-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
269 lines (185 loc) · 8.03 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import os
import math
import torch
import numpy as np
from PIL import Image
import matplotlib
import matplotlib.cm
import torchvision.utils as vutils
from models_small.loss import Sobel
import matplotlib.pyplot as plt
cmap = plt.cm.viridis
def draw_losses(logger, loss, global_step):
name = "train_loss"
logger.add_scalar(name, loss, global_step)
def draw_images(logger, all_draw_image, global_step):
for image_name, images in all_draw_image.items():
if images.shape[1] == 1:
images = colormap(images)
elif images.shape[1] == 3:
__imagenet_stats = {'mean': [0.485, 0.456, 0.406],
'std': [0.229, 0.224, 0.225]}
for channel in np.arange(images.shape[1]):
images[:, channel, :, :] = images[:, channel, :, :] * __imagenet_stats["std"][channel] + \
__imagenet_stats["mean"][channel]
if len(images.shape) == 3:
images = images[np.newaxis, :, :, :]
if images.shape[0] > 4:
images = images[:4, :, :, :]
logger.add_image(image_name, images, global_step)
def save_image(img_merge, filename):
img_merge = Image.fromarray(img_merge.astype('uint8'))
img_merge.save(filename)
def colored_depthmap(depth, d_min=None, d_max=None):
if d_min is None:
d_min = np.min(depth)
if d_max is None:
d_max = np.max(depth)
depth_relative = (depth - d_min) / (d_max - d_min)
return 255 * cmap(depth_relative)[:, :, :3] # H, W, C
def merge_into_row(input, depth_target, depth_pred):
rgb = np.transpose(input.cpu().numpy(), (1, 2, 0)) # H, W, C
depth_target_cpu = np.squeeze(depth_target.cpu().numpy())
depth_pred_cpu = np.squeeze(depth_pred.data.cpu().numpy())
d_min = min(np.min(depth_target_cpu), np.min(depth_pred_cpu))
d_max = max(np.max(depth_target_cpu), np.max(depth_pred_cpu))
depth_target_col = colored_depthmap(depth_target_cpu, d_min, d_max)
depth_pred_col = colored_depthmap(depth_pred_cpu, d_min, d_max)
return rgb, depth_target_col, depth_pred_col
def makedir(directory):
if not os.path.exists(directory):
os.makedirs(directory)
def adjust_learning_rate(optimizer, epoch, init_lr):
lr = init_lr * (0.1 ** (epoch // 5))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
class AverageMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def save_checkpoint(state, filename):
torch.save(state, filename)
def edge_detection(depth):
get_edge = Sobel().cuda()
edge_xy = get_edge(depth)
edge_sobel = torch.pow(edge_xy[:, 0, :, :], 2) + \
torch.pow(edge_xy[:, 1, :, :], 2)
edge_sobel = torch.sqrt(edge_sobel)
return edge_sobel
def build_optimizer(model,
learning_rate,
optimizer_name='rmsprop',
weight_decay=1e-5,
epsilon=0.001,
momentum=0.9):
if optimizer_name == "sgd":
print("Using SGD optimizer.")
optimizer = torch.optim.SGD(model.parameters(),
lr=learning_rate,
momentum=momentum,
weight_decay=weight_decay)
elif optimizer_name == 'rmsprop':
print("Using RMSProp optimizer.")
optimizer = torch.optim.RMSprop(model.parameters(),
lr=learning_rate,
eps=epsilon,
weight_decay=weight_decay,
momentum=momentum
)
elif optimizer_name == 'adam':
print("Using Adam optimizer.")
optimizer = torch.optim.Adam(model.parameters(),
lr=learning_rate, weight_decay=weight_decay)
return optimizer
def lg10(x):
return torch.div(torch.log(x), math.log(10))
def maxOfTwo(x, y):
z = x.clone()
maskYLarger = torch.lt(x, y)
z[maskYLarger.detach()] = y[maskYLarger.detach()]
return z
def nValid(x):
return torch.sum(torch.eq(x, x).float())
def nNanElement(x):
return torch.sum(torch.ne(x, x).float())
def getNanMask(x):
return torch.ne(x, x)
def setNanToZero(input, target):
nanMask = getNanMask(target)
nValidElement = nValid(target)
_input = input.clone()
_target = target.clone()
_input[nanMask] = 0
_target[nanMask] = 0
return _input, _target, nanMask, nValidElement
def evaluateError(output, target):
errors = {'MSE': 0, 'RMSE': 0, 'ABS_REL': 0, 'LG10': 0,
'MAE': 0, 'DELTA1': 0, 'DELTA2': 0, 'DELTA3': 0}
_output, _target, nanMask, nValidElement = setNanToZero(output, target)
if (nValidElement.data.cpu().numpy() > 0):
diffMatrix = torch.abs(_output - _target)
errors['MSE'] = torch.sum(torch.pow(diffMatrix, 2)) / nValidElement
errors['MAE'] = torch.sum(diffMatrix) / nValidElement
realMatrix = torch.div(diffMatrix, _target)
realMatrix[nanMask] = 0
errors['ABS_REL'] = torch.sum(realMatrix) / nValidElement
LG10Matrix = torch.abs(lg10(_output) - lg10(_target))
LG10Matrix[nanMask] = 0
errors['LG10'] = torch.sum(LG10Matrix) / nValidElement
yOverZ = torch.div(_output, _target)
zOverY = torch.div(_target, _output)
maxRatio = maxOfTwo(yOverZ, zOverY)
errors['DELTA1'] = torch.sum(
torch.le(maxRatio, 1.25).float()) / nValidElement
errors['DELTA2'] = torch.sum(
torch.le(maxRatio, math.pow(1.25, 2)).float()) / nValidElement
errors['DELTA3'] = torch.sum(
torch.le(maxRatio, math.pow(1.25, 3)).float()) / nValidElement
errors['MSE'] = float(errors['MSE'].data.cpu().numpy())
errors['ABS_REL'] = float(errors['ABS_REL'].data.cpu().numpy())
errors['LG10'] = float(errors['LG10'].data.cpu().numpy())
errors['MAE'] = float(errors['MAE'].data.cpu().numpy())
errors['DELTA1'] = float(errors['DELTA1'].data.cpu().numpy())
errors['DELTA2'] = float(errors['DELTA2'].data.cpu().numpy())
errors['DELTA3'] = float(errors['DELTA3'].data.cpu().numpy())
return errors
def addErrors(errorSum, errors, batchSize):
errorSum['MSE'] = errorSum['MSE'] + errors['MSE'] * batchSize
errorSum['ABS_REL'] = errorSum['ABS_REL'] + errors['ABS_REL'] * batchSize
errorSum['LG10'] = errorSum['LG10'] + errors['LG10'] * batchSize
errorSum['MAE'] = errorSum['MAE'] + errors['MAE'] * batchSize
errorSum['DELTA1'] = errorSum['DELTA1'] + errors['DELTA1'] * batchSize
errorSum['DELTA2'] = errorSum['DELTA2'] + errors['DELTA2'] * batchSize
errorSum['DELTA3'] = errorSum['DELTA3'] + errors['DELTA3'] * batchSize
return errorSum
def averageErrors(errorSum, N):
averageError = {'MSE': 0, 'RMSE': 0, 'ABS_REL': 0, 'LG10': 0,
'MAE': 0, 'DELTA1': 0, 'DELTA2': 0, 'DELTA3': 0}
averageError['MSE'] = errorSum['MSE'] / N
averageError['ABS_REL'] = errorSum['ABS_REL'] / N
averageError['LG10'] = errorSum['LG10'] / N
averageError['MAE'] = errorSum['MAE'] / N
averageError['DELTA1'] = errorSum['DELTA1'] / N
averageError['DELTA2'] = errorSum['DELTA2'] / N
averageError['DELTA3'] = errorSum['DELTA3'] / N
return averageError
def colormap(image, cmap="jet"):
image_min = torch.min(image)
image_max = torch.max(image)
image = (image - image_min) / (image_max - image_min)
image = torch.squeeze(image)
indices = torch.round(image * 255).long()
cm = matplotlib.cm.get_cmap(cmap if cmap is not None else 'gray')
colors = cm(np.arange(256))[:, :3]
colors = torch.cuda.FloatTensor(colors)
color_map = colors[indices].transpose(2, 3).transpose(1, 2)
return color_map