-
Notifications
You must be signed in to change notification settings - Fork 0
/
underreport.py
315 lines (254 loc) · 12 KB
/
underreport.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
import tensorflow_probability as tfp
from tensorflow_probability import distributions as tfd
from scipy import special
from scipy.stats import lognorm, norm
import gpflow
from gpflow.ci_utils import ci_niter
from gpflow import set_trainable
import requests
import json
import sys, getopt
import datetime
gpflow.config.set_default_float(np.float64)
gpflow.config.set_default_jitter(1e-4)
gpflow.config.set_default_summary_fmt("notebook")
# convert to float64 for tfp to play nicely with gpflow in 64
f64 = gpflow.utilities.to_default_float
tf.random.set_seed(123)
def number_to_date(number):
if isinstance(number,int):
number = [number]
if len(number) > 1:
date_list = []
for num in number:
starting_date = datetime.date(2020, 1, 1)
date = starting_date + datetime.timedelta(days=num)
date_list.append(date.strftime("%Y-%m-%d"))
date = date_list
else:
starting_date = datetime.date(2020, 1, 1)
date = starting_date + datetime.timedelta(days=number[0])
date = date.strftime("%Y-%m-%d")
return date
def date_to_number(dates):
if len(dates) == 1:
yyyy, mm, dd = dates.split("-")
yyyy = int(yyyy)
mm = int(mm)
dd = int(dd)
starting_date = datetime.date(2020, 1, 1)
query_date = datetime.date(yyyy, mm, dd)
days_passed = query_date-starting_date
days_passed = int(days_passed.days)
else:
days_list = []
for date in dates:
yyyy, mm, dd = date.split("-")
yyyy = int(yyyy)
mm = int(mm)
dd = int(dd)
starting_date = datetime.date(2020, 1, 1)
query_date = datetime.date(yyyy, mm, dd)
days_passed = query_date-starting_date
days_passed = int(days_passed.days)
days_list.append(days_passed)
days_passed = days_list
return days_passed
def underreport_estimate(cases, deaths):
pass
def get_regional_deaths(region):
endpointm = requests.get('http://192.168.2.223:5006/getDeathsByState?state='+str(region))
deaths = json.loads(endpointm.text)
deaths = pd.DataFrame(deaths)
deaths.index = pd.to_datetime(deaths.dates)
deaths.drop(columns = 'dates', inplace= True)
deaths.index = [x.strftime("%Y-%m-%d") for x in deaths.index]
deaths['total'] = deaths['confirmed'] +deaths['suspected']
deaths['total'] = deaths['total']
return deaths
def get_nacional_deaths():
endpointm = requests.get('http://192.168.2.223:5006/getDeathsByState?state=16')
deaths = json.loads(endpointm.text)
deaths = pd.DataFrame(deaths)
deaths.index = pd.to_datetime(deaths.dates)
deaths.drop(columns = 'dates', inplace= True)
deaths.index = [x.strftime("%Y-%m-%d") for x in deaths.index]
for i in range(1,16):
endpointm = requests.get('http://192.168.2.223:5006/getDeathsByState?state='+str(i))
deaths2 = json.loads(endpointm.text)
deaths2 = pd.DataFrame(deaths2)
deaths2.index = pd.to_datetime(deaths2.dates)
deaths2.drop(columns = 'dates', inplace= True)
deaths2.index = [x.strftime("%Y-%m-%d") for x in deaths2.index]
deaths = deaths+ deaths2
deaths['total'] = deaths['confirmed'] +deaths['suspected']
deaths['total'] = deaths['total']
return deaths
def delay_correction():
mu, sigma = 13, 12.7 #?
mean = np.log(mu**2 / np.sqrt(mu**2 + sigma**2) )
std = np.sqrt(np.log(1 + sigma**2/mu**2) )
f = lognorm(s = std, scale = np.exp(mean))
days = 15
pass
def sissor(x):
return x[:10]
def args_parser(argv):
from_region = ''
to_region = ''
try:
opts, args = getopt.getopt(argv,"hf:t:n:",["from=","to=", "gpun"])
except getopt.GetoptError:
print( 'underreport.py -f <regionnumber> -t <regionnumber> -n <gpunumber>')
sys.exit(2)
for opt, arg in opts:
if opt == '-h':
print( 'underreport.py -f <regionnumber> -t <regionnumber> -n <gpunumber> ')
sys.exit()
elif opt in ("-f", "--ifile"):
from_region = arg
elif opt in ("-t", "--ofile"):
to_region = arg
elif opt in ("-n", "--ofile"):
ngpu = arg
return from_region, to_region, ngpu
endpointnew = requests.get('http://192.168.2.223:5006/getNewCasesAllStates')
actives = json.loads(endpointnew.text)
dates = pd.to_datetime(actives['dates'])
dates = [x.strftime("%Y-%m-%d") for x in dates]
# Parsing args
from_region, to_region, gpun = args_parser(sys.argv[1:])
ssess =tf.compat.v1.Session(config=tf.compat.v1.ConfigProto(allow_soft_placement=True))
with tf.device('/gpu:'+gpun):
for current_region in range(int(from_region),int(to_region)+1):
## Data loading
if current_region == 17:
endpointnew = requests.get('http://192.168.2.223:5006/getNationalNewCases')
actives = json.loads(endpointnew.text)
dates = pd.to_datetime(actives['dates'])
dates = [x.strftime("%Y-%m-%d") for x in dates]
reg_active = pd.DataFrame(data = {'cases': actives['cases']}, index = dates)
endpointm = requests.get('http://192.168.2.223:5006/getDeathsByState?state=16')
deaths = json.loads(endpointm.text)
deaths = pd.DataFrame(deaths)
deaths.index = pd.to_datetime(deaths.dates)
deaths.drop(columns = 'dates', inplace= True)
deaths.index = [x.strftime("%Y-%m-%d") for x in deaths.index]
for i in range(1,16):
endpointm = requests.get('http://192.168.2.223:5006/getDeathsByState?state='+str(i))
deaths2 = json.loads(endpointm.text)
deaths2 = pd.DataFrame(deaths2)
deaths2.index = pd.to_datetime(deaths2.dates)
deaths2.drop(columns = 'dates', inplace= True)
deaths2.index = [x.strftime("%Y-%m-%d") for x in deaths2.index]
deaths = deaths+ deaths2
deaths['total'] = deaths['confirmed'] +deaths['suspected']
deaths = deaths.query("total > 0")
else:
padded_region = '{:02d}'.format(current_region)
reg_active = pd.DataFrame(data = {'cases': actives['data'][padded_region]}, index = dates)
endpointm = requests.get('http://192.168.2.223:5006/getDeathsByState?state='+str(current_region))
deaths = json.loads(endpointm.text)
deaths = pd.DataFrame(deaths)
deaths.index = pd.to_datetime(deaths.dates)
deaths.drop(columns = 'dates', inplace= True)
deaths.index = [x.strftime("%Y-%m-%d") for x in deaths.index]
deaths['total'] = deaths['confirmed'] +deaths['suspected']
deaths = deaths.query("total > 0")
common = list(set(deaths.index.to_list()).intersection(reg_active.index.to_list()))
# min. nummber of datapoints to compute
if len(common) <30:
continue
common = sorted(common)
# Delay distribution
mu, sigma = 13, 12.7 #?
mean = np.log(mu**2 / np.sqrt(mu**2 + sigma**2) )
std = np.sqrt(np.log(1 + sigma**2/mu**2) )
f = lognorm(s = std, scale = np.exp(mean))
days = 15
RM_ac = reg_active
RM_ac = RM_ac.loc[common]
RM_deaths = deaths['total'].loc[common]
## Cases known convolution
d_cases = np.empty((RM_ac.shape[0],1))
for i in range(RM_ac.shape[0]):
until_t_data = RM_ac.values[:i+1]
reversed_arr = until_t_data[::-1].reshape(i+1)
d_cases[i] = np.sum(f.pdf(np.linspace(0,i,i+1)) * reversed_arr)
dcfr = RM_deaths.values/d_cases.reshape(len(common))
## scale cfr temporal
estimator_a = pd.read_csv('adjusted_cfr.csv').iloc[current_region-1]['cfr_mid']/(dcfr*100)
estimator_a = np.where(estimator_a<1, estimator_a, 0.99999)
estimator_a = np.where(estimator_a>0, estimator_a, 10**-5)
estimator_a = estimator_a[:-1]
common = common[:-1]
## Contrary to the original paper we apply the probit function to the estimator
## instead of applying the inverse to the GP output and then passing the expected
## number of deaths with a stochastic baseline cfr.
## Because of the aforementioned the propagation of the baseline cfr error is lost
## for the moment.
pro_a = norm.ppf(estimator_a)
numeric_common = date_to_number(common)
X = np.asarray(numeric_common)
X = tf.convert_to_tensor(X.reshape(estimator_a.shape[0],-1), dtype=tf.float64)
pro_a = pro_a
pro_a = tf.convert_to_tensor(pro_a.reshape(estimator_a.shape[0],-1))
data = (X, pro_a)
# Setting GP model
kernel = gpflow.kernels.SquaredExponential()+gpflow.kernels.Constant(variance=1.0)
model = gpflow.models.GPR(data, kernel)
set_trainable(model.kernel.kernels[1].variance, False)
optimizer = gpflow.optimizers.Scipy()
optimizer.minimize(model.training_loss, model.trainable_variables)
# Prior here are for the variance, contrary to the original paper
model.kernel.kernels[0].variance.prior = tfd.LogNormal(f64(1.0), f64(1.0))
model.kernel.kernels[0].lengthscales.prior = tfd.LogNormal(f64(4.0), f64(0.5))
model.likelihood.variance.prior = tfd.HalfNormal( f64(0.5))
num_burnin_steps = ci_niter(1000)
num_samples = ci_niter(10000)
hmc_helper = gpflow.optimizers.SamplingHelper(
model.log_posterior_density, model.trainable_parameters
)
hmc = tfp.mcmc.HamiltonianMonteCarlo(
target_log_prob_fn=hmc_helper.target_log_prob_fn, num_leapfrog_steps=10, step_size=.01
)
adaptive_hmc = tfp.mcmc.SimpleStepSizeAdaptation(
hmc, num_adaptation_steps=10, target_accept_prob=f64(0.75), adaptation_rate=0.1
)
@tf.function
def run_chain_fn():
return tfp.mcmc.sample_chain(
num_results=num_samples,
num_burnin_steps=num_burnin_steps,
current_state=hmc_helper.current_state,
kernel=adaptive_hmc,#hmc
trace_fn=lambda _, pkr: pkr.inner_results.is_accepted,
)
# Sampling hyperparameters
samples, traces = run_chain_fn()
parameter_samples = hmc_helper.convert_to_constrained_values(samples)
param_to_name = {param: name for name, param in gpflow.utilities.parameter_dict(model).items()}
xx2 = np.linspace(numeric_common[0], numeric_common[-1], numeric_common[-1]-numeric_common[0]+1)[:, None]
posterior_samples = []
#Sampling output
for i in range(0, 10000):#num_samples
for var, var_samples in zip(hmc_helper.current_state, parameter_samples):
var.assign(var_samples[i])
f = model.predict_f_samples(xx2, 1)
posterior_samples.append( f[0, :, :])
posterior_samples = np.hstack(posterior_samples)
posterior_samples = posterior_samples.T
# Intervals
reporting = norm.cdf(posterior_samples)
rep_mean = np.mean(reporting, 0)
rep_low = np.percentile(reporting, 0.13, axis=0)
rep_high = np.percentile(reporting, 99.87, axis=0)
final_data = pd.DataFrame(index = number_to_date([i for i in range(numeric_common[0],numeric_common[-1]+1)]))
final_data['mean'] = 1 - rep_mean
final_data['low'] = 1 - rep_high
final_data['high'] = 1 - rep_low
final_data.to_csv('output/'+str(current_region)+'.csv')