We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Wolfram Alpha provides step by step solutions for some problems through their API.
This would be an extremely useful feature for this bot and it shouldn't be difficult to implement assuming you already use the WA API.
More details: https://products.wolframalpha.com/show-steps-api/documentation/
Example query: Note: it is required to pass an APIKEY (which I have removed for privacy)
https://api.wolframalpha.com/v2/query?appid=APIKEY&input=integral%20x^3%20ln^2%20x%20dx&podstate=Step-by-step%20solution&format=image
<?xml version='1.0' encoding='UTF-8'?> <queryresult success='true' error='false' xml:space='preserve' numpods='5' datatypes='' timedout='' timedoutpods='' timing='4.075' parsetiming='0.507' parsetimedout='false' recalculate='' id='MSP6227185ba9226487e03500005534f25c7f5690h1' host='https://www5a.wolframalpha.com' server='42' related='https://www5a.wolframalpha.com/api/v1/relatedQueries.jsp?id=MSPa6228185ba9226487e03500001ecg2hc0g7afb47f3773634836471742935' version='2.6' inputstring='integral x^3 ln^2 x dx'> <pod title='Indefinite integrals' scanner='Integral' id='IndefiniteIntegral' position='100' error='false' numsubpods='2' primary='true'> <subpod title=''> <img src='https://www5a.wolframalpha.com/Calculate/MSP/MSP6229185ba9226487e03500004f6ia342d3595215?MSPStoreType=image/gif&s=42' alt='integral x^3 log^2(x) dx = 1/32 x^4 (8 log^2(x) - 4 log(x) + 1) + constant' title='integral x^3 log^2(x) dx = 1/32 x^4 (8 log^2(x) - 4 log(x) + 1) + constant' width='403' height='38' type='Default' themes='1,2,3,4,5,6,7,8,9,10,11,12' colorinvertable='true' /> </subpod> <subpod title='Possible intermediate steps'> <img src='https://www5a.wolframalpha.com/Calculate/MSP/MSP6230185ba9226487e03500002b8b54i9604c3i4a?MSPStoreType=image/gif&s=42' alt='Take the integral: integral x^3 log^2(x) dx For the integrand x^3 log^2(x), integrate by parts, integral f dg = f g - integral g df, where f = log^2(x), dg = x^3 dx, df = (2 log(x))/x dx, g = x^4/4: = 1/4 x^4 log^2(x) - 1/4 integral2 x^3 log(x) dx Factor out constants: = 1/4 x^4 log^2(x) - 1/2 integral x^3 log(x) dx For the integrand x^3 log(x), integrate by parts, integral f dg = f g - integral g df, where f = log(x), dg = x^3 dx, df = 1/x dx, g = x^4/4: = -1/8 x^4 log(x) + 1/4 x^4 log^2(x) + 1/8 integral x^3 dx The integral of x^3 is x^4/4: = x^4/32 + 1/4 x^4 log^2(x) - 1/8 x^4 log(x) + constant Which is equal to: Answer: | | = 1/32 x^4 (8 log^2(x) - 4 log(x) + 1) + constant' title='Take the integral: integral x^3 log^2(x) dx For the integrand x^3 log^2(x), integrate by parts, integral f dg = f g - integral g df, where f = log^2(x), dg = x^3 dx, df = (2 log(x))/x dx, g = x^4/4: = 1/4 x^4 log^2(x) - 1/4 integral2 x^3 log(x) dx Factor out constants: = 1/4 x^4 log^2(x) - 1/2 integral x^3 log(x) dx For the integrand x^3 log(x), integrate by parts, integral f dg = f g - integral g df, where f = log(x), dg = x^3 dx, df = 1/x dx, g = x^4/4: = -1/8 x^4 log(x) + 1/4 x^4 log^2(x) + 1/8 integral x^3 dx The integral of x^3 is x^4/4: = x^4/32 + 1/4 x^4 log^2(x) - 1/8 x^4 log(x) + constant Which is equal to: Answer: | | = 1/32 x^4 (8 log^2(x) - 4 log(x) + 1) + constant' width='524' height='806' type='Default' themes='1,2,3,4,5,6,7,8,9,10,11,12' colorinvertable='true' /> <infos count='1'> <info text='log(x) is the natural logarithm'> <img src='https://www5a.wolframalpha.com/Calculate/MSP/MSP6231185ba9226487e0350000681d47e441725b11?MSPStoreType=image/gif&s=42' alt='log(x) is the natural logarithm' title='log(x) is the natural logarithm' width='198' height='19' /> <link url='http://reference.wolfram.com/language/ref/Log.html' text='Documentation' title='Mathematica' /> <link url='http://functions.wolfram.com/ElementaryFunctions/Log' text='Properties' title='Wolfram Functions Site' /> <link url='http://mathworld.wolfram.com/NaturalLogarithm.html' text='Definition' title='MathWorld' /> </info> </infos> </subpod> <expressiontypes count='2'> <expressiontype name='Default' /> <expressiontype name='Default' /> </expressiontypes> <states count='1'> <state name='Hide steps' input='IndefiniteIntegral__Hide steps' /> </states> </pod> <pod title='Plots of the integral' scanner='Integral' id='Plot' position='200' error='false' numsubpods='2'> <subpod title=''> <img src='https://www5a.wolframalpha.com/Calculate/MSP/MSP6232185ba9226487e03500002g128g6cea8c7894?MSPStoreType=image/gif&s=42' alt='Plots of the integral' title='' width='335' height='134' type='2DMathPlot_1' themes='1,2,3,4,5,6,7,8,9,10,11,12' colorinvertable='true' /> </subpod> <subpod title=''> <img src='https://www5a.wolframalpha.com/Calculate/MSP/MSP6233185ba9226487e035000027cc6ig523diai4d?MSPStoreType=image/gif&s=42' alt='Plots of the integral' title='' width='335' height='135' type='2DMathPlot_1' themes='1,2,3,4,5,6,7,8,9,10,11,12' colorinvertable='true' /> </subpod> <expressiontypes count='2'> <expressiontype name='2DMathPlot' /> <expressiontype name='2DMathPlot' /> </expressiontypes> <states count='1'> <statelist count='2' value='Complex-valued plots' delimiters=''> <state name='Complex-valued plots' input='Plot__Complex-valued plots' /> <state name='Real-valued plots' input='Plot__Real-valued plots' /> </statelist> </states> </pod> <pod title='Alternate form of the integral' scanner='Integral' id='AlternateFormOfTheIntegral' position='300' error='false' numsubpods='1'> <subpod title=''> <img src='https://www5a.wolframalpha.com/Calculate/MSP/MSP6234185ba9226487e03500001050902e1ii63fea?MSPStoreType=image/gif&s=42' alt='x^4 ((log^2(x))/4 - log(x)/8 + 1/32) + constant' title='x^4 ((log^2(x))/4 - log(x)/8 + 1/32) + constant' width='255' height='49' type='Default' themes='1,2,3,4,5,6,7,8,9,10,11,12' colorinvertable='true' /> </subpod> <expressiontypes count='1'> <expressiontype name='Default' /> </expressiontypes> </pod> <pod title='Expanded form of the integrals' scanner='Integral' id='ExpandedFormOfTheIntegral' position='400' error='false' numsubpods='2'> <subpod title=''> <img src='https://www5a.wolframalpha.com/Calculate/MSP/MSP6235185ba9226487e035000052h887g2a766d42f?MSPStoreType=image/gif&s=42' alt='x^4/32 + 1/4 x^4 log^2(x) - 1/8 x^4 log(x) + constant' title='x^4/32 + 1/4 x^4 log^2(x) - 1/8 x^4 log(x) + constant' width='285' height='43' type='Default' themes='1,2,3,4,5,6,7,8,9,10,11,12' colorinvertable='true' /> </subpod> <subpod title='Possible intermediate steps'> <img src='https://www5a.wolframalpha.com/Calculate/MSP/MSP6236185ba9226487e03500005d4ffa71b9ga81aa?MSPStoreType=image/gif&s=42' alt='Expand the following: (x^4 (1 - 4 log(x) + 8 log(x)^2))/32 x^4 (1 - 4 log(x) + 8 log(x)^2) = x^4×1 + x^4 (-4 log(x)) + x^4×8 log(x)^2: (x^4 - 4 x^4 log(x) + 8 x^4 log(x)^2)/32 (x^4 - 4 x^4 log(x) + 8 x^4 log(x)^2)/32 = x^4/32 - (4 x^4 log(x))/32 + (8 x^4 log(x)^2)/32: x^4/32 - (4 x^4 log(x))/32 + (8 x^4 log(x)^2)/32 The gcd of -4 and 32 is 4, so (-4 x^4 log(x))/32 = ((4 (-1)) x^4 log(x))/(4×8) = 4/4×(-x^4 log(x))/8 = (-x^4 log(x))/8: x^4/32 + (-1 x^4 log(x))/8 + (8 x^4 log(x)^2)/32 8/32 = 8/(8×4) = 1/4: Answer: | | x^4/32 - (x^4 log(x))/8 + (x^4 log(x)^2)/4' title='Expand the following: (x^4 (1 - 4 log(x) + 8 log(x)^2))/32 x^4 (1 - 4 log(x) + 8 log(x)^2) = x^4×1 + x^4 (-4 log(x)) + x^4×8 log(x)^2: (x^4 - 4 x^4 log(x) + 8 x^4 log(x)^2)/32 (x^4 - 4 x^4 log(x) + 8 x^4 log(x)^2)/32 = x^4/32 - (4 x^4 log(x))/32 + (8 x^4 log(x)^2)/32: x^4/32 - (4 x^4 log(x))/32 + (8 x^4 log(x)^2)/32 The gcd of -4 and 32 is 4, so (-4 x^4 log(x))/32 = ((4 (-1)) x^4 log(x))/(4×8) = 4/4×(-x^4 log(x))/8 = (-x^4 log(x))/8: x^4/32 + (-1 x^4 log(x))/8 + (8 x^4 log(x)^2)/32 8/32 = 8/(8×4) = 1/4: Answer: | | x^4/32 - (x^4 log(x))/8 + (x^4 log(x)^2)/4' width='450' height='666' type='Default' themes='1,2,3,4,5,6,7,8,9,10,11,12' colorinvertable='true' /> </subpod> <expressiontypes count='2'> <expressiontype name='Default' /> <expressiontype name='Default' /> </expressiontypes> <states count='1'> <state name='Hide steps' input='ExpandedFormOfTheIntegral__Hide steps' /> </states> </pod> <pod title='Definite integral' scanner='Integral' id='DefiniteIntegral' position='500' error='false' numsubpods='1'> <subpod title=''> <img src='https://www5a.wolframalpha.com/Calculate/MSP/MSP6237185ba9226487e03500005g0baeieh53cd3c0?MSPStoreType=image/gif&s=42' alt='integral_0^1 x^3 log^2(x) dx = 1/32 = 0.03125' title='integral_0^1 x^3 log^2(x) dx = 1/32 = 0.03125' width='224' height='38' type='Default' themes='1,2,3,4,5,6,7,8,9,10,11,12' colorinvertable='true' /> </subpod> <expressiontypes count='1'> <expressiontype name='Default' /> </expressiontypes> </pod> </queryresult>
The second link (https://www4b.wolframalpha.com/Calculate/MSP/MSP20411ebib521338c9a5800005h54e68eb6i7i8f4?MSPStoreType=image/gif&s=38) displays this image:
If this could be implemented, that would be awesome.
Thanks!
The text was updated successfully, but these errors were encountered:
Isn't the step-by-step API like $10K per year?
Sorry, something went wrong.
@sonataop13 Only after a certain amount of queries (which I assume a bot of this size probably would use up).
Maybe it can be made available for developers to enable if they are hosting it themselves?
That way if you only need a few queries per month, you can do it with your own API key?
No branches or pull requests
Wolfram Alpha provides step by step solutions for some problems through their API.
This would be an extremely useful feature for this bot and it shouldn't be difficult to implement assuming you already use the WA API.
More details: https://products.wolframalpha.com/show-steps-api/documentation/
Example query: Note: it is required to pass an APIKEY (which I have removed for privacy)
https://api.wolframalpha.com/v2/query?appid=APIKEY&input=integral%20x^3%20ln^2%20x%20dx&podstate=Step-by-step%20solution&format=image
Query result
The second link (https://www4b.wolframalpha.com/Calculate/MSP/MSP20411ebib521338c9a5800005h54e68eb6i7i8f4?MSPStoreType=image/gif&s=38) displays this image:
Example step by step image
If this could be implemented, that would be awesome.
Thanks!
The text was updated successfully, but these errors were encountered: