), C64e(0x0705030504030202), + C64e(0x2ee0a9e087a9cece), C64e(0xd1877d87ac7d5656), + C64e(0xcc2b192bd519e7e7), C64e(0x13a662a67162b5b5), + C64e(0x7c31e6319ae64d4d), C64e(0x59b59ab5c39aecec), + C64e(0x40cf45cf05458f8f), C64e(0xa3bc9dbc3e9d1f1f), + C64e(0x49c040c009408989), C64e(0x68928792ef87fafa), + C64e(0xd03f153fc515efef), C64e(0x9426eb267febb2b2), + C64e(0xce40c94007c98e8e), C64e(0xe61d0b1ded0bfbfb), + C64e(0x6e2fec2f82ec4141), C64e(0x1aa967a97d67b3b3), + C64e(0x431cfd1cbefd5f5f), C64e(0x6025ea258aea4545), + C64e(0xf9dabfda46bf2323), C64e(0x5102f702a6f75353), + C64e(0x45a196a1d396e4e4), C64e(0x76ed5bed2d5b9b9b), + C64e(0x285dc25deac27575), C64e(0xc5241c24d91ce1e1), + C64e(0xd4e9aee97aae3d3d), C64e(0xf2be6abe986a4c4c), + C64e(0x82ee5aeed85a6c6c), C64e(0xbdc341c3fc417e7e), + C64e(0xf3060206f102f5f5), C64e(0x52d14fd11d4f8383), + C64e(0x8ce45ce4d05c6868), C64e(0x5607f407a2f45151), + C64e(0x8d5c345cb934d1d1), C64e(0xe1180818e908f9f9), + C64e(0x4cae93aedf93e2e2), C64e(0x3e9573954d73abab), + C64e(0x97f553f5c4536262), C64e(0x6b413f41543f2a2a), + C64e(0x1c140c14100c0808), C64e(0x63f652f631529595), + C64e(0xe9af65af8c654646), C64e(0x7fe25ee2215e9d9d), + C64e(0x4878287860283030), C64e(0xcff8a1f86ea13737), + C64e(0x1b110f11140f0a0a), C64e(0xebc4b5c45eb52f2f), + C64e(0x151b091b1c090e0e), C64e(0x7e5a365a48362424), + C64e(0xadb69bb6369b1b1b), C64e(0x98473d47a53ddfdf), + C64e(0xa76a266a8126cdcd), C64e(0xf5bb69bb9c694e4e), + C64e(0x334ccd4cfecd7f7f), C64e(0x50ba9fbacf9feaea), + C64e(0x3f2d1b2d241b1212), C64e(0xa4b99eb93a9e1d1d), + C64e(0xc49c749cb0745858), C64e(0x46722e72682e3434), + C64e(0x41772d776c2d3636), C64e(0x11cdb2cda3b2dcdc), + C64e(0x9d29ee2973eeb4b4), C64e(0x4d16fb16b6fb5b5b), + C64e(0xa501f60153f6a4a4), C64e(0xa1d74dd7ec4d7676), + C64e(0x14a361a37561b7b7), C64e(0x3449ce49face7d7d), + C64e(0xdf8d7b8da47b5252), C64e(0x9f423e42a13edddd), + C64e(0xcd937193bc715e5e), C64e(0xb1a297a226971313), + C64e(0xa204f50457f5a6a6), C64e(0x01b868b86968b9b9), + C64e(0x0000000000000000), C64e(0xb5742c74992cc1c1), + C64e(0xe0a060a080604040), C64e(0xc2211f21dd1fe3e3), + C64e(0x3a43c843f2c87979), C64e(0x9a2ced2c77edb6b6), + C64e(0x0dd9bed9b3bed4d4), C64e(0x47ca46ca01468d8d), + C64e(0x1770d970ced96767), C64e(0xafdd4bdde44b7272), + C64e(0xed79de7933de9494), C64e(0xff67d4672bd49898), + C64e(0x9323e8237be8b0b0), C64e(0x5bde4ade114a8585), + C64e(0x06bd6bbd6d6bbbbb), C64e(0xbb7e2a7e912ac5c5), + C64e(0x7b34e5349ee54f4f), C64e(0xd73a163ac116eded), + C64e(0xd254c55417c58686), C64e(0xf862d7622fd79a9a), + C64e(0x99ff55ffcc556666), C64e(0xb6a794a722941111), + C64e(0xc04acf4a0fcf8a8a), C64e(0xd9301030c910e9e9), + C64e(0x0e0a060a08060404), C64e(0x66988198e781fefe), + C64e(0xab0bf00b5bf0a0a0), C64e(0xb4cc44ccf0447878), + C64e(0xf0d5bad54aba2525), C64e(0x753ee33e96e34b4b), + C64e(0xac0ef30e5ff3a2a2), C64e(0x4419fe19bafe5d5d), + C64e(0xdb5bc05b1bc08080), C64e(0x80858a850a8a0505), + C64e(0xd3ecadec7ead3f3f), C64e(0xfedfbcdf42bc2121), + C64e(0xa8d848d8e0487070), C64e(0xfd0c040cf904f1f1), + C64e(0x197adf7ac6df6363), C64e(0x2f58c158eec17777), + C64e(0x309f759f4575afaf), C64e(0xe7a563a584634242), + C64e(0x7050305040302020), C64e(0xcb2e1a2ed11ae5e5), + C64e(0xef120e12e10efdfd), C64e(0x08b76db7656dbfbf), + C64e(0x55d44cd4194c8181), C64e(0x243c143c30141818), + C64e(0x795f355f4c352626), C64e(0xb2712f719d2fc3c3), + C64e(0x8638e13867e1bebe), C64e(0xc8fda2fd6aa23535), + C64e(0xc74fcc4f0bcc8888), C64e(0x654b394b5c392e2e), + C64e(0x6af957f93d579393), C64e(0x580df20daaf25555), + C64e(0x619d829de382fcfc), C64e(0xb3c947c9f4477a7a), + C64e(0x27efacef8bacc8c8), C64e(0x8832e7326fe7baba), + C64e(0x4f7d2b7d642b3232), C64e(0x42a495a4d795e6e6), + C64e(0x3bfba0fb9ba0c0c0), C64e(0xaab398b332981919), + C64e(0xf668d16827d19e9e), C64e(0x22817f815d7fa3a3), + C64e(0xeeaa66aa88664444), C64e(0xd6827e82a87e5454), + C64e(0xdde6abe676ab3b3b), C64e(0x959e839e16830b0b), + C64e(0xc945ca4503ca8c8c), C64e(0xbc7b297b9529c7c7), + C64e(0x056ed36ed6d36b6b), C64e(0x6c443c44503c2828), + C64e(0x2c8b798b5579a7a7), C64e(0x813de23d63e2bcbc), + C64e(0x31271d272c1d1616), C64e(0x379a769a4176adad), + C64e(0x964d3b4dad3bdbdb), C64e(0x9efa56fac8566464), + C64e(0xa6d24ed2e84e7474), C64e(0x36221e22281e1414), + C64e(0xe476db763fdb9292), C64e(0x121e0a1e180a0c0c), + C64e(0xfcb46cb4906c4848), C64e(0x8f37e4376be4b8b8), + C64e(0x78e75de7255d9f9f), C64e(0x0fb26eb2616ebdbd), + C64e(0x692aef2a86ef4343), C64e(0x35f1a6f193a6c4c4), + C64e(0xdae3a8e372a83939), C64e(0xc6f7a4f762a43131), + C64e(0x8a593759bd37d3d3), C64e(0x74868b86ff8bf2f2), + C64e(0x83563256b132d5d5), C64e(0x4ec543c50d438b8b), + C64e(0x85eb59ebdc596e6e), C64e(0x18c2b7c2afb7dada), + C64e(0x8e8f8c8f028c0101), C64e(0x1dac64ac7964b1b1), + C64e(0xf16dd26d23d29c9c), C64e(0x723be03b92e04949), + C64e(0x1fc7b4c7abb4d8d8), C64e(0xb915fa1543faacac), + C64e(0xfa090709fd07f3f3), C64e(0xa06f256f8525cfcf), + C64e(0x20eaafea8fafcaca), C64e(0x7d898e89f38ef4f4), + C64e(0x6720e9208ee94747), C64e(0x3828182820181010), + C64e(0x0b64d564ded56f6f), C64e(0x73838883fb88f0f0), + C64e(0xfbb16fb1946f4a4a), C64e(0xca967296b8725c5c), + C64e(0x546c246c70243838), C64e(0x5f08f108aef15757), + C64e(0x2152c752e6c77373), C64e(0x64f351f335519797), + C64e(0xae6523658d23cbcb), C64e(0x25847c84597ca1a1), + C64e(0x57bf9cbfcb9ce8e8), C64e(0x5d6321637c213e3e), + C64e(0xea7cdd7c37dd9696), C64e(0x1e7fdc7fc2dc6161), + C64e(0x9c9186911a860d0d), C64e(0x9b9485941e850f0f), + C64e(0x4bab90abdb90e0e0), C64e(0xbac642c6f8427c7c), + C64e(0x2657c457e2c47171), C64e(0x29e5aae583aacccc), + C64e(0xe373d8733bd89090), C64e(0x090f050f0c050606), + C64e(0xf4030103f501f7f7), C64e(0x2a36123638121c1c), + C64e(0x3cfea3fe9fa3c2c2), C64e(0x8be15fe1d45f6a6a), + C64e(0xbe10f91047f9aeae), C64e(0x026bd06bd2d06969), + C64e(0xbfa891a82e911717), C64e(0x71e858e829589999), + C64e(0x5369276974273a3a), C64e(0xf7d0b9d04eb92727), + C64e(0x91483848a938d9d9), C64e(0xde351335cd13ebeb), + C64e(0xe5ceb3ce56b32b2b), C64e(0x7755335544332222), + C64e(0x04d6bbd6bfbbd2d2), C64e(0x399070904970a9a9), + C64e(0x878089800e890707), C64e(0xc1f2a7f266a73333), + C64e(0xecc1b6c15ab62d2d), C64e(0x5a66226678223c3c), + C64e(0xb8ad92ad2a921515), C64e(0xa96020608920c9c9), + C64e(0x5cdb49db15498787), C64e(0xb01aff1a4fffaaaa), + C64e(0xd8887888a0785050), C64e(0x2b8e7a8e517aa5a5), + C64e(0x898a8f8a068f0303), C64e(0x4a13f813b2f85959), + C64e(0x929b809b12800909), C64e(0x2339173934171a1a), + C64e(0x1075da75cada6565), C64e(0x84533153b531d7d7), + C64e(0xd551c65113c68484), C64e(0x03d3b8d3bbb8d0d0), + C64e(0xdc5ec35e1fc38282), C64e(0xe2cbb0cb52b02929), + C64e(0xc3997799b4775a5a), C64e(0x2d3311333c111e1e), + C64e(0x3d46cb46f6cb7b7b), C64e(0xb71ffc1f4bfca8a8), + C64e(0x0c61d661dad66d6d), C64e(0x624e3a4e583a2c2c) +}; + +#endif + +#define DECL_STATE_SMALL \ + sph_u64 H[8]; + +#define READ_STATE_SMALL(sc) do { \ + memcpy(H, (sc)->state.wide, sizeof H); \ + } while (0) + +#define WRITE_STATE_SMALL(sc) do { \ + memcpy((sc)->state.wide, H, sizeof H); \ + } while (0) + +#if SPH_SMALL_FOOTPRINT_GROESTL + +#define RSTT(d, a, b0, b1, b2, b3, b4, b5, b6, b7) do { \ + t[d] = T0[B64_0(a[b0])] \ + ^ R64(T0[B64_1(a[b1])], 8) \ + ^ R64(T0[B64_2(a[b2])], 16) \ + ^ R64(T0[B64_3(a[b3])], 24) \ + ^ T4[B64_4(a[b4])] \ + ^ R64(T4[B64_5(a[b5])], 8) \ + ^ R64(T4[B64_6(a[b6])], 16) \ + ^ R64(T4[B64_7(a[b7])], 24); \ + } while (0) + +#else + +#define RSTT(d, a, b0, b1, b2, b3, b4, b5, b6, b7) do { \ + t[d] = T0[B64_0(a[b0])] \ + ^ T1[B64_1(a[b1])] \ + ^ T2[B64_2(a[b2])] \ + ^ T3[B64_3(a[b3])] \ + ^ T4[B64_4(a[b4])] \ + ^ T5[B64_5(a[b5])] \ + ^ T6[B64_6(a[b6])] \ + ^ T7[B64_7(a[b7])]; \ + } while (0) + +#endif + +#define ROUND_SMALL_P(a, r) do { \ + sph_u64 t[8]; \ + a[0] ^= PC64(0x00, r); \ + a[1] ^= PC64(0x10, r); \ + a[2] ^= PC64(0x20, r); \ + a[3] ^= PC64(0x30, r); \ + a[4] ^= PC64(0x40, r); \ + a[5] ^= PC64(0x50, r); \ + a[6] ^= PC64(0x60, r); \ + a[7] ^= PC64(0x70, r); \ + RSTT(0, a, 0, 1, 2, 3, 4, 5, 6, 7); \ + RSTT(1, a, 1, 2, 3, 4, 5, 6, 7, 0); \ + RSTT(2, a, 2, 3, 4, 5, 6, 7, 0, 1); \ + RSTT(3, a, 3, 4, 5, 6, 7, 0, 1, 2); \ + RSTT(4, a, 4, 5, 6, 7, 0, 1, 2, 3); \ + RSTT(5, a, 5, 6, 7, 0, 1, 2, 3, 4); \ + RSTT(6, a, 6, 7, 0, 1, 2, 3, 4, 5); \ + RSTT(7, a, 7, 0, 1, 2, 3, 4, 5, 6); \ + a[0] = t[0]; \ + a[1] = t[1]; \ + a[2] = t[2]; \ + a[3] = t[3]; \ + a[4] = t[4]; \ + a[5] = t[5]; \ + a[6] = t[6]; \ + a[7] = t[7]; \ + } while (0) + +#define ROUND_SMALL_Q(a, r) do { \ + sph_u64 t[8]; \ + a[0] ^= QC64(0x00, r); \ + a[1] ^= QC64(0x10, r); \ + a[2] ^= QC64(0x20, r); \ + a[3] ^= QC64(0x30, r); \ + a[4] ^= QC64(0x40, r); \ + a[5] ^= QC64(0x50, r); \ + a[6] ^= QC64(0x60, r); \ + a[7] ^= QC64(0x70, r); \ + RSTT(0, a, 1, 3, 5, 7, 0, 2, 4, 6); \ + RSTT(1, a, 2, 4, 6, 0, 1, 3, 5, 7); \ + RSTT(2, a, 3, 5, 7, 1, 2, 4, 6, 0); \ + RSTT(3, a, 4, 6, 0, 2, 3, 5, 7, 1); \ + RSTT(4, a, 5, 7, 1, 3, 4, 6, 0, 2); \ + RSTT(5, a, 6, 0, 2, 4, 5, 7, 1, 3); \ + RSTT(6, a, 7, 1, 3, 5, 6, 0, 2, 4); \ + RSTT(7, a, 0, 2, 4, 6, 7, 1, 3, 5); \ + a[0] = t[0]; \ + a[1] = t[1]; \ + a[2] = t[2]; \ + a[3] = t[3]; \ + a[4] = t[4]; \ + a[5] = t[5]; \ + a[6] = t[6]; \ + a[7] = t[7]; \ + } while (0) + +#if SPH_SMALL_FOOTPRINT_GROESTL + +#define PERM_SMALL_P(a) do { \ + int r; \ + for (r = 0; r < 10; r ++) \ + ROUND_SMALL_P(a, r); \ + } while (0) + +#define PERM_SMALL_Q(a) do { \ + int r; \ + for (r = 0; r < 10; r ++) \ + ROUND_SMALL_Q(a, r); \ + } while (0) + +#else + +/* + * Apparently, unrolling more than that confuses GCC, resulting in + * lower performance, even though L1 cache would be no problem. + */ +#define PERM_SMALL_P(a) do { \ + int r; \ + for (r = 0; r < 10; r += 2) { \ + ROUND_SMALL_P(a, r + 0); \ + ROUND_SMALL_P(a, r + 1); \ + } \ + } while (0) + +#define PERM_SMALL_Q(a) do { \ + int r; \ + for (r = 0; r < 10; r += 2) { \ + ROUND_SMALL_Q(a, r + 0); \ + ROUND_SMALL_Q(a, r + 1); \ + } \ + } while (0) + +#endif + +#define COMPRESS_SMALL do { \ + sph_u64 g[8], m[8]; \ + size_t u; \ + for (u = 0; u < 8; u ++) { \ + m[u] = dec64e_aligned(buf + (u << 3)); \ + g[u] = m[u] ^ H[u]; \ + } \ + PERM_SMALL_P(g); \ + PERM_SMALL_Q(m); \ + for (u = 0; u < 8; u ++) \ + H[u] ^= g[u] ^ m[u]; \ + } while (0) + +#define FINAL_SMALL do { \ + sph_u64 x[8]; \ + size_t u; \ + memcpy(x, H, sizeof x); \ + PERM_SMALL_P(x); \ + for (u = 0; u < 8; u ++) \ + H[u] ^= x[u]; \ + } while (0) + +#define DECL_STATE_BIG \ + sph_u64 H[16]; + +#define READ_STATE_BIG(sc) do { \ + memcpy(H, (sc)->state.wide, sizeof H); \ + } while (0) + +#define WRITE_STATE_BIG(sc) do { \ + memcpy((sc)->state.wide, H, sizeof H); \ + } while (0) + +#if SPH_SMALL_FOOTPRINT_GROESTL + +#define RBTT(d, a, b0, b1, b2, b3, b4, b5, b6, b7) do { \ + t[d] = T0[B64_0(a[b0])] \ + ^ R64(T0[B64_1(a[b1])], 8) \ + ^ R64(T0[B64_2(a[b2])], 16) \ + ^ R64(T0[B64_3(a[b3])], 24) \ + ^ T4[B64_4(a[b4])] \ + ^ R64(T4[B64_5(a[b5])], 8) \ + ^ R64(T4[B64_6(a[b6])], 16) \ + ^ R64(T4[B64_7(a[b7])], 24); \ + } while (0) + +#else + +#define RBTT(d, a, b0, b1, b2, b3, b4, b5, b6, b7) do { \ + t[d] = T0[B64_0(a[b0])] \ + ^ T1[B64_1(a[b1])] \ + ^ T2[B64_2(a[b2])] \ + ^ T3[B64_3(a[b3])] \ + ^ T4[B64_4(a[b4])] \ + ^ T5[B64_5(a[b5])] \ + ^ T6[B64_6(a[b6])] \ + ^ T7[B64_7(a[b7])]; \ + } while (0) + +#endif + +#if SPH_SMALL_FOOTPRINT_GROESTL + +#define ROUND_BIG_P(a, r) do { \ + sph_u64 t[16]; \ + size_t u; \ + a[0x0] ^= PC64(0x00, r); \ + a[0x1] ^= PC64(0x10, r); \ + a[0x2] ^= PC64(0x20, r); \ + a[0x3] ^= PC64(0x30, r); \ + a[0x4] ^= PC64(0x40, r); \ + a[0x5] ^= PC64(0x50, r); \ + a[0x6] ^= PC64(0x60, r); \ + a[0x7] ^= PC64(0x70, r); \ + a[0x8] ^= PC64(0x80, r); \ + a[0x9] ^= PC64(0x90, r); \ + a[0xA] ^= PC64(0xA0, r); \ + a[0xB] ^= PC64(0xB0, r); \ + a[0xC] ^= PC64(0xC0, r); \ + a[0xD] ^= PC64(0xD0, r); \ + a[0xE] ^= PC64(0xE0, r); \ + a[0xF] ^= PC64(0xF0, r); \ + for (u = 0; u < 16; u += 4) { \ + RBTT(u + 0, a, u + 0, (u + 1) & 0xF, \ + (u + 2) & 0xF, (u + 3) & 0xF, (u + 4) & 0xF, \ + (u + 5) & 0xF, (u + 6) & 0xF, (u + 11) & 0xF); \ + RBTT(u + 1, a, u + 1, (u + 2) & 0xF, \ + (u + 3) & 0xF, (u + 4) & 0xF, (u + 5) & 0xF, \ + (u + 6) & 0xF, (u + 7) & 0xF, (u + 12) & 0xF); \ + RBTT(u + 2, a, u + 2, (u + 3) & 0xF, \ + (u + 4) & 0xF, (u + 5) & 0xF, (u + 6) & 0xF, \ + (u + 7) & 0xF, (u + 8) & 0xF, (u + 13) & 0xF); \ + RBTT(u + 3, a, u + 3, (u + 4) & 0xF, \ + (u + 5) & 0xF, (u + 6) & 0xF, (u + 7) & 0xF, \ + (u + 8) & 0xF, (u + 9) & 0xF, (u + 14) & 0xF); \ + } \ + memcpy(a, t, sizeof t); \ + } while (0) + +#define ROUND_BIG_Q(a, r) do { \ + sph_u64 t[16]; \ + size_t u; \ + a[0x0] ^= QC64(0x00, r); \ + a[0x1] ^= QC64(0x10, r); \ + a[0x2] ^= QC64(0x20, r); \ + a[0x3] ^= QC64(0x30, r); \ + a[0x4] ^= QC64(0x40, r); \ + a[0x5] ^= QC64(0x50, r); \ + a[0x6] ^= QC64(0x60, r); \ + a[0x7] ^= QC64(0x70, r); \ + a[0x8] ^= QC64(0x80, r); \ + a[0x9] ^= QC64(0x90, r); \ + a[0xA] ^= QC64(0xA0, r); \ + a[0xB] ^= QC64(0xB0, r); \ + a[0xC] ^= QC64(0xC0, r); \ + a[0xD] ^= QC64(0xD0, r); \ + a[0xE] ^= QC64(0xE0, r); \ + a[0xF] ^= QC64(0xF0, r); \ + for (u = 0; u < 16; u += 4) { \ + RBTT(u + 0, a, (u + 1) & 0xF, (u + 3) & 0xF, \ + (u + 5) & 0xF, (u + 11) & 0xF, (u + 0) & 0xF, \ + (u + 2) & 0xF, (u + 4) & 0xF, (u + 6) & 0xF); \ + RBTT(u + 1, a, (u + 2) & 0xF, (u + 4) & 0xF, \ + (u + 6) & 0xF, (u + 12) & 0xF, (u + 1) & 0xF, \ + (u + 3) & 0xF, (u + 5) & 0xF, (u + 7) & 0xF); \ + RBTT(u + 2, a, (u + 3) & 0xF, (u + 5) & 0xF, \ + (u + 7) & 0xF, (u + 13) & 0xF, (u + 2) & 0xF, \ + (u + 4) & 0xF, (u + 6) & 0xF, (u + 8) & 0xF); \ + RBTT(u + 3, a, (u + 4) & 0xF, (u + 6) & 0xF, \ + (u + 8) & 0xF, (u + 14) & 0xF, (u + 3) & 0xF, \ + (u + 5) & 0xF, (u + 7) & 0xF, (u + 9) & 0xF); \ + } \ + memcpy(a, t, sizeof t); \ + } while (0) + +#else + +#define ROUND_BIG_P(a, r) do { \ + sph_u64 t[16]; \ + a[0x0] ^= PC64(0x00, r); \ + a[0x1] ^= PC64(0x10, r); \ + a[0x2] ^= PC64(0x20, r); \ + a[0x3] ^= PC64(0x30, r); \ + a[0x4] ^= PC64(0x40, r); \ + a[0x5] ^= PC64(0x50, r); \ + a[0x6] ^= PC64(0x60, r); \ + a[0x7] ^= PC64(0x70, r); \ + a[0x8] ^= PC64(0x80, r); \ + a[0x9] ^= PC64(0x90, r); \ + a[0xA] ^= PC64(0xA0, r); \ + a[0xB] ^= PC64(0xB0, r); \ + a[0xC] ^= PC64(0xC0, r); \ + a[0xD] ^= PC64(0xD0, r); \ + a[0xE] ^= PC64(0xE0, r); \ + a[0xF] ^= PC64(0xF0, r); \ + RBTT(0x0, a, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0xB); \ + RBTT(0x1, a, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0xC); \ + RBTT(0x2, a, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0xD); \ + RBTT(0x3, a, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xE); \ + RBTT(0x4, a, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xA, 0xF); \ + RBTT(0x5, a, 0x5, 0x6, 0x7, 0x8, 0x9, 0xA, 0xB, 0x0); \ + RBTT(0x6, a, 0x6, 0x7, 0x8, 0x9, 0xA, 0xB, 0xC, 0x1); \ + RBTT(0x7, a, 0x7, 0x8, 0x9, 0xA, 0xB, 0xC, 0xD, 0x2); \ + RBTT(0x8, a, 0x8, 0x9, 0xA, 0xB, 0xC, 0xD, 0xE, 0x3); \ + RBTT(0x9, a, 0x9, 0xA, 0xB, 0xC, 0xD, 0xE, 0xF, 0x4); \ + RBTT(0xA, a, 0xA, 0xB, 0xC, 0xD, 0xE, 0xF, 0x0, 0x5); \ + RBTT(0xB, a, 0xB, 0xC, 0xD, 0xE, 0xF, 0x0, 0x1, 0x6); \ + RBTT(0xC, a, 0xC, 0xD, 0xE, 0xF, 0x0, 0x1, 0x2, 0x7); \ + RBTT(0xD, a, 0xD, 0xE, 0xF, 0x0, 0x1, 0x2, 0x3, 0x8); \ + RBTT(0xE, a, 0xE, 0xF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x9); \ + RBTT(0xF, a, 0xF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0xA); \ + a[0x0] = t[0x0]; \ + a[0x1] = t[0x1]; \ + a[0x2] = t[0x2]; \ + a[0x3] = t[0x3]; \ + a[0x4] = t[0x4]; \ + a[0x5] = t[0x5]; \ + a[0x6] = t[0x6]; \ + a[0x7] = t[0x7]; \ + a[0x8] = t[0x8]; \ + a[0x9] = t[0x9]; \ + a[0xA] = t[0xA]; \ + a[0xB] = t[0xB]; \ + a[0xC] = t[0xC]; \ + a[0xD] = t[0xD]; \ + a[0xE] = t[0xE]; \ + a[0xF] = t[0xF]; \ + } while (0) + +#define ROUND_BIG_Q(a, r) do { \ + sph_u64 t[16]; \ + a[0x0] ^= QC64(0x00, r); \ + a[0x1] ^= QC64(0x10, r); \ + a[0x2] ^= QC64(0x20, r); \ + a[0x3] ^= QC64(0x30, r); \ + a[0x4] ^= QC64(0x40, r); \ + a[0x5] ^= QC64(0x50, r); \ + a[0x6] ^= QC64(0x60, r); \ + a[0x7] ^= QC64(0x70, r); \ + a[0x8] ^= QC64(0x80, r); \ + a[0x9] ^= QC64(0x90, r); \ + a[0xA] ^= QC64(0xA0, r); \ + a[0xB] ^= QC64(0xB0, r); \ + a[0xC] ^= QC64(0xC0, r); \ + a[0xD] ^= QC64(0xD0, r); \ + a[0xE] ^= QC64(0xE0, r); \ + a[0xF] ^= QC64(0xF0, r); \ + RBTT(0x0, a, 0x1, 0x3, 0x5, 0xB, 0x0, 0x2, 0x4, 0x6); \ + RBTT(0x1, a, 0x2, 0x4, 0x6, 0xC, 0x1, 0x3, 0x5, 0x7); \ + RBTT(0x2, a, 0x3, 0x5, 0x7, 0xD, 0x2, 0x4, 0x6, 0x8); \ + RBTT(0x3, a, 0x4, 0x6, 0x8, 0xE, 0x3, 0x5, 0x7, 0x9); \ + RBTT(0x4, a, 0x5, 0x7, 0x9, 0xF, 0x4, 0x6, 0x8, 0xA); \ + RBTT(0x5, a, 0x6, 0x8, 0xA, 0x0, 0x5, 0x7, 0x9, 0xB); \ + RBTT(0x6, a, 0x7, 0x9, 0xB, 0x1, 0x6, 0x8, 0xA, 0xC); \ + RBTT(0x7, a, 0x8, 0xA, 0xC, 0x2, 0x7, 0x9, 0xB, 0xD); \ + RBTT(0x8, a, 0x9, 0xB, 0xD, 0x3, 0x8, 0xA, 0xC, 0xE); \ + RBTT(0x9, a, 0xA, 0xC, 0xE, 0x4, 0x9, 0xB, 0xD, 0xF); \ + RBTT(0xA, a, 0xB, 0xD, 0xF, 0x5, 0xA, 0xC, 0xE, 0x0); \ + RBTT(0xB, a, 0xC, 0xE, 0x0, 0x6, 0xB, 0xD, 0xF, 0x1); \ + RBTT(0xC, a, 0xD, 0xF, 0x1, 0x7, 0xC, 0xE, 0x0, 0x2); \ + RBTT(0xD, a, 0xE, 0x0, 0x2, 0x8, 0xD, 0xF, 0x1, 0x3); \ + RBTT(0xE, a, 0xF, 0x1, 0x3, 0x9, 0xE, 0x0, 0x2, 0x4); \ + RBTT(0xF, a, 0x0, 0x2, 0x4, 0xA, 0xF, 0x1, 0x3, 0x5); \ + a[0x0] = t[0x0]; \ + a[0x1] = t[0x1]; \ + a[0x2] = t[0x2]; \ + a[0x3] = t[0x3]; \ + a[0x4] = t[0x4]; \ + a[0x5] = t[0x5]; \ + a[0x6] = t[0x6]; \ + a[0x7] = t[0x7]; \ + a[0x8] = t[0x8]; \ + a[0x9] = t[0x9]; \ + a[0xA] = t[0xA]; \ + a[0xB] = t[0xB]; \ + a[0xC] = t[0xC]; \ + a[0xD] = t[0xD]; \ + a[0xE] = t[0xE]; \ + a[0xF] = t[0xF]; \ + } while (0) + +#endif + +#define PERM_BIG_P(a) do { \ + int r; \ + for (r = 0; r < 14; r += 2) { \ + ROUND_BIG_P(a, r + 0); \ + ROUND_BIG_P(a, r + 1); \ + } \ + } while (0) + +#define PERM_BIG_Q(a) do { \ + int r; \ + for (r = 0; r < 14; r += 2) { \ + ROUND_BIG_Q(a, r + 0); \ + ROUND_BIG_Q(a, r + 1); \ + } \ + } while (0) + +/* obsolete +#if SPH_SMALL_FOOTPRINT_GROESTL + +#define COMPRESS_BIG do { \ + sph_u64 g[16], m[16], *ya; \ + const sph_u64 *yc; \ + size_t u; \ + int i; \ + for (u = 0; u < 16; u ++) { \ + m[u] = dec64e_aligned(buf + (u << 3)); \ + g[u] = m[u] ^ H[u]; \ + } \ + ya = g; \ + yc = CP; \ + for (i = 0; i < 2; i ++) { \ + PERM_BIG(ya, yc); \ + ya = m; \ + yc = CQ; \ + } \ + for (u = 0; u < 16; u ++) { \ + H[u] ^= g[u] ^ m[u]; \ + } \ + } while (0) + +#else +*/ + +#define COMPRESS_BIG do { \ + sph_u64 g[16], m[16]; \ + size_t u; \ + for (u = 0; u < 16; u ++) { \ + m[u] = dec64e_aligned(buf + (u << 3)); \ + g[u] = m[u] ^ H[u]; \ + } \ + PERM_BIG_P(g); \ + PERM_BIG_Q(m); \ + for (u = 0; u < 16; u ++) { \ + H[u] ^= g[u] ^ m[u]; \ + } \ + } while (0) + +/* obsolete +#endif +*/ + +#define FINAL_BIG do { \ + sph_u64 x[16]; \ + size_t u; \ + memcpy(x, H, sizeof x); \ + PERM_BIG_P(x); \ + for (u = 0; u < 16; u ++) \ + H[u] ^= x[u]; \ + } while (0) + +#else + +static const sph_u32 T0up[] = { + C32e(0xc632f4a5), C32e(0xf86f9784), C32e(0xee5eb099), C32e(0xf67a8c8d), + C32e(0xffe8170d), C32e(0xd60adcbd), C32e(0xde16c8b1), C32e(0x916dfc54), + C32e(0x6090f050), C32e(0x02070503), C32e(0xce2ee0a9), C32e(0x56d1877d), + C32e(0xe7cc2b19), C32e(0xb513a662), C32e(0x4d7c31e6), C32e(0xec59b59a), + C32e(0x8f40cf45), C32e(0x1fa3bc9d), C32e(0x8949c040), C32e(0xfa689287), + C32e(0xefd03f15), C32e(0xb29426eb), C32e(0x8ece40c9), C32e(0xfbe61d0b), + C32e(0x416e2fec), C32e(0xb31aa967), C32e(0x5f431cfd), C32e(0x456025ea), + C32e(0x23f9dabf), C32e(0x535102f7), C32e(0xe445a196), C32e(0x9b76ed5b), + C32e(0x75285dc2), C32e(0xe1c5241c), C32e(0x3dd4e9ae), C32e(0x4cf2be6a), + C32e(0x6c82ee5a), C32e(0x7ebdc341), C32e(0xf5f30602), C32e(0x8352d14f), + C32e(0x688ce45c), C32e(0x515607f4), C32e(0xd18d5c34), C32e(0xf9e11808), + C32e(0xe24cae93), C32e(0xab3e9573), C32e(0x6297f553), C32e(0x2a6b413f), + C32e(0x081c140c), C32e(0x9563f652), C32e(0x46e9af65), C32e(0x9d7fe25e), + C32e(0x30487828), C32e(0x37cff8a1), C32e(0x0a1b110f), C32e(0x2febc4b5), + C32e(0x0e151b09), C32e(0x247e5a36), C32e(0x1badb69b), C32e(0xdf98473d), + C32e(0xcda76a26), C32e(0x4ef5bb69), C32e(0x7f334ccd), C32e(0xea50ba9f), + C32e(0x123f2d1b), C32e(0x1da4b99e), C32e(0x58c49c74), C32e(0x3446722e), + C32e(0x3641772d), C32e(0xdc11cdb2), C32e(0xb49d29ee), C32e(0x5b4d16fb), + C32e(0xa4a501f6), C32e(0x76a1d74d), C32e(0xb714a361), C32e(0x7d3449ce), + C32e(0x52df8d7b), C32e(0xdd9f423e), C32e(0x5ecd9371), C32e(0x13b1a297), + C32e(0xa6a204f5), C32e(0xb901b868), C32e(0x00000000), C32e(0xc1b5742c), + C32e(0x40e0a060), C32e(0xe3c2211f), C32e(0x793a43c8), C32e(0xb69a2ced), + C32e(0xd40dd9be), C32e(0x8d47ca46), C32e(0x671770d9), C32e(0x72afdd4b), + C32e(0x94ed79de), C32e(0x98ff67d4), C32e(0xb09323e8), C32e(0x855bde4a), + C32e(0xbb06bd6b), C32e(0xc5bb7e2a), C32e(0x4f7b34e5), C32e(0xedd73a16), + C32e(0x86d254c5), C32e(0x9af862d7), C32e(0x6699ff55), C32e(0x11b6a794), + C32e(0x8ac04acf), C32e(0xe9d93010), C32e(0x040e0a06), C32e(0xfe669881), + C32e(0xa0ab0bf0), C32e(0x78b4cc44), C32e(0x25f0d5ba), C32e(0x4b753ee3), + C32e(0xa2ac0ef3), C32e(0x5d4419fe), C32e(0x80db5bc0), C32e(0x0580858a), + C32e(0x3fd3ecad), C32e(0x21fedfbc), C32e(0x70a8d848), C32e(0xf1fd0c04), + C32e(0x63197adf), C32e(0x772f58c1), C32e(0xaf309f75), C32e(0x42e7a563), + C32e(0x20705030), C32e(0xe5cb2e1a), C32e(0xfdef120e), C32e(0xbf08b76d), + C32e(0x8155d44c), C32e(0x18243c14), C32e(0x26795f35), C32e(0xc3b2712f), + C32e(0xbe8638e1), C32e(0x35c8fda2), C32e(0x88c74fcc), C32e(0x2e654b39), + C32e(0x936af957), C32e(0x55580df2), C32e(0xfc619d82), C32e(0x7ab3c947), + C32e(0xc827efac), C32e(0xba8832e7), C32e(0x324f7d2b), C32e(0xe642a495), + C32e(0xc03bfba0), C32e(0x19aab398), C32e(0x9ef668d1), C32e(0xa322817f), + C32e(0x44eeaa66), C32e(0x54d6827e), C32e(0x3bdde6ab), C32e(0x0b959e83), + C32e(0x8cc945ca), C32e(0xc7bc7b29), C32e(0x6b056ed3), C32e(0x286c443c), + C32e(0xa72c8b79), C32e(0xbc813de2), C32e(0x1631271d), C32e(0xad379a76), + C32e(0xdb964d3b), C32e(0x649efa56), C32e(0x74a6d24e), C32e(0x1436221e), + C32e(0x92e476db), C32e(0x0c121e0a), C32e(0x48fcb46c), C32e(0xb88f37e4), + C32e(0x9f78e75d), C32e(0xbd0fb26e), C32e(0x43692aef), C32e(0xc435f1a6), + C32e(0x39dae3a8), C32e(0x31c6f7a4), C32e(0xd38a5937), C32e(0xf274868b), + C32e(0xd5835632), C32e(0x8b4ec543), C32e(0x6e85eb59), C32e(0xda18c2b7), + C32e(0x018e8f8c), C32e(0xb11dac64), C32e(0x9cf16dd2), C32e(0x49723be0), + C32e(0xd81fc7b4), C32e(0xacb915fa), C32e(0xf3fa0907), C32e(0xcfa06f25), + C32e(0xca20eaaf), C32e(0xf47d898e), C32e(0x476720e9), C32e(0x10382818), + C32e(0x6f0b64d5), C32e(0xf0738388), C32e(0x4afbb16f), C32e(0x5cca9672), + C32e(0x38546c24), C32e(0x575f08f1), C32e(0x732152c7), C32e(0x9764f351), + C32e(0xcbae6523), C32e(0xa125847c), C32e(0xe857bf9c), C32e(0x3e5d6321), + C32e(0x96ea7cdd), C32e(0x611e7fdc), C32e(0x0d9c9186), C32e(0x0f9b9485), + C32e(0xe04bab90), C32e(0x7cbac642), C32e(0x712657c4), C32e(0xcc29e5aa), + C32e(0x90e373d8), C32e(0x06090f05), C32e(0xf7f40301), C32e(0x1c2a3612), + C32e(0xc23cfea3), C32e(0x6a8be15f), C32e(0xaebe10f9), C32e(0x69026bd0), + C32e(0x17bfa891), C32e(0x9971e858), C32e(0x3a536927), C32e(0x27f7d0b9), + C32e(0xd9914838), C32e(0xebde3513), C32e(0x2be5ceb3), C32e(0x22775533), + C32e(0xd204d6bb), C32e(0xa9399070), C32e(0x07878089), C32e(0x33c1f2a7), + C32e(0x2decc1b6), C32e(0x3c5a6622), C32e(0x15b8ad92), C32e(0xc9a96020), + C32e(0x875cdb49), C32e(0xaab01aff), C32e(0x50d88878), C32e(0xa52b8e7a), + C32e(0x03898a8f), C32e(0x594a13f8), C32e(0x09929b80), C32e(0x1a233917), + C32e(0x651075da), C32e(0xd7845331), C32e(0x84d551c6), C32e(0xd003d3b8), + C32e(0x82dc5ec3), C32e(0x29e2cbb0), C32e(0x5ac39977), C32e(0x1e2d3311), + C32e(0x7b3d46cb), C32e(0xa8b71ffc), C32e(0x6d0c61d6), C32e(0x2c624e3a) +}; + +static const sph_u32 T0dn[] = { + C32e(0xf497a5c6), C32e(0x97eb84f8), C32e(0xb0c799ee), C32e(0x8cf78df6), + C32e(0x17e50dff), C32e(0xdcb7bdd6), C32e(0xc8a7b1de), C32e(0xfc395491), + C32e(0xf0c05060), C32e(0x05040302), C32e(0xe087a9ce), C32e(0x87ac7d56), + C32e(0x2bd519e7), C32e(0xa67162b5), C32e(0x319ae64d), C32e(0xb5c39aec), + C32e(0xcf05458f), C32e(0xbc3e9d1f), C32e(0xc0094089), C32e(0x92ef87fa), + C32e(0x3fc515ef), C32e(0x267febb2), C32e(0x4007c98e), C32e(0x1ded0bfb), + C32e(0x2f82ec41), C32e(0xa97d67b3), C32e(0x1cbefd5f), C32e(0x258aea45), + C32e(0xda46bf23), C32e(0x02a6f753), C32e(0xa1d396e4), C32e(0xed2d5b9b), + C32e(0x5deac275), C32e(0x24d91ce1), C32e(0xe97aae3d), C32e(0xbe986a4c), + C32e(0xeed85a6c), C32e(0xc3fc417e), C32e(0x06f102f5), C32e(0xd11d4f83), + C32e(0xe4d05c68), C32e(0x07a2f451), C32e(0x5cb934d1), C32e(0x18e908f9), + C32e(0xaedf93e2), C32e(0x954d73ab), C32e(0xf5c45362), C32e(0x41543f2a), + C32e(0x14100c08), C32e(0xf6315295), C32e(0xaf8c6546), C32e(0xe2215e9d), + C32e(0x78602830), C32e(0xf86ea137), C32e(0x11140f0a), C32e(0xc45eb52f), + C32e(0x1b1c090e), C32e(0x5a483624), C32e(0xb6369b1b), C32e(0x47a53ddf), + C32e(0x6a8126cd), C32e(0xbb9c694e), C32e(0x4cfecd7f), C32e(0xbacf9fea), + C32e(0x2d241b12), C32e(0xb93a9e1d), C32e(0x9cb07458), C32e(0x72682e34), + C32e(0x776c2d36), C32e(0xcda3b2dc), C32e(0x2973eeb4), C32e(0x16b6fb5b), + C32e(0x0153f6a4), C32e(0xd7ec4d76), C32e(0xa37561b7), C32e(0x49face7d), + C32e(0x8da47b52), C32e(0x42a13edd), C32e(0x93bc715e), C32e(0xa2269713), + C32e(0x0457f5a6), C32e(0xb86968b9), C32e(0x00000000), C32e(0x74992cc1), + C32e(0xa0806040), C32e(0x21dd1fe3), C32e(0x43f2c879), C32e(0x2c77edb6), + C32e(0xd9b3bed4), C32e(0xca01468d), C32e(0x70ced967), C32e(0xdde44b72), + C32e(0x7933de94), C32e(0x672bd498), C32e(0x237be8b0), C32e(0xde114a85), + C32e(0xbd6d6bbb), C32e(0x7e912ac5), C32e(0x349ee54f), C32e(0x3ac116ed), + C32e(0x5417c586), C32e(0x622fd79a), C32e(0xffcc5566), C32e(0xa7229411), + C32e(0x4a0fcf8a), C32e(0x30c910e9), C32e(0x0a080604), C32e(0x98e781fe), + C32e(0x0b5bf0a0), C32e(0xccf04478), C32e(0xd54aba25), C32e(0x3e96e34b), + C32e(0x0e5ff3a2), C32e(0x19bafe5d), C32e(0x5b1bc080), C32e(0x850a8a05), + C32e(0xec7ead3f), C32e(0xdf42bc21), C32e(0xd8e04870), C32e(0x0cf904f1), + C32e(0x7ac6df63), C32e(0x58eec177), C32e(0x9f4575af), C32e(0xa5846342), + C32e(0x50403020), C32e(0x2ed11ae5), C32e(0x12e10efd), C32e(0xb7656dbf), + C32e(0xd4194c81), C32e(0x3c301418), C32e(0x5f4c3526), C32e(0x719d2fc3), + C32e(0x3867e1be), C32e(0xfd6aa235), C32e(0x4f0bcc88), C32e(0x4b5c392e), + C32e(0xf93d5793), C32e(0x0daaf255), C32e(0x9de382fc), C32e(0xc9f4477a), + C32e(0xef8bacc8), C32e(0x326fe7ba), C32e(0x7d642b32), C32e(0xa4d795e6), + C32e(0xfb9ba0c0), C32e(0xb3329819), C32e(0x6827d19e), C32e(0x815d7fa3), + C32e(0xaa886644), C32e(0x82a87e54), C32e(0xe676ab3b), C32e(0x9e16830b), + C32e(0x4503ca8c), C32e(0x7b9529c7), C32e(0x6ed6d36b), C32e(0x44503c28), + C32e(0x8b5579a7), C32e(0x3d63e2bc), C32e(0x272c1d16), C32e(0x9a4176ad), + C32e(0x4dad3bdb), C32e(0xfac85664), C32e(0xd2e84e74), C32e(0x22281e14), + C32e(0x763fdb92), C32e(0x1e180a0c), C32e(0xb4906c48), C32e(0x376be4b8), + C32e(0xe7255d9f), C32e(0xb2616ebd), C32e(0x2a86ef43), C32e(0xf193a6c4), + C32e(0xe372a839), C32e(0xf762a431), C32e(0x59bd37d3), C32e(0x86ff8bf2), + C32e(0x56b132d5), C32e(0xc50d438b), C32e(0xebdc596e), C32e(0xc2afb7da), + C32e(0x8f028c01), C32e(0xac7964b1), C32e(0x6d23d29c), C32e(0x3b92e049), + C32e(0xc7abb4d8), C32e(0x1543faac), C32e(0x09fd07f3), C32e(0x6f8525cf), + C32e(0xea8fafca), C32e(0x89f38ef4), C32e(0x208ee947), C32e(0x28201810), + C32e(0x64ded56f), C32e(0x83fb88f0), C32e(0xb1946f4a), C32e(0x96b8725c), + C32e(0x6c702438), C32e(0x08aef157), C32e(0x52e6c773), C32e(0xf3355197), + C32e(0x658d23cb), C32e(0x84597ca1), C32e(0xbfcb9ce8), C32e(0x637c213e), + C32e(0x7c37dd96), C32e(0x7fc2dc61), C32e(0x911a860d), C32e(0x941e850f), + C32e(0xabdb90e0), C32e(0xc6f8427c), C32e(0x57e2c471), C32e(0xe583aacc), + C32e(0x733bd890), C32e(0x0f0c0506), C32e(0x03f501f7), C32e(0x3638121c), + C32e(0xfe9fa3c2), C32e(0xe1d45f6a), C32e(0x1047f9ae), C32e(0x6bd2d069), + C32e(0xa82e9117), C32e(0xe8295899), C32e(0x6974273a), C32e(0xd04eb927), + C32e(0x48a938d9), C32e(0x35cd13eb), C32e(0xce56b32b), C32e(0x55443322), + C32e(0xd6bfbbd2), C32e(0x904970a9), C32e(0x800e8907), C32e(0xf266a733), + C32e(0xc15ab62d), C32e(0x6678223c), C32e(0xad2a9215), C32e(0x608920c9), + C32e(0xdb154987), C32e(0x1a4fffaa), C32e(0x88a07850), C32e(0x8e517aa5), + C32e(0x8a068f03), C32e(0x13b2f859), C32e(0x9b128009), C32e(0x3934171a), + C32e(0x75cada65), C32e(0x53b531d7), C32e(0x5113c684), C32e(0xd3bbb8d0), + C32e(0x5e1fc382), C32e(0xcb52b029), C32e(0x99b4775a), C32e(0x333c111e), + C32e(0x46f6cb7b), C32e(0x1f4bfca8), C32e(0x61dad66d), C32e(0x4e583a2c) +}; + +static const sph_u32 T1up[] = { + C32e(0xc6c632f4), C32e(0xf8f86f97), C32e(0xeeee5eb0), C32e(0xf6f67a8c), + C32e(0xffffe817), C32e(0xd6d60adc), C32e(0xdede16c8), C32e(0x91916dfc), + C32e(0x606090f0), C32e(0x02020705), C32e(0xcece2ee0), C32e(0x5656d187), + C32e(0xe7e7cc2b), C32e(0xb5b513a6), C32e(0x4d4d7c31), C32e(0xecec59b5), + C32e(0x8f8f40cf), C32e(0x1f1fa3bc), C32e(0x898949c0), C32e(0xfafa6892), + C32e(0xefefd03f), C32e(0xb2b29426), C32e(0x8e8ece40), C32e(0xfbfbe61d), + C32e(0x41416e2f), C32e(0xb3b31aa9), C32e(0x5f5f431c), C32e(0x45456025), + C32e(0x2323f9da), C32e(0x53535102), C32e(0xe4e445a1), C32e(0x9b9b76ed), + C32e(0x7575285d), C32e(0xe1e1c524), C32e(0x3d3dd4e9), C32e(0x4c4cf2be), + C32e(0x6c6c82ee), C32e(0x7e7ebdc3), C32e(0xf5f5f306), C32e(0x838352d1), + C32e(0x68688ce4), C32e(0x51515607), C32e(0xd1d18d5c), C32e(0xf9f9e118), + C32e(0xe2e24cae), C32e(0xabab3e95), C32e(0x626297f5), C32e(0x2a2a6b41), + C32e(0x08081c14), C32e(0x959563f6), C32e(0x4646e9af), C32e(0x9d9d7fe2), + C32e(0x30304878), C32e(0x3737cff8), C32e(0x0a0a1b11), C32e(0x2f2febc4), + C32e(0x0e0e151b), C32e(0x24247e5a), C32e(0x1b1badb6), C32e(0xdfdf9847), + C32e(0xcdcda76a), C32e(0x4e4ef5bb), C32e(0x7f7f334c), C32e(0xeaea50ba), + C32e(0x12123f2d), C32e(0x1d1da4b9), C32e(0x5858c49c), C32e(0x34344672), + C32e(0x36364177), C32e(0xdcdc11cd), C32e(0xb4b49d29), C32e(0x5b5b4d16), + C32e(0xa4a4a501), C32e(0x7676a1d7), C32e(0xb7b714a3), C32e(0x7d7d3449), + C32e(0x5252df8d), C32e(0xdddd9f42), C32e(0x5e5ecd93), C32e(0x1313b1a2), + C32e(0xa6a6a204), C32e(0xb9b901b8), C32e(0x00000000), C32e(0xc1c1b574), + C32e(0x4040e0a0), C32e(0xe3e3c221), C32e(0x79793a43), C32e(0xb6b69a2c), + C32e(0xd4d40dd9), C32e(0x8d8d47ca), C32e(0x67671770), C32e(0x7272afdd), + C32e(0x9494ed79), C32e(0x9898ff67), C32e(0xb0b09323), C32e(0x85855bde), + C32e(0xbbbb06bd), C32e(0xc5c5bb7e), C32e(0x4f4f7b34), C32e(0xededd73a), + C32e(0x8686d254), C32e(0x9a9af862), C32e(0x666699ff), C32e(0x1111b6a7), + C32e(0x8a8ac04a), C32e(0xe9e9d930), C32e(0x04040e0a), C32e(0xfefe6698), + C32e(0xa0a0ab0b), C32e(0x7878b4cc), C32e(0x2525f0d5), C32e(0x4b4b753e), + C32e(0xa2a2ac0e), C32e(0x5d5d4419), C32e(0x8080db5b), C32e(0x05058085), + C32e(0x3f3fd3ec), C32e(0x2121fedf), C32e(0x7070a8d8), C32e(0xf1f1fd0c), + C32e(0x6363197a), C32e(0x77772f58), C32e(0xafaf309f), C32e(0x4242e7a5), + C32e(0x20207050), C32e(0xe5e5cb2e), C32e(0xfdfdef12), C32e(0xbfbf08b7), + C32e(0x818155d4), C32e(0x1818243c), C32e(0x2626795f), C32e(0xc3c3b271), + C32e(0xbebe8638), C32e(0x3535c8fd), C32e(0x8888c74f), C32e(0x2e2e654b), + C32e(0x93936af9), C32e(0x5555580d), C32e(0xfcfc619d), C32e(0x7a7ab3c9), + C32e(0xc8c827ef), C32e(0xbaba8832), C32e(0x32324f7d), C32e(0xe6e642a4), + C32e(0xc0c03bfb), C32e(0x1919aab3), C32e(0x9e9ef668), C32e(0xa3a32281), + C32e(0x4444eeaa), C32e(0x5454d682), C32e(0x3b3bdde6), C32e(0x0b0b959e), + C32e(0x8c8cc945), C32e(0xc7c7bc7b), C32e(0x6b6b056e), C32e(0x28286c44), + C32e(0xa7a72c8b), C32e(0xbcbc813d), C32e(0x16163127), C32e(0xadad379a), + C32e(0xdbdb964d), C32e(0x64649efa), C32e(0x7474a6d2), C32e(0x14143622), + C32e(0x9292e476), C32e(0x0c0c121e), C32e(0x4848fcb4), C32e(0xb8b88f37), + C32e(0x9f9f78e7), C32e(0xbdbd0fb2), C32e(0x4343692a), C32e(0xc4c435f1), + C32e(0x3939dae3), C32e(0x3131c6f7), C32e(0xd3d38a59), C32e(0xf2f27486), + C32e(0xd5d58356), C32e(0x8b8b4ec5), C32e(0x6e6e85eb), C32e(0xdada18c2), + C32e(0x01018e8f), C32e(0xb1b11dac), C32e(0x9c9cf16d), C32e(0x4949723b), + C32e(0xd8d81fc7), C32e(0xacacb915), C32e(0xf3f3fa09), C32e(0xcfcfa06f), + C32e(0xcaca20ea), C32e(0xf4f47d89), C32e(0x47476720), C32e(0x10103828), + C32e(0x6f6f0b64), C32e(0xf0f07383), C32e(0x4a4afbb1), C32e(0x5c5cca96), + C32e(0x3838546c), C32e(0x57575f08), C32e(0x73732152), C32e(0x979764f3), + C32e(0xcbcbae65), C32e(0xa1a12584), C32e(0xe8e857bf), C32e(0x3e3e5d63), + C32e(0x9696ea7c), C32e(0x61611e7f), C32e(0x0d0d9c91), C32e(0x0f0f9b94), + C32e(0xe0e04bab), C32e(0x7c7cbac6), C32e(0x71712657), C32e(0xcccc29e5), + C32e(0x9090e373), C32e(0x0606090f), C32e(0xf7f7f403), C32e(0x1c1c2a36), + C32e(0xc2c23cfe), C32e(0x6a6a8be1), C32e(0xaeaebe10), C32e(0x6969026b), + C32e(0x1717bfa8), C32e(0x999971e8), C32e(0x3a3a5369), C32e(0x2727f7d0), + C32e(0xd9d99148), C32e(0xebebde35), C32e(0x2b2be5ce), C32e(0x22227755), + C32e(0xd2d204d6), C32e(0xa9a93990), C32e(0x07078780), C32e(0x3333c1f2), + C32e(0x2d2decc1), C32e(0x3c3c5a66), C32e(0x1515b8ad), C32e(0xc9c9a960), + C32e(0x87875cdb), C32e(0xaaaab01a), C32e(0x5050d888), C32e(0xa5a52b8e), + C32e(0x0303898a), C32e(0x59594a13), C32e(0x0909929b), C32e(0x1a1a2339), + C32e(0x65651075), C32e(0xd7d78453), C32e(0x8484d551), C32e(0xd0d003d3), + C32e(0x8282dc5e), C32e(0x2929e2cb), C32e(0x5a5ac399), C32e(0x1e1e2d33), + C32e(0x7b7b3d46), C32e(0xa8a8b71f), C32e(0x6d6d0c61), C32e(0x2c2c624e) +}; + +static const sph_u32 T1dn[] = { + C32e(0xa5f497a5), C32e(0x8497eb84), C32e(0x99b0c799), C32e(0x8d8cf78d), + C32e(0x0d17e50d), C32e(0xbddcb7bd), C32e(0xb1c8a7b1), C32e(0x54fc3954), + C32e(0x50f0c050), C32e(0x03050403), C32e(0xa9e087a9), C32e(0x7d87ac7d), + C32e(0x192bd519), C32e(0x62a67162), C32e(0xe6319ae6), C32e(0x9ab5c39a), + C32e(0x45cf0545), C32e(0x9dbc3e9d), C32e(0x40c00940), C32e(0x8792ef87), + C32e(0x153fc515), C32e(0xeb267feb), C32e(0xc94007c9), C32e(0x0b1ded0b), + C32e(0xec2f82ec), C32e(0x67a97d67), C32e(0xfd1cbefd), C32e(0xea258aea), + C32e(0xbfda46bf), C32e(0xf702a6f7), C32e(0x96a1d396), C32e(0x5bed2d5b), + C32e(0xc25deac2), C32e(0x1c24d91c), C32e(0xaee97aae), C32e(0x6abe986a), + C32e(0x5aeed85a), C32e(0x41c3fc41), C32e(0x0206f102), C32e(0x4fd11d4f), + C32e(0x5ce4d05c), C32e(0xf407a2f4), C32e(0x345cb934), C32e(0x0818e908), + C32e(0x93aedf93), C32e(0x73954d73), C32e(0x53f5c453), C32e(0x3f41543f), + C32e(0x0c14100c), C32e(0x52f63152), C32e(0x65af8c65), C32e(0x5ee2215e), + C32e(0x28786028), C32e(0xa1f86ea1), C32e(0x0f11140f), C32e(0xb5c45eb5), + C32e(0x091b1c09), C32e(0x365a4836), C32e(0x9bb6369b), C32e(0x3d47a53d), + C32e(0x266a8126), C32e(0x69bb9c69), C32e(0xcd4cfecd), C32e(0x9fbacf9f), + C32e(0x1b2d241b), C32e(0x9eb93a9e), C32e(0x749cb074), C32e(0x2e72682e), + C32e(0x2d776c2d), C32e(0xb2cda3b2), C32e(0xee2973ee), C32e(0xfb16b6fb), + C32e(0xf60153f6), C32e(0x4dd7ec4d), C32e(0x61a37561), C32e(0xce49face), + C32e(0x7b8da47b), C32e(0x3e42a13e), C32e(0x7193bc71), C32e(0x97a22697), + C32e(0xf50457f5), C32e(0x68b86968), C32e(0x00000000), C32e(0x2c74992c), + C32e(0x60a08060), C32e(0x1f21dd1f), C32e(0xc843f2c8), C32e(0xed2c77ed), + C32e(0xbed9b3be), C32e(0x46ca0146), C32e(0xd970ced9), C32e(0x4bdde44b), + C32e(0xde7933de), C32e(0xd4672bd4), C32e(0xe8237be8), C32e(0x4ade114a), + C32e(0x6bbd6d6b), C32e(0x2a7e912a), C32e(0xe5349ee5), C32e(0x163ac116), + C32e(0xc55417c5), C32e(0xd7622fd7), C32e(0x55ffcc55), C32e(0x94a72294), + C32e(0xcf4a0fcf), C32e(0x1030c910), C32e(0x060a0806), C32e(0x8198e781), + C32e(0xf00b5bf0), C32e(0x44ccf044), C32e(0xbad54aba), C32e(0xe33e96e3), + C32e(0xf30e5ff3), C32e(0xfe19bafe), C32e(0xc05b1bc0), C32e(0x8a850a8a), + C32e(0xadec7ead), C32e(0xbcdf42bc), C32e(0x48d8e048), C32e(0x040cf904), + C32e(0xdf7ac6df), C32e(0xc158eec1), C32e(0x759f4575), C32e(0x63a58463), + C32e(0x30504030), C32e(0x1a2ed11a), C32e(0x0e12e10e), C32e(0x6db7656d), + C32e(0x4cd4194c), C32e(0x143c3014), C32e(0x355f4c35), C32e(0x2f719d2f), + C32e(0xe13867e1), C32e(0xa2fd6aa2), C32e(0xcc4f0bcc), C32e(0x394b5c39), + C32e(0x57f93d57), C32e(0xf20daaf2), C32e(0x829de382), C32e(0x47c9f447), + C32e(0xacef8bac), C32e(0xe7326fe7), C32e(0x2b7d642b), C32e(0x95a4d795), + C32e(0xa0fb9ba0), C32e(0x98b33298), C32e(0xd16827d1), C32e(0x7f815d7f), + C32e(0x66aa8866), C32e(0x7e82a87e), C32e(0xabe676ab), C32e(0x839e1683), + C32e(0xca4503ca), C32e(0x297b9529), C32e(0xd36ed6d3), C32e(0x3c44503c), + C32e(0x798b5579), C32e(0xe23d63e2), C32e(0x1d272c1d), C32e(0x769a4176), + C32e(0x3b4dad3b), C32e(0x56fac856), C32e(0x4ed2e84e), C32e(0x1e22281e), + C32e(0xdb763fdb), C32e(0x0a1e180a), C32e(0x6cb4906c), C32e(0xe4376be4), + C32e(0x5de7255d), C32e(0x6eb2616e), C32e(0xef2a86ef), C32e(0xa6f193a6), + C32e(0xa8e372a8), C32e(0xa4f762a4), C32e(0x3759bd37), C32e(0x8b86ff8b), + C32e(0x3256b132), C32e(0x43c50d43), C32e(0x59ebdc59), C32e(0xb7c2afb7), + C32e(0x8c8f028c), C32e(0x64ac7964), C32e(0xd26d23d2), C32e(0xe03b92e0), + C32e(0xb4c7abb4), C32e(0xfa1543fa), C32e(0x0709fd07), C32e(0x256f8525), + C32e(0xafea8faf), C32e(0x8e89f38e), C32e(0xe9208ee9), C32e(0x18282018), + C32e(0xd564ded5), C32e(0x8883fb88), C32e(0x6fb1946f), C32e(0x7296b872), + C32e(0x246c7024), C32e(0xf108aef1), C32e(0xc752e6c7), C32e(0x51f33551), + C32e(0x23658d23), C32e(0x7c84597c), C32e(0x9cbfcb9c), C32e(0x21637c21), + C32e(0xdd7c37dd), C32e(0xdc7fc2dc), C32e(0x86911a86), C32e(0x85941e85), + C32e(0x90abdb90), C32e(0x42c6f842), C32e(0xc457e2c4), C32e(0xaae583aa), + C32e(0xd8733bd8), C32e(0x050f0c05), C32e(0x0103f501), C32e(0x12363812), + C32e(0xa3fe9fa3), C32e(0x5fe1d45f), C32e(0xf91047f9), C32e(0xd06bd2d0), + C32e(0x91a82e91), C32e(0x58e82958), C32e(0x27697427), C32e(0xb9d04eb9), + C32e(0x3848a938), C32e(0x1335cd13), C32e(0xb3ce56b3), C32e(0x33554433), + C32e(0xbbd6bfbb), C32e(0x70904970), C32e(0x89800e89), C32e(0xa7f266a7), + C32e(0xb6c15ab6), C32e(0x22667822), C32e(0x92ad2a92), C32e(0x20608920), + C32e(0x49db1549), C32e(0xff1a4fff), C32e(0x7888a078), C32e(0x7a8e517a), + C32e(0x8f8a068f), C32e(0xf813b2f8), C32e(0x809b1280), C32e(0x17393417), + C32e(0xda75cada), C32e(0x3153b531), C32e(0xc65113c6), C32e(0xb8d3bbb8), + C32e(0xc35e1fc3), C32e(0xb0cb52b0), C32e(0x7799b477), C32e(0x11333c11), + C32e(0xcb46f6cb), C32e(0xfc1f4bfc), C32e(0xd661dad6), C32e(0x3a4e583a) +}; + +static const sph_u32 T2up[] = { + C32e(0xa5c6c632), C32e(0x84f8f86f), C32e(0x99eeee5e), C32e(0x8df6f67a), + C32e(0x0dffffe8), C32e(0xbdd6d60a), C32e(0xb1dede16), C32e(0x5491916d), + C32e(0x50606090), C32e(0x03020207), C32e(0xa9cece2e), C32e(0x7d5656d1), + C32e(0x19e7e7cc), C32e(0x62b5b513), C32e(0xe64d4d7c), C32e(0x9aecec59), + C32e(0x458f8f40), C32e(0x9d1f1fa3), C32e(0x40898949), C32e(0x87fafa68), + C32e(0x15efefd0), C32e(0xebb2b294), C32e(0xc98e8ece), C32e(0x0bfbfbe6), + C32e(0xec41416e), C32e(0x67b3b31a), C32e(0xfd5f5f43), C32e(0xea454560), + C32e(0xbf2323f9), C32e(0xf7535351), C32e(0x96e4e445), C32e(0x5b9b9b76), + C32e(0xc2757528), C32e(0x1ce1e1c5), C32e(0xae3d3dd4), C32e(0x6a4c4cf2), + C32e(0x5a6c6c82), C32e(0x417e7ebd), C32e(0x02f5f5f3), C32e(0x4f838352), + C32e(0x5c68688c), C32e(0xf4515156), C32e(0x34d1d18d), C32e(0x08f9f9e1), + C32e(0x93e2e24c), C32e(0x73abab3e), C32e(0x53626297), C32e(0x3f2a2a6b), + C32e(0x0c08081c), C32e(0x52959563), C32e(0x654646e9), C32e(0x5e9d9d7f), + C32e(0x28303048), C32e(0xa13737cf), C32e(0x0f0a0a1b), C32e(0xb52f2feb), + C32e(0x090e0e15), C32e(0x3624247e), C32e(0x9b1b1bad), C32e(0x3ddfdf98), + C32e(0x26cdcda7), C32e(0x694e4ef5), C32e(0xcd7f7f33), C32e(0x9feaea50), + C32e(0x1b12123f), C32e(0x9e1d1da4), C32e(0x745858c4), C32e(0x2e343446), + C32e(0x2d363641), C32e(0xb2dcdc11), C32e(0xeeb4b49d), C32e(0xfb5b5b4d), + C32e(0xf6a4a4a5), C32e(0x4d7676a1), C32e(0x61b7b714), C32e(0xce7d7d34), + C32e(0x7b5252df), C32e(0x3edddd9f), C32e(0x715e5ecd), C32e(0x971313b1), + C32e(0xf5a6a6a2), C32e(0x68b9b901), C32e(0x00000000), C32e(0x2cc1c1b5), + C32e(0x604040e0), C32e(0x1fe3e3c2), C32e(0xc879793a), C32e(0xedb6b69a), + C32e(0xbed4d40d), C32e(0x468d8d47), C32e(0xd9676717), C32e(0x4b7272af), + C32e(0xde9494ed), C32e(0xd49898ff), C32e(0xe8b0b093), C32e(0x4a85855b), + C32e(0x6bbbbb06), C32e(0x2ac5c5bb), C32e(0xe54f4f7b), C32e(0x16ededd7), + C32e(0xc58686d2), C32e(0xd79a9af8), C32e(0x55666699), C32e(0x941111b6), + C32e(0xcf8a8ac0), C32e(0x10e9e9d9), C32e(0x0604040e), C32e(0x81fefe66), + C32e(0xf0a0a0ab), C32e(0x447878b4), C32e(0xba2525f0), C32e(0xe34b4b75), + C32e(0xf3a2a2ac), C32e(0xfe5d5d44), C32e(0xc08080db), C32e(0x8a050580), + C32e(0xad3f3fd3), C32e(0xbc2121fe), C32e(0x487070a8), C32e(0x04f1f1fd), + C32e(0xdf636319), C32e(0xc177772f), C32e(0x75afaf30), C32e(0x634242e7), + C32e(0x30202070), C32e(0x1ae5e5cb), C32e(0x0efdfdef), C32e(0x6dbfbf08), + C32e(0x4c818155), C32e(0x14181824), C32e(0x35262679), C32e(0x2fc3c3b2), + C32e(0xe1bebe86), C32e(0xa23535c8), C32e(0xcc8888c7), C32e(0x392e2e65), + C32e(0x5793936a), C32e(0xf2555558), C32e(0x82fcfc61), C32e(0x477a7ab3), + C32e(0xacc8c827), C32e(0xe7baba88), C32e(0x2b32324f), C32e(0x95e6e642), + C32e(0xa0c0c03b), C32e(0x981919aa), C32e(0xd19e9ef6), C32e(0x7fa3a322), + C32e(0x664444ee), C32e(0x7e5454d6), C32e(0xab3b3bdd), C32e(0x830b0b95), + C32e(0xca8c8cc9), C32e(0x29c7c7bc), C32e(0xd36b6b05), C32e(0x3c28286c), + C32e(0x79a7a72c), C32e(0xe2bcbc81), C32e(0x1d161631), C32e(0x76adad37), + C32e(0x3bdbdb96), C32e(0x5664649e), C32e(0x4e7474a6), C32e(0x1e141436), + C32e(0xdb9292e4), C32e(0x0a0c0c12), C32e(0x6c4848fc), C32e(0xe4b8b88f), + C32e(0x5d9f9f78), C32e(0x6ebdbd0f), C32e(0xef434369), C32e(0xa6c4c435), + C32e(0xa83939da), C32e(0xa43131c6), C32e(0x37d3d38a), C32e(0x8bf2f274), + C32e(0x32d5d583), C32e(0x438b8b4e), C32e(0x596e6e85), C32e(0xb7dada18), + C32e(0x8c01018e), C32e(0x64b1b11d), C32e(0xd29c9cf1), C32e(0xe0494972), + C32e(0xb4d8d81f), C32e(0xfaacacb9), C32e(0x07f3f3fa), C32e(0x25cfcfa0), + C32e(0xafcaca20), C32e(0x8ef4f47d), C32e(0xe9474767), C32e(0x18101038), + C32e(0xd56f6f0b), C32e(0x88f0f073), C32e(0x6f4a4afb), C32e(0x725c5cca), + C32e(0x24383854), C32e(0xf157575f), C32e(0xc7737321), C32e(0x51979764), + C32e(0x23cbcbae), C32e(0x7ca1a125), C32e(0x9ce8e857), C32e(0x213e3e5d), + C32e(0xdd9696ea), C32e(0xdc61611e), C32e(0x860d0d9c), C32e(0x850f0f9b), + C32e(0x90e0e04b), C32e(0x427c7cba), C32e(0xc4717126), C32e(0xaacccc29), + C32e(0xd89090e3), C32e(0x05060609), C32e(0x01f7f7f4), C32e(0x121c1c2a), + C32e(0xa3c2c23c), C32e(0x5f6a6a8b), C32e(0xf9aeaebe), C32e(0xd0696902), + C32e(0x911717bf), C32e(0x58999971), C32e(0x273a3a53), C32e(0xb92727f7), + C32e(0x38d9d991), C32e(0x13ebebde), C32e(0xb32b2be5), C32e(0x33222277), + C32e(0xbbd2d204), C32e(0x70a9a939), C32e(0x89070787), C32e(0xa73333c1), + C32e(0xb62d2dec), C32e(0x223c3c5a), C32e(0x921515b8), C32e(0x20c9c9a9), + C32e(0x4987875c), C32e(0xffaaaab0), C32e(0x785050d8), C32e(0x7aa5a52b), + C32e(0x8f030389), C32e(0xf859594a), C32e(0x80090992), C32e(0x171a1a23), + C32e(0xda656510), C32e(0x31d7d784), C32e(0xc68484d5), C32e(0xb8d0d003), + C32e(0xc38282dc), C32e(0xb02929e2), C32e(0x775a5ac3), C32e(0x111e1e2d), + C32e(0xcb7b7b3d), C32e(0xfca8a8b7), C32e(0xd66d6d0c), C32e(0x3a2c2c62) +}; + +static const sph_u32 T2dn[] = { + C32e(0xf4a5f497), C32e(0x978497eb), C32e(0xb099b0c7), C32e(0x8c8d8cf7), + C32e(0x170d17e5), C32e(0xdcbddcb7), C32e(0xc8b1c8a7), C32e(0xfc54fc39), + C32e(0xf050f0c0), C32e(0x05030504), C32e(0xe0a9e087), C32e(0x877d87ac), + C32e(0x2b192bd5), C32e(0xa662a671), C32e(0x31e6319a), C32e(0xb59ab5c3), + C32e(0xcf45cf05), C32e(0xbc9dbc3e), C32e(0xc040c009), C32e(0x928792ef), + C32e(0x3f153fc5), C32e(0x26eb267f), C32e(0x40c94007), C32e(0x1d0b1ded), + C32e(0x2fec2f82), C32e(0xa967a97d), C32e(0x1cfd1cbe), C32e(0x25ea258a), + C32e(0xdabfda46), C32e(0x02f702a6), C32e(0xa196a1d3), C32e(0xed5bed2d), + C32e(0x5dc25dea), C32e(0x241c24d9), C32e(0xe9aee97a), C32e(0xbe6abe98), + C32e(0xee5aeed8), C32e(0xc341c3fc), C32e(0x060206f1), C32e(0xd14fd11d), + C32e(0xe45ce4d0), C32e(0x07f407a2), C32e(0x5c345cb9), C32e(0x180818e9), + C32e(0xae93aedf), C32e(0x9573954d), C32e(0xf553f5c4), C32e(0x413f4154), + C32e(0x140c1410), C32e(0xf652f631), C32e(0xaf65af8c), C32e(0xe25ee221), + C32e(0x78287860), C32e(0xf8a1f86e), C32e(0x110f1114), C32e(0xc4b5c45e), + C32e(0x1b091b1c), C32e(0x5a365a48), C32e(0xb69bb636), C32e(0x473d47a5), + C32e(0x6a266a81), C32e(0xbb69bb9c), C32e(0x4ccd4cfe), C32e(0xba9fbacf), + C32e(0x2d1b2d24), C32e(0xb99eb93a), C32e(0x9c749cb0), C32e(0x722e7268), + C32e(0x772d776c), C32e(0xcdb2cda3), C32e(0x29ee2973), C32e(0x16fb16b6), + C32e(0x01f60153), C32e(0xd74dd7ec), C32e(0xa361a375), C32e(0x49ce49fa), + C32e(0x8d7b8da4), C32e(0x423e42a1), C32e(0x937193bc), C32e(0xa297a226), + C32e(0x04f50457), C32e(0xb868b869), C32e(0x00000000), C32e(0x742c7499), + C32e(0xa060a080), C32e(0x211f21dd), C32e(0x43c843f2), C32e(0x2ced2c77), + C32e(0xd9bed9b3), C32e(0xca46ca01), C32e(0x70d970ce), C32e(0xdd4bdde4), + C32e(0x79de7933), C32e(0x67d4672b), C32e(0x23e8237b), C32e(0xde4ade11), + C32e(0xbd6bbd6d), C32e(0x7e2a7e91), C32e(0x34e5349e), C32e(0x3a163ac1), + C32e(0x54c55417), C32e(0x62d7622f), C32e(0xff55ffcc), C32e(0xa794a722), + C32e(0x4acf4a0f), C32e(0x301030c9), C32e(0x0a060a08), C32e(0x988198e7), + C32e(0x0bf00b5b), C32e(0xcc44ccf0), C32e(0xd5bad54a), C32e(0x3ee33e96), + C32e(0x0ef30e5f), C32e(0x19fe19ba), C32e(0x5bc05b1b), C32e(0x858a850a), + C32e(0xecadec7e), C32e(0xdfbcdf42), C32e(0xd848d8e0), C32e(0x0c040cf9), + C32e(0x7adf7ac6), C32e(0x58c158ee), C32e(0x9f759f45), C32e(0xa563a584), + C32e(0x50305040), C32e(0x2e1a2ed1), C32e(0x120e12e1), C32e(0xb76db765), + C32e(0xd44cd419), C32e(0x3c143c30), C32e(0x5f355f4c), C32e(0x712f719d), + C32e(0x38e13867), C32e(0xfda2fd6a), C32e(0x4fcc4f0b), C32e(0x4b394b5c), + C32e(0xf957f93d), C32e(0x0df20daa), C32e(0x9d829de3), C32e(0xc947c9f4), + C32e(0xefacef8b), C32e(0x32e7326f), C32e(0x7d2b7d64), C32e(0xa495a4d7), + C32e(0xfba0fb9b), C32e(0xb398b332), C32e(0x68d16827), C32e(0x817f815d), + C32e(0xaa66aa88), C32e(0x827e82a8), C32e(0xe6abe676), C32e(0x9e839e16), + C32e(0x45ca4503), C32e(0x7b297b95), C32e(0x6ed36ed6), C32e(0x443c4450), + C32e(0x8b798b55), C32e(0x3de23d63), C32e(0x271d272c), C32e(0x9a769a41), + C32e(0x4d3b4dad), C32e(0xfa56fac8), C32e(0xd24ed2e8), C32e(0x221e2228), + C32e(0x76db763f), C32e(0x1e0a1e18), C32e(0xb46cb490), C32e(0x37e4376b), + C32e(0xe75de725), C32e(0xb26eb261), C32e(0x2aef2a86), C32e(0xf1a6f193), + C32e(0xe3a8e372), C32e(0xf7a4f762), C32e(0x593759bd), C32e(0x868b86ff), + C32e(0x563256b1), C32e(0xc543c50d), C32e(0xeb59ebdc), C32e(0xc2b7c2af), + C32e(0x8f8c8f02), C32e(0xac64ac79), C32e(0x6dd26d23), C32e(0x3be03b92), + C32e(0xc7b4c7ab), C32e(0x15fa1543), C32e(0x090709fd), C32e(0x6f256f85), + C32e(0xeaafea8f), C32e(0x898e89f3), C32e(0x20e9208e), C32e(0x28182820), + C32e(0x64d564de), C32e(0x838883fb), C32e(0xb16fb194), C32e(0x967296b8), + C32e(0x6c246c70), C32e(0x08f108ae), C32e(0x52c752e6), C32e(0xf351f335), + C32e(0x6523658d), C32e(0x847c8459), C32e(0xbf9cbfcb), C32e(0x6321637c), + C32e(0x7cdd7c37), C32e(0x7fdc7fc2), C32e(0x9186911a), C32e(0x9485941e), + C32e(0xab90abdb), C32e(0xc642c6f8), C32e(0x57c457e2), C32e(0xe5aae583), + C32e(0x73d8733b), C32e(0x0f050f0c), C32e(0x030103f5), C32e(0x36123638), + C32e(0xfea3fe9f), C32e(0xe15fe1d4), C32e(0x10f91047), C32e(0x6bd06bd2), + C32e(0xa891a82e), C32e(0xe858e829), C32e(0x69276974), C32e(0xd0b9d04e), + C32e(0x483848a9), C32e(0x351335cd), C32e(0xceb3ce56), C32e(0x55335544), + C32e(0xd6bbd6bf), C32e(0x90709049), C32e(0x8089800e), C32e(0xf2a7f266), + C32e(0xc1b6c15a), C32e(0x66226678), C32e(0xad92ad2a), C32e(0x60206089), + C32e(0xdb49db15), C32e(0x1aff1a4f), C32e(0x887888a0), C32e(0x8e7a8e51), + C32e(0x8a8f8a06), C32e(0x13f813b2), C32e(0x9b809b12), C32e(0x39173934), + C32e(0x75da75ca), C32e(0x533153b5), C32e(0x51c65113), C32e(0xd3b8d3bb), + C32e(0x5ec35e1f), C32e(0xcbb0cb52), C32e(0x997799b4), C32e(0x3311333c), + C32e(0x46cb46f6), C32e(0x1ffc1f4b), C32e(0x61d661da), C32e(0x4e3a4e58) +}; + +static const sph_u32 T3up[] = { + C32e(0x97a5c6c6), C32e(0xeb84f8f8), C32e(0xc799eeee), C32e(0xf78df6f6), + C32e(0xe50dffff), C32e(0xb7bdd6d6), C32e(0xa7b1dede), C32e(0x39549191), + C32e(0xc0506060), C32e(0x04030202), C32e(0x87a9cece), C32e(0xac7d5656), + C32e(0xd519e7e7), C32e(0x7162b5b5), C32e(0x9ae64d4d), C32e(0xc39aecec), + C32e(0x05458f8f), C32e(0x3e9d1f1f), C32e(0x09408989), C32e(0xef87fafa), + C32e(0xc515efef), C32e(0x7febb2b2), C32e(0x07c98e8e), C32e(0xed0bfbfb), + C32e(0x82ec4141), C32e(0x7d67b3b3), C32e(0xbefd5f5f), C32e(0x8aea4545), + C32e(0x46bf2323), C32e(0xa6f75353), C32e(0xd396e4e4), C32e(0x2d5b9b9b), + C32e(0xeac27575), C32e(0xd91ce1e1), C32e(0x7aae3d3d), C32e(0x986a4c4c), + C32e(0xd85a6c6c), C32e(0xfc417e7e), C32e(0xf102f5f5), C32e(0x1d4f8383), + C32e(0xd05c6868), C32e(0xa2f45151), C32e(0xb934d1d1), C32e(0xe908f9f9), + C32e(0xdf93e2e2), C32e(0x4d73abab), C32e(0xc4536262), C32e(0x543f2a2a), + C32e(0x100c0808), C32e(0x31529595), C32e(0x8c654646), C32e(0x215e9d9d), + C32e(0x60283030), C32e(0x6ea13737), C32e(0x140f0a0a), C32e(0x5eb52f2f), + C32e(0x1c090e0e), C32e(0x48362424), C32e(0x369b1b1b), C32e(0xa53ddfdf), + C32e(0x8126cdcd), C32e(0x9c694e4e), C32e(0xfecd7f7f), C32e(0xcf9feaea), + C32e(0x241b1212), C32e(0x3a9e1d1d), C32e(0xb0745858), C32e(0x682e3434), + C32e(0x6c2d3636), C32e(0xa3b2dcdc), C32e(0x73eeb4b4), C32e(0xb6fb5b5b), + C32e(0x53f6a4a4), C32e(0xec4d7676), C32e(0x7561b7b7), C32e(0xface7d7d), + C32e(0xa47b5252), C32e(0xa13edddd), C32e(0xbc715e5e), C32e(0x26971313), + C32e(0x57f5a6a6), C32e(0x6968b9b9), C32e(0x00000000), C32e(0x992cc1c1), + C32e(0x80604040), C32e(0xdd1fe3e3), C32e(0xf2c87979), C32e(0x77edb6b6), + C32e(0xb3bed4d4), C32e(0x01468d8d), C32e(0xced96767), C32e(0xe44b7272), + C32e(0x33de9494), C32e(0x2bd49898), C32e(0x7be8b0b0), C32e(0x114a8585), + C32e(0x6d6bbbbb), C32e(0x912ac5c5), C32e(0x9ee54f4f), C32e(0xc116eded), + C32e(0x17c58686), C32e(0x2fd79a9a), C32e(0xcc556666), C32e(0x22941111), + C32e(0x0fcf8a8a), C32e(0xc910e9e9), C32e(0x08060404), C32e(0xe781fefe), + C32e(0x5bf0a0a0), C32e(0xf0447878), C32e(0x4aba2525), C32e(0x96e34b4b), + C32e(0x5ff3a2a2), C32e(0xbafe5d5d), C32e(0x1bc08080), C32e(0x0a8a0505), + C32e(0x7ead3f3f), C32e(0x42bc2121), C32e(0xe0487070), C32e(0xf904f1f1), + C32e(0xc6df6363), C32e(0xeec17777), C32e(0x4575afaf), C32e(0x84634242), + C32e(0x40302020), C32e(0xd11ae5e5), C32e(0xe10efdfd), C32e(0x656dbfbf), + C32e(0x194c8181), C32e(0x30141818), C32e(0x4c352626), C32e(0x9d2fc3c3), + C32e(0x67e1bebe), C32e(0x6aa23535), C32e(0x0bcc8888), C32e(0x5c392e2e), + C32e(0x3d579393), C32e(0xaaf25555), C32e(0xe382fcfc), C32e(0xf4477a7a), + C32e(0x8bacc8c8), C32e(0x6fe7baba), C32e(0x642b3232), C32e(0xd795e6e6), + C32e(0x9ba0c0c0), C32e(0x32981919), C32e(0x27d19e9e), C32e(0x5d7fa3a3), + C32e(0x88664444), C32e(0xa87e5454), C32e(0x76ab3b3b), C32e(0x16830b0b), + C32e(0x03ca8c8c), C32e(0x9529c7c7), C32e(0xd6d36b6b), C32e(0x503c2828), + C32e(0x5579a7a7), C32e(0x63e2bcbc), C32e(0x2c1d1616), C32e(0x4176adad), + C32e(0xad3bdbdb), C32e(0xc8566464), C32e(0xe84e7474), C32e(0x281e1414), + C32e(0x3fdb9292), C32e(0x180a0c0c), C32e(0x906c4848), C32e(0x6be4b8b8), + C32e(0x255d9f9f), C32e(0x616ebdbd), C32e(0x86ef4343), C32e(0x93a6c4c4), + C32e(0x72a83939), C32e(0x62a43131), C32e(0xbd37d3d3), C32e(0xff8bf2f2), + C32e(0xb132d5d5), C32e(0x0d438b8b), C32e(0xdc596e6e), C32e(0xafb7dada), + C32e(0x028c0101), C32e(0x7964b1b1), C32e(0x23d29c9c), C32e(0x92e04949), + C32e(0xabb4d8d8), C32e(0x43faacac), C32e(0xfd07f3f3), C32e(0x8525cfcf), + C32e(0x8fafcaca), C32e(0xf38ef4f4), C32e(0x8ee94747), C32e(0x20181010), + C32e(0xded56f6f), C32e(0xfb88f0f0), C32e(0x946f4a4a), C32e(0xb8725c5c), + C32e(0x70243838), C32e(0xaef15757), C32e(0xe6c77373), C32e(0x35519797), + C32e(0x8d23cbcb), C32e(0x597ca1a1), C32e(0xcb9ce8e8), C32e(0x7c213e3e), + C32e(0x37dd9696), C32e(0xc2dc6161), C32e(0x1a860d0d), C32e(0x1e850f0f), + C32e(0xdb90e0e0), C32e(0xf8427c7c), C32e(0xe2c47171), C32e(0x83aacccc), + C32e(0x3bd89090), C32e(0x0c050606), C32e(0xf501f7f7), C32e(0x38121c1c), + C32e(0x9fa3c2c2), C32e(0xd45f6a6a), C32e(0x47f9aeae), C32e(0xd2d06969), + C32e(0x2e911717), C32e(0x29589999), C32e(0x74273a3a), C32e(0x4eb92727), + C32e(0xa938d9d9), C32e(0xcd13ebeb), C32e(0x56b32b2b), C32e(0x44332222), + C32e(0xbfbbd2d2), C32e(0x4970a9a9), C32e(0x0e890707), C32e(0x66a73333), + C32e(0x5ab62d2d), C32e(0x78223c3c), C32e(0x2a921515), C32e(0x8920c9c9), + C32e(0x15498787), C32e(0x4fffaaaa), C32e(0xa0785050), C32e(0x517aa5a5), + C32e(0x068f0303), C32e(0xb2f85959), C32e(0x12800909), C32e(0x34171a1a), + C32e(0xcada6565), C32e(0xb531d7d7), C32e(0x13c68484), C32e(0xbbb8d0d0), + C32e(0x1fc38282), C32e(0x52b02929), C32e(0xb4775a5a), C32e(0x3c111e1e), + C32e(0xf6cb7b7b), C32e(0x4bfca8a8), C32e(0xdad66d6d), C32e(0x583a2c2c) +}; + +static const sph_u32 T3dn[] = { + C32e(0x32f4a5f4), C32e(0x6f978497), C32e(0x5eb099b0), C32e(0x7a8c8d8c), + C32e(0xe8170d17), C32e(0x0adcbddc), C32e(0x16c8b1c8), C32e(0x6dfc54fc), + C32e(0x90f050f0), C32e(0x07050305), C32e(0x2ee0a9e0), C32e(0xd1877d87), + C32e(0xcc2b192b), C32e(0x13a662a6), C32e(0x7c31e631), C32e(0x59b59ab5), + C32e(0x40cf45cf), C32e(0xa3bc9dbc), C32e(0x49c040c0), C32e(0x68928792), + C32e(0xd03f153f), C32e(0x9426eb26), C32e(0xce40c940), C32e(0xe61d0b1d), + C32e(0x6e2fec2f), C32e(0x1aa967a9), C32e(0x431cfd1c), C32e(0x6025ea25), + C32e(0xf9dabfda), C32e(0x5102f702), C32e(0x45a196a1), C32e(0x76ed5bed), + C32e(0x285dc25d), C32e(0xc5241c24), C32e(0xd4e9aee9), C32e(0xf2be6abe), + C32e(0x82ee5aee), C32e(0xbdc341c3), C32e(0xf3060206), C32e(0x52d14fd1), + C32e(0x8ce45ce4), C32e(0x5607f407), C32e(0x8d5c345c), C32e(0xe1180818), + C32e(0x4cae93ae), C32e(0x3e957395), C32e(0x97f553f5), C32e(0x6b413f41), + C32e(0x1c140c14), C32e(0x63f652f6), C32e(0xe9af65af), C32e(0x7fe25ee2), + C32e(0x48782878), C32e(0xcff8a1f8), C32e(0x1b110f11), C32e(0xebc4b5c4), + C32e(0x151b091b), C32e(0x7e5a365a), C32e(0xadb69bb6), C32e(0x98473d47), + C32e(0xa76a266a), C32e(0xf5bb69bb), C32e(0x334ccd4c), C32e(0x50ba9fba), + C32e(0x3f2d1b2d), C32e(0xa4b99eb9), C32e(0xc49c749c), C32e(0x46722e72), + C32e(0x41772d77), C32e(0x11cdb2cd), C32e(0x9d29ee29), C32e(0x4d16fb16), + C32e(0xa501f601), C32e(0xa1d74dd7), C32e(0x14a361a3), C32e(0x3449ce49), + C32e(0xdf8d7b8d), C32e(0x9f423e42), C32e(0xcd937193), C32e(0xb1a297a2), + C32e(0xa204f504), C32e(0x01b868b8), C32e(0x00000000), C32e(0xb5742c74), + C32e(0xe0a060a0), C32e(0xc2211f21), C32e(0x3a43c843), C32e(0x9a2ced2c), + C32e(0x0dd9bed9), C32e(0x47ca46ca), C32e(0x1770d970), C32e(0xafdd4bdd), + C32e(0xed79de79), C32e(0xff67d467), C32e(0x9323e823), C32e(0x5bde4ade), + C32e(0x06bd6bbd), C32e(0xbb7e2a7e), C32e(0x7b34e534), C32e(0xd73a163a), + C32e(0xd254c554), C32e(0xf862d762), C32e(0x99ff55ff), C32e(0xb6a794a7), + C32e(0xc04acf4a), C32e(0xd9301030), C32e(0x0e0a060a), C32e(0x66988198), + C32e(0xab0bf00b), C32e(0xb4cc44cc), C32e(0xf0d5bad5), C32e(0x753ee33e), + C32e(0xac0ef30e), C32e(0x4419fe19), C32e(0xdb5bc05b), C32e(0x80858a85), + C32e(0xd3ecadec), C32e(0xfedfbcdf), C32e(0xa8d848d8), C32e(0xfd0c040c), + C32e(0x197adf7a), C32e(0x2f58c158), C32e(0x309f759f), C32e(0xe7a563a5), + C32e(0x70503050), C32e(0xcb2e1a2e), C32e(0xef120e12), C32e(0x08b76db7), + C32e(0x55d44cd4), C32e(0x243c143c), C32e(0x795f355f), C32e(0xb2712f71), + C32e(0x8638e138), C32e(0xc8fda2fd), C32e(0xc74fcc4f), C32e(0x654b394b), + C32e(0x6af957f9), C32e(0x580df20d), C32e(0x619d829d), C32e(0xb3c947c9), + C32e(0x27efacef), C32e(0x8832e732), C32e(0x4f7d2b7d), C32e(0x42a495a4), + C32e(0x3bfba0fb), C32e(0xaab398b3), C32e(0xf668d168), C32e(0x22817f81), + C32e(0xeeaa66aa), C32e(0xd6827e82), C32e(0xdde6abe6), C32e(0x959e839e), + C32e(0xc945ca45), C32e(0xbc7b297b), C32e(0x056ed36e), C32e(0x6c443c44), + C32e(0x2c8b798b), C32e(0x813de23d), C32e(0x31271d27), C32e(0x379a769a), + C32e(0x964d3b4d), C32e(0x9efa56fa), C32e(0xa6d24ed2), C32e(0x36221e22), + C32e(0xe476db76), C32e(0x121e0a1e), C32e(0xfcb46cb4), C32e(0x8f37e437), + C32e(0x78e75de7), C32e(0x0fb26eb2), C32e(0x692aef2a), C32e(0x35f1a6f1), + C32e(0xdae3a8e3), C32e(0xc6f7a4f7), C32e(0x8a593759), C32e(0x74868b86), + C32e(0x83563256), C32e(0x4ec543c5), C32e(0x85eb59eb), C32e(0x18c2b7c2), + C32e(0x8e8f8c8f), C32e(0x1dac64ac), C32e(0xf16dd26d), C32e(0x723be03b), + C32e(0x1fc7b4c7), C32e(0xb915fa15), C32e(0xfa090709), C32e(0xa06f256f), + C32e(0x20eaafea), C32e(0x7d898e89), C32e(0x6720e920), C32e(0x38281828), + C32e(0x0b64d564), C32e(0x73838883), C32e(0xfbb16fb1), C32e(0xca967296), + C32e(0x546c246c), C32e(0x5f08f108), C32e(0x2152c752), C32e(0x64f351f3), + C32e(0xae652365), C32e(0x25847c84), C32e(0x57bf9cbf), C32e(0x5d632163), + C32e(0xea7cdd7c), C32e(0x1e7fdc7f), C32e(0x9c918691), C32e(0x9b948594), + C32e(0x4bab90ab), C32e(0xbac642c6), C32e(0x2657c457), C32e(0x29e5aae5), + C32e(0xe373d873), C32e(0x090f050f), C32e(0xf4030103), C32e(0x2a361236), + C32e(0x3cfea3fe), C32e(0x8be15fe1), C32e(0xbe10f910), C32e(0x026bd06b), + C32e(0xbfa891a8), C32e(0x71e858e8), C32e(0x53692769), C32e(0xf7d0b9d0), + C32e(0x91483848), C32e(0xde351335), C32e(0xe5ceb3ce), C32e(0x77553355), + C32e(0x04d6bbd6), C32e(0x39907090), C32e(0x87808980), C32e(0xc1f2a7f2), + C32e(0xecc1b6c1), C32e(0x5a662266), C32e(0xb8ad92ad), C32e(0xa9602060), + C32e(0x5cdb49db), C32e(0xb01aff1a), C32e(0xd8887888), C32e(0x2b8e7a8e), + C32e(0x898a8f8a), C32e(0x4a13f813), C32e(0x929b809b), C32e(0x23391739), + C32e(0x1075da75), C32e(0x84533153), C32e(0xd551c651), C32e(0x03d3b8d3), + C32e(0xdc5ec35e), C32e(0xe2cbb0cb), C32e(0xc3997799), C32e(0x2d331133), + C32e(0x3d46cb46), C32e(0xb71ffc1f), C32e(0x0c61d661), C32e(0x624e3a4e) +}; + +#define DECL_STATE_SMALL \ + sph_u32 H[16]; + +#define READ_STATE_SMALL(sc) do { \ + memcpy(H, (sc)->state.narrow, sizeof H); \ + } while (0) + +#define WRITE_STATE_SMALL(sc) do { \ + memcpy((sc)->state.narrow, H, sizeof H); \ + } while (0) + +#define XCAT(x, y) XCAT_(x, y) +#define XCAT_(x, y) x ## y + +#define RSTT(d0, d1, a, b0, b1, b2, b3, b4, b5, b6, b7) do { \ + t[d0] = T0up[B32_0(a[b0])] \ + ^ T1up[B32_1(a[b1])] \ + ^ T2up[B32_2(a[b2])] \ + ^ T3up[B32_3(a[b3])] \ + ^ T0dn[B32_0(a[b4])] \ + ^ T1dn[B32_1(a[b5])] \ + ^ T2dn[B32_2(a[b6])] \ + ^ T3dn[B32_3(a[b7])]; \ + t[d1] = T0dn[B32_0(a[b0])] \ + ^ T1dn[B32_1(a[b1])] \ + ^ T2dn[B32_2(a[b2])] \ + ^ T3dn[B32_3(a[b3])] \ + ^ T0up[B32_0(a[b4])] \ + ^ T1up[B32_1(a[b5])] \ + ^ T2up[B32_2(a[b6])] \ + ^ T3up[B32_3(a[b7])]; \ + } while (0) + +#define ROUND_SMALL_P(a, r) do { \ + sph_u32 t[16]; \ + a[0x0] ^= PC32up(0x00, r); \ + a[0x1] ^= PC32dn(0x00, r); \ + a[0x2] ^= PC32up(0x10, r); \ + a[0x3] ^= PC32dn(0x10, r); \ + a[0x4] ^= PC32up(0x20, r); \ + a[0x5] ^= PC32dn(0x20, r); \ + a[0x6] ^= PC32up(0x30, r); \ + a[0x7] ^= PC32dn(0x30, r); \ + a[0x8] ^= PC32up(0x40, r); \ + a[0x9] ^= PC32dn(0x40, r); \ + a[0xA] ^= PC32up(0x50, r); \ + a[0xB] ^= PC32dn(0x50, r); \ + a[0xC] ^= PC32up(0x60, r); \ + a[0xD] ^= PC32dn(0x60, r); \ + a[0xE] ^= PC32up(0x70, r); \ + a[0xF] ^= PC32dn(0x70, r); \ + RSTT(0x0, 0x1, a, 0x0, 0x2, 0x4, 0x6, 0x9, 0xB, 0xD, 0xF); \ + RSTT(0x2, 0x3, a, 0x2, 0x4, 0x6, 0x8, 0xB, 0xD, 0xF, 0x1); \ + RSTT(0x4, 0x5, a, 0x4, 0x6, 0x8, 0xA, 0xD, 0xF, 0x1, 0x3); \ + RSTT(0x6, 0x7, a, 0x6, 0x8, 0xA, 0xC, 0xF, 0x1, 0x3, 0x5); \ + RSTT(0x8, 0x9, a, 0x8, 0xA, 0xC, 0xE, 0x1, 0x3, 0x5, 0x7); \ + RSTT(0xA, 0xB, a, 0xA, 0xC, 0xE, 0x0, 0x3, 0x5, 0x7, 0x9); \ + RSTT(0xC, 0xD, a, 0xC, 0xE, 0x0, 0x2, 0x5, 0x7, 0x9, 0xB); \ + RSTT(0xE, 0xF, a, 0xE, 0x0, 0x2, 0x4, 0x7, 0x9, 0xB, 0xD); \ + memcpy(a, t, sizeof t); \ + } while (0) + +#define ROUND_SMALL_Q(a, r) do { \ + sph_u32 t[16]; \ + a[0x0] ^= QC32up(0x00, r); \ + a[0x1] ^= QC32dn(0x00, r); \ + a[0x2] ^= QC32up(0x10, r); \ + a[0x3] ^= QC32dn(0x10, r); \ + a[0x4] ^= QC32up(0x20, r); \ + a[0x5] ^= QC32dn(0x20, r); \ + a[0x6] ^= QC32up(0x30, r); \ + a[0x7] ^= QC32dn(0x30, r); \ + a[0x8] ^= QC32up(0x40, r); \ + a[0x9] ^= QC32dn(0x40, r); \ + a[0xA] ^= QC32up(0x50, r); \ + a[0xB] ^= QC32dn(0x50, r); \ + a[0xC] ^= QC32up(0x60, r); \ + a[0xD] ^= QC32dn(0x60, r); \ + a[0xE] ^= QC32up(0x70, r); \ + a[0xF] ^= QC32dn(0x70, r); \ + RSTT(0x0, 0x1, a, 0x2, 0x6, 0xA, 0xE, 0x1, 0x5, 0x9, 0xD); \ + RSTT(0x2, 0x3, a, 0x4, 0x8, 0xC, 0x0, 0x3, 0x7, 0xB, 0xF); \ + RSTT(0x4, 0x5, a, 0x6, 0xA, 0xE, 0x2, 0x5, 0x9, 0xD, 0x1); \ + RSTT(0x6, 0x7, a, 0x8, 0xC, 0x0, 0x4, 0x7, 0xB, 0xF, 0x3); \ + RSTT(0x8, 0x9, a, 0xA, 0xE, 0x2, 0x6, 0x9, 0xD, 0x1, 0x5); \ + RSTT(0xA, 0xB, a, 0xC, 0x0, 0x4, 0x8, 0xB, 0xF, 0x3, 0x7); \ + RSTT(0xC, 0xD, a, 0xE, 0x2, 0x6, 0xA, 0xD, 0x1, 0x5, 0x9); \ + RSTT(0xE, 0xF, a, 0x0, 0x4, 0x8, 0xC, 0xF, 0x3, 0x7, 0xB); \ + memcpy(a, t, sizeof t); \ + } while (0) + +#if SPH_SMALL_FOOTPRINT_GROESTL + +#define PERM_SMALL_P(a) do { \ + int r; \ + for (r = 0; r < 10; r ++) \ + ROUND_SMALL_P(a, r); \ + } while (0) + +#define PERM_SMALL_Q(a) do { \ + int r; \ + for (r = 0; r < 10; r ++) \ + ROUND_SMALL_Q(a, r); \ + } while (0) + +#else + +#define PERM_SMALL_P(a) do { \ + int r; \ + for (r = 0; r < 10; r += 2) { \ + ROUND_SMALL_P(a, r + 0); \ + ROUND_SMALL_P(a, r + 1); \ + } \ + } while (0) + +#define PERM_SMALL_Q(a) do { \ + int r; \ + for (r = 0; r < 10; r += 2) { \ + ROUND_SMALL_Q(a, r + 0); \ + ROUND_SMALL_Q(a, r + 1); \ + } \ + } while (0) + +#endif + +#define COMPRESS_SMALL do { \ + sph_u32 g[16], m[16]; \ + size_t u; \ + for (u = 0; u < 16; u ++) { \ + m[u] = dec32e_aligned(buf + (u << 2)); \ + g[u] = m[u] ^ H[u]; \ + } \ + PERM_SMALL_P(g); \ + PERM_SMALL_Q(m); \ + for (u = 0; u < 16; u ++) \ + H[u] ^= g[u] ^ m[u]; \ + } while (0) + +#define FINAL_SMALL do { \ + sph_u32 x[16]; \ + size_t u; \ + memcpy(x, H, sizeof x); \ + PERM_SMALL_P(x); \ + for (u = 0; u < 16; u ++) \ + H[u] ^= x[u]; \ + } while (0) + +#define DECL_STATE_BIG \ + sph_u32 H[32]; + +#define READ_STATE_BIG(sc) do { \ + memcpy(H, (sc)->state.narrow, sizeof H); \ + } while (0) + +#define WRITE_STATE_BIG(sc) do { \ + memcpy((sc)->state.narrow, H, sizeof H); \ + } while (0) + +#if SPH_SMALL_FOOTPRINT_GROESTL + +#define RBTT(d0, d1, a, b0, b1, b2, b3, b4, b5, b6, b7) do { \ + sph_u32 fu2 = T0up[B32_2(a[b2])]; \ + sph_u32 fd2 = T0dn[B32_2(a[b2])]; \ + sph_u32 fu3 = T1up[B32_3(a[b3])]; \ + sph_u32 fd3 = T1dn[B32_3(a[b3])]; \ + sph_u32 fu6 = T0up[B32_2(a[b6])]; \ + sph_u32 fd6 = T0dn[B32_2(a[b6])]; \ + sph_u32 fu7 = T1up[B32_3(a[b7])]; \ + sph_u32 fd7 = T1dn[B32_3(a[b7])]; \ + t[d0] = T0up[B32_0(a[b0])] \ + ^ T1up[B32_1(a[b1])] \ + ^ R32u(fu2, fd2) \ + ^ R32u(fu3, fd3) \ + ^ T0dn[B32_0(a[b4])] \ + ^ T1dn[B32_1(a[b5])] \ + ^ R32d(fu6, fd6) \ + ^ R32d(fu7, fd7); \ + t[d1] = T0dn[B32_0(a[b0])] \ + ^ T1dn[B32_1(a[b1])] \ + ^ R32d(fu2, fd2) \ + ^ R32d(fu3, fd3) \ + ^ T0up[B32_0(a[b4])] \ + ^ T1up[B32_1(a[b5])] \ + ^ R32u(fu6, fd6) \ + ^ R32u(fu7, fd7); \ + } while (0) + +#else + +#define RBTT(d0, d1, a, b0, b1, b2, b3, b4, b5, b6, b7) do { \ + t[d0] = T0up[B32_0(a[b0])] \ + ^ T1up[B32_1(a[b1])] \ + ^ T2up[B32_2(a[b2])] \ + ^ T3up[B32_3(a[b3])] \ + ^ T0dn[B32_0(a[b4])] \ + ^ T1dn[B32_1(a[b5])] \ + ^ T2dn[B32_2(a[b6])] \ + ^ T3dn[B32_3(a[b7])]; \ + t[d1] = T0dn[B32_0(a[b0])] \ + ^ T1dn[B32_1(a[b1])] \ + ^ T2dn[B32_2(a[b2])] \ + ^ T3dn[B32_3(a[b3])] \ + ^ T0up[B32_0(a[b4])] \ + ^ T1up[B32_1(a[b5])] \ + ^ T2up[B32_2(a[b6])] \ + ^ T3up[B32_3(a[b7])]; \ + } while (0) + +#endif + +#if SPH_SMALL_FOOTPRINT_GROESTL + +#define ROUND_BIG_P(a, r) do { \ + sph_u32 t[32]; \ + size_t u; \ + a[0x00] ^= PC32up(0x00, r); \ + a[0x01] ^= PC32dn(0x00, r); \ + a[0x02] ^= PC32up(0x10, r); \ + a[0x03] ^= PC32dn(0x10, r); \ + a[0x04] ^= PC32up(0x20, r); \ + a[0x05] ^= PC32dn(0x20, r); \ + a[0x06] ^= PC32up(0x30, r); \ + a[0x07] ^= PC32dn(0x30, r); \ + a[0x08] ^= PC32up(0x40, r); \ + a[0x09] ^= PC32dn(0x40, r); \ + a[0x0A] ^= PC32up(0x50, r); \ + a[0x0B] ^= PC32dn(0x50, r); \ + a[0x0C] ^= PC32up(0x60, r); \ + a[0x0D] ^= PC32dn(0x60, r); \ + a[0x0E] ^= PC32up(0x70, r); \ + a[0x0F] ^= PC32dn(0x70, r); \ + a[0x10] ^= PC32up(0x80, r); \ + a[0x11] ^= PC32dn(0x80, r); \ + a[0x12] ^= PC32up(0x90, r); \ + a[0x13] ^= PC32dn(0x90, r); \ + a[0x14] ^= PC32up(0xA0, r); \ + a[0x15] ^= PC32dn(0xA0, r); \ + a[0x16] ^= PC32up(0xB0, r); \ + a[0x17] ^= PC32dn(0xB0, r); \ + a[0x18] ^= PC32up(0xC0, r); \ + a[0x19] ^= PC32dn(0xC0, r); \ + a[0x1A] ^= PC32up(0xD0, r); \ + a[0x1B] ^= PC32dn(0xD0, r); \ + a[0x1C] ^= PC32up(0xE0, r); \ + a[0x1D] ^= PC32dn(0xE0, r); \ + a[0x1E] ^= PC32up(0xF0, r); \ + a[0x1F] ^= PC32dn(0xF0, r); \ + for (u = 0; u < 32; u += 8) { \ + RBTT(u + 0x00, (u + 0x01) & 0x1F, a, \ + u + 0x00, (u + 0x02) & 0x1F, \ + (u + 0x04) & 0x1F, (u + 0x06) & 0x1F, \ + (u + 0x09) & 0x1F, (u + 0x0B) & 0x1F, \ + (u + 0x0D) & 0x1F, (u + 0x17) & 0x1F); \ + RBTT(u + 0x02, (u + 0x03) & 0x1F, a, \ + u + 0x02, (u + 0x04) & 0x1F, \ + (u + 0x06) & 0x1F, (u + 0x08) & 0x1F, \ + (u + 0x0B) & 0x1F, (u + 0x0D) & 0x1F, \ + (u + 0x0F) & 0x1F, (u + 0x19) & 0x1F); \ + RBTT(u + 0x04, (u + 0x05) & 0x1F, a, \ + u + 0x04, (u + 0x06) & 0x1F, \ + (u + 0x08) & 0x1F, (u + 0x0A) & 0x1F, \ + (u + 0x0D) & 0x1F, (u + 0x0F) & 0x1F, \ + (u + 0x11) & 0x1F, (u + 0x1B) & 0x1F); \ + RBTT(u + 0x06, (u + 0x07) & 0x1F, a, \ + u + 0x06, (u + 0x08) & 0x1F, \ + (u + 0x0A) & 0x1F, (u + 0x0C) & 0x1F, \ + (u + 0x0F) & 0x1F, (u + 0x11) & 0x1F, \ + (u + 0x13) & 0x1F, (u + 0x1D) & 0x1F); \ + } \ + memcpy(a, t, sizeof t); \ + } while (0) + +#define ROUND_BIG_Q(a, r) do { \ + sph_u32 t[32]; \ + size_t u; \ + a[0x00] ^= QC32up(0x00, r); \ + a[0x01] ^= QC32dn(0x00, r); \ + a[0x02] ^= QC32up(0x10, r); \ + a[0x03] ^= QC32dn(0x10, r); \ + a[0x04] ^= QC32up(0x20, r); \ + a[0x05] ^= QC32dn(0x20, r); \ + a[0x06] ^= QC32up(0x30, r); \ + a[0x07] ^= QC32dn(0x30, r); \ + a[0x08] ^= QC32up(0x40, r); \ + a[0x09] ^= QC32dn(0x40, r); \ + a[0x0A] ^= QC32up(0x50, r); \ + a[0x0B] ^= QC32dn(0x50, r); \ + a[0x0C] ^= QC32up(0x60, r); \ + a[0x0D] ^= QC32dn(0x60, r); \ + a[0x0E] ^= QC32up(0x70, r); \ + a[0x0F] ^= QC32dn(0x70, r); \ + a[0x10] ^= QC32up(0x80, r); \ + a[0x11] ^= QC32dn(0x80, r); \ + a[0x12] ^= QC32up(0x90, r); \ + a[0x13] ^= QC32dn(0x90, r); \ + a[0x14] ^= QC32up(0xA0, r); \ + a[0x15] ^= QC32dn(0xA0, r); \ + a[0x16] ^= QC32up(0xB0, r); \ + a[0x17] ^= QC32dn(0xB0, r); \ + a[0x18] ^= QC32up(0xC0, r); \ + a[0x19] ^= QC32dn(0xC0, r); \ + a[0x1A] ^= QC32up(0xD0, r); \ + a[0x1B] ^= QC32dn(0xD0, r); \ + a[0x1C] ^= QC32up(0xE0, r); \ + a[0x1D] ^= QC32dn(0xE0, r); \ + a[0x1E] ^= QC32up(0xF0, r); \ + a[0x1F] ^= QC32dn(0xF0, r); \ + for (u = 0; u < 32; u += 8) { \ + RBTT(u + 0x00, (u + 0x01) & 0x1F, a, \ + (u + 0x02) & 0x1F, (u + 0x06) & 0x1F, \ + (u + 0x0A) & 0x1F, (u + 0x16) & 0x1F, \ + (u + 0x01) & 0x1F, (u + 0x05) & 0x1F, \ + (u + 0x09) & 0x1F, (u + 0x0D) & 0x1F); \ + RBTT(u + 0x02, (u + 0x03) & 0x1F, a, \ + (u + 0x04) & 0x1F, (u + 0x08) & 0x1F, \ + (u + 0x0C) & 0x1F, (u + 0x18) & 0x1F, \ + (u + 0x03) & 0x1F, (u + 0x07) & 0x1F, \ + (u + 0x0B) & 0x1F, (u + 0x0F) & 0x1F); \ + RBTT(u + 0x04, (u + 0x05) & 0x1F, a, \ + (u + 0x06) & 0x1F, (u + 0x0A) & 0x1F, \ + (u + 0x0E) & 0x1F, (u + 0x1A) & 0x1F, \ + (u + 0x05) & 0x1F, (u + 0x09) & 0x1F, \ + (u + 0x0D) & 0x1F, (u + 0x11) & 0x1F); \ + RBTT(u + 0x06, (u + 0x07) & 0x1F, a, \ + (u + 0x08) & 0x1F, (u + 0x0C) & 0x1F, \ + (u + 0x10) & 0x1F, (u + 0x1C) & 0x1F, \ + (u + 0x07) & 0x1F, (u + 0x0B) & 0x1F, \ + (u + 0x0F) & 0x1F, (u + 0x13) & 0x1F); \ + } \ + memcpy(a, t, sizeof t); \ + } while (0) + +#else + +#define ROUND_BIG_P(a, r) do { \ + sph_u32 t[32]; \ + a[0x00] ^= PC32up(0x00, r); \ + a[0x01] ^= PC32dn(0x00, r); \ + a[0x02] ^= PC32up(0x10, r); \ + a[0x03] ^= PC32dn(0x10, r); \ + a[0x04] ^= PC32up(0x20, r); \ + a[0x05] ^= PC32dn(0x20, r); \ + a[0x06] ^= PC32up(0x30, r); \ + a[0x07] ^= PC32dn(0x30, r); \ + a[0x08] ^= PC32up(0x40, r); \ + a[0x09] ^= PC32dn(0x40, r); \ + a[0x0A] ^= PC32up(0x50, r); \ + a[0x0B] ^= PC32dn(0x50, r); \ + a[0x0C] ^= PC32up(0x60, r); \ + a[0x0D] ^= PC32dn(0x60, r); \ + a[0x0E] ^= PC32up(0x70, r); \ + a[0x0F] ^= PC32dn(0x70, r); \ + a[0x10] ^= PC32up(0x80, r); \ + a[0x11] ^= PC32dn(0x80, r); \ + a[0x12] ^= PC32up(0x90, r); \ + a[0x13] ^= PC32dn(0x90, r); \ + a[0x14] ^= PC32up(0xA0, r); \ + a[0x15] ^= PC32dn(0xA0, r); \ + a[0x16] ^= PC32up(0xB0, r); \ + a[0x17] ^= PC32dn(0xB0, r); \ + a[0x18] ^= PC32up(0xC0, r); \ + a[0x19] ^= PC32dn(0xC0, r); \ + a[0x1A] ^= PC32up(0xD0, r); \ + a[0x1B] ^= PC32dn(0xD0, r); \ + a[0x1C] ^= PC32up(0xE0, r); \ + a[0x1D] ^= PC32dn(0xE0, r); \ + a[0x1E] ^= PC32up(0xF0, r); \ + a[0x1F] ^= PC32dn(0xF0, r); \ + RBTT(0x00, 0x01, a, \ + 0x00, 0x02, 0x04, 0x06, 0x09, 0x0B, 0x0D, 0x17); \ + RBTT(0x02, 0x03, a, \ + 0x02, 0x04, 0x06, 0x08, 0x0B, 0x0D, 0x0F, 0x19); \ + RBTT(0x04, 0x05, a, \ + 0x04, 0x06, 0x08, 0x0A, 0x0D, 0x0F, 0x11, 0x1B); \ + RBTT(0x06, 0x07, a, \ + 0x06, 0x08, 0x0A, 0x0C, 0x0F, 0x11, 0x13, 0x1D); \ + RBTT(0x08, 0x09, a, \ + 0x08, 0x0A, 0x0C, 0x0E, 0x11, 0x13, 0x15, 0x1F); \ + RBTT(0x0A, 0x0B, a, \ + 0x0A, 0x0C, 0x0E, 0x10, 0x13, 0x15, 0x17, 0x01); \ + RBTT(0x0C, 0x0D, a, \ + 0x0C, 0x0E, 0x10, 0x12, 0x15, 0x17, 0x19, 0x03); \ + RBTT(0x0E, 0x0F, a, \ + 0x0E, 0x10, 0x12, 0x14, 0x17, 0x19, 0x1B, 0x05); \ + RBTT(0x10, 0x11, a, \ + 0x10, 0x12, 0x14, 0x16, 0x19, 0x1B, 0x1D, 0x07); \ + RBTT(0x12, 0x13, a, \ + 0x12, 0x14, 0x16, 0x18, 0x1B, 0x1D, 0x1F, 0x09); \ + RBTT(0x14, 0x15, a, \ + 0x14, 0x16, 0x18, 0x1A, 0x1D, 0x1F, 0x01, 0x0B); \ + RBTT(0x16, 0x17, a, \ + 0x16, 0x18, 0x1A, 0x1C, 0x1F, 0x01, 0x03, 0x0D); \ + RBTT(0x18, 0x19, a, \ + 0x18, 0x1A, 0x1C, 0x1E, 0x01, 0x03, 0x05, 0x0F); \ + RBTT(0x1A, 0x1B, a, \ + 0x1A, 0x1C, 0x1E, 0x00, 0x03, 0x05, 0x07, 0x11); \ + RBTT(0x1C, 0x1D, a, \ + 0x1C, 0x1E, 0x00, 0x02, 0x05, 0x07, 0x09, 0x13); \ + RBTT(0x1E, 0x1F, a, \ + 0x1E, 0x00, 0x02, 0x04, 0x07, 0x09, 0x0B, 0x15); \ + memcpy(a, t, sizeof t); \ + } while (0) + +#define ROUND_BIG_Q(a, r) do { \ + sph_u32 t[32]; \ + a[0x00] ^= QC32up(0x00, r); \ + a[0x01] ^= QC32dn(0x00, r); \ + a[0x02] ^= QC32up(0x10, r); \ + a[0x03] ^= QC32dn(0x10, r); \ + a[0x04] ^= QC32up(0x20, r); \ + a[0x05] ^= QC32dn(0x20, r); \ + a[0x06] ^= QC32up(0x30, r); \ + a[0x07] ^= QC32dn(0x30, r); \ + a[0x08] ^= QC32up(0x40, r); \ + a[0x09] ^= QC32dn(0x40, r); \ + a[0x0A] ^= QC32up(0x50, r); \ + a[0x0B] ^= QC32dn(0x50, r); \ + a[0x0C] ^= QC32up(0x60, r); \ + a[0x0D] ^= QC32dn(0x60, r); \ + a[0x0E] ^= QC32up(0x70, r); \ + a[0x0F] ^= QC32dn(0x70, r); \ + a[0x10] ^= QC32up(0x80, r); \ + a[0x11] ^= QC32dn(0x80, r); \ + a[0x12] ^= QC32up(0x90, r); \ + a[0x13] ^= QC32dn(0x90, r); \ + a[0x14] ^= QC32up(0xA0, r); \ + a[0x15] ^= QC32dn(0xA0, r); \ + a[0x16] ^= QC32up(0xB0, r); \ + a[0x17] ^= QC32dn(0xB0, r); \ + a[0x18] ^= QC32up(0xC0, r); \ + a[0x19] ^= QC32dn(0xC0, r); \ + a[0x1A] ^= QC32up(0xD0, r); \ + a[0x1B] ^= QC32dn(0xD0, r); \ + a[0x1C] ^= QC32up(0xE0, r); \ + a[0x1D] ^= QC32dn(0xE0, r); \ + a[0x1E] ^= QC32up(0xF0, r); \ + a[0x1F] ^= QC32dn(0xF0, r); \ + RBTT(0x00, 0x01, a, \ + 0x02, 0x06, 0x0A, 0x16, 0x01, 0x05, 0x09, 0x0D); \ + RBTT(0x02, 0x03, a, \ + 0x04, 0x08, 0x0C, 0x18, 0x03, 0x07, 0x0B, 0x0F); \ + RBTT(0x04, 0x05, a, \ + 0x06, 0x0A, 0x0E, 0x1A, 0x05, 0x09, 0x0D, 0x11); \ + RBTT(0x06, 0x07, a, \ + 0x08, 0x0C, 0x10, 0x1C, 0x07, 0x0B, 0x0F, 0x13); \ + RBTT(0x08, 0x09, a, \ + 0x0A, 0x0E, 0x12, 0x1E, 0x09, 0x0D, 0x11, 0x15); \ + RBTT(0x0A, 0x0B, a, \ + 0x0C, 0x10, 0x14, 0x00, 0x0B, 0x0F, 0x13, 0x17); \ + RBTT(0x0C, 0x0D, a, \ + 0x0E, 0x12, 0x16, 0x02, 0x0D, 0x11, 0x15, 0x19); \ + RBTT(0x0E, 0x0F, a, \ + 0x10, 0x14, 0x18, 0x04, 0x0F, 0x13, 0x17, 0x1B); \ + RBTT(0x10, 0x11, a, \ + 0x12, 0x16, 0x1A, 0x06, 0x11, 0x15, 0x19, 0x1D); \ + RBTT(0x12, 0x13, a, \ + 0x14, 0x18, 0x1C, 0x08, 0x13, 0x17, 0x1B, 0x1F); \ + RBTT(0x14, 0x15, a, \ + 0x16, 0x1A, 0x1E, 0x0A, 0x15, 0x19, 0x1D, 0x01); \ + RBTT(0x16, 0x17, a, \ + 0x18, 0x1C, 0x00, 0x0C, 0x17, 0x1B, 0x1F, 0x03); \ + RBTT(0x18, 0x19, a, \ + 0x1A, 0x1E, 0x02, 0x0E, 0x19, 0x1D, 0x01, 0x05); \ + RBTT(0x1A, 0x1B, a, \ + 0x1C, 0x00, 0x04, 0x10, 0x1B, 0x1F, 0x03, 0x07); \ + RBTT(0x1C, 0x1D, a, \ + 0x1E, 0x02, 0x06, 0x12, 0x1D, 0x01, 0x05, 0x09); \ + RBTT(0x1E, 0x1F, a, \ + 0x00, 0x04, 0x08, 0x14, 0x1F, 0x03, 0x07, 0x0B); \ + memcpy(a, t, sizeof t); \ + } while (0) + +#endif + +#if SPH_SMALL_FOOTPRINT_GROESTL + +#define PERM_BIG_P(a) do { \ + int r; \ + for (r = 0; r < 14; r ++) \ + ROUND_BIG_P(a, r); \ + } while (0) + +#define PERM_BIG_Q(a) do { \ + int r; \ + for (r = 0; r < 14; r ++) \ + ROUND_BIG_Q(a, r); \ + } while (0) + +#else + +#define PERM_BIG_P(a) do { \ + int r; \ + for (r = 0; r < 14; r += 2) { \ + ROUND_BIG_P(a, r + 0); \ + ROUND_BIG_P(a, r + 1); \ + } \ + } while (0) + +#define PERM_BIG_Q(a) do { \ + int r; \ + for (r = 0; r < 14; r += 2) { \ + ROUND_BIG_Q(a, r + 0); \ + ROUND_BIG_Q(a, r + 1); \ + } \ + } while (0) + +#endif + +#define COMPRESS_BIG do { \ + sph_u32 g[32], m[32]; \ + size_t u; \ + for (u = 0; u < 32; u ++) { \ + m[u] = dec32e_aligned(buf + (u << 2)); \ + g[u] = m[u] ^ H[u]; \ + } \ + PERM_BIG_P(g); \ + PERM_BIG_Q(m); \ + for (u = 0; u < 32; u ++) \ + H[u] ^= g[u] ^ m[u]; \ + } while (0) + +#define FINAL_BIG do { \ + sph_u32 x[32]; \ + size_t u; \ + memcpy(x, H, sizeof x); \ + PERM_BIG_P(x); \ + for (u = 0; u < 32; u ++) \ + H[u] ^= x[u]; \ + } while (0) + +#endif + +static void +groestl_small_init(sph_groestl_small_context *sc, unsigned out_size) +{ + size_t u; + + sc->ptr = 0; +#if SPH_GROESTL_64 + for (u = 0; u < 7; u ++) + sc->state.wide[u] = 0; +#if USE_LE + sc->state.wide[7] = ((sph_u64)(out_size & 0xFF) << 56) + | ((sph_u64)(out_size & 0xFF00) << 40); +#else + sc->state.wide[7] = (sph_u64)out_size; +#endif +#else + for (u = 0; u < 15; u ++) + sc->state.narrow[u] = 0; +#if USE_LE + sc->state.narrow[15] = ((sph_u32)(out_size & 0xFF) << 24) + | ((sph_u32)(out_size & 0xFF00) << 8); +#else + sc->state.narrow[15] = (sph_u32)out_size; +#endif +#endif +#if SPH_64 + sc->count = 0; +#else + sc->count_high = 0; + sc->count_low = 0; +#endif +} + +static void +groestl_small_core(sph_groestl_small_context *sc, const void *data, size_t len) +{ + unsigned char *buf; + size_t ptr; + DECL_STATE_SMALL + + buf = sc->buf; + ptr = sc->ptr; + if (len < (sizeof sc->buf) - ptr) { + memcpy(buf + ptr, data, len); + ptr += len; + sc->ptr = ptr; + return; + } + + READ_STATE_SMALL(sc); + while (len > 0) { + size_t clen; + + clen = (sizeof sc->buf) - ptr; + if (clen > len) + clen = len; + memcpy(buf + ptr, data, clen); + ptr += clen; + data = (const unsigned char *)data + clen; + len -= clen; + if (ptr == sizeof sc->buf) { + COMPRESS_SMALL; +#if SPH_64 + sc->count ++; +#else + if ((sc->count_low = SPH_T32(sc->count_low + 1)) == 0) + sc->count_high = SPH_T32(sc->count_high + 1); +#endif + ptr = 0; + } + } + WRITE_STATE_SMALL(sc); + sc->ptr = ptr; +} + +static void +groestl_small_close(sph_groestl_small_context *sc, + unsigned ub, unsigned n, void *dst, size_t out_len) +{ + unsigned char pad[72]; + size_t u, ptr, pad_len; +#if SPH_64 + sph_u64 count; +#else + sph_u32 count_high, count_low; +#endif + unsigned z; + DECL_STATE_SMALL + + ptr = sc->ptr; + z = 0x80 >> n; + pad[0] = ((ub & -z) | z) & 0xFF; + if (ptr < 56) { + pad_len = 64 - ptr; +#if SPH_64 + count = SPH_T64(sc->count + 1); +#else + count_low = SPH_T32(sc->count_low + 1); + count_high = SPH_T32(sc->count_high); + if (count_low == 0) + count_high = SPH_T32(count_high + 1); +#endif + } else { + pad_len = 128 - ptr; +#if SPH_64 + count = SPH_T64(sc->count + 2); +#else + count_low = SPH_T32(sc->count_low + 2); + count_high = SPH_T32(sc->count_high); + if (count_low <= 1) + count_high = SPH_T32(count_high + 1); +#endif + } + memset(pad + 1, 0, pad_len - 9); +#if SPH_64 + sph_enc64be(pad + pad_len - 8, count); +#else + sph_enc64be(pad + pad_len - 8, count_high); + sph_enc64be(pad + pad_len - 4, count_low); +#endif + groestl_small_core(sc, pad, pad_len); + READ_STATE_SMALL(sc); + FINAL_SMALL; +#if SPH_GROESTL_64 + for (u = 0; u < 4; u ++) + enc64e(pad + (u << 3), H[u + 4]); +#else + for (u = 0; u < 8; u ++) + enc32e(pad + (u << 2), H[u + 8]); +#endif + memcpy(dst, pad + 32 - out_len, out_len); + groestl_small_init(sc, (unsigned)out_len << 3); +} + +static void +groestl_big_init(sph_groestl_big_context *sc, unsigned out_size) +{ + size_t u; + + sc->ptr = 0; +#if SPH_GROESTL_64 + for (u = 0; u < 15; u ++) + sc->state.wide[u] = 0; +#if USE_LE + sc->state.wide[15] = ((sph_u64)(out_size & 0xFF) << 56) + | ((sph_u64)(out_size & 0xFF00) << 40); +#else + sc->state.wide[15] = (sph_u64)out_size; +#endif +#else + for (u = 0; u < 31; u ++) + sc->state.narrow[u] = 0; +#if USE_LE + sc->state.narrow[31] = ((sph_u32)(out_size & 0xFF) << 24) + | ((sph_u32)(out_size & 0xFF00) << 8); +#else + sc->state.narrow[31] = (sph_u32)out_size; +#endif +#endif +#if SPH_64 + sc->count = 0; +#else + sc->count_high = 0; + sc->count_low = 0; +#endif +} + +static void +groestl_big_core(sph_groestl_big_context *sc, const void *data, size_t len) +{ + unsigned char *buf; + size_t ptr; + DECL_STATE_BIG + + buf = sc->buf; + ptr = sc->ptr; + if (len < (sizeof sc->buf) - ptr) { + memcpy(buf + ptr, data, len); + ptr += len; + sc->ptr = ptr; + return; + } + + READ_STATE_BIG(sc); + while (len > 0) { + size_t clen; + + clen = (sizeof sc->buf) - ptr; + if (clen > len) + clen = len; + memcpy(buf + ptr, data, clen); + ptr += clen; + data = (const unsigned char *)data + clen; + len -= clen; + if (ptr == sizeof sc->buf) { + COMPRESS_BIG; +#if SPH_64 + sc->count ++; +#else + if ((sc->count_low = SPH_T32(sc->count_low + 1)) == 0) + sc->count_high = SPH_T32(sc->count_high + 1); +#endif + ptr = 0; + } + } + WRITE_STATE_BIG(sc); + sc->ptr = ptr; +} + +static void +groestl_big_close(sph_groestl_big_context *sc, + unsigned ub, unsigned n, void *dst, size_t out_len) +{ + unsigned char pad[136]; + size_t ptr, pad_len, u; +#if SPH_64 + sph_u64 count; +#else + sph_u32 count_high, count_low; +#endif + unsigned z; + DECL_STATE_BIG + + ptr = sc->ptr; + z = 0x80 >> n; + pad[0] = ((ub & -z) | z) & 0xFF; + if (ptr < 120) { + pad_len = 128 - ptr; +#if SPH_64 + count = SPH_T64(sc->count + 1); +#else + count_low = SPH_T32(sc->count_low + 1); + count_high = SPH_T32(sc->count_high); + if (count_low == 0) + count_high = SPH_T32(count_high + 1); +#endif + } else { + pad_len = 256 - ptr; +#if SPH_64 + count = SPH_T64(sc->count + 2); +#else + count_low = SPH_T32(sc->count_low + 2); + count_high = SPH_T32(sc->count_high); + if (count_low <= 1) + count_high = SPH_T32(count_high + 1); +#endif + } + memset(pad + 1, 0, pad_len - 9); +#if SPH_64 + sph_enc64be(pad + pad_len - 8, count); +#else + sph_enc64be(pad + pad_len - 8, count_high); + sph_enc64be(pad + pad_len - 4, count_low); +#endif + groestl_big_core(sc, pad, pad_len); + READ_STATE_BIG(sc); + FINAL_BIG; +#if SPH_GROESTL_64 + for (u = 0; u < 8; u ++) + enc64e(pad + (u << 3), H[u + 8]); +#else + for (u = 0; u < 16; u ++) + enc32e(pad + (u << 2), H[u + 16]); +#endif + memcpy(dst, pad + 64 - out_len, out_len); + groestl_big_init(sc, (unsigned)out_len << 3); +} + +/* see sph_groestl.h */ +void +sph_groestl224_init(void *cc) +{ + groestl_small_init(cc, 224); +} + +/* see sph_groestl.h */ +void +sph_groestl224(void *cc, const void *data, size_t len) +{ + groestl_small_core(cc, data, len); +} + +/* see sph_groestl.h */ +void +sph_groestl224_close(void *cc, void *dst) +{ + groestl_small_close(cc, 0, 0, dst, 28); +} + +/* see sph_groestl.h */ +void +sph_groestl224_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst) +{ + groestl_small_close(cc, ub, n, dst, 28); +} + +/* see sph_groestl.h */ +void +sph_groestl256_init(void *cc) +{ + groestl_small_init(cc, 256); +} + +/* see sph_groestl.h */ +void +sph_groestl256(void *cc, const void *data, size_t len) +{ + groestl_small_core(cc, data, len); +} + +/* see sph_groestl.h */ +void +sph_groestl256_close(void *cc, void *dst) +{ + groestl_small_close(cc, 0, 0, dst, 32); +} + +/* see sph_groestl.h */ +void +sph_groestl256_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst) +{ + groestl_small_close(cc, ub, n, dst, 32); +} + +/* see sph_groestl.h */ +void +sph_groestl384_init(void *cc) +{ + groestl_big_init(cc, 384); +} + +/* see sph_groestl.h */ +void +sph_groestl384(void *cc, const void *data, size_t len) +{ + groestl_big_core(cc, data, len); +} + +/* see sph_groestl.h */ +void +sph_groestl384_close(void *cc, void *dst) +{ + groestl_big_close(cc, 0, 0, dst, 48); +} + +/* see sph_groestl.h */ +void +sph_groestl384_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst) +{ + groestl_big_close(cc, ub, n, dst, 48); +} + +/* see sph_groestl.h */ +void +sph_groestl512_init(void *cc) +{ + groestl_big_init(cc, 512); +} + +/* see sph_groestl.h */ +void +sph_groestl512(void *cc, const void *data, size_t len) +{ + groestl_big_core(cc, data, len); +} + +/* see sph_groestl.h */ +void +sph_groestl512_close(void *cc, void *dst) +{ + groestl_big_close(cc, 0, 0, dst, 64); +} + +/* see sph_groestl.h */ +void +sph_groestl512_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst) +{ + groestl_big_close(cc, ub, n, dst, 64); +} + +#ifdef __cplusplus +} +#endif diff --git a/crypto/sha3/hashblock.h b/crypto/sha3/hashblock.h new file mode 100644 index 000000000..4a4062c5f --- /dev/null +++ b/crypto/sha3/hashblock.h @@ -0,0 +1,195 @@ +#ifndef HASHBLOCK_H +#define HASHBLOCK_H + +#include "sph_blake.h" +#include "sph_bmw.h" +#include "sph_groestl.h" +#include "sph_jh.h" +#include "sph_keccak.h" +#include "sph_skein.h" + + + +void Hash9(void *state, const void *init) +{ + sph_blake512_context ctx_blake; + sph_bmw512_context ctx_bmw; + sph_groestl512_context ctx_groestl; + sph_jh512_context ctx_jh; + sph_keccak512_context ctx_keccak; + sph_skein512_context ctx_skein; + static unsigned char pblank[1]; + + + uint32_t mask = 8; + uint32_t zero = 0; + + //these uint512 in the c++ source of the client are backed by an array of uint32 + uint32_t hashA[16], hashB[16]; + +/* + int ii=0; + printf("Start: "); + for (ii=0; ii < 80; ii++) + { + printf ("%.2x",((uint8_t*)init)[ii]); + }; + printf ("\n"); +*/ + + sph_blake512_init(&ctx_blake); + sph_blake512 (&ctx_blake, init, 80); + sph_blake512_close (&ctx_blake, hashA); //0 + +/* + printf("bla512: "); + for (ii=0; ii < 64; ii++) + { + printf ("%.2x",((uint8_t*)hashA)[ii]); + }; + printf ("\n"); +*/ + + sph_bmw512_init(&ctx_bmw); + sph_bmw512 (&ctx_bmw, hashA, 64); //0 + sph_bmw512_close(&ctx_bmw, hashB); //1 + +/* + printf("bmw512: "); + for (ii=0; ii < 64; ii++) + { + printf ("%.2x",((uint8_t*)hashB)[ii]); + }; + printf ("\n"); +*/ + + if ((hashB[0] & mask) != zero) //1 + { + sph_groestl512_init(&ctx_groestl); + sph_groestl512 (&ctx_groestl, hashB, 64); //1 + sph_groestl512_close(&ctx_groestl, hashA); //2 + } + else + { + sph_skein512_init(&ctx_skein); + sph_skein512 (&ctx_skein, hashB, 64); //1 + sph_skein512_close(&ctx_skein, hashA); //2 + } + +/* + printf("1stcon: "); + for (ii=0; ii < 64; ii++) + { + printf ("%.2x",((uint8_t*)hashA)[ii]); + }; + printf ("\n"); +*/ + + sph_groestl512_init(&ctx_groestl); + sph_groestl512 (&ctx_groestl, hashA, 64); //2 + sph_groestl512_close(&ctx_groestl, hashB); //3 + + sph_jh512_init(&ctx_jh); + sph_jh512 (&ctx_jh, hashB, 64); //3 + sph_jh512_close(&ctx_jh, hashA); //4 + + if ((hashA[0] & mask) != zero) //4 + { + sph_blake512_init(&ctx_blake); + sph_blake512 (&ctx_blake, hashA, 64); // + sph_blake512_close(&ctx_blake, hashB); //5 + } + else + { + sph_bmw512_init(&ctx_bmw); + sph_bmw512 (&ctx_bmw, hashA, 64); //4 + sph_bmw512_close(&ctx_bmw, hashB); //5 + } + + sph_keccak512_init(&ctx_keccak); + sph_keccak512 (&ctx_keccak,hashB, 64); //5 + sph_keccak512_close(&ctx_keccak, hashA); //6 + + sph_skein512_init(&ctx_skein); + sph_skein512 (&ctx_skein, hashA, 64); //6 + sph_skein512_close(&ctx_skein, hashB); //7 + + if ((hashB[0] & mask) != zero) //7 + { + sph_keccak512_init(&ctx_keccak); + sph_keccak512 (&ctx_keccak, hashB, 64); // + sph_keccak512_close(&ctx_keccak, hashA); //8 + } + else + { + sph_jh512_init(&ctx_jh); + sph_jh512 (&ctx_jh, hashB, 64); //7 + sph_jh512_close(&ctx_jh, hashA); //8 + } + +/* + printf("result: "); + for (ii=0; ii < 64; ii++) + { + printf ("%.2x",((uint8_t*)hashA)[ii]); + }; + printf ("\n"); +*/ + //return hash[8].trim256(); //8 + memcpy(state, hashA, 32); + +/* + printf("result: "); + for (ii=0; ii < 32; ii++) + { + printf ("%.2x",((uint8_t*)state)[ii]); + }; + printf ("\n"); +*/ +} + + + +void Hash6(void *state, const void *init) + +{ + sph_blake512_context ctx_blake; + sph_bmw512_context ctx_bmw; + sph_groestl512_context ctx_groestl; + sph_jh512_context ctx_jh; + sph_keccak512_context ctx_keccak; + sph_skein512_context ctx_skein; + //static unsigned char pblank[1]; + + char hashA[64], hashB[64]; + + sph_blake512_init(&ctx_blake); + sph_blake512 (&ctx_blake, init, 80); +// sph_blake512_close(&ctx_blake, (void*)(&hashA)); + sph_blake512_close (&ctx_blake, hashA); + + sph_bmw512_init(&ctx_bmw); + sph_bmw512 (&ctx_bmw, (const void*)(hashA), 64); + sph_bmw512_close(&ctx_bmw, (void*)(hashB)); + + sph_groestl512_init(&ctx_groestl); + sph_groestl512 (&ctx_groestl, (const void*)(hashB), 64); + sph_groestl512_close(&ctx_groestl, (void*)(hashA)); + + sph_jh512_init(&ctx_jh); + sph_jh512 (&ctx_jh, (const void*)(hashA), 64); + sph_jh512_close(&ctx_jh, (void*)(hashB)); + + sph_keccak512_init(&ctx_keccak); + sph_keccak512 (&ctx_keccak, (const void*)(hashB), 64); + sph_keccak512_close(&ctx_keccak, (void*)(hashA)); + + sph_skein512_init(&ctx_skein); + sph_skein512 (&ctx_skein, (const void*)(hashA), 64); + sph_skein512_close(&ctx_skein, (void*)(hashB)); + + memcpy(state, hashB, 32); +}; + + +#endif // HASHBLOCK_H diff --git a/crypto/sha3/keccak.c b/crypto/sha3/keccak.c new file mode 100644 index 000000000..cff9f87da --- /dev/null +++ b/crypto/sha3/keccak.c @@ -0,0 +1,1824 @@ +/* $Id: keccak.c 259 2011-07-19 22:11:27Z tp $ */ +/* + * Keccak implementation. + * + * ==========================(LICENSE BEGIN)============================ + * + * Copyright (c) 2007-2010 Projet RNRT SAPHIR + * + * Permission is hereby granted, free of charge, to any person obtaining + * a copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sublicense, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * The above copyright notice and this permission notice shall be + * included in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + * + * ===========================(LICENSE END)============================= + * + * @author Thomas Pornin + */ + +#include +#include + +#include "sph_keccak.h" + +#ifdef __cplusplus +extern "C"{ +#endif + +/* + * Parameters: + * + * SPH_KECCAK_64 use a 64-bit type + * SPH_KECCAK_UNROLL number of loops to unroll (0/undef for full unroll) + * SPH_KECCAK_INTERLEAVE use bit-interleaving (32-bit type only) + * SPH_KECCAK_NOCOPY do not copy the state into local variables + * + * If there is no usable 64-bit type, the code automatically switches + * back to the 32-bit implementation. + * + * Some tests on an Intel Core2 Q6600 (both 64-bit and 32-bit, 32 kB L1 + * code cache), a PowerPC (G3, 32 kB L1 code cache), an ARM920T core + * (16 kB L1 code cache), and a small MIPS-compatible CPU (Broadcom BCM3302, + * 8 kB L1 code cache), seem to show that the following are optimal: + * + * -- x86, 64-bit: use the 64-bit implementation, unroll 8 rounds, + * do not copy the state; unrolling 2, 6 or all rounds also provides + * near-optimal performance. + * -- x86, 32-bit: use the 32-bit implementation, unroll 6 rounds, + * interleave, do not copy the state. Unrolling 1, 2, 4 or 8 rounds + * also provides near-optimal performance. + * -- PowerPC: use the 64-bit implementation, unroll 8 rounds, + * copy the state. Unrolling 4 or 6 rounds is near-optimal. + * -- ARM: use the 64-bit implementation, unroll 2 or 4 rounds, + * copy the state. + * -- MIPS: use the 64-bit implementation, unroll 2 rounds, copy + * the state. Unrolling only 1 round is also near-optimal. + * + * Also, interleaving does not always yield actual improvements when + * using a 32-bit implementation; in particular when the architecture + * does not offer a native rotation opcode (interleaving replaces one + * 64-bit rotation with two 32-bit rotations, which is a gain only if + * there is a native 32-bit rotation opcode and not a native 64-bit + * rotation opcode; also, interleaving implies a small overhead when + * processing input words). + * + * To sum up: + * -- when possible, use the 64-bit code + * -- exception: on 32-bit x86, use 32-bit code + * -- when using 32-bit code, use interleaving + * -- copy the state, except on x86 + * -- unroll 8 rounds on "big" machine, 2 rounds on "small" machines + */ + +#if SPH_SMALL_FOOTPRINT && !defined SPH_SMALL_FOOTPRINT_KECCAK +#define SPH_SMALL_FOOTPRINT_KECCAK 1 +#endif + +/* + * By default, we select the 64-bit implementation if a 64-bit type + * is available, unless a 32-bit x86 is detected. + */ +#if !defined SPH_KECCAK_64 && SPH_64 \ + && !(defined __i386__ || SPH_I386_GCC || SPH_I386_MSVC) +#define SPH_KECCAK_64 1 +#endif + +/* + * If using a 32-bit implementation, we prefer to interleave. + */ +#if !SPH_KECCAK_64 && !defined SPH_KECCAK_INTERLEAVE +#define SPH_KECCAK_INTERLEAVE 1 +#endif + +/* + * Unroll 8 rounds on big systems, 2 rounds on small systems. + */ +#ifndef SPH_KECCAK_UNROLL +#if SPH_SMALL_FOOTPRINT_KECCAK +#define SPH_KECCAK_UNROLL 2 +#else +#define SPH_KECCAK_UNROLL 8 +#endif +#endif + +/* + * We do not want to copy the state to local variables on x86 (32-bit + * and 64-bit alike). + */ +#ifndef SPH_KECCAK_NOCOPY +#if defined __i386__ || defined __x86_64 || SPH_I386_MSVC || SPH_I386_GCC +#define SPH_KECCAK_NOCOPY 1 +#else +#define SPH_KECCAK_NOCOPY 0 +#endif +#endif + +#ifdef _MSC_VER +#pragma warning (disable: 4146) +#endif + +#if SPH_KECCAK_64 + +static const sph_u64 RC[] = { + SPH_C64(0x0000000000000001), SPH_C64(0x0000000000008082), + SPH_C64(0x800000000000808A), SPH_C64(0x8000000080008000), + SPH_C64(0x000000000000808B), SPH_C64(0x0000000080000001), + SPH_C64(0x8000000080008081), SPH_C64(0x8000000000008009), + SPH_C64(0x000000000000008A), SPH_C64(0x0000000000000088), + SPH_C64(0x0000000080008009), SPH_C64(0x000000008000000A), + SPH_C64(0x000000008000808B), SPH_C64(0x800000000000008B), + SPH_C64(0x8000000000008089), SPH_C64(0x8000000000008003), + SPH_C64(0x8000000000008002), SPH_C64(0x8000000000000080), + SPH_C64(0x000000000000800A), SPH_C64(0x800000008000000A), + SPH_C64(0x8000000080008081), SPH_C64(0x8000000000008080), + SPH_C64(0x0000000080000001), SPH_C64(0x8000000080008008) +}; + +#if SPH_KECCAK_NOCOPY + +#define a00 (kc->u.wide[ 0]) +#define a10 (kc->u.wide[ 1]) +#define a20 (kc->u.wide[ 2]) +#define a30 (kc->u.wide[ 3]) +#define a40 (kc->u.wide[ 4]) +#define a01 (kc->u.wide[ 5]) +#define a11 (kc->u.wide[ 6]) +#define a21 (kc->u.wide[ 7]) +#define a31 (kc->u.wide[ 8]) +#define a41 (kc->u.wide[ 9]) +#define a02 (kc->u.wide[10]) +#define a12 (kc->u.wide[11]) +#define a22 (kc->u.wide[12]) +#define a32 (kc->u.wide[13]) +#define a42 (kc->u.wide[14]) +#define a03 (kc->u.wide[15]) +#define a13 (kc->u.wide[16]) +#define a23 (kc->u.wide[17]) +#define a33 (kc->u.wide[18]) +#define a43 (kc->u.wide[19]) +#define a04 (kc->u.wide[20]) +#define a14 (kc->u.wide[21]) +#define a24 (kc->u.wide[22]) +#define a34 (kc->u.wide[23]) +#define a44 (kc->u.wide[24]) + +#define DECL_STATE +#define READ_STATE(sc) +#define WRITE_STATE(sc) + +#define INPUT_BUF(size) do { \ + size_t j; \ + for (j = 0; j < (size); j += 8) { \ + kc->u.wide[j >> 3] ^= sph_dec64le_aligned(buf + j); \ + } \ + } while (0) + +#define INPUT_BUF144 INPUT_BUF(144) +#define INPUT_BUF136 INPUT_BUF(136) +#define INPUT_BUF104 INPUT_BUF(104) +#define INPUT_BUF72 INPUT_BUF(72) + +#else + +#define DECL_STATE \ + sph_u64 a00, a01, a02, a03, a04; \ + sph_u64 a10, a11, a12, a13, a14; \ + sph_u64 a20, a21, a22, a23, a24; \ + sph_u64 a30, a31, a32, a33, a34; \ + sph_u64 a40, a41, a42, a43, a44; + +#define READ_STATE(state) do { \ + a00 = (state)->u.wide[ 0]; \ + a10 = (state)->u.wide[ 1]; \ + a20 = (state)->u.wide[ 2]; \ + a30 = (state)->u.wide[ 3]; \ + a40 = (state)->u.wide[ 4]; \ + a01 = (state)->u.wide[ 5]; \ + a11 = (state)->u.wide[ 6]; \ + a21 = (state)->u.wide[ 7]; \ + a31 = (state)->u.wide[ 8]; \ + a41 = (state)->u.wide[ 9]; \ + a02 = (state)->u.wide[10]; \ + a12 = (state)->u.wide[11]; \ + a22 = (state)->u.wide[12]; \ + a32 = (state)->u.wide[13]; \ + a42 = (state)->u.wide[14]; \ + a03 = (state)->u.wide[15]; \ + a13 = (state)->u.wide[16]; \ + a23 = (state)->u.wide[17]; \ + a33 = (state)->u.wide[18]; \ + a43 = (state)->u.wide[19]; \ + a04 = (state)->u.wide[20]; \ + a14 = (state)->u.wide[21]; \ + a24 = (state)->u.wide[22]; \ + a34 = (state)->u.wide[23]; \ + a44 = (state)->u.wide[24]; \ + } while (0) + +#define WRITE_STATE(state) do { \ + (state)->u.wide[ 0] = a00; \ + (state)->u.wide[ 1] = a10; \ + (state)->u.wide[ 2] = a20; \ + (state)->u.wide[ 3] = a30; \ + (state)->u.wide[ 4] = a40; \ + (state)->u.wide[ 5] = a01; \ + (state)->u.wide[ 6] = a11; \ + (state)->u.wide[ 7] = a21; \ + (state)->u.wide[ 8] = a31; \ + (state)->u.wide[ 9] = a41; \ + (state)->u.wide[10] = a02; \ + (state)->u.wide[11] = a12; \ + (state)->u.wide[12] = a22; \ + (state)->u.wide[13] = a32; \ + (state)->u.wide[14] = a42; \ + (state)->u.wide[15] = a03; \ + (state)->u.wide[16] = a13; \ + (state)->u.wide[17] = a23; \ + (state)->u.wide[18] = a33; \ + (state)->u.wide[19] = a43; \ + (state)->u.wide[20] = a04; \ + (state)->u.wide[21] = a14; \ + (state)->u.wide[22] = a24; \ + (state)->u.wide[23] = a34; \ + (state)->u.wide[24] = a44; \ + } while (0) + +#define INPUT_BUF144 do { \ + a00 ^= sph_dec64le_aligned(buf + 0); \ + a10 ^= sph_dec64le_aligned(buf + 8); \ + a20 ^= sph_dec64le_aligned(buf + 16); \ + a30 ^= sph_dec64le_aligned(buf + 24); \ + a40 ^= sph_dec64le_aligned(buf + 32); \ + a01 ^= sph_dec64le_aligned(buf + 40); \ + a11 ^= sph_dec64le_aligned(buf + 48); \ + a21 ^= sph_dec64le_aligned(buf + 56); \ + a31 ^= sph_dec64le_aligned(buf + 64); \ + a41 ^= sph_dec64le_aligned(buf + 72); \ + a02 ^= sph_dec64le_aligned(buf + 80); \ + a12 ^= sph_dec64le_aligned(buf + 88); \ + a22 ^= sph_dec64le_aligned(buf + 96); \ + a32 ^= sph_dec64le_aligned(buf + 104); \ + a42 ^= sph_dec64le_aligned(buf + 112); \ + a03 ^= sph_dec64le_aligned(buf + 120); \ + a13 ^= sph_dec64le_aligned(buf + 128); \ + a23 ^= sph_dec64le_aligned(buf + 136); \ + } while (0) + +#define INPUT_BUF136 do { \ + a00 ^= sph_dec64le_aligned(buf + 0); \ + a10 ^= sph_dec64le_aligned(buf + 8); \ + a20 ^= sph_dec64le_aligned(buf + 16); \ + a30 ^= sph_dec64le_aligned(buf + 24); \ + a40 ^= sph_dec64le_aligned(buf + 32); \ + a01 ^= sph_dec64le_aligned(buf + 40); \ + a11 ^= sph_dec64le_aligned(buf + 48); \ + a21 ^= sph_dec64le_aligned(buf + 56); \ + a31 ^= sph_dec64le_aligned(buf + 64); \ + a41 ^= sph_dec64le_aligned(buf + 72); \ + a02 ^= sph_dec64le_aligned(buf + 80); \ + a12 ^= sph_dec64le_aligned(buf + 88); \ + a22 ^= sph_dec64le_aligned(buf + 96); \ + a32 ^= sph_dec64le_aligned(buf + 104); \ + a42 ^= sph_dec64le_aligned(buf + 112); \ + a03 ^= sph_dec64le_aligned(buf + 120); \ + a13 ^= sph_dec64le_aligned(buf + 128); \ + } while (0) + +#define INPUT_BUF104 do { \ + a00 ^= sph_dec64le_aligned(buf + 0); \ + a10 ^= sph_dec64le_aligned(buf + 8); \ + a20 ^= sph_dec64le_aligned(buf + 16); \ + a30 ^= sph_dec64le_aligned(buf + 24); \ + a40 ^= sph_dec64le_aligned(buf + 32); \ + a01 ^= sph_dec64le_aligned(buf + 40); \ + a11 ^= sph_dec64le_aligned(buf + 48); \ + a21 ^= sph_dec64le_aligned(buf + 56); \ + a31 ^= sph_dec64le_aligned(buf + 64); \ + a41 ^= sph_dec64le_aligned(buf + 72); \ + a02 ^= sph_dec64le_aligned(buf + 80); \ + a12 ^= sph_dec64le_aligned(buf + 88); \ + a22 ^= sph_dec64le_aligned(buf + 96); \ + } while (0) + +#define INPUT_BUF72 do { \ + a00 ^= sph_dec64le_aligned(buf + 0); \ + a10 ^= sph_dec64le_aligned(buf + 8); \ + a20 ^= sph_dec64le_aligned(buf + 16); \ + a30 ^= sph_dec64le_aligned(buf + 24); \ + a40 ^= sph_dec64le_aligned(buf + 32); \ + a01 ^= sph_dec64le_aligned(buf + 40); \ + a11 ^= sph_dec64le_aligned(buf + 48); \ + a21 ^= sph_dec64le_aligned(buf + 56); \ + a31 ^= sph_dec64le_aligned(buf + 64); \ + } while (0) + +#define INPUT_BUF(lim) do { \ + a00 ^= sph_dec64le_aligned(buf + 0); \ + a10 ^= sph_dec64le_aligned(buf + 8); \ + a20 ^= sph_dec64le_aligned(buf + 16); \ + a30 ^= sph_dec64le_aligned(buf + 24); \ + a40 ^= sph_dec64le_aligned(buf + 32); \ + a01 ^= sph_dec64le_aligned(buf + 40); \ + a11 ^= sph_dec64le_aligned(buf + 48); \ + a21 ^= sph_dec64le_aligned(buf + 56); \ + a31 ^= sph_dec64le_aligned(buf + 64); \ + if ((lim) == 72) \ + break; \ + a41 ^= sph_dec64le_aligned(buf + 72); \ + a02 ^= sph_dec64le_aligned(buf + 80); \ + a12 ^= sph_dec64le_aligned(buf + 88); \ + a22 ^= sph_dec64le_aligned(buf + 96); \ + if ((lim) == 104) \ + break; \ + a32 ^= sph_dec64le_aligned(buf + 104); \ + a42 ^= sph_dec64le_aligned(buf + 112); \ + a03 ^= sph_dec64le_aligned(buf + 120); \ + a13 ^= sph_dec64le_aligned(buf + 128); \ + if ((lim) == 136) \ + break; \ + a23 ^= sph_dec64le_aligned(buf + 136); \ + } while (0) + +#endif + +#define DECL64(x) sph_u64 x +#define MOV64(d, s) (d = s) +#define XOR64(d, a, b) (d = a ^ b) +#define AND64(d, a, b) (d = a & b) +#define OR64(d, a, b) (d = a | b) +#define NOT64(d, s) (d = SPH_T64(~s)) +#define ROL64(d, v, n) (d = SPH_ROTL64(v, n)) +#define XOR64_IOTA XOR64 + +#else + +static const struct { + sph_u32 high, low; +} RC[] = { +#if SPH_KECCAK_INTERLEAVE + { SPH_C32(0x00000000), SPH_C32(0x00000001) }, + { SPH_C32(0x00000089), SPH_C32(0x00000000) }, + { SPH_C32(0x8000008B), SPH_C32(0x00000000) }, + { SPH_C32(0x80008080), SPH_C32(0x00000000) }, + { SPH_C32(0x0000008B), SPH_C32(0x00000001) }, + { SPH_C32(0x00008000), SPH_C32(0x00000001) }, + { SPH_C32(0x80008088), SPH_C32(0x00000001) }, + { SPH_C32(0x80000082), SPH_C32(0x00000001) }, + { SPH_C32(0x0000000B), SPH_C32(0x00000000) }, + { SPH_C32(0x0000000A), SPH_C32(0x00000000) }, + { SPH_C32(0x00008082), SPH_C32(0x00000001) }, + { SPH_C32(0x00008003), SPH_C32(0x00000000) }, + { SPH_C32(0x0000808B), SPH_C32(0x00000001) }, + { SPH_C32(0x8000000B), SPH_C32(0x00000001) }, + { SPH_C32(0x8000008A), SPH_C32(0x00000001) }, + { SPH_C32(0x80000081), SPH_C32(0x00000001) }, + { SPH_C32(0x80000081), SPH_C32(0x00000000) }, + { SPH_C32(0x80000008), SPH_C32(0x00000000) }, + { SPH_C32(0x00000083), SPH_C32(0x00000000) }, + { SPH_C32(0x80008003), SPH_C32(0x00000000) }, + { SPH_C32(0x80008088), SPH_C32(0x00000001) }, + { SPH_C32(0x80000088), SPH_C32(0x00000000) }, + { SPH_C32(0x00008000), SPH_C32(0x00000001) }, + { SPH_C32(0x80008082), SPH_C32(0x00000000) } +#else + { SPH_C32(0x00000000), SPH_C32(0x00000001) }, + { SPH_C32(0x00000000), SPH_C32(0x00008082) }, + { SPH_C32(0x80000000), SPH_C32(0x0000808A) }, + { SPH_C32(0x80000000), SPH_C32(0x80008000) }, + { SPH_C32(0x00000000), SPH_C32(0x0000808B) }, + { SPH_C32(0x00000000), SPH_C32(0x80000001) }, + { SPH_C32(0x80000000), SPH_C32(0x80008081) }, + { SPH_C32(0x80000000), SPH_C32(0x00008009) }, + { SPH_C32(0x00000000), SPH_C32(0x0000008A) }, + { SPH_C32(0x00000000), SPH_C32(0x00000088) }, + { SPH_C32(0x00000000), SPH_C32(0x80008009) }, + { SPH_C32(0x00000000), SPH_C32(0x8000000A) }, + { SPH_C32(0x00000000), SPH_C32(0x8000808B) }, + { SPH_C32(0x80000000), SPH_C32(0x0000008B) }, + { SPH_C32(0x80000000), SPH_C32(0x00008089) }, + { SPH_C32(0x80000000), SPH_C32(0x00008003) }, + { SPH_C32(0x80000000), SPH_C32(0x00008002) }, + { SPH_C32(0x80000000), SPH_C32(0x00000080) }, + { SPH_C32(0x00000000), SPH_C32(0x0000800A) }, + { SPH_C32(0x80000000), SPH_C32(0x8000000A) }, + { SPH_C32(0x80000000), SPH_C32(0x80008081) }, + { SPH_C32(0x80000000), SPH_C32(0x00008080) }, + { SPH_C32(0x00000000), SPH_C32(0x80000001) }, + { SPH_C32(0x80000000), SPH_C32(0x80008008) } +#endif +}; + +#if SPH_KECCAK_INTERLEAVE + +#define INTERLEAVE(xl, xh) do { \ + sph_u32 l, h, t; \ + l = (xl); h = (xh); \ + t = (l ^ (l >> 1)) & SPH_C32(0x22222222); l ^= t ^ (t << 1); \ + t = (h ^ (h >> 1)) & SPH_C32(0x22222222); h ^= t ^ (t << 1); \ + t = (l ^ (l >> 2)) & SPH_C32(0x0C0C0C0C); l ^= t ^ (t << 2); \ + t = (h ^ (h >> 2)) & SPH_C32(0x0C0C0C0C); h ^= t ^ (t << 2); \ + t = (l ^ (l >> 4)) & SPH_C32(0x00F000F0); l ^= t ^ (t << 4); \ + t = (h ^ (h >> 4)) & SPH_C32(0x00F000F0); h ^= t ^ (t << 4); \ + t = (l ^ (l >> 8)) & SPH_C32(0x0000FF00); l ^= t ^ (t << 8); \ + t = (h ^ (h >> 8)) & SPH_C32(0x0000FF00); h ^= t ^ (t << 8); \ + t = (l ^ SPH_T32(h << 16)) & SPH_C32(0xFFFF0000); \ + l ^= t; h ^= t >> 16; \ + (xl) = l; (xh) = h; \ + } while (0) + +#define UNINTERLEAVE(xl, xh) do { \ + sph_u32 l, h, t; \ + l = (xl); h = (xh); \ + t = (l ^ SPH_T32(h << 16)) & SPH_C32(0xFFFF0000); \ + l ^= t; h ^= t >> 16; \ + t = (l ^ (l >> 8)) & SPH_C32(0x0000FF00); l ^= t ^ (t << 8); \ + t = (h ^ (h >> 8)) & SPH_C32(0x0000FF00); h ^= t ^ (t << 8); \ + t = (l ^ (l >> 4)) & SPH_C32(0x00F000F0); l ^= t ^ (t << 4); \ + t = (h ^ (h >> 4)) & SPH_C32(0x00F000F0); h ^= t ^ (t << 4); \ + t = (l ^ (l >> 2)) & SPH_C32(0x0C0C0C0C); l ^= t ^ (t << 2); \ + t = (h ^ (h >> 2)) & SPH_C32(0x0C0C0C0C); h ^= t ^ (t << 2); \ + t = (l ^ (l >> 1)) & SPH_C32(0x22222222); l ^= t ^ (t << 1); \ + t = (h ^ (h >> 1)) & SPH_C32(0x22222222); h ^= t ^ (t << 1); \ + (xl) = l; (xh) = h; \ + } while (0) + +#else + +#define INTERLEAVE(l, h) +#define UNINTERLEAVE(l, h) + +#endif + +#if SPH_KECCAK_NOCOPY + +#define a00l (kc->u.narrow[2 * 0 + 0]) +#define a00h (kc->u.narrow[2 * 0 + 1]) +#define a10l (kc->u.narrow[2 * 1 + 0]) +#define a10h (kc->u.narrow[2 * 1 + 1]) +#define a20l (kc->u.narrow[2 * 2 + 0]) +#define a20h (kc->u.narrow[2 * 2 + 1]) +#define a30l (kc->u.narrow[2 * 3 + 0]) +#define a30h (kc->u.narrow[2 * 3 + 1]) +#define a40l (kc->u.narrow[2 * 4 + 0]) +#define a40h (kc->u.narrow[2 * 4 + 1]) +#define a01l (kc->u.narrow[2 * 5 + 0]) +#define a01h (kc->u.narrow[2 * 5 + 1]) +#define a11l (kc->u.narrow[2 * 6 + 0]) +#define a11h (kc->u.narrow[2 * 6 + 1]) +#define a21l (kc->u.narrow[2 * 7 + 0]) +#define a21h (kc->u.narrow[2 * 7 + 1]) +#define a31l (kc->u.narrow[2 * 8 + 0]) +#define a31h (kc->u.narrow[2 * 8 + 1]) +#define a41l (kc->u.narrow[2 * 9 + 0]) +#define a41h (kc->u.narrow[2 * 9 + 1]) +#define a02l (kc->u.narrow[2 * 10 + 0]) +#define a02h (kc->u.narrow[2 * 10 + 1]) +#define a12l (kc->u.narrow[2 * 11 + 0]) +#define a12h (kc->u.narrow[2 * 11 + 1]) +#define a22l (kc->u.narrow[2 * 12 + 0]) +#define a22h (kc->u.narrow[2 * 12 + 1]) +#define a32l (kc->u.narrow[2 * 13 + 0]) +#define a32h (kc->u.narrow[2 * 13 + 1]) +#define a42l (kc->u.narrow[2 * 14 + 0]) +#define a42h (kc->u.narrow[2 * 14 + 1]) +#define a03l (kc->u.narrow[2 * 15 + 0]) +#define a03h (kc->u.narrow[2 * 15 + 1]) +#define a13l (kc->u.narrow[2 * 16 + 0]) +#define a13h (kc->u.narrow[2 * 16 + 1]) +#define a23l (kc->u.narrow[2 * 17 + 0]) +#define a23h (kc->u.narrow[2 * 17 + 1]) +#define a33l (kc->u.narrow[2 * 18 + 0]) +#define a33h (kc->u.narrow[2 * 18 + 1]) +#define a43l (kc->u.narrow[2 * 19 + 0]) +#define a43h (kc->u.narrow[2 * 19 + 1]) +#define a04l (kc->u.narrow[2 * 20 + 0]) +#define a04h (kc->u.narrow[2 * 20 + 1]) +#define a14l (kc->u.narrow[2 * 21 + 0]) +#define a14h (kc->u.narrow[2 * 21 + 1]) +#define a24l (kc->u.narrow[2 * 22 + 0]) +#define a24h (kc->u.narrow[2 * 22 + 1]) +#define a34l (kc->u.narrow[2 * 23 + 0]) +#define a34h (kc->u.narrow[2 * 23 + 1]) +#define a44l (kc->u.narrow[2 * 24 + 0]) +#define a44h (kc->u.narrow[2 * 24 + 1]) + +#define DECL_STATE +#define READ_STATE(state) +#define WRITE_STATE(state) + +#define INPUT_BUF(size) do { \ + size_t j; \ + for (j = 0; j < (size); j += 8) { \ + sph_u32 tl, th; \ + tl = sph_dec32le_aligned(buf + j + 0); \ + th = sph_dec32le_aligned(buf + j + 4); \ + INTERLEAVE(tl, th); \ + kc->u.narrow[(j >> 2) + 0] ^= tl; \ + kc->u.narrow[(j >> 2) + 1] ^= th; \ + } \ + } while (0) + +#define INPUT_BUF144 INPUT_BUF(144) +#define INPUT_BUF136 INPUT_BUF(136) +#define INPUT_BUF104 INPUT_BUF(104) +#define INPUT_BUF72 INPUT_BUF(72) + +#else + +#define DECL_STATE \ + sph_u32 a00l, a00h, a01l, a01h, a02l, a02h, a03l, a03h, a04l, a04h; \ + sph_u32 a10l, a10h, a11l, a11h, a12l, a12h, a13l, a13h, a14l, a14h; \ + sph_u32 a20l, a20h, a21l, a21h, a22l, a22h, a23l, a23h, a24l, a24h; \ + sph_u32 a30l, a30h, a31l, a31h, a32l, a32h, a33l, a33h, a34l, a34h; \ + sph_u32 a40l, a40h, a41l, a41h, a42l, a42h, a43l, a43h, a44l, a44h; + +#define READ_STATE(state) do { \ + a00l = (state)->u.narrow[2 * 0 + 0]; \ + a00h = (state)->u.narrow[2 * 0 + 1]; \ + a10l = (state)->u.narrow[2 * 1 + 0]; \ + a10h = (state)->u.narrow[2 * 1 + 1]; \ + a20l = (state)->u.narrow[2 * 2 + 0]; \ + a20h = (state)->u.narrow[2 * 2 + 1]; \ + a30l = (state)->u.narrow[2 * 3 + 0]; \ + a30h = (state)->u.narrow[2 * 3 + 1]; \ + a40l = (state)->u.narrow[2 * 4 + 0]; \ + a40h = (state)->u.narrow[2 * 4 + 1]; \ + a01l = (state)->u.narrow[2 * 5 + 0]; \ + a01h = (state)->u.narrow[2 * 5 + 1]; \ + a11l = (state)->u.narrow[2 * 6 + 0]; \ + a11h = (state)->u.narrow[2 * 6 + 1]; \ + a21l = (state)->u.narrow[2 * 7 + 0]; \ + a21h = (state)->u.narrow[2 * 7 + 1]; \ + a31l = (state)->u.narrow[2 * 8 + 0]; \ + a31h = (state)->u.narrow[2 * 8 + 1]; \ + a41l = (state)->u.narrow[2 * 9 + 0]; \ + a41h = (state)->u.narrow[2 * 9 + 1]; \ + a02l = (state)->u.narrow[2 * 10 + 0]; \ + a02h = (state)->u.narrow[2 * 10 + 1]; \ + a12l = (state)->u.narrow[2 * 11 + 0]; \ + a12h = (state)->u.narrow[2 * 11 + 1]; \ + a22l = (state)->u.narrow[2 * 12 + 0]; \ + a22h = (state)->u.narrow[2 * 12 + 1]; \ + a32l = (state)->u.narrow[2 * 13 + 0]; \ + a32h = (state)->u.narrow[2 * 13 + 1]; \ + a42l = (state)->u.narrow[2 * 14 + 0]; \ + a42h = (state)->u.narrow[2 * 14 + 1]; \ + a03l = (state)->u.narrow[2 * 15 + 0]; \ + a03h = (state)->u.narrow[2 * 15 + 1]; \ + a13l = (state)->u.narrow[2 * 16 + 0]; \ + a13h = (state)->u.narrow[2 * 16 + 1]; \ + a23l = (state)->u.narrow[2 * 17 + 0]; \ + a23h = (state)->u.narrow[2 * 17 + 1]; \ + a33l = (state)->u.narrow[2 * 18 + 0]; \ + a33h = (state)->u.narrow[2 * 18 + 1]; \ + a43l = (state)->u.narrow[2 * 19 + 0]; \ + a43h = (state)->u.narrow[2 * 19 + 1]; \ + a04l = (state)->u.narrow[2 * 20 + 0]; \ + a04h = (state)->u.narrow[2 * 20 + 1]; \ + a14l = (state)->u.narrow[2 * 21 + 0]; \ + a14h = (state)->u.narrow[2 * 21 + 1]; \ + a24l = (state)->u.narrow[2 * 22 + 0]; \ + a24h = (state)->u.narrow[2 * 22 + 1]; \ + a34l = (state)->u.narrow[2 * 23 + 0]; \ + a34h = (state)->u.narrow[2 * 23 + 1]; \ + a44l = (state)->u.narrow[2 * 24 + 0]; \ + a44h = (state)->u.narrow[2 * 24 + 1]; \ + } while (0) + +#define WRITE_STATE(state) do { \ + (state)->u.narrow[2 * 0 + 0] = a00l; \ + (state)->u.narrow[2 * 0 + 1] = a00h; \ + (state)->u.narrow[2 * 1 + 0] = a10l; \ + (state)->u.narrow[2 * 1 + 1] = a10h; \ + (state)->u.narrow[2 * 2 + 0] = a20l; \ + (state)->u.narrow[2 * 2 + 1] = a20h; \ + (state)->u.narrow[2 * 3 + 0] = a30l; \ + (state)->u.narrow[2 * 3 + 1] = a30h; \ + (state)->u.narrow[2 * 4 + 0] = a40l; \ + (state)->u.narrow[2 * 4 + 1] = a40h; \ + (state)->u.narrow[2 * 5 + 0] = a01l; \ + (state)->u.narrow[2 * 5 + 1] = a01h; \ + (state)->u.narrow[2 * 6 + 0] = a11l; \ + (state)->u.narrow[2 * 6 + 1] = a11h; \ + (state)->u.narrow[2 * 7 + 0] = a21l; \ + (state)->u.narrow[2 * 7 + 1] = a21h; \ + (state)->u.narrow[2 * 8 + 0] = a31l; \ + (state)->u.narrow[2 * 8 + 1] = a31h; \ + (state)->u.narrow[2 * 9 + 0] = a41l; \ + (state)->u.narrow[2 * 9 + 1] = a41h; \ + (state)->u.narrow[2 * 10 + 0] = a02l; \ + (state)->u.narrow[2 * 10 + 1] = a02h; \ + (state)->u.narrow[2 * 11 + 0] = a12l; \ + (state)->u.narrow[2 * 11 + 1] = a12h; \ + (state)->u.narrow[2 * 12 + 0] = a22l; \ + (state)->u.narrow[2 * 12 + 1] = a22h; \ + (state)->u.narrow[2 * 13 + 0] = a32l; \ + (state)->u.narrow[2 * 13 + 1] = a32h; \ + (state)->u.narrow[2 * 14 + 0] = a42l; \ + (state)->u.narrow[2 * 14 + 1] = a42h; \ + (state)->u.narrow[2 * 15 + 0] = a03l; \ + (state)->u.narrow[2 * 15 + 1] = a03h; \ + (state)->u.narrow[2 * 16 + 0] = a13l; \ + (state)->u.narrow[2 * 16 + 1] = a13h; \ + (state)->u.narrow[2 * 17 + 0] = a23l; \ + (state)->u.narrow[2 * 17 + 1] = a23h; \ + (state)->u.narrow[2 * 18 + 0] = a33l; \ + (state)->u.narrow[2 * 18 + 1] = a33h; \ + (state)->u.narrow[2 * 19 + 0] = a43l; \ + (state)->u.narrow[2 * 19 + 1] = a43h; \ + (state)->u.narrow[2 * 20 + 0] = a04l; \ + (state)->u.narrow[2 * 20 + 1] = a04h; \ + (state)->u.narrow[2 * 21 + 0] = a14l; \ + (state)->u.narrow[2 * 21 + 1] = a14h; \ + (state)->u.narrow[2 * 22 + 0] = a24l; \ + (state)->u.narrow[2 * 22 + 1] = a24h; \ + (state)->u.narrow[2 * 23 + 0] = a34l; \ + (state)->u.narrow[2 * 23 + 1] = a34h; \ + (state)->u.narrow[2 * 24 + 0] = a44l; \ + (state)->u.narrow[2 * 24 + 1] = a44h; \ + } while (0) + +#define READ64(d, off) do { \ + sph_u32 tl, th; \ + tl = sph_dec32le_aligned(buf + (off)); \ + th = sph_dec32le_aligned(buf + (off) + 4); \ + INTERLEAVE(tl, th); \ + d ## l ^= tl; \ + d ## h ^= th; \ + } while (0) + +#define INPUT_BUF144 do { \ + READ64(a00, 0); \ + READ64(a10, 8); \ + READ64(a20, 16); \ + READ64(a30, 24); \ + READ64(a40, 32); \ + READ64(a01, 40); \ + READ64(a11, 48); \ + READ64(a21, 56); \ + READ64(a31, 64); \ + READ64(a41, 72); \ + READ64(a02, 80); \ + READ64(a12, 88); \ + READ64(a22, 96); \ + READ64(a32, 104); \ + READ64(a42, 112); \ + READ64(a03, 120); \ + READ64(a13, 128); \ + READ64(a23, 136); \ + } while (0) + +#define INPUT_BUF136 do { \ + READ64(a00, 0); \ + READ64(a10, 8); \ + READ64(a20, 16); \ + READ64(a30, 24); \ + READ64(a40, 32); \ + READ64(a01, 40); \ + READ64(a11, 48); \ + READ64(a21, 56); \ + READ64(a31, 64); \ + READ64(a41, 72); \ + READ64(a02, 80); \ + READ64(a12, 88); \ + READ64(a22, 96); \ + READ64(a32, 104); \ + READ64(a42, 112); \ + READ64(a03, 120); \ + READ64(a13, 128); \ + } while (0) + +#define INPUT_BUF104 do { \ + READ64(a00, 0); \ + READ64(a10, 8); \ + READ64(a20, 16); \ + READ64(a30, 24); \ + READ64(a40, 32); \ + READ64(a01, 40); \ + READ64(a11, 48); \ + READ64(a21, 56); \ + READ64(a31, 64); \ + READ64(a41, 72); \ + READ64(a02, 80); \ + READ64(a12, 88); \ + READ64(a22, 96); \ + } while (0) + +#define INPUT_BUF72 do { \ + READ64(a00, 0); \ + READ64(a10, 8); \ + READ64(a20, 16); \ + READ64(a30, 24); \ + READ64(a40, 32); \ + READ64(a01, 40); \ + READ64(a11, 48); \ + READ64(a21, 56); \ + READ64(a31, 64); \ + } while (0) + +#define INPUT_BUF(lim) do { \ + READ64(a00, 0); \ + READ64(a10, 8); \ + READ64(a20, 16); \ + READ64(a30, 24); \ + READ64(a40, 32); \ + READ64(a01, 40); \ + READ64(a11, 48); \ + READ64(a21, 56); \ + READ64(a31, 64); \ + if ((lim) == 72) \ + break; \ + READ64(a41, 72); \ + READ64(a02, 80); \ + READ64(a12, 88); \ + READ64(a22, 96); \ + if ((lim) == 104) \ + break; \ + READ64(a32, 104); \ + READ64(a42, 112); \ + READ64(a03, 120); \ + READ64(a13, 128); \ + if ((lim) == 136) \ + break; \ + READ64(a23, 136); \ + } while (0) + +#endif + +#define DECL64(x) sph_u64 x ## l, x ## h +#define MOV64(d, s) (d ## l = s ## l, d ## h = s ## h) +#define XOR64(d, a, b) (d ## l = a ## l ^ b ## l, d ## h = a ## h ^ b ## h) +#define AND64(d, a, b) (d ## l = a ## l & b ## l, d ## h = a ## h & b ## h) +#define OR64(d, a, b) (d ## l = a ## l | b ## l, d ## h = a ## h | b ## h) +#define NOT64(d, s) (d ## l = SPH_T32(~s ## l), d ## h = SPH_T32(~s ## h)) +#define ROL64(d, v, n) ROL64_ ## n(d, v) + +#if SPH_KECCAK_INTERLEAVE + +#define ROL64_odd1(d, v) do { \ + sph_u32 tmp; \ + tmp = v ## l; \ + d ## l = SPH_T32(v ## h << 1) | (v ## h >> 31); \ + d ## h = tmp; \ + } while (0) + +#define ROL64_odd63(d, v) do { \ + sph_u32 tmp; \ + tmp = SPH_T32(v ## l << 31) | (v ## l >> 1); \ + d ## l = v ## h; \ + d ## h = tmp; \ + } while (0) + +#define ROL64_odd(d, v, n) do { \ + sph_u32 tmp; \ + tmp = SPH_T32(v ## l << (n - 1)) | (v ## l >> (33 - n)); \ + d ## l = SPH_T32(v ## h << n) | (v ## h >> (32 - n)); \ + d ## h = tmp; \ + } while (0) + +#define ROL64_even(d, v, n) do { \ + d ## l = SPH_T32(v ## l << n) | (v ## l >> (32 - n)); \ + d ## h = SPH_T32(v ## h << n) | (v ## h >> (32 - n)); \ + } while (0) + +#define ROL64_0(d, v) +#define ROL64_1(d, v) ROL64_odd1(d, v) +#define ROL64_2(d, v) ROL64_even(d, v, 1) +#define ROL64_3(d, v) ROL64_odd( d, v, 2) +#define ROL64_4(d, v) ROL64_even(d, v, 2) +#define ROL64_5(d, v) ROL64_odd( d, v, 3) +#define ROL64_6(d, v) ROL64_even(d, v, 3) +#define ROL64_7(d, v) ROL64_odd( d, v, 4) +#define ROL64_8(d, v) ROL64_even(d, v, 4) +#define ROL64_9(d, v) ROL64_odd( d, v, 5) +#define ROL64_10(d, v) ROL64_even(d, v, 5) +#define ROL64_11(d, v) ROL64_odd( d, v, 6) +#define ROL64_12(d, v) ROL64_even(d, v, 6) +#define ROL64_13(d, v) ROL64_odd( d, v, 7) +#define ROL64_14(d, v) ROL64_even(d, v, 7) +#define ROL64_15(d, v) ROL64_odd( d, v, 8) +#define ROL64_16(d, v) ROL64_even(d, v, 8) +#define ROL64_17(d, v) ROL64_odd( d, v, 9) +#define ROL64_18(d, v) ROL64_even(d, v, 9) +#define ROL64_19(d, v) ROL64_odd( d, v, 10) +#define ROL64_20(d, v) ROL64_even(d, v, 10) +#define ROL64_21(d, v) ROL64_odd( d, v, 11) +#define ROL64_22(d, v) ROL64_even(d, v, 11) +#define ROL64_23(d, v) ROL64_odd( d, v, 12) +#define ROL64_24(d, v) ROL64_even(d, v, 12) +#define ROL64_25(d, v) ROL64_odd( d, v, 13) +#define ROL64_26(d, v) ROL64_even(d, v, 13) +#define ROL64_27(d, v) ROL64_odd( d, v, 14) +#define ROL64_28(d, v) ROL64_even(d, v, 14) +#define ROL64_29(d, v) ROL64_odd( d, v, 15) +#define ROL64_30(d, v) ROL64_even(d, v, 15) +#define ROL64_31(d, v) ROL64_odd( d, v, 16) +#define ROL64_32(d, v) ROL64_even(d, v, 16) +#define ROL64_33(d, v) ROL64_odd( d, v, 17) +#define ROL64_34(d, v) ROL64_even(d, v, 17) +#define ROL64_35(d, v) ROL64_odd( d, v, 18) +#define ROL64_36(d, v) ROL64_even(d, v, 18) +#define ROL64_37(d, v) ROL64_odd( d, v, 19) +#define ROL64_38(d, v) ROL64_even(d, v, 19) +#define ROL64_39(d, v) ROL64_odd( d, v, 20) +#define ROL64_40(d, v) ROL64_even(d, v, 20) +#define ROL64_41(d, v) ROL64_odd( d, v, 21) +#define ROL64_42(d, v) ROL64_even(d, v, 21) +#define ROL64_43(d, v) ROL64_odd( d, v, 22) +#define ROL64_44(d, v) ROL64_even(d, v, 22) +#define ROL64_45(d, v) ROL64_odd( d, v, 23) +#define ROL64_46(d, v) ROL64_even(d, v, 23) +#define ROL64_47(d, v) ROL64_odd( d, v, 24) +#define ROL64_48(d, v) ROL64_even(d, v, 24) +#define ROL64_49(d, v) ROL64_odd( d, v, 25) +#define ROL64_50(d, v) ROL64_even(d, v, 25) +#define ROL64_51(d, v) ROL64_odd( d, v, 26) +#define ROL64_52(d, v) ROL64_even(d, v, 26) +#define ROL64_53(d, v) ROL64_odd( d, v, 27) +#define ROL64_54(d, v) ROL64_even(d, v, 27) +#define ROL64_55(d, v) ROL64_odd( d, v, 28) +#define ROL64_56(d, v) ROL64_even(d, v, 28) +#define ROL64_57(d, v) ROL64_odd( d, v, 29) +#define ROL64_58(d, v) ROL64_even(d, v, 29) +#define ROL64_59(d, v) ROL64_odd( d, v, 30) +#define ROL64_60(d, v) ROL64_even(d, v, 30) +#define ROL64_61(d, v) ROL64_odd( d, v, 31) +#define ROL64_62(d, v) ROL64_even(d, v, 31) +#define ROL64_63(d, v) ROL64_odd63(d, v) + +#else + +#define ROL64_small(d, v, n) do { \ + sph_u32 tmp; \ + tmp = SPH_T32(v ## l << n) | (v ## h >> (32 - n)); \ + d ## h = SPH_T32(v ## h << n) | (v ## l >> (32 - n)); \ + d ## l = tmp; \ + } while (0) + +#define ROL64_0(d, v) 0 +#define ROL64_1(d, v) ROL64_small(d, v, 1) +#define ROL64_2(d, v) ROL64_small(d, v, 2) +#define ROL64_3(d, v) ROL64_small(d, v, 3) +#define ROL64_4(d, v) ROL64_small(d, v, 4) +#define ROL64_5(d, v) ROL64_small(d, v, 5) +#define ROL64_6(d, v) ROL64_small(d, v, 6) +#define ROL64_7(d, v) ROL64_small(d, v, 7) +#define ROL64_8(d, v) ROL64_small(d, v, 8) +#define ROL64_9(d, v) ROL64_small(d, v, 9) +#define ROL64_10(d, v) ROL64_small(d, v, 10) +#define ROL64_11(d, v) ROL64_small(d, v, 11) +#define ROL64_12(d, v) ROL64_small(d, v, 12) +#define ROL64_13(d, v) ROL64_small(d, v, 13) +#define ROL64_14(d, v) ROL64_small(d, v, 14) +#define ROL64_15(d, v) ROL64_small(d, v, 15) +#define ROL64_16(d, v) ROL64_small(d, v, 16) +#define ROL64_17(d, v) ROL64_small(d, v, 17) +#define ROL64_18(d, v) ROL64_small(d, v, 18) +#define ROL64_19(d, v) ROL64_small(d, v, 19) +#define ROL64_20(d, v) ROL64_small(d, v, 20) +#define ROL64_21(d, v) ROL64_small(d, v, 21) +#define ROL64_22(d, v) ROL64_small(d, v, 22) +#define ROL64_23(d, v) ROL64_small(d, v, 23) +#define ROL64_24(d, v) ROL64_small(d, v, 24) +#define ROL64_25(d, v) ROL64_small(d, v, 25) +#define ROL64_26(d, v) ROL64_small(d, v, 26) +#define ROL64_27(d, v) ROL64_small(d, v, 27) +#define ROL64_28(d, v) ROL64_small(d, v, 28) +#define ROL64_29(d, v) ROL64_small(d, v, 29) +#define ROL64_30(d, v) ROL64_small(d, v, 30) +#define ROL64_31(d, v) ROL64_small(d, v, 31) + +#define ROL64_32(d, v) do { \ + sph_u32 tmp; \ + tmp = v ## l; \ + d ## l = v ## h; \ + d ## h = tmp; \ + } while (0) + +#define ROL64_big(d, v, n) do { \ + sph_u32 trl, trh; \ + ROL64_small(tr, v, n); \ + d ## h = trl; \ + d ## l = trh; \ + } while (0) + +#define ROL64_33(d, v) ROL64_big(d, v, 1) +#define ROL64_34(d, v) ROL64_big(d, v, 2) +#define ROL64_35(d, v) ROL64_big(d, v, 3) +#define ROL64_36(d, v) ROL64_big(d, v, 4) +#define ROL64_37(d, v) ROL64_big(d, v, 5) +#define ROL64_38(d, v) ROL64_big(d, v, 6) +#define ROL64_39(d, v) ROL64_big(d, v, 7) +#define ROL64_40(d, v) ROL64_big(d, v, 8) +#define ROL64_41(d, v) ROL64_big(d, v, 9) +#define ROL64_42(d, v) ROL64_big(d, v, 10) +#define ROL64_43(d, v) ROL64_big(d, v, 11) +#define ROL64_44(d, v) ROL64_big(d, v, 12) +#define ROL64_45(d, v) ROL64_big(d, v, 13) +#define ROL64_46(d, v) ROL64_big(d, v, 14) +#define ROL64_47(d, v) ROL64_big(d, v, 15) +#define ROL64_48(d, v) ROL64_big(d, v, 16) +#define ROL64_49(d, v) ROL64_big(d, v, 17) +#define ROL64_50(d, v) ROL64_big(d, v, 18) +#define ROL64_51(d, v) ROL64_big(d, v, 19) +#define ROL64_52(d, v) ROL64_big(d, v, 20) +#define ROL64_53(d, v) ROL64_big(d, v, 21) +#define ROL64_54(d, v) ROL64_big(d, v, 22) +#define ROL64_55(d, v) ROL64_big(d, v, 23) +#define ROL64_56(d, v) ROL64_big(d, v, 24) +#define ROL64_57(d, v) ROL64_big(d, v, 25) +#define ROL64_58(d, v) ROL64_big(d, v, 26) +#define ROL64_59(d, v) ROL64_big(d, v, 27) +#define ROL64_60(d, v) ROL64_big(d, v, 28) +#define ROL64_61(d, v) ROL64_big(d, v, 29) +#define ROL64_62(d, v) ROL64_big(d, v, 30) +#define ROL64_63(d, v) ROL64_big(d, v, 31) + +#endif + +#define XOR64_IOTA(d, s, k) \ + (d ## l = s ## l ^ k.low, d ## h = s ## h ^ k.high) + +#endif + +#define TH_ELT(t, c0, c1, c2, c3, c4, d0, d1, d2, d3, d4) do { \ + DECL64(tt0); \ + DECL64(tt1); \ + DECL64(tt2); \ + DECL64(tt3); \ + XOR64(tt0, d0, d1); \ + XOR64(tt1, d2, d3); \ + XOR64(tt0, tt0, d4); \ + XOR64(tt0, tt0, tt1); \ + ROL64(tt0, tt0, 1); \ + XOR64(tt2, c0, c1); \ + XOR64(tt3, c2, c3); \ + XOR64(tt0, tt0, c4); \ + XOR64(tt2, tt2, tt3); \ + XOR64(t, tt0, tt2); \ + } while (0) + +#define THETA(b00, b01, b02, b03, b04, b10, b11, b12, b13, b14, \ + b20, b21, b22, b23, b24, b30, b31, b32, b33, b34, \ + b40, b41, b42, b43, b44) \ + do { \ + DECL64(t0); \ + DECL64(t1); \ + DECL64(t2); \ + DECL64(t3); \ + DECL64(t4); \ + TH_ELT(t0, b40, b41, b42, b43, b44, b10, b11, b12, b13, b14); \ + TH_ELT(t1, b00, b01, b02, b03, b04, b20, b21, b22, b23, b24); \ + TH_ELT(t2, b10, b11, b12, b13, b14, b30, b31, b32, b33, b34); \ + TH_ELT(t3, b20, b21, b22, b23, b24, b40, b41, b42, b43, b44); \ + TH_ELT(t4, b30, b31, b32, b33, b34, b00, b01, b02, b03, b04); \ + XOR64(b00, b00, t0); \ + XOR64(b01, b01, t0); \ + XOR64(b02, b02, t0); \ + XOR64(b03, b03, t0); \ + XOR64(b04, b04, t0); \ + XOR64(b10, b10, t1); \ + XOR64(b11, b11, t1); \ + XOR64(b12, b12, t1); \ + XOR64(b13, b13, t1); \ + XOR64(b14, b14, t1); \ + XOR64(b20, b20, t2); \ + XOR64(b21, b21, t2); \ + XOR64(b22, b22, t2); \ + XOR64(b23, b23, t2); \ + XOR64(b24, b24, t2); \ + XOR64(b30, b30, t3); \ + XOR64(b31, b31, t3); \ + XOR64(b32, b32, t3); \ + XOR64(b33, b33, t3); \ + XOR64(b34, b34, t3); \ + XOR64(b40, b40, t4); \ + XOR64(b41, b41, t4); \ + XOR64(b42, b42, t4); \ + XOR64(b43, b43, t4); \ + XOR64(b44, b44, t4); \ + } while (0) + +#define RHO(b00, b01, b02, b03, b04, b10, b11, b12, b13, b14, \ + b20, b21, b22, b23, b24, b30, b31, b32, b33, b34, \ + b40, b41, b42, b43, b44) \ + do { \ + /* ROL64(b00, b00, 0); */ \ + ROL64(b01, b01, 36); \ + ROL64(b02, b02, 3); \ + ROL64(b03, b03, 41); \ + ROL64(b04, b04, 18); \ + ROL64(b10, b10, 1); \ + ROL64(b11, b11, 44); \ + ROL64(b12, b12, 10); \ + ROL64(b13, b13, 45); \ + ROL64(b14, b14, 2); \ + ROL64(b20, b20, 62); \ + ROL64(b21, b21, 6); \ + ROL64(b22, b22, 43); \ + ROL64(b23, b23, 15); \ + ROL64(b24, b24, 61); \ + ROL64(b30, b30, 28); \ + ROL64(b31, b31, 55); \ + ROL64(b32, b32, 25); \ + ROL64(b33, b33, 21); \ + ROL64(b34, b34, 56); \ + ROL64(b40, b40, 27); \ + ROL64(b41, b41, 20); \ + ROL64(b42, b42, 39); \ + ROL64(b43, b43, 8); \ + ROL64(b44, b44, 14); \ + } while (0) + +/* + * The KHI macro integrates the "lane complement" optimization. On input, + * some words are complemented: + * a00 a01 a02 a04 a13 a20 a21 a22 a30 a33 a34 a43 + * On output, the following words are complemented: + * a04 a10 a20 a22 a23 a31 + * + * The (implicit) permutation and the theta expansion will bring back + * the input mask for the next round. + */ + +#define KHI_XO(d, a, b, c) do { \ + DECL64(kt); \ + OR64(kt, b, c); \ + XOR64(d, a, kt); \ + } while (0) + +#define KHI_XA(d, a, b, c) do { \ + DECL64(kt); \ + AND64(kt, b, c); \ + XOR64(d, a, kt); \ + } while (0) + +#define KHI(b00, b01, b02, b03, b04, b10, b11, b12, b13, b14, \ + b20, b21, b22, b23, b24, b30, b31, b32, b33, b34, \ + b40, b41, b42, b43, b44) \ + do { \ + DECL64(c0); \ + DECL64(c1); \ + DECL64(c2); \ + DECL64(c3); \ + DECL64(c4); \ + DECL64(bnn); \ + NOT64(bnn, b20); \ + KHI_XO(c0, b00, b10, b20); \ + KHI_XO(c1, b10, bnn, b30); \ + KHI_XA(c2, b20, b30, b40); \ + KHI_XO(c3, b30, b40, b00); \ + KHI_XA(c4, b40, b00, b10); \ + MOV64(b00, c0); \ + MOV64(b10, c1); \ + MOV64(b20, c2); \ + MOV64(b30, c3); \ + MOV64(b40, c4); \ + NOT64(bnn, b41); \ + KHI_XO(c0, b01, b11, b21); \ + KHI_XA(c1, b11, b21, b31); \ + KHI_XO(c2, b21, b31, bnn); \ + KHI_XO(c3, b31, b41, b01); \ + KHI_XA(c4, b41, b01, b11); \ + MOV64(b01, c0); \ + MOV64(b11, c1); \ + MOV64(b21, c2); \ + MOV64(b31, c3); \ + MOV64(b41, c4); \ + NOT64(bnn, b32); \ + KHI_XO(c0, b02, b12, b22); \ + KHI_XA(c1, b12, b22, b32); \ + KHI_XA(c2, b22, bnn, b42); \ + KHI_XO(c3, bnn, b42, b02); \ + KHI_XA(c4, b42, b02, b12); \ + MOV64(b02, c0); \ + MOV64(b12, c1); \ + MOV64(b22, c2); \ + MOV64(b32, c3); \ + MOV64(b42, c4); \ + NOT64(bnn, b33); \ + KHI_XA(c0, b03, b13, b23); \ + KHI_XO(c1, b13, b23, b33); \ + KHI_XO(c2, b23, bnn, b43); \ + KHI_XA(c3, bnn, b43, b03); \ + KHI_XO(c4, b43, b03, b13); \ + MOV64(b03, c0); \ + MOV64(b13, c1); \ + MOV64(b23, c2); \ + MOV64(b33, c3); \ + MOV64(b43, c4); \ + NOT64(bnn, b14); \ + KHI_XA(c0, b04, bnn, b24); \ + KHI_XO(c1, bnn, b24, b34); \ + KHI_XA(c2, b24, b34, b44); \ + KHI_XO(c3, b34, b44, b04); \ + KHI_XA(c4, b44, b04, b14); \ + MOV64(b04, c0); \ + MOV64(b14, c1); \ + MOV64(b24, c2); \ + MOV64(b34, c3); \ + MOV64(b44, c4); \ + } while (0) + +#define IOTA(r) XOR64_IOTA(a00, a00, r) + +#define P0 a00, a01, a02, a03, a04, a10, a11, a12, a13, a14, a20, a21, \ + a22, a23, a24, a30, a31, a32, a33, a34, a40, a41, a42, a43, a44 +#define P1 a00, a30, a10, a40, a20, a11, a41, a21, a01, a31, a22, a02, \ + a32, a12, a42, a33, a13, a43, a23, a03, a44, a24, a04, a34, a14 +#define P2 a00, a33, a11, a44, a22, a41, a24, a02, a30, a13, a32, a10, \ + a43, a21, a04, a23, a01, a34, a12, a40, a14, a42, a20, a03, a31 +#define P3 a00, a23, a41, a14, a32, a24, a42, a10, a33, a01, a43, a11, \ + a34, a02, a20, a12, a30, a03, a21, a44, a31, a04, a22, a40, a13 +#define P4 a00, a12, a24, a31, a43, a42, a04, a11, a23, a30, a34, a41, \ + a03, a10, a22, a21, a33, a40, a02, a14, a13, a20, a32, a44, a01 +#define P5 a00, a21, a42, a13, a34, a04, a20, a41, a12, a33, a03, a24, \ + a40, a11, a32, a02, a23, a44, a10, a31, a01, a22, a43, a14, a30 +#define P6 a00, a02, a04, a01, a03, a20, a22, a24, a21, a23, a40, a42, \ + a44, a41, a43, a10, a12, a14, a11, a13, a30, a32, a34, a31, a33 +#define P7 a00, a10, a20, a30, a40, a22, a32, a42, a02, a12, a44, a04, \ + a14, a24, a34, a11, a21, a31, a41, a01, a33, a43, a03, a13, a23 +#define P8 a00, a11, a22, a33, a44, a32, a43, a04, a10, a21, a14, a20, \ + a31, a42, a03, a41, a02, a13, a24, a30, a23, a34, a40, a01, a12 +#define P9 a00, a41, a32, a23, a14, a43, a34, a20, a11, a02, a31, a22, \ + a13, a04, a40, a24, a10, a01, a42, a33, a12, a03, a44, a30, a21 +#define P10 a00, a24, a43, a12, a31, a34, a03, a22, a41, a10, a13, a32, \ + a01, a20, a44, a42, a11, a30, a04, a23, a21, a40, a14, a33, a02 +#define P11 a00, a42, a34, a21, a13, a03, a40, a32, a24, a11, a01, a43, \ + a30, a22, a14, a04, a41, a33, a20, a12, a02, a44, a31, a23, a10 +#define P12 a00, a04, a03, a02, a01, a40, a44, a43, a42, a41, a30, a34, \ + a33, a32, a31, a20, a24, a23, a22, a21, a10, a14, a13, a12, a11 +#define P13 a00, a20, a40, a10, a30, a44, a14, a34, a04, a24, a33, a03, \ + a23, a43, a13, a22, a42, a12, a32, a02, a11, a31, a01, a21, a41 +#define P14 a00, a22, a44, a11, a33, a14, a31, a03, a20, a42, a23, a40, \ + a12, a34, a01, a32, a04, a21, a43, a10, a41, a13, a30, a02, a24 +#define P15 a00, a32, a14, a41, a23, a31, a13, a40, a22, a04, a12, a44, \ + a21, a03, a30, a43, a20, a02, a34, a11, a24, a01, a33, a10, a42 +#define P16 a00, a43, a31, a24, a12, a13, a01, a44, a32, a20, a21, a14, \ + a02, a40, a33, a34, a22, a10, a03, a41, a42, a30, a23, a11, a04 +#define P17 a00, a34, a13, a42, a21, a01, a30, a14, a43, a22, a02, a31, \ + a10, a44, a23, a03, a32, a11, a40, a24, a04, a33, a12, a41, a20 +#define P18 a00, a03, a01, a04, a02, a30, a33, a31, a34, a32, a10, a13, \ + a11, a14, a12, a40, a43, a41, a44, a42, a20, a23, a21, a24, a22 +#define P19 a00, a40, a30, a20, a10, a33, a23, a13, a03, a43, a11, a01, \ + a41, a31, a21, a44, a34, a24, a14, a04, a22, a12, a02, a42, a32 +#define P20 a00, a44, a33, a22, a11, a23, a12, a01, a40, a34, a41, a30, \ + a24, a13, a02, a14, a03, a42, a31, a20, a32, a21, a10, a04, a43 +#define P21 a00, a14, a23, a32, a41, a12, a21, a30, a44, a03, a24, a33, \ + a42, a01, a10, a31, a40, a04, a13, a22, a43, a02, a11, a20, a34 +#define P22 a00, a31, a12, a43, a24, a21, a02, a33, a14, a40, a42, a23, \ + a04, a30, a11, a13, a44, a20, a01, a32, a34, a10, a41, a22, a03 +#define P23 a00, a13, a21, a34, a42, a02, a10, a23, a31, a44, a04, a12, \ + a20, a33, a41, a01, a14, a22, a30, a43, a03, a11, a24, a32, a40 + +#define P1_TO_P0 do { \ + DECL64(t); \ + MOV64(t, a01); \ + MOV64(a01, a30); \ + MOV64(a30, a33); \ + MOV64(a33, a23); \ + MOV64(a23, a12); \ + MOV64(a12, a21); \ + MOV64(a21, a02); \ + MOV64(a02, a10); \ + MOV64(a10, a11); \ + MOV64(a11, a41); \ + MOV64(a41, a24); \ + MOV64(a24, a42); \ + MOV64(a42, a04); \ + MOV64(a04, a20); \ + MOV64(a20, a22); \ + MOV64(a22, a32); \ + MOV64(a32, a43); \ + MOV64(a43, a34); \ + MOV64(a34, a03); \ + MOV64(a03, a40); \ + MOV64(a40, a44); \ + MOV64(a44, a14); \ + MOV64(a14, a31); \ + MOV64(a31, a13); \ + MOV64(a13, t); \ + } while (0) + +#define P2_TO_P0 do { \ + DECL64(t); \ + MOV64(t, a01); \ + MOV64(a01, a33); \ + MOV64(a33, a12); \ + MOV64(a12, a02); \ + MOV64(a02, a11); \ + MOV64(a11, a24); \ + MOV64(a24, a04); \ + MOV64(a04, a22); \ + MOV64(a22, a43); \ + MOV64(a43, a03); \ + MOV64(a03, a44); \ + MOV64(a44, a31); \ + MOV64(a31, t); \ + MOV64(t, a10); \ + MOV64(a10, a41); \ + MOV64(a41, a42); \ + MOV64(a42, a20); \ + MOV64(a20, a32); \ + MOV64(a32, a34); \ + MOV64(a34, a40); \ + MOV64(a40, a14); \ + MOV64(a14, a13); \ + MOV64(a13, a30); \ + MOV64(a30, a23); \ + MOV64(a23, a21); \ + MOV64(a21, t); \ + } while (0) + +#define P4_TO_P0 do { \ + DECL64(t); \ + MOV64(t, a01); \ + MOV64(a01, a12); \ + MOV64(a12, a11); \ + MOV64(a11, a04); \ + MOV64(a04, a43); \ + MOV64(a43, a44); \ + MOV64(a44, t); \ + MOV64(t, a02); \ + MOV64(a02, a24); \ + MOV64(a24, a22); \ + MOV64(a22, a03); \ + MOV64(a03, a31); \ + MOV64(a31, a33); \ + MOV64(a33, t); \ + MOV64(t, a10); \ + MOV64(a10, a42); \ + MOV64(a42, a32); \ + MOV64(a32, a40); \ + MOV64(a40, a13); \ + MOV64(a13, a23); \ + MOV64(a23, t); \ + MOV64(t, a14); \ + MOV64(a14, a30); \ + MOV64(a30, a21); \ + MOV64(a21, a41); \ + MOV64(a41, a20); \ + MOV64(a20, a34); \ + MOV64(a34, t); \ + } while (0) + +#define P6_TO_P0 do { \ + DECL64(t); \ + MOV64(t, a01); \ + MOV64(a01, a02); \ + MOV64(a02, a04); \ + MOV64(a04, a03); \ + MOV64(a03, t); \ + MOV64(t, a10); \ + MOV64(a10, a20); \ + MOV64(a20, a40); \ + MOV64(a40, a30); \ + MOV64(a30, t); \ + MOV64(t, a11); \ + MOV64(a11, a22); \ + MOV64(a22, a44); \ + MOV64(a44, a33); \ + MOV64(a33, t); \ + MOV64(t, a12); \ + MOV64(a12, a24); \ + MOV64(a24, a43); \ + MOV64(a43, a31); \ + MOV64(a31, t); \ + MOV64(t, a13); \ + MOV64(a13, a21); \ + MOV64(a21, a42); \ + MOV64(a42, a34); \ + MOV64(a34, t); \ + MOV64(t, a14); \ + MOV64(a14, a23); \ + MOV64(a23, a41); \ + MOV64(a41, a32); \ + MOV64(a32, t); \ + } while (0) + +#define P8_TO_P0 do { \ + DECL64(t); \ + MOV64(t, a01); \ + MOV64(a01, a11); \ + MOV64(a11, a43); \ + MOV64(a43, t); \ + MOV64(t, a02); \ + MOV64(a02, a22); \ + MOV64(a22, a31); \ + MOV64(a31, t); \ + MOV64(t, a03); \ + MOV64(a03, a33); \ + MOV64(a33, a24); \ + MOV64(a24, t); \ + MOV64(t, a04); \ + MOV64(a04, a44); \ + MOV64(a44, a12); \ + MOV64(a12, t); \ + MOV64(t, a10); \ + MOV64(a10, a32); \ + MOV64(a32, a13); \ + MOV64(a13, t); \ + MOV64(t, a14); \ + MOV64(a14, a21); \ + MOV64(a21, a20); \ + MOV64(a20, t); \ + MOV64(t, a23); \ + MOV64(a23, a42); \ + MOV64(a42, a40); \ + MOV64(a40, t); \ + MOV64(t, a30); \ + MOV64(a30, a41); \ + MOV64(a41, a34); \ + MOV64(a34, t); \ + } while (0) + +#define P12_TO_P0 do { \ + DECL64(t); \ + MOV64(t, a01); \ + MOV64(a01, a04); \ + MOV64(a04, t); \ + MOV64(t, a02); \ + MOV64(a02, a03); \ + MOV64(a03, t); \ + MOV64(t, a10); \ + MOV64(a10, a40); \ + MOV64(a40, t); \ + MOV64(t, a11); \ + MOV64(a11, a44); \ + MOV64(a44, t); \ + MOV64(t, a12); \ + MOV64(a12, a43); \ + MOV64(a43, t); \ + MOV64(t, a13); \ + MOV64(a13, a42); \ + MOV64(a42, t); \ + MOV64(t, a14); \ + MOV64(a14, a41); \ + MOV64(a41, t); \ + MOV64(t, a20); \ + MOV64(a20, a30); \ + MOV64(a30, t); \ + MOV64(t, a21); \ + MOV64(a21, a34); \ + MOV64(a34, t); \ + MOV64(t, a22); \ + MOV64(a22, a33); \ + MOV64(a33, t); \ + MOV64(t, a23); \ + MOV64(a23, a32); \ + MOV64(a32, t); \ + MOV64(t, a24); \ + MOV64(a24, a31); \ + MOV64(a31, t); \ + } while (0) + +#define LPAR ( +#define RPAR ) + +#define KF_ELT(r, s, k) do { \ + THETA LPAR P ## r RPAR; \ + RHO LPAR P ## r RPAR; \ + KHI LPAR P ## s RPAR; \ + IOTA(k); \ + } while (0) + +#define DO(x) x + +#define KECCAK_F_1600 DO(KECCAK_F_1600_) + +#if SPH_KECCAK_UNROLL == 1 + +#define KECCAK_F_1600_ do { \ + int j; \ + for (j = 0; j < 24; j ++) { \ + KF_ELT( 0, 1, RC[j + 0]); \ + P1_TO_P0; \ + } \ + } while (0) + +#elif SPH_KECCAK_UNROLL == 2 + +#define KECCAK_F_1600_ do { \ + int j; \ + for (j = 0; j < 24; j += 2) { \ + KF_ELT( 0, 1, RC[j + 0]); \ + KF_ELT( 1, 2, RC[j + 1]); \ + P2_TO_P0; \ + } \ + } while (0) + +#elif SPH_KECCAK_UNROLL == 4 + +#define KECCAK_F_1600_ do { \ + int j; \ + for (j = 0; j < 24; j += 4) { \ + KF_ELT( 0, 1, RC[j + 0]); \ + KF_ELT( 1, 2, RC[j + 1]); \ + KF_ELT( 2, 3, RC[j + 2]); \ + KF_ELT( 3, 4, RC[j + 3]); \ + P4_TO_P0; \ + } \ + } while (0) + +#elif SPH_KECCAK_UNROLL == 6 + +#define KECCAK_F_1600_ do { \ + int j; \ + for (j = 0; j < 24; j += 6) { \ + KF_ELT( 0, 1, RC[j + 0]); \ + KF_ELT( 1, 2, RC[j + 1]); \ + KF_ELT( 2, 3, RC[j + 2]); \ + KF_ELT( 3, 4, RC[j + 3]); \ + KF_ELT( 4, 5, RC[j + 4]); \ + KF_ELT( 5, 6, RC[j + 5]); \ + P6_TO_P0; \ + } \ + } while (0) + +#elif SPH_KECCAK_UNROLL == 8 + +#define KECCAK_F_1600_ do { \ + int j; \ + for (j = 0; j < 24; j += 8) { \ + KF_ELT( 0, 1, RC[j + 0]); \ + KF_ELT( 1, 2, RC[j + 1]); \ + KF_ELT( 2, 3, RC[j + 2]); \ + KF_ELT( 3, 4, RC[j + 3]); \ + KF_ELT( 4, 5, RC[j + 4]); \ + KF_ELT( 5, 6, RC[j + 5]); \ + KF_ELT( 6, 7, RC[j + 6]); \ + KF_ELT( 7, 8, RC[j + 7]); \ + P8_TO_P0; \ + } \ + } while (0) + +#elif SPH_KECCAK_UNROLL == 12 + +#define KECCAK_F_1600_ do { \ + int j; \ + for (j = 0; j < 24; j += 12) { \ + KF_ELT( 0, 1, RC[j + 0]); \ + KF_ELT( 1, 2, RC[j + 1]); \ + KF_ELT( 2, 3, RC[j + 2]); \ + KF_ELT( 3, 4, RC[j + 3]); \ + KF_ELT( 4, 5, RC[j + 4]); \ + KF_ELT( 5, 6, RC[j + 5]); \ + KF_ELT( 6, 7, RC[j + 6]); \ + KF_ELT( 7, 8, RC[j + 7]); \ + KF_ELT( 8, 9, RC[j + 8]); \ + KF_ELT( 9, 10, RC[j + 9]); \ + KF_ELT(10, 11, RC[j + 10]); \ + KF_ELT(11, 12, RC[j + 11]); \ + P12_TO_P0; \ + } \ + } while (0) + +#elif SPH_KECCAK_UNROLL == 0 + +#define KECCAK_F_1600_ do { \ + KF_ELT( 0, 1, RC[ 0]); \ + KF_ELT( 1, 2, RC[ 1]); \ + KF_ELT( 2, 3, RC[ 2]); \ + KF_ELT( 3, 4, RC[ 3]); \ + KF_ELT( 4, 5, RC[ 4]); \ + KF_ELT( 5, 6, RC[ 5]); \ + KF_ELT( 6, 7, RC[ 6]); \ + KF_ELT( 7, 8, RC[ 7]); \ + KF_ELT( 8, 9, RC[ 8]); \ + KF_ELT( 9, 10, RC[ 9]); \ + KF_ELT(10, 11, RC[10]); \ + KF_ELT(11, 12, RC[11]); \ + KF_ELT(12, 13, RC[12]); \ + KF_ELT(13, 14, RC[13]); \ + KF_ELT(14, 15, RC[14]); \ + KF_ELT(15, 16, RC[15]); \ + KF_ELT(16, 17, RC[16]); \ + KF_ELT(17, 18, RC[17]); \ + KF_ELT(18, 19, RC[18]); \ + KF_ELT(19, 20, RC[19]); \ + KF_ELT(20, 21, RC[20]); \ + KF_ELT(21, 22, RC[21]); \ + KF_ELT(22, 23, RC[22]); \ + KF_ELT(23, 0, RC[23]); \ + } while (0) + +#else + +#error Unimplemented unroll count for Keccak. + +#endif + +static void +keccak_init(sph_keccak_context *kc, unsigned out_size) +{ + int i; + +#if SPH_KECCAK_64 + for (i = 0; i < 25; i ++) + kc->u.wide[i] = 0; + /* + * Initialization for the "lane complement". + */ + kc->u.wide[ 1] = SPH_C64(0xFFFFFFFFFFFFFFFF); + kc->u.wide[ 2] = SPH_C64(0xFFFFFFFFFFFFFFFF); + kc->u.wide[ 8] = SPH_C64(0xFFFFFFFFFFFFFFFF); + kc->u.wide[12] = SPH_C64(0xFFFFFFFFFFFFFFFF); + kc->u.wide[17] = SPH_C64(0xFFFFFFFFFFFFFFFF); + kc->u.wide[20] = SPH_C64(0xFFFFFFFFFFFFFFFF); +#else + + for (i = 0; i < 50; i ++) + kc->u.narrow[i] = 0; + /* + * Initialization for the "lane complement". + * Note: since we set to all-one full 64-bit words, + * interleaving (if applicable) is a no-op. + */ + kc->u.narrow[ 2] = SPH_C32(0xFFFFFFFF); + kc->u.narrow[ 3] = SPH_C32(0xFFFFFFFF); + kc->u.narrow[ 4] = SPH_C32(0xFFFFFFFF); + kc->u.narrow[ 5] = SPH_C32(0xFFFFFFFF); + kc->u.narrow[16] = SPH_C32(0xFFFFFFFF); + kc->u.narrow[17] = SPH_C32(0xFFFFFFFF); + kc->u.narrow[24] = SPH_C32(0xFFFFFFFF); + kc->u.narrow[25] = SPH_C32(0xFFFFFFFF); + kc->u.narrow[34] = SPH_C32(0xFFFFFFFF); + kc->u.narrow[35] = SPH_C32(0xFFFFFFFF); + kc->u.narrow[40] = SPH_C32(0xFFFFFFFF); + kc->u.narrow[41] = SPH_C32(0xFFFFFFFF); +#endif + kc->ptr = 0; + kc->lim = 200 - (out_size >> 2); +} + +static void +keccak_core(sph_keccak_context *kc, const void *data, size_t len, size_t lim) +{ + unsigned char *buf; + size_t ptr; + DECL_STATE + + buf = kc->buf; + ptr = kc->ptr; + + if (len < (lim - ptr)) { + memcpy(buf + ptr, data, len); + kc->ptr = ptr + len; + return; + } + + READ_STATE(kc); + while (len > 0) { + size_t clen; + + clen = (lim - ptr); + if (clen > len) + clen = len; + memcpy(buf + ptr, data, clen); + ptr += clen; + data = (const unsigned char *)data + clen; + len -= clen; + if (ptr == lim) { + INPUT_BUF(lim); + KECCAK_F_1600; + ptr = 0; + } + } + WRITE_STATE(kc); + kc->ptr = ptr; +} + +#if SPH_KECCAK_64 + +#define DEFCLOSE(d, lim) \ + static void keccak_close ## d( \ + sph_keccak_context *kc, unsigned ub, unsigned n, void *dst) \ + { \ + unsigned eb; \ + union { \ + unsigned char tmp[lim + 1]; \ + sph_u64 dummy; /* for alignment */ \ + } u; \ + size_t j; \ + \ + eb = (0x100 | (ub & 0xFF)) >> (8 - n); \ + if (kc->ptr == (lim - 1)) { \ + if (n == 7) { \ + u.tmp[0] = eb; \ + memset(u.tmp + 1, 0, lim - 1); \ + u.tmp[lim] = 0x80; \ + j = 1 + lim; \ + } else { \ + u.tmp[0] = eb | 0x80; \ + j = 1; \ + } \ + } else { \ + j = lim - kc->ptr; \ + u.tmp[0] = eb; \ + memset(u.tmp + 1, 0, j - 2); \ + u.tmp[j - 1] = 0x80; \ + } \ + keccak_core(kc, u.tmp, j, lim); \ + /* Finalize the "lane complement" */ \ + kc->u.wide[ 1] = ~kc->u.wide[ 1]; \ + kc->u.wide[ 2] = ~kc->u.wide[ 2]; \ + kc->u.wide[ 8] = ~kc->u.wide[ 8]; \ + kc->u.wide[12] = ~kc->u.wide[12]; \ + kc->u.wide[17] = ~kc->u.wide[17]; \ + kc->u.wide[20] = ~kc->u.wide[20]; \ + for (j = 0; j < d; j += 8) \ + sph_enc64le_aligned(u.tmp + j, kc->u.wide[j >> 3]); \ + memcpy(dst, u.tmp, d); \ + keccak_init(kc, (unsigned)d << 3); \ + } \ + +#else + +#define DEFCLOSE(d, lim) \ + static void keccak_close ## d( \ + sph_keccak_context *kc, unsigned ub, unsigned n, void *dst) \ + { \ + unsigned eb; \ + union { \ + unsigned char tmp[lim + 1]; \ + sph_u64 dummy; /* for alignment */ \ + } u; \ + size_t j; \ + \ + eb = (0x100 | (ub & 0xFF)) >> (8 - n); \ + if (kc->ptr == (lim - 1)) { \ + if (n == 7) { \ + u.tmp[0] = eb; \ + memset(u.tmp + 1, 0, lim - 1); \ + u.tmp[lim] = 0x80; \ + j = 1 + lim; \ + } else { \ + u.tmp[0] = eb | 0x80; \ + j = 1; \ + } \ + } else { \ + j = lim - kc->ptr; \ + u.tmp[0] = eb; \ + memset(u.tmp + 1, 0, j - 2); \ + u.tmp[j - 1] = 0x80; \ + } \ + keccak_core(kc, u.tmp, j, lim); \ + /* Finalize the "lane complement" */ \ + kc->u.narrow[ 2] = ~kc->u.narrow[ 2]; \ + kc->u.narrow[ 3] = ~kc->u.narrow[ 3]; \ + kc->u.narrow[ 4] = ~kc->u.narrow[ 4]; \ + kc->u.narrow[ 5] = ~kc->u.narrow[ 5]; \ + kc->u.narrow[16] = ~kc->u.narrow[16]; \ + kc->u.narrow[17] = ~kc->u.narrow[17]; \ + kc->u.narrow[24] = ~kc->u.narrow[24]; \ + kc->u.narrow[25] = ~kc->u.narrow[25]; \ + kc->u.narrow[34] = ~kc->u.narrow[34]; \ + kc->u.narrow[35] = ~kc->u.narrow[35]; \ + kc->u.narrow[40] = ~kc->u.narrow[40]; \ + kc->u.narrow[41] = ~kc->u.narrow[41]; \ + /* un-interleave */ \ + for (j = 0; j < 50; j += 2) \ + UNINTERLEAVE(kc->u.narrow[j], kc->u.narrow[j + 1]); \ + for (j = 0; j < d; j += 4) \ + sph_enc32le_aligned(u.tmp + j, kc->u.narrow[j >> 2]); \ + memcpy(dst, u.tmp, d); \ + keccak_init(kc, (unsigned)d << 3); \ + } \ + +#endif + +DEFCLOSE(28, 144) +DEFCLOSE(32, 136) +DEFCLOSE(48, 104) +DEFCLOSE(64, 72) + +/* see sph_keccak.h */ +void +sph_keccak224_init(void *cc) +{ + keccak_init(cc, 224); +} + +/* see sph_keccak.h */ +void +sph_keccak224(void *cc, const void *data, size_t len) +{ + keccak_core(cc, data, len, 144); +} + +/* see sph_keccak.h */ +void +sph_keccak224_close(void *cc, void *dst) +{ + sph_keccak224_addbits_and_close(cc, 0, 0, dst); +} + +/* see sph_keccak.h */ +void +sph_keccak224_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst) +{ + keccak_close28(cc, ub, n, dst); +} + +/* see sph_keccak.h */ +void +sph_keccak256_init(void *cc) +{ + keccak_init(cc, 256); +} + +/* see sph_keccak.h */ +void +sph_keccak256(void *cc, const void *data, size_t len) +{ + keccak_core(cc, data, len, 136); +} + +/* see sph_keccak.h */ +void +sph_keccak256_close(void *cc, void *dst) +{ + sph_keccak256_addbits_and_close(cc, 0, 0, dst); +} + +/* see sph_keccak.h */ +void +sph_keccak256_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst) +{ + keccak_close32(cc, ub, n, dst); +} + +/* see sph_keccak.h */ +void +sph_keccak384_init(void *cc) +{ + keccak_init(cc, 384); +} + +/* see sph_keccak.h */ +void +sph_keccak384(void *cc, const void *data, size_t len) +{ + keccak_core(cc, data, len, 104); +} + +/* see sph_keccak.h */ +void +sph_keccak384_close(void *cc, void *dst) +{ + sph_keccak384_addbits_and_close(cc, 0, 0, dst); +} + +/* see sph_keccak.h */ +void +sph_keccak384_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst) +{ + keccak_close48(cc, ub, n, dst); +} + +/* see sph_keccak.h */ +void +sph_keccak512_init(void *cc) +{ + keccak_init(cc, 512); +} + +/* see sph_keccak.h */ +void +sph_keccak512(void *cc, const void *data, size_t len) +{ + keccak_core(cc, data, len, 72); +} + +/* see sph_keccak.h */ +void +sph_keccak512_close(void *cc, void *dst) +{ + sph_keccak512_addbits_and_close(cc, 0, 0, dst); +} + +/* see sph_keccak.h */ +void +sph_keccak512_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst) +{ + keccak_close64(cc, ub, n, dst); +} + + +#ifdef __cplusplus +} +#endif diff --git a/crypto/sha3/skein.c b/crypto/sha3/skein.c new file mode 100644 index 000000000..7e47e3522 --- /dev/null +++ b/crypto/sha3/skein.c @@ -0,0 +1,1254 @@ +/* $Id: skein.c 254 2011-06-07 19:38:58Z tp $ */ +/* + * Skein implementation. + * + * ==========================(LICENSE BEGIN)============================ + * + * Copyright (c) 2007-2010 Projet RNRT SAPHIR + * + * Permission is hereby granted, free of charge, to any person obtaining + * a copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sublicense, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * The above copyright notice and this permission notice shall be + * included in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + * + * ===========================(LICENSE END)============================= + * + * @author Thomas Pornin + */ + +#include +#include + +#include "sph_skein.h" + +#ifdef __cplusplus +extern "C"{ +#endif + + +#if SPH_SMALL_FOOTPRINT && !defined SPH_SMALL_FOOTPRINT_SKEIN +#define SPH_SMALL_FOOTPRINT_SKEIN 1 +#endif + +#ifdef _MSC_VER +#pragma warning (disable: 4146) +#endif + +#if SPH_64 + +#if 0 +/* obsolete */ +/* + * M5_ ## s ## _ ## i evaluates to s+i mod 5 (0 <= s <= 18, 0 <= i <= 3). + */ + +#define M5_0_0 0 +#define M5_0_1 1 +#define M5_0_2 2 +#define M5_0_3 3 + +#define M5_1_0 1 +#define M5_1_1 2 +#define M5_1_2 3 +#define M5_1_3 4 + +#define M5_2_0 2 +#define M5_2_1 3 +#define M5_2_2 4 +#define M5_2_3 0 + +#define M5_3_0 3 +#define M5_3_1 4 +#define M5_3_2 0 +#define M5_3_3 1 + +#define M5_4_0 4 +#define M5_4_1 0 +#define M5_4_2 1 +#define M5_4_3 2 + +#define M5_5_0 0 +#define M5_5_1 1 +#define M5_5_2 2 +#define M5_5_3 3 + +#define M5_6_0 1 +#define M5_6_1 2 +#define M5_6_2 3 +#define M5_6_3 4 + +#define M5_7_0 2 +#define M5_7_1 3 +#define M5_7_2 4 +#define M5_7_3 0 + +#define M5_8_0 3 +#define M5_8_1 4 +#define M5_8_2 0 +#define M5_8_3 1 + +#define M5_9_0 4 +#define M5_9_1 0 +#define M5_9_2 1 +#define M5_9_3 2 + +#define M5_10_0 0 +#define M5_10_1 1 +#define M5_10_2 2 +#define M5_10_3 3 + +#define M5_11_0 1 +#define M5_11_1 2 +#define M5_11_2 3 +#define M5_11_3 4 + +#define M5_12_0 2 +#define M5_12_1 3 +#define M5_12_2 4 +#define M5_12_3 0 + +#define M5_13_0 3 +#define M5_13_1 4 +#define M5_13_2 0 +#define M5_13_3 1 + +#define M5_14_0 4 +#define M5_14_1 0 +#define M5_14_2 1 +#define M5_14_3 2 + +#define M5_15_0 0 +#define M5_15_1 1 +#define M5_15_2 2 +#define M5_15_3 3 + +#define M5_16_0 1 +#define M5_16_1 2 +#define M5_16_2 3 +#define M5_16_3 4 + +#define M5_17_0 2 +#define M5_17_1 3 +#define M5_17_2 4 +#define M5_17_3 0 + +#define M5_18_0 3 +#define M5_18_1 4 +#define M5_18_2 0 +#define M5_18_3 1 +#endif + +/* + * M9_ ## s ## _ ## i evaluates to s+i mod 9 (0 <= s <= 18, 0 <= i <= 7). + */ + +#define M9_0_0 0 +#define M9_0_1 1 +#define M9_0_2 2 +#define M9_0_3 3 +#define M9_0_4 4 +#define M9_0_5 5 +#define M9_0_6 6 +#define M9_0_7 7 + +#define M9_1_0 1 +#define M9_1_1 2 +#define M9_1_2 3 +#define M9_1_3 4 +#define M9_1_4 5 +#define M9_1_5 6 +#define M9_1_6 7 +#define M9_1_7 8 + +#define M9_2_0 2 +#define M9_2_1 3 +#define M9_2_2 4 +#define M9_2_3 5 +#define M9_2_4 6 +#define M9_2_5 7 +#define M9_2_6 8 +#define M9_2_7 0 + +#define M9_3_0 3 +#define M9_3_1 4 +#define M9_3_2 5 +#define M9_3_3 6 +#define M9_3_4 7 +#define M9_3_5 8 +#define M9_3_6 0 +#define M9_3_7 1 + +#define M9_4_0 4 +#define M9_4_1 5 +#define M9_4_2 6 +#define M9_4_3 7 +#define M9_4_4 8 +#define M9_4_5 0 +#define M9_4_6 1 +#define M9_4_7 2 + +#define M9_5_0 5 +#define M9_5_1 6 +#define M9_5_2 7 +#define M9_5_3 8 +#define M9_5_4 0 +#define M9_5_5 1 +#define M9_5_6 2 +#define M9_5_7 3 + +#define M9_6_0 6 +#define M9_6_1 7 +#define M9_6_2 8 +#define M9_6_3 0 +#define M9_6_4 1 +#define M9_6_5 2 +#define M9_6_6 3 +#define M9_6_7 4 + +#define M9_7_0 7 +#define M9_7_1 8 +#define M9_7_2 0 +#define M9_7_3 1 +#define M9_7_4 2 +#define M9_7_5 3 +#define M9_7_6 4 +#define M9_7_7 5 + +#define M9_8_0 8 +#define M9_8_1 0 +#define M9_8_2 1 +#define M9_8_3 2 +#define M9_8_4 3 +#define M9_8_5 4 +#define M9_8_6 5 +#define M9_8_7 6 + +#define M9_9_0 0 +#define M9_9_1 1 +#define M9_9_2 2 +#define M9_9_3 3 +#define M9_9_4 4 +#define M9_9_5 5 +#define M9_9_6 6 +#define M9_9_7 7 + +#define M9_10_0 1 +#define M9_10_1 2 +#define M9_10_2 3 +#define M9_10_3 4 +#define M9_10_4 5 +#define M9_10_5 6 +#define M9_10_6 7 +#define M9_10_7 8 + +#define M9_11_0 2 +#define M9_11_1 3 +#define M9_11_2 4 +#define M9_11_3 5 +#define M9_11_4 6 +#define M9_11_5 7 +#define M9_11_6 8 +#define M9_11_7 0 + +#define M9_12_0 3 +#define M9_12_1 4 +#define M9_12_2 5 +#define M9_12_3 6 +#define M9_12_4 7 +#define M9_12_5 8 +#define M9_12_6 0 +#define M9_12_7 1 + +#define M9_13_0 4 +#define M9_13_1 5 +#define M9_13_2 6 +#define M9_13_3 7 +#define M9_13_4 8 +#define M9_13_5 0 +#define M9_13_6 1 +#define M9_13_7 2 + +#define M9_14_0 5 +#define M9_14_1 6 +#define M9_14_2 7 +#define M9_14_3 8 +#define M9_14_4 0 +#define M9_14_5 1 +#define M9_14_6 2 +#define M9_14_7 3 + +#define M9_15_0 6 +#define M9_15_1 7 +#define M9_15_2 8 +#define M9_15_3 0 +#define M9_15_4 1 +#define M9_15_5 2 +#define M9_15_6 3 +#define M9_15_7 4 + +#define M9_16_0 7 +#define M9_16_1 8 +#define M9_16_2 0 +#define M9_16_3 1 +#define M9_16_4 2 +#define M9_16_5 3 +#define M9_16_6 4 +#define M9_16_7 5 + +#define M9_17_0 8 +#define M9_17_1 0 +#define M9_17_2 1 +#define M9_17_3 2 +#define M9_17_4 3 +#define M9_17_5 4 +#define M9_17_6 5 +#define M9_17_7 6 + +#define M9_18_0 0 +#define M9_18_1 1 +#define M9_18_2 2 +#define M9_18_3 3 +#define M9_18_4 4 +#define M9_18_5 5 +#define M9_18_6 6 +#define M9_18_7 7 + +/* + * M3_ ## s ## _ ## i evaluates to s+i mod 3 (0 <= s <= 18, 0 <= i <= 1). + */ + +#define M3_0_0 0 +#define M3_0_1 1 +#define M3_1_0 1 +#define M3_1_1 2 +#define M3_2_0 2 +#define M3_2_1 0 +#define M3_3_0 0 +#define M3_3_1 1 +#define M3_4_0 1 +#define M3_4_1 2 +#define M3_5_0 2 +#define M3_5_1 0 +#define M3_6_0 0 +#define M3_6_1 1 +#define M3_7_0 1 +#define M3_7_1 2 +#define M3_8_0 2 +#define M3_8_1 0 +#define M3_9_0 0 +#define M3_9_1 1 +#define M3_10_0 1 +#define M3_10_1 2 +#define M3_11_0 2 +#define M3_11_1 0 +#define M3_12_0 0 +#define M3_12_1 1 +#define M3_13_0 1 +#define M3_13_1 2 +#define M3_14_0 2 +#define M3_14_1 0 +#define M3_15_0 0 +#define M3_15_1 1 +#define M3_16_0 1 +#define M3_16_1 2 +#define M3_17_0 2 +#define M3_17_1 0 +#define M3_18_0 0 +#define M3_18_1 1 + +#define XCAT(x, y) XCAT_(x, y) +#define XCAT_(x, y) x ## y + +#if 0 +/* obsolete */ +#define SKSI(k, s, i) XCAT(k, XCAT(XCAT(XCAT(M5_, s), _), i)) +#define SKST(t, s, v) XCAT(t, XCAT(XCAT(XCAT(M3_, s), _), v)) +#endif + +#define SKBI(k, s, i) XCAT(k, XCAT(XCAT(XCAT(M9_, s), _), i)) +#define SKBT(t, s, v) XCAT(t, XCAT(XCAT(XCAT(M3_, s), _), v)) + +#if 0 +/* obsolete */ +#define TFSMALL_KINIT(k0, k1, k2, k3, k4, t0, t1, t2) do { \ + k4 = (k0 ^ k1) ^ (k2 ^ k3) ^ SPH_C64(0x1BD11BDAA9FC1A22); \ + t2 = t0 ^ t1; \ + } while (0) +#endif + +#define TFBIG_KINIT(k0, k1, k2, k3, k4, k5, k6, k7, k8, t0, t1, t2) do { \ + k8 = ((k0 ^ k1) ^ (k2 ^ k3)) ^ ((k4 ^ k5) ^ (k6 ^ k7)) \ + ^ SPH_C64(0x1BD11BDAA9FC1A22); \ + t2 = t0 ^ t1; \ + } while (0) + +#if 0 +/* obsolete */ +#define TFSMALL_ADDKEY(w0, w1, w2, w3, k, t, s) do { \ + w0 = SPH_T64(w0 + SKSI(k, s, 0)); \ + w1 = SPH_T64(w1 + SKSI(k, s, 1) + SKST(t, s, 0)); \ + w2 = SPH_T64(w2 + SKSI(k, s, 2) + SKST(t, s, 1)); \ + w3 = SPH_T64(w3 + SKSI(k, s, 3) + (sph_u64)s); \ + } while (0) +#endif + +#if SPH_SMALL_FOOTPRINT_SKEIN + +#define TFBIG_ADDKEY(s, tt0, tt1) do { \ + p0 = SPH_T64(p0 + h[s + 0]); \ + p1 = SPH_T64(p1 + h[s + 1]); \ + p2 = SPH_T64(p2 + h[s + 2]); \ + p3 = SPH_T64(p3 + h[s + 3]); \ + p4 = SPH_T64(p4 + h[s + 4]); \ + p5 = SPH_T64(p5 + h[s + 5] + tt0); \ + p6 = SPH_T64(p6 + h[s + 6] + tt1); \ + p7 = SPH_T64(p7 + h[s + 7] + (sph_u64)s); \ + } while (0) + +#else + +#define TFBIG_ADDKEY(w0, w1, w2, w3, w4, w5, w6, w7, k, t, s) do { \ + w0 = SPH_T64(w0 + SKBI(k, s, 0)); \ + w1 = SPH_T64(w1 + SKBI(k, s, 1)); \ + w2 = SPH_T64(w2 + SKBI(k, s, 2)); \ + w3 = SPH_T64(w3 + SKBI(k, s, 3)); \ + w4 = SPH_T64(w4 + SKBI(k, s, 4)); \ + w5 = SPH_T64(w5 + SKBI(k, s, 5) + SKBT(t, s, 0)); \ + w6 = SPH_T64(w6 + SKBI(k, s, 6) + SKBT(t, s, 1)); \ + w7 = SPH_T64(w7 + SKBI(k, s, 7) + (sph_u64)s); \ + } while (0) + +#endif + +#if 0 +/* obsolete */ +#define TFSMALL_MIX(x0, x1, rc) do { \ + x0 = SPH_T64(x0 + x1); \ + x1 = SPH_ROTL64(x1, rc) ^ x0; \ + } while (0) +#endif + +#define TFBIG_MIX(x0, x1, rc) do { \ + x0 = SPH_T64(x0 + x1); \ + x1 = SPH_ROTL64(x1, rc) ^ x0; \ + } while (0) + +#if 0 +/* obsolete */ +#define TFSMALL_MIX4(w0, w1, w2, w3, rc0, rc1) do { \ + TFSMALL_MIX(w0, w1, rc0); \ + TFSMALL_MIX(w2, w3, rc1); \ + } while (0) +#endif + +#define TFBIG_MIX8(w0, w1, w2, w3, w4, w5, w6, w7, rc0, rc1, rc2, rc3) do { \ + TFBIG_MIX(w0, w1, rc0); \ + TFBIG_MIX(w2, w3, rc1); \ + TFBIG_MIX(w4, w5, rc2); \ + TFBIG_MIX(w6, w7, rc3); \ + } while (0) + +#if 0 +/* obsolete */ +#define TFSMALL_4e(s) do { \ + TFSMALL_ADDKEY(p0, p1, p2, p3, h, t, s); \ + TFSMALL_MIX4(p0, p1, p2, p3, 14, 16); \ + TFSMALL_MIX4(p0, p3, p2, p1, 52, 57); \ + TFSMALL_MIX4(p0, p1, p2, p3, 23, 40); \ + TFSMALL_MIX4(p0, p3, p2, p1, 5, 37); \ + } while (0) + +#define TFSMALL_4o(s) do { \ + TFSMALL_ADDKEY(p0, p1, p2, p3, h, t, s); \ + TFSMALL_MIX4(p0, p1, p2, p3, 25, 33); \ + TFSMALL_MIX4(p0, p3, p2, p1, 46, 12); \ + TFSMALL_MIX4(p0, p1, p2, p3, 58, 22); \ + TFSMALL_MIX4(p0, p3, p2, p1, 32, 32); \ + } while (0) +#endif + +#if SPH_SMALL_FOOTPRINT_SKEIN + +#define TFBIG_4e(s) do { \ + TFBIG_ADDKEY(s, t0, t1); \ + TFBIG_MIX8(p0, p1, p2, p3, p4, p5, p6, p7, 46, 36, 19, 37); \ + TFBIG_MIX8(p2, p1, p4, p7, p6, p5, p0, p3, 33, 27, 14, 42); \ + TFBIG_MIX8(p4, p1, p6, p3, p0, p5, p2, p7, 17, 49, 36, 39); \ + TFBIG_MIX8(p6, p1, p0, p7, p2, p5, p4, p3, 44, 9, 54, 56); \ + } while (0) + +#define TFBIG_4o(s) do { \ + TFBIG_ADDKEY(s, t1, t2); \ + TFBIG_MIX8(p0, p1, p2, p3, p4, p5, p6, p7, 39, 30, 34, 24); \ + TFBIG_MIX8(p2, p1, p4, p7, p6, p5, p0, p3, 13, 50, 10, 17); \ + TFBIG_MIX8(p4, p1, p6, p3, p0, p5, p2, p7, 25, 29, 39, 43); \ + TFBIG_MIX8(p6, p1, p0, p7, p2, p5, p4, p3, 8, 35, 56, 22); \ + } while (0) + +#else + +#define TFBIG_4e(s) do { \ + TFBIG_ADDKEY(p0, p1, p2, p3, p4, p5, p6, p7, h, t, s); \ + TFBIG_MIX8(p0, p1, p2, p3, p4, p5, p6, p7, 46, 36, 19, 37); \ + TFBIG_MIX8(p2, p1, p4, p7, p6, p5, p0, p3, 33, 27, 14, 42); \ + TFBIG_MIX8(p4, p1, p6, p3, p0, p5, p2, p7, 17, 49, 36, 39); \ + TFBIG_MIX8(p6, p1, p0, p7, p2, p5, p4, p3, 44, 9, 54, 56); \ + } while (0) + +#define TFBIG_4o(s) do { \ + TFBIG_ADDKEY(p0, p1, p2, p3, p4, p5, p6, p7, h, t, s); \ + TFBIG_MIX8(p0, p1, p2, p3, p4, p5, p6, p7, 39, 30, 34, 24); \ + TFBIG_MIX8(p2, p1, p4, p7, p6, p5, p0, p3, 13, 50, 10, 17); \ + TFBIG_MIX8(p4, p1, p6, p3, p0, p5, p2, p7, 25, 29, 39, 43); \ + TFBIG_MIX8(p6, p1, p0, p7, p2, p5, p4, p3, 8, 35, 56, 22); \ + } while (0) + +#endif + +#if 0 +/* obsolete */ +#define UBI_SMALL(etype, extra) do { \ + sph_u64 h4, t0, t1, t2; \ + sph_u64 m0 = sph_dec64le(buf + 0); \ + sph_u64 m1 = sph_dec64le(buf + 8); \ + sph_u64 m2 = sph_dec64le(buf + 16); \ + sph_u64 m3 = sph_dec64le(buf + 24); \ + sph_u64 p0 = m0; \ + sph_u64 p1 = m1; \ + sph_u64 p2 = m2; \ + sph_u64 p3 = m3; \ + t0 = SPH_T64(bcount << 5) + (sph_u64)(extra); \ + t1 = (bcount >> 59) + ((sph_u64)(etype) << 55); \ + TFSMALL_KINIT(h0, h1, h2, h3, h4, t0, t1, t2); \ + TFSMALL_4e(0); \ + TFSMALL_4o(1); \ + TFSMALL_4e(2); \ + TFSMALL_4o(3); \ + TFSMALL_4e(4); \ + TFSMALL_4o(5); \ + TFSMALL_4e(6); \ + TFSMALL_4o(7); \ + TFSMALL_4e(8); \ + TFSMALL_4o(9); \ + TFSMALL_4e(10); \ + TFSMALL_4o(11); \ + TFSMALL_4e(12); \ + TFSMALL_4o(13); \ + TFSMALL_4e(14); \ + TFSMALL_4o(15); \ + TFSMALL_4e(16); \ + TFSMALL_4o(17); \ + TFSMALL_ADDKEY(p0, p1, p2, p3, h, t, 18); \ + h0 = m0 ^ p0; \ + h1 = m1 ^ p1; \ + h2 = m2 ^ p2; \ + h3 = m3 ^ p3; \ + } while (0) +#endif + +#if SPH_SMALL_FOOTPRINT_SKEIN + +#define UBI_BIG(etype, extra) do { \ + sph_u64 t0, t1, t2; \ + unsigned u; \ + sph_u64 m0 = sph_dec64le_aligned(buf + 0); \ + sph_u64 m1 = sph_dec64le_aligned(buf + 8); \ + sph_u64 m2 = sph_dec64le_aligned(buf + 16); \ + sph_u64 m3 = sph_dec64le_aligned(buf + 24); \ + sph_u64 m4 = sph_dec64le_aligned(buf + 32); \ + sph_u64 m5 = sph_dec64le_aligned(buf + 40); \ + sph_u64 m6 = sph_dec64le_aligned(buf + 48); \ + sph_u64 m7 = sph_dec64le_aligned(buf + 56); \ + sph_u64 p0 = m0; \ + sph_u64 p1 = m1; \ + sph_u64 p2 = m2; \ + sph_u64 p3 = m3; \ + sph_u64 p4 = m4; \ + sph_u64 p5 = m5; \ + sph_u64 p6 = m6; \ + sph_u64 p7 = m7; \ + t0 = SPH_T64(bcount << 6) + (sph_u64)(extra); \ + t1 = (bcount >> 58) + ((sph_u64)(etype) << 55); \ + TFBIG_KINIT(h[0], h[1], h[2], h[3], h[4], h[5], \ + h[6], h[7], h[8], t0, t1, t2); \ + for (u = 0; u <= 15; u += 3) { \ + h[u + 9] = h[u + 0]; \ + h[u + 10] = h[u + 1]; \ + h[u + 11] = h[u + 2]; \ + } \ + for (u = 0; u < 9; u ++) { \ + sph_u64 s = u << 1; \ + sph_u64 tmp; \ + TFBIG_4e(s); \ + TFBIG_4o(s + 1); \ + tmp = t2; \ + t2 = t1; \ + t1 = t0; \ + t0 = tmp; \ + } \ + TFBIG_ADDKEY(18, t0, t1); \ + h[0] = m0 ^ p0; \ + h[1] = m1 ^ p1; \ + h[2] = m2 ^ p2; \ + h[3] = m3 ^ p3; \ + h[4] = m4 ^ p4; \ + h[5] = m5 ^ p5; \ + h[6] = m6 ^ p6; \ + h[7] = m7 ^ p7; \ + } while (0) + +#else + +#define UBI_BIG(etype, extra) do { \ + sph_u64 h8, t0, t1, t2; \ + sph_u64 m0 = sph_dec64le_aligned(buf + 0); \ + sph_u64 m1 = sph_dec64le_aligned(buf + 8); \ + sph_u64 m2 = sph_dec64le_aligned(buf + 16); \ + sph_u64 m3 = sph_dec64le_aligned(buf + 24); \ + sph_u64 m4 = sph_dec64le_aligned(buf + 32); \ + sph_u64 m5 = sph_dec64le_aligned(buf + 40); \ + sph_u64 m6 = sph_dec64le_aligned(buf + 48); \ + sph_u64 m7 = sph_dec64le_aligned(buf + 56); \ + sph_u64 p0 = m0; \ + sph_u64 p1 = m1; \ + sph_u64 p2 = m2; \ + sph_u64 p3 = m3; \ + sph_u64 p4 = m4; \ + sph_u64 p5 = m5; \ + sph_u64 p6 = m6; \ + sph_u64 p7 = m7; \ + t0 = SPH_T64(bcount << 6) + (sph_u64)(extra); \ + t1 = (bcount >> 58) + ((sph_u64)(etype) << 55); \ + TFBIG_KINIT(h0, h1, h2, h3, h4, h5, h6, h7, h8, t0, t1, t2); \ + TFBIG_4e(0); \ + TFBIG_4o(1); \ + TFBIG_4e(2); \ + TFBIG_4o(3); \ + TFBIG_4e(4); \ + TFBIG_4o(5); \ + TFBIG_4e(6); \ + TFBIG_4o(7); \ + TFBIG_4e(8); \ + TFBIG_4o(9); \ + TFBIG_4e(10); \ + TFBIG_4o(11); \ + TFBIG_4e(12); \ + TFBIG_4o(13); \ + TFBIG_4e(14); \ + TFBIG_4o(15); \ + TFBIG_4e(16); \ + TFBIG_4o(17); \ + TFBIG_ADDKEY(p0, p1, p2, p3, p4, p5, p6, p7, h, t, 18); \ + h0 = m0 ^ p0; \ + h1 = m1 ^ p1; \ + h2 = m2 ^ p2; \ + h3 = m3 ^ p3; \ + h4 = m4 ^ p4; \ + h5 = m5 ^ p5; \ + h6 = m6 ^ p6; \ + h7 = m7 ^ p7; \ + } while (0) + +#endif + +#if 0 +/* obsolete */ +#define DECL_STATE_SMALL \ + sph_u64 h0, h1, h2, h3; \ + sph_u64 bcount; + +#define READ_STATE_SMALL(sc) do { \ + h0 = (sc)->h0; \ + h1 = (sc)->h1; \ + h2 = (sc)->h2; \ + h3 = (sc)->h3; \ + bcount = sc->bcount; \ + } while (0) + +#define WRITE_STATE_SMALL(sc) do { \ + (sc)->h0 = h0; \ + (sc)->h1 = h1; \ + (sc)->h2 = h2; \ + (sc)->h3 = h3; \ + sc->bcount = bcount; \ + } while (0) +#endif + +#if SPH_SMALL_FOOTPRINT_SKEIN + +#define DECL_STATE_BIG \ + sph_u64 h[27]; \ + sph_u64 bcount; + +#define READ_STATE_BIG(sc) do { \ + h[0] = (sc)->h0; \ + h[1] = (sc)->h1; \ + h[2] = (sc)->h2; \ + h[3] = (sc)->h3; \ + h[4] = (sc)->h4; \ + h[5] = (sc)->h5; \ + h[6] = (sc)->h6; \ + h[7] = (sc)->h7; \ + bcount = sc->bcount; \ + } while (0) + +#define WRITE_STATE_BIG(sc) do { \ + (sc)->h0 = h[0]; \ + (sc)->h1 = h[1]; \ + (sc)->h2 = h[2]; \ + (sc)->h3 = h[3]; \ + (sc)->h4 = h[4]; \ + (sc)->h5 = h[5]; \ + (sc)->h6 = h[6]; \ + (sc)->h7 = h[7]; \ + sc->bcount = bcount; \ + } while (0) + +#else + +#define DECL_STATE_BIG \ + sph_u64 h0, h1, h2, h3, h4, h5, h6, h7; \ + sph_u64 bcount; + +#define READ_STATE_BIG(sc) do { \ + h0 = (sc)->h0; \ + h1 = (sc)->h1; \ + h2 = (sc)->h2; \ + h3 = (sc)->h3; \ + h4 = (sc)->h4; \ + h5 = (sc)->h5; \ + h6 = (sc)->h6; \ + h7 = (sc)->h7; \ + bcount = sc->bcount; \ + } while (0) + +#define WRITE_STATE_BIG(sc) do { \ + (sc)->h0 = h0; \ + (sc)->h1 = h1; \ + (sc)->h2 = h2; \ + (sc)->h3 = h3; \ + (sc)->h4 = h4; \ + (sc)->h5 = h5; \ + (sc)->h6 = h6; \ + (sc)->h7 = h7; \ + sc->bcount = bcount; \ + } while (0) + +#endif + +#if 0 +/* obsolete */ +static void +skein_small_init(sph_skein_small_context *sc, const sph_u64 *iv) +{ + sc->h0 = iv[0]; + sc->h1 = iv[1]; + sc->h2 = iv[2]; + sc->h3 = iv[3]; + sc->bcount = 0; + sc->ptr = 0; +} +#endif + +static void +skein_big_init(sph_skein_big_context *sc, const sph_u64 *iv) +{ + sc->h0 = iv[0]; + sc->h1 = iv[1]; + sc->h2 = iv[2]; + sc->h3 = iv[3]; + sc->h4 = iv[4]; + sc->h5 = iv[5]; + sc->h6 = iv[6]; + sc->h7 = iv[7]; + sc->bcount = 0; + sc->ptr = 0; +} + +#if 0 +/* obsolete */ +static void +skein_small_core(sph_skein_small_context *sc, const void *data, size_t len) +{ + unsigned char *buf; + size_t ptr, clen; + unsigned first; + DECL_STATE_SMALL + + buf = sc->buf; + ptr = sc->ptr; + clen = (sizeof sc->buf) - ptr; + if (len <= clen) { + memcpy(buf + ptr, data, len); + sc->ptr = ptr + len; + return; + } + if (clen != 0) { + memcpy(buf + ptr, data, clen); + data = (const unsigned char *)data + clen; + len -= clen; + } + +#if SPH_SMALL_FOOTPRINT_SKEIN + + READ_STATE_SMALL(sc); + first = (bcount == 0) << 7; + for (;;) { + bcount ++; + UBI_SMALL(96 + first, 0); + if (len <= sizeof sc->buf) + break; + first = 0; + memcpy(buf, data, sizeof sc->buf); + data = (const unsigned char *)data + sizeof sc->buf; + len -= sizeof sc->buf; + } + WRITE_STATE_SMALL(sc); + sc->ptr = len; + memcpy(buf, data, len); + +#else + + /* + * Unrolling the loop yields a slight performance boost, while + * keeping the code size aorund 24 kB on 32-bit x86. + */ + READ_STATE_SMALL(sc); + first = (bcount == 0) << 7; + for (;;) { + bcount ++; + UBI_SMALL(96 + first, 0); + if (len <= sizeof sc->buf) + break; + buf = (unsigned char *)data; + bcount ++; + UBI_SMALL(96, 0); + if (len <= 2 * sizeof sc->buf) { + data = buf + sizeof sc->buf; + len -= sizeof sc->buf; + break; + } + buf += sizeof sc->buf; + data = buf + sizeof sc->buf; + first = 0; + len -= 2 * sizeof sc->buf; + } + WRITE_STATE_SMALL(sc); + sc->ptr = len; + memcpy(sc->buf, data, len); + +#endif +} +#endif + +static void +skein_big_core(sph_skein_big_context *sc, const void *data, size_t len) +{ + /* + * The Skein "final bit" in the tweak is troublesome here, + * because if the input has a length which is a multiple of the + * block size (512 bits) then that bit must be set for the + * final block, which is full of message bits (padding in + * Skein can be reduced to no extra bit at all). However, this + * function cannot know whether it processes the last chunks of + * the message or not. Hence we may keep a full block of buffered + * data (64 bytes). + */ + unsigned char *buf; + size_t ptr; + unsigned first; + DECL_STATE_BIG + + buf = sc->buf; + ptr = sc->ptr; + if (len <= (sizeof sc->buf) - ptr) { + memcpy(buf + ptr, data, len); + ptr += len; + sc->ptr = ptr; + return; + } + + READ_STATE_BIG(sc); + first = (bcount == 0) << 7; + do { + size_t clen; + + if (ptr == sizeof sc->buf) { + bcount ++; + UBI_BIG(96 + first, 0); + first = 0; + ptr = 0; + } + clen = (sizeof sc->buf) - ptr; + if (clen > len) + clen = len; + memcpy(buf + ptr, data, clen); + ptr += clen; + data = (const unsigned char *)data + clen; + len -= clen; + } while (len > 0); + WRITE_STATE_BIG(sc); + sc->ptr = ptr; +} + +#if 0 +/* obsolete */ +static void +skein_small_close(sph_skein_small_context *sc, unsigned ub, unsigned n, + void *dst, size_t out_len) +{ + unsigned char *buf; + size_t ptr; + unsigned et; + int i; + DECL_STATE_SMALL + + if (n != 0) { + unsigned z; + unsigned char x; + + z = 0x80 >> n; + x = ((ub & -z) | z) & 0xFF; + skein_small_core(sc, &x, 1); + } + + buf = sc->buf; + ptr = sc->ptr; + READ_STATE_SMALL(sc); + memset(buf + ptr, 0, (sizeof sc->buf) - ptr); + et = 352 + ((bcount == 0) << 7) + (n != 0); + for (i = 0; i < 2; i ++) { + UBI_SMALL(et, ptr); + if (i == 0) { + memset(buf, 0, sizeof sc->buf); + bcount = 0; + et = 510; + ptr = 8; + } + } + + sph_enc64le_aligned(buf + 0, h0); + sph_enc64le_aligned(buf + 8, h1); + sph_enc64le_aligned(buf + 16, h2); + sph_enc64le_aligned(buf + 24, h3); + memcpy(dst, buf, out_len); +} +#endif + +static void +skein_big_close(sph_skein_big_context *sc, unsigned ub, unsigned n, + void *dst, size_t out_len) +{ + unsigned char *buf; + size_t ptr; + unsigned et; + int i; +#if SPH_SMALL_FOOTPRINT_SKEIN + size_t u; +#endif + DECL_STATE_BIG + + /* + * Add bit padding if necessary. + */ + if (n != 0) { + unsigned z; + unsigned char x; + + z = 0x80 >> n; + x = ((ub & -z) | z) & 0xFF; + skein_big_core(sc, &x, 1); + } + + buf = sc->buf; + ptr = sc->ptr; + + /* + * At that point, if ptr == 0, then the message was empty; + * otherwise, there is between 1 and 64 bytes (inclusive) which + * are yet to be processed. Either way, we complete the buffer + * to a full block with zeros (the Skein specification mandates + * that an empty message is padded so that there is at least + * one block to process). + * + * Once this block has been processed, we do it again, with + * a block full of zeros, for the output (that block contains + * the encoding of "0", over 8 bytes, then padded with zeros). + */ + READ_STATE_BIG(sc); + memset(buf + ptr, 0, (sizeof sc->buf) - ptr); + et = 352 + ((bcount == 0) << 7) + (n != 0); + for (i = 0; i < 2; i ++) { + UBI_BIG(et, ptr); + if (i == 0) { + memset(buf, 0, sizeof sc->buf); + bcount = 0; + et = 510; + ptr = 8; + } + } + +#if SPH_SMALL_FOOTPRINT_SKEIN + + /* + * We use a temporary buffer because we must support the case + * where output size is not a multiple of 64 (namely, a 224-bit + * output). + */ + for (u = 0; u < out_len; u += 8) + sph_enc64le_aligned(buf + u, h[u >> 3]); + memcpy(dst, buf, out_len); + +#else + + sph_enc64le_aligned(buf + 0, h0); + sph_enc64le_aligned(buf + 8, h1); + sph_enc64le_aligned(buf + 16, h2); + sph_enc64le_aligned(buf + 24, h3); + sph_enc64le_aligned(buf + 32, h4); + sph_enc64le_aligned(buf + 40, h5); + sph_enc64le_aligned(buf + 48, h6); + sph_enc64le_aligned(buf + 56, h7); + memcpy(dst, buf, out_len); + +#endif +} + +#if 0 +/* obsolete */ +static const sph_u64 IV224[] = { + SPH_C64(0xC6098A8C9AE5EA0B), SPH_C64(0x876D568608C5191C), + SPH_C64(0x99CB88D7D7F53884), SPH_C64(0x384BDDB1AEDDB5DE) +}; + +static const sph_u64 IV256[] = { + SPH_C64(0xFC9DA860D048B449), SPH_C64(0x2FCA66479FA7D833), + SPH_C64(0xB33BC3896656840F), SPH_C64(0x6A54E920FDE8DA69) +}; +#endif + +static const sph_u64 IV224[] = { + SPH_C64(0xCCD0616248677224), SPH_C64(0xCBA65CF3A92339EF), + SPH_C64(0x8CCD69D652FF4B64), SPH_C64(0x398AED7B3AB890B4), + SPH_C64(0x0F59D1B1457D2BD0), SPH_C64(0x6776FE6575D4EB3D), + SPH_C64(0x99FBC70E997413E9), SPH_C64(0x9E2CFCCFE1C41EF7) +}; + +static const sph_u64 IV256[] = { + SPH_C64(0xCCD044A12FDB3E13), SPH_C64(0xE83590301A79A9EB), + SPH_C64(0x55AEA0614F816E6F), SPH_C64(0x2A2767A4AE9B94DB), + SPH_C64(0xEC06025E74DD7683), SPH_C64(0xE7A436CDC4746251), + SPH_C64(0xC36FBAF9393AD185), SPH_C64(0x3EEDBA1833EDFC13) +}; + +static const sph_u64 IV384[] = { + SPH_C64(0xA3F6C6BF3A75EF5F), SPH_C64(0xB0FEF9CCFD84FAA4), + SPH_C64(0x9D77DD663D770CFE), SPH_C64(0xD798CBF3B468FDDA), + SPH_C64(0x1BC4A6668A0E4465), SPH_C64(0x7ED7D434E5807407), + SPH_C64(0x548FC1ACD4EC44D6), SPH_C64(0x266E17546AA18FF8) +}; + +static const sph_u64 IV512[] = { + SPH_C64(0x4903ADFF749C51CE), SPH_C64(0x0D95DE399746DF03), + SPH_C64(0x8FD1934127C79BCE), SPH_C64(0x9A255629FF352CB1), + SPH_C64(0x5DB62599DF6CA7B0), SPH_C64(0xEABE394CA9D5C3F4), + SPH_C64(0x991112C71A75B523), SPH_C64(0xAE18A40B660FCC33) +}; + +#if 0 +/* obsolete */ +/* see sph_skein.h */ +void +sph_skein224_init(void *cc) +{ + skein_small_init(cc, IV224); +} + +/* see sph_skein.h */ +void +sph_skein224(void *cc, const void *data, size_t len) +{ + skein_small_core(cc, data, len); +} + +/* see sph_skein.h */ +void +sph_skein224_close(void *cc, void *dst) +{ + sph_skein224_addbits_and_close(cc, 0, 0, dst); +} + +/* see sph_skein.h */ +void +sph_skein224_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst) +{ + skein_small_close(cc, ub, n, dst, 28); + sph_skein224_init(cc); +} + +/* see sph_skein.h */ +void +sph_skein256_init(void *cc) +{ + skein_small_init(cc, IV256); +} + +/* see sph_skein.h */ +void +sph_skein256(void *cc, const void *data, size_t len) +{ + skein_small_core(cc, data, len); +} + +/* see sph_skein.h */ +void +sph_skein256_close(void *cc, void *dst) +{ + sph_skein256_addbits_and_close(cc, 0, 0, dst); +} + +/* see sph_skein.h */ +void +sph_skein256_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst) +{ + skein_small_close(cc, ub, n, dst, 32); + sph_skein256_init(cc); +} +#endif + +/* see sph_skein.h */ +void +sph_skein224_init(void *cc) +{ + skein_big_init(cc, IV224); +} + +/* see sph_skein.h */ +void +sph_skein224(void *cc, const void *data, size_t len) +{ + skein_big_core(cc, data, len); +} + +/* see sph_skein.h */ +void +sph_skein224_close(void *cc, void *dst) +{ + sph_skein224_addbits_and_close(cc, 0, 0, dst); +} + +/* see sph_skein.h */ +void +sph_skein224_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst) +{ + skein_big_close(cc, ub, n, dst, 28); + sph_skein224_init(cc); +} + +/* see sph_skein.h */ +void +sph_skein256_init(void *cc) +{ + skein_big_init(cc, IV256); +} + +/* see sph_skein.h */ +void +sph_skein256(void *cc, const void *data, size_t len) +{ + skein_big_core(cc, data, len); +} + +/* see sph_skein.h */ +void +sph_skein256_close(void *cc, void *dst) +{ + sph_skein256_addbits_and_close(cc, 0, 0, dst); +} + +/* see sph_skein.h */ +void +sph_skein256_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst) +{ + skein_big_close(cc, ub, n, dst, 32); + sph_skein256_init(cc); +} + +/* see sph_skein.h */ +void +sph_skein384_init(void *cc) +{ + skein_big_init(cc, IV384); +} + +/* see sph_skein.h */ +void +sph_skein384(void *cc, const void *data, size_t len) +{ + skein_big_core(cc, data, len); +} + +/* see sph_skein.h */ +void +sph_skein384_close(void *cc, void *dst) +{ + sph_skein384_addbits_and_close(cc, 0, 0, dst); +} + +/* see sph_skein.h */ +void +sph_skein384_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst) +{ + skein_big_close(cc, ub, n, dst, 48); + sph_skein384_init(cc); +} + +/* see sph_skein.h */ +void +sph_skein512_init(void *cc) +{ + skein_big_init(cc, IV512); +} + +/* see sph_skein.h */ +void +sph_skein512(void *cc, const void *data, size_t len) +{ + skein_big_core(cc, data, len); +} + +/* see sph_skein.h */ +void +sph_skein512_close(void *cc, void *dst) +{ + sph_skein512_addbits_and_close(cc, 0, 0, dst); +} + +/* see sph_skein.h */ +void +sph_skein512_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst) +{ + skein_big_close(cc, ub, n, dst, 64); + sph_skein512_init(cc); +} + +#endif + + +#ifdef __cplusplus +} +#endif diff --git a/crypto/sha3/sph_blake.h b/crypto/sha3/sph_blake.h new file mode 100644 index 000000000..d8d794399 --- /dev/null +++ b/crypto/sha3/sph_blake.h @@ -0,0 +1,327 @@ +/* $Id: sph_blake.h 252 2011-06-07 17:55:14Z tp $ */ +/** + * BLAKE interface. BLAKE is a family of functions which differ by their + * output size; this implementation defines BLAKE for output sizes 224, + * 256, 384 and 512 bits. This implementation conforms to the "third + * round" specification. + * + * ==========================(LICENSE BEGIN)============================ + * + * Copyright (c) 2007-2010 Projet RNRT SAPHIR + * + * Permission is hereby granted, free of charge, to any person obtaining + * a copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sublicense, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * The above copyright notice and this permission notice shall be + * included in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + * + * ===========================(LICENSE END)============================= + * + * @file sph_blake.h + * @author Thomas Pornin + */ + +#ifndef SPH_BLAKE_H__ +#define SPH_BLAKE_H__ + +#ifdef __cplusplus +extern "C"{ +#endif + +#include +#include "sph_types.h" + +/** + * Output size (in bits) for BLAKE-224. + */ +#define SPH_SIZE_blake224 224 + +/** + * Output size (in bits) for BLAKE-256. + */ +#define SPH_SIZE_blake256 256 + +#if SPH_64 + +/** + * Output size (in bits) for BLAKE-384. + */ +#define SPH_SIZE_blake384 384 + +/** + * Output size (in bits) for BLAKE-512. + */ +#define SPH_SIZE_blake512 512 + +#endif + +/** + * This structure is a context for BLAKE-224 and BLAKE-256 computations: + * it contains the intermediate values and some data from the last + * entered block. Once a BLAKE computation has been performed, the + * context can be reused for another computation. + * + * The contents of this structure are private. A running BLAKE + * computation can be cloned by copying the context (e.g. with a simple + * memcpy()). + */ +typedef struct { +#ifndef DOXYGEN_IGNORE + unsigned char buf[64]; /* first field, for alignment */ + size_t ptr; + sph_u32 H[8]; + sph_u32 S[4]; + sph_u32 T0, T1; +#endif +} sph_blake_small_context; + +/** + * This structure is a context for BLAKE-224 computations. It is + * identical to the common sph_blake_small_context. + */ +typedef sph_blake_small_context sph_blake224_context; + +/** + * This structure is a context for BLAKE-256 computations. It is + * identical to the common sph_blake_small_context. + */ +typedef sph_blake_small_context sph_blake256_context; + +#if SPH_64 + +/** + * This structure is a context for BLAKE-384 and BLAKE-512 computations: + * it contains the intermediate values and some data from the last + * entered block. Once a BLAKE computation has been performed, the + * context can be reused for another computation. + * + * The contents of this structure are private. A running BLAKE + * computation can be cloned by copying the context (e.g. with a simple + * memcpy()). + */ +typedef struct { +#ifndef DOXYGEN_IGNORE + unsigned char buf[128]; /* first field, for alignment */ + size_t ptr; + sph_u64 H[8]; + sph_u64 S[4]; + sph_u64 T0, T1; +#endif +} sph_blake_big_context; + +/** + * This structure is a context for BLAKE-384 computations. It is + * identical to the common sph_blake_small_context. + */ +typedef sph_blake_big_context sph_blake384_context; + +/** + * This structure is a context for BLAKE-512 computations. It is + * identical to the common sph_blake_small_context. + */ +typedef sph_blake_big_context sph_blake512_context; + +#endif + +/** + * Initialize a BLAKE-224 context. This process performs no memory allocation. + * + * @param cc the BLAKE-224 context (pointer to a + * sph_blake224_context) + */ +void sph_blake224_init(void *cc); + +/** + * Process some data bytes. It is acceptable that len is zero + * (in which case this function does nothing). + * + * @param cc the BLAKE-224 context + * @param data the input data + * @param len the input data length (in bytes) + */ +void sph_blake224(void *cc, const void *data, size_t len); + +/** + * Terminate the current BLAKE-224 computation and output the result into + * the provided buffer. The destination buffer must be wide enough to + * accomodate the result (28 bytes). The context is automatically + * reinitialized. + * + * @param cc the BLAKE-224 context + * @param dst the destination buffer + */ +void sph_blake224_close(void *cc, void *dst); + +/** + * Add a few additional bits (0 to 7) to the current computation, then + * terminate it and output the result in the provided buffer, which must + * be wide enough to accomodate the result (28 bytes). If bit number i + * in ub has value 2^i, then the extra bits are those + * numbered 7 downto 8-n (this is the big-endian convention at the byte + * level). The context is automatically reinitialized. + * + * @param cc the BLAKE-224 context + * @param ub the extra bits + * @param n the number of extra bits (0 to 7) + * @param dst the destination buffer + */ +void sph_blake224_addbits_and_close( + void *cc, unsigned ub, unsigned n, void *dst); + +/** + * Initialize a BLAKE-256 context. This process performs no memory allocation. + * + * @param cc the BLAKE-256 context (pointer to a + * sph_blake256_context) + */ +void sph_blake256_init(void *cc); + +/** + * Process some data bytes. It is acceptable that len is zero + * (in which case this function does nothing). + * + * @param cc the BLAKE-256 context + * @param data the input data + * @param len the input data length (in bytes) + */ +void sph_blake256(void *cc, const void *data, size_t len); + +/** + * Terminate the current BLAKE-256 computation and output the result into + * the provided buffer. The destination buffer must be wide enough to + * accomodate the result (32 bytes). The context is automatically + * reinitialized. + * + * @param cc the BLAKE-256 context + * @param dst the destination buffer + */ +void sph_blake256_close(void *cc, void *dst); + +/** + * Add a few additional bits (0 to 7) to the current computation, then + * terminate it and output the result in the provided buffer, which must + * be wide enough to accomodate the result (32 bytes). If bit number i + * in ub has value 2^i, then the extra bits are those + * numbered 7 downto 8-n (this is the big-endian convention at the byte + * level). The context is automatically reinitialized. + * + * @param cc the BLAKE-256 context + * @param ub the extra bits + * @param n the number of extra bits (0 to 7) + * @param dst the destination buffer + */ +void sph_blake256_addbits_and_close( + void *cc, unsigned ub, unsigned n, void *dst); + +#if SPH_64 + +/** + * Initialize a BLAKE-384 context. This process performs no memory allocation. + * + * @param cc the BLAKE-384 context (pointer to a + * sph_blake384_context) + */ +void sph_blake384_init(void *cc); + +/** + * Process some data bytes. It is acceptable that len is zero + * (in which case this function does nothing). + * + * @param cc the BLAKE-384 context + * @param data the input data + * @param len the input data length (in bytes) + */ +void sph_blake384(void *cc, const void *data, size_t len); + +/** + * Terminate the current BLAKE-384 computation and output the result into + * the provided buffer. The destination buffer must be wide enough to + * accomodate the result (48 bytes). The context is automatically + * reinitialized. + * + * @param cc the BLAKE-384 context + * @param dst the destination buffer + */ +void sph_blake384_close(void *cc, void *dst); + +/** + * Add a few additional bits (0 to 7) to the current computation, then + * terminate it and output the result in the provided buffer, which must + * be wide enough to accomodate the result (48 bytes). If bit number i + * in ub has value 2^i, then the extra bits are those + * numbered 7 downto 8-n (this is the big-endian convention at the byte + * level). The context is automatically reinitialized. + * + * @param cc the BLAKE-384 context + * @param ub the extra bits + * @param n the number of extra bits (0 to 7) + * @param dst the destination buffer + */ +void sph_blake384_addbits_and_close( + void *cc, unsigned ub, unsigned n, void *dst); + +/** + * Initialize a BLAKE-512 context. This process performs no memory allocation. + * + * @param cc the BLAKE-512 context (pointer to a + * sph_blake512_context) + */ +void sph_blake512_init(void *cc); + +/** + * Process some data bytes. It is acceptable that len is zero + * (in which case this function does nothing). + * + * @param cc the BLAKE-512 context + * @param data the input data + * @param len the input data length (in bytes) + */ +void sph_blake512(void *cc, const void *data, size_t len); + +/** + * Terminate the current BLAKE-512 computation and output the result into + * the provided buffer. The destination buffer must be wide enough to + * accomodate the result (64 bytes). The context is automatically + * reinitialized. + * + * @param cc the BLAKE-512 context + * @param dst the destination buffer + */ +void sph_blake512_close(void *cc, void *dst); + +/** + * Add a few additional bits (0 to 7) to the current computation, then + * terminate it and output the result in the provided buffer, which must + * be wide enough to accomodate the result (64 bytes). If bit number i + * in ub has value 2^i, then the extra bits are those + * numbered 7 downto 8-n (this is the big-endian convention at the byte + * level). The context is automatically reinitialized. + * + * @param cc the BLAKE-512 context + * @param ub the extra bits + * @param n the number of extra bits (0 to 7) + * @param dst the destination buffer + */ +void sph_blake512_addbits_and_close( + void *cc, unsigned ub, unsigned n, void *dst); + +#endif + +#ifdef __cplusplus +} +#endif + +#endif diff --git a/crypto/sha3/sph_bmw.h b/crypto/sha3/sph_bmw.h new file mode 100644 index 000000000..54653febb --- /dev/null +++ b/crypto/sha3/sph_bmw.h @@ -0,0 +1,321 @@ +/* $Id: sph_bmw.h 216 2010-06-08 09:46:57Z tp $ */ +/** + * BMW interface. BMW (aka "Blue Midnight Wish") is a family of + * functions which differ by their output size; this implementation + * defines BMW for output sizes 224, 256, 384 and 512 bits. + * + * ==========================(LICENSE BEGIN)============================ + * + * Copyright (c) 2007-2010 Projet RNRT SAPHIR + * + * Permission is hereby granted, free of charge, to any person obtaining + * a copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sublicense, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * The above copyright notice and this permission notice shall be + * included in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + * + * ===========================(LICENSE END)============================= + * + * @file sph_bmw.h + * @author Thomas Pornin + */ + +#ifndef SPH_BMW_H__ +#define SPH_BMW_H__ + +#include +#include "sph_types.h" + +/** + * Output size (in bits) for BMW-224. + */ +#define SPH_SIZE_bmw224 224 + +/** + * Output size (in bits) for BMW-256. + */ +#define SPH_SIZE_bmw256 256 + +#if SPH_64 + +/** + * Output size (in bits) for BMW-384. + */ +#define SPH_SIZE_bmw384 384 + +/** + * Output size (in bits) for BMW-512. + */ +#define SPH_SIZE_bmw512 512 + +#endif + +/** + * This structure is a context for BMW-224 and BMW-256 computations: + * it contains the intermediate values and some data from the last + * entered block. Once a BMW computation has been performed, the + * context can be reused for another computation. + * + * The contents of this structure are private. A running BMW + * computation can be cloned by copying the context (e.g. with a simple + * memcpy()). + */ +typedef struct { +#ifndef DOXYGEN_IGNORE + unsigned char buf[64]; /* first field, for alignment */ + size_t ptr; + sph_u32 H[16]; +#if SPH_64 + sph_u64 bit_count; +#else + sph_u32 bit_count_high, bit_count_low; +#endif +#endif +} sph_bmw_small_context; + +/** + * This structure is a context for BMW-224 computations. It is + * identical to the common sph_bmw_small_context. + */ +typedef sph_bmw_small_context sph_bmw224_context; + +/** + * This structure is a context for BMW-256 computations. It is + * identical to the common sph_bmw_small_context. + */ +typedef sph_bmw_small_context sph_bmw256_context; + +#if SPH_64 + +/** + * This structure is a context for BMW-384 and BMW-512 computations: + * it contains the intermediate values and some data from the last + * entered block. Once a BMW computation has been performed, the + * context can be reused for another computation. + * + * The contents of this structure are private. A running BMW + * computation can be cloned by copying the context (e.g. with a simple + * memcpy()). + */ +typedef struct { +#ifndef DOXYGEN_IGNORE + unsigned char buf[128]; /* first field, for alignment */ + size_t ptr; + sph_u64 H[16]; + sph_u64 bit_count; +#endif +} sph_bmw_big_context; + +/** + * This structure is a context for BMW-384 computations. It is + * identical to the common sph_bmw_small_context. + */ +typedef sph_bmw_big_context sph_bmw384_context; + +/** + * This structure is a context for BMW-512 computations. It is + * identical to the common sph_bmw_small_context. + */ +typedef sph_bmw_big_context sph_bmw512_context; + +#endif + +/** + * Initialize a BMW-224 context. This process performs no memory allocation. + * + * @param cc the BMW-224 context (pointer to a + * sph_bmw224_context) + */ +void sph_bmw224_init(void *cc); + +/** + * Process some data bytes. It is acceptable that len is zero + * (in which case this function does nothing). + * + * @param cc the BMW-224 context + * @param data the input data + * @param len the input data length (in bytes) + */ +void sph_bmw224(void *cc, const void *data, size_t len); + +/** + * Terminate the current BMW-224 computation and output the result into + * the provided buffer. The destination buffer must be wide enough to + * accomodate the result (28 bytes). The context is automatically + * reinitialized. + * + * @param cc the BMW-224 context + * @param dst the destination buffer + */ +void sph_bmw224_close(void *cc, void *dst); + +/** + * Add a few additional bits (0 to 7) to the current computation, then + * terminate it and output the result in the provided buffer, which must + * be wide enough to accomodate the result (28 bytes). If bit number i + * in ub has value 2^i, then the extra bits are those + * numbered 7 downto 8-n (this is the big-endian convention at the byte + * level). The context is automatically reinitialized. + * + * @param cc the BMW-224 context + * @param ub the extra bits + * @param n the number of extra bits (0 to 7) + * @param dst the destination buffer + */ +void sph_bmw224_addbits_and_close( + void *cc, unsigned ub, unsigned n, void *dst); + +/** + * Initialize a BMW-256 context. This process performs no memory allocation. + * + * @param cc the BMW-256 context (pointer to a + * sph_bmw256_context) + */ +void sph_bmw256_init(void *cc); + +/** + * Process some data bytes. It is acceptable that len is zero + * (in which case this function does nothing). + * + * @param cc the BMW-256 context + * @param data the input data + * @param len the input data length (in bytes) + */ +void sph_bmw256(void *cc, const void *data, size_t len); + +/** + * Terminate the current BMW-256 computation and output the result into + * the provided buffer. The destination buffer must be wide enough to + * accomodate the result (32 bytes). The context is automatically + * reinitialized. + * + * @param cc the BMW-256 context + * @param dst the destination buffer + */ +void sph_bmw256_close(void *cc, void *dst); + +/** + * Add a few additional bits (0 to 7) to the current computation, then + * terminate it and output the result in the provided buffer, which must + * be wide enough to accomodate the result (32 bytes). If bit number i + * in ub has value 2^i, then the extra bits are those + * numbered 7 downto 8-n (this is the big-endian convention at the byte + * level). The context is automatically reinitialized. + * + * @param cc the BMW-256 context + * @param ub the extra bits + * @param n the number of extra bits (0 to 7) + * @param dst the destination buffer + */ +void sph_bmw256_addbits_and_close( + void *cc, unsigned ub, unsigned n, void *dst); + +#if SPH_64 + +/** + * Initialize a BMW-384 context. This process performs no memory allocation. + * + * @param cc the BMW-384 context (pointer to a + * sph_bmw384_context) + */ +void sph_bmw384_init(void *cc); + +/** + * Process some data bytes. It is acceptable that len is zero + * (in which case this function does nothing). + * + * @param cc the BMW-384 context + * @param data the input data + * @param len the input data length (in bytes) + */ +void sph_bmw384(void *cc, const void *data, size_t len); + +/** + * Terminate the current BMW-384 computation and output the result into + * the provided buffer. The destination buffer must be wide enough to + * accomodate the result (48 bytes). The context is automatically + * reinitialized. + * + * @param cc the BMW-384 context + * @param dst the destination buffer + */ +void sph_bmw384_close(void *cc, void *dst); + +/** + * Add a few additional bits (0 to 7) to the current computation, then + * terminate it and output the result in the provided buffer, which must + * be wide enough to accomodate the result (48 bytes). If bit number i + * in ub has value 2^i, then the extra bits are those + * numbered 7 downto 8-n (this is the big-endian convention at the byte + * level). The context is automatically reinitialized. + * + * @param cc the BMW-384 context + * @param ub the extra bits + * @param n the number of extra bits (0 to 7) + * @param dst the destination buffer + */ +void sph_bmw384_addbits_and_close( + void *cc, unsigned ub, unsigned n, void *dst); + +/** + * Initialize a BMW-512 context. This process performs no memory allocation. + * + * @param cc the BMW-512 context (pointer to a + * sph_bmw512_context) + */ +void sph_bmw512_init(void *cc); + +/** + * Process some data bytes. It is acceptable that len is zero + * (in which case this function does nothing). + * + * @param cc the BMW-512 context + * @param data the input data + * @param len the input data length (in bytes) + */ +void sph_bmw512(void *cc, const void *data, size_t len); + +/** + * Terminate the current BMW-512 computation and output the result into + * the provided buffer. The destination buffer must be wide enough to + * accomodate the result (64 bytes). The context is automatically + * reinitialized. + * + * @param cc the BMW-512 context + * @param dst the destination buffer + */ +void sph_bmw512_close(void *cc, void *dst); + +/** + * Add a few additional bits (0 to 7) to the current computation, then + * terminate it and output the result in the provided buffer, which must + * be wide enough to accomodate the result (64 bytes). If bit number i + * in ub has value 2^i, then the extra bits are those + * numbered 7 downto 8-n (this is the big-endian convention at the byte + * level). The context is automatically reinitialized. + * + * @param cc the BMW-512 context + * @param ub the extra bits + * @param n the number of extra bits (0 to 7) + * @param dst the destination buffer + */ +void sph_bmw512_addbits_and_close( + void *cc, unsigned ub, unsigned n, void *dst); + +#endif + +#endif + diff --git a/crypto/sha3/sph_cubehash.h b/crypto/sha3/sph_cubehash.h new file mode 100644 index 000000000..616914453 --- /dev/null +++ b/crypto/sha3/sph_cubehash.h @@ -0,0 +1,286 @@ +/* $Id: sph_cubehash.h 180 2010-05-08 02:29:25Z tp $ */ +/** + * CubeHash interface. CubeHash is a family of functions which differ by + * their output size; this implementation defines CubeHash for output + * sizes 224, 256, 384 and 512 bits, with the "standard parameters" + * (CubeHash16/32 with the CubeHash specification notations). + * + * ==========================(LICENSE BEGIN)============================ + * + * Copyright (c) 2007-2010 Projet RNRT SAPHIR + * + * Permission is hereby granted, free of charge, to any person obtaining + * a copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sublicense, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * The above copyright notice and this permission notice shall be + * included in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + * + * ===========================(LICENSE END)============================= + * + * @file sph_cubehash.h + * @author Thomas Pornin + */ + +#ifndef SPH_CUBEHASH_H__ +#define SPH_CUBEHASH_H__ + +#include +#include "sph_types.h" + +/** + * Output size (in bits) for CubeHash-224. + */ +#define SPH_SIZE_cubehash224 224 + +/** + * Output size (in bits) for CubeHash-256. + */ +#define SPH_SIZE_cubehash256 256 + +/** + * Output size (in bits) for CubeHash-384. + */ +#define SPH_SIZE_cubehash384 384 + +/** + * Output size (in bits) for CubeHash-512. + */ +#define SPH_SIZE_cubehash512 512 + +/** + * This structure is a context for CubeHash computations: it contains the + * intermediate values and some data from the last entered block. Once + * a CubeHash computation has been performed, the context can be reused for + * another computation. + * + * The contents of this structure are private. A running CubeHash computation + * can be cloned by copying the context (e.g. with a simple + * memcpy()). + */ +typedef struct { +#ifndef DOXYGEN_IGNORE + unsigned char buf[32]; /* first field, for alignment */ + size_t ptr; + sph_u32 state[32]; +#endif +} sph_cubehash_context; + +/** + * Type for a CubeHash-224 context (identical to the common context). + */ +typedef sph_cubehash_context sph_cubehash224_context; + +/** + * Type for a CubeHash-256 context (identical to the common context). + */ +typedef sph_cubehash_context sph_cubehash256_context; + +/** + * Type for a CubeHash-384 context (identical to the common context). + */ +typedef sph_cubehash_context sph_cubehash384_context; + +/** + * Type for a CubeHash-512 context (identical to the common context). + */ +typedef sph_cubehash_context sph_cubehash512_context; + +/** + * Initialize a CubeHash-224 context. This process performs no memory + * allocation. + * + * @param cc the CubeHash-224 context (pointer to a + * sph_cubehash224_context) + */ +void sph_cubehash224_init(void *cc); + +/** + * Process some data bytes. It is acceptable that len is zero + * (in which case this function does nothing). + * + * @param cc the CubeHash-224 context + * @param data the input data + * @param len the input data length (in bytes) + */ +void sph_cubehash224(void *cc, const void *data, size_t len); + +/** + * Terminate the current CubeHash-224 computation and output the result into + * the provided buffer. The destination buffer must be wide enough to + * accomodate the result (28 bytes). The context is automatically + * reinitialized. + * + * @param cc the CubeHash-224 context + * @param dst the destination buffer + */ +void sph_cubehash224_close(void *cc, void *dst); + +/** + * Add a few additional bits (0 to 7) to the current computation, then + * terminate it and output the result in the provided buffer, which must + * be wide enough to accomodate the result (28 bytes). If bit number i + * in ub has value 2^i, then the extra bits are those + * numbered 7 downto 8-n (this is the big-endian convention at the byte + * level). The context is automatically reinitialized. + * + * @param cc the CubeHash-224 context + * @param ub the extra bits + * @param n the number of extra bits (0 to 7) + * @param dst the destination buffer + */ +void sph_cubehash224_addbits_and_close( + void *cc, unsigned ub, unsigned n, void *dst); + +/** + * Initialize a CubeHash-256 context. This process performs no memory + * allocation. + * + * @param cc the CubeHash-256 context (pointer to a + * sph_cubehash256_context) + */ +void sph_cubehash256_init(void *cc); + +/** + * Process some data bytes. It is acceptable that len is zero + * (in which case this function does nothing). + * + * @param cc the CubeHash-256 context + * @param data the input data + * @param len the input data length (in bytes) + */ +void sph_cubehash256(void *cc, const void *data, size_t len); + +/** + * Terminate the current CubeHash-256 computation and output the result into + * the provided buffer. The destination buffer must be wide enough to + * accomodate the result (32 bytes). The context is automatically + * reinitialized. + * + * @param cc the CubeHash-256 context + * @param dst the destination buffer + */ +void sph_cubehash256_close(void *cc, void *dst); + +/** + * Add a few additional bits (0 to 7) to the current computation, then + * terminate it and output the result in the provided buffer, which must + * be wide enough to accomodate the result (32 bytes). If bit number i + * in ub has value 2^i, then the extra bits are those + * numbered 7 downto 8-n (this is the big-endian convention at the byte + * level). The context is automatically reinitialized. + * + * @param cc the CubeHash-256 context + * @param ub the extra bits + * @param n the number of extra bits (0 to 7) + * @param dst the destination buffer + */ +void sph_cubehash256_addbits_and_close( + void *cc, unsigned ub, unsigned n, void *dst); + +/** + * Initialize a CubeHash-384 context. This process performs no memory + * allocation. + * + * @param cc the CubeHash-384 context (pointer to a + * sph_cubehash384_context) + */ +void sph_cubehash384_init(void *cc); + +/** + * Process some data bytes. It is acceptable that len is zero + * (in which case this function does nothing). + * + * @param cc the CubeHash-384 context + * @param data the input data + * @param len the input data length (in bytes) + */ +void sph_cubehash384(void *cc, const void *data, size_t len); + +/** + * Terminate the current CubeHash-384 computation and output the result into + * the provided buffer. The destination buffer must be wide enough to + * accomodate the result (48 bytes). The context is automatically + * reinitialized. + * + * @param cc the CubeHash-384 context + * @param dst the destination buffer + */ +void sph_cubehash384_close(void *cc, void *dst); + +/** + * Add a few additional bits (0 to 7) to the current computation, then + * terminate it and output the result in the provided buffer, which must + * be wide enough to accomodate the result (48 bytes). If bit number i + * in ub has value 2^i, then the extra bits are those + * numbered 7 downto 8-n (this is the big-endian convention at the byte + * level). The context is automatically reinitialized. + * + * @param cc the CubeHash-384 context + * @param ub the extra bits + * @param n the number of extra bits (0 to 7) + * @param dst the destination buffer + */ +void sph_cubehash384_addbits_and_close( + void *cc, unsigned ub, unsigned n, void *dst); + +/** + * Initialize a CubeHash-512 context. This process performs no memory + * allocation. + * + * @param cc the CubeHash-512 context (pointer to a + * sph_cubehash512_context) + */ +void sph_cubehash512_init(void *cc); + +/** + * Process some data bytes. It is acceptable that len is zero + * (in which case this function does nothing). + * + * @param cc the CubeHash-512 context + * @param data the input data + * @param len the input data length (in bytes) + */ +void sph_cubehash512(void *cc, const void *data, size_t len); + +/** + * Terminate the current CubeHash-512 computation and output the result into + * the provided buffer. The destination buffer must be wide enough to + * accomodate the result (64 bytes). The context is automatically + * reinitialized. + * + * @param cc the CubeHash-512 context + * @param dst the destination buffer + */ +void sph_cubehash512_close(void *cc, void *dst); + +/** + * Add a few additional bits (0 to 7) to the current computation, then + * terminate it and output the result in the provided buffer, which must + * be wide enough to accomodate the result (64 bytes). If bit number i + * in ub has value 2^i, then the extra bits are those + * numbered 7 downto 8-n (this is the big-endian convention at the byte + * level). The context is automatically reinitialized. + * + * @param cc the CubeHash-512 context + * @param ub the extra bits + * @param n the number of extra bits (0 to 7) + * @param dst the destination buffer + */ +void sph_cubehash512_addbits_and_close( + void *cc, unsigned ub, unsigned n, void *dst); + +#endif + diff --git a/crypto/sha3/sph_echo.c b/crypto/sha3/sph_echo.c new file mode 100644 index 000000000..667e3f357 --- /dev/null +++ b/crypto/sha3/sph_echo.c @@ -0,0 +1,1031 @@ +/* $Id: echo.c 227 2010-06-16 17:28:38Z tp $ */ +/* + * ECHO implementation. + * + * ==========================(LICENSE BEGIN)============================ + * + * Copyright (c) 2007-2010 Projet RNRT SAPHIR + * + * Permission is hereby granted, free of charge, to any person obtaining + * a copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sublicense, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * The above copyright notice and this permission notice shall be + * included in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + * + * ===========================(LICENSE END)============================= + * + * @author Thomas Pornin + */ + +#include +#include +#include + +#include "sph_echo.h" + +#ifdef __cplusplus +extern "C"{ +#endif + +#if SPH_SMALL_FOOTPRINT && !defined SPH_SMALL_FOOTPRINT_ECHO +#define SPH_SMALL_FOOTPRINT_ECHO 1 +#endif + +/* + * Some measures tend to show that the 64-bit implementation offers + * better performance only on a "64-bit architectures", those which have + * actual 64-bit registers. + */ +#if !defined SPH_ECHO_64 && SPH_64_TRUE +#define SPH_ECHO_64 1 +#endif + +/* + * We can use a 64-bit implementation only if a 64-bit type is available. + */ +#if !SPH_64 +#undef SPH_ECHO_64 +#endif + +#ifdef _MSC_VER +#pragma warning (disable: 4146) +#endif + +#define T32 SPH_T32 +#define C32 SPH_C32 +#if SPH_64 +#define C64 SPH_C64 +#endif + +#define AES_BIG_ENDIAN 0 +#include "aes_helper.c" + +#if SPH_ECHO_64 + +#define DECL_STATE_SMALL \ + sph_u64 W[16][2]; + +#define DECL_STATE_BIG \ + sph_u64 W[16][2]; + +#define INPUT_BLOCK_SMALL(sc) do { \ + unsigned u; \ + memcpy(W, sc->u.Vb, 8 * sizeof(sph_u64)); \ + for (u = 0; u < 12; u ++) { \ + W[u + 4][0] = sph_dec64le_aligned( \ + sc->buf + 16 * u); \ + W[u + 4][1] = sph_dec64le_aligned( \ + sc->buf + 16 * u + 8); \ + } \ + } while (0) + +#define INPUT_BLOCK_BIG(sc) do { \ + unsigned u; \ + memcpy(W, sc->u.Vb, 16 * sizeof(sph_u64)); \ + for (u = 0; u < 8; u ++) { \ + W[u + 8][0] = sph_dec64le_aligned( \ + sc->buf + 16 * u); \ + W[u + 8][1] = sph_dec64le_aligned( \ + sc->buf + 16 * u + 8); \ + } \ + } while (0) + +#if SPH_SMALL_FOOTPRINT_ECHO + +static void +aes_2rounds_all(sph_u64 W[16][2], + sph_u32 *pK0, sph_u32 *pK1, sph_u32 *pK2, sph_u32 *pK3) +{ + int n; + sph_u32 K0 = *pK0; + sph_u32 K1 = *pK1; + sph_u32 K2 = *pK2; + sph_u32 K3 = *pK3; + + for (n = 0; n < 16; n ++) { + sph_u64 Wl = W[n][0]; + sph_u64 Wh = W[n][1]; + sph_u32 X0 = (sph_u32)Wl; + sph_u32 X1 = (sph_u32)(Wl >> 32); + sph_u32 X2 = (sph_u32)Wh; + sph_u32 X3 = (sph_u32)(Wh >> 32); + sph_u32 Y0, Y1, Y2, Y3; \ + AES_ROUND_LE(X0, X1, X2, X3, K0, K1, K2, K3, Y0, Y1, Y2, Y3); + AES_ROUND_NOKEY_LE(Y0, Y1, Y2, Y3, X0, X1, X2, X3); + W[n][0] = (sph_u64)X0 | ((sph_u64)X1 << 32); + W[n][1] = (sph_u64)X2 | ((sph_u64)X3 << 32); + if ((K0 = T32(K0 + 1)) == 0) { + if ((K1 = T32(K1 + 1)) == 0) + if ((K2 = T32(K2 + 1)) == 0) + K3 = T32(K3 + 1); + } + } + *pK0 = K0; + *pK1 = K1; + *pK2 = K2; + *pK3 = K3; +} + +#define BIG_SUB_WORDS do { \ + aes_2rounds_all(W, &K0, &K1, &K2, &K3); \ + } while (0) + +#else + +#define AES_2ROUNDS(X) do { \ + sph_u32 X0 = (sph_u32)(X[0]); \ + sph_u32 X1 = (sph_u32)(X[0] >> 32); \ + sph_u32 X2 = (sph_u32)(X[1]); \ + sph_u32 X3 = (sph_u32)(X[1] >> 32); \ + sph_u32 Y0, Y1, Y2, Y3; \ + AES_ROUND_LE(X0, X1, X2, X3, K0, K1, K2, K3, Y0, Y1, Y2, Y3); \ + AES_ROUND_NOKEY_LE(Y0, Y1, Y2, Y3, X0, X1, X2, X3); \ + X[0] = (sph_u64)X0 | ((sph_u64)X1 << 32); \ + X[1] = (sph_u64)X2 | ((sph_u64)X3 << 32); \ + if ((K0 = T32(K0 + 1)) == 0) { \ + if ((K1 = T32(K1 + 1)) == 0) \ + if ((K2 = T32(K2 + 1)) == 0) \ + K3 = T32(K3 + 1); \ + } \ + } while (0) + +#define BIG_SUB_WORDS do { \ + AES_2ROUNDS(W[ 0]); \ + AES_2ROUNDS(W[ 1]); \ + AES_2ROUNDS(W[ 2]); \ + AES_2ROUNDS(W[ 3]); \ + AES_2ROUNDS(W[ 4]); \ + AES_2ROUNDS(W[ 5]); \ + AES_2ROUNDS(W[ 6]); \ + AES_2ROUNDS(W[ 7]); \ + AES_2ROUNDS(W[ 8]); \ + AES_2ROUNDS(W[ 9]); \ + AES_2ROUNDS(W[10]); \ + AES_2ROUNDS(W[11]); \ + AES_2ROUNDS(W[12]); \ + AES_2ROUNDS(W[13]); \ + AES_2ROUNDS(W[14]); \ + AES_2ROUNDS(W[15]); \ + } while (0) + +#endif + +#define SHIFT_ROW1(a, b, c, d) do { \ + sph_u64 tmp; \ + tmp = W[a][0]; \ + W[a][0] = W[b][0]; \ + W[b][0] = W[c][0]; \ + W[c][0] = W[d][0]; \ + W[d][0] = tmp; \ + tmp = W[a][1]; \ + W[a][1] = W[b][1]; \ + W[b][1] = W[c][1]; \ + W[c][1] = W[d][1]; \ + W[d][1] = tmp; \ + } while (0) + +#define SHIFT_ROW2(a, b, c, d) do { \ + sph_u64 tmp; \ + tmp = W[a][0]; \ + W[a][0] = W[c][0]; \ + W[c][0] = tmp; \ + tmp = W[b][0]; \ + W[b][0] = W[d][0]; \ + W[d][0] = tmp; \ + tmp = W[a][1]; \ + W[a][1] = W[c][1]; \ + W[c][1] = tmp; \ + tmp = W[b][1]; \ + W[b][1] = W[d][1]; \ + W[d][1] = tmp; \ + } while (0) + +#define SHIFT_ROW3(a, b, c, d) SHIFT_ROW1(d, c, b, a) + +#define BIG_SHIFT_ROWS do { \ + SHIFT_ROW1(1, 5, 9, 13); \ + SHIFT_ROW2(2, 6, 10, 14); \ + SHIFT_ROW3(3, 7, 11, 15); \ + } while (0) + +#if SPH_SMALL_FOOTPRINT_ECHO + +static void +mix_column(sph_u64 W[16][2], int ia, int ib, int ic, int id) +{ + int n; + + for (n = 0; n < 2; n ++) { + sph_u64 a = W[ia][n]; + sph_u64 b = W[ib][n]; + sph_u64 c = W[ic][n]; + sph_u64 d = W[id][n]; + sph_u64 ab = a ^ b; + sph_u64 bc = b ^ c; + sph_u64 cd = c ^ d; + sph_u64 abx = ((ab & C64(0x8080808080808080)) >> 7) * 27U + ^ ((ab & C64(0x7F7F7F7F7F7F7F7F)) << 1); + sph_u64 bcx = ((bc & C64(0x8080808080808080)) >> 7) * 27U + ^ ((bc & C64(0x7F7F7F7F7F7F7F7F)) << 1); + sph_u64 cdx = ((cd & C64(0x8080808080808080)) >> 7) * 27U + ^ ((cd & C64(0x7F7F7F7F7F7F7F7F)) << 1); + W[ia][n] = abx ^ bc ^ d; + W[ib][n] = bcx ^ a ^ cd; + W[ic][n] = cdx ^ ab ^ d; + W[id][n] = abx ^ bcx ^ cdx ^ ab ^ c; + } +} + +#define MIX_COLUMN(a, b, c, d) mix_column(W, a, b, c, d) + +#else + +#define MIX_COLUMN1(ia, ib, ic, id, n) do { \ + sph_u64 a = W[ia][n]; \ + sph_u64 b = W[ib][n]; \ + sph_u64 c = W[ic][n]; \ + sph_u64 d = W[id][n]; \ + sph_u64 ab = a ^ b; \ + sph_u64 bc = b ^ c; \ + sph_u64 cd = c ^ d; \ + sph_u64 abx = ((ab & C64(0x8080808080808080)) >> 7) * 27U \ + ^ ((ab & C64(0x7F7F7F7F7F7F7F7F)) << 1); \ + sph_u64 bcx = ((bc & C64(0x8080808080808080)) >> 7) * 27U \ + ^ ((bc & C64(0x7F7F7F7F7F7F7F7F)) << 1); \ + sph_u64 cdx = ((cd & C64(0x8080808080808080)) >> 7) * 27U \ + ^ ((cd & C64(0x7F7F7F7F7F7F7F7F)) << 1); \ + W[ia][n] = abx ^ bc ^ d; \ + W[ib][n] = bcx ^ a ^ cd; \ + W[ic][n] = cdx ^ ab ^ d; \ + W[id][n] = abx ^ bcx ^ cdx ^ ab ^ c; \ + } while (0) + +#define MIX_COLUMN(a, b, c, d) do { \ + MIX_COLUMN1(a, b, c, d, 0); \ + MIX_COLUMN1(a, b, c, d, 1); \ + } while (0) + +#endif + +#define BIG_MIX_COLUMNS do { \ + MIX_COLUMN(0, 1, 2, 3); \ + MIX_COLUMN(4, 5, 6, 7); \ + MIX_COLUMN(8, 9, 10, 11); \ + MIX_COLUMN(12, 13, 14, 15); \ + } while (0) + +#define BIG_ROUND do { \ + BIG_SUB_WORDS; \ + BIG_SHIFT_ROWS; \ + BIG_MIX_COLUMNS; \ + } while (0) + +#define FINAL_SMALL do { \ + unsigned u; \ + sph_u64 *VV = &sc->u.Vb[0][0]; \ + sph_u64 *WW = &W[0][0]; \ + for (u = 0; u < 8; u ++) { \ + VV[u] ^= sph_dec64le_aligned(sc->buf + (u * 8)) \ + ^ sph_dec64le_aligned(sc->buf + (u * 8) + 64) \ + ^ sph_dec64le_aligned(sc->buf + (u * 8) + 128) \ + ^ WW[u] ^ WW[u + 8] \ + ^ WW[u + 16] ^ WW[u + 24]; \ + } \ + } while (0) + +#define FINAL_BIG do { \ + unsigned u; \ + sph_u64 *VV = &sc->u.Vb[0][0]; \ + sph_u64 *WW = &W[0][0]; \ + for (u = 0; u < 16; u ++) { \ + VV[u] ^= sph_dec64le_aligned(sc->buf + (u * 8)) \ + ^ WW[u] ^ WW[u + 16]; \ + } \ + } while (0) + +#define COMPRESS_SMALL(sc) do { \ + sph_u32 K0 = sc->C0; \ + sph_u32 K1 = sc->C1; \ + sph_u32 K2 = sc->C2; \ + sph_u32 K3 = sc->C3; \ + unsigned u; \ + INPUT_BLOCK_SMALL(sc); \ + for (u = 0; u < 8; u ++) { \ + BIG_ROUND; \ + } \ + FINAL_SMALL; \ + } while (0) + +#define COMPRESS_BIG(sc) do { \ + sph_u32 K0 = sc->C0; \ + sph_u32 K1 = sc->C1; \ + sph_u32 K2 = sc->C2; \ + sph_u32 K3 = sc->C3; \ + unsigned u; \ + INPUT_BLOCK_BIG(sc); \ + for (u = 0; u < 10; u ++) { \ + BIG_ROUND; \ + } \ + FINAL_BIG; \ + } while (0) + +#else + +#define DECL_STATE_SMALL \ + sph_u32 W[16][4]; + +#define DECL_STATE_BIG \ + sph_u32 W[16][4]; + +#define INPUT_BLOCK_SMALL(sc) do { \ + unsigned u; \ + memcpy(W, sc->u.Vs, 16 * sizeof(sph_u32)); \ + for (u = 0; u < 12; u ++) { \ + W[u + 4][0] = sph_dec32le_aligned( \ + sc->buf + 16 * u); \ + W[u + 4][1] = sph_dec32le_aligned( \ + sc->buf + 16 * u + 4); \ + W[u + 4][2] = sph_dec32le_aligned( \ + sc->buf + 16 * u + 8); \ + W[u + 4][3] = sph_dec32le_aligned( \ + sc->buf + 16 * u + 12); \ + } \ + } while (0) + +#define INPUT_BLOCK_BIG(sc) do { \ + unsigned u; \ + memcpy(W, sc->u.Vs, 32 * sizeof(sph_u32)); \ + for (u = 0; u < 8; u ++) { \ + W[u + 8][0] = sph_dec32le_aligned( \ + sc->buf + 16 * u); \ + W[u + 8][1] = sph_dec32le_aligned( \ + sc->buf + 16 * u + 4); \ + W[u + 8][2] = sph_dec32le_aligned( \ + sc->buf + 16 * u + 8); \ + W[u + 8][3] = sph_dec32le_aligned( \ + sc->buf + 16 * u + 12); \ + } \ + } while (0) + +#if SPH_SMALL_FOOTPRINT_ECHO + +static void +aes_2rounds_all(sph_u32 W[16][4], + sph_u32 *pK0, sph_u32 *pK1, sph_u32 *pK2, sph_u32 *pK3) +{ + int n; + sph_u32 K0 = *pK0; + sph_u32 K1 = *pK1; + sph_u32 K2 = *pK2; + sph_u32 K3 = *pK3; + + for (n = 0; n < 16; n ++) { + sph_u32 *X = W[n]; + sph_u32 Y0, Y1, Y2, Y3; + AES_ROUND_LE(X[0], X[1], X[2], X[3], + K0, K1, K2, K3, Y0, Y1, Y2, Y3); + AES_ROUND_NOKEY_LE(Y0, Y1, Y2, Y3, X[0], X[1], X[2], X[3]); + if ((K0 = T32(K0 + 1)) == 0) { + if ((K1 = T32(K1 + 1)) == 0) + if ((K2 = T32(K2 + 1)) == 0) + K3 = T32(K3 + 1); + } + } + *pK0 = K0; + *pK1 = K1; + *pK2 = K2; + *pK3 = K3; +} + +#define BIG_SUB_WORDS do { \ + aes_2rounds_all(W, &K0, &K1, &K2, &K3); \ + } while (0) + +#else + +#define AES_2ROUNDS(X) do { \ + sph_u32 Y0, Y1, Y2, Y3; \ + AES_ROUND_LE(X[0], X[1], X[2], X[3], \ + K0, K1, K2, K3, Y0, Y1, Y2, Y3); \ + AES_ROUND_NOKEY_LE(Y0, Y1, Y2, Y3, X[0], X[1], X[2], X[3]); \ + if ((K0 = T32(K0 + 1)) == 0) { \ + if ((K1 = T32(K1 + 1)) == 0) \ + if ((K2 = T32(K2 + 1)) == 0) \ + K3 = T32(K3 + 1); \ + } \ + } while (0) + +#define BIG_SUB_WORDS do { \ + AES_2ROUNDS(W[ 0]); \ + AES_2ROUNDS(W[ 1]); \ + AES_2ROUNDS(W[ 2]); \ + AES_2ROUNDS(W[ 3]); \ + AES_2ROUNDS(W[ 4]); \ + AES_2ROUNDS(W[ 5]); \ + AES_2ROUNDS(W[ 6]); \ + AES_2ROUNDS(W[ 7]); \ + AES_2ROUNDS(W[ 8]); \ + AES_2ROUNDS(W[ 9]); \ + AES_2ROUNDS(W[10]); \ + AES_2ROUNDS(W[11]); \ + AES_2ROUNDS(W[12]); \ + AES_2ROUNDS(W[13]); \ + AES_2ROUNDS(W[14]); \ + AES_2ROUNDS(W[15]); \ + } while (0) + +#endif + +#define SHIFT_ROW1(a, b, c, d) do { \ + sph_u32 tmp; \ + tmp = W[a][0]; \ + W[a][0] = W[b][0]; \ + W[b][0] = W[c][0]; \ + W[c][0] = W[d][0]; \ + W[d][0] = tmp; \ + tmp = W[a][1]; \ + W[a][1] = W[b][1]; \ + W[b][1] = W[c][1]; \ + W[c][1] = W[d][1]; \ + W[d][1] = tmp; \ + tmp = W[a][2]; \ + W[a][2] = W[b][2]; \ + W[b][2] = W[c][2]; \ + W[c][2] = W[d][2]; \ + W[d][2] = tmp; \ + tmp = W[a][3]; \ + W[a][3] = W[b][3]; \ + W[b][3] = W[c][3]; \ + W[c][3] = W[d][3]; \ + W[d][3] = tmp; \ + } while (0) + +#define SHIFT_ROW2(a, b, c, d) do { \ + sph_u32 tmp; \ + tmp = W[a][0]; \ + W[a][0] = W[c][0]; \ + W[c][0] = tmp; \ + tmp = W[b][0]; \ + W[b][0] = W[d][0]; \ + W[d][0] = tmp; \ + tmp = W[a][1]; \ + W[a][1] = W[c][1]; \ + W[c][1] = tmp; \ + tmp = W[b][1]; \ + W[b][1] = W[d][1]; \ + W[d][1] = tmp; \ + tmp = W[a][2]; \ + W[a][2] = W[c][2]; \ + W[c][2] = tmp; \ + tmp = W[b][2]; \ + W[b][2] = W[d][2]; \ + W[d][2] = tmp; \ + tmp = W[a][3]; \ + W[a][3] = W[c][3]; \ + W[c][3] = tmp; \ + tmp = W[b][3]; \ + W[b][3] = W[d][3]; \ + W[d][3] = tmp; \ + } while (0) + +#define SHIFT_ROW3(a, b, c, d) SHIFT_ROW1(d, c, b, a) + +#define BIG_SHIFT_ROWS do { \ + SHIFT_ROW1(1, 5, 9, 13); \ + SHIFT_ROW2(2, 6, 10, 14); \ + SHIFT_ROW3(3, 7, 11, 15); \ + } while (0) + +#if SPH_SMALL_FOOTPRINT_ECHO + +static void +mix_column(sph_u32 W[16][4], int ia, int ib, int ic, int id) +{ + int n; + + for (n = 0; n < 4; n ++) { + sph_u32 a = W[ia][n]; + sph_u32 b = W[ib][n]; + sph_u32 c = W[ic][n]; + sph_u32 d = W[id][n]; + sph_u32 ab = a ^ b; + sph_u32 bc = b ^ c; + sph_u32 cd = c ^ d; + sph_u32 abx = ((ab & C32(0x80808080)) >> 7) * 27U + ^ ((ab & C32(0x7F7F7F7F)) << 1); + sph_u32 bcx = ((bc & C32(0x80808080)) >> 7) * 27U + ^ ((bc & C32(0x7F7F7F7F)) << 1); + sph_u32 cdx = ((cd & C32(0x80808080)) >> 7) * 27U + ^ ((cd & C32(0x7F7F7F7F)) << 1); + W[ia][n] = abx ^ bc ^ d; + W[ib][n] = bcx ^ a ^ cd; + W[ic][n] = cdx ^ ab ^ d; + W[id][n] = abx ^ bcx ^ cdx ^ ab ^ c; + } +} + +#define MIX_COLUMN(a, b, c, d) mix_column(W, a, b, c, d) + +#else + +#define MIX_COLUMN1(ia, ib, ic, id, n) do { \ + sph_u32 a = W[ia][n]; \ + sph_u32 b = W[ib][n]; \ + sph_u32 c = W[ic][n]; \ + sph_u32 d = W[id][n]; \ + sph_u32 ab = a ^ b; \ + sph_u32 bc = b ^ c; \ + sph_u32 cd = c ^ d; \ + sph_u32 abx = ((ab & C32(0x80808080)) >> 7) * 27U \ + ^ ((ab & C32(0x7F7F7F7F)) << 1); \ + sph_u32 bcx = ((bc & C32(0x80808080)) >> 7) * 27U \ + ^ ((bc & C32(0x7F7F7F7F)) << 1); \ + sph_u32 cdx = ((cd & C32(0x80808080)) >> 7) * 27U \ + ^ ((cd & C32(0x7F7F7F7F)) << 1); \ + W[ia][n] = abx ^ bc ^ d; \ + W[ib][n] = bcx ^ a ^ cd; \ + W[ic][n] = cdx ^ ab ^ d; \ + W[id][n] = abx ^ bcx ^ cdx ^ ab ^ c; \ + } while (0) + +#define MIX_COLUMN(a, b, c, d) do { \ + MIX_COLUMN1(a, b, c, d, 0); \ + MIX_COLUMN1(a, b, c, d, 1); \ + MIX_COLUMN1(a, b, c, d, 2); \ + MIX_COLUMN1(a, b, c, d, 3); \ + } while (0) + +#endif + +#define BIG_MIX_COLUMNS do { \ + MIX_COLUMN(0, 1, 2, 3); \ + MIX_COLUMN(4, 5, 6, 7); \ + MIX_COLUMN(8, 9, 10, 11); \ + MIX_COLUMN(12, 13, 14, 15); \ + } while (0) + +#define BIG_ROUND do { \ + BIG_SUB_WORDS; \ + BIG_SHIFT_ROWS; \ + BIG_MIX_COLUMNS; \ + } while (0) + +#define FINAL_SMALL do { \ + unsigned u; \ + sph_u32 *VV = &sc->u.Vs[0][0]; \ + sph_u32 *WW = &W[0][0]; \ + for (u = 0; u < 16; u ++) { \ + VV[u] ^= sph_dec32le_aligned(sc->buf + (u * 4)) \ + ^ sph_dec32le_aligned(sc->buf + (u * 4) + 64) \ + ^ sph_dec32le_aligned(sc->buf + (u * 4) + 128) \ + ^ WW[u] ^ WW[u + 16] \ + ^ WW[u + 32] ^ WW[u + 48]; \ + } \ + } while (0) + +#define FINAL_BIG do { \ + unsigned u; \ + sph_u32 *VV = &sc->u.Vs[0][0]; \ + sph_u32 *WW = &W[0][0]; \ + for (u = 0; u < 32; u ++) { \ + VV[u] ^= sph_dec32le_aligned(sc->buf + (u * 4)) \ + ^ WW[u] ^ WW[u + 32]; \ + } \ + } while (0) + +#define COMPRESS_SMALL(sc) do { \ + sph_u32 K0 = sc->C0; \ + sph_u32 K1 = sc->C1; \ + sph_u32 K2 = sc->C2; \ + sph_u32 K3 = sc->C3; \ + unsigned u; \ + INPUT_BLOCK_SMALL(sc); \ + for (u = 0; u < 8; u ++) { \ + BIG_ROUND; \ + } \ + FINAL_SMALL; \ + } while (0) + +#define COMPRESS_BIG(sc) do { \ + sph_u32 K0 = sc->C0; \ + sph_u32 K1 = sc->C1; \ + sph_u32 K2 = sc->C2; \ + sph_u32 K3 = sc->C3; \ + unsigned u; \ + INPUT_BLOCK_BIG(sc); \ + for (u = 0; u < 10; u ++) { \ + BIG_ROUND; \ + } \ + FINAL_BIG; \ + } while (0) + +#endif + +#define INCR_COUNTER(sc, val) do { \ + sc->C0 = T32(sc->C0 + (sph_u32)(val)); \ + if (sc->C0 < (sph_u32)(val)) { \ + if ((sc->C1 = T32(sc->C1 + 1)) == 0) \ + if ((sc->C2 = T32(sc->C2 + 1)) == 0) \ + sc->C3 = T32(sc->C3 + 1); \ + } \ + } while (0) + +static void +echo_small_init(sph_echo_small_context *sc, unsigned out_len) +{ +#if SPH_ECHO_64 + sc->u.Vb[0][0] = (sph_u64)out_len; + sc->u.Vb[0][1] = 0; + sc->u.Vb[1][0] = (sph_u64)out_len; + sc->u.Vb[1][1] = 0; + sc->u.Vb[2][0] = (sph_u64)out_len; + sc->u.Vb[2][1] = 0; + sc->u.Vb[3][0] = (sph_u64)out_len; + sc->u.Vb[3][1] = 0; +#else + sc->u.Vs[0][0] = (sph_u32)out_len; + sc->u.Vs[0][1] = sc->u.Vs[0][2] = sc->u.Vs[0][3] = 0; + sc->u.Vs[1][0] = (sph_u32)out_len; + sc->u.Vs[1][1] = sc->u.Vs[1][2] = sc->u.Vs[1][3] = 0; + sc->u.Vs[2][0] = (sph_u32)out_len; + sc->u.Vs[2][1] = sc->u.Vs[2][2] = sc->u.Vs[2][3] = 0; + sc->u.Vs[3][0] = (sph_u32)out_len; + sc->u.Vs[3][1] = sc->u.Vs[3][2] = sc->u.Vs[3][3] = 0; +#endif + sc->ptr = 0; + sc->C0 = sc->C1 = sc->C2 = sc->C3 = 0; +} + +static void +echo_big_init(sph_echo_big_context *sc, unsigned out_len) +{ +#if SPH_ECHO_64 + sc->u.Vb[0][0] = (sph_u64)out_len; + sc->u.Vb[0][1] = 0; + sc->u.Vb[1][0] = (sph_u64)out_len; + sc->u.Vb[1][1] = 0; + sc->u.Vb[2][0] = (sph_u64)out_len; + sc->u.Vb[2][1] = 0; + sc->u.Vb[3][0] = (sph_u64)out_len; + sc->u.Vb[3][1] = 0; + sc->u.Vb[4][0] = (sph_u64)out_len; + sc->u.Vb[4][1] = 0; + sc->u.Vb[5][0] = (sph_u64)out_len; + sc->u.Vb[5][1] = 0; + sc->u.Vb[6][0] = (sph_u64)out_len; + sc->u.Vb[6][1] = 0; + sc->u.Vb[7][0] = (sph_u64)out_len; + sc->u.Vb[7][1] = 0; +#else + sc->u.Vs[0][0] = (sph_u32)out_len; + sc->u.Vs[0][1] = sc->u.Vs[0][2] = sc->u.Vs[0][3] = 0; + sc->u.Vs[1][0] = (sph_u32)out_len; + sc->u.Vs[1][1] = sc->u.Vs[1][2] = sc->u.Vs[1][3] = 0; + sc->u.Vs[2][0] = (sph_u32)out_len; + sc->u.Vs[2][1] = sc->u.Vs[2][2] = sc->u.Vs[2][3] = 0; + sc->u.Vs[3][0] = (sph_u32)out_len; + sc->u.Vs[3][1] = sc->u.Vs[3][2] = sc->u.Vs[3][3] = 0; + sc->u.Vs[4][0] = (sph_u32)out_len; + sc->u.Vs[4][1] = sc->u.Vs[4][2] = sc->u.Vs[4][3] = 0; + sc->u.Vs[5][0] = (sph_u32)out_len; + sc->u.Vs[5][1] = sc->u.Vs[5][2] = sc->u.Vs[5][3] = 0; + sc->u.Vs[6][0] = (sph_u32)out_len; + sc->u.Vs[6][1] = sc->u.Vs[6][2] = sc->u.Vs[6][3] = 0; + sc->u.Vs[7][0] = (sph_u32)out_len; + sc->u.Vs[7][1] = sc->u.Vs[7][2] = sc->u.Vs[7][3] = 0; +#endif + sc->ptr = 0; + sc->C0 = sc->C1 = sc->C2 = sc->C3 = 0; +} + +static void +echo_small_compress(sph_echo_small_context *sc) +{ + DECL_STATE_SMALL + + COMPRESS_SMALL(sc); +} + +static void +echo_big_compress(sph_echo_big_context *sc) +{ + DECL_STATE_BIG + + COMPRESS_BIG(sc); +} + +static void +echo_small_core(sph_echo_small_context *sc, + const unsigned char *data, size_t len) +{ + unsigned char *buf; + size_t ptr; + + buf = sc->buf; + ptr = sc->ptr; + if (len < (sizeof sc->buf) - ptr) { + memcpy(buf + ptr, data, len); + ptr += len; + sc->ptr = ptr; + return; + } + + while (len > 0) { + size_t clen; + + clen = (sizeof sc->buf) - ptr; + if (clen > len) + clen = len; + memcpy(buf + ptr, data, clen); + ptr += clen; + data += clen; + len -= clen; + if (ptr == sizeof sc->buf) { + INCR_COUNTER(sc, 1536); + echo_small_compress(sc); + ptr = 0; + } + } + sc->ptr = ptr; +} + +static void +echo_big_core(sph_echo_big_context *sc, + const unsigned char *data, size_t len) +{ + unsigned char *buf; + size_t ptr; + + buf = sc->buf; + ptr = sc->ptr; + if (len < (sizeof sc->buf) - ptr) { + memcpy(buf + ptr, data, len); + ptr += len; + sc->ptr = ptr; + return; + } + + while (len > 0) { + size_t clen; + + clen = (sizeof sc->buf) - ptr; + if (clen > len) + clen = len; + memcpy(buf + ptr, data, clen); + ptr += clen; + data += clen; + len -= clen; + if (ptr == sizeof sc->buf) { + INCR_COUNTER(sc, 1024); + echo_big_compress(sc); + ptr = 0; + } + } + sc->ptr = ptr; +} + +static void +echo_small_close(sph_echo_small_context *sc, unsigned ub, unsigned n, + void *dst, unsigned out_size_w32) +{ + unsigned char *buf; + size_t ptr; + unsigned z; + unsigned elen; + union { + unsigned char tmp[32]; + sph_u32 dummy; +#if SPH_ECHO_64 + sph_u64 dummy2; +#endif + } u; +#if SPH_ECHO_64 + sph_u64 *VV; +#else + sph_u32 *VV; +#endif + unsigned k; + + buf = sc->buf; + ptr = sc->ptr; + elen = ((unsigned)ptr << 3) + n; + INCR_COUNTER(sc, elen); + sph_enc32le_aligned(u.tmp, sc->C0); + sph_enc32le_aligned(u.tmp + 4, sc->C1); + sph_enc32le_aligned(u.tmp + 8, sc->C2); + sph_enc32le_aligned(u.tmp + 12, sc->C3); + /* + * If elen is zero, then this block actually contains no message + * bit, only the first padding bit. + */ + if (elen == 0) { + sc->C0 = sc->C1 = sc->C2 = sc->C3 = 0; + } + z = 0x80 >> n; + buf[ptr ++] = ((ub & -z) | z) & 0xFF; + memset(buf + ptr, 0, (sizeof sc->buf) - ptr); + if (ptr > ((sizeof sc->buf) - 18)) { + echo_small_compress(sc); + sc->C0 = sc->C1 = sc->C2 = sc->C3 = 0; + memset(buf, 0, sizeof sc->buf); + } + sph_enc16le(buf + (sizeof sc->buf) - 18, out_size_w32 << 5); + memcpy(buf + (sizeof sc->buf) - 16, u.tmp, 16); + echo_small_compress(sc); +#if SPH_ECHO_64 + for (VV = &sc->u.Vb[0][0], k = 0; k < ((out_size_w32 + 1) >> 1); k ++) + sph_enc64le_aligned(u.tmp + (k << 3), VV[k]); +#else + for (VV = &sc->u.Vs[0][0], k = 0; k < out_size_w32; k ++) + sph_enc32le_aligned(u.tmp + (k << 2), VV[k]); +#endif + memcpy(dst, u.tmp, out_size_w32 << 2); + echo_small_init(sc, out_size_w32 << 5); +} + +static void +echo_big_close(sph_echo_big_context *sc, unsigned ub, unsigned n, + void *dst, unsigned out_size_w32) +{ + unsigned char *buf; + size_t ptr; + unsigned z; + unsigned elen; + union { + unsigned char tmp[64]; + sph_u32 dummy; +#if SPH_ECHO_64 + sph_u64 dummy2; +#endif + } u; +#if SPH_ECHO_64 + sph_u64 *VV; +#else + sph_u32 *VV; +#endif + unsigned k; + + buf = sc->buf; + ptr = sc->ptr; + elen = ((unsigned)ptr << 3) + n; + INCR_COUNTER(sc, elen); + sph_enc32le_aligned(u.tmp, sc->C0); + sph_enc32le_aligned(u.tmp + 4, sc->C1); + sph_enc32le_aligned(u.tmp + 8, sc->C2); + sph_enc32le_aligned(u.tmp + 12, sc->C3); + /* + * If elen is zero, then this block actually contains no message + * bit, only the first padding bit. + */ + if (elen == 0) { + sc->C0 = sc->C1 = sc->C2 = sc->C3 = 0; + } + z = 0x80 >> n; + buf[ptr ++] = ((ub & -z) | z) & 0xFF; + memset(buf + ptr, 0, (sizeof sc->buf) - ptr); + if (ptr > ((sizeof sc->buf) - 18)) { + echo_big_compress(sc); + sc->C0 = sc->C1 = sc->C2 = sc->C3 = 0; + memset(buf, 0, sizeof sc->buf); + } + sph_enc16le(buf + (sizeof sc->buf) - 18, out_size_w32 << 5); + memcpy(buf + (sizeof sc->buf) - 16, u.tmp, 16); + echo_big_compress(sc); +#if SPH_ECHO_64 + for (VV = &sc->u.Vb[0][0], k = 0; k < ((out_size_w32 + 1) >> 1); k ++) + sph_enc64le_aligned(u.tmp + (k << 3), VV[k]); +#else + for (VV = &sc->u.Vs[0][0], k = 0; k < out_size_w32; k ++) + sph_enc32le_aligned(u.tmp + (k << 2), VV[k]); +#endif + memcpy(dst, u.tmp, out_size_w32 << 2); + echo_big_init(sc, out_size_w32 << 5); +} + +/* see sph_echo.h */ +void +sph_echo224_init(void *cc) +{ + echo_small_init(cc, 224); +} + +/* see sph_echo.h */ +void +sph_echo224(void *cc, const void *data, size_t len) +{ + echo_small_core(cc, data, len); +} + +/* see sph_echo.h */ +void +sph_echo224_close(void *cc, void *dst) +{ + echo_small_close(cc, 0, 0, dst, 7); +} + +/* see sph_echo.h */ +void +sph_echo224_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst) +{ + echo_small_close(cc, ub, n, dst, 7); +} + +/* see sph_echo.h */ +void +sph_echo256_init(void *cc) +{ + echo_small_init(cc, 256); +} + +/* see sph_echo.h */ +void +sph_echo256(void *cc, const void *data, size_t len) +{ + echo_small_core(cc, data, len); +} + +/* see sph_echo.h */ +void +sph_echo256_close(void *cc, void *dst) +{ + echo_small_close(cc, 0, 0, dst, 8); +} + +/* see sph_echo.h */ +void +sph_echo256_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst) +{ + echo_small_close(cc, ub, n, dst, 8); +} + +/* see sph_echo.h */ +void +sph_echo384_init(void *cc) +{ + echo_big_init(cc, 384); +} + +/* see sph_echo.h */ +void +sph_echo384(void *cc, const void *data, size_t len) +{ + echo_big_core(cc, data, len); +} + +/* see sph_echo.h */ +void +sph_echo384_close(void *cc, void *dst) +{ + echo_big_close(cc, 0, 0, dst, 12); +} + +/* see sph_echo.h */ +void +sph_echo384_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst) +{ + echo_big_close(cc, ub, n, dst, 12); +} + +/* see sph_echo.h */ +void +sph_echo512_init(void *cc) +{ + echo_big_init(cc, 512); +} + +/* see sph_echo.h */ +void +sph_echo512(void *cc, const void *data, size_t len) +{ + echo_big_core(cc, data, len); +} + +/* see sph_echo.h */ +void +sph_echo512_close(void *cc, void *dst) +{ + echo_big_close(cc, 0, 0, dst, 16); +} + +/* see sph_echo.h */ +void +sph_echo512_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst) +{ + echo_big_close(cc, ub, n, dst, 16); +} +#ifdef __cplusplus +} +#endif diff --git a/crypto/sha3/sph_echo.h b/crypto/sha3/sph_echo.h new file mode 100644 index 000000000..1ae1e3dd6 --- /dev/null +++ b/crypto/sha3/sph_echo.h @@ -0,0 +1,320 @@ +/* $Id: sph_echo.h 216 2010-06-08 09:46:57Z tp $ */ +/** + * ECHO interface. ECHO is a family of functions which differ by + * their output size; this implementation defines ECHO for output + * sizes 224, 256, 384 and 512 bits. + * + * ==========================(LICENSE BEGIN)============================ + * + * Copyright (c) 2007-2010 Projet RNRT SAPHIR + * + * Permission is hereby granted, free of charge, to any person obtaining + * a copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sublicense, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * The above copyright notice and this permission notice shall be + * included in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + * + * ===========================(LICENSE END)============================= + * + * @file sph_echo.h + * @author Thomas Pornin + */ + +#ifndef SPH_ECHO_H__ +#define SPH_ECHO_H__ + +#ifdef __cplusplus +extern "C"{ +#endif + +#include +#include "sph_types.h" + +/** + * Output size (in bits) for ECHO-224. + */ +#define SPH_SIZE_echo224 224 + +/** + * Output size (in bits) for ECHO-256. + */ +#define SPH_SIZE_echo256 256 + +/** + * Output size (in bits) for ECHO-384. + */ +#define SPH_SIZE_echo384 384 + +/** + * Output size (in bits) for ECHO-512. + */ +#define SPH_SIZE_echo512 512 + +/** + * This structure is a context for ECHO computations: it contains the + * intermediate values and some data from the last entered block. Once + * an ECHO computation has been performed, the context can be reused for + * another computation. This specific structure is used for ECHO-224 + * and ECHO-256. + * + * The contents of this structure are private. A running ECHO computation + * can be cloned by copying the context (e.g. with a simple + * memcpy()). + */ +typedef struct { +#ifndef DOXYGEN_IGNORE + unsigned char buf[192]; /* first field, for alignment */ + size_t ptr; + union { + sph_u32 Vs[4][4]; +#if SPH_64 + sph_u64 Vb[4][2]; +#endif + } u; + sph_u32 C0, C1, C2, C3; +#endif +} sph_echo_small_context; + +/** + * This structure is a context for ECHO computations: it contains the + * intermediate values and some data from the last entered block. Once + * an ECHO computation has been performed, the context can be reused for + * another computation. This specific structure is used for ECHO-384 + * and ECHO-512. + * + * The contents of this structure are private. A running ECHO computation + * can be cloned by copying the context (e.g. with a simple + * memcpy()). + */ +typedef struct { +#ifndef DOXYGEN_IGNORE + unsigned char buf[128]; /* first field, for alignment */ + size_t ptr; + union { + sph_u32 Vs[8][4]; +#if SPH_64 + sph_u64 Vb[8][2]; +#endif + } u; + sph_u32 C0, C1, C2, C3; +#endif +} sph_echo_big_context; + +/** + * Type for a ECHO-224 context (identical to the common "small" context). + */ +typedef sph_echo_small_context sph_echo224_context; + +/** + * Type for a ECHO-256 context (identical to the common "small" context). + */ +typedef sph_echo_small_context sph_echo256_context; + +/** + * Type for a ECHO-384 context (identical to the common "big" context). + */ +typedef sph_echo_big_context sph_echo384_context; + +/** + * Type for a ECHO-512 context (identical to the common "big" context). + */ +typedef sph_echo_big_context sph_echo512_context; + +/** + * Initialize an ECHO-224 context. This process performs no memory allocation. + * + * @param cc the ECHO-224 context (pointer to a + * sph_echo224_context) + */ +void sph_echo224_init(void *cc); + +/** + * Process some data bytes. It is acceptable that len is zero + * (in which case this function does nothing). + * + * @param cc the ECHO-224 context + * @param data the input data + * @param len the input data length (in bytes) + */ +void sph_echo224(void *cc, const void *data, size_t len); + +/** + * Terminate the current ECHO-224 computation and output the result into + * the provided buffer. The destination buffer must be wide enough to + * accomodate the result (28 bytes). The context is automatically + * reinitialized. + * + * @param cc the ECHO-224 context + * @param dst the destination buffer + */ +void sph_echo224_close(void *cc, void *dst); + +/** + * Add a few additional bits (0 to 7) to the current computation, then + * terminate it and output the result in the provided buffer, which must + * be wide enough to accomodate the result (28 bytes). If bit number i + * in ub has value 2^i, then the extra bits are those + * numbered 7 downto 8-n (this is the big-endian convention at the byte + * level). The context is automatically reinitialized. + * + * @param cc the ECHO-224 context + * @param ub the extra bits + * @param n the number of extra bits (0 to 7) + * @param dst the destination buffer + */ +void sph_echo224_addbits_and_close( + void *cc, unsigned ub, unsigned n, void *dst); + +/** + * Initialize an ECHO-256 context. This process performs no memory allocation. + * + * @param cc the ECHO-256 context (pointer to a + * sph_echo256_context) + */ +void sph_echo256_init(void *cc); + +/** + * Process some data bytes. It is acceptable that len is zero + * (in which case this function does nothing). + * + * @param cc the ECHO-256 context + * @param data the input data + * @param len the input data length (in bytes) + */ +void sph_echo256(void *cc, const void *data, size_t len); + +/** + * Terminate the current ECHO-256 computation and output the result into + * the provided buffer. The destination buffer must be wide enough to + * accomodate the result (32 bytes). The context is automatically + * reinitialized. + * + * @param cc the ECHO-256 context + * @param dst the destination buffer + */ +void sph_echo256_close(void *cc, void *dst); + +/** + * Add a few additional bits (0 to 7) to the current computation, then + * terminate it and output the result in the provided buffer, which must + * be wide enough to accomodate the result (32 bytes). If bit number i + * in ub has value 2^i, then the extra bits are those + * numbered 7 downto 8-n (this is the big-endian convention at the byte + * level). The context is automatically reinitialized. + * + * @param cc the ECHO-256 context + * @param ub the extra bits + * @param n the number of extra bits (0 to 7) + * @param dst the destination buffer + */ +void sph_echo256_addbits_and_close( + void *cc, unsigned ub, unsigned n, void *dst); + +/** + * Initialize an ECHO-384 context. This process performs no memory allocation. + * + * @param cc the ECHO-384 context (pointer to a + * sph_echo384_context) + */ +void sph_echo384_init(void *cc); + +/** + * Process some data bytes. It is acceptable that len is zero + * (in which case this function does nothing). + * + * @param cc the ECHO-384 context + * @param data the input data + * @param len the input data length (in bytes) + */ +void sph_echo384(void *cc, const void *data, size_t len); + +/** + * Terminate the current ECHO-384 computation and output the result into + * the provided buffer. The destination buffer must be wide enough to + * accomodate the result (48 bytes). The context is automatically + * reinitialized. + * + * @param cc the ECHO-384 context + * @param dst the destination buffer + */ +void sph_echo384_close(void *cc, void *dst); + +/** + * Add a few additional bits (0 to 7) to the current computation, then + * terminate it and output the result in the provided buffer, which must + * be wide enough to accomodate the result (48 bytes). If bit number i + * in ub has value 2^i, then the extra bits are those + * numbered 7 downto 8-n (this is the big-endian convention at the byte + * level). The context is automatically reinitialized. + * + * @param cc the ECHO-384 context + * @param ub the extra bits + * @param n the number of extra bits (0 to 7) + * @param dst the destination buffer + */ +void sph_echo384_addbits_and_close( + void *cc, unsigned ub, unsigned n, void *dst); + +/** + * Initialize an ECHO-512 context. This process performs no memory allocation. + * + * @param cc the ECHO-512 context (pointer to a + * sph_echo512_context) + */ +void sph_echo512_init(void *cc); + +/** + * Process some data bytes. It is acceptable that len is zero + * (in which case this function does nothing). + * + * @param cc the ECHO-512 context + * @param data the input data + * @param len the input data length (in bytes) + */ +void sph_echo512(void *cc, const void *data, size_t len); + +/** + * Terminate the current ECHO-512 computation and output the result into + * the provided buffer. The destination buffer must be wide enough to + * accomodate the result (64 bytes). The context is automatically + * reinitialized. + * + * @param cc the ECHO-512 context + * @param dst the destination buffer + */ +void sph_echo512_close(void *cc, void *dst); + +/** + * Add a few additional bits (0 to 7) to the current computation, then + * terminate it and output the result in the provided buffer, which must + * be wide enough to accomodate the result (64 bytes). If bit number i + * in ub has value 2^i, then the extra bits are those + * numbered 7 downto 8-n (this is the big-endian convention at the byte + * level). The context is automatically reinitialized. + * + * @param cc the ECHO-512 context + * @param ub the extra bits + * @param n the number of extra bits (0 to 7) + * @param dst the destination buffer + */ +void sph_echo512_addbits_and_close( + void *cc, unsigned ub, unsigned n, void *dst); + +#ifdef __cplusplus +} +#endif + +#endif diff --git a/crypto/sha3/sph_groestl.h b/crypto/sha3/sph_groestl.h new file mode 100644 index 000000000..495f05e21 --- /dev/null +++ b/crypto/sha3/sph_groestl.h @@ -0,0 +1,329 @@ +/* $Id: sph_groestl.h 216 2010-06-08 09:46:57Z tp $ */ +/** + * Groestl interface. This code implements Groestl with the recommended + * parameters for SHA-3, with outputs of 224, 256, 384 and 512 bits. + * + * ==========================(LICENSE BEGIN)============================ + * + * Copyright (c) 2007-2010 Projet RNRT SAPHIR + * + * Permission is hereby granted, free of charge, to any person obtaining + * a copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sublicense, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * The above copyright notice and this permission notice shall be + * included in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + * + * ===========================(LICENSE END)============================= + * + * @file sph_groestl.h + * @author Thomas Pornin + */ + +#ifndef SPH_GROESTL_H__ +#define SPH_GROESTL_H__ + +#ifdef __cplusplus +extern "C"{ +#endif + +#include +#include "sph_types.h" + +/** + * Output size (in bits) for Groestl-224. + */ +#define SPH_SIZE_groestl224 224 + +/** + * Output size (in bits) for Groestl-256. + */ +#define SPH_SIZE_groestl256 256 + +/** + * Output size (in bits) for Groestl-384. + */ +#define SPH_SIZE_groestl384 384 + +/** + * Output size (in bits) for Groestl-512. + */ +#define SPH_SIZE_groestl512 512 + +/** + * This structure is a context for Groestl-224 and Groestl-256 computations: + * it contains the intermediate values and some data from the last + * entered block. Once a Groestl computation has been performed, the + * context can be reused for another computation. + * + * The contents of this structure are private. A running Groestl + * computation can be cloned by copying the context (e.g. with a simple + * memcpy()). + */ +typedef struct { +#ifndef DOXYGEN_IGNORE + unsigned char buf[64]; /* first field, for alignment */ + size_t ptr; + union { +#if SPH_64 + sph_u64 wide[8]; +#endif + sph_u32 narrow[16]; + } state; +#if SPH_64 + sph_u64 count; +#else + sph_u32 count_high, count_low; +#endif +#endif +} sph_groestl_small_context; + +/** + * This structure is a context for Groestl-224 computations. It is + * identical to the common sph_groestl_small_context. + */ +typedef sph_groestl_small_context sph_groestl224_context; + +/** + * This structure is a context for Groestl-256 computations. It is + * identical to the common sph_groestl_small_context. + */ +typedef sph_groestl_small_context sph_groestl256_context; + +/** + * This structure is a context for Groestl-384 and Groestl-512 computations: + * it contains the intermediate values and some data from the last + * entered block. Once a Groestl computation has been performed, the + * context can be reused for another computation. + * + * The contents of this structure are private. A running Groestl + * computation can be cloned by copying the context (e.g. with a simple + * memcpy()). + */ +typedef struct { +#ifndef DOXYGEN_IGNORE + unsigned char buf[128]; /* first field, for alignment */ + size_t ptr; + union { +#if SPH_64 + sph_u64 wide[16]; +#endif + sph_u32 narrow[32]; + } state; +#if SPH_64 + sph_u64 count; +#else + sph_u32 count_high, count_low; +#endif +#endif +} sph_groestl_big_context; + +/** + * This structure is a context for Groestl-384 computations. It is + * identical to the common sph_groestl_small_context. + */ +typedef sph_groestl_big_context sph_groestl384_context; + +/** + * This structure is a context for Groestl-512 computations. It is + * identical to the common sph_groestl_small_context. + */ +typedef sph_groestl_big_context sph_groestl512_context; + +/** + * Initialize a Groestl-224 context. This process performs no memory allocation. + * + * @param cc the Groestl-224 context (pointer to a + * sph_groestl224_context) + */ +void sph_groestl224_init(void *cc); + +/** + * Process some data bytes. It is acceptable that len is zero + * (in which case this function does nothing). + * + * @param cc the Groestl-224 context + * @param data the input data + * @param len the input data length (in bytes) + */ +void sph_groestl224(void *cc, const void *data, size_t len); + +/** + * Terminate the current Groestl-224 computation and output the result into + * the provided buffer. The destination buffer must be wide enough to + * accomodate the result (28 bytes). The context is automatically + * reinitialized. + * + * @param cc the Groestl-224 context + * @param dst the destination buffer + */ +void sph_groestl224_close(void *cc, void *dst); + +/** + * Add a few additional bits (0 to 7) to the current computation, then + * terminate it and output the result in the provided buffer, which must + * be wide enough to accomodate the result (28 bytes). If bit number i + * in ub has value 2^i, then the extra bits are those + * numbered 7 downto 8-n (this is the big-endian convention at the byte + * level). The context is automatically reinitialized. + * + * @param cc the Groestl-224 context + * @param ub the extra bits + * @param n the number of extra bits (0 to 7) + * @param dst the destination buffer + */ +void sph_groestl224_addbits_and_close( + void *cc, unsigned ub, unsigned n, void *dst); + +/** + * Initialize a Groestl-256 context. This process performs no memory allocation. + * + * @param cc the Groestl-256 context (pointer to a + * sph_groestl256_context) + */ +void sph_groestl256_init(void *cc); + +/** + * Process some data bytes. It is acceptable that len is zero + * (in which case this function does nothing). + * + * @param cc the Groestl-256 context + * @param data the input data + * @param len the input data length (in bytes) + */ +void sph_groestl256(void *cc, const void *data, size_t len); + +/** + * Terminate the current Groestl-256 computation and output the result into + * the provided buffer. The destination buffer must be wide enough to + * accomodate the result (32 bytes). The context is automatically + * reinitialized. + * + * @param cc the Groestl-256 context + * @param dst the destination buffer + */ +void sph_groestl256_close(void *cc, void *dst); + +/** + * Add a few additional bits (0 to 7) to the current computation, then + * terminate it and output the result in the provided buffer, which must + * be wide enough to accomodate the result (32 bytes). If bit number i + * in ub has value 2^i, then the extra bits are those + * numbered 7 downto 8-n (this is the big-endian convention at the byte + * level). The context is automatically reinitialized. + * + * @param cc the Groestl-256 context + * @param ub the extra bits + * @param n the number of extra bits (0 to 7) + * @param dst the destination buffer + */ +void sph_groestl256_addbits_and_close( + void *cc, unsigned ub, unsigned n, void *dst); + +/** + * Initialize a Groestl-384 context. This process performs no memory allocation. + * + * @param cc the Groestl-384 context (pointer to a + * sph_groestl384_context) + */ +void sph_groestl384_init(void *cc); + +/** + * Process some data bytes. It is acceptable that len is zero + * (in which case this function does nothing). + * + * @param cc the Groestl-384 context + * @param data the input data + * @param len the input data length (in bytes) + */ +void sph_groestl384(void *cc, const void *data, size_t len); + +/** + * Terminate the current Groestl-384 computation and output the result into + * the provided buffer. The destination buffer must be wide enough to + * accomodate the result (48 bytes). The context is automatically + * reinitialized. + * + * @param cc the Groestl-384 context + * @param dst the destination buffer + */ +void sph_groestl384_close(void *cc, void *dst); + +/** + * Add a few additional bits (0 to 7) to the current computation, then + * terminate it and output the result in the provided buffer, which must + * be wide enough to accomodate the result (48 bytes). If bit number i + * in ub has value 2^i, then the extra bits are those + * numbered 7 downto 8-n (this is the big-endian convention at the byte + * level). The context is automatically reinitialized. + * + * @param cc the Groestl-384 context + * @param ub the extra bits + * @param n the number of extra bits (0 to 7) + * @param dst the destination buffer + */ +void sph_groestl384_addbits_and_close( + void *cc, unsigned ub, unsigned n, void *dst); + +/** + * Initialize a Groestl-512 context. This process performs no memory allocation. + * + * @param cc the Groestl-512 context (pointer to a + * sph_groestl512_context) + */ +void sph_groestl512_init(void *cc); + +/** + * Process some data bytes. It is acceptable that len is zero + * (in which case this function does nothing). + * + * @param cc the Groestl-512 context + * @param data the input data + * @param len the input data length (in bytes) + */ +void sph_groestl512(void *cc, const void *data, size_t len); + +/** + * Terminate the current Groestl-512 computation and output the result into + * the provided buffer. The destination buffer must be wide enough to + * accomodate the result (64 bytes). The context is automatically + * reinitialized. + * + * @param cc the Groestl-512 context + * @param dst the destination buffer + */ +void sph_groestl512_close(void *cc, void *dst); + +/** + * Add a few additional bits (0 to 7) to the current computation, then + * terminate it and output the result in the provided buffer, which must + * be wide enough to accomodate the result (64 bytes). If bit number i + * in ub has value 2^i, then the extra bits are those + * numbered 7 downto 8-n (this is the big-endian convention at the byte + * level). The context is automatically reinitialized. + * + * @param cc the Groestl-512 context + * @param ub the extra bits + * @param n the number of extra bits (0 to 7) + * @param dst the destination buffer + */ +void sph_groestl512_addbits_and_close( + void *cc, unsigned ub, unsigned n, void *dst); + +#ifdef __cplusplus +} +#endif + +#endif diff --git a/crypto/sha3/sph_keccak.h b/crypto/sha3/sph_keccak.h new file mode 100644 index 000000000..bdafdb88d --- /dev/null +++ b/crypto/sha3/sph_keccak.h @@ -0,0 +1,293 @@ +/* $Id: sph_keccak.h 216 2010-06-08 09:46:57Z tp $ */ +/** + * Keccak interface. This is the interface for Keccak with the + * recommended parameters for SHA-3, with output lengths 224, 256, + * 384 and 512 bits. + * + * ==========================(LICENSE BEGIN)============================ + * + * Copyright (c) 2007-2010 Projet RNRT SAPHIR + * + * Permission is hereby granted, free of charge, to any person obtaining + * a copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sublicense, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * The above copyright notice and this permission notice shall be + * included in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + * + * ===========================(LICENSE END)============================= + * + * @file sph_keccak.h + * @author Thomas Pornin + */ + +#ifndef SPH_KECCAK_H__ +#define SPH_KECCAK_H__ + +#ifdef __cplusplus +extern "C"{ +#endif + +#include +#include "sph_types.h" + +/** + * Output size (in bits) for Keccak-224. + */ +#define SPH_SIZE_keccak224 224 + +/** + * Output size (in bits) for Keccak-256. + */ +#define SPH_SIZE_keccak256 256 + +/** + * Output size (in bits) for Keccak-384. + */ +#define SPH_SIZE_keccak384 384 + +/** + * Output size (in bits) for Keccak-512. + */ +#define SPH_SIZE_keccak512 512 + +/** + * This structure is a context for Keccak computations: it contains the + * intermediate values and some data from the last entered block. Once a + * Keccak computation has been performed, the context can be reused for + * another computation. + * + * The contents of this structure are private. A running Keccak computation + * can be cloned by copying the context (e.g. with a simple + * memcpy()). + */ +typedef struct { +#ifndef DOXYGEN_IGNORE + unsigned char buf[144]; /* first field, for alignment */ + size_t ptr, lim; + union { +#if SPH_64 + sph_u64 wide[25]; +#endif + sph_u32 narrow[50]; + } u; +#endif +} sph_keccak_context; + +/** + * Type for a Keccak-224 context (identical to the common context). + */ +typedef sph_keccak_context sph_keccak224_context; + +/** + * Type for a Keccak-256 context (identical to the common context). + */ +typedef sph_keccak_context sph_keccak256_context; + +/** + * Type for a Keccak-384 context (identical to the common context). + */ +typedef sph_keccak_context sph_keccak384_context; + +/** + * Type for a Keccak-512 context (identical to the common context). + */ +typedef sph_keccak_context sph_keccak512_context; + +/** + * Initialize a Keccak-224 context. This process performs no memory allocation. + * + * @param cc the Keccak-224 context (pointer to a + * sph_keccak224_context) + */ +void sph_keccak224_init(void *cc); + +/** + * Process some data bytes. It is acceptable that len is zero + * (in which case this function does nothing). + * + * @param cc the Keccak-224 context + * @param data the input data + * @param len the input data length (in bytes) + */ +void sph_keccak224(void *cc, const void *data, size_t len); + +/** + * Terminate the current Keccak-224 computation and output the result into + * the provided buffer. The destination buffer must be wide enough to + * accomodate the result (28 bytes). The context is automatically + * reinitialized. + * + * @param cc the Keccak-224 context + * @param dst the destination buffer + */ +void sph_keccak224_close(void *cc, void *dst); + +/** + * Add a few additional bits (0 to 7) to the current computation, then + * terminate it and output the result in the provided buffer, which must + * be wide enough to accomodate the result (28 bytes). If bit number i + * in ub has value 2^i, then the extra bits are those + * numbered 7 downto 8-n (this is the big-endian convention at the byte + * level). The context is automatically reinitialized. + * + * @param cc the Keccak-224 context + * @param ub the extra bits + * @param n the number of extra bits (0 to 7) + * @param dst the destination buffer + */ +void sph_keccak224_addbits_and_close( + void *cc, unsigned ub, unsigned n, void *dst); + +/** + * Initialize a Keccak-256 context. This process performs no memory allocation. + * + * @param cc the Keccak-256 context (pointer to a + * sph_keccak256_context) + */ +void sph_keccak256_init(void *cc); + +/** + * Process some data bytes. It is acceptable that len is zero + * (in which case this function does nothing). + * + * @param cc the Keccak-256 context + * @param data the input data + * @param len the input data length (in bytes) + */ +void sph_keccak256(void *cc, const void *data, size_t len); + +/** + * Terminate the current Keccak-256 computation and output the result into + * the provided buffer. The destination buffer must be wide enough to + * accomodate the result (32 bytes). The context is automatically + * reinitialized. + * + * @param cc the Keccak-256 context + * @param dst the destination buffer + */ +void sph_keccak256_close(void *cc, void *dst); + +/** + * Add a few additional bits (0 to 7) to the current computation, then + * terminate it and output the result in the provided buffer, which must + * be wide enough to accomodate the result (32 bytes). If bit number i + * in ub has value 2^i, then the extra bits are those + * numbered 7 downto 8-n (this is the big-endian convention at the byte + * level). The context is automatically reinitialized. + * + * @param cc the Keccak-256 context + * @param ub the extra bits + * @param n the number of extra bits (0 to 7) + * @param dst the destination buffer + */ +void sph_keccak256_addbits_and_close( + void *cc, unsigned ub, unsigned n, void *dst); + +/** + * Initialize a Keccak-384 context. This process performs no memory allocation. + * + * @param cc the Keccak-384 context (pointer to a + * sph_keccak384_context) + */ +void sph_keccak384_init(void *cc); + +/** + * Process some data bytes. It is acceptable that len is zero + * (in which case this function does nothing). + * + * @param cc the Keccak-384 context + * @param data the input data + * @param len the input data length (in bytes) + */ +void sph_keccak384(void *cc, const void *data, size_t len); + +/** + * Terminate the current Keccak-384 computation and output the result into + * the provided buffer. The destination buffer must be wide enough to + * accomodate the result (48 bytes). The context is automatically + * reinitialized. + * + * @param cc the Keccak-384 context + * @param dst the destination buffer + */ +void sph_keccak384_close(void *cc, void *dst); + +/** + * Add a few additional bits (0 to 7) to the current computation, then + * terminate it and output the result in the provided buffer, which must + * be wide enough to accomodate the result (48 bytes). If bit number i + * in ub has value 2^i, then the extra bits are those + * numbered 7 downto 8-n (this is the big-endian convention at the byte + * level). The context is automatically reinitialized. + * + * @param cc the Keccak-384 context + * @param ub the extra bits + * @param n the number of extra bits (0 to 7) + * @param dst the destination buffer + */ +void sph_keccak384_addbits_and_close( + void *cc, unsigned ub, unsigned n, void *dst); + +/** + * Initialize a Keccak-512 context. This process performs no memory allocation. + * + * @param cc the Keccak-512 context (pointer to a + * sph_keccak512_context) + */ +void sph_keccak512_init(void *cc); + +/** + * Process some data bytes. It is acceptable that len is zero + * (in which case this function does nothing). + * + * @param cc the Keccak-512 context + * @param data the input data + * @param len the input data length (in bytes) + */ +void sph_keccak512(void *cc, const void *data, size_t len); + +/** + * Terminate the current Keccak-512 computation and output the result into + * the provided buffer. The destination buffer must be wide enough to + * accomodate the result (64 bytes). The context is automatically + * reinitialized. + * + * @param cc the Keccak-512 context + * @param dst the destination buffer + */ +void sph_keccak512_close(void *cc, void *dst); + +/** + * Add a few additional bits (0 to 7) to the current computation, then + * terminate it and output the result in the provided buffer, which must + * be wide enough to accomodate the result (64 bytes). If bit number i + * in ub has value 2^i, then the extra bits are those + * numbered 7 downto 8-n (this is the big-endian convention at the byte + * level). The context is automatically reinitialized. + * + * @param cc the Keccak-512 context + * @param ub the extra bits + * @param n the number of extra bits (0 to 7) + * @param dst the destination buffer + */ +void sph_keccak512_addbits_and_close( + void *cc, unsigned ub, unsigned n, void *dst); + +#ifdef __cplusplus +} +#endif + +#endif diff --git a/crypto/sha3/sph_luffa.c b/crypto/sha3/sph_luffa.c new file mode 100644 index 000000000..a761bea0a --- /dev/null +++ b/crypto/sha3/sph_luffa.c @@ -0,0 +1,1426 @@ +/* $Id: luffa.c 219 2010-06-08 17:24:41Z tp $ */ +/* + * Luffa implementation. + * + * ==========================(LICENSE BEGIN)============================ + * + * Copyright (c) 2007-2010 Projet RNRT SAPHIR + * + * Permission is hereby granted, free of charge, to any person obtaining + * a copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sublicense, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * The above copyright notice and this permission notice shall be + * included in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + * + * ===========================(LICENSE END)============================= + * + * @author Thomas Pornin + */ + +#include +#include +#include + +#include "sph_luffa.h" + +#ifdef __cplusplus +extern "C"{ +#endif + +#if SPH_64_TRUE && !defined SPH_LUFFA_PARALLEL +#define SPH_LUFFA_PARALLEL 1 +#endif + +#ifdef _MSC_VER +#pragma warning (disable: 4146) +#endif + +static const sph_u32 V_INIT[5][8] = { + { + SPH_C32(0x6d251e69), SPH_C32(0x44b051e0), + SPH_C32(0x4eaa6fb4), SPH_C32(0xdbf78465), + SPH_C32(0x6e292011), SPH_C32(0x90152df4), + SPH_C32(0xee058139), SPH_C32(0xdef610bb) + }, { + SPH_C32(0xc3b44b95), SPH_C32(0xd9d2f256), + SPH_C32(0x70eee9a0), SPH_C32(0xde099fa3), + SPH_C32(0x5d9b0557), SPH_C32(0x8fc944b3), + SPH_C32(0xcf1ccf0e), SPH_C32(0x746cd581) + }, { + SPH_C32(0xf7efc89d), SPH_C32(0x5dba5781), + SPH_C32(0x04016ce5), SPH_C32(0xad659c05), + SPH_C32(0x0306194f), SPH_C32(0x666d1836), + SPH_C32(0x24aa230a), SPH_C32(0x8b264ae7) + }, { + SPH_C32(0x858075d5), SPH_C32(0x36d79cce), + SPH_C32(0xe571f7d7), SPH_C32(0x204b1f67), + SPH_C32(0x35870c6a), SPH_C32(0x57e9e923), + SPH_C32(0x14bcb808), SPH_C32(0x7cde72ce) + }, { + SPH_C32(0x6c68e9be), SPH_C32(0x5ec41e22), + SPH_C32(0xc825b7c7), SPH_C32(0xaffb4363), + SPH_C32(0xf5df3999), SPH_C32(0x0fc688f1), + SPH_C32(0xb07224cc), SPH_C32(0x03e86cea) + } +}; + +static const sph_u32 RC00[8] = { + SPH_C32(0x303994a6), SPH_C32(0xc0e65299), + SPH_C32(0x6cc33a12), SPH_C32(0xdc56983e), + SPH_C32(0x1e00108f), SPH_C32(0x7800423d), + SPH_C32(0x8f5b7882), SPH_C32(0x96e1db12) +}; + +static const sph_u32 RC04[8] = { + SPH_C32(0xe0337818), SPH_C32(0x441ba90d), + SPH_C32(0x7f34d442), SPH_C32(0x9389217f), + SPH_C32(0xe5a8bce6), SPH_C32(0x5274baf4), + SPH_C32(0x26889ba7), SPH_C32(0x9a226e9d) +}; + +static const sph_u32 RC10[8] = { + SPH_C32(0xb6de10ed), SPH_C32(0x70f47aae), + SPH_C32(0x0707a3d4), SPH_C32(0x1c1e8f51), + SPH_C32(0x707a3d45), SPH_C32(0xaeb28562), + SPH_C32(0xbaca1589), SPH_C32(0x40a46f3e) +}; + +static const sph_u32 RC14[8] = { + SPH_C32(0x01685f3d), SPH_C32(0x05a17cf4), + SPH_C32(0xbd09caca), SPH_C32(0xf4272b28), + SPH_C32(0x144ae5cc), SPH_C32(0xfaa7ae2b), + SPH_C32(0x2e48f1c1), SPH_C32(0xb923c704) +}; + +#if SPH_LUFFA_PARALLEL + +static const sph_u64 RCW010[8] = { + SPH_C64(0xb6de10ed303994a6), SPH_C64(0x70f47aaec0e65299), + SPH_C64(0x0707a3d46cc33a12), SPH_C64(0x1c1e8f51dc56983e), + SPH_C64(0x707a3d451e00108f), SPH_C64(0xaeb285627800423d), + SPH_C64(0xbaca15898f5b7882), SPH_C64(0x40a46f3e96e1db12) +}; + +static const sph_u64 RCW014[8] = { + SPH_C64(0x01685f3de0337818), SPH_C64(0x05a17cf4441ba90d), + SPH_C64(0xbd09caca7f34d442), SPH_C64(0xf4272b289389217f), + SPH_C64(0x144ae5cce5a8bce6), SPH_C64(0xfaa7ae2b5274baf4), + SPH_C64(0x2e48f1c126889ba7), SPH_C64(0xb923c7049a226e9d) +}; + +#endif + +static const sph_u32 RC20[8] = { + SPH_C32(0xfc20d9d2), SPH_C32(0x34552e25), + SPH_C32(0x7ad8818f), SPH_C32(0x8438764a), + SPH_C32(0xbb6de032), SPH_C32(0xedb780c8), + SPH_C32(0xd9847356), SPH_C32(0xa2c78434) +}; + +static const sph_u32 RC24[8] = { + SPH_C32(0xe25e72c1), SPH_C32(0xe623bb72), + SPH_C32(0x5c58a4a4), SPH_C32(0x1e38e2e7), + SPH_C32(0x78e38b9d), SPH_C32(0x27586719), + SPH_C32(0x36eda57f), SPH_C32(0x703aace7) +}; + +static const sph_u32 RC30[8] = { + SPH_C32(0xb213afa5), SPH_C32(0xc84ebe95), + SPH_C32(0x4e608a22), SPH_C32(0x56d858fe), + SPH_C32(0x343b138f), SPH_C32(0xd0ec4e3d), + SPH_C32(0x2ceb4882), SPH_C32(0xb3ad2208) +}; + +static const sph_u32 RC34[8] = { + SPH_C32(0xe028c9bf), SPH_C32(0x44756f91), + SPH_C32(0x7e8fce32), SPH_C32(0x956548be), + SPH_C32(0xfe191be2), SPH_C32(0x3cb226e5), + SPH_C32(0x5944a28e), SPH_C32(0xa1c4c355) +}; + +#if SPH_LUFFA_PARALLEL + +static const sph_u64 RCW230[8] = { + SPH_C64(0xb213afa5fc20d9d2), SPH_C64(0xc84ebe9534552e25), + SPH_C64(0x4e608a227ad8818f), SPH_C64(0x56d858fe8438764a), + SPH_C64(0x343b138fbb6de032), SPH_C64(0xd0ec4e3dedb780c8), + SPH_C64(0x2ceb4882d9847356), SPH_C64(0xb3ad2208a2c78434) +}; + + +static const sph_u64 RCW234[8] = { + SPH_C64(0xe028c9bfe25e72c1), SPH_C64(0x44756f91e623bb72), + SPH_C64(0x7e8fce325c58a4a4), SPH_C64(0x956548be1e38e2e7), + SPH_C64(0xfe191be278e38b9d), SPH_C64(0x3cb226e527586719), + SPH_C64(0x5944a28e36eda57f), SPH_C64(0xa1c4c355703aace7) +}; + +#endif + +static const sph_u32 RC40[8] = { + SPH_C32(0xf0d2e9e3), SPH_C32(0xac11d7fa), + SPH_C32(0x1bcb66f2), SPH_C32(0x6f2d9bc9), + SPH_C32(0x78602649), SPH_C32(0x8edae952), + SPH_C32(0x3b6ba548), SPH_C32(0xedae9520) +}; + +static const sph_u32 RC44[8] = { + SPH_C32(0x5090d577), SPH_C32(0x2d1925ab), + SPH_C32(0xb46496ac), SPH_C32(0xd1925ab0), + SPH_C32(0x29131ab6), SPH_C32(0x0fc053c3), + SPH_C32(0x3f014f0c), SPH_C32(0xfc053c31) +}; + +#define DECL_TMP8(w) \ + sph_u32 w ## 0, w ## 1, w ## 2, w ## 3, w ## 4, w ## 5, w ## 6, w ## 7; + +#define M2(d, s) do { \ + sph_u32 tmp = s ## 7; \ + d ## 7 = s ## 6; \ + d ## 6 = s ## 5; \ + d ## 5 = s ## 4; \ + d ## 4 = s ## 3 ^ tmp; \ + d ## 3 = s ## 2 ^ tmp; \ + d ## 2 = s ## 1; \ + d ## 1 = s ## 0 ^ tmp; \ + d ## 0 = tmp; \ + } while (0) + +#define XOR(d, s1, s2) do { \ + d ## 0 = s1 ## 0 ^ s2 ## 0; \ + d ## 1 = s1 ## 1 ^ s2 ## 1; \ + d ## 2 = s1 ## 2 ^ s2 ## 2; \ + d ## 3 = s1 ## 3 ^ s2 ## 3; \ + d ## 4 = s1 ## 4 ^ s2 ## 4; \ + d ## 5 = s1 ## 5 ^ s2 ## 5; \ + d ## 6 = s1 ## 6 ^ s2 ## 6; \ + d ## 7 = s1 ## 7 ^ s2 ## 7; \ + } while (0) + +#if SPH_LUFFA_PARALLEL + +#define SUB_CRUMB_GEN(a0, a1, a2, a3, width) do { \ + sph_u ## width tmp; \ + tmp = (a0); \ + (a0) |= (a1); \ + (a2) ^= (a3); \ + (a1) = SPH_T ## width(~(a1)); \ + (a0) ^= (a3); \ + (a3) &= tmp; \ + (a1) ^= (a3); \ + (a3) ^= (a2); \ + (a2) &= (a0); \ + (a0) = SPH_T ## width(~(a0)); \ + (a2) ^= (a1); \ + (a1) |= (a3); \ + tmp ^= (a1); \ + (a3) ^= (a2); \ + (a2) &= (a1); \ + (a1) ^= (a0); \ + (a0) = tmp; \ + } while (0) + +#define SUB_CRUMB(a0, a1, a2, a3) SUB_CRUMB_GEN(a0, a1, a2, a3, 32) +#define SUB_CRUMBW(a0, a1, a2, a3) SUB_CRUMB_GEN(a0, a1, a2, a3, 64) + + +#if 0 + +#define ROL32W(x, n) SPH_T64( \ + (((x) << (n)) \ + & ~((SPH_C64(0xFFFFFFFF) >> (32 - (n))) << 32)) \ + | (((x) >> (32 - (n))) \ + & ~((SPH_C64(0xFFFFFFFF) >> (n)) << (n)))) + +#define MIX_WORDW(u, v) do { \ + (v) ^= (u); \ + (u) = ROL32W((u), 2) ^ (v); \ + (v) = ROL32W((v), 14) ^ (u); \ + (u) = ROL32W((u), 10) ^ (v); \ + (v) = ROL32W((v), 1); \ + } while (0) + +#endif + +#define MIX_WORDW(u, v) do { \ + sph_u32 ul, uh, vl, vh; \ + (v) ^= (u); \ + ul = SPH_T32((sph_u32)(u)); \ + uh = SPH_T32((sph_u32)((u) >> 32)); \ + vl = SPH_T32((sph_u32)(v)); \ + vh = SPH_T32((sph_u32)((v) >> 32)); \ + ul = SPH_ROTL32(ul, 2) ^ vl; \ + vl = SPH_ROTL32(vl, 14) ^ ul; \ + ul = SPH_ROTL32(ul, 10) ^ vl; \ + vl = SPH_ROTL32(vl, 1); \ + uh = SPH_ROTL32(uh, 2) ^ vh; \ + vh = SPH_ROTL32(vh, 14) ^ uh; \ + uh = SPH_ROTL32(uh, 10) ^ vh; \ + vh = SPH_ROTL32(vh, 1); \ + (u) = (sph_u64)ul | ((sph_u64)uh << 32); \ + (v) = (sph_u64)vl | ((sph_u64)vh << 32); \ + } while (0) + +#else + +#define SUB_CRUMB(a0, a1, a2, a3) do { \ + sph_u32 tmp; \ + tmp = (a0); \ + (a0) |= (a1); \ + (a2) ^= (a3); \ + (a1) = SPH_T32(~(a1)); \ + (a0) ^= (a3); \ + (a3) &= tmp; \ + (a1) ^= (a3); \ + (a3) ^= (a2); \ + (a2) &= (a0); \ + (a0) = SPH_T32(~(a0)); \ + (a2) ^= (a1); \ + (a1) |= (a3); \ + tmp ^= (a1); \ + (a3) ^= (a2); \ + (a2) &= (a1); \ + (a1) ^= (a0); \ + (a0) = tmp; \ + } while (0) + +#endif + +#define MIX_WORD(u, v) do { \ + (v) ^= (u); \ + (u) = SPH_ROTL32((u), 2) ^ (v); \ + (v) = SPH_ROTL32((v), 14) ^ (u); \ + (u) = SPH_ROTL32((u), 10) ^ (v); \ + (v) = SPH_ROTL32((v), 1); \ + } while (0) + +#define DECL_STATE3 \ + sph_u32 V00, V01, V02, V03, V04, V05, V06, V07; \ + sph_u32 V10, V11, V12, V13, V14, V15, V16, V17; \ + sph_u32 V20, V21, V22, V23, V24, V25, V26, V27; + +#define READ_STATE3(state) do { \ + V00 = (state)->V[0][0]; \ + V01 = (state)->V[0][1]; \ + V02 = (state)->V[0][2]; \ + V03 = (state)->V[0][3]; \ + V04 = (state)->V[0][4]; \ + V05 = (state)->V[0][5]; \ + V06 = (state)->V[0][6]; \ + V07 = (state)->V[0][7]; \ + V10 = (state)->V[1][0]; \ + V11 = (state)->V[1][1]; \ + V12 = (state)->V[1][2]; \ + V13 = (state)->V[1][3]; \ + V14 = (state)->V[1][4]; \ + V15 = (state)->V[1][5]; \ + V16 = (state)->V[1][6]; \ + V17 = (state)->V[1][7]; \ + V20 = (state)->V[2][0]; \ + V21 = (state)->V[2][1]; \ + V22 = (state)->V[2][2]; \ + V23 = (state)->V[2][3]; \ + V24 = (state)->V[2][4]; \ + V25 = (state)->V[2][5]; \ + V26 = (state)->V[2][6]; \ + V27 = (state)->V[2][7]; \ + } while (0) + +#define WRITE_STATE3(state) do { \ + (state)->V[0][0] = V00; \ + (state)->V[0][1] = V01; \ + (state)->V[0][2] = V02; \ + (state)->V[0][3] = V03; \ + (state)->V[0][4] = V04; \ + (state)->V[0][5] = V05; \ + (state)->V[0][6] = V06; \ + (state)->V[0][7] = V07; \ + (state)->V[1][0] = V10; \ + (state)->V[1][1] = V11; \ + (state)->V[1][2] = V12; \ + (state)->V[1][3] = V13; \ + (state)->V[1][4] = V14; \ + (state)->V[1][5] = V15; \ + (state)->V[1][6] = V16; \ + (state)->V[1][7] = V17; \ + (state)->V[2][0] = V20; \ + (state)->V[2][1] = V21; \ + (state)->V[2][2] = V22; \ + (state)->V[2][3] = V23; \ + (state)->V[2][4] = V24; \ + (state)->V[2][5] = V25; \ + (state)->V[2][6] = V26; \ + (state)->V[2][7] = V27; \ + } while (0) + +#define MI3 do { \ + DECL_TMP8(M) \ + DECL_TMP8(a) \ + M0 = sph_dec32be_aligned(buf + 0); \ + M1 = sph_dec32be_aligned(buf + 4); \ + M2 = sph_dec32be_aligned(buf + 8); \ + M3 = sph_dec32be_aligned(buf + 12); \ + M4 = sph_dec32be_aligned(buf + 16); \ + M5 = sph_dec32be_aligned(buf + 20); \ + M6 = sph_dec32be_aligned(buf + 24); \ + M7 = sph_dec32be_aligned(buf + 28); \ + XOR(a, V0, V1); \ + XOR(a, a, V2); \ + M2(a, a); \ + XOR(V0, a, V0); \ + XOR(V0, M, V0); \ + M2(M, M); \ + XOR(V1, a, V1); \ + XOR(V1, M, V1); \ + M2(M, M); \ + XOR(V2, a, V2); \ + XOR(V2, M, V2); \ + } while (0) + +#define TWEAK3 do { \ + V14 = SPH_ROTL32(V14, 1); \ + V15 = SPH_ROTL32(V15, 1); \ + V16 = SPH_ROTL32(V16, 1); \ + V17 = SPH_ROTL32(V17, 1); \ + V24 = SPH_ROTL32(V24, 2); \ + V25 = SPH_ROTL32(V25, 2); \ + V26 = SPH_ROTL32(V26, 2); \ + V27 = SPH_ROTL32(V27, 2); \ + } while (0) + +#if SPH_LUFFA_PARALLEL + +#define P3 do { \ + int r; \ + sph_u64 W0, W1, W2, W3, W4, W5, W6, W7; \ + TWEAK3; \ + W0 = (sph_u64)V00 | ((sph_u64)V10 << 32); \ + W1 = (sph_u64)V01 | ((sph_u64)V11 << 32); \ + W2 = (sph_u64)V02 | ((sph_u64)V12 << 32); \ + W3 = (sph_u64)V03 | ((sph_u64)V13 << 32); \ + W4 = (sph_u64)V04 | ((sph_u64)V14 << 32); \ + W5 = (sph_u64)V05 | ((sph_u64)V15 << 32); \ + W6 = (sph_u64)V06 | ((sph_u64)V16 << 32); \ + W7 = (sph_u64)V07 | ((sph_u64)V17 << 32); \ + for (r = 0; r < 8; r ++) { \ + SUB_CRUMBW(W0, W1, W2, W3); \ + SUB_CRUMBW(W5, W6, W7, W4); \ + MIX_WORDW(W0, W4); \ + MIX_WORDW(W1, W5); \ + MIX_WORDW(W2, W6); \ + MIX_WORDW(W3, W7); \ + W0 ^= RCW010[r]; \ + W4 ^= RCW014[r]; \ + } \ + V00 = SPH_T32((sph_u32)W0); \ + V10 = SPH_T32((sph_u32)(W0 >> 32)); \ + V01 = SPH_T32((sph_u32)W1); \ + V11 = SPH_T32((sph_u32)(W1 >> 32)); \ + V02 = SPH_T32((sph_u32)W2); \ + V12 = SPH_T32((sph_u32)(W2 >> 32)); \ + V03 = SPH_T32((sph_u32)W3); \ + V13 = SPH_T32((sph_u32)(W3 >> 32)); \ + V04 = SPH_T32((sph_u32)W4); \ + V14 = SPH_T32((sph_u32)(W4 >> 32)); \ + V05 = SPH_T32((sph_u32)W5); \ + V15 = SPH_T32((sph_u32)(W5 >> 32)); \ + V06 = SPH_T32((sph_u32)W6); \ + V16 = SPH_T32((sph_u32)(W6 >> 32)); \ + V07 = SPH_T32((sph_u32)W7); \ + V17 = SPH_T32((sph_u32)(W7 >> 32)); \ + for (r = 0; r < 8; r ++) { \ + SUB_CRUMB(V20, V21, V22, V23); \ + SUB_CRUMB(V25, V26, V27, V24); \ + MIX_WORD(V20, V24); \ + MIX_WORD(V21, V25); \ + MIX_WORD(V22, V26); \ + MIX_WORD(V23, V27); \ + V20 ^= RC20[r]; \ + V24 ^= RC24[r]; \ + } \ + } while (0) + +#else + +#define P3 do { \ + int r; \ + TWEAK3; \ + for (r = 0; r < 8; r ++) { \ + SUB_CRUMB(V00, V01, V02, V03); \ + SUB_CRUMB(V05, V06, V07, V04); \ + MIX_WORD(V00, V04); \ + MIX_WORD(V01, V05); \ + MIX_WORD(V02, V06); \ + MIX_WORD(V03, V07); \ + V00 ^= RC00[r]; \ + V04 ^= RC04[r]; \ + } \ + for (r = 0; r < 8; r ++) { \ + SUB_CRUMB(V10, V11, V12, V13); \ + SUB_CRUMB(V15, V16, V17, V14); \ + MIX_WORD(V10, V14); \ + MIX_WORD(V11, V15); \ + MIX_WORD(V12, V16); \ + MIX_WORD(V13, V17); \ + V10 ^= RC10[r]; \ + V14 ^= RC14[r]; \ + } \ + for (r = 0; r < 8; r ++) { \ + SUB_CRUMB(V20, V21, V22, V23); \ + SUB_CRUMB(V25, V26, V27, V24); \ + MIX_WORD(V20, V24); \ + MIX_WORD(V21, V25); \ + MIX_WORD(V22, V26); \ + MIX_WORD(V23, V27); \ + V20 ^= RC20[r]; \ + V24 ^= RC24[r]; \ + } \ + } while (0) + +#endif + +#define DECL_STATE4 \ + sph_u32 V00, V01, V02, V03, V04, V05, V06, V07; \ + sph_u32 V10, V11, V12, V13, V14, V15, V16, V17; \ + sph_u32 V20, V21, V22, V23, V24, V25, V26, V27; \ + sph_u32 V30, V31, V32, V33, V34, V35, V36, V37; + +#define READ_STATE4(state) do { \ + V00 = (state)->V[0][0]; \ + V01 = (state)->V[0][1]; \ + V02 = (state)->V[0][2]; \ + V03 = (state)->V[0][3]; \ + V04 = (state)->V[0][4]; \ + V05 = (state)->V[0][5]; \ + V06 = (state)->V[0][6]; \ + V07 = (state)->V[0][7]; \ + V10 = (state)->V[1][0]; \ + V11 = (state)->V[1][1]; \ + V12 = (state)->V[1][2]; \ + V13 = (state)->V[1][3]; \ + V14 = (state)->V[1][4]; \ + V15 = (state)->V[1][5]; \ + V16 = (state)->V[1][6]; \ + V17 = (state)->V[1][7]; \ + V20 = (state)->V[2][0]; \ + V21 = (state)->V[2][1]; \ + V22 = (state)->V[2][2]; \ + V23 = (state)->V[2][3]; \ + V24 = (state)->V[2][4]; \ + V25 = (state)->V[2][5]; \ + V26 = (state)->V[2][6]; \ + V27 = (state)->V[2][7]; \ + V30 = (state)->V[3][0]; \ + V31 = (state)->V[3][1]; \ + V32 = (state)->V[3][2]; \ + V33 = (state)->V[3][3]; \ + V34 = (state)->V[3][4]; \ + V35 = (state)->V[3][5]; \ + V36 = (state)->V[3][6]; \ + V37 = (state)->V[3][7]; \ + } while (0) + +#define WRITE_STATE4(state) do { \ + (state)->V[0][0] = V00; \ + (state)->V[0][1] = V01; \ + (state)->V[0][2] = V02; \ + (state)->V[0][3] = V03; \ + (state)->V[0][4] = V04; \ + (state)->V[0][5] = V05; \ + (state)->V[0][6] = V06; \ + (state)->V[0][7] = V07; \ + (state)->V[1][0] = V10; \ + (state)->V[1][1] = V11; \ + (state)->V[1][2] = V12; \ + (state)->V[1][3] = V13; \ + (state)->V[1][4] = V14; \ + (state)->V[1][5] = V15; \ + (state)->V[1][6] = V16; \ + (state)->V[1][7] = V17; \ + (state)->V[2][0] = V20; \ + (state)->V[2][1] = V21; \ + (state)->V[2][2] = V22; \ + (state)->V[2][3] = V23; \ + (state)->V[2][4] = V24; \ + (state)->V[2][5] = V25; \ + (state)->V[2][6] = V26; \ + (state)->V[2][7] = V27; \ + (state)->V[3][0] = V30; \ + (state)->V[3][1] = V31; \ + (state)->V[3][2] = V32; \ + (state)->V[3][3] = V33; \ + (state)->V[3][4] = V34; \ + (state)->V[3][5] = V35; \ + (state)->V[3][6] = V36; \ + (state)->V[3][7] = V37; \ + } while (0) + +#define MI4 do { \ + DECL_TMP8(M) \ + DECL_TMP8(a) \ + DECL_TMP8(b) \ + M0 = sph_dec32be_aligned(buf + 0); \ + M1 = sph_dec32be_aligned(buf + 4); \ + M2 = sph_dec32be_aligned(buf + 8); \ + M3 = sph_dec32be_aligned(buf + 12); \ + M4 = sph_dec32be_aligned(buf + 16); \ + M5 = sph_dec32be_aligned(buf + 20); \ + M6 = sph_dec32be_aligned(buf + 24); \ + M7 = sph_dec32be_aligned(buf + 28); \ + XOR(a, V0, V1); \ + XOR(b, V2, V3); \ + XOR(a, a, b); \ + M2(a, a); \ + XOR(V0, a, V0); \ + XOR(V1, a, V1); \ + XOR(V2, a, V2); \ + XOR(V3, a, V3); \ + M2(b, V0); \ + XOR(b, b, V3); \ + M2(V3, V3); \ + XOR(V3, V3, V2); \ + M2(V2, V2); \ + XOR(V2, V2, V1); \ + M2(V1, V1); \ + XOR(V1, V1, V0); \ + XOR(V0, b, M); \ + M2(M, M); \ + XOR(V1, V1, M); \ + M2(M, M); \ + XOR(V2, V2, M); \ + M2(M, M); \ + XOR(V3, V3, M); \ + } while (0) + +#define TWEAK4 do { \ + V14 = SPH_ROTL32(V14, 1); \ + V15 = SPH_ROTL32(V15, 1); \ + V16 = SPH_ROTL32(V16, 1); \ + V17 = SPH_ROTL32(V17, 1); \ + V24 = SPH_ROTL32(V24, 2); \ + V25 = SPH_ROTL32(V25, 2); \ + V26 = SPH_ROTL32(V26, 2); \ + V27 = SPH_ROTL32(V27, 2); \ + V34 = SPH_ROTL32(V34, 3); \ + V35 = SPH_ROTL32(V35, 3); \ + V36 = SPH_ROTL32(V36, 3); \ + V37 = SPH_ROTL32(V37, 3); \ + } while (0) + +#if SPH_LUFFA_PARALLEL + +#define P4 do { \ + int r; \ + sph_u64 W0, W1, W2, W3, W4, W5, W6, W7; \ + TWEAK4; \ + W0 = (sph_u64)V00 | ((sph_u64)V10 << 32); \ + W1 = (sph_u64)V01 | ((sph_u64)V11 << 32); \ + W2 = (sph_u64)V02 | ((sph_u64)V12 << 32); \ + W3 = (sph_u64)V03 | ((sph_u64)V13 << 32); \ + W4 = (sph_u64)V04 | ((sph_u64)V14 << 32); \ + W5 = (sph_u64)V05 | ((sph_u64)V15 << 32); \ + W6 = (sph_u64)V06 | ((sph_u64)V16 << 32); \ + W7 = (sph_u64)V07 | ((sph_u64)V17 << 32); \ + for (r = 0; r < 8; r ++) { \ + SUB_CRUMBW(W0, W1, W2, W3); \ + SUB_CRUMBW(W5, W6, W7, W4); \ + MIX_WORDW(W0, W4); \ + MIX_WORDW(W1, W5); \ + MIX_WORDW(W2, W6); \ + MIX_WORDW(W3, W7); \ + W0 ^= RCW010[r]; \ + W4 ^= RCW014[r]; \ + } \ + V00 = SPH_T32((sph_u32)W0); \ + V10 = SPH_T32((sph_u32)(W0 >> 32)); \ + V01 = SPH_T32((sph_u32)W1); \ + V11 = SPH_T32((sph_u32)(W1 >> 32)); \ + V02 = SPH_T32((sph_u32)W2); \ + V12 = SPH_T32((sph_u32)(W2 >> 32)); \ + V03 = SPH_T32((sph_u32)W3); \ + V13 = SPH_T32((sph_u32)(W3 >> 32)); \ + V04 = SPH_T32((sph_u32)W4); \ + V14 = SPH_T32((sph_u32)(W4 >> 32)); \ + V05 = SPH_T32((sph_u32)W5); \ + V15 = SPH_T32((sph_u32)(W5 >> 32)); \ + V06 = SPH_T32((sph_u32)W6); \ + V16 = SPH_T32((sph_u32)(W6 >> 32)); \ + V07 = SPH_T32((sph_u32)W7); \ + V17 = SPH_T32((sph_u32)(W7 >> 32)); \ + W0 = (sph_u64)V20 | ((sph_u64)V30 << 32); \ + W1 = (sph_u64)V21 | ((sph_u64)V31 << 32); \ + W2 = (sph_u64)V22 | ((sph_u64)V32 << 32); \ + W3 = (sph_u64)V23 | ((sph_u64)V33 << 32); \ + W4 = (sph_u64)V24 | ((sph_u64)V34 << 32); \ + W5 = (sph_u64)V25 | ((sph_u64)V35 << 32); \ + W6 = (sph_u64)V26 | ((sph_u64)V36 << 32); \ + W7 = (sph_u64)V27 | ((sph_u64)V37 << 32); \ + for (r = 0; r < 8; r ++) { \ + SUB_CRUMBW(W0, W1, W2, W3); \ + SUB_CRUMBW(W5, W6, W7, W4); \ + MIX_WORDW(W0, W4); \ + MIX_WORDW(W1, W5); \ + MIX_WORDW(W2, W6); \ + MIX_WORDW(W3, W7); \ + W0 ^= RCW230[r]; \ + W4 ^= RCW234[r]; \ + } \ + V20 = SPH_T32((sph_u32)W0); \ + V30 = SPH_T32((sph_u32)(W0 >> 32)); \ + V21 = SPH_T32((sph_u32)W1); \ + V31 = SPH_T32((sph_u32)(W1 >> 32)); \ + V22 = SPH_T32((sph_u32)W2); \ + V32 = SPH_T32((sph_u32)(W2 >> 32)); \ + V23 = SPH_T32((sph_u32)W3); \ + V33 = SPH_T32((sph_u32)(W3 >> 32)); \ + V24 = SPH_T32((sph_u32)W4); \ + V34 = SPH_T32((sph_u32)(W4 >> 32)); \ + V25 = SPH_T32((sph_u32)W5); \ + V35 = SPH_T32((sph_u32)(W5 >> 32)); \ + V26 = SPH_T32((sph_u32)W6); \ + V36 = SPH_T32((sph_u32)(W6 >> 32)); \ + V27 = SPH_T32((sph_u32)W7); \ + V37 = SPH_T32((sph_u32)(W7 >> 32)); \ + } while (0) + +#else + +#define P4 do { \ + int r; \ + TWEAK4; \ + for (r = 0; r < 8; r ++) { \ + SUB_CRUMB(V00, V01, V02, V03); \ + SUB_CRUMB(V05, V06, V07, V04); \ + MIX_WORD(V00, V04); \ + MIX_WORD(V01, V05); \ + MIX_WORD(V02, V06); \ + MIX_WORD(V03, V07); \ + V00 ^= RC00[r]; \ + V04 ^= RC04[r]; \ + } \ + for (r = 0; r < 8; r ++) { \ + SUB_CRUMB(V10, V11, V12, V13); \ + SUB_CRUMB(V15, V16, V17, V14); \ + MIX_WORD(V10, V14); \ + MIX_WORD(V11, V15); \ + MIX_WORD(V12, V16); \ + MIX_WORD(V13, V17); \ + V10 ^= RC10[r]; \ + V14 ^= RC14[r]; \ + } \ + for (r = 0; r < 8; r ++) { \ + SUB_CRUMB(V20, V21, V22, V23); \ + SUB_CRUMB(V25, V26, V27, V24); \ + MIX_WORD(V20, V24); \ + MIX_WORD(V21, V25); \ + MIX_WORD(V22, V26); \ + MIX_WORD(V23, V27); \ + V20 ^= RC20[r]; \ + V24 ^= RC24[r]; \ + } \ + for (r = 0; r < 8; r ++) { \ + SUB_CRUMB(V30, V31, V32, V33); \ + SUB_CRUMB(V35, V36, V37, V34); \ + MIX_WORD(V30, V34); \ + MIX_WORD(V31, V35); \ + MIX_WORD(V32, V36); \ + MIX_WORD(V33, V37); \ + V30 ^= RC30[r]; \ + V34 ^= RC34[r]; \ + } \ + } while (0) + +#endif + +#define DECL_STATE5 \ + sph_u32 V00, V01, V02, V03, V04, V05, V06, V07; \ + sph_u32 V10, V11, V12, V13, V14, V15, V16, V17; \ + sph_u32 V20, V21, V22, V23, V24, V25, V26, V27; \ + sph_u32 V30, V31, V32, V33, V34, V35, V36, V37; \ + sph_u32 V40, V41, V42, V43, V44, V45, V46, V47; + +#define READ_STATE5(state) do { \ + V00 = (state)->V[0][0]; \ + V01 = (state)->V[0][1]; \ + V02 = (state)->V[0][2]; \ + V03 = (state)->V[0][3]; \ + V04 = (state)->V[0][4]; \ + V05 = (state)->V[0][5]; \ + V06 = (state)->V[0][6]; \ + V07 = (state)->V[0][7]; \ + V10 = (state)->V[1][0]; \ + V11 = (state)->V[1][1]; \ + V12 = (state)->V[1][2]; \ + V13 = (state)->V[1][3]; \ + V14 = (state)->V[1][4]; \ + V15 = (state)->V[1][5]; \ + V16 = (state)->V[1][6]; \ + V17 = (state)->V[1][7]; \ + V20 = (state)->V[2][0]; \ + V21 = (state)->V[2][1]; \ + V22 = (state)->V[2][2]; \ + V23 = (state)->V[2][3]; \ + V24 = (state)->V[2][4]; \ + V25 = (state)->V[2][5]; \ + V26 = (state)->V[2][6]; \ + V27 = (state)->V[2][7]; \ + V30 = (state)->V[3][0]; \ + V31 = (state)->V[3][1]; \ + V32 = (state)->V[3][2]; \ + V33 = (state)->V[3][3]; \ + V34 = (state)->V[3][4]; \ + V35 = (state)->V[3][5]; \ + V36 = (state)->V[3][6]; \ + V37 = (state)->V[3][7]; \ + V40 = (state)->V[4][0]; \ + V41 = (state)->V[4][1]; \ + V42 = (state)->V[4][2]; \ + V43 = (state)->V[4][3]; \ + V44 = (state)->V[4][4]; \ + V45 = (state)->V[4][5]; \ + V46 = (state)->V[4][6]; \ + V47 = (state)->V[4][7]; \ + } while (0) + +#define WRITE_STATE5(state) do { \ + (state)->V[0][0] = V00; \ + (state)->V[0][1] = V01; \ + (state)->V[0][2] = V02; \ + (state)->V[0][3] = V03; \ + (state)->V[0][4] = V04; \ + (state)->V[0][5] = V05; \ + (state)->V[0][6] = V06; \ + (state)->V[0][7] = V07; \ + (state)->V[1][0] = V10; \ + (state)->V[1][1] = V11; \ + (state)->V[1][2] = V12; \ + (state)->V[1][3] = V13; \ + (state)->V[1][4] = V14; \ + (state)->V[1][5] = V15; \ + (state)->V[1][6] = V16; \ + (state)->V[1][7] = V17; \ + (state)->V[2][0] = V20; \ + (state)->V[2][1] = V21; \ + (state)->V[2][2] = V22; \ + (state)->V[2][3] = V23; \ + (state)->V[2][4] = V24; \ + (state)->V[2][5] = V25; \ + (state)->V[2][6] = V26; \ + (state)->V[2][7] = V27; \ + (state)->V[3][0] = V30; \ + (state)->V[3][1] = V31; \ + (state)->V[3][2] = V32; \ + (state)->V[3][3] = V33; \ + (state)->V[3][4] = V34; \ + (state)->V[3][5] = V35; \ + (state)->V[3][6] = V36; \ + (state)->V[3][7] = V37; \ + (state)->V[4][0] = V40; \ + (state)->V[4][1] = V41; \ + (state)->V[4][2] = V42; \ + (state)->V[4][3] = V43; \ + (state)->V[4][4] = V44; \ + (state)->V[4][5] = V45; \ + (state)->V[4][6] = V46; \ + (state)->V[4][7] = V47; \ + } while (0) + +#define MI5 do { \ + DECL_TMP8(M) \ + DECL_TMP8(a) \ + DECL_TMP8(b) \ + M0 = sph_dec32be_aligned(buf + 0); \ + M1 = sph_dec32be_aligned(buf + 4); \ + M2 = sph_dec32be_aligned(buf + 8); \ + M3 = sph_dec32be_aligned(buf + 12); \ + M4 = sph_dec32be_aligned(buf + 16); \ + M5 = sph_dec32be_aligned(buf + 20); \ + M6 = sph_dec32be_aligned(buf + 24); \ + M7 = sph_dec32be_aligned(buf + 28); \ + XOR(a, V0, V1); \ + XOR(b, V2, V3); \ + XOR(a, a, b); \ + XOR(a, a, V4); \ + M2(a, a); \ + XOR(V0, a, V0); \ + XOR(V1, a, V1); \ + XOR(V2, a, V2); \ + XOR(V3, a, V3); \ + XOR(V4, a, V4); \ + M2(b, V0); \ + XOR(b, b, V1); \ + M2(V1, V1); \ + XOR(V1, V1, V2); \ + M2(V2, V2); \ + XOR(V2, V2, V3); \ + M2(V3, V3); \ + XOR(V3, V3, V4); \ + M2(V4, V4); \ + XOR(V4, V4, V0); \ + M2(V0, b); \ + XOR(V0, V0, V4); \ + M2(V4, V4); \ + XOR(V4, V4, V3); \ + M2(V3, V3); \ + XOR(V3, V3, V2); \ + M2(V2, V2); \ + XOR(V2, V2, V1); \ + M2(V1, V1); \ + XOR(V1, V1, b); \ + XOR(V0, V0, M); \ + M2(M, M); \ + XOR(V1, V1, M); \ + M2(M, M); \ + XOR(V2, V2, M); \ + M2(M, M); \ + XOR(V3, V3, M); \ + M2(M, M); \ + XOR(V4, V4, M); \ + } while (0) + +#define TWEAK5 do { \ + V14 = SPH_ROTL32(V14, 1); \ + V15 = SPH_ROTL32(V15, 1); \ + V16 = SPH_ROTL32(V16, 1); \ + V17 = SPH_ROTL32(V17, 1); \ + V24 = SPH_ROTL32(V24, 2); \ + V25 = SPH_ROTL32(V25, 2); \ + V26 = SPH_ROTL32(V26, 2); \ + V27 = SPH_ROTL32(V27, 2); \ + V34 = SPH_ROTL32(V34, 3); \ + V35 = SPH_ROTL32(V35, 3); \ + V36 = SPH_ROTL32(V36, 3); \ + V37 = SPH_ROTL32(V37, 3); \ + V44 = SPH_ROTL32(V44, 4); \ + V45 = SPH_ROTL32(V45, 4); \ + V46 = SPH_ROTL32(V46, 4); \ + V47 = SPH_ROTL32(V47, 4); \ + } while (0) + +#if SPH_LUFFA_PARALLEL + +#define P5 do { \ + int r; \ + sph_u64 W0, W1, W2, W3, W4, W5, W6, W7; \ + TWEAK5; \ + W0 = (sph_u64)V00 | ((sph_u64)V10 << 32); \ + W1 = (sph_u64)V01 | ((sph_u64)V11 << 32); \ + W2 = (sph_u64)V02 | ((sph_u64)V12 << 32); \ + W3 = (sph_u64)V03 | ((sph_u64)V13 << 32); \ + W4 = (sph_u64)V04 | ((sph_u64)V14 << 32); \ + W5 = (sph_u64)V05 | ((sph_u64)V15 << 32); \ + W6 = (sph_u64)V06 | ((sph_u64)V16 << 32); \ + W7 = (sph_u64)V07 | ((sph_u64)V17 << 32); \ + for (r = 0; r < 8; r ++) { \ + SUB_CRUMBW(W0, W1, W2, W3); \ + SUB_CRUMBW(W5, W6, W7, W4); \ + MIX_WORDW(W0, W4); \ + MIX_WORDW(W1, W5); \ + MIX_WORDW(W2, W6); \ + MIX_WORDW(W3, W7); \ + W0 ^= RCW010[r]; \ + W4 ^= RCW014[r]; \ + } \ + V00 = SPH_T32((sph_u32)W0); \ + V10 = SPH_T32((sph_u32)(W0 >> 32)); \ + V01 = SPH_T32((sph_u32)W1); \ + V11 = SPH_T32((sph_u32)(W1 >> 32)); \ + V02 = SPH_T32((sph_u32)W2); \ + V12 = SPH_T32((sph_u32)(W2 >> 32)); \ + V03 = SPH_T32((sph_u32)W3); \ + V13 = SPH_T32((sph_u32)(W3 >> 32)); \ + V04 = SPH_T32((sph_u32)W4); \ + V14 = SPH_T32((sph_u32)(W4 >> 32)); \ + V05 = SPH_T32((sph_u32)W5); \ + V15 = SPH_T32((sph_u32)(W5 >> 32)); \ + V06 = SPH_T32((sph_u32)W6); \ + V16 = SPH_T32((sph_u32)(W6 >> 32)); \ + V07 = SPH_T32((sph_u32)W7); \ + V17 = SPH_T32((sph_u32)(W7 >> 32)); \ + W0 = (sph_u64)V20 | ((sph_u64)V30 << 32); \ + W1 = (sph_u64)V21 | ((sph_u64)V31 << 32); \ + W2 = (sph_u64)V22 | ((sph_u64)V32 << 32); \ + W3 = (sph_u64)V23 | ((sph_u64)V33 << 32); \ + W4 = (sph_u64)V24 | ((sph_u64)V34 << 32); \ + W5 = (sph_u64)V25 | ((sph_u64)V35 << 32); \ + W6 = (sph_u64)V26 | ((sph_u64)V36 << 32); \ + W7 = (sph_u64)V27 | ((sph_u64)V37 << 32); \ + for (r = 0; r < 8; r ++) { \ + SUB_CRUMBW(W0, W1, W2, W3); \ + SUB_CRUMBW(W5, W6, W7, W4); \ + MIX_WORDW(W0, W4); \ + MIX_WORDW(W1, W5); \ + MIX_WORDW(W2, W6); \ + MIX_WORDW(W3, W7); \ + W0 ^= RCW230[r]; \ + W4 ^= RCW234[r]; \ + } \ + V20 = SPH_T32((sph_u32)W0); \ + V30 = SPH_T32((sph_u32)(W0 >> 32)); \ + V21 = SPH_T32((sph_u32)W1); \ + V31 = SPH_T32((sph_u32)(W1 >> 32)); \ + V22 = SPH_T32((sph_u32)W2); \ + V32 = SPH_T32((sph_u32)(W2 >> 32)); \ + V23 = SPH_T32((sph_u32)W3); \ + V33 = SPH_T32((sph_u32)(W3 >> 32)); \ + V24 = SPH_T32((sph_u32)W4); \ + V34 = SPH_T32((sph_u32)(W4 >> 32)); \ + V25 = SPH_T32((sph_u32)W5); \ + V35 = SPH_T32((sph_u32)(W5 >> 32)); \ + V26 = SPH_T32((sph_u32)W6); \ + V36 = SPH_T32((sph_u32)(W6 >> 32)); \ + V27 = SPH_T32((sph_u32)W7); \ + V37 = SPH_T32((sph_u32)(W7 >> 32)); \ + for (r = 0; r < 8; r ++) { \ + SUB_CRUMB(V40, V41, V42, V43); \ + SUB_CRUMB(V45, V46, V47, V44); \ + MIX_WORD(V40, V44); \ + MIX_WORD(V41, V45); \ + MIX_WORD(V42, V46); \ + MIX_WORD(V43, V47); \ + V40 ^= RC40[r]; \ + V44 ^= RC44[r]; \ + } \ + } while (0) + +#else + +#define P5 do { \ + int r; \ + TWEAK5; \ + for (r = 0; r < 8; r ++) { \ + SUB_CRUMB(V00, V01, V02, V03); \ + SUB_CRUMB(V05, V06, V07, V04); \ + MIX_WORD(V00, V04); \ + MIX_WORD(V01, V05); \ + MIX_WORD(V02, V06); \ + MIX_WORD(V03, V07); \ + V00 ^= RC00[r]; \ + V04 ^= RC04[r]; \ + } \ + for (r = 0; r < 8; r ++) { \ + SUB_CRUMB(V10, V11, V12, V13); \ + SUB_CRUMB(V15, V16, V17, V14); \ + MIX_WORD(V10, V14); \ + MIX_WORD(V11, V15); \ + MIX_WORD(V12, V16); \ + MIX_WORD(V13, V17); \ + V10 ^= RC10[r]; \ + V14 ^= RC14[r]; \ + } \ + for (r = 0; r < 8; r ++) { \ + SUB_CRUMB(V20, V21, V22, V23); \ + SUB_CRUMB(V25, V26, V27, V24); \ + MIX_WORD(V20, V24); \ + MIX_WORD(V21, V25); \ + MIX_WORD(V22, V26); \ + MIX_WORD(V23, V27); \ + V20 ^= RC20[r]; \ + V24 ^= RC24[r]; \ + } \ + for (r = 0; r < 8; r ++) { \ + SUB_CRUMB(V30, V31, V32, V33); \ + SUB_CRUMB(V35, V36, V37, V34); \ + MIX_WORD(V30, V34); \ + MIX_WORD(V31, V35); \ + MIX_WORD(V32, V36); \ + MIX_WORD(V33, V37); \ + V30 ^= RC30[r]; \ + V34 ^= RC34[r]; \ + } \ + for (r = 0; r < 8; r ++) { \ + SUB_CRUMB(V40, V41, V42, V43); \ + SUB_CRUMB(V45, V46, V47, V44); \ + MIX_WORD(V40, V44); \ + MIX_WORD(V41, V45); \ + MIX_WORD(V42, V46); \ + MIX_WORD(V43, V47); \ + V40 ^= RC40[r]; \ + V44 ^= RC44[r]; \ + } \ + } while (0) + +#endif + +static void +luffa3(sph_luffa224_context *sc, const void *data, size_t len) +{ + unsigned char *buf; + size_t ptr; + DECL_STATE3 + + buf = sc->buf; + ptr = sc->ptr; + if (len < (sizeof sc->buf) - ptr) { + memcpy(buf + ptr, data, len); + ptr += len; + sc->ptr = ptr; + return; + } + + READ_STATE3(sc); + while (len > 0) { + size_t clen; + + clen = (sizeof sc->buf) - ptr; + if (clen > len) + clen = len; + memcpy(buf + ptr, data, clen); + ptr += clen; + data = (const unsigned char *)data + clen; + len -= clen; + if (ptr == sizeof sc->buf) { + MI3; + P3; + ptr = 0; + } + } + WRITE_STATE3(sc); + sc->ptr = ptr; +} + +static void +luffa3_close(sph_luffa224_context *sc, unsigned ub, unsigned n, + void *dst, unsigned out_size_w32) +{ + unsigned char *buf, *out; + size_t ptr; + unsigned z; + int i; + DECL_STATE3 + + buf = sc->buf; + ptr = sc->ptr; + z = 0x80 >> n; + buf[ptr ++] = ((ub & -z) | z) & 0xFF; + memset(buf + ptr, 0, (sizeof sc->buf) - ptr); + READ_STATE3(sc); + for (i = 0; i < 2; i ++) { + MI3; + P3; + memset(buf, 0, sizeof sc->buf); + } + out = dst; + sph_enc32be(out + 0, V00 ^ V10 ^ V20); + sph_enc32be(out + 4, V01 ^ V11 ^ V21); + sph_enc32be(out + 8, V02 ^ V12 ^ V22); + sph_enc32be(out + 12, V03 ^ V13 ^ V23); + sph_enc32be(out + 16, V04 ^ V14 ^ V24); + sph_enc32be(out + 20, V05 ^ V15 ^ V25); + sph_enc32be(out + 24, V06 ^ V16 ^ V26); + if (out_size_w32 > 7) + sph_enc32be(out + 28, V07 ^ V17 ^ V27); +} + +static void +luffa4(sph_luffa384_context *sc, const void *data, size_t len) +{ + unsigned char *buf; + size_t ptr; + DECL_STATE4 + + buf = sc->buf; + ptr = sc->ptr; + if (len < (sizeof sc->buf) - ptr) { + memcpy(buf + ptr, data, len); + ptr += len; + sc->ptr = ptr; + return; + } + + READ_STATE4(sc); + while (len > 0) { + size_t clen; + + clen = (sizeof sc->buf) - ptr; + if (clen > len) + clen = len; + memcpy(buf + ptr, data, clen); + ptr += clen; + data = (const unsigned char *)data + clen; + len -= clen; + if (ptr == sizeof sc->buf) { + MI4; + P4; + ptr = 0; + } + } + WRITE_STATE4(sc); + sc->ptr = ptr; +} + +static void +luffa4_close(sph_luffa384_context *sc, unsigned ub, unsigned n, void *dst) +{ + unsigned char *buf, *out; + size_t ptr; + unsigned z; + int i; + DECL_STATE4 + + buf = sc->buf; + ptr = sc->ptr; + out = dst; + z = 0x80 >> n; + buf[ptr ++] = ((ub & -z) | z) & 0xFF; + memset(buf + ptr, 0, (sizeof sc->buf) - ptr); + READ_STATE4(sc); + for (i = 0; i < 3; i ++) { + MI4; + P4; + switch (i) { + case 0: + memset(buf, 0, sizeof sc->buf); + break; + case 1: + sph_enc32be(out + 0, V00 ^ V10 ^ V20 ^ V30); + sph_enc32be(out + 4, V01 ^ V11 ^ V21 ^ V31); + sph_enc32be(out + 8, V02 ^ V12 ^ V22 ^ V32); + sph_enc32be(out + 12, V03 ^ V13 ^ V23 ^ V33); + sph_enc32be(out + 16, V04 ^ V14 ^ V24 ^ V34); + sph_enc32be(out + 20, V05 ^ V15 ^ V25 ^ V35); + sph_enc32be(out + 24, V06 ^ V16 ^ V26 ^ V36); + sph_enc32be(out + 28, V07 ^ V17 ^ V27 ^ V37); + break; + case 2: + sph_enc32be(out + 32, V00 ^ V10 ^ V20 ^ V30); + sph_enc32be(out + 36, V01 ^ V11 ^ V21 ^ V31); + sph_enc32be(out + 40, V02 ^ V12 ^ V22 ^ V32); + sph_enc32be(out + 44, V03 ^ V13 ^ V23 ^ V33); + break; + } + } +} + +static void +luffa5(sph_luffa512_context *sc, const void *data, size_t len) +{ + unsigned char *buf; + size_t ptr; + DECL_STATE5 + + buf = sc->buf; + ptr = sc->ptr; + if (len < (sizeof sc->buf) - ptr) { + memcpy(buf + ptr, data, len); + ptr += len; + sc->ptr = ptr; + return; + } + + READ_STATE5(sc); + while (len > 0) { + size_t clen; + + clen = (sizeof sc->buf) - ptr; + if (clen > len) + clen = len; + memcpy(buf + ptr, data, clen); + ptr += clen; + data = (const unsigned char *)data + clen; + len -= clen; + if (ptr == sizeof sc->buf) { + MI5; + P5; + ptr = 0; + } + } + WRITE_STATE5(sc); + sc->ptr = ptr; +} + +static void +luffa5_close(sph_luffa512_context *sc, unsigned ub, unsigned n, void *dst) +{ + unsigned char *buf, *out; + size_t ptr; + unsigned z; + int i; + DECL_STATE5 + + buf = sc->buf; + ptr = sc->ptr; + out = dst; + z = 0x80 >> n; + buf[ptr ++] = ((ub & -z) | z) & 0xFF; + memset(buf + ptr, 0, (sizeof sc->buf) - ptr); + READ_STATE5(sc); + for (i = 0; i < 3; i ++) { + MI5; + P5; + switch (i) { + case 0: + memset(buf, 0, sizeof sc->buf); + break; + case 1: + sph_enc32be(out + 0, V00 ^ V10 ^ V20 ^ V30 ^ V40); + sph_enc32be(out + 4, V01 ^ V11 ^ V21 ^ V31 ^ V41); + sph_enc32be(out + 8, V02 ^ V12 ^ V22 ^ V32 ^ V42); + sph_enc32be(out + 12, V03 ^ V13 ^ V23 ^ V33 ^ V43); + sph_enc32be(out + 16, V04 ^ V14 ^ V24 ^ V34 ^ V44); + sph_enc32be(out + 20, V05 ^ V15 ^ V25 ^ V35 ^ V45); + sph_enc32be(out + 24, V06 ^ V16 ^ V26 ^ V36 ^ V46); + sph_enc32be(out + 28, V07 ^ V17 ^ V27 ^ V37 ^ V47); + break; + case 2: + sph_enc32be(out + 32, V00 ^ V10 ^ V20 ^ V30 ^ V40); + sph_enc32be(out + 36, V01 ^ V11 ^ V21 ^ V31 ^ V41); + sph_enc32be(out + 40, V02 ^ V12 ^ V22 ^ V32 ^ V42); + sph_enc32be(out + 44, V03 ^ V13 ^ V23 ^ V33 ^ V43); + sph_enc32be(out + 48, V04 ^ V14 ^ V24 ^ V34 ^ V44); + sph_enc32be(out + 52, V05 ^ V15 ^ V25 ^ V35 ^ V45); + sph_enc32be(out + 56, V06 ^ V16 ^ V26 ^ V36 ^ V46); + sph_enc32be(out + 60, V07 ^ V17 ^ V27 ^ V37 ^ V47); + break; + } + } +} + +/* see sph_luffa.h */ +void +sph_luffa224_init(void *cc) +{ + sph_luffa224_context *sc; + + sc = cc; + memcpy(sc->V, V_INIT, sizeof(sc->V)); + sc->ptr = 0; +} + +/* see sph_luffa.h */ +void +sph_luffa224(void *cc, const void *data, size_t len) +{ + luffa3(cc, data, len); +} + +/* see sph_luffa.h */ +void +sph_luffa224_close(void *cc, void *dst) +{ + sph_luffa224_addbits_and_close(cc, 0, 0, dst); +} + +/* see sph_luffa.h */ +void +sph_luffa224_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst) +{ + luffa3_close(cc, ub, n, dst, 7); + sph_luffa224_init(cc); +} + +/* see sph_luffa.h */ +void +sph_luffa256_init(void *cc) +{ + sph_luffa256_context *sc; + + sc = cc; + memcpy(sc->V, V_INIT, sizeof(sc->V)); + sc->ptr = 0; +} + +/* see sph_luffa.h */ +void +sph_luffa256(void *cc, const void *data, size_t len) +{ + luffa3(cc, data, len); +} + +/* see sph_luffa.h */ +void +sph_luffa256_close(void *cc, void *dst) +{ + sph_luffa256_addbits_and_close(cc, 0, 0, dst); +} + +/* see sph_luffa.h */ +void +sph_luffa256_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst) +{ + luffa3_close(cc, ub, n, dst, 8); + sph_luffa256_init(cc); +} + +/* see sph_luffa.h */ +void +sph_luffa384_init(void *cc) +{ + sph_luffa384_context *sc; + + sc = cc; + memcpy(sc->V, V_INIT, sizeof(sc->V)); + sc->ptr = 0; +} + +/* see sph_luffa.h */ +void +sph_luffa384(void *cc, const void *data, size_t len) +{ + luffa4(cc, data, len); +} + +/* see sph_luffa.h */ +void +sph_luffa384_close(void *cc, void *dst) +{ + sph_luffa384_addbits_and_close(cc, 0, 0, dst); +} + +/* see sph_luffa.h */ +void +sph_luffa384_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst) +{ + luffa4_close(cc, ub, n, dst); + sph_luffa384_init(cc); +} + +/* see sph_luffa.h */ +void +sph_luffa512_init(void *cc) +{ + sph_luffa512_context *sc; + + sc = cc; + memcpy(sc->V, V_INIT, sizeof(sc->V)); + sc->ptr = 0; +} + +/* see sph_luffa.h */ +void +sph_luffa512(void *cc, const void *data, size_t len) +{ + luffa5(cc, data, len); +} + +/* see sph_luffa.h */ +void +sph_luffa512_close(void *cc, void *dst) +{ + sph_luffa512_addbits_and_close(cc, 0, 0, dst); +} + +/* see sph_luffa.h */ +void +sph_luffa512_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst) +{ + luffa5_close(cc, ub, n, dst); + sph_luffa512_init(cc); +} + +#ifdef __cplusplus +} +#endif \ No newline at end of file diff --git a/crypto/sha3/sph_luffa.h b/crypto/sha3/sph_luffa.h new file mode 100644 index 000000000..a32fd7b16 --- /dev/null +++ b/crypto/sha3/sph_luffa.h @@ -0,0 +1,296 @@ +/* $Id: sph_luffa.h 154 2010-04-26 17:00:24Z tp $ */ +/** + * Luffa interface. Luffa is a family of functions which differ by + * their output size; this implementation defines Luffa for output + * sizes 224, 256, 384 and 512 bits. + * + * ==========================(LICENSE BEGIN)============================ + * + * Copyright (c) 2007-2010 Projet RNRT SAPHIR + * + * Permission is hereby granted, free of charge, to any person obtaining + * a copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sublicense, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * The above copyright notice and this permission notice shall be + * included in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + * + * ===========================(LICENSE END)============================= + * + * @file sph_luffa.h + * @author Thomas Pornin + */ + +#ifndef SPH_LUFFA_H__ +#define SPH_LUFFA_H__ + +#ifdef __cplusplus +extern "C"{ +#endif + +#include +#include "sph_types.h" + +/** + * Output size (in bits) for Luffa-224. + */ +#define SPH_SIZE_luffa224 224 + +/** + * Output size (in bits) for Luffa-256. + */ +#define SPH_SIZE_luffa256 256 + +/** + * Output size (in bits) for Luffa-384. + */ +#define SPH_SIZE_luffa384 384 + +/** + * Output size (in bits) for Luffa-512. + */ +#define SPH_SIZE_luffa512 512 + +/** + * This structure is a context for Luffa-224 computations: it contains + * the intermediate values and some data from the last entered block. + * Once a Luffa computation has been performed, the context can be + * reused for another computation. + * + * The contents of this structure are private. A running Luffa + * computation can be cloned by copying the context (e.g. with a simple + * memcpy()). + */ +typedef struct { +#ifndef DOXYGEN_IGNORE + unsigned char buf[32]; /* first field, for alignment */ + size_t ptr; + sph_u32 V[3][8]; +#endif +} sph_luffa224_context; + +/** + * This structure is a context for Luffa-256 computations. It is + * identical to sph_luffa224_context. + */ +typedef sph_luffa224_context sph_luffa256_context; + +/** + * This structure is a context for Luffa-384 computations. + */ +typedef struct { +#ifndef DOXYGEN_IGNORE + unsigned char buf[32]; /* first field, for alignment */ + size_t ptr; + sph_u32 V[4][8]; +#endif +} sph_luffa384_context; + +/** + * This structure is a context for Luffa-512 computations. + */ +typedef struct { +#ifndef DOXYGEN_IGNORE + unsigned char buf[32]; /* first field, for alignment */ + size_t ptr; + sph_u32 V[5][8]; +#endif +} sph_luffa512_context; + +/** + * Initialize a Luffa-224 context. This process performs no memory allocation. + * + * @param cc the Luffa-224 context (pointer to a + * sph_luffa224_context) + */ +void sph_luffa224_init(void *cc); + +/** + * Process some data bytes. It is acceptable that len is zero + * (in which case this function does nothing). + * + * @param cc the Luffa-224 context + * @param data the input data + * @param len the input data length (in bytes) + */ +void sph_luffa224(void *cc, const void *data, size_t len); + +/** + * Terminate the current Luffa-224 computation and output the result into + * the provided buffer. The destination buffer must be wide enough to + * accomodate the result (28 bytes). The context is automatically + * reinitialized. + * + * @param cc the Luffa-224 context + * @param dst the destination buffer + */ +void sph_luffa224_close(void *cc, void *dst); + +/** + * Add a few additional bits (0 to 7) to the current computation, then + * terminate it and output the result in the provided buffer, which must + * be wide enough to accomodate the result (28 bytes). If bit number i + * in ub has value 2^i, then the extra bits are those + * numbered 7 downto 8-n (this is the big-endian convention at the byte + * level). The context is automatically reinitialized. + * + * @param cc the Luffa-224 context + * @param ub the extra bits + * @param n the number of extra bits (0 to 7) + * @param dst the destination buffer + */ +void sph_luffa224_addbits_and_close( + void *cc, unsigned ub, unsigned n, void *dst); + +/** + * Initialize a Luffa-256 context. This process performs no memory allocation. + * + * @param cc the Luffa-256 context (pointer to a + * sph_luffa256_context) + */ +void sph_luffa256_init(void *cc); + +/** + * Process some data bytes. It is acceptable that len is zero + * (in which case this function does nothing). + * + * @param cc the Luffa-256 context + * @param data the input data + * @param len the input data length (in bytes) + */ +void sph_luffa256(void *cc, const void *data, size_t len); + +/** + * Terminate the current Luffa-256 computation and output the result into + * the provided buffer. The destination buffer must be wide enough to + * accomodate the result (32 bytes). The context is automatically + * reinitialized. + * + * @param cc the Luffa-256 context + * @param dst the destination buffer + */ +void sph_luffa256_close(void *cc, void *dst); + +/** + * Add a few additional bits (0 to 7) to the current computation, then + * terminate it and output the result in the provided buffer, which must + * be wide enough to accomodate the result (32 bytes). If bit number i + * in ub has value 2^i, then the extra bits are those + * numbered 7 downto 8-n (this is the big-endian convention at the byte + * level). The context is automatically reinitialized. + * + * @param cc the Luffa-256 context + * @param ub the extra bits + * @param n the number of extra bits (0 to 7) + * @param dst the destination buffer + */ +void sph_luffa256_addbits_and_close( + void *cc, unsigned ub, unsigned n, void *dst); + +/** + * Initialize a Luffa-384 context. This process performs no memory allocation. + * + * @param cc the Luffa-384 context (pointer to a + * sph_luffa384_context) + */ +void sph_luffa384_init(void *cc); + +/** + * Process some data bytes. It is acceptable that len is zero + * (in which case this function does nothing). + * + * @param cc the Luffa-384 context + * @param data the input data + * @param len the input data length (in bytes) + */ +void sph_luffa384(void *cc, const void *data, size_t len); + +/** + * Terminate the current Luffa-384 computation and output the result into + * the provided buffer. The destination buffer must be wide enough to + * accomodate the result (48 bytes). The context is automatically + * reinitialized. + * + * @param cc the Luffa-384 context + * @param dst the destination buffer + */ +void sph_luffa384_close(void *cc, void *dst); + +/** + * Add a few additional bits (0 to 7) to the current computation, then + * terminate it and output the result in the provided buffer, which must + * be wide enough to accomodate the result (48 bytes). If bit number i + * in ub has value 2^i, then the extra bits are those + * numbered 7 downto 8-n (this is the big-endian convention at the byte + * level). The context is automatically reinitialized. + * + * @param cc the Luffa-384 context + * @param ub the extra bits + * @param n the number of extra bits (0 to 7) + * @param dst the destination buffer + */ +void sph_luffa384_addbits_and_close( + void *cc, unsigned ub, unsigned n, void *dst); + +/** + * Initialize a Luffa-512 context. This process performs no memory allocation. + * + * @param cc the Luffa-512 context (pointer to a + * sph_luffa512_context) + */ +void sph_luffa512_init(void *cc); + +/** + * Process some data bytes. It is acceptable that len is zero + * (in which case this function does nothing). + * + * @param cc the Luffa-512 context + * @param data the input data + * @param len the input data length (in bytes) + */ +void sph_luffa512(void *cc, const void *data, size_t len); + +/** + * Terminate the current Luffa-512 computation and output the result into + * the provided buffer. The destination buffer must be wide enough to + * accomodate the result (64 bytes). The context is automatically + * reinitialized. + * + * @param cc the Luffa-512 context + * @param dst the destination buffer + */ +void sph_luffa512_close(void *cc, void *dst); + +/** + * Add a few additional bits (0 to 7) to the current computation, then + * terminate it and output the result in the provided buffer, which must + * be wide enough to accomodate the result (64 bytes). If bit number i + * in ub has value 2^i, then the extra bits are those + * numbered 7 downto 8-n (this is the big-endian convention at the byte + * level). The context is automatically reinitialized. + * + * @param cc the Luffa-512 context + * @param ub the extra bits + * @param n the number of extra bits (0 to 7) + * @param dst the destination buffer + */ +void sph_luffa512_addbits_and_close( + void *cc, unsigned ub, unsigned n, void *dst); + +#ifdef __cplusplus +} +#endif + +#endif diff --git a/crypto/sha3/sph_shavite.c b/crypto/sha3/sph_shavite.c new file mode 100644 index 000000000..85074f334 --- /dev/null +++ b/crypto/sha3/sph_shavite.c @@ -0,0 +1,1764 @@ +/* $Id: shavite.c 227 2010-06-16 17:28:38Z tp $ */ +/* + * SHAvite-3 implementation. + * + * ==========================(LICENSE BEGIN)============================ + * + * Copyright (c) 2007-2010 Projet RNRT SAPHIR + * + * Permission is hereby granted, free of charge, to any person obtaining + * a copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sublicense, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * The above copyright notice and this permission notice shall be + * included in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + * + * ===========================(LICENSE END)============================= + * + * @author Thomas Pornin + */ + +#include +#include + +#include "sph_shavite.h" + +#ifdef __cplusplus +extern "C"{ +#endif + +#if SPH_SMALL_FOOTPRINT && !defined SPH_SMALL_FOOTPRINT_SHAVITE +#define SPH_SMALL_FOOTPRINT_SHAVITE 1 +#endif + +#ifdef _MSC_VER +#pragma warning (disable: 4146) +#endif + +#define C32 SPH_C32 + +/* + * As of round 2 of the SHA-3 competition, the published reference + * implementation and test vectors are wrong, because they use + * big-endian AES tables while the internal decoding uses little-endian. + * The code below follows the specification. To turn it into a code + * which follows the reference implementation (the one called "BugFix" + * on the SHAvite-3 web site, published on Nov 23rd, 2009), comment out + * the code below (from the '#define AES_BIG_ENDIAN...' to the definition + * of the AES_ROUND_NOKEY macro) and replace it with the version which + * is commented out afterwards. + */ + +#define AES_BIG_ENDIAN 0 +#include "aes_helper.c" + +static const sph_u32 IV224[] = { + C32(0x6774F31C), C32(0x990AE210), C32(0xC87D4274), C32(0xC9546371), + C32(0x62B2AEA8), C32(0x4B5801D8), C32(0x1B702860), C32(0x842F3017) +}; + +static const sph_u32 IV256[] = { + C32(0x49BB3E47), C32(0x2674860D), C32(0xA8B392AC), C32(0x021AC4E6), + C32(0x409283CF), C32(0x620E5D86), C32(0x6D929DCB), C32(0x96CC2A8B) +}; + +static const sph_u32 IV384[] = { + C32(0x83DF1545), C32(0xF9AAEC13), C32(0xF4803CB0), C32(0x11FE1F47), + C32(0xDA6CD269), C32(0x4F53FCD7), C32(0x950529A2), C32(0x97908147), + C32(0xB0A4D7AF), C32(0x2B9132BF), C32(0x226E607D), C32(0x3C0F8D7C), + C32(0x487B3F0F), C32(0x04363E22), C32(0x0155C99C), C32(0xEC2E20D3) +}; + +static const sph_u32 IV512[] = { + C32(0x72FCCDD8), C32(0x79CA4727), C32(0x128A077B), C32(0x40D55AEC), + C32(0xD1901A06), C32(0x430AE307), C32(0xB29F5CD1), C32(0xDF07FBFC), + C32(0x8E45D73D), C32(0x681AB538), C32(0xBDE86578), C32(0xDD577E47), + C32(0xE275EADE), C32(0x502D9FCD), C32(0xB9357178), C32(0x022A4B9A) +}; + +#define AES_ROUND_NOKEY(x0, x1, x2, x3) do { \ + sph_u32 t0 = (x0); \ + sph_u32 t1 = (x1); \ + sph_u32 t2 = (x2); \ + sph_u32 t3 = (x3); \ + AES_ROUND_NOKEY_LE(t0, t1, t2, t3, x0, x1, x2, x3); \ + } while (0) + +/* + * This is the code needed to match the "reference implementation" as + * published on Nov 23rd, 2009, instead of the published specification. + * + +#define AES_BIG_ENDIAN 1 +#include "aes_helper.c" + +static const sph_u32 IV224[] = { + C32(0xC4C67795), C32(0xC0B1817F), C32(0xEAD88924), C32(0x1ABB1BB0), + C32(0xE0C29152), C32(0xBDE046BA), C32(0xAEEECF99), C32(0x58D509D8) +}; + +static const sph_u32 IV256[] = { + C32(0x3EECF551), C32(0xBF10819B), C32(0xE6DC8559), C32(0xF3E23FD5), + C32(0x431AEC73), C32(0x79E3F731), C32(0x98325F05), C32(0xA92A31F1) +}; + +static const sph_u32 IV384[] = { + C32(0x71F48510), C32(0xA903A8AC), C32(0xFE3216DD), C32(0x0B2D2AD4), + C32(0x6672900A), C32(0x41032819), C32(0x15A7D780), C32(0xB3CAB8D9), + C32(0x34EF4711), C32(0xDE019FE8), C32(0x4D674DC4), C32(0xE056D96B), + C32(0xA35C016B), C32(0xDD903BA7), C32(0x8C1B09B4), C32(0x2C3E9F25) +}; + +static const sph_u32 IV512[] = { + C32(0xD5652B63), C32(0x25F1E6EA), C32(0xB18F48FA), C32(0xA1EE3A47), + C32(0xC8B67B07), C32(0xBDCE48D3), C32(0xE3937B78), C32(0x05DB5186), + C32(0x613BE326), C32(0xA11FA303), C32(0x90C833D4), C32(0x79CEE316), + C32(0x1E1AF00F), C32(0x2829B165), C32(0x23B25F80), C32(0x21E11499) +}; + +#define AES_ROUND_NOKEY(x0, x1, x2, x3) do { \ + sph_u32 t0 = (x0); \ + sph_u32 t1 = (x1); \ + sph_u32 t2 = (x2); \ + sph_u32 t3 = (x3); \ + AES_ROUND_NOKEY_BE(t0, t1, t2, t3, x0, x1, x2, x3); \ + } while (0) + + */ + +#define KEY_EXPAND_ELT(k0, k1, k2, k3) do { \ + sph_u32 kt; \ + AES_ROUND_NOKEY(k1, k2, k3, k0); \ + kt = (k0); \ + (k0) = (k1); \ + (k1) = (k2); \ + (k2) = (k3); \ + (k3) = kt; \ + } while (0) + +#if SPH_SMALL_FOOTPRINT_SHAVITE + +/* + * This function assumes that "msg" is aligned for 32-bit access. + */ +static void +c256(sph_shavite_small_context *sc, const void *msg) +{ + sph_u32 p0, p1, p2, p3, p4, p5, p6, p7; + sph_u32 rk[144]; + size_t u; + int r, s; + +#if SPH_LITTLE_ENDIAN + memcpy(rk, msg, 64); +#else + for (u = 0; u < 16; u += 4) { + rk[u + 0] = sph_dec32le_aligned( + (const unsigned char *)msg + (u << 2) + 0); + rk[u + 1] = sph_dec32le_aligned( + (const unsigned char *)msg + (u << 2) + 4); + rk[u + 2] = sph_dec32le_aligned( + (const unsigned char *)msg + (u << 2) + 8); + rk[u + 3] = sph_dec32le_aligned( + (const unsigned char *)msg + (u << 2) + 12); + } +#endif + u = 16; + for (r = 0; r < 4; r ++) { + for (s = 0; s < 2; s ++) { + sph_u32 x0, x1, x2, x3; + + x0 = rk[u - 15]; + x1 = rk[u - 14]; + x2 = rk[u - 13]; + x3 = rk[u - 16]; + AES_ROUND_NOKEY(x0, x1, x2, x3); + rk[u + 0] = x0 ^ rk[u - 4]; + rk[u + 1] = x1 ^ rk[u - 3]; + rk[u + 2] = x2 ^ rk[u - 2]; + rk[u + 3] = x3 ^ rk[u - 1]; + if (u == 16) { + rk[ 16] ^= sc->count0; + rk[ 17] ^= SPH_T32(~sc->count1); + } else if (u == 56) { + rk[ 57] ^= sc->count1; + rk[ 58] ^= SPH_T32(~sc->count0); + } + u += 4; + + x0 = rk[u - 15]; + x1 = rk[u - 14]; + x2 = rk[u - 13]; + x3 = rk[u - 16]; + AES_ROUND_NOKEY(x0, x1, x2, x3); + rk[u + 0] = x0 ^ rk[u - 4]; + rk[u + 1] = x1 ^ rk[u - 3]; + rk[u + 2] = x2 ^ rk[u - 2]; + rk[u + 3] = x3 ^ rk[u - 1]; + if (u == 84) { + rk[ 86] ^= sc->count1; + rk[ 87] ^= SPH_T32(~sc->count0); + } else if (u == 124) { + rk[124] ^= sc->count0; + rk[127] ^= SPH_T32(~sc->count1); + } + u += 4; + } + for (s = 0; s < 4; s ++) { + rk[u + 0] = rk[u - 16] ^ rk[u - 3]; + rk[u + 1] = rk[u - 15] ^ rk[u - 2]; + rk[u + 2] = rk[u - 14] ^ rk[u - 1]; + rk[u + 3] = rk[u - 13] ^ rk[u - 0]; + u += 4; + } + } + + p0 = sc->h[0x0]; + p1 = sc->h[0x1]; + p2 = sc->h[0x2]; + p3 = sc->h[0x3]; + p4 = sc->h[0x4]; + p5 = sc->h[0x5]; + p6 = sc->h[0x6]; + p7 = sc->h[0x7]; + u = 0; + for (r = 0; r < 6; r ++) { + sph_u32 x0, x1, x2, x3; + + x0 = p4 ^ rk[u ++]; + x1 = p5 ^ rk[u ++]; + x2 = p6 ^ rk[u ++]; + x3 = p7 ^ rk[u ++]; + AES_ROUND_NOKEY(x0, x1, x2, x3); + x0 ^= rk[u ++]; + x1 ^= rk[u ++]; + x2 ^= rk[u ++]; + x3 ^= rk[u ++]; + AES_ROUND_NOKEY(x0, x1, x2, x3); + x0 ^= rk[u ++]; + x1 ^= rk[u ++]; + x2 ^= rk[u ++]; + x3 ^= rk[u ++]; + AES_ROUND_NOKEY(x0, x1, x2, x3); + p0 ^= x0; + p1 ^= x1; + p2 ^= x2; + p3 ^= x3; + + x0 = p0 ^ rk[u ++]; + x1 = p1 ^ rk[u ++]; + x2 = p2 ^ rk[u ++]; + x3 = p3 ^ rk[u ++]; + AES_ROUND_NOKEY(x0, x1, x2, x3); + x0 ^= rk[u ++]; + x1 ^= rk[u ++]; + x2 ^= rk[u ++]; + x3 ^= rk[u ++]; + AES_ROUND_NOKEY(x0, x1, x2, x3); + x0 ^= rk[u ++]; + x1 ^= rk[u ++]; + x2 ^= rk[u ++]; + x3 ^= rk[u ++]; + AES_ROUND_NOKEY(x0, x1, x2, x3); + p4 ^= x0; + p5 ^= x1; + p6 ^= x2; + p7 ^= x3; + } + sc->h[0x0] ^= p0; + sc->h[0x1] ^= p1; + sc->h[0x2] ^= p2; + sc->h[0x3] ^= p3; + sc->h[0x4] ^= p4; + sc->h[0x5] ^= p5; + sc->h[0x6] ^= p6; + sc->h[0x7] ^= p7; +} + +#else + +/* + * This function assumes that "msg" is aligned for 32-bit access. + */ +static void +c256(sph_shavite_small_context *sc, const void *msg) +{ + sph_u32 p0, p1, p2, p3, p4, p5, p6, p7; + sph_u32 x0, x1, x2, x3; + sph_u32 rk0, rk1, rk2, rk3, rk4, rk5, rk6, rk7; + sph_u32 rk8, rk9, rkA, rkB, rkC, rkD, rkE, rkF; + + p0 = sc->h[0x0]; + p1 = sc->h[0x1]; + p2 = sc->h[0x2]; + p3 = sc->h[0x3]; + p4 = sc->h[0x4]; + p5 = sc->h[0x5]; + p6 = sc->h[0x6]; + p7 = sc->h[0x7]; + /* round 0 */ + rk0 = sph_dec32le_aligned((const unsigned char *)msg + 0); + x0 = p4 ^ rk0; + rk1 = sph_dec32le_aligned((const unsigned char *)msg + 4); + x1 = p5 ^ rk1; + rk2 = sph_dec32le_aligned((const unsigned char *)msg + 8); + x2 = p6 ^ rk2; + rk3 = sph_dec32le_aligned((const unsigned char *)msg + 12); + x3 = p7 ^ rk3; + AES_ROUND_NOKEY(x0, x1, x2, x3); + rk4 = sph_dec32le_aligned((const unsigned char *)msg + 16); + x0 ^= rk4; + rk5 = sph_dec32le_aligned((const unsigned char *)msg + 20); + x1 ^= rk5; + rk6 = sph_dec32le_aligned((const unsigned char *)msg + 24); + x2 ^= rk6; + rk7 = sph_dec32le_aligned((const unsigned char *)msg + 28); + x3 ^= rk7; + AES_ROUND_NOKEY(x0, x1, x2, x3); + rk8 = sph_dec32le_aligned((const unsigned char *)msg + 32); + x0 ^= rk8; + rk9 = sph_dec32le_aligned((const unsigned char *)msg + 36); + x1 ^= rk9; + rkA = sph_dec32le_aligned((const unsigned char *)msg + 40); + x2 ^= rkA; + rkB = sph_dec32le_aligned((const unsigned char *)msg + 44); + x3 ^= rkB; + AES_ROUND_NOKEY(x0, x1, x2, x3); + p0 ^= x0; + p1 ^= x1; + p2 ^= x2; + p3 ^= x3; + /* round 1 */ + rkC = sph_dec32le_aligned((const unsigned char *)msg + 48); + x0 = p0 ^ rkC; + rkD = sph_dec32le_aligned((const unsigned char *)msg + 52); + x1 = p1 ^ rkD; + rkE = sph_dec32le_aligned((const unsigned char *)msg + 56); + x2 = p2 ^ rkE; + rkF = sph_dec32le_aligned((const unsigned char *)msg + 60); + x3 = p3 ^ rkF; + AES_ROUND_NOKEY(x0, x1, x2, x3); + KEY_EXPAND_ELT(rk0, rk1, rk2, rk3); + rk0 ^= rkC ^ sc->count0; + rk1 ^= rkD ^ SPH_T32(~sc->count1); + rk2 ^= rkE; + rk3 ^= rkF; + x0 ^= rk0; + x1 ^= rk1; + x2 ^= rk2; + x3 ^= rk3; + AES_ROUND_NOKEY(x0, x1, x2, x3); + KEY_EXPAND_ELT(rk4, rk5, rk6, rk7); + rk4 ^= rk0; + rk5 ^= rk1; + rk6 ^= rk2; + rk7 ^= rk3; + x0 ^= rk4; + x1 ^= rk5; + x2 ^= rk6; + x3 ^= rk7; + AES_ROUND_NOKEY(x0, x1, x2, x3); + p4 ^= x0; + p5 ^= x1; + p6 ^= x2; + p7 ^= x3; + /* round 2 */ + KEY_EXPAND_ELT(rk8, rk9, rkA, rkB); + rk8 ^= rk4; + rk9 ^= rk5; + rkA ^= rk6; + rkB ^= rk7; + x0 = p4 ^ rk8; + x1 = p5 ^ rk9; + x2 = p6 ^ rkA; + x3 = p7 ^ rkB; + AES_ROUND_NOKEY(x0, x1, x2, x3); + KEY_EXPAND_ELT(rkC, rkD, rkE, rkF); + rkC ^= rk8; + rkD ^= rk9; + rkE ^= rkA; + rkF ^= rkB; + x0 ^= rkC; + x1 ^= rkD; + x2 ^= rkE; + x3 ^= rkF; + AES_ROUND_NOKEY(x0, x1, x2, x3); + rk0 ^= rkD; + x0 ^= rk0; + rk1 ^= rkE; + x1 ^= rk1; + rk2 ^= rkF; + x2 ^= rk2; + rk3 ^= rk0; + x3 ^= rk3; + AES_ROUND_NOKEY(x0, x1, x2, x3); + p0 ^= x0; + p1 ^= x1; + p2 ^= x2; + p3 ^= x3; + /* round 3 */ + rk4 ^= rk1; + x0 = p0 ^ rk4; + rk5 ^= rk2; + x1 = p1 ^ rk5; + rk6 ^= rk3; + x2 = p2 ^ rk6; + rk7 ^= rk4; + x3 = p3 ^ rk7; + AES_ROUND_NOKEY(x0, x1, x2, x3); + rk8 ^= rk5; + x0 ^= rk8; + rk9 ^= rk6; + x1 ^= rk9; + rkA ^= rk7; + x2 ^= rkA; + rkB ^= rk8; + x3 ^= rkB; + AES_ROUND_NOKEY(x0, x1, x2, x3); + rkC ^= rk9; + x0 ^= rkC; + rkD ^= rkA; + x1 ^= rkD; + rkE ^= rkB; + x2 ^= rkE; + rkF ^= rkC; + x3 ^= rkF; + AES_ROUND_NOKEY(x0, x1, x2, x3); + p4 ^= x0; + p5 ^= x1; + p6 ^= x2; + p7 ^= x3; + /* round 4 */ + KEY_EXPAND_ELT(rk0, rk1, rk2, rk3); + rk0 ^= rkC; + rk1 ^= rkD; + rk2 ^= rkE; + rk3 ^= rkF; + x0 = p4 ^ rk0; + x1 = p5 ^ rk1; + x2 = p6 ^ rk2; + x3 = p7 ^ rk3; + AES_ROUND_NOKEY(x0, x1, x2, x3); + KEY_EXPAND_ELT(rk4, rk5, rk6, rk7); + rk4 ^= rk0; + rk5 ^= rk1; + rk6 ^= rk2; + rk7 ^= rk3; + x0 ^= rk4; + x1 ^= rk5; + x2 ^= rk6; + x3 ^= rk7; + AES_ROUND_NOKEY(x0, x1, x2, x3); + KEY_EXPAND_ELT(rk8, rk9, rkA, rkB); + rk8 ^= rk4; + rk9 ^= rk5 ^ sc->count1; + rkA ^= rk6 ^ SPH_T32(~sc->count0); + rkB ^= rk7; + x0 ^= rk8; + x1 ^= rk9; + x2 ^= rkA; + x3 ^= rkB; + AES_ROUND_NOKEY(x0, x1, x2, x3); + p0 ^= x0; + p1 ^= x1; + p2 ^= x2; + p3 ^= x3; + /* round 5 */ + KEY_EXPAND_ELT(rkC, rkD, rkE, rkF); + rkC ^= rk8; + rkD ^= rk9; + rkE ^= rkA; + rkF ^= rkB; + x0 = p0 ^ rkC; + x1 = p1 ^ rkD; + x2 = p2 ^ rkE; + x3 = p3 ^ rkF; + AES_ROUND_NOKEY(x0, x1, x2, x3); + rk0 ^= rkD; + x0 ^= rk0; + rk1 ^= rkE; + x1 ^= rk1; + rk2 ^= rkF; + x2 ^= rk2; + rk3 ^= rk0; + x3 ^= rk3; + AES_ROUND_NOKEY(x0, x1, x2, x3); + rk4 ^= rk1; + x0 ^= rk4; + rk5 ^= rk2; + x1 ^= rk5; + rk6 ^= rk3; + x2 ^= rk6; + rk7 ^= rk4; + x3 ^= rk7; + AES_ROUND_NOKEY(x0, x1, x2, x3); + p4 ^= x0; + p5 ^= x1; + p6 ^= x2; + p7 ^= x3; + /* round 6 */ + rk8 ^= rk5; + x0 = p4 ^ rk8; + rk9 ^= rk6; + x1 = p5 ^ rk9; + rkA ^= rk7; + x2 = p6 ^ rkA; + rkB ^= rk8; + x3 = p7 ^ rkB; + AES_ROUND_NOKEY(x0, x1, x2, x3); + rkC ^= rk9; + x0 ^= rkC; + rkD ^= rkA; + x1 ^= rkD; + rkE ^= rkB; + x2 ^= rkE; + rkF ^= rkC; + x3 ^= rkF; + AES_ROUND_NOKEY(x0, x1, x2, x3); + KEY_EXPAND_ELT(rk0, rk1, rk2, rk3); + rk0 ^= rkC; + rk1 ^= rkD; + rk2 ^= rkE; + rk3 ^= rkF; + x0 ^= rk0; + x1 ^= rk1; + x2 ^= rk2; + x3 ^= rk3; + AES_ROUND_NOKEY(x0, x1, x2, x3); + p0 ^= x0; + p1 ^= x1; + p2 ^= x2; + p3 ^= x3; + /* round 7 */ + KEY_EXPAND_ELT(rk4, rk5, rk6, rk7); + rk4 ^= rk0; + rk5 ^= rk1; + rk6 ^= rk2 ^ sc->count1; + rk7 ^= rk3 ^ SPH_T32(~sc->count0); + x0 = p0 ^ rk4; + x1 = p1 ^ rk5; + x2 = p2 ^ rk6; + x3 = p3 ^ rk7; + AES_ROUND_NOKEY(x0, x1, x2, x3); + KEY_EXPAND_ELT(rk8, rk9, rkA, rkB); + rk8 ^= rk4; + rk9 ^= rk5; + rkA ^= rk6; + rkB ^= rk7; + x0 ^= rk8; + x1 ^= rk9; + x2 ^= rkA; + x3 ^= rkB; + AES_ROUND_NOKEY(x0, x1, x2, x3); + KEY_EXPAND_ELT(rkC, rkD, rkE, rkF); + rkC ^= rk8; + rkD ^= rk9; + rkE ^= rkA; + rkF ^= rkB; + x0 ^= rkC; + x1 ^= rkD; + x2 ^= rkE; + x3 ^= rkF; + AES_ROUND_NOKEY(x0, x1, x2, x3); + p4 ^= x0; + p5 ^= x1; + p6 ^= x2; + p7 ^= x3; + /* round 8 */ + rk0 ^= rkD; + x0 = p4 ^ rk0; + rk1 ^= rkE; + x1 = p5 ^ rk1; + rk2 ^= rkF; + x2 = p6 ^ rk2; + rk3 ^= rk0; + x3 = p7 ^ rk3; + AES_ROUND_NOKEY(x0, x1, x2, x3); + rk4 ^= rk1; + x0 ^= rk4; + rk5 ^= rk2; + x1 ^= rk5; + rk6 ^= rk3; + x2 ^= rk6; + rk7 ^= rk4; + x3 ^= rk7; + AES_ROUND_NOKEY(x0, x1, x2, x3); + rk8 ^= rk5; + x0 ^= rk8; + rk9 ^= rk6; + x1 ^= rk9; + rkA ^= rk7; + x2 ^= rkA; + rkB ^= rk8; + x3 ^= rkB; + AES_ROUND_NOKEY(x0, x1, x2, x3); + p0 ^= x0; + p1 ^= x1; + p2 ^= x2; + p3 ^= x3; + /* round 9 */ + rkC ^= rk9; + x0 = p0 ^ rkC; + rkD ^= rkA; + x1 = p1 ^ rkD; + rkE ^= rkB; + x2 = p2 ^ rkE; + rkF ^= rkC; + x3 = p3 ^ rkF; + AES_ROUND_NOKEY(x0, x1, x2, x3); + KEY_EXPAND_ELT(rk0, rk1, rk2, rk3); + rk0 ^= rkC; + rk1 ^= rkD; + rk2 ^= rkE; + rk3 ^= rkF; + x0 ^= rk0; + x1 ^= rk1; + x2 ^= rk2; + x3 ^= rk3; + AES_ROUND_NOKEY(x0, x1, x2, x3); + KEY_EXPAND_ELT(rk4, rk5, rk6, rk7); + rk4 ^= rk0; + rk5 ^= rk1; + rk6 ^= rk2; + rk7 ^= rk3; + x0 ^= rk4; + x1 ^= rk5; + x2 ^= rk6; + x3 ^= rk7; + AES_ROUND_NOKEY(x0, x1, x2, x3); + p4 ^= x0; + p5 ^= x1; + p6 ^= x2; + p7 ^= x3; + /* round 10 */ + KEY_EXPAND_ELT(rk8, rk9, rkA, rkB); + rk8 ^= rk4; + rk9 ^= rk5; + rkA ^= rk6; + rkB ^= rk7; + x0 = p4 ^ rk8; + x1 = p5 ^ rk9; + x2 = p6 ^ rkA; + x3 = p7 ^ rkB; + AES_ROUND_NOKEY(x0, x1, x2, x3); + KEY_EXPAND_ELT(rkC, rkD, rkE, rkF); + rkC ^= rk8 ^ sc->count0; + rkD ^= rk9; + rkE ^= rkA; + rkF ^= rkB ^ SPH_T32(~sc->count1); + x0 ^= rkC; + x1 ^= rkD; + x2 ^= rkE; + x3 ^= rkF; + AES_ROUND_NOKEY(x0, x1, x2, x3); + rk0 ^= rkD; + x0 ^= rk0; + rk1 ^= rkE; + x1 ^= rk1; + rk2 ^= rkF; + x2 ^= rk2; + rk3 ^= rk0; + x3 ^= rk3; + AES_ROUND_NOKEY(x0, x1, x2, x3); + p0 ^= x0; + p1 ^= x1; + p2 ^= x2; + p3 ^= x3; + /* round 11 */ + rk4 ^= rk1; + x0 = p0 ^ rk4; + rk5 ^= rk2; + x1 = p1 ^ rk5; + rk6 ^= rk3; + x2 = p2 ^ rk6; + rk7 ^= rk4; + x3 = p3 ^ rk7; + AES_ROUND_NOKEY(x0, x1, x2, x3); + rk8 ^= rk5; + x0 ^= rk8; + rk9 ^= rk6; + x1 ^= rk9; + rkA ^= rk7; + x2 ^= rkA; + rkB ^= rk8; + x3 ^= rkB; + AES_ROUND_NOKEY(x0, x1, x2, x3); + rkC ^= rk9; + x0 ^= rkC; + rkD ^= rkA; + x1 ^= rkD; + rkE ^= rkB; + x2 ^= rkE; + rkF ^= rkC; + x3 ^= rkF; + AES_ROUND_NOKEY(x0, x1, x2, x3); + p4 ^= x0; + p5 ^= x1; + p6 ^= x2; + p7 ^= x3; + sc->h[0x0] ^= p0; + sc->h[0x1] ^= p1; + sc->h[0x2] ^= p2; + sc->h[0x3] ^= p3; + sc->h[0x4] ^= p4; + sc->h[0x5] ^= p5; + sc->h[0x6] ^= p6; + sc->h[0x7] ^= p7; +} + +#endif + +#if SPH_SMALL_FOOTPRINT_SHAVITE + +/* + * This function assumes that "msg" is aligned for 32-bit access. + */ +static void +c512(sph_shavite_big_context *sc, const void *msg) +{ + sph_u32 p0, p1, p2, p3, p4, p5, p6, p7; + sph_u32 p8, p9, pA, pB, pC, pD, pE, pF; + sph_u32 rk[448]; + size_t u; + int r, s; + +#if SPH_LITTLE_ENDIAN + memcpy(rk, msg, 128); +#else + for (u = 0; u < 32; u += 4) { + rk[u + 0] = sph_dec32le_aligned( + (const unsigned char *)msg + (u << 2) + 0); + rk[u + 1] = sph_dec32le_aligned( + (const unsigned char *)msg + (u << 2) + 4); + rk[u + 2] = sph_dec32le_aligned( + (const unsigned char *)msg + (u << 2) + 8); + rk[u + 3] = sph_dec32le_aligned( + (const unsigned char *)msg + (u << 2) + 12); + } +#endif + u = 32; + for (;;) { + for (s = 0; s < 4; s ++) { + sph_u32 x0, x1, x2, x3; + + x0 = rk[u - 31]; + x1 = rk[u - 30]; + x2 = rk[u - 29]; + x3 = rk[u - 32]; + AES_ROUND_NOKEY(x0, x1, x2, x3); + rk[u + 0] = x0 ^ rk[u - 4]; + rk[u + 1] = x1 ^ rk[u - 3]; + rk[u + 2] = x2 ^ rk[u - 2]; + rk[u + 3] = x3 ^ rk[u - 1]; + if (u == 32) { + rk[ 32] ^= sc->count0; + rk[ 33] ^= sc->count1; + rk[ 34] ^= sc->count2; + rk[ 35] ^= SPH_T32(~sc->count3); + } else if (u == 440) { + rk[440] ^= sc->count1; + rk[441] ^= sc->count0; + rk[442] ^= sc->count3; + rk[443] ^= SPH_T32(~sc->count2); + } + u += 4; + + x0 = rk[u - 31]; + x1 = rk[u - 30]; + x2 = rk[u - 29]; + x3 = rk[u - 32]; + AES_ROUND_NOKEY(x0, x1, x2, x3); + rk[u + 0] = x0 ^ rk[u - 4]; + rk[u + 1] = x1 ^ rk[u - 3]; + rk[u + 2] = x2 ^ rk[u - 2]; + rk[u + 3] = x3 ^ rk[u - 1]; + if (u == 164) { + rk[164] ^= sc->count3; + rk[165] ^= sc->count2; + rk[166] ^= sc->count1; + rk[167] ^= SPH_T32(~sc->count0); + } else if (u == 316) { + rk[316] ^= sc->count2; + rk[317] ^= sc->count3; + rk[318] ^= sc->count0; + rk[319] ^= SPH_T32(~sc->count1); + } + u += 4; + } + if (u == 448) + break; + for (s = 0; s < 8; s ++) { + rk[u + 0] = rk[u - 32] ^ rk[u - 7]; + rk[u + 1] = rk[u - 31] ^ rk[u - 6]; + rk[u + 2] = rk[u - 30] ^ rk[u - 5]; + rk[u + 3] = rk[u - 29] ^ rk[u - 4]; + u += 4; + } + } + + p0 = sc->h[0x0]; + p1 = sc->h[0x1]; + p2 = sc->h[0x2]; + p3 = sc->h[0x3]; + p4 = sc->h[0x4]; + p5 = sc->h[0x5]; + p6 = sc->h[0x6]; + p7 = sc->h[0x7]; + p8 = sc->h[0x8]; + p9 = sc->h[0x9]; + pA = sc->h[0xA]; + pB = sc->h[0xB]; + pC = sc->h[0xC]; + pD = sc->h[0xD]; + pE = sc->h[0xE]; + pF = sc->h[0xF]; + u = 0; + for (r = 0; r < 14; r ++) { +#define C512_ELT(l0, l1, l2, l3, r0, r1, r2, r3) do { \ + sph_u32 x0, x1, x2, x3; \ + x0 = r0 ^ rk[u ++]; \ + x1 = r1 ^ rk[u ++]; \ + x2 = r2 ^ rk[u ++]; \ + x3 = r3 ^ rk[u ++]; \ + AES_ROUND_NOKEY(x0, x1, x2, x3); \ + x0 ^= rk[u ++]; \ + x1 ^= rk[u ++]; \ + x2 ^= rk[u ++]; \ + x3 ^= rk[u ++]; \ + AES_ROUND_NOKEY(x0, x1, x2, x3); \ + x0 ^= rk[u ++]; \ + x1 ^= rk[u ++]; \ + x2 ^= rk[u ++]; \ + x3 ^= rk[u ++]; \ + AES_ROUND_NOKEY(x0, x1, x2, x3); \ + x0 ^= rk[u ++]; \ + x1 ^= rk[u ++]; \ + x2 ^= rk[u ++]; \ + x3 ^= rk[u ++]; \ + AES_ROUND_NOKEY(x0, x1, x2, x3); \ + l0 ^= x0; \ + l1 ^= x1; \ + l2 ^= x2; \ + l3 ^= x3; \ + } while (0) + +#define WROT(a, b, c, d) do { \ + sph_u32 t = d; \ + d = c; \ + c = b; \ + b = a; \ + a = t; \ + } while (0) + + C512_ELT(p0, p1, p2, p3, p4, p5, p6, p7); + C512_ELT(p8, p9, pA, pB, pC, pD, pE, pF); + + WROT(p0, p4, p8, pC); + WROT(p1, p5, p9, pD); + WROT(p2, p6, pA, pE); + WROT(p3, p7, pB, pF); + +#undef C512_ELT +#undef WROT + } + sc->h[0x0] ^= p0; + sc->h[0x1] ^= p1; + sc->h[0x2] ^= p2; + sc->h[0x3] ^= p3; + sc->h[0x4] ^= p4; + sc->h[0x5] ^= p5; + sc->h[0x6] ^= p6; + sc->h[0x7] ^= p7; + sc->h[0x8] ^= p8; + sc->h[0x9] ^= p9; + sc->h[0xA] ^= pA; + sc->h[0xB] ^= pB; + sc->h[0xC] ^= pC; + sc->h[0xD] ^= pD; + sc->h[0xE] ^= pE; + sc->h[0xF] ^= pF; +} + +#else + +/* + * This function assumes that "msg" is aligned for 32-bit access. + */ +static void +c512(sph_shavite_big_context *sc, const void *msg) +{ + sph_u32 p0, p1, p2, p3, p4, p5, p6, p7; + sph_u32 p8, p9, pA, pB, pC, pD, pE, pF; + sph_u32 x0, x1, x2, x3; + sph_u32 rk00, rk01, rk02, rk03, rk04, rk05, rk06, rk07; + sph_u32 rk08, rk09, rk0A, rk0B, rk0C, rk0D, rk0E, rk0F; + sph_u32 rk10, rk11, rk12, rk13, rk14, rk15, rk16, rk17; + sph_u32 rk18, rk19, rk1A, rk1B, rk1C, rk1D, rk1E, rk1F; + int r; + + p0 = sc->h[0x0]; + p1 = sc->h[0x1]; + p2 = sc->h[0x2]; + p3 = sc->h[0x3]; + p4 = sc->h[0x4]; + p5 = sc->h[0x5]; + p6 = sc->h[0x6]; + p7 = sc->h[0x7]; + p8 = sc->h[0x8]; + p9 = sc->h[0x9]; + pA = sc->h[0xA]; + pB = sc->h[0xB]; + pC = sc->h[0xC]; + pD = sc->h[0xD]; + pE = sc->h[0xE]; + pF = sc->h[0xF]; + /* round 0 */ + rk00 = sph_dec32le_aligned((const unsigned char *)msg + 0); + x0 = p4 ^ rk00; + rk01 = sph_dec32le_aligned((const unsigned char *)msg + 4); + x1 = p5 ^ rk01; + rk02 = sph_dec32le_aligned((const unsigned char *)msg + 8); + x2 = p6 ^ rk02; + rk03 = sph_dec32le_aligned((const unsigned char *)msg + 12); + x3 = p7 ^ rk03; + AES_ROUND_NOKEY(x0, x1, x2, x3); + rk04 = sph_dec32le_aligned((const unsigned char *)msg + 16); + x0 ^= rk04; + rk05 = sph_dec32le_aligned((const unsigned char *)msg + 20); + x1 ^= rk05; + rk06 = sph_dec32le_aligned((const unsigned char *)msg + 24); + x2 ^= rk06; + rk07 = sph_dec32le_aligned((const unsigned char *)msg + 28); + x3 ^= rk07; + AES_ROUND_NOKEY(x0, x1, x2, x3); + rk08 = sph_dec32le_aligned((const unsigned char *)msg + 32); + x0 ^= rk08; + rk09 = sph_dec32le_aligned((const unsigned char *)msg + 36); + x1 ^= rk09; + rk0A = sph_dec32le_aligned((const unsigned char *)msg + 40); + x2 ^= rk0A; + rk0B = sph_dec32le_aligned((const unsigned char *)msg + 44); + x3 ^= rk0B; + AES_ROUND_NOKEY(x0, x1, x2, x3); + rk0C = sph_dec32le_aligned((const unsigned char *)msg + 48); + x0 ^= rk0C; + rk0D = sph_dec32le_aligned((const unsigned char *)msg + 52); + x1 ^= rk0D; + rk0E = sph_dec32le_aligned((const unsigned char *)msg + 56); + x2 ^= rk0E; + rk0F = sph_dec32le_aligned((const unsigned char *)msg + 60); + x3 ^= rk0F; + AES_ROUND_NOKEY(x0, x1, x2, x3); + p0 ^= x0; + p1 ^= x1; + p2 ^= x2; + p3 ^= x3; + rk10 = sph_dec32le_aligned((const unsigned char *)msg + 64); + x0 = pC ^ rk10; + rk11 = sph_dec32le_aligned((const unsigned char *)msg + 68); + x1 = pD ^ rk11; + rk12 = sph_dec32le_aligned((const unsigned char *)msg + 72); + x2 = pE ^ rk12; + rk13 = sph_dec32le_aligned((const unsigned char *)msg + 76); + x3 = pF ^ rk13; + AES_ROUND_NOKEY(x0, x1, x2, x3); + rk14 = sph_dec32le_aligned((const unsigned char *)msg + 80); + x0 ^= rk14; + rk15 = sph_dec32le_aligned((const unsigned char *)msg + 84); + x1 ^= rk15; + rk16 = sph_dec32le_aligned((const unsigned char *)msg + 88); + x2 ^= rk16; + rk17 = sph_dec32le_aligned((const unsigned char *)msg + 92); + x3 ^= rk17; + AES_ROUND_NOKEY(x0, x1, x2, x3); + rk18 = sph_dec32le_aligned((const unsigned char *)msg + 96); + x0 ^= rk18; + rk19 = sph_dec32le_aligned((const unsigned char *)msg + 100); + x1 ^= rk19; + rk1A = sph_dec32le_aligned((const unsigned char *)msg + 104); + x2 ^= rk1A; + rk1B = sph_dec32le_aligned((const unsigned char *)msg + 108); + x3 ^= rk1B; + AES_ROUND_NOKEY(x0, x1, x2, x3); + rk1C = sph_dec32le_aligned((const unsigned char *)msg + 112); + x0 ^= rk1C; + rk1D = sph_dec32le_aligned((const unsigned char *)msg + 116); + x1 ^= rk1D; + rk1E = sph_dec32le_aligned((const unsigned char *)msg + 120); + x2 ^= rk1E; + rk1F = sph_dec32le_aligned((const unsigned char *)msg + 124); + x3 ^= rk1F; + AES_ROUND_NOKEY(x0, x1, x2, x3); + p8 ^= x0; + p9 ^= x1; + pA ^= x2; + pB ^= x3; + + for (r = 0; r < 3; r ++) { + /* round 1, 5, 9 */ + KEY_EXPAND_ELT(rk00, rk01, rk02, rk03); + rk00 ^= rk1C; + rk01 ^= rk1D; + rk02 ^= rk1E; + rk03 ^= rk1F; + if (r == 0) { + rk00 ^= sc->count0; + rk01 ^= sc->count1; + rk02 ^= sc->count2; + rk03 ^= SPH_T32(~sc->count3); + } + x0 = p0 ^ rk00; + x1 = p1 ^ rk01; + x2 = p2 ^ rk02; + x3 = p3 ^ rk03; + AES_ROUND_NOKEY(x0, x1, x2, x3); + KEY_EXPAND_ELT(rk04, rk05, rk06, rk07); + rk04 ^= rk00; + rk05 ^= rk01; + rk06 ^= rk02; + rk07 ^= rk03; + if (r == 1) { + rk04 ^= sc->count3; + rk05 ^= sc->count2; + rk06 ^= sc->count1; + rk07 ^= SPH_T32(~sc->count0); + } + x0 ^= rk04; + x1 ^= rk05; + x2 ^= rk06; + x3 ^= rk07; + AES_ROUND_NOKEY(x0, x1, x2, x3); + KEY_EXPAND_ELT(rk08, rk09, rk0A, rk0B); + rk08 ^= rk04; + rk09 ^= rk05; + rk0A ^= rk06; + rk0B ^= rk07; + x0 ^= rk08; + x1 ^= rk09; + x2 ^= rk0A; + x3 ^= rk0B; + AES_ROUND_NOKEY(x0, x1, x2, x3); + KEY_EXPAND_ELT(rk0C, rk0D, rk0E, rk0F); + rk0C ^= rk08; + rk0D ^= rk09; + rk0E ^= rk0A; + rk0F ^= rk0B; + x0 ^= rk0C; + x1 ^= rk0D; + x2 ^= rk0E; + x3 ^= rk0F; + AES_ROUND_NOKEY(x0, x1, x2, x3); + pC ^= x0; + pD ^= x1; + pE ^= x2; + pF ^= x3; + KEY_EXPAND_ELT(rk10, rk11, rk12, rk13); + rk10 ^= rk0C; + rk11 ^= rk0D; + rk12 ^= rk0E; + rk13 ^= rk0F; + x0 = p8 ^ rk10; + x1 = p9 ^ rk11; + x2 = pA ^ rk12; + x3 = pB ^ rk13; + AES_ROUND_NOKEY(x0, x1, x2, x3); + KEY_EXPAND_ELT(rk14, rk15, rk16, rk17); + rk14 ^= rk10; + rk15 ^= rk11; + rk16 ^= rk12; + rk17 ^= rk13; + x0 ^= rk14; + x1 ^= rk15; + x2 ^= rk16; + x3 ^= rk17; + AES_ROUND_NOKEY(x0, x1, x2, x3); + KEY_EXPAND_ELT(rk18, rk19, rk1A, rk1B); + rk18 ^= rk14; + rk19 ^= rk15; + rk1A ^= rk16; + rk1B ^= rk17; + x0 ^= rk18; + x1 ^= rk19; + x2 ^= rk1A; + x3 ^= rk1B; + AES_ROUND_NOKEY(x0, x1, x2, x3); + KEY_EXPAND_ELT(rk1C, rk1D, rk1E, rk1F); + rk1C ^= rk18; + rk1D ^= rk19; + rk1E ^= rk1A; + rk1F ^= rk1B; + if (r == 2) { + rk1C ^= sc->count2; + rk1D ^= sc->count3; + rk1E ^= sc->count0; + rk1F ^= SPH_T32(~sc->count1); + } + x0 ^= rk1C; + x1 ^= rk1D; + x2 ^= rk1E; + x3 ^= rk1F; + AES_ROUND_NOKEY(x0, x1, x2, x3); + p4 ^= x0; + p5 ^= x1; + p6 ^= x2; + p7 ^= x3; + /* round 2, 6, 10 */ + rk00 ^= rk19; + x0 = pC ^ rk00; + rk01 ^= rk1A; + x1 = pD ^ rk01; + rk02 ^= rk1B; + x2 = pE ^ rk02; + rk03 ^= rk1C; + x3 = pF ^ rk03; + AES_ROUND_NOKEY(x0, x1, x2, x3); + rk04 ^= rk1D; + x0 ^= rk04; + rk05 ^= rk1E; + x1 ^= rk05; + rk06 ^= rk1F; + x2 ^= rk06; + rk07 ^= rk00; + x3 ^= rk07; + AES_ROUND_NOKEY(x0, x1, x2, x3); + rk08 ^= rk01; + x0 ^= rk08; + rk09 ^= rk02; + x1 ^= rk09; + rk0A ^= rk03; + x2 ^= rk0A; + rk0B ^= rk04; + x3 ^= rk0B; + AES_ROUND_NOKEY(x0, x1, x2, x3); + rk0C ^= rk05; + x0 ^= rk0C; + rk0D ^= rk06; + x1 ^= rk0D; + rk0E ^= rk07; + x2 ^= rk0E; + rk0F ^= rk08; + x3 ^= rk0F; + AES_ROUND_NOKEY(x0, x1, x2, x3); + p8 ^= x0; + p9 ^= x1; + pA ^= x2; + pB ^= x3; + rk10 ^= rk09; + x0 = p4 ^ rk10; + rk11 ^= rk0A; + x1 = p5 ^ rk11; + rk12 ^= rk0B; + x2 = p6 ^ rk12; + rk13 ^= rk0C; + x3 = p7 ^ rk13; + AES_ROUND_NOKEY(x0, x1, x2, x3); + rk14 ^= rk0D; + x0 ^= rk14; + rk15 ^= rk0E; + x1 ^= rk15; + rk16 ^= rk0F; + x2 ^= rk16; + rk17 ^= rk10; + x3 ^= rk17; + AES_ROUND_NOKEY(x0, x1, x2, x3); + rk18 ^= rk11; + x0 ^= rk18; + rk19 ^= rk12; + x1 ^= rk19; + rk1A ^= rk13; + x2 ^= rk1A; + rk1B ^= rk14; + x3 ^= rk1B; + AES_ROUND_NOKEY(x0, x1, x2, x3); + rk1C ^= rk15; + x0 ^= rk1C; + rk1D ^= rk16; + x1 ^= rk1D; + rk1E ^= rk17; + x2 ^= rk1E; + rk1F ^= rk18; + x3 ^= rk1F; + AES_ROUND_NOKEY(x0, x1, x2, x3); + p0 ^= x0; + p1 ^= x1; + p2 ^= x2; + p3 ^= x3; + /* round 3, 7, 11 */ + KEY_EXPAND_ELT(rk00, rk01, rk02, rk03); + rk00 ^= rk1C; + rk01 ^= rk1D; + rk02 ^= rk1E; + rk03 ^= rk1F; + x0 = p8 ^ rk00; + x1 = p9 ^ rk01; + x2 = pA ^ rk02; + x3 = pB ^ rk03; + AES_ROUND_NOKEY(x0, x1, x2, x3); + KEY_EXPAND_ELT(rk04, rk05, rk06, rk07); + rk04 ^= rk00; + rk05 ^= rk01; + rk06 ^= rk02; + rk07 ^= rk03; + x0 ^= rk04; + x1 ^= rk05; + x2 ^= rk06; + x3 ^= rk07; + AES_ROUND_NOKEY(x0, x1, x2, x3); + KEY_EXPAND_ELT(rk08, rk09, rk0A, rk0B); + rk08 ^= rk04; + rk09 ^= rk05; + rk0A ^= rk06; + rk0B ^= rk07; + x0 ^= rk08; + x1 ^= rk09; + x2 ^= rk0A; + x3 ^= rk0B; + AES_ROUND_NOKEY(x0, x1, x2, x3); + KEY_EXPAND_ELT(rk0C, rk0D, rk0E, rk0F); + rk0C ^= rk08; + rk0D ^= rk09; + rk0E ^= rk0A; + rk0F ^= rk0B; + x0 ^= rk0C; + x1 ^= rk0D; + x2 ^= rk0E; + x3 ^= rk0F; + AES_ROUND_NOKEY(x0, x1, x2, x3); + p4 ^= x0; + p5 ^= x1; + p6 ^= x2; + p7 ^= x3; + KEY_EXPAND_ELT(rk10, rk11, rk12, rk13); + rk10 ^= rk0C; + rk11 ^= rk0D; + rk12 ^= rk0E; + rk13 ^= rk0F; + x0 = p0 ^ rk10; + x1 = p1 ^ rk11; + x2 = p2 ^ rk12; + x3 = p3 ^ rk13; + AES_ROUND_NOKEY(x0, x1, x2, x3); + KEY_EXPAND_ELT(rk14, rk15, rk16, rk17); + rk14 ^= rk10; + rk15 ^= rk11; + rk16 ^= rk12; + rk17 ^= rk13; + x0 ^= rk14; + x1 ^= rk15; + x2 ^= rk16; + x3 ^= rk17; + AES_ROUND_NOKEY(x0, x1, x2, x3); + KEY_EXPAND_ELT(rk18, rk19, rk1A, rk1B); + rk18 ^= rk14; + rk19 ^= rk15; + rk1A ^= rk16; + rk1B ^= rk17; + x0 ^= rk18; + x1 ^= rk19; + x2 ^= rk1A; + x3 ^= rk1B; + AES_ROUND_NOKEY(x0, x1, x2, x3); + KEY_EXPAND_ELT(rk1C, rk1D, rk1E, rk1F); + rk1C ^= rk18; + rk1D ^= rk19; + rk1E ^= rk1A; + rk1F ^= rk1B; + x0 ^= rk1C; + x1 ^= rk1D; + x2 ^= rk1E; + x3 ^= rk1F; + AES_ROUND_NOKEY(x0, x1, x2, x3); + pC ^= x0; + pD ^= x1; + pE ^= x2; + pF ^= x3; + /* round 4, 8, 12 */ + rk00 ^= rk19; + x0 = p4 ^ rk00; + rk01 ^= rk1A; + x1 = p5 ^ rk01; + rk02 ^= rk1B; + x2 = p6 ^ rk02; + rk03 ^= rk1C; + x3 = p7 ^ rk03; + AES_ROUND_NOKEY(x0, x1, x2, x3); + rk04 ^= rk1D; + x0 ^= rk04; + rk05 ^= rk1E; + x1 ^= rk05; + rk06 ^= rk1F; + x2 ^= rk06; + rk07 ^= rk00; + x3 ^= rk07; + AES_ROUND_NOKEY(x0, x1, x2, x3); + rk08 ^= rk01; + x0 ^= rk08; + rk09 ^= rk02; + x1 ^= rk09; + rk0A ^= rk03; + x2 ^= rk0A; + rk0B ^= rk04; + x3 ^= rk0B; + AES_ROUND_NOKEY(x0, x1, x2, x3); + rk0C ^= rk05; + x0 ^= rk0C; + rk0D ^= rk06; + x1 ^= rk0D; + rk0E ^= rk07; + x2 ^= rk0E; + rk0F ^= rk08; + x3 ^= rk0F; + AES_ROUND_NOKEY(x0, x1, x2, x3); + p0 ^= x0; + p1 ^= x1; + p2 ^= x2; + p3 ^= x3; + rk10 ^= rk09; + x0 = pC ^ rk10; + rk11 ^= rk0A; + x1 = pD ^ rk11; + rk12 ^= rk0B; + x2 = pE ^ rk12; + rk13 ^= rk0C; + x3 = pF ^ rk13; + AES_ROUND_NOKEY(x0, x1, x2, x3); + rk14 ^= rk0D; + x0 ^= rk14; + rk15 ^= rk0E; + x1 ^= rk15; + rk16 ^= rk0F; + x2 ^= rk16; + rk17 ^= rk10; + x3 ^= rk17; + AES_ROUND_NOKEY(x0, x1, x2, x3); + rk18 ^= rk11; + x0 ^= rk18; + rk19 ^= rk12; + x1 ^= rk19; + rk1A ^= rk13; + x2 ^= rk1A; + rk1B ^= rk14; + x3 ^= rk1B; + AES_ROUND_NOKEY(x0, x1, x2, x3); + rk1C ^= rk15; + x0 ^= rk1C; + rk1D ^= rk16; + x1 ^= rk1D; + rk1E ^= rk17; + x2 ^= rk1E; + rk1F ^= rk18; + x3 ^= rk1F; + AES_ROUND_NOKEY(x0, x1, x2, x3); + p8 ^= x0; + p9 ^= x1; + pA ^= x2; + pB ^= x3; + } + /* round 13 */ + KEY_EXPAND_ELT(rk00, rk01, rk02, rk03); + rk00 ^= rk1C; + rk01 ^= rk1D; + rk02 ^= rk1E; + rk03 ^= rk1F; + x0 = p0 ^ rk00; + x1 = p1 ^ rk01; + x2 = p2 ^ rk02; + x3 = p3 ^ rk03; + AES_ROUND_NOKEY(x0, x1, x2, x3); + KEY_EXPAND_ELT(rk04, rk05, rk06, rk07); + rk04 ^= rk00; + rk05 ^= rk01; + rk06 ^= rk02; + rk07 ^= rk03; + x0 ^= rk04; + x1 ^= rk05; + x2 ^= rk06; + x3 ^= rk07; + AES_ROUND_NOKEY(x0, x1, x2, x3); + KEY_EXPAND_ELT(rk08, rk09, rk0A, rk0B); + rk08 ^= rk04; + rk09 ^= rk05; + rk0A ^= rk06; + rk0B ^= rk07; + x0 ^= rk08; + x1 ^= rk09; + x2 ^= rk0A; + x3 ^= rk0B; + AES_ROUND_NOKEY(x0, x1, x2, x3); + KEY_EXPAND_ELT(rk0C, rk0D, rk0E, rk0F); + rk0C ^= rk08; + rk0D ^= rk09; + rk0E ^= rk0A; + rk0F ^= rk0B; + x0 ^= rk0C; + x1 ^= rk0D; + x2 ^= rk0E; + x3 ^= rk0F; + AES_ROUND_NOKEY(x0, x1, x2, x3); + pC ^= x0; + pD ^= x1; + pE ^= x2; + pF ^= x3; + KEY_EXPAND_ELT(rk10, rk11, rk12, rk13); + rk10 ^= rk0C; + rk11 ^= rk0D; + rk12 ^= rk0E; + rk13 ^= rk0F; + x0 = p8 ^ rk10; + x1 = p9 ^ rk11; + x2 = pA ^ rk12; + x3 = pB ^ rk13; + AES_ROUND_NOKEY(x0, x1, x2, x3); + KEY_EXPAND_ELT(rk14, rk15, rk16, rk17); + rk14 ^= rk10; + rk15 ^= rk11; + rk16 ^= rk12; + rk17 ^= rk13; + x0 ^= rk14; + x1 ^= rk15; + x2 ^= rk16; + x3 ^= rk17; + AES_ROUND_NOKEY(x0, x1, x2, x3); + KEY_EXPAND_ELT(rk18, rk19, rk1A, rk1B); + rk18 ^= rk14 ^ sc->count1; + rk19 ^= rk15 ^ sc->count0; + rk1A ^= rk16 ^ sc->count3; + rk1B ^= rk17 ^ SPH_T32(~sc->count2); + x0 ^= rk18; + x1 ^= rk19; + x2 ^= rk1A; + x3 ^= rk1B; + AES_ROUND_NOKEY(x0, x1, x2, x3); + KEY_EXPAND_ELT(rk1C, rk1D, rk1E, rk1F); + rk1C ^= rk18; + rk1D ^= rk19; + rk1E ^= rk1A; + rk1F ^= rk1B; + x0 ^= rk1C; + x1 ^= rk1D; + x2 ^= rk1E; + x3 ^= rk1F; + AES_ROUND_NOKEY(x0, x1, x2, x3); + p4 ^= x0; + p5 ^= x1; + p6 ^= x2; + p7 ^= x3; + sc->h[0x0] ^= p8; + sc->h[0x1] ^= p9; + sc->h[0x2] ^= pA; + sc->h[0x3] ^= pB; + sc->h[0x4] ^= pC; + sc->h[0x5] ^= pD; + sc->h[0x6] ^= pE; + sc->h[0x7] ^= pF; + sc->h[0x8] ^= p0; + sc->h[0x9] ^= p1; + sc->h[0xA] ^= p2; + sc->h[0xB] ^= p3; + sc->h[0xC] ^= p4; + sc->h[0xD] ^= p5; + sc->h[0xE] ^= p6; + sc->h[0xF] ^= p7; +} + +#endif + +static void +shavite_small_init(sph_shavite_small_context *sc, const sph_u32 *iv) +{ + memcpy(sc->h, iv, sizeof sc->h); + sc->ptr = 0; + sc->count0 = 0; + sc->count1 = 0; +} + +static void +shavite_small_core(sph_shavite_small_context *sc, const void *data, size_t len) +{ + unsigned char *buf; + size_t ptr; + + buf = sc->buf; + ptr = sc->ptr; + while (len > 0) { + size_t clen; + + clen = (sizeof sc->buf) - ptr; + if (clen > len) + clen = len; + memcpy(buf + ptr, data, clen); + data = (const unsigned char *)data + clen; + ptr += clen; + len -= clen; + if (ptr == sizeof sc->buf) { + if ((sc->count0 = SPH_T32(sc->count0 + 512)) == 0) + sc->count1 = SPH_T32(sc->count1 + 1); + c256(sc, buf); + ptr = 0; + } + } + sc->ptr = ptr; +} + +static void +shavite_small_close(sph_shavite_small_context *sc, + unsigned ub, unsigned n, void *dst, size_t out_size_w32) +{ + unsigned char *buf; + size_t ptr, u; + unsigned z; + sph_u32 count0, count1; + + buf = sc->buf; + ptr = sc->ptr; + count0 = (sc->count0 += (ptr << 3) + n); + count1 = sc->count1; + z = 0x80 >> n; + z = ((ub & -z) | z) & 0xFF; + if (ptr == 0 && n == 0) { + buf[0] = 0x80; + memset(buf + 1, 0, 53); + sc->count0 = sc->count1 = 0; + } else if (ptr < 54) { + buf[ptr ++] = z; + memset(buf + ptr, 0, 54 - ptr); + } else { + buf[ptr ++] = z; + memset(buf + ptr, 0, 64 - ptr); + c256(sc, buf); + memset(buf, 0, 54); + sc->count0 = sc->count1 = 0; + } + sph_enc32le(buf + 54, count0); + sph_enc32le(buf + 58, count1); + buf[62] = out_size_w32 << 5; + buf[63] = out_size_w32 >> 3; + c256(sc, buf); + for (u = 0; u < out_size_w32; u ++) + sph_enc32le((unsigned char *)dst + (u << 2), sc->h[u]); +} + +static void +shavite_big_init(sph_shavite_big_context *sc, const sph_u32 *iv) +{ + memcpy(sc->h, iv, sizeof sc->h); + sc->ptr = 0; + sc->count0 = 0; + sc->count1 = 0; + sc->count2 = 0; + sc->count3 = 0; +} + +static void +shavite_big_core(sph_shavite_big_context *sc, const void *data, size_t len) +{ + unsigned char *buf; + size_t ptr; + + buf = sc->buf; + ptr = sc->ptr; + while (len > 0) { + size_t clen; + + clen = (sizeof sc->buf) - ptr; + if (clen > len) + clen = len; + memcpy(buf + ptr, data, clen); + data = (const unsigned char *)data + clen; + ptr += clen; + len -= clen; + if (ptr == sizeof sc->buf) { + if ((sc->count0 = SPH_T32(sc->count0 + 1024)) == 0) { + sc->count1 = SPH_T32(sc->count1 + 1); + if (sc->count1 == 0) { + sc->count2 = SPH_T32(sc->count2 + 1); + if (sc->count2 == 0) { + sc->count3 = SPH_T32( + sc->count3 + 1); + } + } + } + c512(sc, buf); + ptr = 0; + } + } + sc->ptr = ptr; +} + +static void +shavite_big_close(sph_shavite_big_context *sc, + unsigned ub, unsigned n, void *dst, size_t out_size_w32) +{ + unsigned char *buf; + size_t ptr, u; + unsigned z; + sph_u32 count0, count1, count2, count3; + + buf = sc->buf; + ptr = sc->ptr; + count0 = (sc->count0 += (ptr << 3) + n); + count1 = sc->count1; + count2 = sc->count2; + count3 = sc->count3; + z = 0x80 >> n; + z = ((ub & -z) | z) & 0xFF; + if (ptr == 0 && n == 0) { + buf[0] = 0x80; + memset(buf + 1, 0, 109); + sc->count0 = sc->count1 = sc->count2 = sc->count3 = 0; + } else if (ptr < 110) { + buf[ptr ++] = z; + memset(buf + ptr, 0, 110 - ptr); + } else { + buf[ptr ++] = z; + memset(buf + ptr, 0, 128 - ptr); + c512(sc, buf); + memset(buf, 0, 110); + sc->count0 = sc->count1 = sc->count2 = sc->count3 = 0; + } + sph_enc32le(buf + 110, count0); + sph_enc32le(buf + 114, count1); + sph_enc32le(buf + 118, count2); + sph_enc32le(buf + 122, count3); + buf[126] = out_size_w32 << 5; + buf[127] = out_size_w32 >> 3; + c512(sc, buf); + for (u = 0; u < out_size_w32; u ++) + sph_enc32le((unsigned char *)dst + (u << 2), sc->h[u]); +} + +/* see sph_shavite.h */ +void +sph_shavite224_init(void *cc) +{ + shavite_small_init(cc, IV224); +} + +/* see sph_shavite.h */ +void +sph_shavite224(void *cc, const void *data, size_t len) +{ + shavite_small_core(cc, data, len); +} + +/* see sph_shavite.h */ +void +sph_shavite224_close(void *cc, void *dst) +{ + shavite_small_close(cc, 0, 0, dst, 7); + shavite_small_init(cc, IV224); +} + +/* see sph_shavite.h */ +void +sph_shavite224_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst) +{ + shavite_small_close(cc, ub, n, dst, 7); + shavite_small_init(cc, IV224); +} + +/* see sph_shavite.h */ +void +sph_shavite256_init(void *cc) +{ + shavite_small_init(cc, IV256); +} + +/* see sph_shavite.h */ +void +sph_shavite256(void *cc, const void *data, size_t len) +{ + shavite_small_core(cc, data, len); +} + +/* see sph_shavite.h */ +void +sph_shavite256_close(void *cc, void *dst) +{ + shavite_small_close(cc, 0, 0, dst, 8); + shavite_small_init(cc, IV256); +} + +/* see sph_shavite.h */ +void +sph_shavite256_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst) +{ + shavite_small_close(cc, ub, n, dst, 8); + shavite_small_init(cc, IV256); +} + +/* see sph_shavite.h */ +void +sph_shavite384_init(void *cc) +{ + shavite_big_init(cc, IV384); +} + +/* see sph_shavite.h */ +void +sph_shavite384(void *cc, const void *data, size_t len) +{ + shavite_big_core(cc, data, len); +} + +/* see sph_shavite.h */ +void +sph_shavite384_close(void *cc, void *dst) +{ + shavite_big_close(cc, 0, 0, dst, 12); + shavite_big_init(cc, IV384); +} + +/* see sph_shavite.h */ +void +sph_shavite384_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst) +{ + shavite_big_close(cc, ub, n, dst, 12); + shavite_big_init(cc, IV384); +} + +/* see sph_shavite.h */ +void +sph_shavite512_init(void *cc) +{ + shavite_big_init(cc, IV512); +} + +/* see sph_shavite.h */ +void +sph_shavite512(void *cc, const void *data, size_t len) +{ + shavite_big_core(cc, data, len); +} + +/* see sph_shavite.h */ +void +sph_shavite512_close(void *cc, void *dst) +{ + shavite_big_close(cc, 0, 0, dst, 16); + shavite_big_init(cc, IV512); +} + +/* see sph_shavite.h */ +void +sph_shavite512_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst) +{ + shavite_big_close(cc, ub, n, dst, 16); + shavite_big_init(cc, IV512); +} + +#ifdef __cplusplus +} +#endif \ No newline at end of file diff --git a/crypto/sha3/sph_shavite.h b/crypto/sha3/sph_shavite.h new file mode 100644 index 000000000..0957e42a9 --- /dev/null +++ b/crypto/sha3/sph_shavite.h @@ -0,0 +1,314 @@ +/* $Id: sph_shavite.h 208 2010-06-02 20:33:00Z tp $ */ +/** + * SHAvite-3 interface. This code implements SHAvite-3 with the + * recommended parameters for SHA-3, with outputs of 224, 256, 384 and + * 512 bits. In the following, we call the function "SHAvite" (without + * the "-3" suffix), thus "SHAvite-224" is "SHAvite-3 with a 224-bit + * output". + * + * ==========================(LICENSE BEGIN)============================ + * + * Copyright (c) 2007-2010 Projet RNRT SAPHIR + * + * Permission is hereby granted, free of charge, to any person obtaining + * a copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sublicense, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * The above copyright notice and this permission notice shall be + * included in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + * + * ===========================(LICENSE END)============================= + * + * @file sph_shavite.h + * @author Thomas Pornin + */ + +#ifndef SPH_SHAVITE_H__ +#define SPH_SHAVITE_H__ + +#include +#include "sph_types.h" + +#ifdef __cplusplus +extern "C"{ +#endif + +/** + * Output size (in bits) for SHAvite-224. + */ +#define SPH_SIZE_shavite224 224 + +/** + * Output size (in bits) for SHAvite-256. + */ +#define SPH_SIZE_shavite256 256 + +/** + * Output size (in bits) for SHAvite-384. + */ +#define SPH_SIZE_shavite384 384 + +/** + * Output size (in bits) for SHAvite-512. + */ +#define SPH_SIZE_shavite512 512 + +/** + * This structure is a context for SHAvite-224 and SHAvite-256 computations: + * it contains the intermediate values and some data from the last + * entered block. Once a SHAvite computation has been performed, the + * context can be reused for another computation. + * + * The contents of this structure are private. A running SHAvite + * computation can be cloned by copying the context (e.g. with a simple + * memcpy()). + */ +typedef struct { +#ifndef DOXYGEN_IGNORE + unsigned char buf[64]; /* first field, for alignment */ + size_t ptr; + sph_u32 h[8]; + sph_u32 count0, count1; +#endif +} sph_shavite_small_context; + +/** + * This structure is a context for SHAvite-224 computations. It is + * identical to the common sph_shavite_small_context. + */ +typedef sph_shavite_small_context sph_shavite224_context; + +/** + * This structure is a context for SHAvite-256 computations. It is + * identical to the common sph_shavite_small_context. + */ +typedef sph_shavite_small_context sph_shavite256_context; + +/** + * This structure is a context for SHAvite-384 and SHAvite-512 computations: + * it contains the intermediate values and some data from the last + * entered block. Once a SHAvite computation has been performed, the + * context can be reused for another computation. + * + * The contents of this structure are private. A running SHAvite + * computation can be cloned by copying the context (e.g. with a simple + * memcpy()). + */ +typedef struct { +#ifndef DOXYGEN_IGNORE + unsigned char buf[128]; /* first field, for alignment */ + size_t ptr; + sph_u32 h[16]; + sph_u32 count0, count1, count2, count3; +#endif +} sph_shavite_big_context; + +/** + * This structure is a context for SHAvite-384 computations. It is + * identical to the common sph_shavite_small_context. + */ +typedef sph_shavite_big_context sph_shavite384_context; + +/** + * This structure is a context for SHAvite-512 computations. It is + * identical to the common sph_shavite_small_context. + */ +typedef sph_shavite_big_context sph_shavite512_context; + +/** + * Initialize a SHAvite-224 context. This process performs no memory allocation. + * + * @param cc the SHAvite-224 context (pointer to a + * sph_shavite224_context) + */ +void sph_shavite224_init(void *cc); + +/** + * Process some data bytes. It is acceptable that len is zero + * (in which case this function does nothing). + * + * @param cc the SHAvite-224 context + * @param data the input data + * @param len the input data length (in bytes) + */ +void sph_shavite224(void *cc, const void *data, size_t len); + +/** + * Terminate the current SHAvite-224 computation and output the result into + * the provided buffer. The destination buffer must be wide enough to + * accomodate the result (28 bytes). The context is automatically + * reinitialized. + * + * @param cc the SHAvite-224 context + * @param dst the destination buffer + */ +void sph_shavite224_close(void *cc, void *dst); + +/** + * Add a few additional bits (0 to 7) to the current computation, then + * terminate it and output the result in the provided buffer, which must + * be wide enough to accomodate the result (28 bytes). If bit number i + * in ub has value 2^i, then the extra bits are those + * numbered 7 downto 8-n (this is the big-endian convention at the byte + * level). The context is automatically reinitialized. + * + * @param cc the SHAvite-224 context + * @param ub the extra bits + * @param n the number of extra bits (0 to 7) + * @param dst the destination buffer + */ +void sph_shavite224_addbits_and_close( + void *cc, unsigned ub, unsigned n, void *dst); + +/** + * Initialize a SHAvite-256 context. This process performs no memory allocation. + * + * @param cc the SHAvite-256 context (pointer to a + * sph_shavite256_context) + */ +void sph_shavite256_init(void *cc); + +/** + * Process some data bytes. It is acceptable that len is zero + * (in which case this function does nothing). + * + * @param cc the SHAvite-256 context + * @param data the input data + * @param len the input data length (in bytes) + */ +void sph_shavite256(void *cc, const void *data, size_t len); + +/** + * Terminate the current SHAvite-256 computation and output the result into + * the provided buffer. The destination buffer must be wide enough to + * accomodate the result (32 bytes). The context is automatically + * reinitialized. + * + * @param cc the SHAvite-256 context + * @param dst the destination buffer + */ +void sph_shavite256_close(void *cc, void *dst); + +/** + * Add a few additional bits (0 to 7) to the current computation, then + * terminate it and output the result in the provided buffer, which must + * be wide enough to accomodate the result (32 bytes). If bit number i + * in ub has value 2^i, then the extra bits are those + * numbered 7 downto 8-n (this is the big-endian convention at the byte + * level). The context is automatically reinitialized. + * + * @param cc the SHAvite-256 context + * @param ub the extra bits + * @param n the number of extra bits (0 to 7) + * @param dst the destination buffer + */ +void sph_shavite256_addbits_and_close( + void *cc, unsigned ub, unsigned n, void *dst); + +/** + * Initialize a SHAvite-384 context. This process performs no memory allocation. + * + * @param cc the SHAvite-384 context (pointer to a + * sph_shavite384_context) + */ +void sph_shavite384_init(void *cc); + +/** + * Process some data bytes. It is acceptable that len is zero + * (in which case this function does nothing). + * + * @param cc the SHAvite-384 context + * @param data the input data + * @param len the input data length (in bytes) + */ +void sph_shavite384(void *cc, const void *data, size_t len); + +/** + * Terminate the current SHAvite-384 computation and output the result into + * the provided buffer. The destination buffer must be wide enough to + * accomodate the result (48 bytes). The context is automatically + * reinitialized. + * + * @param cc the SHAvite-384 context + * @param dst the destination buffer + */ +void sph_shavite384_close(void *cc, void *dst); + +/** + * Add a few additional bits (0 to 7) to the current computation, then + * terminate it and output the result in the provided buffer, which must + * be wide enough to accomodate the result (48 bytes). If bit number i + * in ub has value 2^i, then the extra bits are those + * numbered 7 downto 8-n (this is the big-endian convention at the byte + * level). The context is automatically reinitialized. + * + * @param cc the SHAvite-384 context + * @param ub the extra bits + * @param n the number of extra bits (0 to 7) + * @param dst the destination buffer + */ +void sph_shavite384_addbits_and_close( + void *cc, unsigned ub, unsigned n, void *dst); + +/** + * Initialize a SHAvite-512 context. This process performs no memory allocation. + * + * @param cc the SHAvite-512 context (pointer to a + * sph_shavite512_context) + */ +void sph_shavite512_init(void *cc); + +/** + * Process some data bytes. It is acceptable that len is zero + * (in which case this function does nothing). + * + * @param cc the SHAvite-512 context + * @param data the input data + * @param len the input data length (in bytes) + */ +void sph_shavite512(void *cc, const void *data, size_t len); + +/** + * Terminate the current SHAvite-512 computation and output the result into + * the provided buffer. The destination buffer must be wide enough to + * accomodate the result (64 bytes). The context is automatically + * reinitialized. + * + * @param cc the SHAvite-512 context + * @param dst the destination buffer + */ +void sph_shavite512_close(void *cc, void *dst); + +/** + * Add a few additional bits (0 to 7) to the current computation, then + * terminate it and output the result in the provided buffer, which must + * be wide enough to accomodate the result (64 bytes). If bit number i + * in ub has value 2^i, then the extra bits are those + * numbered 7 downto 8-n (this is the big-endian convention at the byte + * level). The context is automatically reinitialized. + * + * @param cc the SHAvite-512 context + * @param ub the extra bits + * @param n the number of extra bits (0 to 7) + * @param dst the destination buffer + */ +void sph_shavite512_addbits_and_close( + void *cc, unsigned ub, unsigned n, void *dst); + +#ifdef __cplusplus +} +#endif + +#endif diff --git a/crypto/sha3/sph_simd.c b/crypto/sha3/sph_simd.c new file mode 100644 index 000000000..2c8062617 --- /dev/null +++ b/crypto/sha3/sph_simd.c @@ -0,0 +1,1799 @@ +/* $Id: simd.c 227 2010-06-16 17:28:38Z tp $ */ +/* + * SIMD implementation. + * + * ==========================(LICENSE BEGIN)============================ + * + * Copyright (c) 2007-2010 Projet RNRT SAPHIR + * + * Permission is hereby granted, free of charge, to any person obtaining + * a copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sublicense, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * The above copyright notice and this permission notice shall be + * included in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + * + * ===========================(LICENSE END)============================= + * + * @author Thomas Pornin + */ + +#include +#include +#include + +#include "sph_simd.h" + +#ifdef __cplusplus +extern "C"{ +#endif + +#if SPH_SMALL_FOOTPRINT && !defined SPH_SMALL_FOOTPRINT_SIMD +#define SPH_SMALL_FOOTPRINT_SIMD 1 +#endif + +#ifdef _MSC_VER +#pragma warning (disable: 4146) +#endif + +typedef sph_u32 u32; +typedef sph_s32 s32; +#define C32 SPH_C32 +#define T32 SPH_T32 +#define ROL32 SPH_ROTL32 + +#define XCAT(x, y) XCAT_(x, y) +#define XCAT_(x, y) x ## y + +/* + * The powers of 41 modulo 257. We use exponents from 0 to 255, inclusive. + */ +static const s32 alpha_tab[] = { + 1, 41, 139, 45, 46, 87, 226, 14, 60, 147, 116, 130, + 190, 80, 196, 69, 2, 82, 21, 90, 92, 174, 195, 28, + 120, 37, 232, 3, 123, 160, 135, 138, 4, 164, 42, 180, + 184, 91, 133, 56, 240, 74, 207, 6, 246, 63, 13, 19, + 8, 71, 84, 103, 111, 182, 9, 112, 223, 148, 157, 12, + 235, 126, 26, 38, 16, 142, 168, 206, 222, 107, 18, 224, + 189, 39, 57, 24, 213, 252, 52, 76, 32, 27, 79, 155, + 187, 214, 36, 191, 121, 78, 114, 48, 169, 247, 104, 152, + 64, 54, 158, 53, 117, 171, 72, 125, 242, 156, 228, 96, + 81, 237, 208, 47, 128, 108, 59, 106, 234, 85, 144, 250, + 227, 55, 199, 192, 162, 217, 159, 94, 256, 216, 118, 212, + 211, 170, 31, 243, 197, 110, 141, 127, 67, 177, 61, 188, + 255, 175, 236, 167, 165, 83, 62, 229, 137, 220, 25, 254, + 134, 97, 122, 119, 253, 93, 215, 77, 73, 166, 124, 201, + 17, 183, 50, 251, 11, 194, 244, 238, 249, 186, 173, 154, + 146, 75, 248, 145, 34, 109, 100, 245, 22, 131, 231, 219, + 241, 115, 89, 51, 35, 150, 239, 33, 68, 218, 200, 233, + 44, 5, 205, 181, 225, 230, 178, 102, 70, 43, 221, 66, + 136, 179, 143, 209, 88, 10, 153, 105, 193, 203, 99, 204, + 140, 86, 185, 132, 15, 101, 29, 161, 176, 20, 49, 210, + 129, 149, 198, 151, 23, 172, 113, 7, 30, 202, 58, 65, + 95, 40, 98, 163 +}; + +/* + * Ranges: + * REDS1: from -32768..98302 to -383..383 + * REDS2: from -2^31..2^31-1 to -32768..98302 + */ +#define REDS1(x) (((x) & 0xFF) - ((x) >> 8)) +#define REDS2(x) (((x) & 0xFFFF) + ((x) >> 16)) + +/* + * If, upon entry, the values of q[] are all in the -N..N range (where + * N >= 98302) then the new values of q[] are in the -2N..2N range. + * + * Since alpha_tab[v] <= 256, maximum allowed range is for N = 8388608. + */ +#define FFT_LOOP(rb, hk, as, id) do { \ + size_t u, v; \ + s32 m = q[(rb)]; \ + s32 n = q[(rb) + (hk)]; \ + q[(rb)] = m + n; \ + q[(rb) + (hk)] = m - n; \ + u = v = 0; \ + goto id; \ + for (; u < (hk); u += 4, v += 4 * (as)) { \ + s32 t; \ + m = q[(rb) + u + 0]; \ + n = q[(rb) + u + 0 + (hk)]; \ + t = REDS2(n * alpha_tab[v + 0 * (as)]); \ + q[(rb) + u + 0] = m + t; \ + q[(rb) + u + 0 + (hk)] = m - t; \ + id: \ + m = q[(rb) + u + 1]; \ + n = q[(rb) + u + 1 + (hk)]; \ + t = REDS2(n * alpha_tab[v + 1 * (as)]); \ + q[(rb) + u + 1] = m + t; \ + q[(rb) + u + 1 + (hk)] = m - t; \ + m = q[(rb) + u + 2]; \ + n = q[(rb) + u + 2 + (hk)]; \ + t = REDS2(n * alpha_tab[v + 2 * (as)]); \ + q[(rb) + u + 2] = m + t; \ + q[(rb) + u + 2 + (hk)] = m - t; \ + m = q[(rb) + u + 3]; \ + n = q[(rb) + u + 3 + (hk)]; \ + t = REDS2(n * alpha_tab[v + 3 * (as)]); \ + q[(rb) + u + 3] = m + t; \ + q[(rb) + u + 3 + (hk)] = m - t; \ + } \ + } while (0) + +/* + * Output ranges: + * d0: min= 0 max= 1020 + * d1: min= -67 max= 4587 + * d2: min=-4335 max= 4335 + * d3: min=-4147 max= 507 + * d4: min= -510 max= 510 + * d5: min= -252 max= 4402 + * d6: min=-4335 max= 4335 + * d7: min=-4332 max= 322 + */ +#define FFT8(xb, xs, d) do { \ + s32 x0 = x[(xb)]; \ + s32 x1 = x[(xb) + (xs)]; \ + s32 x2 = x[(xb) + 2 * (xs)]; \ + s32 x3 = x[(xb) + 3 * (xs)]; \ + s32 a0 = x0 + x2; \ + s32 a1 = x0 + (x2 << 4); \ + s32 a2 = x0 - x2; \ + s32 a3 = x0 - (x2 << 4); \ + s32 b0 = x1 + x3; \ + s32 b1 = REDS1((x1 << 2) + (x3 << 6)); \ + s32 b2 = (x1 << 4) - (x3 << 4); \ + s32 b3 = REDS1((x1 << 6) + (x3 << 2)); \ + d ## 0 = a0 + b0; \ + d ## 1 = a1 + b1; \ + d ## 2 = a2 + b2; \ + d ## 3 = a3 + b3; \ + d ## 4 = a0 - b0; \ + d ## 5 = a1 - b1; \ + d ## 6 = a2 - b2; \ + d ## 7 = a3 - b3; \ + } while (0) + +/* + * When k=16, we have alpha=2. Multiplication by alpha^i is then reduced + * to some shifting. + * + * Output: within -591471..591723 + */ +#define FFT16(xb, xs, rb) do { \ + s32 d1_0, d1_1, d1_2, d1_3, d1_4, d1_5, d1_6, d1_7; \ + s32 d2_0, d2_1, d2_2, d2_3, d2_4, d2_5, d2_6, d2_7; \ + FFT8(xb, (xs) << 1, d1_); \ + FFT8((xb) + (xs), (xs) << 1, d2_); \ + q[(rb) + 0] = d1_0 + d2_0; \ + q[(rb) + 1] = d1_1 + (d2_1 << 1); \ + q[(rb) + 2] = d1_2 + (d2_2 << 2); \ + q[(rb) + 3] = d1_3 + (d2_3 << 3); \ + q[(rb) + 4] = d1_4 + (d2_4 << 4); \ + q[(rb) + 5] = d1_5 + (d2_5 << 5); \ + q[(rb) + 6] = d1_6 + (d2_6 << 6); \ + q[(rb) + 7] = d1_7 + (d2_7 << 7); \ + q[(rb) + 8] = d1_0 - d2_0; \ + q[(rb) + 9] = d1_1 - (d2_1 << 1); \ + q[(rb) + 10] = d1_2 - (d2_2 << 2); \ + q[(rb) + 11] = d1_3 - (d2_3 << 3); \ + q[(rb) + 12] = d1_4 - (d2_4 << 4); \ + q[(rb) + 13] = d1_5 - (d2_5 << 5); \ + q[(rb) + 14] = d1_6 - (d2_6 << 6); \ + q[(rb) + 15] = d1_7 - (d2_7 << 7); \ + } while (0) + +/* + * Output range: |q| <= 1183446 + */ +#define FFT32(xb, xs, rb, id) do { \ + FFT16(xb, (xs) << 1, rb); \ + FFT16((xb) + (xs), (xs) << 1, (rb) + 16); \ + FFT_LOOP(rb, 16, 8, id); \ + } while (0) + +/* + * Output range: |q| <= 2366892 + */ +#define FFT64(xb, xs, rb, id) do { \ + FFT32(xb, (xs) << 1, rb, XCAT(id, a)); \ + FFT32((xb) + (xs), (xs) << 1, (rb) + 32, XCAT(id, b)); \ + FFT_LOOP(rb, 32, 4, id); \ + } while (0) + +#if SPH_SMALL_FOOTPRINT_SIMD + +static void +fft32(unsigned char *x, size_t xs, s32 *q) +{ + size_t xd; + + xd = xs << 1; + FFT16(0, xd, 0); + FFT16(xs, xd, 16); + FFT_LOOP(0, 16, 8, label_); +} + +#define FFT128(xb, xs, rb, id) do { \ + fft32(x + (xb) + ((xs) * 0), (xs) << 2, &q[(rb) + 0]); \ + fft32(x + (xb) + ((xs) * 2), (xs) << 2, &q[(rb) + 32]); \ + FFT_LOOP(rb, 32, 4, XCAT(id, aa)); \ + fft32(x + (xb) + ((xs) * 1), (xs) << 2, &q[(rb) + 64]); \ + fft32(x + (xb) + ((xs) * 3), (xs) << 2, &q[(rb) + 96]); \ + FFT_LOOP((rb) + 64, 32, 4, XCAT(id, ab)); \ + FFT_LOOP(rb, 64, 2, XCAT(id, a)); \ + } while (0) + +#else + +/* + * Output range: |q| <= 4733784 + */ +#define FFT128(xb, xs, rb, id) do { \ + FFT64(xb, (xs) << 1, rb, XCAT(id, a)); \ + FFT64((xb) + (xs), (xs) << 1, (rb) + 64, XCAT(id, b)); \ + FFT_LOOP(rb, 64, 2, id); \ + } while (0) + +#endif + +/* + * For SIMD-384 / SIMD-512, the fully unrolled FFT yields a compression + * function which does not fit in the 32 kB L1 cache of a typical x86 + * Intel. We therefore add a function call layer at the FFT64 level. + */ + +static void +fft64(unsigned char *x, size_t xs, s32 *q) +{ + size_t xd; + + xd = xs << 1; + FFT32(0, xd, 0, label_a); + FFT32(xs, xd, 32, label_b); + FFT_LOOP(0, 32, 4, label_); +} + +/* + * Output range: |q| <= 9467568 + */ +#define FFT256(xb, xs, rb, id) do { \ + fft64(x + (xb) + ((xs) * 0), (xs) << 2, &q[(rb) + 0]); \ + fft64(x + (xb) + ((xs) * 2), (xs) << 2, &q[(rb) + 64]); \ + FFT_LOOP(rb, 64, 2, XCAT(id, aa)); \ + fft64(x + (xb) + ((xs) * 1), (xs) << 2, &q[(rb) + 128]); \ + fft64(x + (xb) + ((xs) * 3), (xs) << 2, &q[(rb) + 192]); \ + FFT_LOOP((rb) + 128, 64, 2, XCAT(id, ab)); \ + FFT_LOOP(rb, 128, 1, XCAT(id, a)); \ + } while (0) + +/* + * alpha^(127*i) mod 257 + */ +static const unsigned short yoff_s_n[] = { + 1, 98, 95, 58, 30, 113, 23, 198, 129, 49, 176, 29, + 15, 185, 140, 99, 193, 153, 88, 143, 136, 221, 70, 178, + 225, 205, 44, 200, 68, 239, 35, 89, 241, 231, 22, 100, + 34, 248, 146, 173, 249, 244, 11, 50, 17, 124, 73, 215, + 253, 122, 134, 25, 137, 62, 165, 236, 255, 61, 67, 141, + 197, 31, 211, 118, 256, 159, 162, 199, 227, 144, 234, 59, + 128, 208, 81, 228, 242, 72, 117, 158, 64, 104, 169, 114, + 121, 36, 187, 79, 32, 52, 213, 57, 189, 18, 222, 168, + 16, 26, 235, 157, 223, 9, 111, 84, 8, 13, 246, 207, + 240, 133, 184, 42, 4, 135, 123, 232, 120, 195, 92, 21, + 2, 196, 190, 116, 60, 226, 46, 139 +}; + +/* + * alpha^(127*i) + alpha^(125*i) mod 257 + */ +static const unsigned short yoff_s_f[] = { + 2, 156, 118, 107, 45, 212, 111, 162, 97, 249, 211, 3, + 49, 101, 151, 223, 189, 178, 253, 204, 76, 82, 232, 65, + 96, 176, 161, 47, 189, 61, 248, 107, 0, 131, 133, 113, + 17, 33, 12, 111, 251, 103, 57, 148, 47, 65, 249, 143, + 189, 8, 204, 230, 205, 151, 187, 227, 247, 111, 140, 6, + 77, 10, 21, 149, 255, 101, 139, 150, 212, 45, 146, 95, + 160, 8, 46, 254, 208, 156, 106, 34, 68, 79, 4, 53, + 181, 175, 25, 192, 161, 81, 96, 210, 68, 196, 9, 150, + 0, 126, 124, 144, 240, 224, 245, 146, 6, 154, 200, 109, + 210, 192, 8, 114, 68, 249, 53, 27, 52, 106, 70, 30, + 10, 146, 117, 251, 180, 247, 236, 108 +}; + +/* + * beta^(255*i) mod 257 + */ +static const unsigned short yoff_b_n[] = { + 1, 163, 98, 40, 95, 65, 58, 202, 30, 7, 113, 172, + 23, 151, 198, 149, 129, 210, 49, 20, 176, 161, 29, 101, + 15, 132, 185, 86, 140, 204, 99, 203, 193, 105, 153, 10, + 88, 209, 143, 179, 136, 66, 221, 43, 70, 102, 178, 230, + 225, 181, 205, 5, 44, 233, 200, 218, 68, 33, 239, 150, + 35, 51, 89, 115, 241, 219, 231, 131, 22, 245, 100, 109, + 34, 145, 248, 75, 146, 154, 173, 186, 249, 238, 244, 194, + 11, 251, 50, 183, 17, 201, 124, 166, 73, 77, 215, 93, + 253, 119, 122, 97, 134, 254, 25, 220, 137, 229, 62, 83, + 165, 167, 236, 175, 255, 188, 61, 177, 67, 127, 141, 110, + 197, 243, 31, 170, 211, 212, 118, 216, 256, 94, 159, 217, + 162, 192, 199, 55, 227, 250, 144, 85, 234, 106, 59, 108, + 128, 47, 208, 237, 81, 96, 228, 156, 242, 125, 72, 171, + 117, 53, 158, 54, 64, 152, 104, 247, 169, 48, 114, 78, + 121, 191, 36, 214, 187, 155, 79, 27, 32, 76, 52, 252, + 213, 24, 57, 39, 189, 224, 18, 107, 222, 206, 168, 142, + 16, 38, 26, 126, 235, 12, 157, 148, 223, 112, 9, 182, + 111, 103, 84, 71, 8, 19, 13, 63, 246, 6, 207, 74, + 240, 56, 133, 91, 184, 180, 42, 164, 4, 138, 135, 160, + 123, 3, 232, 37, 120, 28, 195, 174, 92, 90, 21, 82, + 2, 69, 196, 80, 190, 130, 116, 147, 60, 14, 226, 87, + 46, 45, 139, 41 +}; + +/* + * beta^(255*i) + beta^(253*i) mod 257 + */ +static const unsigned short yoff_b_f[] = { + 2, 203, 156, 47, 118, 214, 107, 106, 45, 93, 212, 20, + 111, 73, 162, 251, 97, 215, 249, 53, 211, 19, 3, 89, + 49, 207, 101, 67, 151, 130, 223, 23, 189, 202, 178, 239, + 253, 127, 204, 49, 76, 236, 82, 137, 232, 157, 65, 79, + 96, 161, 176, 130, 161, 30, 47, 9, 189, 247, 61, 226, + 248, 90, 107, 64, 0, 88, 131, 243, 133, 59, 113, 115, + 17, 236, 33, 213, 12, 191, 111, 19, 251, 61, 103, 208, + 57, 35, 148, 248, 47, 116, 65, 119, 249, 178, 143, 40, + 189, 129, 8, 163, 204, 227, 230, 196, 205, 122, 151, 45, + 187, 19, 227, 72, 247, 125, 111, 121, 140, 220, 6, 107, + 77, 69, 10, 101, 21, 65, 149, 171, 255, 54, 101, 210, + 139, 43, 150, 151, 212, 164, 45, 237, 146, 184, 95, 6, + 160, 42, 8, 204, 46, 238, 254, 168, 208, 50, 156, 190, + 106, 127, 34, 234, 68, 55, 79, 18, 4, 130, 53, 208, + 181, 21, 175, 120, 25, 100, 192, 178, 161, 96, 81, 127, + 96, 227, 210, 248, 68, 10, 196, 31, 9, 167, 150, 193, + 0, 169, 126, 14, 124, 198, 144, 142, 240, 21, 224, 44, + 245, 66, 146, 238, 6, 196, 154, 49, 200, 222, 109, 9, + 210, 141, 192, 138, 8, 79, 114, 217, 68, 128, 249, 94, + 53, 30, 27, 61, 52, 135, 106, 212, 70, 238, 30, 185, + 10, 132, 146, 136, 117, 37, 251, 150, 180, 188, 247, 156, + 236, 192, 108, 86 +}; + +#define INNER(l, h, mm) (((u32)((l) * (mm)) & 0xFFFFU) \ + + ((u32)((h) * (mm)) << 16)) + +#define W_SMALL(sb, o1, o2, mm) \ + (INNER(q[8 * (sb) + 2 * 0 + o1], q[8 * (sb) + 2 * 0 + o2], mm), \ + INNER(q[8 * (sb) + 2 * 1 + o1], q[8 * (sb) + 2 * 1 + o2], mm), \ + INNER(q[8 * (sb) + 2 * 2 + o1], q[8 * (sb) + 2 * 2 + o2], mm), \ + INNER(q[8 * (sb) + 2 * 3 + o1], q[8 * (sb) + 2 * 3 + o2], mm) + +#define WS_0_0 W_SMALL( 4, 0, 1, 185) +#define WS_0_1 W_SMALL( 6, 0, 1, 185) +#define WS_0_2 W_SMALL( 0, 0, 1, 185) +#define WS_0_3 W_SMALL( 2, 0, 1, 185) +#define WS_0_4 W_SMALL( 7, 0, 1, 185) +#define WS_0_5 W_SMALL( 5, 0, 1, 185) +#define WS_0_6 W_SMALL( 3, 0, 1, 185) +#define WS_0_7 W_SMALL( 1, 0, 1, 185) +#define WS_1_0 W_SMALL(15, 0, 1, 185) +#define WS_1_1 W_SMALL(11, 0, 1, 185) +#define WS_1_2 W_SMALL(12, 0, 1, 185) +#define WS_1_3 W_SMALL( 8, 0, 1, 185) +#define WS_1_4 W_SMALL( 9, 0, 1, 185) +#define WS_1_5 W_SMALL(13, 0, 1, 185) +#define WS_1_6 W_SMALL(10, 0, 1, 185) +#define WS_1_7 W_SMALL(14, 0, 1, 185) +#define WS_2_0 W_SMALL(17, -128, -64, 233) +#define WS_2_1 W_SMALL(18, -128, -64, 233) +#define WS_2_2 W_SMALL(23, -128, -64, 233) +#define WS_2_3 W_SMALL(20, -128, -64, 233) +#define WS_2_4 W_SMALL(22, -128, -64, 233) +#define WS_2_5 W_SMALL(21, -128, -64, 233) +#define WS_2_6 W_SMALL(16, -128, -64, 233) +#define WS_2_7 W_SMALL(19, -128, -64, 233) +#define WS_3_0 W_SMALL(30, -191, -127, 233) +#define WS_3_1 W_SMALL(24, -191, -127, 233) +#define WS_3_2 W_SMALL(25, -191, -127, 233) +#define WS_3_3 W_SMALL(31, -191, -127, 233) +#define WS_3_4 W_SMALL(27, -191, -127, 233) +#define WS_3_5 W_SMALL(29, -191, -127, 233) +#define WS_3_6 W_SMALL(28, -191, -127, 233) +#define WS_3_7 W_SMALL(26, -191, -127, 233) + +#define W_BIG(sb, o1, o2, mm) \ + (INNER(q[16 * (sb) + 2 * 0 + o1], q[16 * (sb) + 2 * 0 + o2], mm), \ + INNER(q[16 * (sb) + 2 * 1 + o1], q[16 * (sb) + 2 * 1 + o2], mm), \ + INNER(q[16 * (sb) + 2 * 2 + o1], q[16 * (sb) + 2 * 2 + o2], mm), \ + INNER(q[16 * (sb) + 2 * 3 + o1], q[16 * (sb) + 2 * 3 + o2], mm), \ + INNER(q[16 * (sb) + 2 * 4 + o1], q[16 * (sb) + 2 * 4 + o2], mm), \ + INNER(q[16 * (sb) + 2 * 5 + o1], q[16 * (sb) + 2 * 5 + o2], mm), \ + INNER(q[16 * (sb) + 2 * 6 + o1], q[16 * (sb) + 2 * 6 + o2], mm), \ + INNER(q[16 * (sb) + 2 * 7 + o1], q[16 * (sb) + 2 * 7 + o2], mm) + +#define WB_0_0 W_BIG( 4, 0, 1, 185) +#define WB_0_1 W_BIG( 6, 0, 1, 185) +#define WB_0_2 W_BIG( 0, 0, 1, 185) +#define WB_0_3 W_BIG( 2, 0, 1, 185) +#define WB_0_4 W_BIG( 7, 0, 1, 185) +#define WB_0_5 W_BIG( 5, 0, 1, 185) +#define WB_0_6 W_BIG( 3, 0, 1, 185) +#define WB_0_7 W_BIG( 1, 0, 1, 185) +#define WB_1_0 W_BIG(15, 0, 1, 185) +#define WB_1_1 W_BIG(11, 0, 1, 185) +#define WB_1_2 W_BIG(12, 0, 1, 185) +#define WB_1_3 W_BIG( 8, 0, 1, 185) +#define WB_1_4 W_BIG( 9, 0, 1, 185) +#define WB_1_5 W_BIG(13, 0, 1, 185) +#define WB_1_6 W_BIG(10, 0, 1, 185) +#define WB_1_7 W_BIG(14, 0, 1, 185) +#define WB_2_0 W_BIG(17, -256, -128, 233) +#define WB_2_1 W_BIG(18, -256, -128, 233) +#define WB_2_2 W_BIG(23, -256, -128, 233) +#define WB_2_3 W_BIG(20, -256, -128, 233) +#define WB_2_4 W_BIG(22, -256, -128, 233) +#define WB_2_5 W_BIG(21, -256, -128, 233) +#define WB_2_6 W_BIG(16, -256, -128, 233) +#define WB_2_7 W_BIG(19, -256, -128, 233) +#define WB_3_0 W_BIG(30, -383, -255, 233) +#define WB_3_1 W_BIG(24, -383, -255, 233) +#define WB_3_2 W_BIG(25, -383, -255, 233) +#define WB_3_3 W_BIG(31, -383, -255, 233) +#define WB_3_4 W_BIG(27, -383, -255, 233) +#define WB_3_5 W_BIG(29, -383, -255, 233) +#define WB_3_6 W_BIG(28, -383, -255, 233) +#define WB_3_7 W_BIG(26, -383, -255, 233) + +#define IF(x, y, z) ((((y) ^ (z)) & (x)) ^ (z)) +#define MAJ(x, y, z) (((x) & (y)) | (((x) | (y)) & (z))) + +#define PP4_0_0 1 +#define PP4_0_1 0 +#define PP4_0_2 3 +#define PP4_0_3 2 +#define PP4_1_0 2 +#define PP4_1_1 3 +#define PP4_1_2 0 +#define PP4_1_3 1 +#define PP4_2_0 3 +#define PP4_2_1 2 +#define PP4_2_2 1 +#define PP4_2_3 0 + +#define PP8_0_0 1 +#define PP8_0_1 0 +#define PP8_0_2 3 +#define PP8_0_3 2 +#define PP8_0_4 5 +#define PP8_0_5 4 +#define PP8_0_6 7 +#define PP8_0_7 6 + +#define PP8_1_0 6 +#define PP8_1_1 7 +#define PP8_1_2 4 +#define PP8_1_3 5 +#define PP8_1_4 2 +#define PP8_1_5 3 +#define PP8_1_6 0 +#define PP8_1_7 1 + +#define PP8_2_0 2 +#define PP8_2_1 3 +#define PP8_2_2 0 +#define PP8_2_3 1 +#define PP8_2_4 6 +#define PP8_2_5 7 +#define PP8_2_6 4 +#define PP8_2_7 5 + +#define PP8_3_0 3 +#define PP8_3_1 2 +#define PP8_3_2 1 +#define PP8_3_3 0 +#define PP8_3_4 7 +#define PP8_3_5 6 +#define PP8_3_6 5 +#define PP8_3_7 4 + +#define PP8_4_0 5 +#define PP8_4_1 4 +#define PP8_4_2 7 +#define PP8_4_3 6 +#define PP8_4_4 1 +#define PP8_4_5 0 +#define PP8_4_6 3 +#define PP8_4_7 2 + +#define PP8_5_0 7 +#define PP8_5_1 6 +#define PP8_5_2 5 +#define PP8_5_3 4 +#define PP8_5_4 3 +#define PP8_5_5 2 +#define PP8_5_6 1 +#define PP8_5_7 0 + +#define PP8_6_0 4 +#define PP8_6_1 5 +#define PP8_6_2 6 +#define PP8_6_3 7 +#define PP8_6_4 0 +#define PP8_6_5 1 +#define PP8_6_6 2 +#define PP8_6_7 3 + +#if SPH_SIMD_NOCOPY + +#define DECL_STATE_SMALL +#define READ_STATE_SMALL(sc) +#define WRITE_STATE_SMALL(sc) +#define DECL_STATE_BIG +#define READ_STATE_BIG(sc) +#define WRITE_STATE_BIG(sc) + +#else + +#define DECL_STATE_SMALL \ + u32 A0, A1, A2, A3, B0, B1, B2, B3, C0, C1, C2, C3, D0, D1, D2, D3; + +#define READ_STATE_SMALL(sc) do { \ + A0 = (sc)->state[ 0]; \ + A1 = (sc)->state[ 1]; \ + A2 = (sc)->state[ 2]; \ + A3 = (sc)->state[ 3]; \ + B0 = (sc)->state[ 4]; \ + B1 = (sc)->state[ 5]; \ + B2 = (sc)->state[ 6]; \ + B3 = (sc)->state[ 7]; \ + C0 = (sc)->state[ 8]; \ + C1 = (sc)->state[ 9]; \ + C2 = (sc)->state[10]; \ + C3 = (sc)->state[11]; \ + D0 = (sc)->state[12]; \ + D1 = (sc)->state[13]; \ + D2 = (sc)->state[14]; \ + D3 = (sc)->state[15]; \ + } while (0) + +#define WRITE_STATE_SMALL(sc) do { \ + (sc)->state[ 0] = A0; \ + (sc)->state[ 1] = A1; \ + (sc)->state[ 2] = A2; \ + (sc)->state[ 3] = A3; \ + (sc)->state[ 4] = B0; \ + (sc)->state[ 5] = B1; \ + (sc)->state[ 6] = B2; \ + (sc)->state[ 7] = B3; \ + (sc)->state[ 8] = C0; \ + (sc)->state[ 9] = C1; \ + (sc)->state[10] = C2; \ + (sc)->state[11] = C3; \ + (sc)->state[12] = D0; \ + (sc)->state[13] = D1; \ + (sc)->state[14] = D2; \ + (sc)->state[15] = D3; \ + } while (0) + +#define DECL_STATE_BIG \ + u32 A0, A1, A2, A3, A4, A5, A6, A7; \ + u32 B0, B1, B2, B3, B4, B5, B6, B7; \ + u32 C0, C1, C2, C3, C4, C5, C6, C7; \ + u32 D0, D1, D2, D3, D4, D5, D6, D7; + +#define READ_STATE_BIG(sc) do { \ + A0 = (sc)->state[ 0]; \ + A1 = (sc)->state[ 1]; \ + A2 = (sc)->state[ 2]; \ + A3 = (sc)->state[ 3]; \ + A4 = (sc)->state[ 4]; \ + A5 = (sc)->state[ 5]; \ + A6 = (sc)->state[ 6]; \ + A7 = (sc)->state[ 7]; \ + B0 = (sc)->state[ 8]; \ + B1 = (sc)->state[ 9]; \ + B2 = (sc)->state[10]; \ + B3 = (sc)->state[11]; \ + B4 = (sc)->state[12]; \ + B5 = (sc)->state[13]; \ + B6 = (sc)->state[14]; \ + B7 = (sc)->state[15]; \ + C0 = (sc)->state[16]; \ + C1 = (sc)->state[17]; \ + C2 = (sc)->state[18]; \ + C3 = (sc)->state[19]; \ + C4 = (sc)->state[20]; \ + C5 = (sc)->state[21]; \ + C6 = (sc)->state[22]; \ + C7 = (sc)->state[23]; \ + D0 = (sc)->state[24]; \ + D1 = (sc)->state[25]; \ + D2 = (sc)->state[26]; \ + D3 = (sc)->state[27]; \ + D4 = (sc)->state[28]; \ + D5 = (sc)->state[29]; \ + D6 = (sc)->state[30]; \ + D7 = (sc)->state[31]; \ + } while (0) + +#define WRITE_STATE_BIG(sc) do { \ + (sc)->state[ 0] = A0; \ + (sc)->state[ 1] = A1; \ + (sc)->state[ 2] = A2; \ + (sc)->state[ 3] = A3; \ + (sc)->state[ 4] = A4; \ + (sc)->state[ 5] = A5; \ + (sc)->state[ 6] = A6; \ + (sc)->state[ 7] = A7; \ + (sc)->state[ 8] = B0; \ + (sc)->state[ 9] = B1; \ + (sc)->state[10] = B2; \ + (sc)->state[11] = B3; \ + (sc)->state[12] = B4; \ + (sc)->state[13] = B5; \ + (sc)->state[14] = B6; \ + (sc)->state[15] = B7; \ + (sc)->state[16] = C0; \ + (sc)->state[17] = C1; \ + (sc)->state[18] = C2; \ + (sc)->state[19] = C3; \ + (sc)->state[20] = C4; \ + (sc)->state[21] = C5; \ + (sc)->state[22] = C6; \ + (sc)->state[23] = C7; \ + (sc)->state[24] = D0; \ + (sc)->state[25] = D1; \ + (sc)->state[26] = D2; \ + (sc)->state[27] = D3; \ + (sc)->state[28] = D4; \ + (sc)->state[29] = D5; \ + (sc)->state[30] = D6; \ + (sc)->state[31] = D7; \ + } while (0) + +#endif + +#define STEP_ELT(n, w, fun, s, ppb) do { \ + u32 tt = T32(D ## n + (w) + fun(A ## n, B ## n, C ## n)); \ + A ## n = T32(ROL32(tt, s) + XCAT(tA, XCAT(ppb, n))); \ + D ## n = C ## n; \ + C ## n = B ## n; \ + B ## n = tA ## n; \ + } while (0) + +#define STEP_SMALL(w0, w1, w2, w3, fun, r, s, pp4b) do { \ + u32 tA0 = ROL32(A0, r); \ + u32 tA1 = ROL32(A1, r); \ + u32 tA2 = ROL32(A2, r); \ + u32 tA3 = ROL32(A3, r); \ + STEP_ELT(0, w0, fun, s, pp4b); \ + STEP_ELT(1, w1, fun, s, pp4b); \ + STEP_ELT(2, w2, fun, s, pp4b); \ + STEP_ELT(3, w3, fun, s, pp4b); \ + } while (0) + +#define STEP_BIG(w0, w1, w2, w3, w4, w5, w6, w7, fun, r, s, pp8b) do { \ + u32 tA0 = ROL32(A0, r); \ + u32 tA1 = ROL32(A1, r); \ + u32 tA2 = ROL32(A2, r); \ + u32 tA3 = ROL32(A3, r); \ + u32 tA4 = ROL32(A4, r); \ + u32 tA5 = ROL32(A5, r); \ + u32 tA6 = ROL32(A6, r); \ + u32 tA7 = ROL32(A7, r); \ + STEP_ELT(0, w0, fun, s, pp8b); \ + STEP_ELT(1, w1, fun, s, pp8b); \ + STEP_ELT(2, w2, fun, s, pp8b); \ + STEP_ELT(3, w3, fun, s, pp8b); \ + STEP_ELT(4, w4, fun, s, pp8b); \ + STEP_ELT(5, w5, fun, s, pp8b); \ + STEP_ELT(6, w6, fun, s, pp8b); \ + STEP_ELT(7, w7, fun, s, pp8b); \ + } while (0) + +#define M3_0_0 0_ +#define M3_1_0 1_ +#define M3_2_0 2_ +#define M3_3_0 0_ +#define M3_4_0 1_ +#define M3_5_0 2_ +#define M3_6_0 0_ +#define M3_7_0 1_ + +#define M3_0_1 1_ +#define M3_1_1 2_ +#define M3_2_1 0_ +#define M3_3_1 1_ +#define M3_4_1 2_ +#define M3_5_1 0_ +#define M3_6_1 1_ +#define M3_7_1 2_ + +#define M3_0_2 2_ +#define M3_1_2 0_ +#define M3_2_2 1_ +#define M3_3_2 2_ +#define M3_4_2 0_ +#define M3_5_2 1_ +#define M3_6_2 2_ +#define M3_7_2 0_ + +#define STEP_SMALL_(w, fun, r, s, pp4b) STEP_SMALL w, fun, r, s, pp4b) + +#define ONE_ROUND_SMALL(ri, isp, p0, p1, p2, p3) do { \ + STEP_SMALL_(WS_ ## ri ## 0, \ + IF, p0, p1, XCAT(PP4_, M3_0_ ## isp)); \ + STEP_SMALL_(WS_ ## ri ## 1, \ + IF, p1, p2, XCAT(PP4_, M3_1_ ## isp)); \ + STEP_SMALL_(WS_ ## ri ## 2, \ + IF, p2, p3, XCAT(PP4_, M3_2_ ## isp)); \ + STEP_SMALL_(WS_ ## ri ## 3, \ + IF, p3, p0, XCAT(PP4_, M3_3_ ## isp)); \ + STEP_SMALL_(WS_ ## ri ## 4, \ + MAJ, p0, p1, XCAT(PP4_, M3_4_ ## isp)); \ + STEP_SMALL_(WS_ ## ri ## 5, \ + MAJ, p1, p2, XCAT(PP4_, M3_5_ ## isp)); \ + STEP_SMALL_(WS_ ## ri ## 6, \ + MAJ, p2, p3, XCAT(PP4_, M3_6_ ## isp)); \ + STEP_SMALL_(WS_ ## ri ## 7, \ + MAJ, p3, p0, XCAT(PP4_, M3_7_ ## isp)); \ + } while (0) + +#define M7_0_0 0_ +#define M7_1_0 1_ +#define M7_2_0 2_ +#define M7_3_0 3_ +#define M7_4_0 4_ +#define M7_5_0 5_ +#define M7_6_0 6_ +#define M7_7_0 0_ + +#define M7_0_1 1_ +#define M7_1_1 2_ +#define M7_2_1 3_ +#define M7_3_1 4_ +#define M7_4_1 5_ +#define M7_5_1 6_ +#define M7_6_1 0_ +#define M7_7_1 1_ + +#define M7_0_2 2_ +#define M7_1_2 3_ +#define M7_2_2 4_ +#define M7_3_2 5_ +#define M7_4_2 6_ +#define M7_5_2 0_ +#define M7_6_2 1_ +#define M7_7_2 2_ + +#define M7_0_3 3_ +#define M7_1_3 4_ +#define M7_2_3 5_ +#define M7_3_3 6_ +#define M7_4_3 0_ +#define M7_5_3 1_ +#define M7_6_3 2_ +#define M7_7_3 3_ + +#define STEP_BIG_(w, fun, r, s, pp8b) STEP_BIG w, fun, r, s, pp8b) + +#define ONE_ROUND_BIG(ri, isp, p0, p1, p2, p3) do { \ + STEP_BIG_(WB_ ## ri ## 0, \ + IF, p0, p1, XCAT(PP8_, M7_0_ ## isp)); \ + STEP_BIG_(WB_ ## ri ## 1, \ + IF, p1, p2, XCAT(PP8_, M7_1_ ## isp)); \ + STEP_BIG_(WB_ ## ri ## 2, \ + IF, p2, p3, XCAT(PP8_, M7_2_ ## isp)); \ + STEP_BIG_(WB_ ## ri ## 3, \ + IF, p3, p0, XCAT(PP8_, M7_3_ ## isp)); \ + STEP_BIG_(WB_ ## ri ## 4, \ + MAJ, p0, p1, XCAT(PP8_, M7_4_ ## isp)); \ + STEP_BIG_(WB_ ## ri ## 5, \ + MAJ, p1, p2, XCAT(PP8_, M7_5_ ## isp)); \ + STEP_BIG_(WB_ ## ri ## 6, \ + MAJ, p2, p3, XCAT(PP8_, M7_6_ ## isp)); \ + STEP_BIG_(WB_ ## ri ## 7, \ + MAJ, p3, p0, XCAT(PP8_, M7_7_ ## isp)); \ + } while (0) + +#if SPH_SMALL_FOOTPRINT_SIMD + +#define A0 state[ 0] +#define A1 state[ 1] +#define A2 state[ 2] +#define A3 state[ 3] +#define B0 state[ 4] +#define B1 state[ 5] +#define B2 state[ 6] +#define B3 state[ 7] +#define C0 state[ 8] +#define C1 state[ 9] +#define C2 state[10] +#define C3 state[11] +#define D0 state[12] +#define D1 state[13] +#define D2 state[14] +#define D3 state[15] + +#define STEP2_ELT(n, w, fun, s, ppb) do { \ + u32 tt = T32(D ## n + (w) + fun(A ## n, B ## n, C ## n)); \ + A ## n = T32(ROL32(tt, s) + tA[(ppb) ^ n]); \ + D ## n = C ## n; \ + C ## n = B ## n; \ + B ## n = tA[n]; \ + } while (0) + +#define STEP2_SMALL(w0, w1, w2, w3, fun, r, s, pp4b) do { \ + u32 tA[4]; \ + tA[0] = ROL32(A0, r); \ + tA[1] = ROL32(A1, r); \ + tA[2] = ROL32(A2, r); \ + tA[3] = ROL32(A3, r); \ + STEP2_ELT(0, w0, fun, s, pp4b); \ + STEP2_ELT(1, w1, fun, s, pp4b); \ + STEP2_ELT(2, w2, fun, s, pp4b); \ + STEP2_ELT(3, w3, fun, s, pp4b); \ + } while (0) + +static void +one_round_small(u32 *state, u32 *w, int isp, int p0, int p1, int p2, int p3) +{ + static const int pp4k[] = { 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2 }; + + STEP2_SMALL(w[ 0], w[ 1], w[ 2], w[ 3], IF, p0, p1, pp4k[isp + 0]); + STEP2_SMALL(w[ 4], w[ 5], w[ 6], w[ 7], IF, p1, p2, pp4k[isp + 1]); + STEP2_SMALL(w[ 8], w[ 9], w[10], w[11], IF, p2, p3, pp4k[isp + 2]); + STEP2_SMALL(w[12], w[13], w[14], w[15], IF, p3, p0, pp4k[isp + 3]); + STEP2_SMALL(w[16], w[17], w[18], w[19], MAJ, p0, p1, pp4k[isp + 4]); + STEP2_SMALL(w[20], w[21], w[22], w[23], MAJ, p1, p2, pp4k[isp + 5]); + STEP2_SMALL(w[24], w[25], w[26], w[27], MAJ, p2, p3, pp4k[isp + 6]); + STEP2_SMALL(w[28], w[29], w[30], w[31], MAJ, p3, p0, pp4k[isp + 7]); +} + +static void +compress_small(sph_simd_small_context *sc, int last) +{ + unsigned char *x; + s32 q[128]; + int i; + u32 w[32]; + u32 state[16]; + size_t u; + + static const size_t wsp[32] = { + 4 << 3, 6 << 3, 0 << 3, 2 << 3, + 7 << 3, 5 << 3, 3 << 3, 1 << 3, + 15 << 3, 11 << 3, 12 << 3, 8 << 3, + 9 << 3, 13 << 3, 10 << 3, 14 << 3, + 17 << 3, 18 << 3, 23 << 3, 20 << 3, + 22 << 3, 21 << 3, 16 << 3, 19 << 3, + 30 << 3, 24 << 3, 25 << 3, 31 << 3, + 27 << 3, 29 << 3, 28 << 3, 26 << 3 + }; + + x = sc->buf; + FFT128(0, 1, 0, ll); + if (last) { + for (i = 0; i < 128; i ++) { + s32 tq; + + tq = q[i] + yoff_s_f[i]; + tq = REDS2(tq); + tq = REDS1(tq); + tq = REDS1(tq); + q[i] = (tq <= 128 ? tq : tq - 257); + } + } else { + for (i = 0; i < 128; i ++) { + s32 tq; + + tq = q[i] + yoff_s_n[i]; + tq = REDS2(tq); + tq = REDS1(tq); + tq = REDS1(tq); + q[i] = (tq <= 128 ? tq : tq - 257); + } + } + + for (i = 0; i < 16; i += 4) { + state[i + 0] = sc->state[i + 0] + ^ sph_dec32le_aligned(x + 4 * (i + 0)); + state[i + 1] = sc->state[i + 1] + ^ sph_dec32le_aligned(x + 4 * (i + 1)); + state[i + 2] = sc->state[i + 2] + ^ sph_dec32le_aligned(x + 4 * (i + 2)); + state[i + 3] = sc->state[i + 3] + ^ sph_dec32le_aligned(x + 4 * (i + 3)); + } + +#define WSREAD(sb, o1, o2, mm) do { \ + for (u = 0; u < 32; u += 4) { \ + size_t v = wsp[(u >> 2) + (sb)]; \ + w[u + 0] = INNER(q[v + 2 * 0 + (o1)], \ + q[v + 2 * 0 + (o2)], mm); \ + w[u + 1] = INNER(q[v + 2 * 1 + (o1)], \ + q[v + 2 * 1 + (o2)], mm); \ + w[u + 2] = INNER(q[v + 2 * 2 + (o1)], \ + q[v + 2 * 2 + (o2)], mm); \ + w[u + 3] = INNER(q[v + 2 * 3 + (o1)], \ + q[v + 2 * 3 + (o2)], mm); \ + } \ + } while (0) + + WSREAD( 0, 0, 1, 185); + one_round_small(state, w, 0, 3, 23, 17, 27); + WSREAD( 8, 0, 1, 185); + one_round_small(state, w, 2, 28, 19, 22, 7); + WSREAD(16, -128, -64, 233); + one_round_small(state, w, 1, 29, 9, 15, 5); + WSREAD(24, -191, -127, 233); + one_round_small(state, w, 0, 4, 13, 10, 25); + +#undef WSREAD + + STEP_SMALL(sc->state[ 0], sc->state[ 1], sc->state[ 2], sc->state[ 3], + IF, 4, 13, PP4_2_); + STEP_SMALL(sc->state[ 4], sc->state[ 5], sc->state[ 6], sc->state[ 7], + IF, 13, 10, PP4_0_); + STEP_SMALL(sc->state[ 8], sc->state[ 9], sc->state[10], sc->state[11], + IF, 10, 25, PP4_1_); + STEP_SMALL(sc->state[12], sc->state[13], sc->state[14], sc->state[15], + IF, 25, 4, PP4_2_); + + memcpy(sc->state, state, sizeof state); +} + +#undef A0 +#undef A1 +#undef A2 +#undef A3 +#undef B0 +#undef B1 +#undef B2 +#undef B3 +#undef C0 +#undef C1 +#undef C2 +#undef C3 +#undef D0 +#undef D1 +#undef D2 +#undef D3 + +#else + +#if SPH_SIMD_NOCOPY +#define A0 (sc->state[ 0]) +#define A1 (sc->state[ 1]) +#define A2 (sc->state[ 2]) +#define A3 (sc->state[ 3]) +#define B0 (sc->state[ 4]) +#define B1 (sc->state[ 5]) +#define B2 (sc->state[ 6]) +#define B3 (sc->state[ 7]) +#define C0 (sc->state[ 8]) +#define C1 (sc->state[ 9]) +#define C2 (sc->state[10]) +#define C3 (sc->state[11]) +#define D0 (sc->state[12]) +#define D1 (sc->state[13]) +#define D2 (sc->state[14]) +#define D3 (sc->state[15]) +#endif + +static void +compress_small(sph_simd_small_context *sc, int last) +{ + unsigned char *x; + s32 q[128]; + int i; + DECL_STATE_SMALL +#if SPH_SIMD_NOCOPY + sph_u32 saved[16]; +#endif + +#if SPH_SIMD_NOCOPY + memcpy(saved, sc->state, sizeof saved); +#endif + x = sc->buf; + FFT128(0, 1, 0, ll); + if (last) { + for (i = 0; i < 128; i ++) { + s32 tq; + + tq = q[i] + yoff_s_f[i]; + tq = REDS2(tq); + tq = REDS1(tq); + tq = REDS1(tq); + q[i] = (tq <= 128 ? tq : tq - 257); + } + } else { + for (i = 0; i < 128; i ++) { + s32 tq; + + tq = q[i] + yoff_s_n[i]; + tq = REDS2(tq); + tq = REDS1(tq); + tq = REDS1(tq); + q[i] = (tq <= 128 ? tq : tq - 257); + } + } + READ_STATE_SMALL(sc); + A0 ^= sph_dec32le_aligned(x + 0); + A1 ^= sph_dec32le_aligned(x + 4); + A2 ^= sph_dec32le_aligned(x + 8); + A3 ^= sph_dec32le_aligned(x + 12); + B0 ^= sph_dec32le_aligned(x + 16); + B1 ^= sph_dec32le_aligned(x + 20); + B2 ^= sph_dec32le_aligned(x + 24); + B3 ^= sph_dec32le_aligned(x + 28); + C0 ^= sph_dec32le_aligned(x + 32); + C1 ^= sph_dec32le_aligned(x + 36); + C2 ^= sph_dec32le_aligned(x + 40); + C3 ^= sph_dec32le_aligned(x + 44); + D0 ^= sph_dec32le_aligned(x + 48); + D1 ^= sph_dec32le_aligned(x + 52); + D2 ^= sph_dec32le_aligned(x + 56); + D3 ^= sph_dec32le_aligned(x + 60); + ONE_ROUND_SMALL(0_, 0, 3, 23, 17, 27); + ONE_ROUND_SMALL(1_, 2, 28, 19, 22, 7); + ONE_ROUND_SMALL(2_, 1, 29, 9, 15, 5); + ONE_ROUND_SMALL(3_, 0, 4, 13, 10, 25); +#if SPH_SIMD_NOCOPY + STEP_SMALL(saved[ 0], saved[ 1], saved[ 2], saved[ 3], + IF, 4, 13, PP4_2_); + STEP_SMALL(saved[ 4], saved[ 5], saved[ 6], saved[ 7], + IF, 13, 10, PP4_0_); + STEP_SMALL(saved[ 8], saved[ 9], saved[10], saved[11], + IF, 10, 25, PP4_1_); + STEP_SMALL(saved[12], saved[13], saved[14], saved[15], + IF, 25, 4, PP4_2_); +#else + STEP_SMALL(sc->state[ 0], sc->state[ 1], sc->state[ 2], sc->state[ 3], + IF, 4, 13, PP4_2_); + STEP_SMALL(sc->state[ 4], sc->state[ 5], sc->state[ 6], sc->state[ 7], + IF, 13, 10, PP4_0_); + STEP_SMALL(sc->state[ 8], sc->state[ 9], sc->state[10], sc->state[11], + IF, 10, 25, PP4_1_); + STEP_SMALL(sc->state[12], sc->state[13], sc->state[14], sc->state[15], + IF, 25, 4, PP4_2_); + WRITE_STATE_SMALL(sc); +#endif +} + +#if SPH_SIMD_NOCOPY +#undef A0 +#undef A1 +#undef A2 +#undef A3 +#undef B0 +#undef B1 +#undef B2 +#undef B3 +#undef C0 +#undef C1 +#undef C2 +#undef C3 +#undef D0 +#undef D1 +#undef D2 +#undef D3 +#endif + +#endif + +#if SPH_SMALL_FOOTPRINT_SIMD + +#define A0 state[ 0] +#define A1 state[ 1] +#define A2 state[ 2] +#define A3 state[ 3] +#define A4 state[ 4] +#define A5 state[ 5] +#define A6 state[ 6] +#define A7 state[ 7] +#define B0 state[ 8] +#define B1 state[ 9] +#define B2 state[10] +#define B3 state[11] +#define B4 state[12] +#define B5 state[13] +#define B6 state[14] +#define B7 state[15] +#define C0 state[16] +#define C1 state[17] +#define C2 state[18] +#define C3 state[19] +#define C4 state[20] +#define C5 state[21] +#define C6 state[22] +#define C7 state[23] +#define D0 state[24] +#define D1 state[25] +#define D2 state[26] +#define D3 state[27] +#define D4 state[28] +#define D5 state[29] +#define D6 state[30] +#define D7 state[31] + +/* + * Not needed -- already defined for SIMD-224 / SIMD-256 + * +#define STEP2_ELT(n, w, fun, s, ppb) do { \ + u32 tt = T32(D ## n + (w) + fun(A ## n, B ## n, C ## n)); \ + A ## n = T32(ROL32(tt, s) + tA[(ppb) ^ n]); \ + D ## n = C ## n; \ + C ## n = B ## n; \ + B ## n = tA[n]; \ + } while (0) + */ + +#define STEP2_BIG(w0, w1, w2, w3, w4, w5, w6, w7, fun, r, s, pp8b) do { \ + u32 tA[8]; \ + tA[0] = ROL32(A0, r); \ + tA[1] = ROL32(A1, r); \ + tA[2] = ROL32(A2, r); \ + tA[3] = ROL32(A3, r); \ + tA[4] = ROL32(A4, r); \ + tA[5] = ROL32(A5, r); \ + tA[6] = ROL32(A6, r); \ + tA[7] = ROL32(A7, r); \ + STEP2_ELT(0, w0, fun, s, pp8b); \ + STEP2_ELT(1, w1, fun, s, pp8b); \ + STEP2_ELT(2, w2, fun, s, pp8b); \ + STEP2_ELT(3, w3, fun, s, pp8b); \ + STEP2_ELT(4, w4, fun, s, pp8b); \ + STEP2_ELT(5, w5, fun, s, pp8b); \ + STEP2_ELT(6, w6, fun, s, pp8b); \ + STEP2_ELT(7, w7, fun, s, pp8b); \ + } while (0) + +static void +one_round_big(u32 *state, u32 *w, int isp, int p0, int p1, int p2, int p3) +{ + static const int pp8k[] = { 1, 6, 2, 3, 5, 7, 4, 1, 6, 2, 3 }; + + STEP2_BIG(w[ 0], w[ 1], w[ 2], w[ 3], w[ 4], w[ 5], w[ 6], w[ 7], + IF, p0, p1, pp8k[isp + 0]); + STEP2_BIG(w[ 8], w[ 9], w[10], w[11], w[12], w[13], w[14], w[15], + IF, p1, p2, pp8k[isp + 1]); + STEP2_BIG(w[16], w[17], w[18], w[19], w[20], w[21], w[22], w[23], + IF, p2, p3, pp8k[isp + 2]); + STEP2_BIG(w[24], w[25], w[26], w[27], w[28], w[29], w[30], w[31], + IF, p3, p0, pp8k[isp + 3]); + STEP2_BIG(w[32], w[33], w[34], w[35], w[36], w[37], w[38], w[39], + MAJ, p0, p1, pp8k[isp + 4]); + STEP2_BIG(w[40], w[41], w[42], w[43], w[44], w[45], w[46], w[47], + MAJ, p1, p2, pp8k[isp + 5]); + STEP2_BIG(w[48], w[49], w[50], w[51], w[52], w[53], w[54], w[55], + MAJ, p2, p3, pp8k[isp + 6]); + STEP2_BIG(w[56], w[57], w[58], w[59], w[60], w[61], w[62], w[63], + MAJ, p3, p0, pp8k[isp + 7]); +} + +static void +compress_big(sph_simd_big_context *sc, int last) +{ + unsigned char *x; + s32 q[256]; + int i; + u32 w[64]; + u32 state[32]; + size_t u; + + static const size_t wbp[32] = { + 4 << 4, 6 << 4, 0 << 4, 2 << 4, + 7 << 4, 5 << 4, 3 << 4, 1 << 4, + 15 << 4, 11 << 4, 12 << 4, 8 << 4, + 9 << 4, 13 << 4, 10 << 4, 14 << 4, + 17 << 4, 18 << 4, 23 << 4, 20 << 4, + 22 << 4, 21 << 4, 16 << 4, 19 << 4, + 30 << 4, 24 << 4, 25 << 4, 31 << 4, + 27 << 4, 29 << 4, 28 << 4, 26 << 4 + }; + + x = sc->buf; + FFT256(0, 1, 0, ll); + if (last) { + for (i = 0; i < 256; i ++) { + s32 tq; + + tq = q[i] + yoff_b_f[i]; + tq = REDS2(tq); + tq = REDS1(tq); + tq = REDS1(tq); + q[i] = (tq <= 128 ? tq : tq - 257); + } + } else { + for (i = 0; i < 256; i ++) { + s32 tq; + + tq = q[i] + yoff_b_n[i]; + tq = REDS2(tq); + tq = REDS1(tq); + tq = REDS1(tq); + q[i] = (tq <= 128 ? tq : tq - 257); + } + } + + for (i = 0; i < 32; i += 8) { + state[i + 0] = sc->state[i + 0] + ^ sph_dec32le_aligned(x + 4 * (i + 0)); + state[i + 1] = sc->state[i + 1] + ^ sph_dec32le_aligned(x + 4 * (i + 1)); + state[i + 2] = sc->state[i + 2] + ^ sph_dec32le_aligned(x + 4 * (i + 2)); + state[i + 3] = sc->state[i + 3] + ^ sph_dec32le_aligned(x + 4 * (i + 3)); + state[i + 4] = sc->state[i + 4] + ^ sph_dec32le_aligned(x + 4 * (i + 4)); + state[i + 5] = sc->state[i + 5] + ^ sph_dec32le_aligned(x + 4 * (i + 5)); + state[i + 6] = sc->state[i + 6] + ^ sph_dec32le_aligned(x + 4 * (i + 6)); + state[i + 7] = sc->state[i + 7] + ^ sph_dec32le_aligned(x + 4 * (i + 7)); + } + +#define WBREAD(sb, o1, o2, mm) do { \ + for (u = 0; u < 64; u += 8) { \ + size_t v = wbp[(u >> 3) + (sb)]; \ + w[u + 0] = INNER(q[v + 2 * 0 + (o1)], \ + q[v + 2 * 0 + (o2)], mm); \ + w[u + 1] = INNER(q[v + 2 * 1 + (o1)], \ + q[v + 2 * 1 + (o2)], mm); \ + w[u + 2] = INNER(q[v + 2 * 2 + (o1)], \ + q[v + 2 * 2 + (o2)], mm); \ + w[u + 3] = INNER(q[v + 2 * 3 + (o1)], \ + q[v + 2 * 3 + (o2)], mm); \ + w[u + 4] = INNER(q[v + 2 * 4 + (o1)], \ + q[v + 2 * 4 + (o2)], mm); \ + w[u + 5] = INNER(q[v + 2 * 5 + (o1)], \ + q[v + 2 * 5 + (o2)], mm); \ + w[u + 6] = INNER(q[v + 2 * 6 + (o1)], \ + q[v + 2 * 6 + (o2)], mm); \ + w[u + 7] = INNER(q[v + 2 * 7 + (o1)], \ + q[v + 2 * 7 + (o2)], mm); \ + } \ + } while (0) + + WBREAD( 0, 0, 1, 185); + one_round_big(state, w, 0, 3, 23, 17, 27); + WBREAD( 8, 0, 1, 185); + one_round_big(state, w, 1, 28, 19, 22, 7); + WBREAD(16, -256, -128, 233); + one_round_big(state, w, 2, 29, 9, 15, 5); + WBREAD(24, -383, -255, 233); + one_round_big(state, w, 3, 4, 13, 10, 25); + +#undef WBREAD + + STEP_BIG( + sc->state[ 0], sc->state[ 1], sc->state[ 2], sc->state[ 3], + sc->state[ 4], sc->state[ 5], sc->state[ 6], sc->state[ 7], + IF, 4, 13, PP8_4_); + STEP_BIG( + sc->state[ 8], sc->state[ 9], sc->state[10], sc->state[11], + sc->state[12], sc->state[13], sc->state[14], sc->state[15], + IF, 13, 10, PP8_5_); + STEP_BIG( + sc->state[16], sc->state[17], sc->state[18], sc->state[19], + sc->state[20], sc->state[21], sc->state[22], sc->state[23], + IF, 10, 25, PP8_6_); + STEP_BIG( + sc->state[24], sc->state[25], sc->state[26], sc->state[27], + sc->state[28], sc->state[29], sc->state[30], sc->state[31], + IF, 25, 4, PP8_0_); + + memcpy(sc->state, state, sizeof state); +} + +#undef A0 +#undef A1 +#undef A2 +#undef A3 +#undef A4 +#undef A5 +#undef A6 +#undef A7 +#undef B0 +#undef B1 +#undef B2 +#undef B3 +#undef B4 +#undef B5 +#undef B6 +#undef B7 +#undef C0 +#undef C1 +#undef C2 +#undef C3 +#undef C4 +#undef C5 +#undef C6 +#undef C7 +#undef D0 +#undef D1 +#undef D2 +#undef D3 +#undef D4 +#undef D5 +#undef D6 +#undef D7 + +#else + +#if SPH_SIMD_NOCOPY +#define A0 (sc->state[ 0]) +#define A1 (sc->state[ 1]) +#define A2 (sc->state[ 2]) +#define A3 (sc->state[ 3]) +#define A4 (sc->state[ 4]) +#define A5 (sc->state[ 5]) +#define A6 (sc->state[ 6]) +#define A7 (sc->state[ 7]) +#define B0 (sc->state[ 8]) +#define B1 (sc->state[ 9]) +#define B2 (sc->state[10]) +#define B3 (sc->state[11]) +#define B4 (sc->state[12]) +#define B5 (sc->state[13]) +#define B6 (sc->state[14]) +#define B7 (sc->state[15]) +#define C0 (sc->state[16]) +#define C1 (sc->state[17]) +#define C2 (sc->state[18]) +#define C3 (sc->state[19]) +#define C4 (sc->state[20]) +#define C5 (sc->state[21]) +#define C6 (sc->state[22]) +#define C7 (sc->state[23]) +#define D0 (sc->state[24]) +#define D1 (sc->state[25]) +#define D2 (sc->state[26]) +#define D3 (sc->state[27]) +#define D4 (sc->state[28]) +#define D5 (sc->state[29]) +#define D6 (sc->state[30]) +#define D7 (sc->state[31]) +#endif + +static void +compress_big(sph_simd_big_context *sc, int last) +{ + unsigned char *x; + s32 q[256]; + int i; + DECL_STATE_BIG +#if SPH_SIMD_NOCOPY + sph_u32 saved[32]; +#endif + +#if SPH_SIMD_NOCOPY + memcpy(saved, sc->state, sizeof saved); +#endif + + x = sc->buf; + FFT256(0, 1, 0, ll); + if (last) { + for (i = 0; i < 256; i ++) { + s32 tq; + + tq = q[i] + yoff_b_f[i]; + tq = REDS2(tq); + tq = REDS1(tq); + tq = REDS1(tq); + q[i] = (tq <= 128 ? tq : tq - 257); + } + } else { + for (i = 0; i < 256; i ++) { + s32 tq; + + tq = q[i] + yoff_b_n[i]; + tq = REDS2(tq); + tq = REDS1(tq); + tq = REDS1(tq); + q[i] = (tq <= 128 ? tq : tq - 257); + } + } + READ_STATE_BIG(sc); + A0 ^= sph_dec32le_aligned(x + 0); + A1 ^= sph_dec32le_aligned(x + 4); + A2 ^= sph_dec32le_aligned(x + 8); + A3 ^= sph_dec32le_aligned(x + 12); + A4 ^= sph_dec32le_aligned(x + 16); + A5 ^= sph_dec32le_aligned(x + 20); + A6 ^= sph_dec32le_aligned(x + 24); + A7 ^= sph_dec32le_aligned(x + 28); + B0 ^= sph_dec32le_aligned(x + 32); + B1 ^= sph_dec32le_aligned(x + 36); + B2 ^= sph_dec32le_aligned(x + 40); + B3 ^= sph_dec32le_aligned(x + 44); + B4 ^= sph_dec32le_aligned(x + 48); + B5 ^= sph_dec32le_aligned(x + 52); + B6 ^= sph_dec32le_aligned(x + 56); + B7 ^= sph_dec32le_aligned(x + 60); + C0 ^= sph_dec32le_aligned(x + 64); + C1 ^= sph_dec32le_aligned(x + 68); + C2 ^= sph_dec32le_aligned(x + 72); + C3 ^= sph_dec32le_aligned(x + 76); + C4 ^= sph_dec32le_aligned(x + 80); + C5 ^= sph_dec32le_aligned(x + 84); + C6 ^= sph_dec32le_aligned(x + 88); + C7 ^= sph_dec32le_aligned(x + 92); + D0 ^= sph_dec32le_aligned(x + 96); + D1 ^= sph_dec32le_aligned(x + 100); + D2 ^= sph_dec32le_aligned(x + 104); + D3 ^= sph_dec32le_aligned(x + 108); + D4 ^= sph_dec32le_aligned(x + 112); + D5 ^= sph_dec32le_aligned(x + 116); + D6 ^= sph_dec32le_aligned(x + 120); + D7 ^= sph_dec32le_aligned(x + 124); + + ONE_ROUND_BIG(0_, 0, 3, 23, 17, 27); + ONE_ROUND_BIG(1_, 1, 28, 19, 22, 7); + ONE_ROUND_BIG(2_, 2, 29, 9, 15, 5); + ONE_ROUND_BIG(3_, 3, 4, 13, 10, 25); +#if SPH_SIMD_NOCOPY + STEP_BIG( + saved[ 0], saved[ 1], saved[ 2], saved[ 3], + saved[ 4], saved[ 5], saved[ 6], saved[ 7], + IF, 4, 13, PP8_4_); + STEP_BIG( + saved[ 8], saved[ 9], saved[10], saved[11], + saved[12], saved[13], saved[14], saved[15], + IF, 13, 10, PP8_5_); + STEP_BIG( + saved[16], saved[17], saved[18], saved[19], + saved[20], saved[21], saved[22], saved[23], + IF, 10, 25, PP8_6_); + STEP_BIG( + saved[24], saved[25], saved[26], saved[27], + saved[28], saved[29], saved[30], saved[31], + IF, 25, 4, PP8_0_); +#else + STEP_BIG( + sc->state[ 0], sc->state[ 1], sc->state[ 2], sc->state[ 3], + sc->state[ 4], sc->state[ 5], sc->state[ 6], sc->state[ 7], + IF, 4, 13, PP8_4_); + STEP_BIG( + sc->state[ 8], sc->state[ 9], sc->state[10], sc->state[11], + sc->state[12], sc->state[13], sc->state[14], sc->state[15], + IF, 13, 10, PP8_5_); + STEP_BIG( + sc->state[16], sc->state[17], sc->state[18], sc->state[19], + sc->state[20], sc->state[21], sc->state[22], sc->state[23], + IF, 10, 25, PP8_6_); + STEP_BIG( + sc->state[24], sc->state[25], sc->state[26], sc->state[27], + sc->state[28], sc->state[29], sc->state[30], sc->state[31], + IF, 25, 4, PP8_0_); + WRITE_STATE_BIG(sc); +#endif +} + +#if SPH_SIMD_NOCOPY +#undef A0 +#undef A1 +#undef A2 +#undef A3 +#undef A4 +#undef A5 +#undef A6 +#undef A7 +#undef B0 +#undef B1 +#undef B2 +#undef B3 +#undef B4 +#undef B5 +#undef B6 +#undef B7 +#undef C0 +#undef C1 +#undef C2 +#undef C3 +#undef C4 +#undef C5 +#undef C6 +#undef C7 +#undef D0 +#undef D1 +#undef D2 +#undef D3 +#undef D4 +#undef D5 +#undef D6 +#undef D7 +#endif + +#endif + +static const u32 IV224[] = { + C32(0x33586E9F), C32(0x12FFF033), C32(0xB2D9F64D), C32(0x6F8FEA53), + C32(0xDE943106), C32(0x2742E439), C32(0x4FBAB5AC), C32(0x62B9FF96), + C32(0x22E7B0AF), C32(0xC862B3A8), C32(0x33E00CDC), C32(0x236B86A6), + C32(0xF64AE77C), C32(0xFA373B76), C32(0x7DC1EE5B), C32(0x7FB29CE8) +}; + +static const u32 IV256[] = { + C32(0x4D567983), C32(0x07190BA9), C32(0x8474577B), C32(0x39D726E9), + C32(0xAAF3D925), C32(0x3EE20B03), C32(0xAFD5E751), C32(0xC96006D3), + C32(0xC2C2BA14), C32(0x49B3BCB4), C32(0xF67CAF46), C32(0x668626C9), + C32(0xE2EAA8D2), C32(0x1FF47833), C32(0xD0C661A5), C32(0x55693DE1) +}; + +static const u32 IV384[] = { + C32(0x8A36EEBC), C32(0x94A3BD90), C32(0xD1537B83), C32(0xB25B070B), + C32(0xF463F1B5), C32(0xB6F81E20), C32(0x0055C339), C32(0xB4D144D1), + C32(0x7360CA61), C32(0x18361A03), C32(0x17DCB4B9), C32(0x3414C45A), + C32(0xA699A9D2), C32(0xE39E9664), C32(0x468BFE77), C32(0x51D062F8), + C32(0xB9E3BFE8), C32(0x63BECE2A), C32(0x8FE506B9), C32(0xF8CC4AC2), + C32(0x7AE11542), C32(0xB1AADDA1), C32(0x64B06794), C32(0x28D2F462), + C32(0xE64071EC), C32(0x1DEB91A8), C32(0x8AC8DB23), C32(0x3F782AB5), + C32(0x039B5CB8), C32(0x71DDD962), C32(0xFADE2CEA), C32(0x1416DF71) +}; + +static const u32 IV512[] = { + C32(0x0BA16B95), C32(0x72F999AD), C32(0x9FECC2AE), C32(0xBA3264FC), + C32(0x5E894929), C32(0x8E9F30E5), C32(0x2F1DAA37), C32(0xF0F2C558), + C32(0xAC506643), C32(0xA90635A5), C32(0xE25B878B), C32(0xAAB7878F), + C32(0x88817F7A), C32(0x0A02892B), C32(0x559A7550), C32(0x598F657E), + C32(0x7EEF60A1), C32(0x6B70E3E8), C32(0x9C1714D1), C32(0xB958E2A8), + C32(0xAB02675E), C32(0xED1C014F), C32(0xCD8D65BB), C32(0xFDB7A257), + C32(0x09254899), C32(0xD699C7BC), C32(0x9019B6DC), C32(0x2B9022E4), + C32(0x8FA14956), C32(0x21BF9BD3), C32(0xB94D0943), C32(0x6FFDDC22) +}; + +static void +init_small(void *cc, const u32 *iv) +{ + sph_simd_small_context *sc; + + sc = cc; + memcpy(sc->state, iv, sizeof sc->state); + sc->count_low = sc->count_high = 0; + sc->ptr = 0; +} + +static void +init_big(void *cc, const u32 *iv) +{ + sph_simd_big_context *sc; + + sc = cc; + memcpy(sc->state, iv, sizeof sc->state); + sc->count_low = sc->count_high = 0; + sc->ptr = 0; +} + +static void +update_small(void *cc, const void *data, size_t len) +{ + sph_simd_small_context *sc; + + sc = cc; + while (len > 0) { + size_t clen; + + clen = (sizeof sc->buf) - sc->ptr; + if (clen > len) + clen = len; + memcpy(sc->buf + sc->ptr, data, clen); + data = (const unsigned char *)data + clen; + len -= clen; + if ((sc->ptr += clen) == sizeof sc->buf) { + compress_small(sc, 0); + sc->ptr = 0; + sc->count_low = T32(sc->count_low + 1); + if (sc->count_low == 0) + sc->count_high ++; + } + } +} + +static void +update_big(void *cc, const void *data, size_t len) +{ + sph_simd_big_context *sc; + + sc = cc; + while (len > 0) { + size_t clen; + + clen = (sizeof sc->buf) - sc->ptr; + if (clen > len) + clen = len; + memcpy(sc->buf + sc->ptr, data, clen); + data = (const unsigned char *)data + clen; + len -= clen; + if ((sc->ptr += clen) == sizeof sc->buf) { + compress_big(sc, 0); + sc->ptr = 0; + sc->count_low = T32(sc->count_low + 1); + if (sc->count_low == 0) + sc->count_high ++; + } + } +} + +static void +encode_count_small(unsigned char *dst, + u32 low, u32 high, size_t ptr, unsigned n) +{ + low = T32(low << 9); + high = T32(high << 9) + (low >> 23); + low += (ptr << 3) + n; + sph_enc32le(dst, low); + sph_enc32le(dst + 4, high); +} + +static void +encode_count_big(unsigned char *dst, + u32 low, u32 high, size_t ptr, unsigned n) +{ + low = T32(low << 10); + high = T32(high << 10) + (low >> 22); + low += (ptr << 3) + n; + sph_enc32le(dst, low); + sph_enc32le(dst + 4, high); +} + +static void +finalize_small(void *cc, unsigned ub, unsigned n, void *dst, size_t dst_len) +{ + sph_simd_small_context *sc; + unsigned char *d; + size_t u; + + sc = cc; + if (sc->ptr > 0 || n > 0) { + memset(sc->buf + sc->ptr, 0, + (sizeof sc->buf) - sc->ptr); + sc->buf[sc->ptr] = ub & (0xFF << (8 - n)); + compress_small(sc, 0); + } + memset(sc->buf, 0, sizeof sc->buf); + encode_count_small(sc->buf, sc->count_low, sc->count_high, sc->ptr, n); + compress_small(sc, 1); + d = dst; + for (d = dst, u = 0; u < dst_len; u ++) + sph_enc32le(d + (u << 2), sc->state[u]); +} + +static void +finalize_big(void *cc, unsigned ub, unsigned n, void *dst, size_t dst_len) +{ + sph_simd_big_context *sc; + unsigned char *d; + size_t u; + + sc = cc; + if (sc->ptr > 0 || n > 0) { + memset(sc->buf + sc->ptr, 0, + (sizeof sc->buf) - sc->ptr); + sc->buf[sc->ptr] = ub & (0xFF << (8 - n)); + compress_big(sc, 0); + } + memset(sc->buf, 0, sizeof sc->buf); + encode_count_big(sc->buf, sc->count_low, sc->count_high, sc->ptr, n); + compress_big(sc, 1); + d = dst; + for (d = dst, u = 0; u < dst_len; u ++) + sph_enc32le(d + (u << 2), sc->state[u]); +} + +void +sph_simd224_init(void *cc) +{ + init_small(cc, IV224); +} + +void +sph_simd224(void *cc, const void *data, size_t len) +{ + update_small(cc, data, len); +} + +void +sph_simd224_close(void *cc, void *dst) +{ + sph_simd224_addbits_and_close(cc, 0, 0, dst); +} + +void +sph_simd224_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst) +{ + finalize_small(cc, ub, n, dst, 7); + sph_simd224_init(cc); +} + +void +sph_simd256_init(void *cc) +{ + init_small(cc, IV256); +} + +void +sph_simd256(void *cc, const void *data, size_t len) +{ + update_small(cc, data, len); +} + +void +sph_simd256_close(void *cc, void *dst) +{ + sph_simd256_addbits_and_close(cc, 0, 0, dst); +} + +void +sph_simd256_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst) +{ + finalize_small(cc, ub, n, dst, 8); + sph_simd256_init(cc); +} + +void +sph_simd384_init(void *cc) +{ + init_big(cc, IV384); +} + +void +sph_simd384(void *cc, const void *data, size_t len) +{ + update_big(cc, data, len); +} + +void +sph_simd384_close(void *cc, void *dst) +{ + sph_simd384_addbits_and_close(cc, 0, 0, dst); +} + +void +sph_simd384_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst) +{ + finalize_big(cc, ub, n, dst, 12); + sph_simd384_init(cc); +} + +void +sph_simd512_init(void *cc) +{ + init_big(cc, IV512); +} + +void +sph_simd512(void *cc, const void *data, size_t len) +{ + update_big(cc, data, len); +} + +void +sph_simd512_close(void *cc, void *dst) +{ + sph_simd512_addbits_and_close(cc, 0, 0, dst); +} + +void +sph_simd512_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst) +{ + finalize_big(cc, ub, n, dst, 16); + sph_simd512_init(cc); +} +#ifdef __cplusplus +} +#endif \ No newline at end of file diff --git a/crypto/sha3/sph_simd.h b/crypto/sha3/sph_simd.h new file mode 100644 index 000000000..92ee1e727 --- /dev/null +++ b/crypto/sha3/sph_simd.h @@ -0,0 +1,309 @@ +/* $Id: sph_simd.h 154 2010-04-26 17:00:24Z tp $ */ +/** + * SIMD interface. SIMD is a family of functions which differ by + * their output size; this implementation defines SIMD for output + * sizes 224, 256, 384 and 512 bits. + * + * ==========================(LICENSE BEGIN)============================ + * + * Copyright (c) 2007-2010 Projet RNRT SAPHIR + * + * Permission is hereby granted, free of charge, to any person obtaining + * a copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sublicense, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * The above copyright notice and this permission notice shall be + * included in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + * + * ===========================(LICENSE END)============================= + * + * @file sph_simd.h + * @author Thomas Pornin + */ + +#ifndef SPH_SIMD_H__ +#define SPH_SIMD_H__ + +#ifdef __cplusplus +extern "C"{ +#endif + +#include +#include "sph_types.h" + +/** + * Output size (in bits) for SIMD-224. + */ +#define SPH_SIZE_simd224 224 + +/** + * Output size (in bits) for SIMD-256. + */ +#define SPH_SIZE_simd256 256 + +/** + * Output size (in bits) for SIMD-384. + */ +#define SPH_SIZE_simd384 384 + +/** + * Output size (in bits) for SIMD-512. + */ +#define SPH_SIZE_simd512 512 + +/** + * This structure is a context for SIMD computations: it contains the + * intermediate values and some data from the last entered block. Once + * an SIMD computation has been performed, the context can be reused for + * another computation. This specific structure is used for SIMD-224 + * and SIMD-256. + * + * The contents of this structure are private. A running SIMD computation + * can be cloned by copying the context (e.g. with a simple + * memcpy()). + */ +typedef struct { +#ifndef DOXYGEN_IGNORE + unsigned char buf[64]; /* first field, for alignment */ + size_t ptr; + sph_u32 state[16]; + sph_u32 count_low, count_high; +#endif +} sph_simd_small_context; + +/** + * This structure is a context for SIMD computations: it contains the + * intermediate values and some data from the last entered block. Once + * an SIMD computation has been performed, the context can be reused for + * another computation. This specific structure is used for SIMD-384 + * and SIMD-512. + * + * The contents of this structure are private. A running SIMD computation + * can be cloned by copying the context (e.g. with a simple + * memcpy()). + */ +typedef struct { +#ifndef DOXYGEN_IGNORE + unsigned char buf[128]; /* first field, for alignment */ + size_t ptr; + sph_u32 state[32]; + sph_u32 count_low, count_high; +#endif +} sph_simd_big_context; + +/** + * Type for a SIMD-224 context (identical to the common "small" context). + */ +typedef sph_simd_small_context sph_simd224_context; + +/** + * Type for a SIMD-256 context (identical to the common "small" context). + */ +typedef sph_simd_small_context sph_simd256_context; + +/** + * Type for a SIMD-384 context (identical to the common "big" context). + */ +typedef sph_simd_big_context sph_simd384_context; + +/** + * Type for a SIMD-512 context (identical to the common "big" context). + */ +typedef sph_simd_big_context sph_simd512_context; + +/** + * Initialize an SIMD-224 context. This process performs no memory allocation. + * + * @param cc the SIMD-224 context (pointer to a + * sph_simd224_context) + */ +void sph_simd224_init(void *cc); + +/** + * Process some data bytes. It is acceptable that len is zero + * (in which case this function does nothing). + * + * @param cc the SIMD-224 context + * @param data the input data + * @param len the input data length (in bytes) + */ +void sph_simd224(void *cc, const void *data, size_t len); + +/** + * Terminate the current SIMD-224 computation and output the result into + * the provided buffer. The destination buffer must be wide enough to + * accomodate the result (28 bytes). The context is automatically + * reinitialized. + * + * @param cc the SIMD-224 context + * @param dst the destination buffer + */ +void sph_simd224_close(void *cc, void *dst); + +/** + * Add a few additional bits (0 to 7) to the current computation, then + * terminate it and output the result in the provided buffer, which must + * be wide enough to accomodate the result (28 bytes). If bit number i + * in ub has value 2^i, then the extra bits are those + * numbered 7 downto 8-n (this is the big-endian convention at the byte + * level). The context is automatically reinitialized. + * + * @param cc the SIMD-224 context + * @param ub the extra bits + * @param n the number of extra bits (0 to 7) + * @param dst the destination buffer + */ +void sph_simd224_addbits_and_close( + void *cc, unsigned ub, unsigned n, void *dst); + +/** + * Initialize an SIMD-256 context. This process performs no memory allocation. + * + * @param cc the SIMD-256 context (pointer to a + * sph_simd256_context) + */ +void sph_simd256_init(void *cc); + +/** + * Process some data bytes. It is acceptable that len is zero + * (in which case this function does nothing). + * + * @param cc the SIMD-256 context + * @param data the input data + * @param len the input data length (in bytes) + */ +void sph_simd256(void *cc, const void *data, size_t len); + +/** + * Terminate the current SIMD-256 computation and output the result into + * the provided buffer. The destination buffer must be wide enough to + * accomodate the result (32 bytes). The context is automatically + * reinitialized. + * + * @param cc the SIMD-256 context + * @param dst the destination buffer + */ +void sph_simd256_close(void *cc, void *dst); + +/** + * Add a few additional bits (0 to 7) to the current computation, then + * terminate it and output the result in the provided buffer, which must + * be wide enough to accomodate the result (32 bytes). If bit number i + * in ub has value 2^i, then the extra bits are those + * numbered 7 downto 8-n (this is the big-endian convention at the byte + * level). The context is automatically reinitialized. + * + * @param cc the SIMD-256 context + * @param ub the extra bits + * @param n the number of extra bits (0 to 7) + * @param dst the destination buffer + */ +void sph_simd256_addbits_and_close( + void *cc, unsigned ub, unsigned n, void *dst); + +/** + * Initialize an SIMD-384 context. This process performs no memory allocation. + * + * @param cc the SIMD-384 context (pointer to a + * sph_simd384_context) + */ +void sph_simd384_init(void *cc); + +/** + * Process some data bytes. It is acceptable that len is zero + * (in which case this function does nothing). + * + * @param cc the SIMD-384 context + * @param data the input data + * @param len the input data length (in bytes) + */ +void sph_simd384(void *cc, const void *data, size_t len); + +/** + * Terminate the current SIMD-384 computation and output the result into + * the provided buffer. The destination buffer must be wide enough to + * accomodate the result (48 bytes). The context is automatically + * reinitialized. + * + * @param cc the SIMD-384 context + * @param dst the destination buffer + */ +void sph_simd384_close(void *cc, void *dst); + +/** + * Add a few additional bits (0 to 7) to the current computation, then + * terminate it and output the result in the provided buffer, which must + * be wide enough to accomodate the result (48 bytes). If bit number i + * in ub has value 2^i, then the extra bits are those + * numbered 7 downto 8-n (this is the big-endian convention at the byte + * level). The context is automatically reinitialized. + * + * @param cc the SIMD-384 context + * @param ub the extra bits + * @param n the number of extra bits (0 to 7) + * @param dst the destination buffer + */ +void sph_simd384_addbits_and_close( + void *cc, unsigned ub, unsigned n, void *dst); + +/** + * Initialize an SIMD-512 context. This process performs no memory allocation. + * + * @param cc the SIMD-512 context (pointer to a + * sph_simd512_context) + */ +void sph_simd512_init(void *cc); + +/** + * Process some data bytes. It is acceptable that len is zero + * (in which case this function does nothing). + * + * @param cc the SIMD-512 context + * @param data the input data + * @param len the input data length (in bytes) + */ +void sph_simd512(void *cc, const void *data, size_t len); + +/** + * Terminate the current SIMD-512 computation and output the result into + * the provided buffer. The destination buffer must be wide enough to + * accomodate the result (64 bytes). The context is automatically + * reinitialized. + * + * @param cc the SIMD-512 context + * @param dst the destination buffer + */ +void sph_simd512_close(void *cc, void *dst); + +/** + * Add a few additional bits (0 to 7) to the current computation, then + * terminate it and output the result in the provided buffer, which must + * be wide enough to accomodate the result (64 bytes). If bit number i + * in ub has value 2^i, then the extra bits are those + * numbered 7 downto 8-n (this is the big-endian convention at the byte + * level). The context is automatically reinitialized. + * + * @param cc the SIMD-512 context + * @param ub the extra bits + * @param n the number of extra bits (0 to 7) + * @param dst the destination buffer + */ +void sph_simd512_addbits_and_close( + void *cc, unsigned ub, unsigned n, void *dst); +#ifdef __cplusplus +} +#endif + +#endif diff --git a/crypto/sha3/sph_skein.h b/crypto/sha3/sph_skein.h new file mode 100644 index 000000000..bddbc86fa --- /dev/null +++ b/crypto/sha3/sph_skein.h @@ -0,0 +1,298 @@ +/* $Id: sph_skein.h 253 2011-06-07 18:33:10Z tp $ */ +/** + * Skein interface. The Skein specification defines three main + * functions, called Skein-256, Skein-512 and Skein-1024, which can be + * further parameterized with an output length. For the SHA-3 + * competition, Skein-512 is used for output sizes of 224, 256, 384 and + * 512 bits; this is what this code implements. Thus, we hereafter call + * Skein-224, Skein-256, Skein-384 and Skein-512 what the Skein + * specification defines as Skein-512-224, Skein-512-256, Skein-512-384 + * and Skein-512-512, respectively. + * + * ==========================(LICENSE BEGIN)============================ + * + * Copyright (c) 2007-2010 Projet RNRT SAPHIR + * + * Permission is hereby granted, free of charge, to any person obtaining + * a copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sublicense, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * The above copyright notice and this permission notice shall be + * included in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + * + * ===========================(LICENSE END)============================= + * + * @file sph_skein.h + * @author Thomas Pornin + */ + +#ifndef SPH_SKEIN_H__ +#define SPH_SKEIN_H__ + +#ifdef __cplusplus +extern "C"{ +#endif + +#include +#include "sph_types.h" + +#if SPH_64 + +/** + * Output size (in bits) for Skein-224. + */ +#define SPH_SIZE_skein224 224 + +/** + * Output size (in bits) for Skein-256. + */ +#define SPH_SIZE_skein256 256 + +/** + * Output size (in bits) for Skein-384. + */ +#define SPH_SIZE_skein384 384 + +/** + * Output size (in bits) for Skein-512. + */ +#define SPH_SIZE_skein512 512 + +/** + * This structure is a context for Skein computations (with a 384- or + * 512-bit output): it contains the intermediate values and some data + * from the last entered block. Once a Skein computation has been + * performed, the context can be reused for another computation. + * + * The contents of this structure are private. A running Skein computation + * can be cloned by copying the context (e.g. with a simple + * memcpy()). + */ +typedef struct { +#ifndef DOXYGEN_IGNORE + unsigned char buf[64]; /* first field, for alignment */ + size_t ptr; + sph_u64 h0, h1, h2, h3, h4, h5, h6, h7; + sph_u64 bcount; +#endif +} sph_skein_big_context; + +/** + * Type for a Skein-224 context (identical to the common "big" context). + */ +typedef sph_skein_big_context sph_skein224_context; + +/** + * Type for a Skein-256 context (identical to the common "big" context). + */ +typedef sph_skein_big_context sph_skein256_context; + +/** + * Type for a Skein-384 context (identical to the common "big" context). + */ +typedef sph_skein_big_context sph_skein384_context; + +/** + * Type for a Skein-512 context (identical to the common "big" context). + */ +typedef sph_skein_big_context sph_skein512_context; + +/** + * Initialize a Skein-224 context. This process performs no memory allocation. + * + * @param cc the Skein-224 context (pointer to a + * sph_skein224_context) + */ +void sph_skein224_init(void *cc); + +/** + * Process some data bytes. It is acceptable that len is zero + * (in which case this function does nothing). + * + * @param cc the Skein-224 context + * @param data the input data + * @param len the input data length (in bytes) + */ +void sph_skein224(void *cc, const void *data, size_t len); + +/** + * Terminate the current Skein-224 computation and output the result into + * the provided buffer. The destination buffer must be wide enough to + * accomodate the result (28 bytes). The context is automatically + * reinitialized. + * + * @param cc the Skein-224 context + * @param dst the destination buffer + */ +void sph_skein224_close(void *cc, void *dst); + +/** + * Add a few additional bits (0 to 7) to the current computation, then + * terminate it and output the result in the provided buffer, which must + * be wide enough to accomodate the result (28 bytes). If bit number i + * in ub has value 2^i, then the extra bits are those + * numbered 7 downto 8-n (this is the big-endian convention at the byte + * level). The context is automatically reinitialized. + * + * @param cc the Skein-224 context + * @param ub the extra bits + * @param n the number of extra bits (0 to 7) + * @param dst the destination buffer + */ +void sph_skein224_addbits_and_close( + void *cc, unsigned ub, unsigned n, void *dst); + +/** + * Initialize a Skein-256 context. This process performs no memory allocation. + * + * @param cc the Skein-256 context (pointer to a + * sph_skein256_context) + */ +void sph_skein256_init(void *cc); + +/** + * Process some data bytes. It is acceptable that len is zero + * (in which case this function does nothing). + * + * @param cc the Skein-256 context + * @param data the input data + * @param len the input data length (in bytes) + */ +void sph_skein256(void *cc, const void *data, size_t len); + +/** + * Terminate the current Skein-256 computation and output the result into + * the provided buffer. The destination buffer must be wide enough to + * accomodate the result (32 bytes). The context is automatically + * reinitialized. + * + * @param cc the Skein-256 context + * @param dst the destination buffer + */ +void sph_skein256_close(void *cc, void *dst); + +/** + * Add a few additional bits (0 to 7) to the current computation, then + * terminate it and output the result in the provided buffer, which must + * be wide enough to accomodate the result (32 bytes). If bit number i + * in ub has value 2^i, then the extra bits are those + * numbered 7 downto 8-n (this is the big-endian convention at the byte + * level). The context is automatically reinitialized. + * + * @param cc the Skein-256 context + * @param ub the extra bits + * @param n the number of extra bits (0 to 7) + * @param dst the destination buffer + */ +void sph_skein256_addbits_and_close( + void *cc, unsigned ub, unsigned n, void *dst); + +/** + * Initialize a Skein-384 context. This process performs no memory allocation. + * + * @param cc the Skein-384 context (pointer to a + * sph_skein384_context) + */ +void sph_skein384_init(void *cc); + +/** + * Process some data bytes. It is acceptable that len is zero + * (in which case this function does nothing). + * + * @param cc the Skein-384 context + * @param data the input data + * @param len the input data length (in bytes) + */ +void sph_skein384(void *cc, const void *data, size_t len); + +/** + * Terminate the current Skein-384 computation and output the result into + * the provided buffer. The destination buffer must be wide enough to + * accomodate the result (48 bytes). The context is automatically + * reinitialized. + * + * @param cc the Skein-384 context + * @param dst the destination buffer + */ +void sph_skein384_close(void *cc, void *dst); + +/** + * Add a few additional bits (0 to 7) to the current computation, then + * terminate it and output the result in the provided buffer, which must + * be wide enough to accomodate the result (48 bytes). If bit number i + * in ub has value 2^i, then the extra bits are those + * numbered 7 downto 8-n (this is the big-endian convention at the byte + * level). The context is automatically reinitialized. + * + * @param cc the Skein-384 context + * @param ub the extra bits + * @param n the number of extra bits (0 to 7) + * @param dst the destination buffer + */ +void sph_skein384_addbits_and_close( + void *cc, unsigned ub, unsigned n, void *dst); + +/** + * Initialize a Skein-512 context. This process performs no memory allocation. + * + * @param cc the Skein-512 context (pointer to a + * sph_skein512_context) + */ +void sph_skein512_init(void *cc); + +/** + * Process some data bytes. It is acceptable that len is zero + * (in which case this function does nothing). + * + * @param cc the Skein-512 context + * @param data the input data + * @param len the input data length (in bytes) + */ +void sph_skein512(void *cc, const void *data, size_t len); + +/** + * Terminate the current Skein-512 computation and output the result into + * the provided buffer. The destination buffer must be wide enough to + * accomodate the result (64 bytes). The context is automatically + * reinitialized. + * + * @param cc the Skein-512 context + * @param dst the destination buffer + */ +void sph_skein512_close(void *cc, void *dst); + +/** + * Add a few additional bits (0 to 7) to the current computation, then + * terminate it and output the result in the provided buffer, which must + * be wide enough to accomodate the result (64 bytes). If bit number i + * in ub has value 2^i, then the extra bits are those + * numbered 7 downto 8-n (this is the big-endian convention at the byte + * level). The context is automatically reinitialized. + * + * @param cc the Skein-512 context + * @param ub the extra bits + * @param n the number of extra bits (0 to 7) + * @param dst the destination buffer + */ +void sph_skein512_addbits_and_close( + void *cc, unsigned ub, unsigned n, void *dst); + +#endif + +#ifdef __cplusplus +} +#endif + +#endif diff --git a/crypto/sha3/sph_types.h b/crypto/sha3/sph_types.h new file mode 100644 index 000000000..7295b0b37 --- /dev/null +++ b/crypto/sha3/sph_types.h @@ -0,0 +1,1976 @@ +/* $Id: sph_types.h 260 2011-07-21 01:02:38Z tp $ */ +/** + * Basic type definitions. + * + * This header file defines the generic integer types that will be used + * for the implementation of hash functions; it also contains helper + * functions which encode and decode multi-byte integer values, using + * either little-endian or big-endian conventions. + * + * This file contains a compile-time test on the size of a byte + * (the unsigned char C type). If bytes are not octets, + * i.e. if they do not have a size of exactly 8 bits, then compilation + * is aborted. Architectures where bytes are not octets are relatively + * rare, even in the embedded devices market. We forbid non-octet bytes + * because there is no clear convention on how octet streams are encoded + * on such systems. + * + * ==========================(LICENSE BEGIN)============================ + * + * Copyright (c) 2007-2010 Projet RNRT SAPHIR + * + * Permission is hereby granted, free of charge, to any person obtaining + * a copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sublicense, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * The above copyright notice and this permission notice shall be + * included in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + * + * ===========================(LICENSE END)============================= + * + * @file sph_types.h + * @author Thomas Pornin + */ + +#ifndef SPH_TYPES_H__ +#define SPH_TYPES_H__ + +#include + +/* + * All our I/O functions are defined over octet streams. We do not know + * how to handle input data if bytes are not octets. + */ +#if CHAR_BIT != 8 +#error This code requires 8-bit bytes +#endif + +/* ============= BEGIN documentation block for Doxygen ============ */ + +#ifdef DOXYGEN_IGNORE + +/** @mainpage sphlib C code documentation + * + * @section overview Overview + * + * sphlib is a library which contains implementations of + * various cryptographic hash functions. These pages have been generated + * with doxygen and + * document the API for the C implementations. + * + * The API is described in appropriate header files, which are available + * in the "Files" section. Each hash function family has its own header, + * whose name begins with "sph_" and contains the family + * name. For instance, the API for the RIPEMD hash functions is available + * in the header file sph_ripemd.h. + * + * @section principles API structure and conventions + * + * @subsection io Input/output conventions + * + * In all generality, hash functions operate over strings of bits. + * Individual bits are rarely encountered in C programming or actual + * communication protocols; most protocols converge on the ubiquitous + * "octet" which is a group of eight bits. Data is thus expressed as a + * stream of octets. The C programming language contains the notion of a + * "byte", which is a data unit managed under the type "unsigned + * char". The C standard prescribes that a byte should hold at + * least eight bits, but possibly more. Most modern architectures, even + * in the embedded world, feature eight-bit bytes, i.e. map bytes to + * octets. + * + * Nevertheless, for some of the implemented hash functions, an extra + * API has been added, which allows the input of arbitrary sequences of + * bits: when the computation is about to be closed, 1 to 7 extra bits + * can be added. The functions for which this API is implemented include + * the SHA-2 functions and all SHA-3 candidates. + * + * sphlib defines hash function which may hash octet streams, + * i.e. streams of bits where the number of bits is a multiple of eight. + * The data input functions in the sphlib API expect data + * as anonymous pointers ("const void *") with a length + * (of type "size_t") which gives the input data chunk length + * in bytes. A byte is assumed to be an octet; the sph_types.h + * header contains a compile-time test which prevents compilation on + * architectures where this property is not met. + * + * The hash function output is also converted into bytes. All currently + * implemented hash functions have an output width which is a multiple of + * eight, and this is likely to remain true for new designs. + * + * Most hash functions internally convert input data into 32-bit of 64-bit + * words, using either little-endian or big-endian conversion. The hash + * output also often consists of such words, which are encoded into output + * bytes with a similar endianness convention. Some hash functions have + * been only loosely specified on that subject; when necessary, + * sphlib has been tested against published "reference" + * implementations in order to use the same conventions. + * + * @subsection shortname Function short name + * + * Each implemented hash function has a "short name" which is used + * internally to derive the identifiers for the functions and context + * structures which the function uses. For instance, MD5 has the short + * name "md5". Short names are listed in the next section, + * for the implemented hash functions. In subsequent sections, the + * short name will be assumed to be "XXX": replace with the + * actual hash function name to get the C identifier. + * + * Note: some functions within the same family share the same core + * elements, such as update function or context structure. Correspondingly, + * some of the defined types or functions may actually be macros which + * transparently evaluate to another type or function name. + * + * @subsection context Context structure + * + * Each implemented hash fonction has its own context structure, available + * under the type name "sph_XXX_context" for the hash function + * with short name "XXX". This structure holds all needed + * state for a running hash computation. + * + * The contents of these structures are meant to be opaque, and private + * to the implementation. However, these contents are specified in the + * header files so that application code which uses sphlib + * may access the size of those structures. + * + * The caller is responsible for allocating the context structure, + * whether by dynamic allocation (malloc() or equivalent), + * static allocation (a global permanent variable), as an automatic + * variable ("on the stack"), or by any other mean which ensures proper + * structure alignment. sphlib code performs no dynamic + * allocation by itself. + * + * The context must be initialized before use, using the + * sph_XXX_init() function. This function sets the context + * state to proper initial values for hashing. + * + * Since all state data is contained within the context structure, + * sphlib is thread-safe and reentrant: several hash + * computations may be performed in parallel, provided that they do not + * operate on the same context. Moreover, a running computation can be + * cloned by copying the context (with a simple memcpy()): + * the context and its clone are then independant and may be updated + * with new data and/or closed without interfering with each other. + * Similarly, a context structure can be moved in memory at will: + * context structures contain no pointer, in particular no pointer to + * themselves. + * + * @subsection dataio Data input + * + * Hashed data is input with the sph_XXX() fonction, which + * takes as parameters a pointer to the context, a pointer to the data + * to hash, and the number of data bytes to hash. The context is updated + * with the new data. + * + * Data can be input in one or several calls, with arbitrary input lengths. + * However, it is best, performance wise, to input data by relatively big + * chunks (say a few kilobytes), because this allows sphlib to + * optimize things and avoid internal copying. + * + * When all data has been input, the context can be closed with + * sph_XXX_close(). The hash output is computed and written + * into the provided buffer. The caller must take care to provide a + * buffer of appropriate length; e.g., when using SHA-1, the output is + * a 20-byte word, therefore the output buffer must be at least 20-byte + * long. + * + * For some hash functions, the sph_XXX_addbits_and_close() + * function can be used instead of sph_XXX_close(). This + * function can take a few extra bits to be added at + * the end of the input message. This allows hashing messages with a + * bit length which is not a multiple of 8. The extra bits are provided + * as an unsigned integer value, and a bit count. The bit count must be + * between 0 and 7, inclusive. The extra bits are provided as bits 7 to + * 0 (bits of numerical value 128, 64, 32... downto 0), in that order. + * For instance, to add three bits of value 1, 1 and 0, the unsigned + * integer will have value 192 (1*128 + 1*64 + 0*32) and the bit count + * will be 3. + * + * The SPH_SIZE_XXX macro is defined for each hash function; + * it evaluates to the function output size, expressed in bits. For instance, + * SPH_SIZE_sha1 evaluates to 160. + * + * When closed, the context is automatically reinitialized and can be + * immediately used for another computation. It is not necessary to call + * sph_XXX_init() after a close. Note that + * sph_XXX_init() can still be called to "reset" a context, + * i.e. forget previously input data, and get back to the initial state. + * + * @subsection alignment Data alignment + * + * "Alignment" is a property of data, which is said to be "properly + * aligned" when its emplacement in memory is such that the data can + * be optimally read by full words. This depends on the type of access; + * basically, some hash functions will read data by 32-bit or 64-bit + * words. sphlib does not mandate such alignment for input + * data, but using aligned data can substantially improve performance. + * + * As a rule, it is best to input data by chunks whose length (in bytes) + * is a multiple of eight, and which begins at "generally aligned" + * addresses, such as the base address returned by a call to + * malloc(). + * + * @section functions Implemented functions + * + * We give here the list of implemented functions. They are grouped by + * family; to each family corresponds a specific header file. Each + * individual function has its associated "short name". Please refer to + * the documentation for that header file to get details on the hash + * function denomination and provenance. + * + * Note: the functions marked with a '(64)' in the list below are + * available only if the C compiler provides an integer type of length + * 64 bits or more. Such a type is mandatory in the latest C standard + * (ISO 9899:1999, aka "C99") and is present in several older compilers + * as well, so chances are that such a type is available. + * + * - HAVAL family: file sph_haval.h + * - HAVAL-128/3 (128-bit, 3 passes): short name: haval128_3 + * - HAVAL-128/4 (128-bit, 4 passes): short name: haval128_4 + * - HAVAL-128/5 (128-bit, 5 passes): short name: haval128_5 + * - HAVAL-160/3 (160-bit, 3 passes): short name: haval160_3 + * - HAVAL-160/4 (160-bit, 4 passes): short name: haval160_4 + * - HAVAL-160/5 (160-bit, 5 passes): short name: haval160_5 + * - HAVAL-192/3 (192-bit, 3 passes): short name: haval192_3 + * - HAVAL-192/4 (192-bit, 4 passes): short name: haval192_4 + * - HAVAL-192/5 (192-bit, 5 passes): short name: haval192_5 + * - HAVAL-224/3 (224-bit, 3 passes): short name: haval224_3 + * - HAVAL-224/4 (224-bit, 4 passes): short name: haval224_4 + * - HAVAL-224/5 (224-bit, 5 passes): short name: haval224_5 + * - HAVAL-256/3 (256-bit, 3 passes): short name: haval256_3 + * - HAVAL-256/4 (256-bit, 4 passes): short name: haval256_4 + * - HAVAL-256/5 (256-bit, 5 passes): short name: haval256_5 + * - MD2: file sph_md2.h, short name: md2 + * - MD4: file sph_md4.h, short name: md4 + * - MD5: file sph_md5.h, short name: md5 + * - PANAMA: file sph_panama.h, short name: panama + * - RadioGatun family: file sph_radiogatun.h + * - RadioGatun[32]: short name: radiogatun32 + * - RadioGatun[64]: short name: radiogatun64 (64) + * - RIPEMD family: file sph_ripemd.h + * - RIPEMD: short name: ripemd + * - RIPEMD-128: short name: ripemd128 + * - RIPEMD-160: short name: ripemd160 + * - SHA-0: file sph_sha0.h, short name: sha0 + * - SHA-1: file sph_sha1.h, short name: sha1 + * - SHA-2 family, 32-bit hashes: file sph_sha2.h + * - SHA-224: short name: sha224 + * - SHA-256: short name: sha256 + * - SHA-384: short name: sha384 (64) + * - SHA-512: short name: sha512 (64) + * - Tiger family: file sph_tiger.h + * - Tiger: short name: tiger (64) + * - Tiger2: short name: tiger2 (64) + * - WHIRLPOOL family: file sph_whirlpool.h + * - WHIRLPOOL-0: short name: whirlpool0 (64) + * - WHIRLPOOL-1: short name: whirlpool1 (64) + * - WHIRLPOOL: short name: whirlpool (64) + * + * The fourteen second-round SHA-3 candidates are also implemented; + * when applicable, the implementations follow the "final" specifications + * as published for the third round of the SHA-3 competition (BLAKE, + * Groestl, JH, Keccak and Skein have been tweaked for third round). + * + * - BLAKE family: file sph_blake.h + * - BLAKE-224: short name: blake224 + * - BLAKE-256: short name: blake256 + * - BLAKE-384: short name: blake384 + * - BLAKE-512: short name: blake512 + * - BMW (Blue Midnight Wish) family: file sph_bmw.h + * - BMW-224: short name: bmw224 + * - BMW-256: short name: bmw256 + * - BMW-384: short name: bmw384 (64) + * - BMW-512: short name: bmw512 (64) + * - CubeHash family: file sph_cubehash.h (specified as + * CubeHash16/32 in the CubeHash specification) + * - CubeHash-224: short name: cubehash224 + * - CubeHash-256: short name: cubehash256 + * - CubeHash-384: short name: cubehash384 + * - CubeHash-512: short name: cubehash512 + * - ECHO family: file sph_echo.h + * - ECHO-224: short name: echo224 + * - ECHO-256: short name: echo256 + * - ECHO-384: short name: echo384 + * - ECHO-512: short name: echo512 + * - Fugue family: file sph_fugue.h + * - Fugue-224: short name: fugue224 + * - Fugue-256: short name: fugue256 + * - Fugue-384: short name: fugue384 + * - Fugue-512: short name: fugue512 + * - Groestl family: file sph_groestl.h + * - Groestl-224: short name: groestl224 + * - Groestl-256: short name: groestl256 + * - Groestl-384: short name: groestl384 + * - Groestl-512: short name: groestl512 + * - Hamsi family: file sph_hamsi.h + * - Hamsi-224: short name: hamsi224 + * - Hamsi-256: short name: hamsi256 + * - Hamsi-384: short name: hamsi384 + * - Hamsi-512: short name: hamsi512 + * - JH family: file sph_jh.h + * - JH-224: short name: jh224 + * - JH-256: short name: jh256 + * - JH-384: short name: jh384 + * - JH-512: short name: jh512 + * - Keccak family: file sph_keccak.h + * - Keccak-224: short name: keccak224 + * - Keccak-256: short name: keccak256 + * - Keccak-384: short name: keccak384 + * - Keccak-512: short name: keccak512 + * - Luffa family: file sph_luffa.h + * - Luffa-224: short name: luffa224 + * - Luffa-256: short name: luffa256 + * - Luffa-384: short name: luffa384 + * - Luffa-512: short name: luffa512 + * - Shabal family: file sph_shabal.h + * - Shabal-192: short name: shabal192 + * - Shabal-224: short name: shabal224 + * - Shabal-256: short name: shabal256 + * - Shabal-384: short name: shabal384 + * - Shabal-512: short name: shabal512 + * - SHAvite-3 family: file sph_shavite.h + * - SHAvite-224 (nominally "SHAvite-3 with 224-bit output"): + * short name: shabal224 + * - SHAvite-256 (nominally "SHAvite-3 with 256-bit output"): + * short name: shabal256 + * - SHAvite-384 (nominally "SHAvite-3 with 384-bit output"): + * short name: shabal384 + * - SHAvite-512 (nominally "SHAvite-3 with 512-bit output"): + * short name: shabal512 + * - SIMD family: file sph_simd.h + * - SIMD-224: short name: simd224 + * - SIMD-256: short name: simd256 + * - SIMD-384: short name: simd384 + * - SIMD-512: short name: simd512 + * - Skein family: file sph_skein.h + * - Skein-224 (nominally specified as Skein-512-224): short name: + * skein224 (64) + * - Skein-256 (nominally specified as Skein-512-256): short name: + * skein256 (64) + * - Skein-384 (nominally specified as Skein-512-384): short name: + * skein384 (64) + * - Skein-512 (nominally specified as Skein-512-512): short name: + * skein512 (64) + * + * For the second-round SHA-3 candidates, the functions are as specified + * for round 2, i.e. with the "tweaks" that some candidates added + * between round 1 and round 2. Also, some of the submitted packages for + * round 2 contained errors, in the specification, reference code, or + * both. sphlib implements the corrected versions. + */ + +/** @hideinitializer + * Unsigned integer type whose length is at least 32 bits; on most + * architectures, it will have a width of exactly 32 bits. Unsigned C + * types implement arithmetics modulo a power of 2; use the + * SPH_T32() macro to ensure that the value is truncated + * to exactly 32 bits. Unless otherwise specified, all macros and + * functions which accept sph_u32 values assume that these + * values fit on 32 bits, i.e. do not exceed 2^32-1, even on architectures + * where sph_u32 is larger than that. + */ +typedef __arch_dependant__ sph_u32; + +/** @hideinitializer + * Signed integer type corresponding to sph_u32; it has + * width 32 bits or more. + */ +typedef __arch_dependant__ sph_s32; + +/** @hideinitializer + * Unsigned integer type whose length is at least 64 bits; on most + * architectures which feature such a type, it will have a width of + * exactly 64 bits. C99-compliant platform will have this type; it + * is also defined when the GNU compiler (gcc) is used, and on + * platforms where unsigned long is large enough. If this + * type is not available, then some hash functions which depends on + * a 64-bit type will not be available (most notably SHA-384, SHA-512, + * Tiger and WHIRLPOOL). + */ +typedef __arch_dependant__ sph_u64; + +/** @hideinitializer + * Signed integer type corresponding to sph_u64; it has + * width 64 bits or more. + */ +typedef __arch_dependant__ sph_s64; + +/** + * This macro expands the token x into a suitable + * constant expression of type sph_u32. Depending on + * how this type is defined, a suffix such as UL may + * be appended to the argument. + * + * @param x the token to expand into a suitable constant expression + */ +#define SPH_C32(x) + +/** + * Truncate a 32-bit value to exactly 32 bits. On most systems, this is + * a no-op, recognized as such by the compiler. + * + * @param x the value to truncate (of type sph_u32) + */ +#define SPH_T32(x) + +/** + * Rotate a 32-bit value by a number of bits to the left. The rotate + * count must reside between 1 and 31. This macro assumes that its + * first argument fits in 32 bits (no extra bit allowed on machines where + * sph_u32 is wider); both arguments may be evaluated + * several times. + * + * @param x the value to rotate (of type sph_u32) + * @param n the rotation count (between 1 and 31, inclusive) + */ +#define SPH_ROTL32(x, n) + +/** + * Rotate a 32-bit value by a number of bits to the left. The rotate + * count must reside between 1 and 31. This macro assumes that its + * first argument fits in 32 bits (no extra bit allowed on machines where + * sph_u32 is wider); both arguments may be evaluated + * several times. + * + * @param x the value to rotate (of type sph_u32) + * @param n the rotation count (between 1 and 31, inclusive) + */ +#define SPH_ROTR32(x, n) + +/** + * This macro is defined on systems for which a 64-bit type has been + * detected, and is used for sph_u64. + */ +#define SPH_64 + +/** + * This macro is defined on systems for the "native" integer size is + * 64 bits (64-bit values fit in one register). + */ +#define SPH_64_TRUE + +/** + * This macro expands the token x into a suitable + * constant expression of type sph_u64. Depending on + * how this type is defined, a suffix such as ULL may + * be appended to the argument. This macro is defined only if a + * 64-bit type was detected and used for sph_u64. + * + * @param x the token to expand into a suitable constant expression + */ +#define SPH_C64(x) + +/** + * Truncate a 64-bit value to exactly 64 bits. On most systems, this is + * a no-op, recognized as such by the compiler. This macro is defined only + * if a 64-bit type was detected and used for sph_u64. + * + * @param x the value to truncate (of type sph_u64) + */ +#define SPH_T64(x) + +/** + * Rotate a 64-bit value by a number of bits to the left. The rotate + * count must reside between 1 and 63. This macro assumes that its + * first argument fits in 64 bits (no extra bit allowed on machines where + * sph_u64 is wider); both arguments may be evaluated + * several times. This macro is defined only if a 64-bit type was detected + * and used for sph_u64. + * + * @param x the value to rotate (of type sph_u64) + * @param n the rotation count (between 1 and 63, inclusive) + */ +#define SPH_ROTL64(x, n) + +/** + * Rotate a 64-bit value by a number of bits to the left. The rotate + * count must reside between 1 and 63. This macro assumes that its + * first argument fits in 64 bits (no extra bit allowed on machines where + * sph_u64 is wider); both arguments may be evaluated + * several times. This macro is defined only if a 64-bit type was detected + * and used for sph_u64. + * + * @param x the value to rotate (of type sph_u64) + * @param n the rotation count (between 1 and 63, inclusive) + */ +#define SPH_ROTR64(x, n) + +/** + * This macro evaluates to inline or an equivalent construction, + * if available on the compilation platform, or to nothing otherwise. This + * is used to declare inline functions, for which the compiler should + * endeavour to include the code directly in the caller. Inline functions + * are typically defined in header files as replacement for macros. + */ +#define SPH_INLINE + +/** + * This macro is defined if the platform has been detected as using + * little-endian convention. This implies that the sph_u32 + * type (and the sph_u64 type also, if it is defined) has + * an exact width (i.e. exactly 32-bit, respectively 64-bit). + */ +#define SPH_LITTLE_ENDIAN + +/** + * This macro is defined if the platform has been detected as using + * big-endian convention. This implies that the sph_u32 + * type (and the sph_u64 type also, if it is defined) has + * an exact width (i.e. exactly 32-bit, respectively 64-bit). + */ +#define SPH_BIG_ENDIAN + +/** + * This macro is defined if 32-bit words (and 64-bit words, if defined) + * can be read from and written to memory efficiently in little-endian + * convention. This is the case for little-endian platforms, and also + * for the big-endian platforms which have special little-endian access + * opcodes (e.g. Ultrasparc). + */ +#define SPH_LITTLE_FAST + +/** + * This macro is defined if 32-bit words (and 64-bit words, if defined) + * can be read from and written to memory efficiently in big-endian + * convention. This is the case for little-endian platforms, and also + * for the little-endian platforms which have special big-endian access + * opcodes. + */ +#define SPH_BIG_FAST + +/** + * On some platforms, this macro is defined to an unsigned integer type + * into which pointer values may be cast. The resulting value can then + * be tested for being a multiple of 2, 4 or 8, indicating an aligned + * pointer for, respectively, 16-bit, 32-bit or 64-bit memory accesses. + */ +#define SPH_UPTR + +/** + * When defined, this macro indicates that unaligned memory accesses + * are possible with only a minor penalty, and thus should be prefered + * over strategies which first copy data to an aligned buffer. + */ +#define SPH_UNALIGNED + +/** + * Byte-swap a 32-bit word (i.e. 0x12345678 becomes + * 0x78563412). This is an inline function which resorts + * to inline assembly on some platforms, for better performance. + * + * @param x the 32-bit value to byte-swap + * @return the byte-swapped value + */ +static inline sph_u32 sph_bswap32(sph_u32 x); + +/** + * Byte-swap a 64-bit word. This is an inline function which resorts + * to inline assembly on some platforms, for better performance. This + * function is defined only if a suitable 64-bit type was found for + * sph_u64 + * + * @param x the 64-bit value to byte-swap + * @return the byte-swapped value + */ +static inline sph_u64 sph_bswap64(sph_u64 x); + +/** + * Decode a 16-bit unsigned value from memory, in little-endian convention + * (least significant byte comes first). + * + * @param src the source address + * @return the decoded value + */ +static inline unsigned sph_dec16le(const void *src); + +/** + * Encode a 16-bit unsigned value into memory, in little-endian convention + * (least significant byte comes first). + * + * @param dst the destination buffer + * @param val the value to encode + */ +static inline void sph_enc16le(void *dst, unsigned val); + +/** + * Decode a 16-bit unsigned value from memory, in big-endian convention + * (most significant byte comes first). + * + * @param src the source address + * @return the decoded value + */ +static inline unsigned sph_dec16be(const void *src); + +/** + * Encode a 16-bit unsigned value into memory, in big-endian convention + * (most significant byte comes first). + * + * @param dst the destination buffer + * @param val the value to encode + */ +static inline void sph_enc16be(void *dst, unsigned val); + +/** + * Decode a 32-bit unsigned value from memory, in little-endian convention + * (least significant byte comes first). + * + * @param src the source address + * @return the decoded value + */ +static inline sph_u32 sph_dec32le(const void *src); + +/** + * Decode a 32-bit unsigned value from memory, in little-endian convention + * (least significant byte comes first). This function assumes that the + * source address is suitably aligned for a direct access, if the platform + * supports such things; it can thus be marginally faster than the generic + * sph_dec32le() function. + * + * @param src the source address + * @return the decoded value + */ +static inline sph_u32 sph_dec32le_aligned(const void *src); + +/** + * Encode a 32-bit unsigned value into memory, in little-endian convention + * (least significant byte comes first). + * + * @param dst the destination buffer + * @param val the value to encode + */ +static inline void sph_enc32le(void *dst, sph_u32 val); + +/** + * Encode a 32-bit unsigned value into memory, in little-endian convention + * (least significant byte comes first). This function assumes that the + * destination address is suitably aligned for a direct access, if the + * platform supports such things; it can thus be marginally faster than + * the generic sph_enc32le() function. + * + * @param dst the destination buffer + * @param val the value to encode + */ +static inline void sph_enc32le_aligned(void *dst, sph_u32 val); + +/** + * Decode a 32-bit unsigned value from memory, in big-endian convention + * (most significant byte comes first). + * + * @param src the source address + * @return the decoded value + */ +static inline sph_u32 sph_dec32be(const void *src); + +/** + * Decode a 32-bit unsigned value from memory, in big-endian convention + * (most significant byte comes first). This function assumes that the + * source address is suitably aligned for a direct access, if the platform + * supports such things; it can thus be marginally faster than the generic + * sph_dec32be() function. + * + * @param src the source address + * @return the decoded value + */ +static inline sph_u32 sph_dec32be_aligned(const void *src); + +/** + * Encode a 32-bit unsigned value into memory, in big-endian convention + * (most significant byte comes first). + * + * @param dst the destination buffer + * @param val the value to encode + */ +static inline void sph_enc32be(void *dst, sph_u32 val); + +/** + * Encode a 32-bit unsigned value into memory, in big-endian convention + * (most significant byte comes first). This function assumes that the + * destination address is suitably aligned for a direct access, if the + * platform supports such things; it can thus be marginally faster than + * the generic sph_enc32be() function. + * + * @param dst the destination buffer + * @param val the value to encode + */ +static inline void sph_enc32be_aligned(void *dst, sph_u32 val); + +/** + * Decode a 64-bit unsigned value from memory, in little-endian convention + * (least significant byte comes first). This function is defined only + * if a suitable 64-bit type was detected and used for sph_u64. + * + * @param src the source address + * @return the decoded value + */ +static inline sph_u64 sph_dec64le(const void *src); + +/** + * Decode a 64-bit unsigned value from memory, in little-endian convention + * (least significant byte comes first). This function assumes that the + * source address is suitably aligned for a direct access, if the platform + * supports such things; it can thus be marginally faster than the generic + * sph_dec64le() function. This function is defined only + * if a suitable 64-bit type was detected and used for sph_u64. + * + * @param src the source address + * @return the decoded value + */ +static inline sph_u64 sph_dec64le_aligned(const void *src); + +/** + * Encode a 64-bit unsigned value into memory, in little-endian convention + * (least significant byte comes first). This function is defined only + * if a suitable 64-bit type was detected and used for sph_u64. + * + * @param dst the destination buffer + * @param val the value to encode + */ +static inline void sph_enc64le(void *dst, sph_u64 val); + +/** + * Encode a 64-bit unsigned value into memory, in little-endian convention + * (least significant byte comes first). This function assumes that the + * destination address is suitably aligned for a direct access, if the + * platform supports such things; it can thus be marginally faster than + * the generic sph_enc64le() function. This function is defined + * only if a suitable 64-bit type was detected and used for + * sph_u64. + * + * @param dst the destination buffer + * @param val the value to encode + */ +static inline void sph_enc64le_aligned(void *dst, sph_u64 val); + +/** + * Decode a 64-bit unsigned value from memory, in big-endian convention + * (most significant byte comes first). This function is defined only + * if a suitable 64-bit type was detected and used for sph_u64. + * + * @param src the source address + * @return the decoded value + */ +static inline sph_u64 sph_dec64be(const void *src); + +/** + * Decode a 64-bit unsigned value from memory, in big-endian convention + * (most significant byte comes first). This function assumes that the + * source address is suitably aligned for a direct access, if the platform + * supports such things; it can thus be marginally faster than the generic + * sph_dec64be() function. This function is defined only + * if a suitable 64-bit type was detected and used for sph_u64. + * + * @param src the source address + * @return the decoded value + */ +static inline sph_u64 sph_dec64be_aligned(const void *src); + +/** + * Encode a 64-bit unsigned value into memory, in big-endian convention + * (most significant byte comes first). This function is defined only + * if a suitable 64-bit type was detected and used for sph_u64. + * + * @param dst the destination buffer + * @param val the value to encode + */ +static inline void sph_enc64be(void *dst, sph_u64 val); + +/** + * Encode a 64-bit unsigned value into memory, in big-endian convention + * (most significant byte comes first). This function assumes that the + * destination address is suitably aligned for a direct access, if the + * platform supports such things; it can thus be marginally faster than + * the generic sph_enc64be() function. This function is defined + * only if a suitable 64-bit type was detected and used for + * sph_u64. + * + * @param dst the destination buffer + * @param val the value to encode + */ +static inline void sph_enc64be_aligned(void *dst, sph_u64 val); + +#endif + +/* ============== END documentation block for Doxygen ============= */ + +#ifndef DOXYGEN_IGNORE + +/* + * We want to define the types "sph_u32" and "sph_u64" which hold + * unsigned values of at least, respectively, 32 and 64 bits. These + * tests should select appropriate types for most platforms. The + * macro "SPH_64" is defined if the 64-bit is supported. + */ + +#undef SPH_64 +#undef SPH_64_TRUE + +#if defined __STDC__ && __STDC_VERSION__ >= 199901L + +/* + * On C99 implementations, we can use to get an exact 64-bit + * type, if any, or otherwise use a wider type (which must exist, for + * C99 conformance). + */ + +#include + +#ifdef UINT32_MAX +typedef uint32_t sph_u32; +typedef int32_t sph_s32; +#else +typedef uint_fast32_t sph_u32; +typedef int_fast32_t sph_s32; +#endif +#if !SPH_NO_64 +#ifdef UINT64_MAX +typedef uint64_t sph_u64; +typedef int64_t sph_s64; +#else +typedef uint_fast64_t sph_u64; +typedef int_fast64_t sph_s64; +#endif +#endif + +#define SPH_C32(x) ((sph_u32)(x)) +#if !SPH_NO_64 +#define SPH_C64(x) ((sph_u64)(x)) +#define SPH_64 1 +#endif + +#else + +/* + * On non-C99 systems, we use "unsigned int" if it is wide enough, + * "unsigned long" otherwise. This supports all "reasonable" architectures. + * We have to be cautious: pre-C99 preprocessors handle constants + * differently in '#if' expressions. Hence the shifts to test UINT_MAX. + */ + +#if ((UINT_MAX >> 11) >> 11) >= 0x3FF + +typedef unsigned int sph_u32; +typedef int sph_s32; + +#define SPH_C32(x) ((sph_u32)(x ## U)) + +#else + +typedef unsigned long sph_u32; +typedef long sph_s32; + +#define SPH_C32(x) ((sph_u32)(x ## UL)) + +#endif + +#if !SPH_NO_64 + +/* + * We want a 64-bit type. We use "unsigned long" if it is wide enough (as + * is common on 64-bit architectures such as AMD64, Alpha or Sparcv9), + * "unsigned long long" otherwise, if available. We use ULLONG_MAX to + * test whether "unsigned long long" is available; we also know that + * gcc features this type, even if the libc header do not know it. + */ + +#if ((ULONG_MAX >> 31) >> 31) >= 3 + +typedef unsigned long sph_u64; +typedef long sph_s64; + +#define SPH_C64(x) ((sph_u64)(x ## UL)) + +#define SPH_64 1 + +#elif ((ULLONG_MAX >> 31) >> 31) >= 3 || defined __GNUC__ + +typedef unsigned long long sph_u64; +typedef long long sph_s64; + +#define SPH_C64(x) ((sph_u64)(x ## ULL)) + +#define SPH_64 1 + +#else + +/* + * No 64-bit type... + */ + +#endif + +#endif + +#endif + +/* + * If the "unsigned long" type has length 64 bits or more, then this is + * a "true" 64-bit architectures. This is also true with Visual C on + * amd64, even though the "long" type is limited to 32 bits. + */ +#if SPH_64 && (((ULONG_MAX >> 31) >> 31) >= 3 || defined _M_X64) +#define SPH_64_TRUE 1 +#endif + +/* + * Implementation note: some processors have specific opcodes to perform + * a rotation. Recent versions of gcc recognize the expression above and + * use the relevant opcodes, when appropriate. + */ + +#define SPH_T32(x) ((x) & SPH_C32(0xFFFFFFFF)) +#define SPH_ROTL32(x, n) SPH_T32(((x) << (n)) | ((x) >> (32 - (n)))) +#define SPH_ROTR32(x, n) SPH_ROTL32(x, (32 - (n))) + +#if SPH_64 + +#define SPH_T64(x) ((x) & SPH_C64(0xFFFFFFFFFFFFFFFF)) +#define SPH_ROTL64(x, n) SPH_T64(((x) << (n)) | ((x) >> (64 - (n)))) +#define SPH_ROTR64(x, n) SPH_ROTL64(x, (64 - (n))) + +#endif + +#ifndef DOXYGEN_IGNORE +/* + * Define SPH_INLINE to be an "inline" qualifier, if available. We define + * some small macro-like functions which benefit greatly from being inlined. + */ +#if (defined __STDC__ && __STDC_VERSION__ >= 199901L) || defined __GNUC__ +#define SPH_INLINE inline +#elif defined _MSC_VER +#define SPH_INLINE __inline +#else +#define SPH_INLINE +#endif +#endif + +/* + * We define some macros which qualify the architecture. These macros + * may be explicit set externally (e.g. as compiler parameters). The + * code below sets those macros if they are not already defined. + * + * Most macros are boolean, thus evaluate to either zero or non-zero. + * The SPH_UPTR macro is special, in that it evaluates to a C type, + * or is not defined. + * + * SPH_UPTR if defined: unsigned type to cast pointers into + * + * SPH_UNALIGNED non-zero if unaligned accesses are efficient + * SPH_LITTLE_ENDIAN non-zero if architecture is known to be little-endian + * SPH_BIG_ENDIAN non-zero if architecture is known to be big-endian + * SPH_LITTLE_FAST non-zero if little-endian decoding is fast + * SPH_BIG_FAST non-zero if big-endian decoding is fast + * + * If SPH_UPTR is defined, then encoding and decoding of 32-bit and 64-bit + * values will try to be "smart". Either SPH_LITTLE_ENDIAN or SPH_BIG_ENDIAN + * _must_ be non-zero in those situations. The 32-bit and 64-bit types + * _must_ also have an exact width. + * + * SPH_SPARCV9_GCC_32 UltraSPARC-compatible with gcc, 32-bit mode + * SPH_SPARCV9_GCC_64 UltraSPARC-compatible with gcc, 64-bit mode + * SPH_SPARCV9_GCC UltraSPARC-compatible with gcc + * SPH_I386_GCC x86-compatible (32-bit) with gcc + * SPH_I386_MSVC x86-compatible (32-bit) with Microsoft Visual C + * SPH_AMD64_GCC x86-compatible (64-bit) with gcc + * SPH_AMD64_MSVC x86-compatible (64-bit) with Microsoft Visual C + * SPH_PPC32_GCC PowerPC, 32-bit, with gcc + * SPH_PPC64_GCC PowerPC, 64-bit, with gcc + * + * TODO: enhance automatic detection, for more architectures and compilers. + * Endianness is the most important. SPH_UNALIGNED and SPH_UPTR help with + * some very fast functions (e.g. MD4) when using unaligned input data. + * The CPU-specific-with-GCC macros are useful only for inline assembly, + * normally restrained to this header file. + */ + +/* + * 32-bit x86, aka "i386 compatible". + */ +#if defined __i386__ || defined _M_IX86 + +#define SPH_DETECT_UNALIGNED 1 +#define SPH_DETECT_LITTLE_ENDIAN 1 +#define SPH_DETECT_UPTR sph_u32 +#ifdef __GNUC__ +#define SPH_DETECT_I386_GCC 1 +#endif +#ifdef _MSC_VER +#define SPH_DETECT_I386_MSVC 1 +#endif + +/* + * 64-bit x86, hereafter known as "amd64". + */ +#elif defined __x86_64 || defined _M_X64 + +#define SPH_DETECT_UNALIGNED 1 +#define SPH_DETECT_LITTLE_ENDIAN 1 +#define SPH_DETECT_UPTR sph_u64 +#ifdef __GNUC__ +#define SPH_DETECT_AMD64_GCC 1 +#endif +#ifdef _MSC_VER +#define SPH_DETECT_AMD64_MSVC 1 +#endif + +/* + * 64-bit Sparc architecture (implies v9). + */ +#elif ((defined __sparc__ || defined __sparc) && defined __arch64__) \ + || defined __sparcv9 + +#define SPH_DETECT_BIG_ENDIAN 1 +#define SPH_DETECT_UPTR sph_u64 +#ifdef __GNUC__ +#define SPH_DETECT_SPARCV9_GCC_64 1 +#define SPH_DETECT_LITTLE_FAST 1 +#endif + +/* + * 32-bit Sparc. + */ +#elif (defined __sparc__ || defined __sparc) \ + && !(defined __sparcv9 || defined __arch64__) + +#define SPH_DETECT_BIG_ENDIAN 1 +#define SPH_DETECT_UPTR sph_u32 +#if defined __GNUC__ && defined __sparc_v9__ +#define SPH_DETECT_SPARCV9_GCC_32 1 +#define SPH_DETECT_LITTLE_FAST 1 +#endif + +/* + * ARM, little-endian. + */ +#elif defined __arm__ && __ARMEL__ + +#define SPH_DETECT_LITTLE_ENDIAN 1 + +/* + * MIPS, little-endian. + */ +#elif MIPSEL || _MIPSEL || __MIPSEL || __MIPSEL__ + +#define SPH_DETECT_LITTLE_ENDIAN 1 + +/* + * MIPS, big-endian. + */ +#elif MIPSEB || _MIPSEB || __MIPSEB || __MIPSEB__ + +#define SPH_DETECT_BIG_ENDIAN 1 + +/* + * PowerPC. + */ +#elif defined __powerpc__ || defined __POWERPC__ || defined __ppc__ \ + || defined _ARCH_PPC + +/* + * Note: we do not declare cross-endian access to be "fast": even if + * using inline assembly, implementation should still assume that + * keeping the decoded word in a temporary is faster than decoding + * it again. + */ +#if defined __GNUC__ +#if SPH_64_TRUE +#define SPH_DETECT_PPC64_GCC 1 +#else +#define SPH_DETECT_PPC32_GCC 1 +#endif +#endif + +#if defined __BIG_ENDIAN__ || defined _BIG_ENDIAN +#define SPH_DETECT_BIG_ENDIAN 1 +#elif defined __LITTLE_ENDIAN__ || defined _LITTLE_ENDIAN +#define SPH_DETECT_LITTLE_ENDIAN 1 +#endif + +/* + * Itanium, 64-bit. + */ +#elif defined __ia64 || defined __ia64__ \ + || defined __itanium__ || defined _M_IA64 + +#if defined __BIG_ENDIAN__ || defined _BIG_ENDIAN +#define SPH_DETECT_BIG_ENDIAN 1 +#else +#define SPH_DETECT_LITTLE_ENDIAN 1 +#endif +#if defined __LP64__ || defined _LP64 +#define SPH_DETECT_UPTR sph_u64 +#else +#define SPH_DETECT_UPTR sph_u32 +#endif + +#endif + +#if defined SPH_DETECT_SPARCV9_GCC_32 || defined SPH_DETECT_SPARCV9_GCC_64 +#define SPH_DETECT_SPARCV9_GCC 1 +#endif + +#if defined SPH_DETECT_UNALIGNED && !defined SPH_UNALIGNED +#define SPH_UNALIGNED SPH_DETECT_UNALIGNED +#endif +#if defined SPH_DETECT_UPTR && !defined SPH_UPTR +#define SPH_UPTR SPH_DETECT_UPTR +#endif +#if defined SPH_DETECT_LITTLE_ENDIAN && !defined SPH_LITTLE_ENDIAN +#define SPH_LITTLE_ENDIAN SPH_DETECT_LITTLE_ENDIAN +#endif +#if defined SPH_DETECT_BIG_ENDIAN && !defined SPH_BIG_ENDIAN +#define SPH_BIG_ENDIAN SPH_DETECT_BIG_ENDIAN +#endif +#if defined SPH_DETECT_LITTLE_FAST && !defined SPH_LITTLE_FAST +#define SPH_LITTLE_FAST SPH_DETECT_LITTLE_FAST +#endif +#if defined SPH_DETECT_BIG_FAST && !defined SPH_BIG_FAST +#define SPH_BIG_FAST SPH_DETECT_BIG_FAST +#endif +#if defined SPH_DETECT_SPARCV9_GCC_32 && !defined SPH_SPARCV9_GCC_32 +#define SPH_SPARCV9_GCC_32 SPH_DETECT_SPARCV9_GCC_32 +#endif +#if defined SPH_DETECT_SPARCV9_GCC_64 && !defined SPH_SPARCV9_GCC_64 +#define SPH_SPARCV9_GCC_64 SPH_DETECT_SPARCV9_GCC_64 +#endif +#if defined SPH_DETECT_SPARCV9_GCC && !defined SPH_SPARCV9_GCC +#define SPH_SPARCV9_GCC SPH_DETECT_SPARCV9_GCC +#endif +#if defined SPH_DETECT_I386_GCC && !defined SPH_I386_GCC +#define SPH_I386_GCC SPH_DETECT_I386_GCC +#endif +#if defined SPH_DETECT_I386_MSVC && !defined SPH_I386_MSVC +#define SPH_I386_MSVC SPH_DETECT_I386_MSVC +#endif +#if defined SPH_DETECT_AMD64_GCC && !defined SPH_AMD64_GCC +#define SPH_AMD64_GCC SPH_DETECT_AMD64_GCC +#endif +#if defined SPH_DETECT_AMD64_MSVC && !defined SPH_AMD64_MSVC +#define SPH_AMD64_MSVC SPH_DETECT_AMD64_MSVC +#endif +#if defined SPH_DETECT_PPC32_GCC && !defined SPH_PPC32_GCC +#define SPH_PPC32_GCC SPH_DETECT_PPC32_GCC +#endif +#if defined SPH_DETECT_PPC64_GCC && !defined SPH_PPC64_GCC +#define SPH_PPC64_GCC SPH_DETECT_PPC64_GCC +#endif + +#if SPH_LITTLE_ENDIAN && !defined SPH_LITTLE_FAST +#define SPH_LITTLE_FAST 1 +#endif +#if SPH_BIG_ENDIAN && !defined SPH_BIG_FAST +#define SPH_BIG_FAST 1 +#endif + +#if defined SPH_UPTR && !(SPH_LITTLE_ENDIAN || SPH_BIG_ENDIAN) +#error SPH_UPTR defined, but endianness is not known. +#endif + +#if SPH_I386_GCC && !SPH_NO_ASM + +/* + * On x86 32-bit, with gcc, we use the bswapl opcode to byte-swap 32-bit + * values. + */ + +static SPH_INLINE sph_u32 +sph_bswap32(sph_u32 x) +{ + __asm__ __volatile__ ("bswapl %0" : "=r" (x) : "0" (x)); + return x; +} + +#if SPH_64 + +static SPH_INLINE sph_u64 +sph_bswap64(sph_u64 x) +{ + return ((sph_u64)sph_bswap32((sph_u32)x) << 32) + | (sph_u64)sph_bswap32((sph_u32)(x >> 32)); +} + +#endif + +#elif SPH_AMD64_GCC && !SPH_NO_ASM + +/* + * On x86 64-bit, with gcc, we use the bswapl opcode to byte-swap 32-bit + * and 64-bit values. + */ + +static SPH_INLINE sph_u32 +sph_bswap32(sph_u32 x) +{ + __asm__ __volatile__ ("bswapl %0" : "=r" (x) : "0" (x)); + return x; +} + +#if SPH_64 + +static SPH_INLINE sph_u64 +sph_bswap64(sph_u64 x) +{ + __asm__ __volatile__ ("bswapq %0" : "=r" (x) : "0" (x)); + return x; +} + +#endif + +/* + * Disabled code. Apparently, Microsoft Visual C 2005 is smart enough + * to generate proper opcodes for endianness swapping with the pure C + * implementation below. + * + +#elif SPH_I386_MSVC && !SPH_NO_ASM + +static __inline sph_u32 __declspec(naked) __fastcall +sph_bswap32(sph_u32 x) +{ + __asm { + bswap ecx + mov eax,ecx + ret + } +} + +#if SPH_64 + +static SPH_INLINE sph_u64 +sph_bswap64(sph_u64 x) +{ + return ((sph_u64)sph_bswap32((sph_u32)x) << 32) + | (sph_u64)sph_bswap32((sph_u32)(x >> 32)); +} + +#endif + + * + * [end of disabled code] + */ + +#else + +static SPH_INLINE sph_u32 +sph_bswap32(sph_u32 x) +{ + x = SPH_T32((x << 16) | (x >> 16)); + x = ((x & SPH_C32(0xFF00FF00)) >> 8) + | ((x & SPH_C32(0x00FF00FF)) << 8); + return x; +} + +#if SPH_64 + +/** + * Byte-swap a 64-bit value. + * + * @param x the input value + * @return the byte-swapped value + */ +static SPH_INLINE sph_u64 +sph_bswap64(sph_u64 x) +{ + x = SPH_T64((x << 32) | (x >> 32)); + x = ((x & SPH_C64(0xFFFF0000FFFF0000)) >> 16) + | ((x & SPH_C64(0x0000FFFF0000FFFF)) << 16); + x = ((x & SPH_C64(0xFF00FF00FF00FF00)) >> 8) + | ((x & SPH_C64(0x00FF00FF00FF00FF)) << 8); + return x; +} + +#endif + +#endif + +#if SPH_SPARCV9_GCC && !SPH_NO_ASM + +/* + * On UltraSPARC systems, native ordering is big-endian, but it is + * possible to perform little-endian read accesses by specifying the + * address space 0x88 (ASI_PRIMARY_LITTLE). Basically, either we use + * the opcode "lda [%reg]0x88,%dst", where %reg is the register which + * contains the source address and %dst is the destination register, + * or we use "lda [%reg+imm]%asi,%dst", which uses the %asi register + * to get the address space name. The latter format is better since it + * combines an addition and the actual access in a single opcode; but + * it requires the setting (and subsequent resetting) of %asi, which is + * slow. Some operations (i.e. MD5 compression function) combine many + * successive little-endian read accesses, which may share the same + * %asi setting. The macros below contain the appropriate inline + * assembly. + */ + +#define SPH_SPARCV9_SET_ASI \ + sph_u32 sph_sparcv9_asi; \ + __asm__ __volatile__ ( \ + "rd %%asi,%0\n\twr %%g0,0x88,%%asi" : "=r" (sph_sparcv9_asi)); + +#define SPH_SPARCV9_RESET_ASI \ + __asm__ __volatile__ ("wr %%g0,%0,%%asi" : : "r" (sph_sparcv9_asi)); + +#define SPH_SPARCV9_DEC32LE(base, idx) ({ \ + sph_u32 sph_sparcv9_tmp; \ + __asm__ __volatile__ ("lda [%1+" #idx "*4]%%asi,%0" \ + : "=r" (sph_sparcv9_tmp) : "r" (base)); \ + sph_sparcv9_tmp; \ + }) + +#endif + +static SPH_INLINE void +sph_enc16be(void *dst, unsigned val) +{ + ((unsigned char *)dst)[0] = (val >> 8); + ((unsigned char *)dst)[1] = val; +} + +static SPH_INLINE unsigned +sph_dec16be(const void *src) +{ + return ((unsigned)(((const unsigned char *)src)[0]) << 8) + | (unsigned)(((const unsigned char *)src)[1]); +} + +static SPH_INLINE void +sph_enc16le(void *dst, unsigned val) +{ + ((unsigned char *)dst)[0] = val; + ((unsigned char *)dst)[1] = val >> 8; +} + +static SPH_INLINE unsigned +sph_dec16le(const void *src) +{ + return (unsigned)(((const unsigned char *)src)[0]) + | ((unsigned)(((const unsigned char *)src)[1]) << 8); +} + +/** + * Encode a 32-bit value into the provided buffer (big endian convention). + * + * @param dst the destination buffer + * @param val the 32-bit value to encode + */ +static SPH_INLINE void +sph_enc32be(void *dst, sph_u32 val) +{ +#if defined SPH_UPTR +#if SPH_UNALIGNED +#if SPH_LITTLE_ENDIAN + val = sph_bswap32(val); +#endif + *(sph_u32 *)dst = val; +#else + if (((SPH_UPTR)dst & 3) == 0) { +#if SPH_LITTLE_ENDIAN + val = sph_bswap32(val); +#endif + *(sph_u32 *)dst = val; + } else { + ((unsigned char *)dst)[0] = (val >> 24); + ((unsigned char *)dst)[1] = (val >> 16); + ((unsigned char *)dst)[2] = (val >> 8); + ((unsigned char *)dst)[3] = val; + } +#endif +#else + ((unsigned char *)dst)[0] = (val >> 24); + ((unsigned char *)dst)[1] = (val >> 16); + ((unsigned char *)dst)[2] = (val >> 8); + ((unsigned char *)dst)[3] = val; +#endif +} + +/** + * Encode a 32-bit value into the provided buffer (big endian convention). + * The destination buffer must be properly aligned. + * + * @param dst the destination buffer (32-bit aligned) + * @param val the value to encode + */ +static SPH_INLINE void +sph_enc32be_aligned(void *dst, sph_u32 val) +{ +#if SPH_LITTLE_ENDIAN + *(sph_u32 *)dst = sph_bswap32(val); +#elif SPH_BIG_ENDIAN + *(sph_u32 *)dst = val; +#else + ((unsigned char *)dst)[0] = (val >> 24); + ((unsigned char *)dst)[1] = (val >> 16); + ((unsigned char *)dst)[2] = (val >> 8); + ((unsigned char *)dst)[3] = val; +#endif +} + +/** + * Decode a 32-bit value from the provided buffer (big endian convention). + * + * @param src the source buffer + * @return the decoded value + */ +static SPH_INLINE sph_u32 +sph_dec32be(const void *src) +{ +#if defined SPH_UPTR +#if SPH_UNALIGNED +#if SPH_LITTLE_ENDIAN + return sph_bswap32(*(const sph_u32 *)src); +#else + return *(const sph_u32 *)src; +#endif +#else + if (((SPH_UPTR)src & 3) == 0) { +#if SPH_LITTLE_ENDIAN + return sph_bswap32(*(const sph_u32 *)src); +#else + return *(const sph_u32 *)src; +#endif + } else { + return ((sph_u32)(((const unsigned char *)src)[0]) << 24) + | ((sph_u32)(((const unsigned char *)src)[1]) << 16) + | ((sph_u32)(((const unsigned char *)src)[2]) << 8) + | (sph_u32)(((const unsigned char *)src)[3]); + } +#endif +#else + return ((sph_u32)(((const unsigned char *)src)[0]) << 24) + | ((sph_u32)(((const unsigned char *)src)[1]) << 16) + | ((sph_u32)(((const unsigned char *)src)[2]) << 8) + | (sph_u32)(((const unsigned char *)src)[3]); +#endif +} + +/** + * Decode a 32-bit value from the provided buffer (big endian convention). + * The source buffer must be properly aligned. + * + * @param src the source buffer (32-bit aligned) + * @return the decoded value + */ +static SPH_INLINE sph_u32 +sph_dec32be_aligned(const void *src) +{ +#if SPH_LITTLE_ENDIAN + return sph_bswap32(*(const sph_u32 *)src); +#elif SPH_BIG_ENDIAN + return *(const sph_u32 *)src; +#else + return ((sph_u32)(((const unsigned char *)src)[0]) << 24) + | ((sph_u32)(((const unsigned char *)src)[1]) << 16) + | ((sph_u32)(((const unsigned char *)src)[2]) << 8) + | (sph_u32)(((const unsigned char *)src)[3]); +#endif +} + +/** + * Encode a 32-bit value into the provided buffer (little endian convention). + * + * @param dst the destination buffer + * @param val the 32-bit value to encode + */ +static SPH_INLINE void +sph_enc32le(void *dst, sph_u32 val) +{ +#if defined SPH_UPTR +#if SPH_UNALIGNED +#if SPH_BIG_ENDIAN + val = sph_bswap32(val); +#endif + *(sph_u32 *)dst = val; +#else + if (((SPH_UPTR)dst & 3) == 0) { +#if SPH_BIG_ENDIAN + val = sph_bswap32(val); +#endif + *(sph_u32 *)dst = val; + } else { + ((unsigned char *)dst)[0] = val; + ((unsigned char *)dst)[1] = (val >> 8); + ((unsigned char *)dst)[2] = (val >> 16); + ((unsigned char *)dst)[3] = (val >> 24); + } +#endif +#else + ((unsigned char *)dst)[0] = val; + ((unsigned char *)dst)[1] = (val >> 8); + ((unsigned char *)dst)[2] = (val >> 16); + ((unsigned char *)dst)[3] = (val >> 24); +#endif +} + +/** + * Encode a 32-bit value into the provided buffer (little endian convention). + * The destination buffer must be properly aligned. + * + * @param dst the destination buffer (32-bit aligned) + * @param val the value to encode + */ +static SPH_INLINE void +sph_enc32le_aligned(void *dst, sph_u32 val) +{ +#if SPH_LITTLE_ENDIAN + *(sph_u32 *)dst = val; +#elif SPH_BIG_ENDIAN + *(sph_u32 *)dst = sph_bswap32(val); +#else + ((unsigned char *)dst)[0] = val; + ((unsigned char *)dst)[1] = (val >> 8); + ((unsigned char *)dst)[2] = (val >> 16); + ((unsigned char *)dst)[3] = (val >> 24); +#endif +} + +/** + * Decode a 32-bit value from the provided buffer (little endian convention). + * + * @param src the source buffer + * @return the decoded value + */ +static SPH_INLINE sph_u32 +sph_dec32le(const void *src) +{ +#if defined SPH_UPTR +#if SPH_UNALIGNED +#if SPH_BIG_ENDIAN + return sph_bswap32(*(const sph_u32 *)src); +#else + return *(const sph_u32 *)src; +#endif +#else + if (((SPH_UPTR)src & 3) == 0) { +#if SPH_BIG_ENDIAN +#if SPH_SPARCV9_GCC && !SPH_NO_ASM + sph_u32 tmp; + + /* + * "__volatile__" is needed here because without it, + * gcc-3.4.3 miscompiles the code and performs the + * access before the test on the address, thus triggering + * a bus error... + */ + __asm__ __volatile__ ( + "lda [%1]0x88,%0" : "=r" (tmp) : "r" (src)); + return tmp; +/* + * On PowerPC, this turns out not to be worth the effort: the inline + * assembly makes GCC optimizer uncomfortable, which tends to nullify + * the decoding gains. + * + * For most hash functions, using this inline assembly trick changes + * hashing speed by less than 5% and often _reduces_ it. The biggest + * gains are for MD4 (+11%) and CubeHash (+30%). For all others, it is + * less then 10%. The speed gain on CubeHash is probably due to the + * chronic shortage of registers that CubeHash endures; for the other + * functions, the generic code appears to be efficient enough already. + * +#elif (SPH_PPC32_GCC || SPH_PPC64_GCC) && !SPH_NO_ASM + sph_u32 tmp; + + __asm__ __volatile__ ( + "lwbrx %0,0,%1" : "=r" (tmp) : "r" (src)); + return tmp; + */ +#else + return sph_bswap32(*(const sph_u32 *)src); +#endif +#else + return *(const sph_u32 *)src; +#endif + } else { + return (sph_u32)(((const unsigned char *)src)[0]) + | ((sph_u32)(((const unsigned char *)src)[1]) << 8) + | ((sph_u32)(((const unsigned char *)src)[2]) << 16) + | ((sph_u32)(((const unsigned char *)src)[3]) << 24); + } +#endif +#else + return (sph_u32)(((const unsigned char *)src)[0]) + | ((sph_u32)(((const unsigned char *)src)[1]) << 8) + | ((sph_u32)(((const unsigned char *)src)[2]) << 16) + | ((sph_u32)(((const unsigned char *)src)[3]) << 24); +#endif +} + +/** + * Decode a 32-bit value from the provided buffer (little endian convention). + * The source buffer must be properly aligned. + * + * @param src the source buffer (32-bit aligned) + * @return the decoded value + */ +static SPH_INLINE sph_u32 +sph_dec32le_aligned(const void *src) +{ +#if SPH_LITTLE_ENDIAN + return *(const sph_u32 *)src; +#elif SPH_BIG_ENDIAN +#if SPH_SPARCV9_GCC && !SPH_NO_ASM + sph_u32 tmp; + + __asm__ __volatile__ ("lda [%1]0x88,%0" : "=r" (tmp) : "r" (src)); + return tmp; +/* + * Not worth it generally. + * +#elif (SPH_PPC32_GCC || SPH_PPC64_GCC) && !SPH_NO_ASM + sph_u32 tmp; + + __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (tmp) : "r" (src)); + return tmp; + */ +#else + return sph_bswap32(*(const sph_u32 *)src); +#endif +#else + return (sph_u32)(((const unsigned char *)src)[0]) + | ((sph_u32)(((const unsigned char *)src)[1]) << 8) + | ((sph_u32)(((const unsigned char *)src)[2]) << 16) + | ((sph_u32)(((const unsigned char *)src)[3]) << 24); +#endif +} + +#if SPH_64 + +/** + * Encode a 64-bit value into the provided buffer (big endian convention). + * + * @param dst the destination buffer + * @param val the 64-bit value to encode + */ +static SPH_INLINE void +sph_enc64be(void *dst, sph_u64 val) +{ +#if defined SPH_UPTR +#if SPH_UNALIGNED +#if SPH_LITTLE_ENDIAN + val = sph_bswap64(val); +#endif + *(sph_u64 *)dst = val; +#else + if (((SPH_UPTR)dst & 7) == 0) { +#if SPH_LITTLE_ENDIAN + val = sph_bswap64(val); +#endif + *(sph_u64 *)dst = val; + } else { + ((unsigned char *)dst)[0] = (val >> 56); + ((unsigned char *)dst)[1] = (val >> 48); + ((unsigned char *)dst)[2] = (val >> 40); + ((unsigned char *)dst)[3] = (val >> 32); + ((unsigned char *)dst)[4] = (val >> 24); + ((unsigned char *)dst)[5] = (val >> 16); + ((unsigned char *)dst)[6] = (val >> 8); + ((unsigned char *)dst)[7] = val; + } +#endif +#else + ((unsigned char *)dst)[0] = (val >> 56); + ((unsigned char *)dst)[1] = (val >> 48); + ((unsigned char *)dst)[2] = (val >> 40); + ((unsigned char *)dst)[3] = (val >> 32); + ((unsigned char *)dst)[4] = (val >> 24); + ((unsigned char *)dst)[5] = (val >> 16); + ((unsigned char *)dst)[6] = (val >> 8); + ((unsigned char *)dst)[7] = val; +#endif +} + +/** + * Encode a 64-bit value into the provided buffer (big endian convention). + * The destination buffer must be properly aligned. + * + * @param dst the destination buffer (64-bit aligned) + * @param val the value to encode + */ +static SPH_INLINE void +sph_enc64be_aligned(void *dst, sph_u64 val) +{ +#if SPH_LITTLE_ENDIAN + *(sph_u64 *)dst = sph_bswap64(val); +#elif SPH_BIG_ENDIAN + *(sph_u64 *)dst = val; +#else + ((unsigned char *)dst)[0] = (val >> 56); + ((unsigned char *)dst)[1] = (val >> 48); + ((unsigned char *)dst)[2] = (val >> 40); + ((unsigned char *)dst)[3] = (val >> 32); + ((unsigned char *)dst)[4] = (val >> 24); + ((unsigned char *)dst)[5] = (val >> 16); + ((unsigned char *)dst)[6] = (val >> 8); + ((unsigned char *)dst)[7] = val; +#endif +} + +/** + * Decode a 64-bit value from the provided buffer (big endian convention). + * + * @param src the source buffer + * @return the decoded value + */ +static SPH_INLINE sph_u64 +sph_dec64be(const void *src) +{ +#if defined SPH_UPTR +#if SPH_UNALIGNED +#if SPH_LITTLE_ENDIAN + return sph_bswap64(*(const sph_u64 *)src); +#else + return *(const sph_u64 *)src; +#endif +#else + if (((SPH_UPTR)src & 7) == 0) { +#if SPH_LITTLE_ENDIAN + return sph_bswap64(*(const sph_u64 *)src); +#else + return *(const sph_u64 *)src; +#endif + } else { + return ((sph_u64)(((const unsigned char *)src)[0]) << 56) + | ((sph_u64)(((const unsigned char *)src)[1]) << 48) + | ((sph_u64)(((const unsigned char *)src)[2]) << 40) + | ((sph_u64)(((const unsigned char *)src)[3]) << 32) + | ((sph_u64)(((const unsigned char *)src)[4]) << 24) + | ((sph_u64)(((const unsigned char *)src)[5]) << 16) + | ((sph_u64)(((const unsigned char *)src)[6]) << 8) + | (sph_u64)(((const unsigned char *)src)[7]); + } +#endif +#else + return ((sph_u64)(((const unsigned char *)src)[0]) << 56) + | ((sph_u64)(((const unsigned char *)src)[1]) << 48) + | ((sph_u64)(((const unsigned char *)src)[2]) << 40) + | ((sph_u64)(((const unsigned char *)src)[3]) << 32) + | ((sph_u64)(((const unsigned char *)src)[4]) << 24) + | ((sph_u64)(((const unsigned char *)src)[5]) << 16) + | ((sph_u64)(((const unsigned char *)src)[6]) << 8) + | (sph_u64)(((const unsigned char *)src)[7]); +#endif +} + +/** + * Decode a 64-bit value from the provided buffer (big endian convention). + * The source buffer must be properly aligned. + * + * @param src the source buffer (64-bit aligned) + * @return the decoded value + */ +static SPH_INLINE sph_u64 +sph_dec64be_aligned(const void *src) +{ +#if SPH_LITTLE_ENDIAN + return sph_bswap64(*(const sph_u64 *)src); +#elif SPH_BIG_ENDIAN + return *(const sph_u64 *)src; +#else + return ((sph_u64)(((const unsigned char *)src)[0]) << 56) + | ((sph_u64)(((const unsigned char *)src)[1]) << 48) + | ((sph_u64)(((const unsigned char *)src)[2]) << 40) + | ((sph_u64)(((const unsigned char *)src)[3]) << 32) + | ((sph_u64)(((const unsigned char *)src)[4]) << 24) + | ((sph_u64)(((const unsigned char *)src)[5]) << 16) + | ((sph_u64)(((const unsigned char *)src)[6]) << 8) + | (sph_u64)(((const unsigned char *)src)[7]); +#endif +} + +/** + * Encode a 64-bit value into the provided buffer (little endian convention). + * + * @param dst the destination buffer + * @param val the 64-bit value to encode + */ +static SPH_INLINE void +sph_enc64le(void *dst, sph_u64 val) +{ +#if defined SPH_UPTR +#if SPH_UNALIGNED +#if SPH_BIG_ENDIAN + val = sph_bswap64(val); +#endif + *(sph_u64 *)dst = val; +#else + if (((SPH_UPTR)dst & 7) == 0) { +#if SPH_BIG_ENDIAN + val = sph_bswap64(val); +#endif + *(sph_u64 *)dst = val; + } else { + ((unsigned char *)dst)[0] = val; + ((unsigned char *)dst)[1] = (val >> 8); + ((unsigned char *)dst)[2] = (val >> 16); + ((unsigned char *)dst)[3] = (val >> 24); + ((unsigned char *)dst)[4] = (val >> 32); + ((unsigned char *)dst)[5] = (val >> 40); + ((unsigned char *)dst)[6] = (val >> 48); + ((unsigned char *)dst)[7] = (val >> 56); + } +#endif +#else + ((unsigned char *)dst)[0] = val; + ((unsigned char *)dst)[1] = (val >> 8); + ((unsigned char *)dst)[2] = (val >> 16); + ((unsigned char *)dst)[3] = (val >> 24); + ((unsigned char *)dst)[4] = (val >> 32); + ((unsigned char *)dst)[5] = (val >> 40); + ((unsigned char *)dst)[6] = (val >> 48); + ((unsigned char *)dst)[7] = (val >> 56); +#endif +} + +/** + * Encode a 64-bit value into the provided buffer (little endian convention). + * The destination buffer must be properly aligned. + * + * @param dst the destination buffer (64-bit aligned) + * @param val the value to encode + */ +static SPH_INLINE void +sph_enc64le_aligned(void *dst, sph_u64 val) +{ +#if SPH_LITTLE_ENDIAN + *(sph_u64 *)dst = val; +#elif SPH_BIG_ENDIAN + *(sph_u64 *)dst = sph_bswap64(val); +#else + ((unsigned char *)dst)[0] = val; + ((unsigned char *)dst)[1] = (val >> 8); + ((unsigned char *)dst)[2] = (val >> 16); + ((unsigned char *)dst)[3] = (val >> 24); + ((unsigned char *)dst)[4] = (val >> 32); + ((unsigned char *)dst)[5] = (val >> 40); + ((unsigned char *)dst)[6] = (val >> 48); + ((unsigned char *)dst)[7] = (val >> 56); +#endif +} + +/** + * Decode a 64-bit value from the provided buffer (little endian convention). + * + * @param src the source buffer + * @return the decoded value + */ +static SPH_INLINE sph_u64 +sph_dec64le(const void *src) +{ +#if defined SPH_UPTR +#if SPH_UNALIGNED +#if SPH_BIG_ENDIAN + return sph_bswap64(*(const sph_u64 *)src); +#else + return *(const sph_u64 *)src; +#endif +#else + if (((SPH_UPTR)src & 7) == 0) { +#if SPH_BIG_ENDIAN +#if SPH_SPARCV9_GCC_64 && !SPH_NO_ASM + sph_u64 tmp; + + __asm__ __volatile__ ( + "ldxa [%1]0x88,%0" : "=r" (tmp) : "r" (src)); + return tmp; +/* + * Not worth it generally. + * +#elif SPH_PPC32_GCC && !SPH_NO_ASM + return (sph_u64)sph_dec32le_aligned(src) + | ((sph_u64)sph_dec32le_aligned( + (const char *)src + 4) << 32); +#elif SPH_PPC64_GCC && !SPH_NO_ASM + sph_u64 tmp; + + __asm__ __volatile__ ( + "ldbrx %0,0,%1" : "=r" (tmp) : "r" (src)); + return tmp; + */ +#else + return sph_bswap64(*(const sph_u64 *)src); +#endif +#else + return *(const sph_u64 *)src; +#endif + } else { + return (sph_u64)(((const unsigned char *)src)[0]) + | ((sph_u64)(((const unsigned char *)src)[1]) << 8) + | ((sph_u64)(((const unsigned char *)src)[2]) << 16) + | ((sph_u64)(((const unsigned char *)src)[3]) << 24) + | ((sph_u64)(((const unsigned char *)src)[4]) << 32) + | ((sph_u64)(((const unsigned char *)src)[5]) << 40) + | ((sph_u64)(((const unsigned char *)src)[6]) << 48) + | ((sph_u64)(((const unsigned char *)src)[7]) << 56); + } +#endif +#else + return (sph_u64)(((const unsigned char *)src)[0]) + | ((sph_u64)(((const unsigned char *)src)[1]) << 8) + | ((sph_u64)(((const unsigned char *)src)[2]) << 16) + | ((sph_u64)(((const unsigned char *)src)[3]) << 24) + | ((sph_u64)(((const unsigned char *)src)[4]) << 32) + | ((sph_u64)(((const unsigned char *)src)[5]) << 40) + | ((sph_u64)(((const unsigned char *)src)[6]) << 48) + | ((sph_u64)(((const unsigned char *)src)[7]) << 56); +#endif +} + +/** + * Decode a 64-bit value from the provided buffer (little endian convention). + * The source buffer must be properly aligned. + * + * @param src the source buffer (64-bit aligned) + * @return the decoded value + */ +static SPH_INLINE sph_u64 +sph_dec64le_aligned(const void *src) +{ +#if SPH_LITTLE_ENDIAN + return *(const sph_u64 *)src; +#elif SPH_BIG_ENDIAN +#if SPH_SPARCV9_GCC_64 && !SPH_NO_ASM + sph_u64 tmp; + + __asm__ __volatile__ ("ldxa [%1]0x88,%0" : "=r" (tmp) : "r" (src)); + return tmp; +/* + * Not worth it generally. + * +#elif SPH_PPC32_GCC && !SPH_NO_ASM + return (sph_u64)sph_dec32le_aligned(src) + | ((sph_u64)sph_dec32le_aligned((const char *)src + 4) << 32); +#elif SPH_PPC64_GCC && !SPH_NO_ASM + sph_u64 tmp; + + __asm__ __volatile__ ("ldbrx %0,0,%1" : "=r" (tmp) : "r" (src)); + return tmp; + */ +#else + return sph_bswap64(*(const sph_u64 *)src); +#endif +#else + return (sph_u64)(((const unsigned char *)src)[0]) + | ((sph_u64)(((const unsigned char *)src)[1]) << 8) + | ((sph_u64)(((const unsigned char *)src)[2]) << 16) + | ((sph_u64)(((const unsigned char *)src)[3]) << 24) + | ((sph_u64)(((const unsigned char *)src)[4]) << 32) + | ((sph_u64)(((const unsigned char *)src)[5]) << 40) + | ((sph_u64)(((const unsigned char *)src)[6]) << 48) + | ((sph_u64)(((const unsigned char *)src)[7]) << 56); +#endif +} + +#endif + +#endif /* Doxygen excluded block */ + +#endif diff --git a/crypto/skein.c b/crypto/skein.c new file mode 100644 index 000000000..1804a0365 --- /dev/null +++ b/crypto/skein.c @@ -0,0 +1,52 @@ +/*- + * Copyright 2009 Colin Percival, 2011 ArtForz, 2013 Neisklar, 2014 James Lovejoy + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + * + * This file was originally written by Colin Percival as part of the Tarsnap + * online backup system. + */ + +#include "skein.h" +#include "sha3/sph_skein.h" +#include "sha256.h" +#include +#include +#include +#include + +void skein_hash(const char* input, char* output) +{ + uint32_t len = 80; + char temp[64]; + + sph_skein512_context ctx_skien; + sph_skein512_init(&ctx_skien); + sph_skein512(&ctx_skien, input, len); + sph_skein512_close(&ctx_skien, &temp); + + SHA256_CTX ctx_sha256; + SHA256_Init(&ctx_sha256); + SHA256_Update(&ctx_sha256, &temp, 64); + SHA256_Final((unsigned char*) output, &ctx_sha256); +} diff --git a/crypto/skein.h b/crypto/skein.h new file mode 100644 index 000000000..e4a769320 --- /dev/null +++ b/crypto/skein.h @@ -0,0 +1,14 @@ +#ifndef SKEIN_H +#define SKEIN_H + +#ifdef __cplusplus +extern "C" { +#endif + +void skein_hash(const char* input, char* output); + +#ifdef __cplusplus +} +#endif + +#endif From a909cfd573d6e78c1b9989ed7418f58ced9847c5 Mon Sep 17 00:00:00 2001 From: digicontributer Date: Thu, 21 Dec 2017 01:33:09 +1000 Subject: [PATCH 3/4] update seed nodes --- BRPeerManager.c | 25 +++++++++++++++++++------ 1 file changed, 19 insertions(+), 6 deletions(-) diff --git a/BRPeerManager.c b/BRPeerManager.c index be2463a96..0acafc504 100644 --- a/BRPeerManager.c +++ b/BRPeerManager.c @@ -79,12 +79,25 @@ static const struct { uint32_t target; } checkpoint_array[] = { { 0, "7497ea1b465eb39f1c8f507bc877078fe016d6fcb6dfad3a64c98dcc6e1e8496", 1389388394, 0x1e0ffff0 }, - // { 0, "852c475c605e1f20bbe60219c811abaeef08bf0d4ff87eef59200fd7a7567fa7", 1413145109, 0x1b336ce6 }, - // Sitt 2016-02-18 Use Checkpoint from the First day of digiwallet fork (from breadWallet) - //{ 145000, "f8d650dda836d5e3809b928b8523f050891c3bb9fa2c201bb04824a8a2fe7df6", 1409596362, 0x1c01f271}, - //{ 1800000, "72f46e1fff56518dce7e540b407260ea827cb1c4652f24eb1d1917f54b95d65a", 1454769372, 0x1c021355}, - //{ 2149922, "557846763a5f1eb3205d175724bd26ba7123c17c49eaaadf20b67c7e20e3118a", 1460001303, 0x1c012a26}, - //{ 4444444, "0000000000000114de2ba1462056d2a9bd9ccfbd406cd2dfedaaef2c12910659", 1494132592, 0x1a01152f} + { 5000, "95753d284404118788a799ac754a3fdb5d817f5bd73a78697dfe40985c085596", 1389701913, 0x1c32a753 }, + { 10000, "12f90b8744f3b965e107ad9fd8b33ba6d95a91882fbc4b5f8588d70d494bed88", 1389996580, 0x1c1557fc }, + { 12000, "a1266acba91dc3d5737d9e8c6e21b7a91901f7f4c48082ce3d84dd394a13e415", 1390115182, 0x1c0d748e }, + { 14300, "24f665d71b0c6c88f6f72a863e9f1ba8e835cc52d13ad895dc5426021c7d2c48", 1390258861, 0x1c1409e7 }, + { 30000, "17c69ef6b403571b1bd333c91fbe116e451ba8281be12aa6bafb0486764bb315", 1391206674, 0x1c0e8ff5 }, + { 60000, "57b2c612b60462a3d6c388c8b30a68cb6f7e2034eea962b12b7ef506454fa2c1", 1393183580, 0x1c16beae }, + { 110000, "ab2da24656493015f2fd288994661e1cc657d90aa34c755514af044aaaf1569d", 1397850930, 0x1c198d98 }, + { 141100, "145c2cb5239a4e019c730ce8468d927a3955529c2bae077850783da97ddbca05", 1407018505, 0x1c01722c }, + { 141656, "683d27720429f28bcfa22d8385b7a06f307c8fd918d49215148fbd41a0dda595", 1408033242, 0x1c0185fc }, + { 245000, "852c475c605e1f20bbe60219c811abaeef08bf0d4ff87eef59200fd7a7567fa7", 1413145109, 0x1c028e59 }, + { 302000, "fb6d14ac5e0208f00d941db1fcbfe050f093cfd0c05ed151c809e4428bc14286", 1414988281, 0x1b0fb02e }, + { 331000, "bd1a1d002750e1648746eb29c78d30fa1043c8b6f89d82924c4488be06fa3d19", 1415917252, 0x1c07e8f8 }, + { 360000, "8fee7e3f6c38dccd3047a3e4667c63406f835c2890024030a2ab2dc6dba7c912", 1416891634, 0x1b2c1714 }, + { 400100, "82325a97cd97ac14b0a57408f881b1a9fc40174f8430a4580429499ac5d153c8", 1418232367, 0x1c020a1c }, + { 521000, "d23fd1e1f994c0586d761b71bb3530e9ab45bd0fabda3a5a2e394f3dc4d9bb04", 1421875139, 0x1c04531c }, + { 1380000, "00000000000001969b1e5836dd8bf6a001d96f4a16d336e09405b62b29feead6", 1447731080, 0x1a02e03e }, + { 1435000, "f78cc9c2791c8a23720e2efcdaf46584046ee5db8f050e21a3a15a13f5c68da0", 1449312651, 0x1c1f3df6 }, + { 4255555, "23f72e760542bf021ec76d04231ad7cf80142069a79ba702028e074b726f86ef", 1491329321, 0x1b26a4c3 }, + { 5758596, "21eb6ff4b856ba74121825fe7c4c598eba7c97c07b0376a704af3a313e7fad84", 1513753868, 0x1b00d8e6 }, }; static const char *dns_seeds[] = { From f715a0af30d44ec7344c4c107c8137f75b9c7c19 Mon Sep 17 00:00:00 2001 From: digicontributer Date: Thu, 21 Dec 2017 01:35:43 +1000 Subject: [PATCH 4/4] use different final checkpoint --- BRPeerManager.c | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/BRPeerManager.c b/BRPeerManager.c index 0acafc504..985587c7c 100644 --- a/BRPeerManager.c +++ b/BRPeerManager.c @@ -97,7 +97,7 @@ static const struct { { 1380000, "00000000000001969b1e5836dd8bf6a001d96f4a16d336e09405b62b29feead6", 1447731080, 0x1a02e03e }, { 1435000, "f78cc9c2791c8a23720e2efcdaf46584046ee5db8f050e21a3a15a13f5c68da0", 1449312651, 0x1c1f3df6 }, { 4255555, "23f72e760542bf021ec76d04231ad7cf80142069a79ba702028e074b726f86ef", 1491329321, 0x1b26a4c3 }, - { 5758596, "21eb6ff4b856ba74121825fe7c4c598eba7c97c07b0376a704af3a313e7fad84", 1513753868, 0x1b00d8e6 }, + { 5712333, "0000000000000003363ff6207a99a175e8b5adff71c77817a92f127fcefe936e", 1513061829, 0x1924bd79} }; static const char *dns_seeds[] = {